WO2020134430A1 - 轴承支撑组件及其加工方法、离心压缩机 - Google Patents

轴承支撑组件及其加工方法、离心压缩机 Download PDF

Info

Publication number
WO2020134430A1
WO2020134430A1 PCT/CN2019/112945 CN2019112945W WO2020134430A1 WO 2020134430 A1 WO2020134430 A1 WO 2020134430A1 CN 2019112945 W CN2019112945 W CN 2019112945W WO 2020134430 A1 WO2020134430 A1 WO 2020134430A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
bearing support
housing
thrust
fixing plate
Prior art date
Application number
PCT/CN2019/112945
Other languages
English (en)
French (fr)
Inventor
刘华
张治平
李宏波
钟瑞兴
陈玉辉
叶文腾
亓静利
刘胜
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US17/289,077 priority Critical patent/US11578753B2/en
Priority to EP19903044.6A priority patent/EP3904692B1/en
Publication of WO2020134430A1 publication Critical patent/WO2020134430A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • F04D29/0513Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/0563Bearings cartridges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/52Axial thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/53Hydrodynamic or hydrostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/54Radial bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps

Definitions

  • the present disclosure relates to a bearing support assembly, a processing method thereof, and a centrifugal compressor.
  • the dynamic pressure gas bearing has the advantages of high precision, low friction loss, long life, low vibration, no pollution, no need to provide lubricating medium, etc. It is also suitable for high speed and high precision occasions. It has the advantages of centrifugal compressors, especially compact compressors. Broad application prospects. However, during the use of dynamic pressure bearings, due to the low gas viscosity and no external air supply for dynamic pressure gas bearings, the load is low, and the bearing clearance is generally in the order of micrometers or tens of micrometers, which requires high processing and assembly accuracy . These characteristics of dynamic pressure bearings place high demands on the design of their bearing supports.
  • An aspect of an embodiment of the present disclosure provides a bearing support assembly, including:
  • the fixing plate is detachably installed at one end of the bearing support along the axial direction of the through hole;
  • the first thrust bearing is installed on the side of the fixing plate away from the bearing support.
  • the fixed plate is used to limit the displacement of the radial bearing in the axial direction.
  • the end of the fixing plate facing the bearing support is provided with a positioning ring
  • the bearing support is provided with an annular first groove
  • the positioning ring is embedded in the first groove
  • the inner wall of the positioning ring and the radial bearing The outer wall of part of the length is fitted.
  • the bearing support assembly further includes a housing, a first end of the bearing support is connected to the fixing plate, a second end is connected to the housing, and a radial outer dimension of the bearing support from the first end to the second end Gradually increase.
  • the bearing support assembly further includes a housing, and the end of the bearing support connected to the housing is provided with a notch for first repositioning the connection between the bearing support and the housing.
  • the bearing support assembly further includes a pin for second repositioning of the connection between the bearing support and the housing.
  • the bearing support is provided with a vent hole for communicating the space where the radial bearing is located with the space where the first thrust bearing is located.
  • centrifugal compressor including the bearing support assembly of the above embodiment.
  • the centrifugal compressor further includes: a main shaft, a diffuser, a thrust disk, and a second thrust bearing, the thrust disk is configured to be rotatable together with the main shaft, and is located axially between the diffuser and the fixed plate ;
  • the first thrust bearing is provided at the end of the fixing plate away from the bearing support, and the second thrust bearing is provided at the end of the diffuser close to the fixing plate.
  • the centrifugal compressor further includes: there are gaps between both sides of the thrust disc and the first thrust bearing and the second thrust bearing, and the gaps on both sides are defined by the diffuser and the fixed plate abutting each other.
  • the end of the diffuser near the fixed plate is provided with a second groove
  • the second thrust bearing is provided at the bottom of the first groove in the axial direction
  • the fixed plate is fixed to the diffuser
  • the thrust plate is located at the second Inside the groove.
  • At least one of the first thrust bearing, the second thrust bearing, and the radial bearing is an air suspension bearing.
  • a further aspect of an embodiment of the present disclosure provides a method for processing a bearing support assembly based on the above embodiment, including:
  • the through hole of the bearing support and the end surface for installing the fixing plate are processed to a preset size through one-time positioning clamping.
  • two axially spaced bearing supports are provided in the housing. After the two bearing supports and the housing are assembled into a combined body, the method further includes:
  • the through holes of the two bearing supports are processed to a preset size through one-time positioning and clamping.
  • the step of processing the through holes of the two bearing supports to a preset size through one-time positioning clamping specifically includes:
  • the through holes of the two bearing supports are sequentially processed to a preset size.
  • the end of the bearing support connected to the housing is provided with a stop
  • the step of assembling the bearing support and the housing as a combination specifically includes:
  • the pins are pinned for second repositioning.
  • the method further includes:
  • the assembly formed by assembling the bearing support and the housing is disassembled so that the radial bearing can be installed in a state where the bearing support and the housing are separated.
  • FIG. 1 is a partial structural schematic diagram of some embodiments of a centrifugal compressor of the present disclosure
  • FIG. 2 is a schematic view of the combined structure of the fixed plate and the bearing support in the bearing support assembly of the present disclosure
  • FIG. 3 is a schematic structural view of some embodiments of a bearing support in a bearing support assembly of the present disclosure
  • FIG. 4 is a schematic structural view of some embodiments of a bearing support assembly of the present disclosure.
  • FIG. 5 is a structural schematic diagram of combined processing of some embodiments of the bearing support assembly of the present disclosure.
  • first and second appearing in this disclosure are just for convenience of description, to distinguish different component parts having the same name, and do not indicate a sequential or primary-secondary relationship.
  • the embodiments of the present disclosure provide a bearing support assembly, a processing method thereof, and a compressor, which can improve the assembly accuracy of the bearing.
  • the present disclosure provides a bearing support assembly, which in some embodiments includes a fixed plate 51, a bearing support 52, a radial bearing 8 and a first thrust bearing 10'.
  • the bearing support 52 is provided with a through hole 522 for installing the radial bearing 8;
  • the fixing plate 51 is detachably installed at one end of the bearing support 52 along the axial direction of the through hole 522, and the fixing plate 51 is away from the bearing support 52 Is used to install the first thrust bearing 10'.
  • the fixing plate 51 is mounted on the bearing support 52 by fasteners.
  • the fixing plate 51 and the bearing support 52 adopt a split structure, which is helpful for ensuring the verticality relationship between the through hole 522 and the end surface A of the bearing support 52 for mounting the fixing plate 51 during processing;
  • this bearing support assembly can improve the assembly accuracy of the bearing by ensuring the machining accuracy, so as to improve the stability of the bearing rotor system; and can also improve the pass rate of parts processing and reduce the processing cost.
  • the fixed plate 51 is also used to limit the displacement of the radial bearing 8 moving toward the fixed plate 51 in the axial direction.
  • the fixing plate 51 can not only install the first thrust bearing 10 ′, but also axially limit the radial bearing 8, which can make the structure of the bearing support assembly more compact and facilitate parallel processing on both sides of the fixing plate 51
  • the degree ensures the parallelism of the mounting surface of the first thrust bearing 10' and the axial limit surface of the radial bearing 8, thereby improving the installation accuracy of the first thrust bearing 10' and the radial bearing 8.
  • the end of the fixing plate 51 facing the bearing support 52 is provided with a positioning ring 511.
  • the positioning ring 511 and the fixing plate 51 are designed as an integral structure, and the bearing support 52 is provided with an annular first groove 521
