WO2020082960A1 - 一种燃气轮机发电机组 - Google Patents

一种燃气轮机发电机组 Download PDF

Info

Publication number
WO2020082960A1
WO2020082960A1 PCT/CN2019/107391 CN2019107391W WO2020082960A1 WO 2020082960 A1 WO2020082960 A1 WO 2020082960A1 CN 2019107391 W CN2019107391 W CN 2019107391W WO 2020082960 A1 WO2020082960 A1 WO 2020082960A1
Authority
WO
WIPO (PCT)
Prior art keywords
thrust bearing
radial
thrust
casing
bearing body
Prior art date
Application number
PCT/CN2019/107391
Other languages
English (en)
French (fr)
Inventor
靳普
刘慕华
于宁
Original Assignee
至玥腾风科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技集团有限公司 filed Critical 至玥腾风科技集团有限公司
Publication of WO2020082960A1 publication Critical patent/WO2020082960A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines

Definitions

  • the invention relates to the technical field of generator sets, in particular to a gas turbine generator set.
  • the gas turbine mainly includes three components: compressor, combustion chamber and turbine. After entering the compressor, the air is compressed into high-temperature and high-pressure air, which is then supplied to the combustion chamber and mixed with fuel for combustion. The high-temperature and high-pressure gas produced by it expands in the turbine to perform work.
  • the rotor rotates at high speed, the rotor will be subjected to radial and axial forces.
  • radial bearings and thrust bearings need to be installed in the rotor system.
  • the traditional radial bearings and thrust bearings are ordinary contact bearings. As the rotor speed increases, especially when the rotor speed exceeds 40,000 rpm, the ordinary contact bearings cannot be satisfied because of the large mechanical wear. The need for working speed.
  • the gas turbine generator set For the gas turbine generator set, the high-speed rotation of the gas turbine rotor drives the generator rotor to rotate to generate electricity.
  • the gas turbine generator set in the prior art has the following defects:
  • generators of gas turbine generator sets usually use air bearings, which can provide extremely high rotation accuracy. Because the air bearings have no mechanical contact, the degree of wear is reduced to a minimum, thus ensuring that the accuracy is always stable.
  • the stator of the air bearing as a separate part is located outside the motor winding, resulting in a larger outer diameter and a longer length of the air bearing, which will significantly increase the axial and diameter of the high-speed motor
  • the volume of the high-speed motor is eventually increased, which is not conducive to the increase of the power density of the motor, and at the same time, the axial size of the gas turbine generator set is large and the stability is poor.
  • the object of the present invention is to provide a gas turbine generator set to solve the above-mentioned problems existing in the existing gas turbine generator set.
  • the present invention provides a gas turbine generator set, including: a rotor system and a combustion chamber; the rotor system includes: a rotating shaft, a thrust bearing, a generator, a compressor, and a turbine; the rotating shaft is an integrated structure; The generator, the compressor, the thrust bearing and the turbine are sequentially sleeved on the rotating shaft; the generator includes a generator body and radial bearings provided at both ends of the generator body, the A radial bearing is embedded between the generator body and the rotating shaft, and forms a radial gap with the rotating shaft in the radial direction; the air inlet of the compressor communicates with the outside atmosphere, and the compressor The air outlet communicates with the air inlet of the combustion chamber, and the air outlet of the combustion chamber communicates with the air inlet of the turbine.
  • the gas turbine generator set solves the technical problem that the existing gas turbine generator set is connected by a coupling, and the coaxiality deviation causes poor stability of the rotor system and the installation position of the thrust bearing is limited ; And by embedding radial bearings between the generator body and the rotating shaft, the axial size of the generator is effectively reduced, thereby shortening the axial size of the rotor system of the gas turbine generator set, and improving the stability of the gas turbine generator set.
  • the rotating shaft adopts an integrated structure, which solves the problem of using a coupling to connect the gas turbine rotor and the generator rotor in the prior art.
  • the gas turbine generator set of the present invention improves the structure of the generator, effectively reduces the axial size of the generator, thereby greatly reducing the axial size of the rotor system of the gas turbine generator set and improving the stability of the gas turbine generator set Sex and dynamic performance.
  • an axial gap is provided between the thrust bearing body assembly and the side wall of the first accommodating groove, and the change of the axial gap is controlled to realize the thrust bearing
  • the role of axial active adjustment when the shaft expands thermally, the first thrust disk and the second thrust disk move with the shaft, eliminating and alleviating the axial deformation and movement of the shaft; at the same time, through the axial adjustment of the thrust bearing,
  • the rotor system's ability to resist axial disturbance and vibration is further improved, and the dynamic performance, safety, and reliability of the gas turbine generator set are improved.
  • the gas turbine generator set provided by the present invention by installing the thrust bearing between the compressor and the turbine, and using the gas film force generated by the thrust bearing to offset the axial force generated during the rotation of the rotating shaft, limits the rotating shaft on the shaft
  • the movement in the direction limits the axial distance between the compressor and the turbine, improves the stability of the axial positioning of the compressor and the turbine structure, and thus improves the safety and reliability of the gas turbine generator set.
  • the gas turbine generator set provided by the present invention can effectively prevent contact and rubbing between the compressor impeller and the turbine impeller and the casing through the design of the gap between the thrust bearing and the casing, thereby improving the safety of the gas turbine generator set, Reliability and service life.
  • the gas turbine generator set provided by the present invention because the thrust bearing also has the radial support function of the radial bearing and has a larger radial adjustment range, the gas turbine generator set of the present invention forms a three-radial bearing support structure The stability and overall performance of the entire gas turbine generator set have been greatly improved.
  • FIG. 1 is a schematic cross-sectional view of a gas turbine generator set provided in Embodiment 1 of the present invention
  • FIG. 2 is a schematic cross-sectional view of a rotor system provided in Embodiment 1 of the present invention
  • Embodiment 3 is a cross-sectional view of the thrust bearing provided in Embodiment 1 of the present invention.
  • Embodiment 4 is a part view of the first thrust bearing body provided by Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view of the first thrust bearing body along A-A provided in FIG. 4;
  • Embodiment 6 is a part view of a second thrust bearing body provided by Embodiment 1 of the present invention.
  • FIG. 7 is a cross-sectional view taken along B-B of the second thrust bearing body provided in FIG. 6;
  • Embodiment 8 is a schematic diagram of the clearance of the thrust bearing provided in Embodiment 1 of the present invention.
  • Embodiment 9 is a schematic diagram of the force state of the thrust bearing provided in Embodiment 1 of the present invention.
  • FIG. 10 is a schematic diagram of a force-bearing surface matched with a thrust bearing provided in Embodiment 1 of the present invention.
  • FIG. 11 is a schematic cross-sectional view of a gas turbine generator set according to Embodiment 2 of the present invention.
  • FIG. 12 is a schematic cross-sectional view of a rotor system provided by Embodiment 2 of the present invention.
  • Embodiment 13 is a cross-sectional view of the thrust bearing provided by Embodiment 2 of the present invention.
  • FIG. 15 is a cross-sectional view of the first thrust bearing body along C-C provided in FIG. 14;
  • FIG. 16 is a part view of a second thrust bearing body provided by Embodiment 2 of the present invention.
  • FIG. 17 is a cross-sectional view along D-D of the second thrust bearing body provided in FIG. 16;
  • Embodiment 19 is a schematic diagram of the force state of the thrust bearing provided by Embodiment 2 of the present invention.
  • FIG. 20 is a schematic diagram of a force bearing surface provided with a thrust bearing according to Embodiment 2 of the present invention.
  • FIG. 21 is a schematic cross-sectional view of a generator provided in Embodiment 3 of the present invention.
  • Example 22 is a flowchart of a method for assembling a generator provided by an implementation manner of Example 3 of the present invention.
  • Example 23 is a flowchart of a method for assembling a generator provided by another implementation manner of Example 3 of the present invention.
  • FIG. 24 is a schematic cross-sectional view of a generator provided by Embodiment 4 of the present invention.
  • FIG. 25 is a flowchart of a generator assembling method provided by Embodiment 4 of the present invention.
  • Second thrust bearing body 2041, fourth mounting hole, 2042, second groove, 2043, thrust bearing air cavity groove, 2044, second air hole, 2045, third air hole, 2046, second positioning hole, 2047 , First sealing groove, 2048, second sealing groove, 205, first connecting piece, 206, positioning piece, 207, second connecting piece, 208, first sealing piece, 209, second sealing piece, 300, generator , 301, motor stator, 3011, motor stator core, 3012, motor winding, 3013, winding package, 30131, first radial bearing seat hole, 30132, second radial bearing seat hole, 302, first radial bearing , 303, second radial bearing, 304, motor casing, 3041, motor casing body, 30411, first air inlet, 30412 , Second air inlet, 3042, motor end cover, 400, compressor, 400a, first casing, 400b, third casing, 500, turbine, 500a, second casing, 500b, fourth casing, 600, combustion chamber, 600a
  • both the axial and radial directions are based on the axial and radial directions of the rotating shaft.
  • FIG. 1 is a schematic cross-sectional view of a gas turbine generator set according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a rotor system provided in Embodiment 1 of the present invention.
  • Embodiment 1 of the present invention provides a gas turbine generator set, including: a rotor system and a combustion chamber 600.
  • the rotor system includes: rotating shaft 100, thrust bearing 200, generator 300, compressor 400 and turbine 500.
  • the rotating shaft 100 is an integrated structure; the generator 300, the compressor 400, the thrust bearing 200 and the turbine 500 are sequentially sleeved on the rotating shaft 100.
  • the generator 300 includes a generator body and radial bearings provided at both ends of the generator body.
  • the radial bearings are embedded between the generator body and the rotating shaft 100 and form a radial gap with the rotating shaft 100 in the radial direction.
  • the air inlet of the compressor 400 communicates with the outside atmosphere
  • the air outlet of the compressor 400 communicates with the air inlet of the combustion chamber 600
  • the air outlet of the combustion chamber 600 communicates with the air inlet of the turbine 500.
  • the intake port of the compressor 400 communicates with the outside atmosphere through the compressor intake passage P3.
  • the rotating shaft 100 is set horizontally or vertically.
  • the gas turbine generator set further includes: a housing 700 including: a first housing 701 and a second housing 702 connected to each other.
  • the first casing 701 is sheathed outside the generator 300, and forms the above-mentioned compressor inlet passage P3 with the motor casing 304 of the generator 300.
  • the motor casing 304 can cool the generator 300; the second casing 702 is sleeved outside the combustion chamber 600.
  • the rotor system of the gas turbine generator set solves the technology that the existing gas turbine generator set is connected by a coupling, the coaxiality deviation leads to poor stability of the rotor system, and the installation position of the thrust bearing is restricted
  • the problem is solved by installing the thrust bearing 200 between the compressor 400 and the turbine 500 when the thrust bearing 200 is installed on the side of the compressor 400 away from the turbine 500 or on the side of the turbine 500 away from the compressor 400.
  • the rotating shaft 100 is affected by the thermal expansion and deformation during operation, which affects the bearing capacity of the thrust bearing 200, and the thrust bearing 200 is disposed between the compressor 400 and the turbine 500, and the gas film force generated by the thrust bearing 200 is used to offset the rotating shaft 100 during the rotation process.
  • the generated axial force limits the movement of the rotating shaft 100 in the axial direction, thereby limiting the axial distance between the compressor 400 and the turbine 500, and improves the stability of the axial positioning of the compressor 400 and the turbine 500, so the overall improvement
  • the stability of the rotor system is improved, thereby improving the safety of the gas turbine generator set using the rotor system Reliability.
  • the rotating shaft 100 includes a first shaft section 101 and a second shaft section 102 connected in sequence.
  • the diameter of the first shaft section 101 is larger than the diameter of the second shaft section 102, and a transition surface is formed at the connection between the first shaft section 101 and the second shaft section 102; the generator 300 is sleeved on the first shaft section 101; The thrust bearing 200, the compressor 400 and the turbine 500 are sleeved on the second shaft section 102, and the compressor 400 is in contact with the transition surface.
  • the rotor system of the gas turbine generator set adjusts the center of gravity of the entire rotor system by improving the shape of the rotating shaft 100, which is beneficial to maintain the structural stability of the entire rotor system during high-speed rotation and improve the stability of the rotor system.
  • the above-mentioned transition surface may be, for example, any one of a conical surface, an arc surface, a step surface, and a multi-step surface.
  • the diameter of the first shaft section 101 of the rotating shaft 100 is larger than the diameter of the second shaft section 102, so that the outer shape of the rotating shaft 100 has a wine bottle-like structure.
  • a fastener on the side of the turbine 500 away from the compressor 400 is provided, and the fastener is sleeved on the rotating shaft 100 and is in contact with the turbine 500 to limit the axial movement of the turbine 500.
  • the fasteners include but are not limited to lock nuts.
  • Embodiment 3 is a cross-sectional view of the thrust bearing provided in Embodiment 1 of the present invention.
  • the thrust bearing 200 includes: a first thrust disk 201, a second thrust disk 202, and a thrust bearing body assembly.
  • the first thrust disc 201 and the second thrust disc 202 are fixedly sleeved on the rotating shaft 100, and the two are arranged oppositely and abut against each other to form a ring-shaped first accommodating groove R1; the thrust bearing body assembly is disposed in the first accommodating groove R1; The thrust bearing body assembly is provided with a thrust bearing air cavity S in communication with the axial gap, and the thrust bearing air cavity S is in communication with an external air source.
  • a radial gap communicating with the thrust bearing air cavity S is provided between the thrust bearing body assembly and the groove bottom of the first receiving groove R1.
  • the thrust bearing body assembly includes a first thrust bearing body 203 and a second thrust bearing body 204 disposed in abutment with each other.
  • a thrust bearing air cavity S is formed between the first thrust bearing body 203 and the second thrust bearing body 204.
  • first thrust disk 201 and the second thrust disk 202 are sleeved on the second shaft section 102 of the rotating shaft 100, and the first thrust bearing body 203 is sleeved on the end of the first thrust disk 201 close to the second thrust disk 202.
  • the first thrust disk 201 is in clearance fit in the radial direction and also in the axial direction, so that a gas film is formed between the first thrust bearing body 203 and the first thrust disk 201 in the radial direction and the axial direction respectively;
  • the second thrust bearing The body 204 is sleeved on the end of the second thrust disk 202 close to the first thrust disk 201, and is in clearance fit with the second thrust disk 202 in the radial direction and also in the axial direction, so that the second thrust bearing body 204 and the second thrust force Gas films are formed between the discs 202 in the radial direction and the axial direction, respectively.
  • the thrust bearing in the present invention can also be used as a radial bearing, and the radial bearing has a large
  • the radial adjustment range makes the rotor system of the present invention form a three-radial bearing support structure rotor system. The stability and overall performance of the entire rotor system have been greatly improved.
  • the thrust bearing body assembly there is an axial gap between the thrust bearing body assembly and the side wall of the first accommodating groove R1, that is, the first thrust bearing body 203 and the first thrust disk 201 fit in the radial clearance and the second thrust bearing body 204 and the second thrust disk 202 are radially spaced, specifically by controlling the thickness of the first thrust bearing body 203 and the second thrust bearing body 204 and the width of the receiving groove R, that is, controlling the first thrust bearing body 203 and The sum of the thickness of the second thrust bearing body 204 is smaller than the width of the first accommodating groove R1, so that the first thrust bearing body 203 is in clearance fit with one side wall of the first accommodating groove R1, that is, the end face of the first thrust disk 201, and the second thrust The bearing body 204 is in clearance fit with the other side wall of the first receiving groove R1, that is, the end surface of the second thrust plate 202.