  • the positioning ring 511 is embedded in the first groove 521 to radially position the fixing plate 51 with a gap between the fixing plate 51 and the main shaft 1.
  • the inner wall 512 of the positioning ring 511 cooperates with the outer wall of a partial length of the radial bearing 8 to support the partial length of the radial bearing 8 and at the same time play an axial thrust role on the radial bearing 8.
  • the holes in the fixing plate 51 that cooperate with the radial bearing 8 are provided along the thickness of the fixing plate 51, and a thrust table 513 is left at the end away from the bearing support 52.
  • the bearing support assembly of the present disclosure further includes a housing 6.
  • the first end of the bearing support 52 is connected to the fixing plate 51 in the axial direction, and the second end is connected to the housing 6. Due to the first thrust bearing
  • the outer diameter of 10' is smaller than the inner diameter of the housing 6, and accordingly, the radial outer dimension of the bearing support 52 in the longitudinal section from the first end to the second end gradually increases.
  • the side of the bearing support 52 away from the fixed plate 51 is provided with a weight reduction groove 524, for example, the weight reduction groove 524 is annularly arranged, and the inner side wall of the weight reduction groove 524 is parallel to the inner wall of the through hole 522
  • the outer side wall conforms to the outer shape of the bearing support 52.
  • Such a V-shaped bearing support 52 can improve the overall structural strength of the bearing support 52 by adopting a structure with a gradual cross-sectional area, so that the force distribution is uniform everywhere, and the load carrying capacity can be optimized, and the outer contour of the bearing support 52 is a slope It is easy to realize by casting, and has a draft slope when casting through a mold.
  • the bearing support 52 is provided with a vent hole 526 for communicating the space where the radial bearing 8 is located with the space where the first thrust bearing 10 ′ is located, so that the radial bearing 8
  • the working environment is consistent with the first thrust bearing 10', for example, the working back pressure and temperature of the radial bearing 8 are consistent with the first thrust bearing 10'.
  • the working environment of the thrust bearing and the radial bearing 8 is the same as that of the motor cavity, that is, gas circulation is guaranteed, and The back pressure is relatively stable, reducing bearing gas film fluctuations, thereby improving bearing performance.
  • the bearing support 52 is provided with an operation hole 523 in the radial direction, so as to install a vibration sensor or a temperature sensor on the outer wall of the radial bearing 8 through the operation hole 523 to monitor the working state of the radial bearing 8.
  • the radially outer hole section of the operation hole 523 serves as a bypass hole to ensure that the pressure and temperature of the thrust bearing and the radial bearing 8 and the motor cavity are the same.
  • the radially inner hole section of the operation hole 523 serves to dissipate heat from the radial bearing 8 effect.
  • a flange 525 is provided at the second end of the bearing support 52, and a stop 527 is provided at the end of the flange 525 away from the fixing plate 51,
  • the bearing support 52 is installed in the housing 6 through the flange 525 and is fixed to the housing 6 by fasteners. At the same time, the bearing support 52 is positioned radially through the stop 527 and is fixed away from the flange 525 The end of the plate 51 is positioned axially.
  • the stop 527 is used for the first repositioning of the connection between the bearing support 52 and the housing 6, and can be used to preliminarily position the installation position relationship between the bearing support 52 and the housing 6.
  • the bearing support assembly further includes the pin 11, the flange 525 of the bearing support 52 is provided with a first pin hole 528, the housing 6 is provided with a second pin hole 61, and the pin 11 is passed through the A pin hole 528 and a second pin hole 61 are used for second repositioning of the connection between the bearing support 52 and the housing 6 to accurately position the installation position relationship between the bearing support 52 and the housing 6.
  • the pins are set axially or radially.
  • This embodiment can accurately ensure the installation accuracy of the bearing support 52 in the housing 6 by adopting double positioning, thereby improving the position accuracy between the radial bearing 8 and the thrust bearing.
  • the bearing support 52 is provided in the housing 6, and the through hole 522 of the bearing support 52 and the end surface A for mounting the fixing plate 51 are arranged between the bearing support 52 and the housing 6 It is processed to the preset size in the state of assembling the assembly B.
  • This embodiment is processed by positioning between the bearing support 52 and the housing 6 and forming the combined body B.
  • the processing accuracy of the combined body B ensures the mounting accuracy of the bearing, and the through hole 522 and The perpendicularity of the end face A.
  • two bearing supports 52 are axially spaced in the housing 6 to support two different positions of the main shaft 1.
  • the hole 522 is configured to be processed to a predetermined size in a state where the two bearing supports 52 and the housing 6 are assembled into the combined body B.
  • the two through-holes 522 are processed in order from the side of the assembly B, and the clamping can be performed by positioning once Ensure the size and coaxiality of the two through holes 522.
  • the bearing support assembly of the present disclosure can improve the coaxiality of the two radial bearings 8 and the perpendicularity of the radial bearings 8 and the thrust bearings to within 5 microns.
  • the two bearing supports 52 are first repositioned with the housing 6 through the stop 527, and then the flange 525 and the housing 6 are fixed by fasteners, and then the pin 11 is fixed. Subsequently, the housing 6 and the two bearing supports 52 are positioned on the processing equipment as a combination B, and the end surface A of the two bearing supports 52 and the fixing plate 51 is processed to ensure that the thrust bearing and the radial bearing 8 are perpendicular Then, the through holes 522 of the two bearing supports 52 are processed in order from one side to ensure the coaxiality of the two radial bearings 8.
  • the bearing support 52 is removed, and the radial bearing 8 is inserted into the through hole 522 of the bearing support 52 by means of hot fitting, and then the fixing plate 51 is installed at the first end of the bearing support 52.
  • the bearing support 52 to which the fixing plate 51 is attached is fixed to the housing 6 together, and the bearing support 52 is positioned through the stop 527 and the pin 11 position determined during processing.
  • each bearing adopts dynamic pressure gas bearing, because the bearing itself has high processing accuracy and requires high assembly position accuracy, if the assembly accuracy is reduced, the bearing performance will be reduced, and in serious cases, the main shaft 1 will not be able to float; when two or When more than two dynamic pressure radial bearings are used, the coaxiality of the bearings is required to be in the micrometer range, and the perpendicularity of all thrust surfaces relative to the center of the main shaft 1 is also required to be in the micrometer range.
  • the method of the present disclosure processes the through holes 522 and the end faces A of the two bearing supports 52 in a positioning and clamping process, which can improve the machining accuracy and subsequent assembly accuracy.
  • the present disclosure provides a method for processing a bearing support assembly based on the above embodiment.
  • the processing method includes:
  • Step 101 Assemble the bearing support 52 and the housing 6 into an assembly B;
  • Step 102 Position and clamp the assembly B on the processing equipment, for example, the processing equipment is a machine tool, etc.;
  • Step 103 The through hole 522 of the bearing support 52 and the end surface A for mounting the fixing plate 51 are processed to a preset size by one-time positioning and clamping.
  • This embodiment is processed by positioning between the bearing support 52 and the housing 6 and forming the assembly B, and the assembly accuracy of the assembly B can be ensured by the processing accuracy of the assembly B, and by one-time positioning clamping, unified To ensure the verticality of the through hole 522 and the end face A, so as to ensure the verticality of the radial bearing 8 and the thrust bearing.
  • the housing 6 is provided with two bearing supports 52 spaced apart in the axial direction. After the two bearing supports 52 and the housing 6 are assembled into the assembly B through step 101, the processing method is include:
  • Step 104 The through holes 522 of the two bearing supports 52 are processed to a preset size through one-time positioning and clamping.
  • step 104 and step 103 is not limited. In actual processing, according to the convenience of processing, the two through holes 522 and the end surface A are finished in a positioning clamping process.
  • the assembly accuracy of the assembly B can be ensured by the machining accuracy of the assembly B, and by positioning and clamping once, A unified processing standard is adopted, and the size and coaxiality of the two through holes 522 can be ensured through one-time positioning clamping.
  • the step 104 of processing the through holes 522 of the two bearing supports 52 to a preset size through one-time positioning clamping specifically includes: connecting the two bearing supports 52 from the side of the housing 6 The holes 522 are sequentially processed to a preset size.
  • the through hole 522 is processed by boring, and the processing tool sequentially processes the two through holes 522 through the axial feed from the side of the housing 6 to improve the processing efficiency and further increase the coaxiality of the two through holes 522 .
  • the end of the bearing support 52 connected to the housing 6 is provided with a stop 527, and the step of assembling the bearing support 52 and the housing 6 into an assembly in step 101 specifically includes:
  • Step 101A Cooperate the bearing support 52 and the housing 6 through the stop 527 to perform the first repositioning
  • Step 101B Fix the bearing support 52 and the housing 6 with fasteners
  • Step 101C After the flange is fixed to the housing 6, the pin 11 is pinned to perform the second repositioning.
  • steps 101 to 103 are executed sequentially.
  • the positioning of the pin 11 can prevent large cutting during the machining process
  • the force causes the position of the bearing support 52 and the housing 6 to change, and can also provide accurate positioning for the subsequent product assembly process.
  • the processing method further includes:
  • Step 105 The assembly B formed by assembling the bearing support 52 and the housing 6 is disassembled, so that the radial bearing 8 is installed in a state where the bearing support 52 and the housing 6 are separated.
  • the bearing support 52 is removed, and the radial bearing 8 is inserted into the through hole 522 of the bearing support 52 by means of hot fitting, and then the fixing plate 51 is installed at the first end of the bearing support 52.
  • the bearing support 52 can be fixedly mounted on the housing 6 by the pin position determined during processing. The bearing support 52 ensures the assembly accuracy of the bearing through the dual positioning method of the stop 527 and the pin 11 and improves the stability of the bearing rotor system.
  • the present disclosure also provides a centrifugal compressor including the bearing support assembly of the above embodiment.
  • the bearing support assembly of the present disclosure can also be used in screw-type refrigeration compressors and the like.
  • the working principle of the centrifugal compressor is: During the compressor working process, the main shaft 1 rotates at a high speed, the gas is accelerated by the left impeller 2 and enters the diffuser 3, and the gas passes through the diffuser 3 for first-stage compression and pressure increase and enters the first In a volute, the exhaust channel on the first volute guides the compressed gas into the right impeller 2 and enters the right diffuser 3 after the centrifugal action of the right impeller 2 after the second compression It enters the second volute and exits the compressor through the exhaust passage on the second volute.
  • the centrifugal compressor of the present disclosure further includes: a main shaft 1, a diffuser 3, a thrust disk 4 and a second thrust bearing 10.
  • the thrust disk 4 is fixed to the main shaft 1 and is configured to rotate together with the main shaft 1 , And is located between the diffuser 3 and the fixed plate 51 in the axial direction.
  • the first thrust bearing 10' is provided at the end of the fixing plate 51 away from the bearing support 52, and the second thrust bearing 10 is provided at the end of the diffuser 3 away from the diffuser surface, that is, the second thrust bearing 10 is provided near the diffuser 3
  • the thrust plate 4 has a thrust portion 41.
  • the left and right sides of the thrust portion 41 and the thrust bearings on both sides form a working surface, which can withstand two-way axial forces, and ensure stable and reliable operation of the compressor under full operating conditions and during reverse rotation.
  • the thrust disk cooperates with the thrust bearings on both sides, and can withstand the axial forces in the left and right directions, so as to ensure the stability of the centrifugal compressor during full-operation and reverse operation.
  • the operating condition of the compressor refers to the evaporation temperature and condensation temperature of the system where the compressor is located.
  • the full operating condition refers to the compressor working within a certain evaporation temperature range and condensation temperature range.
  • At least one of the first thrust bearing 10', the second thrust bearing 10, and the radial bearing 8 is a static or dynamic pressure gas thrust bearing, or a magnetic levitation bearing.
  • the fixed plate 51 and the diffuser 3 abut against each other to limit the position of the thrust disk 4 and the clearance between the thrust bearings on both sides, thereby accurately ensuring the clearance of the thrust bearing, reducing assembly difficulty, and improving assembly Efficiency and assembly accuracy, and to ensure the working performance of thrust bearings, thereby improving the compressor's operating stability.
  • the thrust disk 4 may further include a connecting portion 42 that is connected to the thrust portion 41 and is sleeved on the main shaft 1, and the diffuser 3 is provided with a second end near the fixing plate 51 in the axial direction
  • the groove 31 is provided with a through hole at the bottom of the second groove 31, and the connecting portion 42 is embedded in the through hole.
  • the connecting portion 42 has an interference fit with the main shaft 1 so that the thrust disk 4 can rotate with the main shaft 1.
  • the diffuser 3 and the fixed plate 51 are fixedly arranged and have a gap with the main shaft 1.
  • the thrust plate 4 has a cylindrical stepped structure.
  • the end of the diffuser 3 away from the diffuser surface is provided with a second groove 31, that is, the end of the diffuser 3 near the fixing plate 51 in the axial direction is provided with a second groove 31
  • the first thrust bearing 10' is provided at the bottom of the second groove 521 in the axial direction, the fixing plate 51 is fixed to the diffuser 3, and the thrust portion 41 of the thrust plate 4 is located in the second groove 31.
  • the bearing support 52 needs to be fixed on the casing 6 of the compressor, its position is fixed, so that the fixing plate 51 can be axially positioned.
  • the diffuser 3 is also fixed on the housing 6, and the diffuser 3 and the fixing plate 51 abut against each other, so that the axial depth of the second groove 31 can accurately ensure the clearance of the thrust bearings on both sides.
  • Improve assembly accuracy, reduce assembly difficulty, improve assembly efficiency, and at the same time ensure the performance of thrust bearings, prevent inaccurate clearance control from causing thrust bearing performance degradation or even failure, thereby improving the stability of compressor operation.
  • the depth of the second groove 31 includes: the thickness of the thrust portion 41, the thickness of the thrust bearings on both sides and the clearance between the thrust bearings on both sides. Therefore, in order to ensure the clearance between the thrust bearings on both sides, the second The depth of the groove 31, the thickness of the thrust portion 41 and the thickness of the thrust bearings on both sides control the clearance.
  • the specific method is to reverse the design depth and tolerance range of the second groove 31 according to the clearance range to be achieved by the thrust bearing, the thickness tolerance range of the thrust portion 41 and the thickness tolerance range of the thrust bearing. Thereby, the thrust bearing clearance can be ensured by increasing the machining accuracy of the depth of the second groove 31, which can improve the assembly accuracy and reduce the assembly difficulty, thereby improving the assembly efficiency.
  • the first thrust bearing 10' is directly fixed to the bottom of the second groove 31.
  • This structure integrates the diffuser 3 and the fixed plate 51 of the thrust bearing into one part.
  • the bottom of the second groove 31 can be used as the fixed plate of the second thrust bearing 10 without the need to additionally provide the fixed plate 51 of the thrust bearing. Further reduce the axial dimension of the bearing support assembly, making the structure more compact.
  • the first thrust bearing 10 ′ is fixed to the fixing plate 51 by fasteners
  • the second thrust bearing 10 is fixed to the diffuser 3 by fasteners
  • the diffuser 3 is fixed by fasteners
  • the outer periphery of the diffuser 3 is provided with a positioning stop so as to be positioned and installed with the housing 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种轴承支撑组件及其加工方法,其中,轴承支撑组件包括:轴承支座(52),其上设有通孔(522),用于安装径向轴承(8);以及固定板(51),可拆卸地安装于轴承支座(52)沿轴向的一端,固定板(51)远离轴承支座(52)的侧面用于安装第一推力轴承(10')。固定板(51)和轴承支座(52)采用分体式结构,利于在加工时保证用于安装径向轴承(8)的通孔与用于安装固定板(51)端面的垂直度,提高轴承的装配精度和轴承转子系统稳定性;而且还能提高零件加工合格率,降低加工成本。以及一种包括轴承支撑组件的离心压缩机。