  • the gas turbine generator set further includes: a first casing 400a and a second casing 500a.
  • the first casing 400a is sleeved outside the first thrust disk 201, and is located on the side of the first thrust bearing body 203 away from the second thrust bearing body 204, that is, between the compressor 400 and the first thrust bearing body 203.
  • the second casing 500a is sleeved outside the second thrust bearing body 204 and the second thrust disk 202, and abuts against the first casing 400a and forms a second accommodating groove R2.
  • a thrust bearing body accommodating cavity for accommodating the first thrust bearing body 203 and the second thrust bearing body 204 is enclosed together.
  • the first thrust disk 201 and the second thrust disk 202 are fixedly sleeved on the second shaft section 102 of the rotating shaft 100 and rotate together with the rotating shaft 100 to form an air bearing mover;
  • the first The thrust bearing body 203 and the second thrust bearing body 204 are located in the first accommodating groove R1 formed by the first thrust disk 201 and the second thrust disk 202, and form an air bearing together with the first casing 400a and the second casing 500a
  • the static bearing; the thrust bearing 200 through the cooperation of the air bearing mover and the air bearing stator, produces a gas film force that counteracts the axial force of the rotating shaft 100 during the rotation process, which limits the movement of the rotating shaft 100 in the axial direction and improves
  • the safety and reliability of the rotor system improves the safety and reliability of the gas turbine generator set.
  • first thrust disk 201 and the second thrust disk 202 have a ring-shaped structure, and a first mounting hole and a second mounting hole that match the shape of the rotating shaft 100 are respectively provided in the middle.
  • the first thrust disc 201 includes a first disc body 2011 and a second disc body 2012 that are connected to each other, wherein the first disc body 2011 and the second disc body 2012 are both ring-shaped structures, and the first disc body 2011
  • the outer diameter is larger than the outer diameter of the second disc body 2012
  • the second thrust disc 202 includes a third disc body 2021 and a fourth disc body 2022 connected to each other, wherein the third disc body 2021 and the fourth disc body 2022 are both ring-shaped
  • the outer diameter of the third disc body 2021 is larger than the outer diameter of the fourth disc body 2022.
  • the outer diameter of the first disk body 2011 is equal to the outer diameter of the fourth disk body 2022, and the second disk body 2012 is in contact with the end surface of the fourth disk body 2022, so that the first disk body 2011 is close to the end surface of the second disk body 2012.
  • the side wall of the second disk body 2012, the side wall of the fourth disk body 2022, and the end surface of the third disk body 2021 close to the fourth disk body 2022 jointly surround the first receiving groove R1.
  • the first thrust bearing body 203 has an annular structure
  • the second thrust bearing body 204 has an annular structure
  • the outer diameter of the first thrust bearing body 203 is equal to the outer diameter of the second thrust bearing body 204.
  • the thrust bearing 200 further includes: at least one first connecting member 205.
  • At least one first connector 205 is disposed on the side of the first thrust bearing body 203 away from the second thrust bearing body 204. Specifically, the first connector 205 allows the first thrust bearing body 203 to be flexibly connected to the first casing 400a.
  • the first connector 205 is an elastic component.
  • the first connecting member 205 includes but is not limited to a spring.
  • the first connecting pieces 205 are distributed along the circumferential direction.
  • the first connecting pieces 205 are evenly distributed along the circumferential direction.
  • the number of the first connecting member 205 is 8.
  • Embodiment 4 is a part view of a first thrust bearing body provided by Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view of the first thrust bearing body along A-A provided in FIG. 4.
  • a third mounting hole 2031 matching the shape of the groove bottom of the first receiving groove R1 is provided in the middle of the first thrust bearing body 203.
  • the bottom of the first accommodating groove R1 refers to the side wall of the second disk body 2012 of the first thrust disk 201 and the side wall of the fourth disk body 2022 of the second thrust disk 202. Therefore, the third mounting hole 2031 The size should match the outer diameter of the second disk body 2012 and the outer diameter of the fourth disk body 2022.
  • At least one first groove 2032 is provided on the side of the first thrust bearing body 203 away from the second thrust bearing body 204; the number of first grooves 2032 matches the number of first connectors 205; each A first connecting member 205 is provided in the first groove 2032.
  • At least one third groove is provided on the side of the first casing 400a close to the first thrust bearing body, the third groove is opposite to the first groove 2032 to form a first accommodating cavity, and a first connecting member 205 is located in the first receiving cavity.
  • the shape and number of the third grooves match the shape and number of the first grooves 2032.
  • the first thrust bearing body 203 is provided with a through first air hole 2033; the first air hole 2033 communicates with the thrust bearing air cavity S.
  • the first thrust bearing body 203 is provided with a first air hole 2033 extending in the axial direction and penetrating the first thrust bearing body 203.
  • the first air holes 2033 are distributed along the circumferential direction.
  • the first air holes 2033 are evenly distributed along the circumferential direction.
  • the number of the first air holes 2033 is 8.
  • two ends of the first air hole 2033 are respectively provided with chamfers.
  • Embodiment 6 is a part view of a second thrust bearing body provided by Embodiment 1 of the present invention.
  • FIG. 7 is a cross-sectional view of the second thrust bearing body provided along FIG. 6 along B-B.
  • a middle portion of the second thrust bearing body 204 is provided with a fourth mounting hole 2041 matching the shape of the groove bottom of the first receiving groove R1.
  • the side of the second thrust bearing body 204 near the first thrust bearing body 203 is recessed inward to form a thrust bearing air cavity groove 2043; the thrust bearing air cavity groove 2043 and the end surface of the first thrust bearing body 203 form a thrust bearing Air cavity S; the second thrust bearing body 204 is provided with a thrust bearing air cavity intake passage P1 that connects the thrust bearing air cavity S with an external air source.
  • a casing intake passage P2 communicating with the thrust bearing air chamber intake passage P1 is formed in the second casing 500a.
  • the thrust bearing air cavity S communicates with the external air source through the thrust bearing air cavity intake passage P1 and the casing intake passage P2.
  • the bottom of the thrust bearing air cavity groove 2043 is provided with a second air hole 2044 penetrating the second thrust bearing body 204.
  • the second thrust bearing body 204 is provided with a second air hole 2044 that extends in the axial direction and penetrates the second thrust bearing body 204.
  • the second air holes 2044 are distributed along the circumferential direction.
  • the second air holes 2044 are evenly distributed along the circumferential direction.
  • the number of the second air holes 2044 is eight.
  • two ends of the second air hole 2044 are respectively provided with chamfers.
  • a third air hole 2045 penetrating the second thrust bearing body 204 is provided on the side wall of the thrust bearing air cavity groove 2043.
  • the side wall of the thrust bearing air cavity groove 2043 is provided with a third air hole 2045 extending radially toward the center and penetrating through the second thrust bearing body 204.
  • the thrust bearing air cavity S is ring-shaped; the thrust bearing air cavity S is provided with a first seal 208 and a second seal 209 on both sides in the radial direction; or the thrust bearing air cavity S is provided on both sides in the radial direction,
  • a seal is formed between the first thrust bearing body 203 and the second thrust bearing body 204 by providing mutually matching grooves and protrusion structures.
  • an axial first sealing groove 2047 and a second sealing groove 2048 are respectively provided on both sides of the thrust bearing air cavity groove 2043 in the radial direction.
  • the first seal 208 and the second seal 209 are located in the first seal groove 2047 and the second seal groove 2048, respectively.
  • the sizes of the first seal 208 and the second seal 209 can be adjusted appropriately according to actual needs.
  • the sizes of the first seal groove 2047 and the second seal groove 2048 are respectively the same as those of the first seal 208 and the second seal 209 Just match the size.
  • the side of the first thrust bearing body 203 near the first thrust disc 201 is provided with a spiral groove, or the side of the second thrust bearing body 204 near the second thrust disc 202 is provided with a spiral groove.
  • the side of the first thrust bearing body 203 near the first thrust disc 201 is provided with a spiral groove
  • the side of the second thrust bearing body 204 near the second thrust disc 202 is provided with a spiral groove
  • a spiral groove is provided at a position corresponding to the first thrust bearing body 203 on the first thrust disk 201, or a spiral groove is provided at a position corresponding to the second thrust bearing body 204 on the second thrust disk 202.
  • a spiral groove is provided at a position corresponding to the first thrust bearing body 203 on the first thrust disk 201, and a spiral groove is provided at a position corresponding to the second thrust bearing body 204 on the second thrust disk 202.
  • the thrust bearing 200 further includes: a positioning member 206.
  • the positioning member 206 sequentially passes through the first connecting member 205, the first thrust bearing body 203 and the second thrust bearing body 204; the positioning member 206 is in clearance fit with the first thrust bearing body 203 and the second thrust bearing body 204, respectively.
  • one end of the positioning member 206 passes through the first connecting member 205, the first thrust bearing body 203 and the second thrust bearing body 204 in sequence, and is in clearance fit with the first thrust bearing body 203 and the second thrust bearing body 204, respectively;
  • the other end of the positioning member 206 is screwed to the first casing 400a.
  • the positioning member 206 includes a connecting portion and a positioning portion that are connected to each other.
  • the diameter of the connecting portion is larger than the diameter of the positioning portion.
  • the side wall of the connecting portion is provided with an external thread.
  • the positioning portion is a cylindrical structure with a smooth surface.
  • the first thrust bearing body 203 is provided with a first positioning hole 2034, the first positioning hole 2034 communicates with the first groove 2032, and the diameter of the first positioning hole 2034 is greater than the diameter of the positioning portion, so that the positioning member 206 It is in clearance fit with the first thrust bearing body 203.
  • a second positioning hole 2046 is provided on the second thrust bearing body 204, and the diameter of the second positioning hole 2046 is larger than the diameter of the positioning portion, so that the positioning member 206 and the first thrust bearing body 203 are in clearance fit.
  • the diameter of the first positioning hole 2034 is equal to the diameter of the second positioning hole 2046.
  • Embodiment 8 is a schematic diagram of the clearance of the thrust bearing provided in Embodiment 1 of the present invention.
  • a first radial gap is formed between the first thrust bearing body 203 and the first thrust disk 201 in the radial direction, and the width of the first radial gap is a; the second thrust bearing body A second radial gap is formed between 204 and the second thrust disk 202 in the radial direction, and the width of the second radial gap is b; a third radial gap is formed between the first thrust bearing body 203 and the positioning member 206 in the radial direction , The width of the third radial gap is i; a fourth radial gap is formed between the second thrust bearing body 204 and the positioning member 206 in the radial direction, and the width of the fourth radial gap is equal to d; the first thrust bearing body 203 and And / or a fifth radial gap is formed between the second thrust bearing body 204 and the second casing 500a in the radial direction, and the width of the fifth radial gap is g; where b ⁇ c ⁇ g ⁇ a,
  • a first axial gap is formed between the first thrust bearing body 203 and the first thrust disc 201 in the axial direction, and the width of the first axial gap is e; the second thrust bearing body 204 and the second thrust disc 202 are along the axis The second axial gap is formed, and the width of the second axial gap is f.
  • the maximum allowable clearance of the thrust bearing 200 is ⁇ , then a> ⁇ , b ⁇ , e ⁇ , and f ⁇ .
  • the first axial gap communicates with the thrust bearing air cavity S through the first air hole 2033
  • the second axial gap communicates with the thrust bearing air cavity S through the second air hole 2044
  • the second radial gap through the third air hole 2045 It communicates with the thrust bearing air cavity S.
  • a third axial gap is formed between the first thrust bearing body 203 and the first casing 400a in the axial direction, and the width of the third axial gap is h; the second thrust bearing body 204 and the second machine
  • a fourth axial gap is formed between the cassettes 500a in the axial direction, and the width of the fourth axial gap is i; where h ⁇ e, i ⁇ f.
  • the thrust bearing 200 can still work normally, and the pressure is readjusted to achieve a force balance, that is, the thrust bearing 200 is protected.
  • a first surface gap is formed between the surface of the compressor 400 and the surface of the third casing 400b, and the width of the first surface gap is j; the surface of the turbine 500 and the surface of the fourth casing 500b are formed
  • the second surface gap, the width of the second surface gap is k; where, h + f ⁇ j, i + e ⁇ k.
  • Embodiment 9 is a schematic diagram of the force state of the thrust bearing provided in Embodiment 1 of the present invention.
  • FIG. 9 shows the force state of the thrust bearing 200.
  • the expansion force generated when the thrust bearing air cavity S works is F1
  • the axial force of the gas film of the first thrust bearing body 203 is F2
  • the axial force of the gas film of the second thrust bearing body 204 is F3
  • the radial force of the gas film of the second thrust bearing body 204 is F4
  • the pretension of the first connecting member 205 is F5, where F1> F5.
  • the expansion force F1 generated by the thrust bearing air cavity S is greater than the preload F5 generated by the first connecting member 205, the first thrust bearing body 203 is separated from the second thrust bearing body 204, and the first The thrust bearing body 203 moves toward the first thrust disk 201 and the second thrust bearing body 204 moves toward the second thrust disk 202 so that the width of the first axial gap formed between the first thrust bearing body 203 and the first thrust disk 201 e becomes smaller, the axial force of the gas film of the first thrust bearing body 203 becomes F2 becomes larger, and the width f of the second axial gap formed between the second thrust bearing body 204 and the second thrust disk 202 becomes smaller, then The axial force of the gas film of the second thrust bearing body 204 becomes larger as F3, thereby improving the load bearing capacity of the thrust bearing 200.
  • the active adjustment of the thrust bearing is achieved.
  • the shaft 100 thermally expands, the first thrust disk 201 and the second thrust disk 202 As the rotating shaft 100 moves, the axial deformation and movement of the rotating shaft 100 are eliminated and alleviated.
  • the maximum elastic force generated by the first connecting member 205 is F5 ', where F5' + F2> F1.
  • the maximum elastic force F5 'of the first connecting member 205 plus the axial force F2 of the gas film of the first thrust bearing body 203 is greater than F1, which can ensure that the first thrust bearing body 203 will not hit the first casing 400a, making The first thrust bearing body 203 can float within the first axial gap.
  • FIG. 10 is a schematic diagram of a force receiving surface matched with a thrust bearing provided in Embodiment 1 of the present invention.
  • FIG. 10 shows the bearing surfaces of the components cooperating with the thrust bearing 200, namely: the first casing 400a is close to the end surface A of the first thrust bearing body 203, and the second casing 500a is close to the second thrust
  • the thrust bearing 200 requires relatively high parallelism of the bearing surface, in order to ensure the parallelism of the end face A and the end face B and the perpendicularity of the two to the axis of the rotating shaft 100, it is necessary to leave a margin in the processing of the respective parts.
  • the gas turbine generator set further includes: a third casing 400b and a fourth casing 500b.
  • the third casing 400b is located at the connection between the first casing 701 and the second casing 702, and is located on the side of the compressor 400 near the generator 300, and is disposed opposite to the first casing 400a.