Description

轴承支撑组件及其加工方法、离心压缩机
本公开是以申请号为 201811595311.1,申请日为 2018年12月25日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及一种轴承支撑组件及其加工方法、离心压缩机。
背景技术
动压气体轴承具有精度高、摩擦损耗小、寿命长、振动小、无污染,无需提供润滑介质等优点,同时适用于高转速和高精度场合,在离心压缩机特别是小型化压缩机中具有广阔应用前景。但是,动压轴承在使用过程中,由于气体黏度低,且动压气体轴承无外部气源供气,所以承载低,轴承间隙一般为微米级或数十微米级,要求加工及装配精度很高。动压轴承的这些特点对其轴承支座的设计提出很高的要求。
发明内容
本公开的实施例一方面提供了一种轴承支撑组件,包括:
轴承支座,轴承支座上设有通孔;以及
固定板,可拆卸地安装于轴承支座沿通孔轴向的一端;
径向轴承,安装在通孔内;以及
第一推力轴承,安装于固定板远离轴承支座的侧面。
在一些实施例中,固定板用于限制径向轴承沿轴向的位移。
在一些实施例中,固定板朝向轴承支座的一端设有定位环,轴承支座上设有环形的第一凹槽,定位环嵌入第一凹槽中,且定位环的内壁与径向轴承部分长度段的外壁配合。
在一些实施例中,轴承支撑组件还包括壳体,轴承支座的第一端与固定板连接,第二端与壳体连接,轴承支座从第一端至第二端的径向外廓尺寸逐渐增大。
在一些实施例中,轴承支撑组件还包括壳体,轴承支座与壳体连接的一端设有止口,用于对轴承支座与壳体的连接进行第一重定位。
在一些实施例中,轴承支撑组件还包括销钉,销钉用于对轴承支座与壳体的连接 进行第二重定位。
在一些实施例中,轴承支座上设有通气孔,用于将径向轴承所在的空间与第一推力轴承所在的空间连通。
本公开的实施例另一方面提供了一种离心压缩机,包括上述实施例的轴承支撑组件。
在一些实施例中,离心压缩机还包括:主轴、扩压器、推力盘和第二推力轴承,推力盘被配置为与主轴一起可转动,且沿轴向位于扩压器与固定板之间;
第一推力轴承设在固定板远离轴承支座的一端,第二推力轴承设在扩压器靠近固定板的一端。
在一些实施例中,离心压缩机还包括:推力盘的两侧与第一推力轴承和第二推力轴承之间均具有间隙,两侧的间隙通过扩压器与固定板相互抵靠进行限定。
在一些实施例中,扩压器靠近固定板的一端设有第二凹槽,第二推力轴承设在第一凹槽沿轴向的底部,固定板与扩压器固定,推力盘位于第二凹槽内。
在一些实施例中,第一推力轴承、第二推力轴承和径向轴承中的至少一个为气悬浮轴承。
本公开的实施例再一方面提供了一种基于上述实施例轴承支撑组件的加工方法,包括:
将轴承支座与壳体装配为组合体;
将组合体在加工设备上定位装夹;
将轴承支座的通孔和用于安装固定板的端面通过一次定位装夹加工至预设尺寸。
在一些实施例中,壳体内设有两个沿轴向间隔设置的轴承支座,在将两个轴承支座与壳体装配为组合体之后,还包括:
将两个轴承支座的通孔通过一次定位装夹加工至预设尺寸。
在一些实施例中,将两个轴承支座的通孔通过一次定位装夹加工至预设尺寸的步骤具体包括:
从壳体的一侧将两个轴承支座的通孔依次加工至预设尺寸。
在一些实施例中,轴承支座与壳体连接的一端设有止口,将轴承支座与壳体装配为组合体的步骤具体包括:
将轴承支座与壳体通过止口配合进行第一重定位;
将轴承支座与壳体通过紧固件固定;
在法兰盘与壳体固定后,打销钉进行第二重定位。
在一些实施例中,在加工完成后,还包括:
将轴承支座与壳体装配形成的组合体拆开,以便在轴承支座与壳体分离的状态下装入径向轴承。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开离心压缩机的一些实施例的局部结构示意图;
图2为本公开轴承支撑组件中固定板与轴承支座的组合结构示意图;
图3为本公开轴承支撑组件中轴承支座的一些实施例的结构示意图;
图4为本公开轴承支撑组件的一些实施例的结构示意图;
图5为本公开轴承支撑组件的一些实施例进行组合加工的结构示意图。
附图标记说明:
1、主轴;2、叶轮;3、扩压器;4、推力盘;6、壳体;8、径向轴承;10’、第一推力轴承;10、第二推力轴承;11;销钉;
31、第二凹槽;41、推力部;42、连接部;51、固定板;511、定位部;512、内壁;513、止推台;514、安装部;52、轴承支座;521、第一凹槽;522、通孔;523、操作孔;524、减重槽;525、法兰盘;526、通气孔;527、止口;528、第一销孔;61、第二销孔。
具体实施方式
以下详细说明本公开。在以下段落中,更为详细地限定了实施例的不同方面。如此限定的各方面可与任何其他的一个方面或多个方面组合,除非明确指出不可组合。尤其是,被认为是优选的或有利的任何特征可与其他一个或多个被认为是优选的或有利的特征组合。
本公开中出现的“第一”、“第二”等用语仅是为了方便描述,以区分具有相同名称的不同组成部件,并不表示先后或主次关系。
为了在以下实施例中清楚地描述各个方位,采用了“上”、“下”、“顶”、“底”、“前”、“后”、“内”、“外”、“顶”和“底”等指示的方位或位置关系的描述,这仅是为了便于描述本公开,而不是指示或暗示所指的装置必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。而且,如图1所示,后续提到的“轴向”、“周向”和“径向”均是以主轴1为基准定义的。
本公开的实施例提供了一种轴承支撑组件及其加工方法、压缩机,能够提高轴承的装配精度。
如图1至图5,本公开提供了一种轴承支撑组件,在一些实施例中,包括固定板51、轴承支座52、径向轴承8和第一推力轴承10’。其中,轴承支座52上设有通孔522,用于安装径向轴承8;固定板51可拆卸地安装于轴承支座52沿通孔522轴向的一端,固定板51远离轴承支座52的侧面用于安装第一推力轴承10’。例如,固定板51通过紧固件安装于轴承支座52上。
如图3所示,由于轴承支座52的通孔522用于安装径向轴承8,端面A用于安装固定板51,会影响固定板51相对于通孔522的轴向的安装垂直度,从而影响第一推力轴承10’与径向轴承8的安装垂直度。该实施例中的固定板51和轴承支座52采用分体式结构,利于在加工时保证通孔522与轴承支座52用于安装固定板51的端面A的垂直度关系;而且,在设有两个径向轴承8时,也利于保证两个轴承支座52对应通孔522的同轴度,由此保证两个径向轴承8的同轴度。因此,此种轴承支撑组件能够通过保证加工精度来提高轴承的装配精度,以提高轴承转子系统的稳定性;而且还能提高零件加工合格率,降低加工成本。
如图1所示,固定板51还用于限制径向轴承8沿轴向朝向固定板51方向运动的位移。由此,固定板51既能安装第一推力轴承10’,又能对径向轴承8进行轴向限位,可使轴承支撑组件的结构更加紧凑,且利于通过固定板51两侧的加工平行度保证第一推力轴承10’安装面与径向轴承8轴向限位面的平行度,从而提高第一推力轴承10’与径向轴承8的安装精度。
如图2所示,固定板51朝向轴承支座52的一端设有定位环511,例如,定位环511与固定板51设计为一体结构,轴承支座52上设有环形的第一凹槽521,定位环511嵌入第一凹槽521中,以对固定板51进行径向定位,固定板51与主轴1之间具有间隙。而且,定位环511的内壁512与径向轴承8部分长度段的外壁配合,用于对径向轴承8的部分长度段进行支撑,同时对径向轴承8起到轴向止推的作用。为了实 现轴向止推,固定板51上与径向轴承8配合的孔沿固定板51的部分厚度设置,在远离轴承支座52的一端留有止推台513。
如图2和图5,本公开的轴承支撑组件还包括壳体6,轴承支座52沿轴向的第一端与固定板51连接,第二端与壳体6连接,由于第一推力轴承10’的外径小于壳体6内径,相应地,轴承支座52从第一端至第二端在纵截面上的径向外廓尺寸逐渐增大。
为了减重,如图2所示,轴承支座52远离固定板51的一侧设置减重槽524,例如,减重槽524环形设置,减重槽524的内侧壁与通孔522的内壁平行,外侧壁与轴承支座52的外廓形状一致。
此种V形轴承支座52通过采用截面积渐变的结构,可提高轴承支座52的整体结构强度,使各处受力分布均匀,可优化承载能力,而且轴承支座52的外廓为斜面易于通过铸造实现,通过模具进行铸造时具有拔模斜度。
在一些实施例中,如图2所示,轴承支座52上设有通气孔526,用于将径向轴承8所在空间与第一推力轴承10’所在空间连通,以使径向轴承8的工作环境与第一推力轴承10’一致,例如使径向轴承8的工作背压和温度与第一推力轴承10’一致。电机腔内有冷却电机的制冷剂进出,压缩机正常运行时,电机腔内的压力和温度是稳定的,推力轴承与径向轴承8的工作环境与电机腔相同,也就是保证气体循环,且背压相对稳定,减小轴承气膜波动,从而提高轴承性能。
如图3所示,轴承支座52上沿径向设有操作孔523,以便通过操作孔523在径向轴承8的外壁上安装振动传感器或者温度传感器,以监测径向轴承8的工作状态。操作孔523沿径向外侧的孔段作为旁通孔,保证推力轴承与径向轴承8和电机腔压力温度都相同,操作孔523沿径向内侧的孔段起到给径向轴承8散热的作用。
在一些实施例中,如图3和图5所示,轴承支座52的第二端设有法兰盘525,且在法兰盘525的远离固定板51的端部设有止口527,轴承支座52通过法兰盘525安装在壳体6内,并通过紧固件与壳体6固定,同时,轴承支座52通过止口527进行径向定位,并依靠法兰盘525远离固定板51的端部进行轴向定位。
止口527用于对轴承支座52与壳体6的连接进行第一重定位,能够对轴承支座52与壳体6的安装位置关系进行初步定位。在一些实施例中,轴承支撑组件还包括销钉11,轴承支座52的法兰盘525上设有第一销孔528,壳体6上设有第二销孔61,销钉11穿设在第一销孔528和第二销孔61内,以对轴承支座52与壳体6的连接进行第二重定位,以对轴承支座52与壳体6的安装位置关系进行精确定位。销钉轴向 设置,或者径向设置。
该实施例通过采用两重定位,可精确保证轴承支座52在壳体6内的安装精度,从而提高径向轴承8与推力轴承之间的位置精度。
如图3和图5所示,轴承支座52设在壳体6内,轴承支座52的通孔522和用于安装固定板51的端面A被配置为在轴承支座52与壳体6装配为组合体B的状态下加工至预设尺寸。
该实施例通过在轴承支座52与壳体6之间定位且形成组合体B的状态下加工,通过组合体B的加工精度保证轴承的安装精度,而且通过一次定位装夹保证通孔522与端面A的垂直度。
在一些实施例中,如图5所示,壳体6内沿轴向间隔设有两个轴承支座52,用于对主轴1的两个不同位置进行支撑,两个轴承支座52的通孔522被配置为在两个轴承支座52与壳体6装配为组合体B的状态下加工至预设尺寸。
该实施例通过将两个轴承支座52与壳体6之间定位且形成组合体B的状态下加工,从组合体B的一侧起依次加工两个通孔522,能够通过一次定位装夹保证两个通孔522的尺寸及同轴度。
由于轴承支座52上的各个关键部位在一个定位装夹工序完成加工,因此可提高两个通孔522的同轴度,以及每个轴承支座52对应通孔522与端面A的垂直度,从而保证两个径向轴承8的同轴度以及推力轴承的垂直度,进而提高转子系统的工作稳定性。通过实际测量,本公开的轴承支撑组件能够将两个径向轴承8的同轴度、径向轴承8与推力轴承的垂直度提高至5微米之内。
下面对轴承支撑组件的具体加工方式进行阐述。在加工时,先将两个轴承支座52通过止口527进行第一重定位与壳体6配合,接着通过紧固件将法兰盘525与壳体6固定,再打销钉11固定。随后,将壳体6和两个轴承支座52作为组合体B在加工设备上定位,加工两个轴承支座52与固定板51配合的端面A,以保证推力轴承与径向轴承8的垂直度,再从一侧起依次加工两个轴承支座52的通孔522,以保证两个径向轴承8的同轴度。
在加工完毕后,拆下轴承支座52,并通过热装的方式将径向轴承8装入轴承支座52的通孔522,再将固定板51安装在轴承支座52的第一端。接着,将安装有固定板51的轴承支座52一起固定在壳体6上,轴承支座52通过止口527和加工时确定的销钉11位置进行定位。
若各轴承采用动压气体轴承,由于轴承本身加工精度高,且要求装配位置精度极高,若装配精度降低,会使轴承性能降低,严重时会导致主轴1无法浮起;当采用两个或两个以上的动压径向轴承时,要求轴承的同轴度在微米级,要求所有推力面相对于主轴1中心的垂直度也在微米级。本公开的方法将两个轴承支座52的通孔522和端面A在一个定位装夹工序中加工,可提高加工精度和后续装配精度。
其次,本公开提供了一种基于上述实施例轴承支撑组件的加工方法,参考图5,在一些实施例中,该加工方法包括:
步骤101、将轴承支座52与壳体6装配为组合体B;
步骤102、将组合体B在加工设备上定位装夹,例如,加工设备是机床等;
步骤103、将轴承支座52的通孔522和用于安装固定板51的端面A通过一次定位装夹加工至预设尺寸。
该实施例通过在轴承支座52与壳体6之间定位且形成组合体B的状态下加工,可通过组合体B的加工精度保证轴承的安装精度,而且通过一次定位装夹,可采用统一的加工基准,以保证通孔522与端面A的加工垂直度,从而保证径向轴承8与推力轴承的垂直度。
在一些实施例中,壳体6内设有两个沿轴向间隔设置的轴承支座52,在通过步骤101将两个轴承支座52与壳体6装配为组合体B之后,加工方法还包括:
步骤104、将两个轴承支座52的通孔522通过一次定位装夹加工至预设尺寸。
步骤104与步骤103的执行顺序不作限制,在实际加工时,根据加工的便捷性,在一个定位装夹工序中对两个通孔522和端面A进行精加工。