  • a compressor outlet passage P4 communicating with the outlet of the compressor 400 is formed between the three casings 400b.
  • the fourth casing 500b is located on the side of the turbine 500 away from the compressor 400, and is disposed opposite to the second casing 500a.
  • a turbine communicating with the air inlet of the turbine 500 is formed between the second casing 500a and the fourth casing 500b
  • the intake passage P5, the second casing 500a, and the fourth casing 500b are used to enclose the combustion chamber 600 of the gas turbine generator set together with the combustion chamber casing 600a.
  • the combustion chamber 600 has a ring shape.
  • the compressor 400 is in contact with the first thrust disk 201 and is located between the first casing 400a and the third casing 400b; the turbine 500 is in contact with the second thrust disk 202 and located in the second Between the casing 500a and the fourth casing 500b.
  • connection relationship of the gas channels of the gas turbine generator set is as follows: the compressor inlet channel P3 communicates with the inlet port of the compressor 400, and the outlet port of the compressor 400 communicates with the combustion chamber 600 through the compressor outlet channel P4.
  • the air outlet communicates with the air inlet of the turbine 500 through the turbine intake passage P5, and the air outlet of the turbine 500 communicates with the turbine exhaust passage P6.
  • the gas flow direction of the gas turbine generator set is as follows: the gas enters the combustion chamber 600 through the compressor intake passage P3, the compressor 400, and the compressor outlet passage P4 in sequence, and then enters the turbine through the turbine intake passage P5 after combustion in the combustion chamber 600 500 and push the turbine 500 to do work, and the gas after the work is discharged through the turbine exhaust passage P6.
  • the gas turbine generator set provided in Embodiment 1 of the present invention solves the problem that the existing gas turbine generator set is connected by a coupling, and the coaxiality deviation leads to poor stability of the rotor system and thrust
  • the technical problem that the installation position of the bearing is limited; by installing the thrust bearing 200 in the rotor system between the compressor 400 and the turbine 500, it is solved when the thrust bearing 200 is installed on the side of the compressor 400 away from the turbine 500 or When the turbine 500 is away from the side of the compressor 400, due to the thermal expansion and deformation of the rotating shaft 100 during operation, the clearance of the thrust bearing 200 changes, which affects the bearing capacity of the thrust bearing 200, and the thrust bearing 200 is provided on the compressor 400 and the turbine Between 500, the gas film force generated by the thrust bearing 200 counteracts the axial force generated by the rotating shaft 100 during rotation, which limits the movement of the rotating shaft 100 in the axial direction, thereby limiting the axial direction of the compressor 400 and the turbine 500 The distance, while defining the gap between the compressor 400 and the first casing
  • the gas film force generated by the thrust bearing 200 counteracts the axial force generated by the rotating shaft 100 during rotation, restricts the movement of the rotating shaft 100 in the axial direction, improves the safety and reliability of the entire rotor system, and thus improves the use The safety and reliability of the gas turbine generator set of the rotor system.
  • FIG. 11 is a schematic cross-sectional view of a gas turbine generator set according to Embodiment 2 of the present invention.
  • FIG. 12 is a schematic cross-sectional view of a rotor system provided by Embodiment 2 of the present invention.
  • Embodiment 13 is a cross-sectional view of the thrust bearing provided by Embodiment 2 of the present invention.
  • the gas turbine generator set provided in Embodiment 2 of the present invention is different from Embodiment 1 in that the structure of the thrust bearing 200 in the rotor system is different.
  • the thrust bearing 200 is removed
  • a second connecting member 207 is added.
  • the thrust bearing 200 further includes: at least one second connecting member 207.
  • At least one second connector 207 is disposed on the side of the second thrust bearing body 204 away from the first thrust bearing body 203. Specifically, the second connector 207 allows the second thrust bearing body 204 to be flexibly connected to the second casing 500a.
  • the first connector 205 is an elastic component.
  • the second connecting member 207 includes but is not limited to a spring.
  • the second connecting pieces 207 are distributed along the circumferential direction.
  • the second connectors 207 are evenly distributed along the circumferential direction.
  • the number of second connectors 207 matches the number of first connectors 205.
  • FIG. 14 is a part diagram of a first thrust bearing body provided by Embodiment 2 of the present invention.
  • FIG. 15 is a cross-sectional view of the first thrust bearing body provided in FIG. 14 along C-C.
  • the structure of the first thrust bearing body 203 is different from the structure of the first thrust bearing body 203 in the first embodiment. Since the positioning member 206 is removed, the The first thrust bearing body 203 is only provided with a first groove 2032, and is not provided with a first positioning hole 2034 communicating with the first groove 2032.
  • the structure, position and connection relationship of the other parts of the first thrust bearing body 203 in this embodiment are the same as those in Embodiment 1, and will not be repeated here.
  • Embodiment 16 is a part view of a second thrust bearing body provided by Embodiment 2 of the present invention.
  • FIG. 17 is a cross-sectional view of the second thrust bearing body provided in FIG. 16 along D-D.
  • the structure of the second thrust bearing body 204 is different from the structure of the second thrust bearing body 204 in Embodiment 1, as follows:
  • the side of the second thrust bearing body 204 away from the first thrust bearing body 203 is provided with at least one second groove 2042; the number of second grooves 2042 matches the number of second connectors 207; each second groove A second connector 207 is provided in 2042.
  • the structure, position and connection relationship of the other parts of the second thrust bearing body 204 are the same as those in the first embodiment, and will not be repeated here.
  • Embodiment 18 is a schematic diagram of the clearance of the thrust bearing provided in Embodiment 2 of the present invention.
  • the positioning member 206 since the positioning member 206 is removed, the third radial gap formed between the first thrust bearing body 203 and the positioning member 206 in the radial direction, and the second thrust bearing body 204 and The fourth radial gap formed between the positioning members 206 no longer exists.
  • a first radial gap is formed between the first thrust bearing body 203 and the first thrust disk 201 in the radial direction, and the width of the first radial gap is a; the first thrust bearing body 203 and / or the second thrust bearing
  • a fifth radial gap is formed between the body 204 and the second casing 500a in the radial direction, and the width of the fifth radial gap is g; where b ⁇ g ⁇ a.
  • FIG. 19 is a schematic diagram of the force bearing state of the thrust bearing provided in Embodiment 2 of the present invention.
  • FIG. 19 shows the force state of the thrust bearing 200.
  • the expansion force generated when the thrust bearing air cavity S works is F1;
  • the axial force of the gas film of the first thrust bearing body 203 is F2 ;
  • the axial force of the gas film of the second thrust bearing body 204 is F3;
  • the radial force of the gas film of the second thrust bearing body 204 is F4,
  • the preload of the first connecting member 205 is F5, the preload of the second connecting member 207
  • the tightening force is F6; wherein, F1> F5 and / or F1> F6.
  • the expansion force F1 generated by the thrust bearing air cavity S is greater than the pretension F5 generated by the first connector 205, and / or the expansion force F1 generated by the thrust bearing air cavity S is greater than the second connector
  • the preload F6 generated by 207 separates the first thrust bearing body 203 from the second thrust bearing body 204, and the first thrust bearing body 203 moves toward the first thrust disk 201 and / or the second thrust bearing body 204 toward the second thrust
  • the disk 202 moves so that the width e of the first axial gap formed between the first thrust bearing body 203 and the first thrust disk 201 becomes smaller, and the axial force of the gas film of the first thrust bearing body 203 becomes F2,
  • the second axial gap f formed between the second thrust bearing body 204 and the second thrust disk 202 becomes smaller, the axial force of the gas film of the second thrust bearing body 204 becomes F3, which increases the thrust bearing 200 Bearing capacity.
  • the active adjustment of the thrust bearing is achieved.
  • the first thrust disc 201 and / or the second The thrust disk 202 moves with the rotating shaft 100, eliminating and alleviating the axial deformation and movement of the rotating shaft 100.
  • the maximum elastic force generated by the second connecting member 207 is F6 ', where F6' + F3> F1.
  • the maximum elastic force F6 ′ of the second connecting member 207 plus the axial force F3 of the gas film of the second thrust bearing body 204 is greater than F1, which can ensure that the second thrust bearing body 204 does not touch the second casing 500a, so that The second thrust bearing body 204 can float within the second axial gap.
  • FIG. 20 is a schematic diagram of a force-bearing surface coordinated with a thrust bearing provided in Embodiment 2 of the present invention.
  • FIG. 20 shows the force-bearing surfaces cooperating with the thrust bearing 200.
  • the force-bearing surfaces cooperating with the thrust bearing 200 are the same as in the first embodiment, and will not be repeated here.
  • Embodiment 3 of the present invention The difference between the gas turbine generator set provided in Embodiment 3 of the present invention and Embodiments 1 and 2 is that this embodiment is an improvement to the structure of the generator 300 in the rotor system.
  • This embodiment can be implemented separately or with Embodiment 1 or Embodiment 2 is implemented in combination.
  • FIG. 21 is a schematic cross-sectional view of a generator provided in Embodiment 3 of the present invention.
  • the generator 300 includes a generator body and radial bearings provided at both ends of the generator body.
  • the radial bearings are embedded between the generator body and the rotating shaft 100 and between the rotating shaft 100 A radial gap is formed along the radial direction.
  • the generator body includes a motor stator 301 and a motor casing 304.
  • the rotating shaft 100 forms a motor rotor of the generator 300.
  • the motor stator 301 is sleeved on the rotating shaft 100 and is located in the motor casing 304, which includes: a motor stator core 3011, a motor winding 3012 and a winding package 3013.
  • the motor stator core 3011 is sleeved on the rotating shaft 100; the motor winding 3012 is wound on the motor stator core 3011; the winding package 3013 is wrapped on the motor winding 3012.
  • the radial bearing is sleeved on the rotating shaft 100 and is located between the winding package 3013 and the rotating shaft 100.
  • the motor stator core 3011 is sleeved on the first shaft segment 101 of the rotating shaft 100, and the radial bearing is sleeved on the first shaft segment 101 of the rotating shaft 100, which is located between the winding package 3013 and the first shaft segment 101. And a radial gap is formed with the first shaft section 101 in the radial direction.
  • the radial bearing is sleeved on the rotating shaft 100 between the winding package 3013 and the rotating shaft 100 and forms a radial gap with the rotating shaft 100 in the radial direction, thereby forming a radial air bearing.
  • the radial bearing may be any one of a dynamic pressure air bearing, a static pressure air bearing, or a dynamic and static pressure mixed air bearing.
  • the air bearing When it is a dynamic pressure air bearing, the position where the air bearing is installed on the inner wall of the air bearing or the rotating shaft 100 corresponds to A dynamic pressure generating groove is provided; when it is a static pressure air bearing, a radial bearing air cavity groove is formed on the outer wall of the radial bearing for forming a radial bearing air cavity, and the radial bearing air cavity communicates with an external air source , And communicate with the radial gap; when it is a dynamic and static pressure mixed air bearing, the air bearing has the above two structural features.
  • the winding package 3013 is a non-metallic material.
  • non-metallic materials include but are not limited to BMC, resin, and rubber.
  • the winding package 3013 is obtained by injection molding or potting the motor winding 3012.
  • the present invention is not limited to this, and the winding package 3013 can also be obtained in other ways.
  • the winding package 3013 is wrapped on the motor winding 3012, and the radial bearing is installed between the winding package 3013 and the rotating shaft 100, and the winding package 3013 also serves as a mounting seat for the radial bearing ,
  • Make full use of the space in the winding package 3013 effectively reduce the axial size of the generator 300, solve the problem in the prior art because the air bearing is installed outside the motor winding 3012, and it requires a separate bearing seat to support and fix,
  • the technical problem that the axial size of the high-speed motor is large and the volume is increased is not conducive to the improvement of the power density of the motor.
  • the generator 300 provided in this embodiment greatly reduces the size of the generator 300 by effectively reducing the axial size of the generator 300, improves the power density of the generator 300, and greatly reduces the length of the rotating shaft 100, thereby reducing
  • the volume of the rotor system and the gas turbine generator set using the rotor system is described.
  • the radial bearing includes a first radial bearing 302 and a second radial bearing 303.
  • a winding shaft mounting hole is formed inside the winding package 3013 for being sleeved on the rotating shaft 100; a first radial bearing seat hole and a second radial bearing seat hole are formed at both ends of the rotating shaft mounting hole in the axial direction; the first diameter
  • the radial bearing 302 and the second radial bearing 303 are located in the first radial bearing seat hole and the second radial bearing seat hole, respectively.
  • the first radial bearing 302 is located at the end of the generator 300 away from the compressor 400; the second radial bearing 303 is located at the end of the generator 300 near the compressor 400 and close to the first shaft section 101 of the rotating shaft 100
  • the transition surface at the connection with the second shaft section 102 by setting the rotating shaft 100 as the first shaft section 101 and the second shaft section 102 with different diameters, the center of gravity of the rotor system is located on the second radial bearing 303, that is to say The weight of the rotor system on both sides of the second radial bearing 303 is equal, which is conducive to keeping the structure stable when the entire rotor system rotates at high speed.
  • first radial bearing seat hole and the second radial bearing seat hole By forming the first radial bearing seat hole and the second radial bearing seat hole in the winding package 3013, and installing the first radial bearing 302 and the second radial bearing 303 in the first radial bearing seat hole and the first
  • the two radial bearing seat holes greatly reduce the axial size of the generator 300, which is beneficial to the improvement of the power density of the motor.
  • the position of the rotating shaft mounting hole corresponds to the position of the motor stator core 3011
  • the positions of the first radial bearing seat hole and the second radial bearing seat hole are respectively the first radial bearing 302 and the second radial bearing 303 Corresponding to the location.
  • the radial gap includes a sixth radial gap formed between the first radial bearing 302 and the rotating shaft 100 and a seventh radial gap formed between the second radial bearing 303 and the rotating shaft 100.
  • first radial bearing 302 and the second radial bearing 303 are static pressure air bearings or dynamic and static pressure mixed air bearings:
  • a first radial bearing air cavity groove is formed on the outer wall of the first radial bearing 302, and the first radial bearing air cavity groove and the hole wall of the first radial bearing housing hole form a first radial bearing air cavity T1;
  • the first radial bearing air cavity T1 communicates with the sixth radial gap and communicates with the external air source.
  • the groove bottom of the first radial bearing air cavity groove is provided with a through air hole in the radial direction, so that the first radial bearing air cavity T1 communicates with the sixth radial gap.
  • the first radial bearing air cavity T1 is provided with third seals 307 on both sides in the axial direction, which is used to seal the gas in the first radial bearing air cavity T1, and can work on the rotating shaft 100 at the same time. Plays a role in reducing vibration.
  • the first radial bearing air cavity groove is provided with third seals on both sides in the axial direction, and the third seal is used to accommodate the third seal 307.
  • the sealing groove is provided on the outer wall of the first radial bearing, and is located on both sides of the air cavity groove of the first radial bearing.
  • a second radial bearing air cavity groove is formed on the outer wall of the second radial bearing 303, and the second radial bearing air cavity groove and the hole wall of the second radial bearing housing hole form a second radial bearing air cavity T2;
  • the second radial bearing air cavity T2 communicates with the seventh radial gap and communicates with the external air source.
  • the groove bottom of the second radial bearing air cavity groove is provided with a through air hole in the radial direction, so that the second radial bearing air cavity T2 communicates with the seventh radial gap.
  • the second radial bearing air cavity T2 is provided with third seals 307 on both sides in the axial direction, which is used to seal the gas in the second radial bearing air cavity T2, and at the same time can work in the rotating shaft 100 Plays a role in reducing vibration.
  • the second radial bearing air cavity grooves are respectively provided with third sealing grooves on both sides in the axial direction, and the third sealing grooves are used to accommodate the third sealing member 307.
  • the sealing groove is provided on the outer wall of the second radial bearing and is located on both sides of the air cavity groove of the second radial bearing.
  • the third seal 307 is ring-shaped, and the shape of the third seal groove matches the shape of the third seal 307.
  • the present invention is not limited to this, and the specific shapes and sizes of the third sealing member 307 and the third sealing groove can be appropriately adjusted according to actual needs.
  • annular groove is further formed on the outer wall of the second radial bearing 303, and the annular groove is provided on the side of the second radial bearing air cavity groove away from the first radial bearing air cavity groove.
  • the groove reduces the surface area of the second radial bearing 303, reduces the difficulty of processing the second radial bearing 303, and reduces the contact area between the second radial bearing 303 and the second radial bearing seat hole, so that The second radial bearing 303 is easier to install into the second radial bearing seat hole.
  • a third seal 307 is also provided on the side of the annular groove away from the air cavity groove of the second radial bearing, which is used to reduce vibration during the operation of the rotating shaft 100.
  • the end of the motor stator 301 corresponding to the first radial bearing 302 is provided with a first radial bearing air cavity intake passage P7, and the first radial bearing air cavity T1 is fed through the first radial bearing air cavity
  • the channel P7 communicates with the external air source.
  • the end of the motor stator 301 corresponding to the second radial bearing 303 is provided with a second radial bearing air cavity intake passage P8, and the second radial bearing air cavity T2 is fed through the second radial bearing air cavity
  • the channel P8 communicates with the external air source.
  • the portion of the first radial bearing air cavity intake passage P7 located in the winding package 3013 is a pre-buried air pipe.
  • the portion of the first radial bearing air cavity intake passage P7 located in the winding package 3013 may be It is an air pipe pre-buried before injection molding or injection, and it can also be an air hole processed after injection injection or injection, which is not limited herein.
  • the portion of the second radial bearing air cavity intake passage P8 located in the winding package 3013 is a pre-buried air pipe.
  • the portion of the second radial bearing air cavity intake passage P8 located in the winding package 3013 may be It is an air pipe pre-buried before injection molding or injection, and it can also be an air hole processed after injection injection or injection, which is not limited herein.
  • At least one vent hole is preset on the motor stator 301, and the vent hole communicates the gap between the motor stator 301 and the rotating shaft 100 on the side of the radial bearing close to the motor stator iron core 3011 with the outside world.
  • the expansion gas in the gap between the motor stator 301 and the rotating shaft 100 can be discharged to the outside world, and ventilated with the outside world to prevent suffocation inside the motor stator 301 and affect the life of the motor.
  • the motor casing 304 includes: a motor casing body 3041 and a motor end cover 3042.
  • the motor casing body 3041, the cover is provided outside the motor stator 301 and the second radial bearing 303, and the end away from the second radial bearing 303 forms an opening, and the motor end cover 3042 is sleeved outside the first radial bearing 302 , And the cover is buckled on the opening of the motor casing body 3041.
  • the motor housing body 3041 is provided with a first intake hole 30411 and a second intake hole 30412 at positions corresponding to the first radial bearing air cavity intake channel P7 and the second radial bearing air cavity intake channel P8, respectively .
  • the first radial bearing air cavity intake channel P7 communicates with the external air source through the first air intake hole 30411; the second radial bearing air cavity intake channel P8 communicates with the external air source through the second air intake hole 30412.
  • the first radial bearing seat hole and the second radial bearing seat hole in the winding package 3013 are formed by directly processing the winding package 3013, and the motor end cover 3042 corresponds to the first radial bearing seat hole Is provided with a hole matching the diameter of the first radial bearing seat hole, and a position corresponding to the second radial bearing seat hole on the motor housing body 3041 is provided with a hole matching the diameter of the second radial bearing seat hole
  • the hole, the winding package 3013 and the motor end cover 3042 serve as the bearing seat of the first radial bearing 302, the winding package 3013 and the motor housing body 3041 serve as the bearing seat of the second radial bearing 303, and the first radial bearing 302 and the first
  • the winding package 3013, the motor end cover 3042, and the motor housing body 3041 form a static pressure air bearing stator.
  • the intake passage P7 of the first radial bearing air cavity penetrates the winding package 3013 and the motor casing body 3041 in the radial direction, and connects the first radial bearing air cavity T1 with the external air source.
  • the first radial bearing air cavity intake passage P7 is only provided in the winding package 3013 and does not intersect the motor winding 3012, and may be an air hole or an air tube pre-buried in the winding package 3013.
  • the first radial bearing air cavity intake passage P7 radially penetrates the winding package 3013, the motor winding 3012, and the motor casing body 3041, and connects the second radial bearing air cavity T2 with an external air source.
  • the first radial bearing air cavity intake passage P7 is provided in the winding package 3013 and the motor winding 3012, and may be an air pipe pre-buried in the motor winding 3012 and the winding package 3013.
  • the intake passage P8 of the second radial bearing air cavity penetrates the winding package 3013 and the motor casing body 3041 in the radial direction, and connects the second radial bearing air cavity T2 with an external air source.
  • the second radial bearing air cavity intake passage P8 is only provided in the winding package 3013 and does not intersect the motor winding 3012, and may be an air hole or an air pipe pre-buried in the winding package 3013.
  • the second radial bearing air cavity intake passage P8 radially penetrates the winding package 3013, the motor winding 3012, and the motor casing body 3041, and connects the second radial bearing air cavity T2 with an external air source.
  • the second radial bearing air cavity intake passage P8 is provided in the winding package 3013 and the motor winding 3012, and may be an air pipe pre-buried in the motor winding 3012 and the winding package 3013.
  • the air inlet passage P8 of the second radial bearing air cavity is arranged close to the stator core 3011 of the motor in the axial direction, so that the end of the seventh radial gap farthest from the sixth radial gap generates the maximum supporting force.
  • the span of the first radial bearing can be adjusted by adjusting the position of the intake passage P8 of the second radial bearing air cavity or the intake passage P7 of the first radial bearing air cavity, if there is a heavy In the cantilever structure, by moving the second radial bearing air cavity intake passage P8 or the first radial bearing air cavity intake passage P8 toward the middle, the radial bearing span can be increased and the length of the cantilever end can be reduced.
  • first radial bearing 302 and the second radial bearing 303 are dynamic pressure air bearings or dynamic and static pressure mixed air bearings:
  • the inner wall of the first radial bearing 302 is provided with a dynamic pressure generating groove; and / or the inner wall of the second radial bearing 303 is provided with a dynamic pressure generating groove.
  • a dynamic pressure generating groove is provided at a position corresponding to the first radial bearing 302 on the outer wall of the rotating shaft 100; and / or a dynamic pressure is provided at a position corresponding to the second radial bearing 303 on the outer wall of the rotating shaft 100 Grooves occur, forming dynamic pressure air bearings.
  • the size of the pressure generated by the dynamic pressure generating groove varies with the angle, width, length, depth, number of grooves, and flatness of the dynamic pressure generating groove.
  • the magnitude of the pressure generated by the dynamic pressure generating groove is also related to the rotation speed of the rotating shaft 100 and the radial clearance.
  • the parameters of the dynamic pressure generating groove can be designed according to the actual working conditions.
  • the dynamic pressure generating groove can be formed by forging, rolling, etching, or stamping.
  • the dynamic pressure generating groove is a herringbone groove.
  • the gas in the sixth radial gap and the seventh radial gap can be better guided into and out.
  • the installation position and form of the dynamic pressure generating groove of the present invention include but are not limited to the above manners, and the specific installation position and form of the dynamic pressure generating groove may be appropriately adjusted according to actual needs.
  • the generator 300 used in the rotor system of the gas turbine generator set of this embodiment by wrapping the winding package 3013 on the motor winding 3012, and installing the radial bearing between the winding package 3013 and the rotating shaft 100, and the winding package 3013 also serves as
  • the radial bearing mounting seat makes full use of the space in the winding package 3013, effectively reducing the axial size of the generator 300, which solves the problem in the prior art that the air bearing is installed outside the motor winding 3012, and it requires a separate
  • the support and fixation of the bearing housing of the high-speed motor leads to a large axial size and an increase in volume, which is not conducive to the technical problem of improving the power density of the motor.
  • the generator 300 provided in this embodiment greatly reduces the size of the generator 300 by effectively reducing the axial size of the generator 300, improves the power density of the generator 300, and greatly reduces the length of the rotating shaft 100
  • the volume of the rotor system reduces the volume of the gas turbine generator set using the rotor system.
  • Example 22 is a flowchart of a method for assembling a generator provided by an implementation manner of Example 3 of the present invention.
  • the assembly method of the generator 300 includes the following steps:
  • the first radial bearing 302 and the second radial bearing 303 are sleeved on the rotating shaft 100, respectively, and installed in the first radial bearing seat hole and the second radial bearing seat hole.
  • the first radial bearing 302 and the second radial bearing 303 are sleeved on the rotating shaft 100, respectively, and installed in the first radial bearing seat hole and the second radial bearing seat hole;
  • the steps of assembling the rotating shaft 100, the first radial bearing 302, and the second radial bearing 303 are not divided before and after, as long as it is convenient for installation.
  • the winding package 3013 obtained by injection molding or potting the motor winding 3012 in step S3 may be a structure having a shaft mounting hole, and through step S4, finishing both ends of the shaft mounting hole to obtain a first radial bearing Seat hole and second radial bearing hole.
  • Example 23 is a flowchart of a method for assembling a generator provided by another implementation manner of Example 3 of the present invention.
  • steps S2 and S3 in another implementation manner of Embodiment 3 of the present invention, between steps S2 and S3, further steps are included:
  • the motor assembly method further includes:
  • the motor assembly method provided in Embodiment 3 of the present invention is applicable to the motor assembly in Embodiment 1.
  • the assembly method of the generator 300 provided by the rotor system of this embodiment is simple to assemble.
  • the axial dimensions of the generator 300 and the rotor system obtained by this assembly method are greatly reduced, while greatly improving the power density of the generator
  • the length of the rotating shaft 100 reduces the volume of the rotor system and the gas turbine generator set using the rotor system.
  • This embodiment is a further improvement based on Embodiment 3.
  • the difference between this embodiment and Embodiment 3 is that the first radial bearing seat hole and the second radial bearing seat hole in this embodiment are The structure in the first embodiment is different.
  • FIG. 24 is a schematic cross-sectional view of a generator provided by Embodiment 4 of the present invention.
  • the generator 300 further includes: a first protective sleeve 305 and a second protective sleeve 306.
  • the first protective sleeve 305 is embedded in the winding package 3013, and is sleeved on the first radial bearing 302, the middle of which is formed as a first radial bearing seat hole; the second protective sleeve 306 is embedded in the winding package 3013, And sleeved on the second radial bearing 303, the middle part is formed as a second radial bearing seat hole.
  • the first protective sleeve 305 serves as the bearing seat of the first radial bearing 302
  • the second protective sleeve 306 serves as the bearing seat of the second radial bearing 303.
  • the first radial bearing 302 and the second radial bearing 303 are In the case of air bearings, the first protective sleeve 305 and the second protective sleeve 306 respectively form the stator of the air bearing.
  • the first protective sleeve 305 is integrally formed with the motor end cover 3042; the second protective sleeve 306 is integrally formed with the motor casing body 3041.
  • the present invention is not limited to this.
  • the first protective sleeve 305 and the second protective sleeve 306 may also be provided in other ways to form the first radial bearing seat hole and the second radial bearing seat hole.
  • the material of the first protective sleeve 305 is the same as that of the motor end cover 3042, and the material of the second protective sleeve 306 is the same as that of the motor casing body 3041.
  • first protective sleeve 305 and the second protective sleeve 306 are metal materials.
  • the first radial bearing seat hole and the second radial bearing are improved The strength of the seat hole.
  • the first radial bearing seat hole and the second radial bearing seat hole in the winding package 3013 are formed by embedding the first protective sleeve 305 and the second protective sleeve 306 in the winding package 3013, so that the first protection The sleeve 305 and the second protective sleeve 306 serve as bearing seats for the first radial bearing 302 and the second radial bearing 303, respectively.
  • the first protective sleeve 305 and the second protective sleeve 306 respectively form the stator of the air bearing.
  • the first radial bearing air cavity intake passage P7 and the second radial bearing air cavity intake passage P8 specifically have the following ways of setting:
  • the first radial bearing air cavity intake passage P7 radially penetrates the first protective sleeve 305, the winding package 3013, and the motor casing body 3041, and connects the first radial bearing air cavity T1 with an external air source.
  • the first radial bearing air cavity intake passage P7 radially penetrates the first protective sleeve 305, the winding package 3013, the motor winding 3012, and the motor housing body 3041, and connects the second radial bearing air cavity T2 to the outside The gas source is connected.
  • the second radial bearing air cavity intake passage P8 radially penetrates the second protective sleeve 306, the winding package 3013, and the motor housing body 3041, and connects the second radial bearing air cavity T2 with an external air source.
  • the second radial bearing air cavity intake passage P8 radially penetrates the second protective sleeve 306, the winding package 3013, the motor winding 3012, and the motor housing body 3041, and connects the second radial bearing air cavity T2 to the outside The gas source is connected.
  • FIG. 25 is a flowchart of a generator assembling method provided by Embodiment 4 of the present invention.
  • the assembly method of the generator 300 in the rotor system includes the following steps:
  • the motor stator core 3011 is installed into the motor casing body 3041 integrally formed with the second protective sleeve 306, and a second radial bearing seat hole is formed in the second protective sleeve 306;
  • the first radial bearing 302 and the second radial bearing 303 are sleeved on the rotating shaft 100, respectively, and installed in the first radial bearing seat hole and the second radial bearing seat hole.
  • step S5 and step S6 are also indistinguishable, as long as it is convenient for installation.
  • the motor of the present invention when applied to a specific rotor system or equipment, it can be used in conjunction with a thrust bearing, which is used to withstand the axial force received by the machine.