该实施例通过将两个轴承支座52与壳体6之间定位且形成组合体B的状态下加工,可通过组合体B的加工精度保证轴承的安装精度,而且通过一次定位装夹,可采用统一的加工基准,而且可通过一次定位装夹保证两个通孔522的尺寸及同轴度。
在一些实施例中,步骤104将两个轴承支座52的通孔522通过一次定位装夹加工至预设尺寸的步骤具体包括:从壳体6的一侧将两个轴承支座52的通孔522依次加工至预设尺寸。
例如,通孔522采用镗孔的方式进行加工,加工刀具从壳体6一侧通过轴向进给依次加工两个通孔522可提高加工效率,并进一步提高两个通孔522的同轴度。
在一些实施例中,轴承支座52与壳体6连接的一端设有止口527,步骤101将轴承支座52与壳体6装配为组合体的步骤具体包括:
步骤101A、将轴承支座52与壳体6通过止口527配合进行第一重定位;
步骤101B、将轴承支座52与壳体6通过紧固件固定;
步骤101C、在法兰盘与壳体6固定后,打销钉11进行第二重定位。
在该实施例中,步骤101~103顺序执行。
在通过止口527初步定位后,通过紧固件约束轴承支座52与壳体6的位置关系,在原来第一销孔528的基础上,在轴承支座52和壳体6上配合打销孔,以在壳体6上形成第二销孔61,并将销钉11依次插入第一销孔528和第二销孔61中,通过销钉11定位既能防止在加工过程中受到较大的切削力使轴承支座52与壳体6发生位置变化,也能为后续产品装配过程提供精确定位。通过采用两重定位,可精确保证轴承支座52在壳体6内的安装精度,从而提高径向轴承8与推力轴承之间的位置精度。
在一些实施例中,在加工完成后,此种加工方法还包括:
步骤105、将轴承支座52与壳体6装配形成的组合体B拆开,以便在轴承支座52与壳体6分离的状态下装入径向轴承8。
在加工完毕后,拆下轴承支座52,并通过热装的方式将径向轴承8装入轴承支座52的通孔522,再将固定板51安装在轴承支座52的第一端。轴承支座52可通过加工时确定的销钉位置固定安装在壳体6上。轴承支座52通过止口527和销钉11双重定位方式来保证轴承的装配精度,提高轴承转子系统稳定性。
最后,本公开还提供了一种离心压缩机,包括上述实施例的轴承支撑组件。此外,本公开的轴承支撑组件也可用于螺杆式制冷压缩机等。
离心压缩机的工作原理为:在压缩机工作过程中主轴1高速旋转,气体通过左侧的叶轮2加速后进入扩压器3中,气体经过扩压器3进行一级压缩增压后进入第一蜗壳中,第一蜗壳上的排气通道将压缩气体引导至进入右侧叶轮2中,经过右侧叶轮2的离心作用后进入右侧扩压器3中,气体经过二级压缩后进入第二蜗壳中,并通过第二蜗壳上的排气通道排出压缩机。
如图1所示,本公开的离心压缩机还包括:主轴1、扩压器3、推力盘4和第二推力轴承10,推力盘4与主轴1固定,被配置为与主轴1一起可转动,且沿轴向位于扩压器3与固定板51之间。第一推力轴承10’设在固定板51远离轴承支座52的一端,第二推力轴承10设在扩压器3远离扩压面的一端,即第二推力轴承10设在扩压器3靠近固定板51的一端。具体地,推力盘4具有推力部41,推力部41左右两面与两侧推力轴承形成工作面,可承受双向轴向力,保证压缩机全工况运行和反转时运行 稳定可靠。
该实施例的离心压缩机中,推力盘与两侧的推力轴承配合,可承受左右两个方向的轴向力,以保证离心压缩机在全工况运行和反转运行时的稳定性。压缩机运行工况是指压缩机所在系统的蒸发温度和冷凝温度,全工况即指压缩机在一定蒸发温度范围和冷凝温度范围内工作,压缩机停机时,由于排气压力高于吸气压力,会出现停机后反转情况。
在一些实施例中,推力盘4的两侧与第一推力轴承10’和第二推力轴承10之间均具有间隙,且两侧的间隙通过扩压器3与固定板51相互抵靠进行限定。
例如,第一推力轴承10’、第二推力轴承10和径向轴承8中的至少一个为静压或动压气体推力轴承,或者为磁悬浮轴承。
以图1为例,由于推力轴承与推力盘4之间有间隙,气体会在此间隙内形成具有压力的气膜起止推和润滑作用,由于推力轴承本身就在压缩机腔体内,气体充满腔体环境,在主轴1旋转过程中,可将气体带入间隙中,形成动压气体推力轴承。
通过固定板51与扩压器3相互抵靠进行组合限位,限定了推力盘4的位置以及与两侧推力轴承之间的间隙,由此可精确保证推力轴承间隙,降低装配难度,提高装配效率和装配精度,并保证推力轴承的工作性能,从而提高压缩机的运行稳定性。
在一些实施例中,推力盘4还可包括连接部42,连接部42与推力部41连接,且套设在主轴1上,扩压器3沿轴向靠近固定板51的一端设有第二凹槽31,第二凹槽31的底部设有通孔,连接部42嵌入通孔内。连接部42与主轴1过盈配合,以使推力盘4可随主轴1一起转动。扩压器3和固定板51固定设置,且与主轴1之间均具有间隙。例如,推力盘4为圆柱阶梯形结构。
在一些实施例中,仍参考图1,扩压器3远离扩压面的一端设有第二凹槽31,即扩压器3沿轴向靠近固定板51的一端设有第二凹槽31,第一推力轴承10’设在第二凹槽521沿轴向的底部,固定板51与扩压器3固定,推力盘4的推力部41位于第二凹槽31内。
由于轴承支座52需要固定在压缩机的壳体6上,因此自身位置固定,由此可对固定板51进行轴向定位。而且扩压器3也固定在壳体6上,且扩压器3与固定板51相互抵靠,这样就能通过第二凹槽31的轴向深度准确地保证两侧推力轴承的间隙,可提高装配精度,并降低装配难度,提高装配效率,同时还能保证推力轴承的性能,防止间隙控制不准确造成推力轴承性能降低甚至失效,从而提高压缩机的运行稳定 性。
如图1所示,第二凹槽31的深度包括:推力部41厚度、两侧推力轴承的厚度和两侧推力轴承的间隙,因此,为了保证两侧推力轴承的间隙,可通过提高第二凹槽31深度、推力部41厚度和两侧推力轴承的厚度来控制间隙。具体方法为:根据推力轴承需要达到的间隙范围、推力部41厚度公差范围和推力轴承厚度公差范围,来反推第二凹槽31的设计深度及公差范围。由此,可通过提高第二凹槽31深度的加工精度来保证推力轴承间隙,可提高装配精度,并降低装配难度,从而提高装配效率。
在一些实施例中,第一推力轴承10’直接固定在第二凹槽31的底部。此种结构将扩压器3和推力轴承的固定板51集成为一个零件,可采用第二凹槽31的底部作为第二推力轴承10的固定板,无需额外设置推力轴承的固定板51,可进一步减小轴承支承组件的轴向尺寸,使结构更加紧凑。
在一些实施例中,参考图1,第一推力轴承10’通过紧固件固定在固定板51上,第二推力轴承10通过紧固件固定在扩压器3上,固定板51与扩压器3通过紧固件固定,扩压器3的外周设有定位止口,以便与壳体6定位安装。
以上对本公开所提供的一种轴承支撑组件及其加工方法、离心压缩机进行了详细介绍。本文中应用了具体的实施例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以对本公开进行若干改进和修饰,这些改进和修饰也落入本公开权利要求的保护范围内。