  • the generator in the present invention may be a heuristic integrated motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种燃气轮机发电机组,包括:转子系统和燃烧室(600);转子系统包括:转轴(100)、推力轴承(200)、发电机(300)、压气机(400)和涡轮(500);转轴(100)为一体结构;发电机(300)、压气机(400)、推力轴承(200)和涡轮(500)依次套设在转轴(100)上;发电机(300)包括发电机本体和设置于发电机本体两端的径向轴承(302,303),径向轴承(302,303)嵌入至发电机本体和转轴(100)之间,且与转轴(100)之间沿径向形成径向间隙;压气机(400)的进气口与外界大气连通,压气机(400)的出气口与燃烧室(600)的进气口连通,燃烧室(600)的出气口与涡轮(500)的进气口连通。通过将转轴设置为一体结构,解决了采用联轴器连接时,存在同轴度偏差导致转子系统稳定性差的问题,同时通过改进发电机的结构,有效减小了转子系统的轴向尺寸,提高了燃气轮机发电机组的稳定性和动态性能。

Description

一种燃气轮机发电机组 技术领域
本发明涉及发电机组技术领域,尤其涉及一种燃气轮机发电机组。
背景技术
燃气轮机主要包括压气机、燃烧室及涡轮三大部件。空气进入压气机后被压缩成高温高压的空气,然后供给燃烧室与燃料混合燃烧,其产生的高温高压燃气在涡轮中膨胀做功。转子高速转动时,转子会受到径向方向的力和轴向方向的力。为了限制转轴发生径向和轴向上的移动,转子系统中需要安装径向轴承和推力轴承。传统的径向轴承和推力轴承均为普通的接触式轴承,随着转子转速的提高,尤其是转子转速每分钟超过40000转时,普通的接触式轴承由于存在较大的机械磨损,已不能满足工作转速的需求。
对于燃气轮机发电机组,通过燃气轮机转子的高速旋转带动发电机转子旋转进而发电。但现有技术中的燃气轮机发电机组存在如下缺陷:
1、现有技术中,通常采用联轴器将燃气轮机转子与发电机转子进行连接,由于存在同轴度偏差导致燃气轮机发电机组转子系统稳定性差。同时,联轴器的设置使得推力轴承的设置位置受到限制,这是因为随着转子转速的提高,转子受到的轴向力也会进一步提高,若将推力轴承设置于压气机和涡轮之间,会使得整个转子系统的重心偏向涡轮侧,从而导致转子系统的稳定性差。如果将推力轴承设置于联轴器朝向发电机一侧,则转子的轴向力全部作用到联轴器上,容易导致联轴器损坏。
2、现有技术中,燃气轮机发电机组的发电机,通常采用空气轴承,空气轴承可提供极高的旋转精度。因为空气轴承没有机械接触,磨损程度降到了最低,从而确保精度始终保持稳定。但根据现有空气轴承的结构特点,空气轴承的静子作为一个单独的零件,位于电机绕组的外侧,导致空气轴承的外径较大,长度较长,会明显增大高速电机的轴向和径向尺寸,最终导致高速电机的体积增加,不利于电机功率密度的提高,同时造成燃气轮机发电机组的轴向尺寸大,稳定性差。
可见,目前亟需提供一种新的燃气轮机发电机组,以解决现有燃气轮机发电机组存在的上述问题。
发明内容
(一)发明目的
本发明的目的是提供一种燃气轮机发电机组,以解决现有燃气轮机发电机组存在的上述问题。
(二)技术方案
为解决上述问题,本发明提供了一种燃气轮机发电机组,包括:转子系统和燃烧室;所述转子系统包括:转轴、推力轴承、发电机、压气机和涡轮;所述转轴为一体结构;所述发电机、所述压气机、所述推力轴承和所述涡轮依次套设在所述转轴上;所述发电机包括发电机本体和设置于所述发电机本体两端的径向轴承,所述径向轴承嵌入至所述发电机本体和所述转轴之间,且与所述转轴之间沿径向形成径向间隙;所述压气机的进气口与外界大气连通,所述压气机的出气口与所述燃烧室的进气口连通,所述燃烧室的出气口与所述涡轮的进气口连通。该燃气轮机发电机组通过将转子系统的转轴设置为一体结构,解决了现有燃气轮机发电机组由于采用联轴器连接,存在同轴度偏差导致转子系统稳定性差,推力轴承的设置位置受到限制的技术问题;并且通过将径向轴承嵌入至发电机本体和转轴之间,有效减小发电机的轴向尺寸,进而缩短了燃气轮机发电机组转子系统的轴向尺寸,提高了燃气轮机发电机组的稳定性。
(三)有益效果
本发明的上述技术方案具有如下有益的技术效果:
1、本发明提供的燃气轮机发电机组,转轴采用一体结构,解决了现有技术中采用联轴器将燃气轮机转子与发电机转子进行连接,由于存在同轴度偏差导致燃气轮机发电机组转子系统稳定性差的技术问题;同时,本发明的燃气轮机发电机组改进了发电机的结构,有效减小了发电机的轴向尺寸,从而大大缩小了燃气轮机发电机组转子系统的轴向尺寸,提高了燃气轮机发电机组的稳定性和动态性能。
2、本发明提供的燃气轮机发电机组,通过改进推力轴承的结构,在推力轴承本体组件与第一容纳槽的侧壁之间设置轴向间隙,并控制该轴向间隙的变化,实现了推力轴承轴向主动调节的作用,在转轴发生热膨胀时,第一推力盘和第二推力盘随着转轴移动,消除和缓解了转轴的轴向变形和移动;同时,通过推力轴承的轴向调节作用,进一步改善了转子系统的抗轴向扰动和抖动的能力,提高了燃气轮机发电机组的动态性能、安全性和可靠性。
3、本发明提供的燃气轮机发电机组,通过将该推力轴承安装在压气机与涡轮之间,并利用推力轴承产生的气膜力抵消转轴在旋转过程中产生的轴向力,限制了转轴在轴向方向上的移动,进而限定了压气机与涡轮的轴向间距,提高了压气机与涡轮结构轴向定位的稳定性,从而提高了燃气轮机发电机组的安全性和可靠性。
4、本发明提供的燃气轮机发电机组,通过对推力轴承和机匣之间的间隙的设计能够有效防止压气机叶轮和涡轮叶轮与机匣的接触和剐蹭,从而提高了燃气轮机发电机组的安全性、可靠性和使用寿命。
5、本发明提供的燃气轮机发电机组,由于推力轴承也同时具有径向轴承的径向支撑作用,且其具有较大的径向调整幅度,使得本发明的燃气轮机发电机组形成三径向轴承支承结构,整个燃气轮机发电机组的稳定性和整体性能大幅提高。
附图说明
图1是本发明实施例一提供的燃气轮机发电机组的剖面示意图;
图2是本发明实施例一提供的转子系统的剖面示意图;
图3是本发明实施例一提供的推力轴承的剖面图;
图4是本发明实施例一提供的第一推力轴承本体的零件图;
图5是图4提供的第一推力轴承本体沿A-A的剖面图;
图6是本发明实施例一提供的第二推力轴承本体的零件图;
图7是图6提供的第二推力轴承本体沿B-B的剖面图;
图8是本发明实施例一提供的推力轴承的间隙示意图;
图9是本发明实施例一提供的推力轴承的受力状态示意图;
图10是本发明实施例一提供的与推力轴承配合的受力面示意图;
图11是本发明实施例二提供的燃气轮机发电机组的剖面示意图;
图12是本发明实施例二提供的转子系统的剖面示意图;
图13是本发明实施例二提供的推力轴承的剖面图;
图14是本发明实施例二提供的第一推力轴承本体的零件图;
图15是图14提供的第一推力轴承本体沿C-C的剖面图;
图16是本发明实施例二提供的第二推力轴承本体的零件图;
图17是图16提供的第二推力轴承本体沿D-D的剖面图;
图18是本发明实施例二提供的推力轴承的间隙示意图;
图19是本发明实施例二提供的推力轴承的受力状态示意图;
图20是本发明实施例二提供的与推力轴承配合的受力面示意图;
图21是本发明实施例三提供的发电机的剖面示意图;
图22是本发明实施例三的一个实施方式提供的发电机的装配方法流程图;
图23是本发明实施例三的另一个实施方式提供的发电机的装配方法流程图;
图24是本发明实施例四提供的发电机的剖面示意图;
图25是本发明实施例四提供的发电机的装配方法流程图。
附图标记:
100、转轴,101、第一轴段,102、第二轴段,200、推力轴承,201、第一推力盘,2011、第一盘体,2012、第二盘体,202、第二推力盘,2021、第三盘体,2022、第四盘体,203、第一推力轴承本体,2031、第三安装孔,2032、第一凹槽,2033,第一气孔,2034、第一定位孔,204、第二推力轴承本体,2041、第四安装孔,2042、第二凹槽,2043、推力轴承气腔槽,2044、第二气孔,2045、第三气孔,2046、第二定位孔,2047、第一密封槽,2048、第二密封槽,205、第一连接件,206、定位件,207、第二连接件,208、第一密封件,209、第二密封件,300、发电机,301、电机定子,3011、电机定子铁芯,3012、电机绕组,3013、绕组封装,30131、第一径向轴承座孔,30132、第二径向轴承座孔,302、第一径向轴承,303、第二径向轴承,304、电机机壳,3041、电机机壳本体,30411、第一进气孔,30412、第二进气孔,3042、电机端盖,400、压气机,400a、第一机匣,400b、第三机匣,500、涡轮,500a、第二机匣,500b、第四机匣,600、燃烧室,600a、燃烧室机壳,700、外壳,701、第一壳体,702、第二壳体,R1、第一容纳槽,R2、第二容纳槽,S、推力轴承气腔,P1、推力轴承气腔进气通道,P2、机匣进气通道,P3、压气机进气通道,P4、压气机出气通道,P5、涡轮进气通道,P6、涡轮排气通道,P7、第一径向轴承气腔进气通道,P8、第二径向轴承气腔进气通道。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附 图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
在以下实施例中,轴向、径向均是以转轴的轴向、径向为准。
实施例一
图1是本发明实施例一提供的燃气轮机发电机组的剖面示意图。
图2是本发明实施例一提供的转子系统的剖面示意图。
请参照图1和图2,本发明实施例一提供一种燃气轮机发电机组,包括:转子系统和燃烧室600。
其中,转子系统包括:转轴100、推力轴承200、发电机300、压气机400和涡轮500。
转轴100为一体结构;发电机300、压气机400、推力轴承200和涡轮500依次套设在转轴100上。
发电机300包括发电机本体和设置于发电机本体两端的径向轴承,径向轴承嵌入至发电机本体和转轴100之间,且与转轴100之间沿径向形成径向间隙。
压气机400的进气口与外界大气连通,压气机400的出气口与燃烧室600的进气口连通,燃烧室600的出气口与涡轮500的进气口连通。具体地,压气机400的进气口通过压气机进气通道P3与外界大气连通。
可选的,转轴100水平设置或立式设置。
在本实施例中,该燃气轮机发电机组还包括:外壳700,该外壳700包括:相互连接的第一壳体701和第二壳体702。第一壳体701套设发电机300外部,且与发电机300的电机机壳304之间形成上述的压气机进气通道P3,空气由压气机进气通道P3进入压气机400时,空气经由电机机壳304,能够对发电机300起到冷却作用;第二壳体702套设在燃烧室600外部。
该燃气轮机发电机组的转子系统通过将转轴100设置为一体结构,解决了现有燃气轮机发电机组由于采用联轴器连接,存在同轴度偏差导致转子系统稳定性差,推力轴承的设置位置受到限的技术问题;通过将推力轴承200安装在压气机400与涡轮500之间,解决了当推力轴承200安装在压气机400远离涡轮500的一侧或者安装在涡轮500远离压气机400的一侧时,由于转轴100在工作过程中受热膨胀变形影响推力轴承200承载能力的问题,而且将推力轴承200设置在压气机400和涡轮500之间,利用推力轴承200产生的气膜力抵消转轴100在旋转过程中产生的轴向力,限制了转轴100在轴向方向上的移动,进而限定了压气机400与涡轮500的轴向间距,提高了压气机400与涡轮500轴向定位的稳定性,因此整体提高了转子系统的稳定性,从而提高了使用该转子系统的燃气轮机发电机组的安全性和可靠性。
在本实施例中,转轴100包括依次连接的第一轴段101和第二轴段102。
其中,第一轴段101的直径大于第二轴段102的直径,第一轴段101与第二轴段102的连接处形成有过渡面;发电机300套设在第一轴段101上;推力轴承200、压气机400和涡轮500套设在第二轴段102上,且压气机400与过渡面抵接。该燃气轮机发电机组的转子系统通过改进转轴100的形状调整整个转子系统的重心,有利于整个转子系统在高速旋转时保持结构稳定,提高了转子系统的稳定性。
上述的过渡面可以是例如圆锥面、圆弧面、台阶面、多级台阶面中的任意一种。
具体地,转轴100第一轴段101的直径大于第二轴段102的直径,使得转轴100的外 形呈酒瓶状结构。
可选的,涡轮500远离压气机400的一侧设置有紧固件,紧固件套设在转轴100上,且与涡轮500抵接,用于限制涡轮500的轴向移动。
可选的,紧固件包括但不限于锁紧螺母。
图3是本发明实施例一提供的推力轴承的剖面图。
请参照图3,在本实施例中,推力轴承200包括:第一推力盘201、第二推力盘202和推力轴承本体组件。
第一推力盘201与第二推力盘202固定套设在转轴100上,两者相对设置且相互抵接,形成环形的第一容纳槽R1;推力轴承本体组件设置在第一容纳槽R1内;推力轴承本体组件内部设置有与轴向间隙连通的推力轴承气腔S,推力轴承气腔S与外部气源连通。
推力轴承本体组件与第一容纳槽R1的槽底之间具有与推力轴承气腔S连通的径向间隙。
推力轴承本体组件包括相互抵接设置的第一推力轴承本体203和第二推力轴承本体204,第一推力轴承本体203与所述第二推力轴承本体204之间形成有推力轴承气腔S。
具体地,第一推力盘201与第二推力盘202套设在转轴100的第二轴段102上,第一推力轴承本体203套设在第一推力盘201靠近第二推力盘202的一端,且与第一推力盘201沿径向间隙配合,沿轴向也间隙配合,使得第一推力轴承本体203与第一推力盘201之间沿径向和轴向分别形成气膜;第二推力轴承本体204套设在第二推力盘202靠近第一推力盘201的一端,且与第二推力盘202沿径向间隙配合且沿轴向也间隙配合,使得第二推力轴承本体204与第二推力盘202之间沿径向和轴向分别形成气膜。该推力轴承200通过改进结构,改善了该推力轴承200的性能,尤其在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了该推力轴承200的承载能力。
在上述结构中,由于第一推力轴承本体203与第一推力盘201之间沿径向形成气膜,因此本发明中的推力轴承也可用作径向轴承,且该径向轴承具有较大的径向调整幅度,使得本发明的转子系统形成三径向轴承支承结构的转子系统。整个转子系统的稳定性和整体性能大幅提高。
在本实施例中,推力轴承本体组件与第一容纳槽R1的侧壁之间具有轴向间隙,即第一推力轴承本体203与第一推力盘201沿径向间隙配合以及第二推力轴承本体204与第二推力盘202沿径向间隙配合,具体是通过控制第一推力轴承本体203与第二推力轴承本体204的厚度以及容纳槽R的宽度实现的,即控制第一推力轴承本体203与第二推力轴承本体204的厚度之和小于第一容纳槽R1的宽度,使得第一推力轴承本体203与第一容纳槽R1的一个侧壁即第一推力盘201的端面间隙配合,第二推力轴承本体204与第一容纳槽R1的另一个侧壁即第二推力盘202的端面间隙配合。
请参照图1-图3,该燃气轮机发电机组还包括:第一机匣400a和第二机匣500a。
第一机匣400a套设在第一推力盘201外部,且位于第一推力轴承本体203远离第二推力轴承本体204的一侧,即位于压气机400与第一推力轴承本体203之间。
第二机匣500a套设在第二推力轴承本体204和第二推力盘202外部,且与第一机匣400a抵靠并形成第二容纳槽R2,第二容纳槽R2与第一容纳槽R1共同围成用于容纳第一推力轴承本体203和第二推力轴承本体204的推力轴承本体容纳腔。
具体地,推力轴承200在使用时,第一推力盘201与第二推力盘202固定套设在转轴100的第二轴段102上并与转轴100一起转动,形成空气轴承的动子;第一推力轴承本体 203与第二推力轴承本体204位于第一推力盘201与第二推力盘202形成的第一容纳槽R1内,并与第一机匣400a和第二机匣500a共同形成空气轴承的静子;该推力轴承200通过空气轴承的动子与空气轴承的静子相互配合产生的气膜力抵消转轴100在旋转过程中的轴向力,限制了转轴100在轴向方向上的移动,提高了转子系统的安全性和可靠性,从而提高了该燃气轮机发电机组的安全性和可靠性。
可选的,第一推力盘201和第二推力盘202为环状结构,其中部分别设置有与转轴100形状相匹配的第一安装孔和第二安装孔。
具体地,第一推力盘201包括相互连接的第一盘体2011和第二盘体2012,其中,第一盘体2011和第二盘体2012均为环状结构,且第一盘体2011的外径大于第二盘体2012的外径;第二推力盘202包括相互连接的第三盘体2021和第四盘体2022,其中,第三盘体2021和第四盘体2022均为环状结构,且第三盘体2021的外径大于第四盘体2022的外径。第一盘体2011的外径等于第四盘体2022的外径,第二盘体2012与第四盘体2022的端面抵接,使得第一盘体2011靠近第二盘体2012的端面、第二盘体2012的侧壁、第四盘体2022的侧壁和第三盘体2021靠近第四盘体2022的端面共同围成上述第一容纳槽R1。
可选的,第一推力轴承本体203为环状结构,第二推力轴承本体204为环状结构。
可选的,第一推力轴承本体203的外径等于第二推力轴承本体204的外径。
在本实施例中,推力轴承200还包括:至少一个第一连接件205。
至少一个第一连接件205设置在第一推力轴承本体203远离第二推力轴承本体204的一侧。具体地,第一连接件205使得第一推力轴承本体203与第一机匣400a柔性连接。
可选的,第一连接件205为弹性部件。其中,第一连接件205包括但不限于弹簧。
可选的,第一连接件205沿圆周方向分布。
可选的,第一连接件205沿圆周方向均匀分布。
可选的,第一连接件205的数量为8个。
图4是本发明实施例一提供的第一推力轴承本体的零件图。
图5是图4提供的第一推力轴承本体沿A-A的剖面图。
请参照图4和图5,第一推力轴承本体203的中部设置有与第一容纳槽R1的槽底形状相匹配的第三安装孔2031。具体地,第一容纳槽R1的槽底是指第一推力盘201的第二盘体2012的侧壁和第二推力盘202的第四盘体2022的侧壁,因此,第三安装孔2031的尺寸应该与第二盘体2012的外径和第四盘体2022的外径相匹配。
可选的,第一推力轴承本体203远离第二推力轴承本体204的一侧设置有至少一个第一凹槽2032;第一凹槽2032的数量与第一连接件205的数量相匹配;每个第一凹槽2032内设置一个第一连接件205。
可选的,第一机匣400a靠近第一推轴承本体的一侧设置有至少一个第三凹槽,第三凹槽与第一凹槽2032相对设置围成第一容纳腔,第一连接件205位于第一容纳腔内。
可选的,第三凹槽的形状和数量与第一凹槽2032的形状和数量相匹配。
可选的,第一推力轴承本体203上设置有贯通的第一气孔2033;第一气孔2033与推力轴承气腔S连通。具体地,第一推力轴承本体203上设置有沿轴向延伸并贯穿第一推力轴承本体203的第一气孔2033。
可选的,第一气孔2033沿圆周方向分布。
可选的,第一气孔2033沿圆周方向均匀分布。
可选的,第一气孔2033的数量为8个。
可选的,第一气孔2033的两端分别设置有倒角。
图6是本发明实施例一提供的第二推力轴承本体的零件图。
图7是图6提供的第二推力轴承本体沿B-B的剖面图。
请参照图6和图7,第二推力轴承本体204的中部设置有与第一容纳槽R1的槽底形状相匹配的第四安装孔2041。
可选的,第二推力轴承本体204靠近第一推力轴承本体203的一侧向内凹陷形成一推力轴承气腔槽2043;推力轴承气腔槽2043与第一推力轴承本体203的端面形成推力轴承气腔S;第二推力轴承本体204上设置有将推力轴承气腔S与外部气源连通的推力轴承气腔进气通道P1。
第二机匣500a内形成有与推力轴承气腔进气通道P1连通的机匣进气通道P2。具体地,推力轴承气腔S通过推力轴承气腔进气通道P1和机匣进气通道P2与外部气源连通。
可选的,推力轴承气腔槽2043的底部设置有贯穿第二推力轴承本体204的第二气孔2044。具体地,第二推力轴承本体204上设置有沿轴向延伸并贯穿第二推力轴承本体204的第二气孔2044。
可选的,第二气孔2044沿圆周方向分布。
可选的,第二气孔2044沿圆周方向均匀分布。
可选的,第二气孔2044的数量为8个。
可选的,第二气孔2044的两端分别设置有倒角。
可选的,推力轴承气腔槽2043的侧壁上设置有贯穿第二推力轴承本体204的第三气孔2045。具体地,推力轴承气腔槽2043的侧壁上设置有沿径向向中心延伸并贯穿第二推力轴承本体204的第三气孔2045。
可选的,推力轴承气腔S为环形;推力轴承气腔S沿径向的两侧设置有第一密封件208和第二密封件209;或者推力轴承气腔S沿径向的两侧,第一推力轴承本体203和第二推力轴承本体204之间通过设置相互配合的凹槽和突起结构形成密封。
可选的,推力轴承气腔槽2043沿径向的两侧分别设置有环形的第一密封槽2047和第二密封槽2048。第一密封件208和第二密封件209分别位于第一密封槽2047和第二密封槽2048内。具体地,第一密封件208和第二密封件209的尺寸可根据实际需要适当调整,第一密封槽2047和第二密封槽2048的尺寸分别与第一密封件208和第二密封件209的尺寸相匹配即可。
可选的,第一推力轴承本体203靠近第一推力盘201的一侧设置有螺旋槽,或者第二推力轴承本体204靠近第二推力盘202的一侧设置有螺旋槽。
可选的,第一推力轴承本体203靠近第一推力盘201的一侧设置有螺旋槽,且第二推力轴承本体204靠近第二推力盘202的一侧设置有螺旋槽。
可选的,第一推力盘201上与第一推力轴承本体203相对应的位置设置有螺旋槽,或者第二推力盘202上与第二推力轴承本体204相对应的位置设置有螺旋槽。
可选的,第一推力盘201上与第一推力轴承本体203相对应的位置设置有螺旋槽,且第二推力盘202上与第二推力轴承本体204相对应的位置设置有螺旋槽。
可选的,推力轴承200还包括:定位件206。
定位件206依次穿过第一连接件205、第一推力轴承本体203和第二推力轴承本体204;定位件206分别与第一推力轴承本体203和第二推力轴承本体204间隙配合。
可选的,定位件206的一端依次穿过第一连接件205、第一推力轴承本体203和第二推力轴承本体204,分别与第一推力轴承本体203和第二推力轴承本体204间隙配合;定位件206的另一端与第一机匣400a螺纹连接。
可选的,定位件206包括相互连接的连接部和定位部,连接部直径大于定位部的直径,连接部的侧壁上设置有外螺纹,定位部为表面光滑的柱状结构。
可选的,第一推力轴承本体203上设置有第一定位孔2034,第一定位孔2034与第一凹槽2032连通,且第一定位孔2034的直径大于定位部的直径,使得定位件206与第一推力轴承本体203间隙配合。
可选的,第二推力轴承本体204上设置有第二定位孔2046,第二定位孔2046的直径大于定位部的直径,使得定位件206与第一推力轴承本体203间隙配合。
可选的,第一定位孔2034的直径等于第二定位孔2046的直径。
图8是本发明实施例一提供的推力轴承的间隙示意图。
请参照图8,在本实施例中,第一推力轴承本体203与第一推力盘201之间沿径向形成第一径向间隙,第一径向间隙的宽度为a;第二推力轴承本体204与第二推力盘202之间沿径向形成第二径向间隙,第二径向间隙的宽度为b;第一推力轴承本体203与定位件206之间沿径向形成第三径向间隙,第三径向间隙的宽度为i;第二推力轴承本体204与定位件206之间沿径向形成第四径向间隙,第四径向间隙的宽度等于d;第一推力轴承本体203和/或第二推力轴承本体204与第二机匣500a之间沿径向形成第五径向间隙,第五径向间隙的宽度为g;其中,b<c<g<a,c=d。
第一推力轴承本体203与第一推力盘201之间沿轴向形成第一轴向间隙,第一轴向间隙的宽度为e;第二推力轴承本体204与第二推力盘202之间沿轴向形成第二轴向间隙,第二轴向间隙的宽度为f。
在本实施例中,推力轴承200的最大许用间隙为δ,则a>δ,b<δ、e<δ、f<δ。
可选的,第一轴向间隙通过第一气孔2033与推力轴承气腔S连通,第二轴向间隙通过第二气孔2044与推力轴承气腔S连通,第二径向间隙通过第三气孔2045与推力轴承气腔S连通。
在本实施例中,第一推力轴承本体203与第一机匣400a之间沿轴向形成第三轴向间隙,第三轴向间隙的宽度为h;第二推力轴承本体204与第二机匣500a之间沿轴向形成第四轴向间隙,第四轴向间隙的宽度为i;其中,h<e,i<f。通过设置h<e,i<f的间隙关系,使得在第一连接件205失效时,第一推力轴承本体203与第一机匣400a接触或者第二推力轴承本体204与第二机匣500a接触,此时,推力轴承200依旧可以正常工作,重新调整压力,达到受力平衡,即保护了推力轴承200。
在本实施例中,压气机400的表面与第三机匣400b的表面之间形成第一表面间隙,第一表面间隙的宽度为j;涡轮500表面与第四机匣500b的表面之间形成第二表面间隙,第二表面间隙的宽度为k;其中,h+f<j,i+e<k。通过设置h+f<j的间隙关系,避免了压气机400与第三机匣400b碰撞,通过设置i+e<k的间隙关系,避免了涡轮500与第四机匣500b碰撞。
图9是本发明实施例一提供的推力轴承的受力状态示意图。
请参照图9,图中显示了推力轴承200的受力状态,如图所示,推力轴承气腔S工作时产生的膨胀力为F1,第一推力轴承本体203的气膜轴向力为F2;第二推力轴承本体204 的气膜轴向力为F3;第二推力轴承本体204的气膜径向力为F4,第一连接件205的预紧力为F5,其中,F1>F5。具体地,推力轴承200工作时,推力轴承气腔S产生的膨胀力F1大于第一连接件205产生的预紧力F5,第一推力轴承本体203与第二推力轴承本体204分开,且第一推力轴承本体203朝第一推力盘201移动,第二推力轴承本体204朝第二推力盘202移动,使得第一推力轴承本体203与第一推力盘201之间形成的第一轴向间隙的宽度e变小,则第一推力轴承本体203的气膜轴向力为F2变大,第二推力轴承本体204与第二推力盘202之间形成的第二轴向间隙的宽度f变小,则第二推力轴承本体204的气膜轴向力为F3变大,从而提高了该推力轴承200的承载能力。同时,通过控制第一轴向间隙的宽度e和第二轴向间隙的宽度f的变化,实现了推力轴承主动调节的作用,在转轴100发生热膨胀时,第一推力盘201和第二推力盘202随着转轴100移动,消除和缓解了转轴100的轴向变形和移动。
在推力轴承200工作过程中,第一连接件205产生的最大弹力为F5’,其中,F5’+F2>F1。具体地,第一连接件205的最大弹力F5’加上第一推力轴承本体203的气膜轴向力F2大于F1,可保证第一推力轴承本体203不会碰到第一机匣400a,使得第一推力轴承本体203可在第一轴向间隙内浮动。
图10是本发明实施例一提供的与推力轴承配合的受力面示意图。
请参照图10,图中显示了与推力轴承200配合的各部件的受力面,分别是:第一机匣400a靠近第一推力轴承本体203的端面A、第二机匣500a靠近第二推力轴承本体204的端面B、第一推力盘201靠近第一推力轴承本体203的端面C、第二推力盘202靠近第二推力轴承本体204的端面D以及第二推力盘202靠近第二推力轴承本体204的侧壁E。
由于推力轴承200对受力面的平行度要求比较高,因此,为保证端面A和端面B的的平行度,以及两者对转轴100轴线的垂直度,需要在各自零件加工中留余量,组合装配后再进行最终加工;为保证端面C和端面D的平行度,以及两者对转轴100轴线的垂直度,同时为保证侧壁E对转轴100轴向的同轴度,需要在各自零件加工中留余量,与转轴100模拟装配后再进行最终加工。
请参照图1-图3,该燃气轮机发电机组还包括:第三机匣400b、第四机匣500b。
第三机匣400b位于第一壳体701与第二壳体702的连接处,且位于压气机400靠近发电机300的一侧,与第一机匣400a相对设置,第一机匣400a与第三机匣400b之间形成有与压气机400的出气口连通的压气机出气通道P4。
第四机匣500b位于涡轮500远离压气机400的一侧,与第二机匣500a相对设置,第二机匣500a与第四机匣500b之间形成有与涡轮500的进气口连通的涡轮进气通道P5,第二机匣500a、第四机匣500b用于与燃烧室机壳600a共同围成该燃气轮机发电机组的燃烧室600。
可选的,燃烧室600为环形。
在该燃气轮机发电机组中,压气机400与第一推力盘201抵接,且位于第一机匣400a与第三机匣400b之间;涡轮500与第二推力盘202抵接,且位于第二机匣500a与第四机匣500b之间。
该燃气轮机发电机组的气体通道的连接关系为:压气机进气通道P3与压气机400的进气口连通,压气机400的出气口通过压气机出气通道P4与燃烧室600连通,燃烧室600的出气口通过涡轮进气通道P5与涡轮500的进气口连通,涡轮500的出气口与涡轮排气通道P6连通。
该燃气轮机发电机组的气流方向为:气体依次经过压气机进气通道P3、压气机400、压气机出气通道P4进入燃烧室600,在燃烧室600中进行燃烧后再经过涡轮进气通道P5进入涡轮500并推动涡轮500做功,做功之后的气体经过涡轮排气通道P6排出。