Claims (17)

  1. 一种轴承支撑组件,包括:
    轴承支座(52),所述轴承支座(52)上设有通孔(522);
    固定板(51),可拆卸地安装于所述轴承支座(52)沿所述通孔(522)的轴向的一端;
    径向轴承(8),安装在所述通孔(522)内;以及
    第一推力轴承(10’),安装于所述固定板(51)远离所述轴承支座(52)的侧面。
  2. 根据权利要求1所述的轴承支撑组件,其中所述固定板(51)用于限制所述径向轴承(8)沿轴向的位移。
  3. 根据权利要求1所述的轴承支撑组件,其中所述固定板(51)朝向所述轴承支座(52)的一端设有定位环(511),所述轴承支座(52)上设有环形的第一凹槽(521),所述定位环(511)嵌入所述第一凹槽(521)中,且所述定位环(511)的内壁(512)与所述径向轴承(8)部分长度段的外壁配合。
  4. 根据权利要求1所述的轴承支撑组件,还包括壳体(6),所述轴承支座(52)的第一端与所述固定板(51)连接,第二端与所述壳体(6)连接,所述轴承支座(52)从第一端至第二端的径向外廓尺寸逐渐增大。
  5. 根据权利要求1所述的轴承支撑组件,还包括壳体(6),所述轴承支座(52)与所述壳体(6)连接的一端设有止口(527),用于对所述轴承支座(52)与所述壳体(6)的连接进行第一重定位。
  6. 根据权利要求5所述的轴承支撑组件,还包括销钉(11),所述销钉(11)用于对所述轴承支座(52)与所述壳体(6)的连接进行第二重定位。
  7. 根据权利要求1所述的轴承支撑组件,其中所述轴承支座(52)上设有通气孔(526),用于将所述径向轴承(8)所在的空间与所述第一推力轴承(10’)所在的空间连通。
  8. 一种离心压缩机,包括权利要求1~7任一所述的轴承支撑组件。
  9. 根据权利要求8所述的离心压缩机,还包括:主轴(1)、扩压器(3)、推力盘(4)和第二推力轴承(10),所述推力盘(4)被配置为与所述主轴(1)一起可转动,且沿所述轴向位于所述扩压器(3)与所述固定板(51)之间;
    所述第一推力轴承(10’)设在所述固定板(51)远离轴承支座(52)的一端,所述第二推力轴承(10)设在所述扩压器(3)靠近所述固定板(51)的一端。
  10. 根据权利要求9所述的离心压缩机,其中所述推力盘(4)的两侧与所述第一推力轴承(10’)和第二推力轴承(10)之间均具有间隙,且两侧的所述间隙通过所述扩压器(3)与固定板(51)相互抵靠进行限定。
  11. 根据权利要求10所述的离心压缩机,其中所述扩压器(3)靠近所述固定板(51)的一端设有第二凹槽(31),所述第二推力轴承(10)设在所述第二凹槽(31)沿轴向的底部,所述推力盘(4)位于所述第二凹槽(31)内。
  12. 根据权利要求9所述的离心压缩机,其中所述第一推力轴承(10’)、所述第二推力轴承(10)和所述径向轴承(8)中的至少一个为气悬浮轴承。
  13. 一种基于权利要求1~7任一所述轴承支撑组件的加工方法,包括:
    将所述轴承支座(52)与壳体(6)装配为组合体(B);
    将所述组合体(B)在加工设备上定位装夹;
    将所述轴承支座(52)的通孔(522)和用于安装所述固定板(51)的端面通过一次定位装夹加工至预设尺寸。
  14. 根据权利要求13所述的加工方法,其中所述壳体(6)内设有两个沿轴向间隔设置的所述轴承支座(52),在将两个所述轴承支座(52)与壳体(6)装配为组合体(B)之后,还包括:
    将两个所述轴承支座(52)的通孔(522)通过一次定位装夹加工至预设尺寸。
  15. 根据权利要求14所述的加工方法,其中将两个所述轴承支座(52)的通孔(522)通过一次定位装夹加工至预设尺寸的步骤具体包括:
    从所述壳体(6)的一侧将两个所述轴承支座(52)的通孔(522)依次加工至预设尺寸。
  16. 根据权利要求13所述的加工方法,其中所述轴承支座(52)与壳体(6)连接的一端设有止口(527),将所述轴承支座(52)与壳体(6)装配为组合体(B)的步骤具体包括:
    将所述轴承支座(52)与壳体(6)通过所述止口(527)配合进行第一重定位;
    将所述轴承支座(52)与所述壳体(6)通过紧固件固定;
    在所述轴承支座(52)的法兰盘(525)与所述壳体(6)固定后,打销钉进行第二重定位。
  17. 根据权利要求13所述的加工方法,其中在加工完成后,还包括:
    将所述轴承支座(52)与壳体(6)装配形成的组合体(B)拆开,以便在所述轴承支座(52)与壳体(6)分离的状态下装入所述径向轴承(8)。
PCT/CN2019/112945 2018-12-25 2019-10-24 轴承支撑组件及其加工方法、离心压缩机 WO2020134430A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/289,077 US11578753B2 (en) 2018-12-25 2019-10-24 Bearing supporting assembly and machining method thereof, and centrifugal compressor
EP19903044.6A EP3904692B1 (en) 2018-12-25 2019-10-24 Bearing support assembly and machining method therefor, and centrifugal compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811595311.1 2018-12-25
CN201811595311.1A CN111365287A (zh) 2018-12-25 2018-12-25 轴承支撑组件及其加工方法、离心压缩机