本发明实施例一提供的燃气轮机发电机组,通过将转子系统中的转轴100设置为一体结构,解决了现有燃气轮机发电机组由于采用联轴器连接,存在同轴度偏差导致转子系统稳定性差,推力轴承的设置位置受到限制的技术问题;通过将转子系统中的推力轴承200安装在压气机400与涡轮500之间,解决了当推力轴承200安装在压气机400远离涡轮500的一侧或者安装在涡轮500远离压气机400的一侧时,由于转轴100在工作过程中受热膨胀变形导致推力轴承200间隙变化,影响推力轴承200的承载能力的问题,而且将推力轴承200设置在压气机400和涡轮500之间,利用推力轴承200产生的气膜力抵消转轴100在旋转过程中产生的轴向力,限制了转轴100在轴向方向上的移动,进而限定了压气机400与涡轮500的轴向间距,同时限定了压气机400与第一机匣400a之间的间隙,以及涡轮500与第二机匣500a之间的间隙,提高了压气机400与涡轮500轴向定位的稳定性,因此整体提高了转子系统的稳定性;同时通过改进转轴100的形状调整整个转子系统的重心,有利于整个转子系统在高速旋转时保持结构稳定,提高了转子系统的稳定性;通过改进推力轴承200结构,改善了推力轴承200的性能,尤其在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了推力轴承200的承载能力。通过推力轴承200产生的气膜力抵消转轴100在旋转过程中产生的轴向力,限制了转轴100在轴向方向上的移动,提高了整个转子系统的安全性和可靠性,从而提高了使用该转子系统的燃气轮机发电机组的安全性和可靠性。
实施例二
图11是本发明实施例二提供的燃气轮机发电机组的剖面示意图。
图12是本发明实施例二提供的转子系统的剖面示意图。
图13是本发明实施例二提供的推力轴承的剖面图。
请参照图11-图13,本发明实施例二提供的燃气轮机发电机组与实施例一的不同之处在于,转子系统中的推力轴承200的结构不同,在本实施例中,推力轴承200去掉了实施例一中的定位件206,增加了第二连接件207。
在本实施例中,推力轴承200还包括:至少一个第二连接件207。
至少一个第二连接件207设置在第二推力轴承本体204远离第一推力轴承本体203的一侧。具体地,第二连接件207使得第二推力轴承本体204与第二机匣500a柔性连接。
可选的,第一连接件205为弹性部件。其中,第二连接件207包括但不限于弹簧。
可选的,第二连接件207沿圆周方向分布。
可选的,第二连接件207沿圆周方向均匀分布。
可选的,第二连接件207的数量与第一连接件205的数量相匹配。
图14是本发明实施例二提供的第一推力轴承本体的零件图。
图15是图14提供的第一推力轴承本体沿C-C的剖面图。
请参照图14和图15,在本实施例中,第一推力轴承本体203的结构与实施例一中的第一推力轴承本体203的结构不同,由于去掉了定位件206,本实施例中的第一推力轴承本体203只设置第一凹槽2032,并未设置与第一凹槽2032连通的第一定位孔2034。
本实施例中的第一推力轴承本体203的其他部分的结构、位置和连接关系与实施例一相同,在此不再赘述。
图16是本发明实施例二提供的第二推力轴承本体的零件图。
图17是图16提供的第二推力轴承本体沿D-D的剖面图。
请参照图16和图17,在本实施例中,第二推力轴承本体204的结构与实施例一中的第二推力轴承本体204的结构不同,具体如下:
第二推力轴承本体204远离第一推力轴承本体203的一侧设置有至少一个第二凹槽2042;第二凹槽2042的数量与第二连接件207的数量相匹配;每个第二凹槽2042内设置一个第二连接件207。
在本实施例中,第二推力轴承本体204的其他部分的结构、位置和连接关系与实施例一相同,在此不再赘述。
图18是本发明实施例二提供的推力轴承的间隙示意图。
请参照图18,在本实施例中,由于去掉了定位件206,因此第一推力轴承本体203与定位件206之间沿径向形成的第三径向间隙,以及第二推力轴承本体204与定位件206之间形成的第四径向间隙也就不存在了。
此时,第一推力轴承本体203与第一推力盘201之间沿径向形成第一径向间隙,第一径向间隙的宽度为a;第一推力轴承本体203和/或第二推力轴承本体204与第二机匣500a之间沿径向形成第五径向间隙,第五径向间隙的宽度为g;其中,b<g<a。
图19是本发明实施例二提供的推力轴承的受力状态示意图。
请参照图19,图中显示了推力轴承200的受力状态,如图所示,推力轴承气腔S工作时产生的膨胀力为F1;第一推力轴承本体203的气膜轴向力为F2;第二推力轴承本体204的气膜轴向力为F3;第二推力轴承本体204的气膜径向力为F4,第一连接件205的预紧力为F5,第二连接件207的预紧力为F6;其中,F1>F5和/或F1>F6。具体地,推力轴承200工作时,推力轴承气腔S产生的膨胀力F1大于第一连接件205产生的预紧力F5,和/或推力轴承气腔S产生的膨胀力F1大于第二连接件207产生的预紧力F6,第一推力轴承本体203与第二推力轴承本体204分开,且第一推力轴承本体203朝第一推力盘201移动和/或第二推力轴承本体204朝第二推力盘202移动,使得第一推力轴承本体203与第一推力盘201之间形成的第一轴向间隙的宽度e变小,则第一推力轴承本体203的气膜轴向力为F2变大,第二推力轴承本体204与第二推力盘202之间形成的第二轴向间隙f变小,则第二推力轴承本体204的气膜轴向力为F3变大,从而提高了该推力轴承200的承载能力。同时,通过控制第一轴向间隙的宽度e和第二轴向间隙的宽度f的变化,实现了推力轴承主动调节的作用,在转轴100发生热膨胀时,第一推力盘201和/或第二推力盘202随着转轴100移动,消除和缓解了转轴100的轴向变形和移动。
在推力轴承200工作过程中,第二连接件207产生的最大弹力为F6’,其中,F6’+F3>F1。具体地,第二连接件207的最大弹力F6’加上第二推力轴承本体204的气膜轴向力F3大于F1,可保证第二推力轴承本体204不会碰到第二机匣500a,使得第二推力轴承本体204可在第二轴向间隙内浮动。
图20是本发明实施例二提供的与推力轴承配合的受力面示意图。
请参照图20,图中显示了与推力轴承200配合的各受力面,在本实施例中,与推力轴承200配合的各受力面与实施例一相同,在此不再赘述。
本实施例中的推力轴承200的其他部分的结构、位置和连接关系与实施例一相同,在此不再赘述。
实施例三
本发明实施例三提供的燃气轮机发电机组与实施例一和实施例二的不同之处在于,本实施例是对转子系统中的发电机300的结构进行改进,本实施可单独实施,也可以与实施例一或实施例二结合实施。
图21是本发明实施例三提供的发电机的剖面示意图。
请参照图21,在本实施例中,发电机300包括发电机本体和设置于发电机本体两端的径向轴承,径向轴承嵌入至发电机本体和转轴100之间,且与转轴100之间沿径向形成径向间隙。
发电机本体包括电机定子301和电机机壳304。
其中,转轴100形成发电机300的电机转子。
电机定子301套设在转轴100上,并位于电机机壳304内,其包括:电机定子铁芯3011、电机绕组3012和绕组封装3013。
其中,电机定子铁芯3011套设在转轴100上;电机绕组3012绕制在电机定子铁芯3011上;绕组封装3013包覆在电机绕组3012上。径向轴承套设在转轴100上,位于绕组封装3013与转轴100之间。
具体地,电机定子铁芯3011套设在转轴100的第一轴段101上,径向轴承套设在转轴100的第一轴段101上,位于绕组封装3013与第一轴段101之间,且与第一轴段101之间沿径向形成径向间隙。
通过将径向轴承套设在转轴100上,位于绕组封装3013与转轴100之间,并与转轴100之间沿径向形成径向间隙,从而形成径向空气轴承。该径向轴承可以是动压空气轴承、静压空气轴承或者动静压混合空气轴承中的任意一种,当其为动压空气轴承时,在空气轴承的内壁或者转轴100对应安装空气轴承的位置设置有动压发生槽;当其为静压空气轴承时,径向轴承的外壁上形成有径向轴承气腔槽,用于形成径向轴承气腔,径向轴承气腔与外部气源连通,且与径向间隙连通;当其为动静压混合空气轴承时,该空气轴承则具有上述的两种结构特征。
可选的,绕组封装3013为非金属材料。
可选的,非金属材料包括但不限于团状模塑料(BMC)、树脂和橡胶。
可选的,绕组封装3013通过对电机绕组3012进行注塑或灌封得到。但本发明不以此为限制,绕组封装3013也可以通过其他方式得到。
本实施例提供的发电机300,通过在电机绕组3012上包覆绕组封装3013,并将径向轴承安装在绕组封装3013与转轴100之间,且绕组封装3013同时充当了径向轴承的安装座,充分利用了绕组封装3013内的空间,有效减小了发电机300的轴向尺寸,解决了现有技术中由于空气轴承安装在电机绕组3012外侧,且其需要单独的轴承座支撑和固定,导致高速电机的轴向尺寸大、体积增加,不利于电机功率密度的提高的技术问题。本实施例提供的发电机300,通过有效减小发电机300的轴向尺寸,大大缩小了发电机300的体积,提高了发电机300的功率密度,同时大大缩短了转轴100的长度,从而缩小了转子系统以及使用该转子系统的燃气轮机发电机组的体积。
在本实施例中,径向轴承包括第一径向轴承302和第二径向轴承303。
绕组封装3013内部形成有转轴安装孔,用于套设在转轴100上;转轴安装孔沿轴向的两端分别形成有第一径向轴承座孔和第二径向轴承座孔;第一径向轴承302和第二径向轴承303分别位于第一径向轴承座孔和第二径向轴承座孔内。
具体到转子系统中,第一径向轴承302位于发电机300远离压气机400的一端;第二 径向轴承303位于发电机300靠近压气机400的一端,且靠近转轴100的第一轴段101与第二轴段102连接处的过渡面,通过将转轴100设置为直径不同的第一轴段101和第二轴段102,使得该转子系统的重心位于第二径向轴承303上,即使得该转子系统位于第二径向轴承303两侧的重量相等,有利于整个转子系统在高速旋转时保持结构稳定。
通过在绕组封装3013内形成第一径向轴承座孔和第二径向轴承座孔,并将第一径向轴承302和第二径向轴承303分别安装在第一径向轴承座孔和第二径向轴承座孔内,大大减小了发电机300的轴向尺寸,有利于电机功率密度的提高。
其中,转轴安装孔的位置与电机定子铁芯3011的位置相对应,第一径向轴承座孔和第二径向轴承座孔的位置分别与第一径向轴承302和第二径向轴承303的位置相对应。
在本实施例中,径向间隙包括第一径向轴承302与转轴100之间形成的第六径向间隙和第二径向轴承303与转轴100之间形成的第七径向间隙。
下面介绍第一径向轴承302和第二径向轴承303为静压空气轴承或者动静压混合空气轴承时的具体结构:
第一径向轴承302的外壁上形成有第一径向轴承气腔槽,第一径向轴承气腔槽与第一径向轴承座孔的孔壁围成第一径向轴承气腔T1;第一径向轴承气腔T1与第六径向间隙连通,且与外部气源连通。
可选的,第一径向轴承气腔槽的槽底沿径向设置有贯通的气孔,使得第一径向轴承气腔T1与第六径向间隙连通。
可选的,第一径向轴承气腔T1沿轴向的两侧分别设置有第三密封件307,用于对第一径向轴承气腔T1内的气体密封,同时能够在转轴100工作过程中起到减振作用。
可选的,第一径向轴承气腔槽沿轴向的两侧分别设置有第三密封件,该第三密封件用于容纳第三密封件307。具体地,密封槽设置在第一径向轴承的外壁上,且位于第一径向轴承气腔槽的两侧。
第二径向轴承303的外壁上形成有第二径向轴承气腔槽,第二径向轴承气腔槽与第二径向轴承座孔的孔壁围成第二径向轴承气腔T2;第二径向轴承气腔T2与第七径向间隙连通,且与外部气源连通。
可选的,第二径向轴承气腔槽的槽底沿径向设置有贯通的气孔,使得第二径向轴承气腔T2与第七径向间隙连通。
可选的,第二径向轴承气腔T2沿轴向的两侧分别设置有第三密封件307,用于对第二径向轴承气腔T2内的气体密封,同时能够在转轴100工作过程中起到减振作用。
可选的,第二径向轴承气腔槽沿轴向的两侧分别设置有第三密封槽,该第三密封槽用于容纳第三密封件307。具体地,密封槽设置在第二径向轴承的外壁上,且位于第二径向轴承气腔槽的两侧。
可选的,第三密封件307为环形,第三密封槽的形状与第三密封件307的形状相匹配。但本发明不以此为限制,第三密封件307和第三密封槽的具体形状和尺寸可根据实际需要适当调整。
可选的,第二径向轴承303的外壁上还形成有环形凹槽,该环形凹槽设置在第二径向轴承气腔槽远离第一径向轴承气腔槽的一侧,通过设置环形凹槽,减小了第二径向轴承303的表面积,降低了第二径向轴承303的加工难度,同时减小了第二径向轴承303与第二径向轴承座孔的接触面积,使得第二径向轴承303更容易安装到第二径向轴承座孔内。
其中,环形凹槽远离第二径向轴承气腔槽的一侧也设置有第三密封件307,用于在转 轴100工作过程中起到减振作用。
可选的,电机定子301的对应安装第一径向轴承302的一端设置有第一径向轴承气腔进气通道P7,第一径向轴承气腔T1通过第一径向轴承气腔进气通道P7与外部气源连通。
可选的,电机定子301的对应安装第二径向轴承303的一端设置有第二径向轴承气腔进气通道P8,第二径向轴承气腔T2通过第二径向轴承气腔进气通道P8与外部气源连通。
可选的,第一径向轴承气腔进气通道P7位于绕组封装3013内的部分为预埋的气管,具体地,第一径向轴承气腔进气通道P7位于绕组封装3013内的部分可以为在注塑或者灌注之前预先埋设的气管,也可以为注塑或者灌注之后加工的气孔,在此不做限制。
可选的,第二径向轴承气腔进气通道P8位于绕组封装3013内的部分为预埋的气管,具体地,第二径向轴承气腔进气通道P8位于绕组封装3013内的部分可以为在注塑或者灌注之前预先埋设的气管,也可以为注塑或者灌注之后加工的气孔,在此不做限制。
可选的,电机定子301上预设有至少一个通气孔,通气孔将位于径向轴承靠近电机定子铁芯3011一侧的电机定子301与转轴100之间的间隙与外界连通。这样在转轴100运转发热时,可以将电机定子301与转轴100之间的间隙的膨胀气体排到外界,并与外界进行换气,防止电机定子301内部憋气,影响电机的使用寿命。
在本实施例中,电机机壳304包括:电机机壳本体3041和电机端盖3042。
电机机壳本体3041,罩设在电机定子301和第二径向轴承303的外部,其远离第二径向轴承303的一端形成开口,电机端盖3042套设在第一径向轴承302的外部,且盖扣在电机机壳本体3041的开口上。
电机机壳本体3041上与第一径向轴承气腔进气通道P7和第二径向轴承气腔进气通道P8相对应的位置分别设置有第一进气孔30411和第二进气孔30412。