Publications (1)

Publication Number Publication Date
WO2020134430A1 true WO2020134430A1 (zh) 2020-07-02

Family

ID=71126799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112945 WO2020134430A1 (zh) 2018-12-25 2019-10-24 轴承支撑组件及其加工方法、离心压缩机

Country Status (4)

Country Link
US (1) US11578753B2 (zh)
EP (1) EP3904692B1 (zh)
CN (1) CN111365287A (zh)
WO (1) WO2020134430A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112496789B (zh) * 2020-11-23 2022-03-15 哈尔滨电气动力装备有限公司 核主泵钻铰孔前安装调整工艺
CN113374739B (zh) * 2021-06-24 2023-04-18 珠海格力电器股份有限公司 径向轴承安装孔的加工方法及空气循环机
CN114952284A (zh) * 2022-06-29 2022-08-30 中航力源液压股份有限公司 一种提高高速重载轴向柱塞泵运动平稳性的加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2206852Y (zh) * 1994-08-25 1995-09-06 郑淑玲 水泵的轴承座
JP2000337292A (ja) * 1999-05-24 2000-12-05 Matsushita Electric Ind Co Ltd ポンプ
US20030108260A1 (en) * 2001-12-10 2003-06-12 Wen-Hao Chuang Efficient bearing
CN1462840A (zh) * 2002-05-27 2003-12-24 株式会社三协精机制作所 油动压轴承装置及轴回转型电机
CN1766356A (zh) * 2004-10-27 2006-05-03 日本电产株式会社 动压轴承装置
US20070154124A1 (en) * 2004-02-18 2007-07-05 Hiromi Inoue Rolling bearing for a supercharger

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924844B2 (ja) * 1997-05-30 2007-06-06 石川島播磨重工業株式会社 ターボチャージャのスラスト軸受構造
US5887983A (en) * 1997-12-19 1999-03-30 The United States Of America As Represented By The Secretary Of The Navy Bearing assembly for radar mast
US7063519B2 (en) 2002-07-02 2006-06-20 R & D Dynamics Corporation Motor driven centrifugal compressor/blower
US6997686B2 (en) 2002-12-19 2006-02-14 R & D Dynamics Corporation Motor driven two-stage centrifugal air-conditioning compressor
US7401979B2 (en) 2004-10-27 2008-07-22 Nidec Corporation Dynamic pressure bearing device
CN104379900B (zh) 2012-06-29 2017-09-22 株式会社Ihi 增压器
JP6070232B2 (ja) * 2013-02-05 2017-02-01 株式会社Ihi 過給機
US9970451B2 (en) 2013-05-30 2018-05-15 Ingersoll-Rand Company Centrifugal compressor having lubricant distribution system
DE102015007379A1 (de) * 2015-06-10 2016-01-21 Daimler Ag Strömungsmaschine für einen Energiewandler, insbesondere eine Brennstoffzelle
DE102016215638A1 (de) 2016-08-19 2018-02-22 Robert Bosch Gmbh Lagervorrichtung, Verdichter und Verfahren zur Herstellung solch einer Lagervorrichtung
CN209340164U (zh) * 2018-12-25 2019-09-03 珠海格力电器股份有限公司 离心压缩机及空调设备
CN209340197U (zh) * 2018-12-25 2019-09-03 珠海格力电器股份有限公司 轴承支座、具有其的气悬浮压缩机及空调
CN209340195U (zh) * 2018-12-25 2019-09-03 珠海格力电器股份有限公司 推力盘两侧设置推力轴承的转子装配组件、压缩机及空调

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2206852Y (zh) * 1994-08-25 1995-09-06 郑淑玲 水泵的轴承座
JP2000337292A (ja) * 1999-05-24 2000-12-05 Matsushita Electric Ind Co Ltd ポンプ
US20030108260A1 (en) * 2001-12-10 2003-06-12 Wen-Hao Chuang Efficient bearing
CN1462840A (zh) * 2002-05-27 2003-12-24 株式会社三协精机制作所 油动压轴承装置及轴回转型电机
US20070154124A1 (en) * 2004-02-18 2007-07-05 Hiromi Inoue Rolling bearing for a supercharger
CN1766356A (zh) * 2004-10-27 2006-05-03 日本电产株式会社 动压轴承装置

Also Published As

Publication number Publication date
CN111365287A (zh) 2020-07-03
EP3904692A1 (en) 2021-11-03
US20220010812A1 (en) 2022-01-13
EP3904692B1 (en) 2024-02-21
EP3904692A4 (en) 2022-02-16
US11578753B2 (en) 2023-02-14

Similar Documents

Publication Publication Date Title
WO2020134433A1 (zh) 离心压缩机及空调设备
WO2020134430A1 (zh) 轴承支撑组件及其加工方法、离心压缩机
WO2021244023A1 (zh) 气浮主轴和机床
CN108350932B (zh) 轴承构造以及增压器
CN101568736A (zh) 用于涡轮增压器轴的浮动轴承机座
WO2020082960A1 (zh) 一种燃气轮机发电机组
CN209340164U (zh) 离心压缩机及空调设备
JP2009501865A (ja) 遠心圧縮機
US20230250825A1 (en) Compressor
WO2020082963A1 (zh) 一种转子系统及燃气轮机发电机组
CN209340198U (zh) 轴承支撑组件及离心压缩机
WO2020134518A1 (zh) 轴承承载部件、压缩机和冷媒循环系统
CN211398276U (zh) 转子组件、压缩机及空调设备
CN214063569U (zh) 气体轴承组件、压缩机及空调
CN216044582U (zh) 一种空气悬浮轴向轴承、装置及氢能源压缩机
CN113107970A (zh) 转子组件及其工作方法、压缩机及空调设备
CN209340195U (zh) 推力盘两侧设置推力轴承的转子装配组件、压缩机及空调
CN113107969A (zh) 转子组件及其加工方法、压缩机及空调设备
CN211398277U (zh) 转子组件、压缩机及空调设备
CN113404706A (zh) 一种自冷式空气悬浮鼓风机
KR102617404B1 (ko) 압축기 로터, 압축기 및 냉매 순환 시스템
CN111365281A (zh) 轴承支座、具有其的气悬浮压缩机及空调
CN216199084U (zh) 空气压缩机
WO2020134435A1 (zh) 压缩机以及冷媒循环系统
CN111365293A (zh) 压缩机转子、压缩机及空调设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019903044

Country of ref document: EP

Effective date: 20210726