第一径向轴承气腔进气通道P7通过第一进气孔30411与外部气源连通;第二径向轴承气腔进气通道P8通过第二进气孔30412与外部气源连通。
在本实施例中,绕组封装3013内的第一径向轴承座孔和第二径向轴承座孔通过对绕组封装3013直接加工形成,电机端盖3042上与第一径向轴承座孔相对应的位置设置有与第一径向轴承座孔直径相匹配的孔,电机机壳本体3041上与第二径向轴承座孔相对应的位置设置有与第二径向轴承座孔直径相匹配的孔,绕组封装3013和电机端盖3042作为第一径向轴承302的轴承座,绕组封装3013和电机机壳本体3041作为第二径向轴承303的轴承座,在第一径向轴承302和第二径向轴承303为静压空气轴承时,绕组封装3013和电机端盖3042以及电机机壳本体3041形成静压空气轴承的静子。在这种情况下,第一径向轴承气腔进气通道P7和第二径向轴承气腔进气通道P8具体有以下几种设置方式:
可选的,第一径向轴承气腔进气通道P7沿径向贯穿绕组封装3013和电机机壳本体3041,将第一径向轴承气腔T1与所述外部气源连通。此时,第一径向轴承气腔进气通道P7只设置在绕组封装3013内,与电机绕组3012并不相交,可以是气孔或预埋在绕组封装3013内的气管。
可选的,第一径向轴承气腔进气通道P7沿径向贯穿绕组封装3013、电机绕组3012和电机机壳本体3041,将第二径向轴承气腔T2与外部气源连通。此时,第一径向轴承气腔进气通道P7设置在绕组封装3013和电机绕组3012内,可以是预埋在电机绕组3012和绕组封装3013内的气管。
可选的,第二径向轴承气腔进气通道P8沿径向贯穿绕组封装3013和电机机壳本体3041,将第二径向轴承气腔T2与外部气源连通。此时,第二径向轴承气腔进气通道P8 只设置在绕组封装3013内,与电机绕组3012并不相交,可以是气孔或预埋在绕组封装3013内的气管。
可选的,第二径向轴承气腔进气通道P8沿径向贯穿绕组封装3013、电机绕组3012和电机机壳本体3041,将第二径向轴承气腔T2与外部气源连通。此时,第二径向轴承气腔进气通道P8设置在绕组封装3013和电机绕组3012内,可以是预埋在电机绕组3012和绕组封装3013内的气管。
可选的,第二径向轴承气腔进气通道P8在轴向上靠近电机定子铁芯3011设置,使得第七径向间隙远离第六径向间隙的一端所产生的支撑力最大。
通过第二径向轴承气腔进气通道P8或者第一径向轴承气腔进气通道P7的位置的调整可以调整第一径向轴承的跨距,如果径向轴承某一侧有较重的悬臂结构,通过将第二径向轴承气腔进气通道P8或者第一径向轴承气腔进气通道P8向中间移动,可以增大径向轴承跨距,减小悬臂端的长度。
下面介绍第一径向轴承302和第二径向轴承303为动压空气轴承或者动静压混合空气轴承时的具体结构:
可选的,第一径向轴承302的内壁上设置有动压发生槽;和/或第二径向轴承303的内壁上设置有动压发生槽。
可选的,转轴100的外壁上与第一径向轴承302相对应的位置设置有动压发生槽;和/或转轴100的外壁上与第二径向轴承303相对应的位置设置有动压发生槽,从而形成动压空气轴承。
当转轴100旋转时,存在于径向间隙的流动气体被压入动压发生槽内,从而产生压力,使转轴100上浮,以转轴100沿径向方向被非接触地保持。其中,动压发生槽产生压力的大小随动压发生槽的角度、槽宽、槽长、槽深、槽数以及平面度的不同而变化。此外,动压发生槽产生压力的大小也和转轴100的旋转速度以及径向间隙有关。可以根据实际工况对动压发生槽的参数进行设计。动压发生槽可以通过锻造、滚轧、刻蚀或冲压等方式形成。
可选的,动压发生槽为人字形槽。通过将动压发生槽设置为人字形,能够更好地引导第六径向间隙和第七径向间隙内的气体泵入和甩出。
本发明的动压发生槽的设置位置和形式包括但不限于以上方式,具体的动压发生槽的设置位置和形式可根据实际需要适当调整。
本实施例燃气轮机发电机组的转子系统中采用的发电机300,通过在电机绕组3012上包覆绕组封装3013,并将径向轴承安装在绕组封装3013与转轴100之间,且绕组封装3013同时充当了径向轴承的安装座,充分利用了绕组封装3013内的空间,有效减小了发电机300的轴向尺寸,解决了现有技术中由于空气轴承安装在电机绕组3012外侧,且其需要单独的轴承座支撑和固定,导致高速电机的轴向尺寸大、体积增加,不利于电机功率密度的提高的技术问题。本实施例提供的发电机300,通过有效减小发电机300的轴向尺寸,大大缩小了发电机300的体积,提高了发电机300的功率密度,同时大大缩短了转轴100的长度,缩小了转子系统的体积,从而缩小了使用该转子系统的燃气轮机发电机组的体积。
下面结合附图介绍本实施例的燃气轮机发电机组的转子系统中发电机300的装配方法。
图22是本发明实施例三的一个实施方式提供的发电机的装配方法流程图。
请参照图22,本发明实施例三的一个实施方式中,发电机300的装配方法包括以下 步骤:
S1,将电机绕组3012绕制在电机定子铁芯3011上;
S2,将电机定子铁芯3011安装到电机机壳本体3041内;
S3,对电机绕组3012进行注塑或灌封,形成绕组封装3013,绕组封装3013内形成有转轴安装孔;
S4,在转轴安装孔沿轴向的两端分别加工第一径向轴承座孔和第二径向轴承座孔;
S5,将转轴100插入转轴安装孔内;
S6,将第一径向轴承302和第二径向轴承303分别套设到转轴100上,并安装到第一径向轴承座孔和第二径向轴承座孔内。
或者,S5,将第一径向轴承302和第二径向轴承303分别套设到转轴100上,并安装到第一径向轴承座孔和第二径向轴承座孔内;
S6,将转轴100插入电机转子安装孔内。
即:转轴100和第一径向轴承302和第二径向轴承303的装配步骤不分前后,只要便于安装就行。
具体地,步骤S3对电机绕组3012进行注塑或灌封后得到的绕组封装3013可以是具有转轴安装孔的结构,通过步骤S4对转轴安装孔的两端进行精加工,可得到第一径向轴承座孔和第二径向轴承座孔。
图23是本发明实施例三的另一个实施方式提供的发电机的装配方法流程图。
请参照图23,在本发明实施例三的另一个实施方式中,在步骤S2和S3之间,还包括步骤:
S21,将形成第一径向轴承气腔进气通道P7的气管插入电机机壳本体3041内;或者将形成第一径向轴承气腔进气通道P7的气管插入电机机壳本体3041并贯穿电机绕组3012;
S22,将形成第二径向轴承气腔进气通道P8的气管插入电机机壳本体3041内;或者将形成第二径向轴承气腔进气通道P8的气管插入电机机壳本体3041并贯穿电机绕组3012。
在上述实施例中,该电机装配方法,还包括:
S7,将电机端盖3042盖扣到电机机壳本体3041的开口上。
本发明实施例三提供的电机装配方法适用于实施例一中的电机的装配。
本实施例的转子系统提供的发电机300的装配方法,装配简单,通过该装配方法得到的发电机300和转子系统,其轴向尺寸大大减小,在提高发电机的功率密度的同时大大缩短了转轴100的长度,缩小了转子系统以及使用该转子系统的燃气轮机发电机组的体积。
实施例四
本实施例是在实施例三的基础上进行的进一步改进,本实施例与实施例三的不同之处在于,本实施例中的第一径向轴承座孔和第二径向轴承座孔与实施例一中的结构不同。
图24是本发明实施例四提供的发电机的剖面示意图。
请参照图24,在本实施例中,该发电机300还包括:第一保护套305和第二保护套306。
第一保护套305嵌设在绕组封装3013内,且套设在第一径向轴承302上,其中部形成为第一径向轴承座孔;第二保护套306嵌设在绕组封装3013内,且套设在第二径向轴承303上,其中部形成为第二径向轴承座孔。此时,第一保护套305作为第一径向轴承 302的轴承座,第二保护套306作为第二径向轴承303的轴承座,在第一径向轴承302和第二径向轴承303为空气轴承时,第一保护套305和第二保护套306分别形成空气轴承的静子。
可选的,第一保护套305与电机端盖3042一体成型;第二保护套306与电机机壳本体3041一体成型。但本发明不以此为限制,第一保护套305和第二保护套306也可以以其他方式设置,以形成第一径向轴承座孔和第二径向轴承座孔。
可选的,第一保护套305与电机端盖3042的材料相同,第二保护套306与电机机壳本体3041的材料相同。
可选的,第一保护套305和第二保护套306为金属材料。
通过在绕组封装3013内设置第一保护套305和第二保护套306形成第一径向轴承座孔和第二径向轴承座孔,提高了第一径向轴承座孔和第二径向轴承座孔的强度。
在本实施例中,绕组封装3013内的第一径向轴承座孔和第二径向轴承座孔利用在绕组封装3013内嵌入第一保护套305和第二保护套306形成,使得第一保护套305和第二保护套306分别作为第一径向轴承302和第二径向轴承303的轴承座,在第一径向轴承302和第二径向轴承303为空气轴承时,第一保护套305和第二保护套306分别形成空气轴承的静子。在该情况下,第一径向轴承气腔进气通道P7和第二径向轴承气腔进气通道P8具体有以下几种设置方式:
可选的,第一径向轴承气腔进气通道P7沿径向贯穿第一保护套305、绕组封装3013和电机机壳本体3041,将第一径向轴承气腔T1与外部气源连通。
可选的,第一径向轴承气腔进气通道P7沿径向贯穿第一保护套305、绕组封装3013、电机绕组3012和电机机壳本体3041,将第二径向轴承气腔T2与外部气源连通。
可选的,第二径向轴承气腔进气通道P8沿径向贯穿第二保护套306、绕组封装3013和电机机壳本体3041,将第二径向轴承气腔T2与外部气源连通。
可选的,第二径向轴承气腔进气通道P8沿径向贯穿第二保护套306、绕组封装3013、电机绕组3012和电机机壳本体3041,将第二径向轴承气腔T2与外部气源连通。
本实施例中的发电机300的其他部分的结构、位置和连接关系与实施例三相同,在此不再赘述。
下面结合附图介绍本实施例的转子系统中的发电机300的装配方法。
图25是本发明实施例四提供的发电机的装配方法流程图。
请参照图25,在本实施例中,转子系统中的发电机300的装配方法包括以下步骤:
S1,将电机绕组3012绕制在电机定子铁芯3011上;
S2,将电机定子铁芯3011安装到与第二保护套306一体成型的电机机壳本体3041内,第二保护套306内形成第二径向轴承座孔;
S3,对电机绕组3012进行注塑或灌封,形成绕组封装3013,绕组封装3013内形成有转轴安装孔;
S4,将与第一保护套305一体成型的电机端盖3042盖扣到电机机壳本体3041的开口上,第一保护套305内形成第一径向轴承座孔;
S5,将转轴100插入转轴安装孔内;
S6,将第一径向轴承302和第二径向轴承303分别套设到转轴100上,并安装到第一径向轴承座孔和第二径向轴承座孔内。
该实施方式中步骤S5和步骤S6也不分前后,只要便于安装即可。
本实施例中的发电机装配方法的其他步骤与实施例三相同,在此不再赘述。
应当理解,本发明的电机在应用于具体的转子系统或者设备时,可配合推力轴承使用,推力轴承用于承受整机受到的轴向力。
本发明中的发电机可以是启发一体式电机。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (17)

  1. 一种燃气轮机发电机组,其特征在于,包括:转子系统和燃烧室(600);
    所述转子系统包括:转轴(100)、推力轴承(200)、发电机(300)、压气机(400)和涡轮(500);
    所述转轴(100)为一体结构;
    所述发电机(300)、所述压气机(400)、所述推力轴承(200)和所述涡轮(500)依次套设在所述转轴(100)上;
    所述发电机(300)包括发电机本体和设置于所述发电机本体两端的径向轴承,所述径向轴承嵌入至所述发电机本体和所述转轴(100)之间,且与所述转轴(100)之间沿径向形成径向间隙;
    所述压气机(400)的进气口与外界大气连通,所述压气机(400)的出气口与所述燃烧室(600)的进气口连通,所述燃烧室(600)的出气口与所述涡轮(500)的进气口连通。
  2. 根据权利要求1所述的燃气轮机发电机组,其特征在于,
    所述转轴(100)包括依次连接的第一轴段(101)和第二轴段(102);
    所述第一轴段(101)的直径大于所述第二轴段(102)的直径,所述第一轴段(101)与所述第二轴段(102)的连接处形成有过渡面;
    所述发电机(300)套设在所述第一轴段(101)上;
    所述推力轴承(200)、所述压气机(400)和所述涡轮(500)套设在所述第二轴段(102)上,且所述压气机(400)与所述过渡面抵接。
  3. 根据权利要求1所述的燃气轮机发电机组,其特征在于,所述推力轴承(200)包括:第一推力盘(201)、第二推力盘(202)和推力轴承本体组件;
    所述第一推力盘(201)与所述第二推力盘(202)固定套设在所述转轴(100)上,两者相对设置且相互抵接,形成环形的第一容纳槽(R1);
    所述推力轴承本体组件设置在所述第一容纳槽(R1)内,且与所述第一容纳槽(R1)的侧壁之间具有轴向间隙;
    所述推力轴承本体组件内部设置有与轴向间隙连通的推力轴承气腔(S),所述推力轴承气腔(S)与外部气源连通。
  4. 根据权利要求3所述的燃气轮机发电机组,其特征在于,所述推力轴承本体组件与所述第一容纳槽(R1)的槽底之间具有与所述推力轴承气腔(S)连通的径向间隙。
  5. 根据权利要求3或4任一项所述的燃气轮机发电机组,其特征在于,所述推力轴承本体组件包括相互抵接设置的第一推力轴承本体(203)和第二推力轴承本体(204),所述第一推力轴承本体(203)与所述第二推力轴承本体(204)之间形成有 所述推力轴承气腔(S)。
  6. 根据权利要求5所述的燃气轮机发电机组,其特征在于,所述推力轴承(200)还包括:
    至少一个第一连接件(205),其设置在所述第一推力轴承本体(203)远离所述第二推力轴承本体(204)的一侧;和/或
    至少一个第二连接件(207),其设置在所述第二推力轴承本体(204)远离所述第一推力轴承本体(203)的一侧。
  7. 根据权利要求6所述的燃气轮机发电机组,其特征在于,
    所述推力轴承气腔(S)工作时产生的膨胀力为F1;
    所述第一连接件(205)的预紧力为F5,其中,F1>F5;和/或
    所述第二连接件(207)的预紧力为F6,其中,F1>F6。
  8. 根据权利要求6所述的燃气轮机发电机组,其特征在于,
    所述推力轴承气腔(S)工作时产生的膨胀力为F1;
    所述第一连接件(205)的最大弹力为F5’,所述第一推力轴承本体(203)的气膜轴向力为F2,其中,F5’+F2>F1;和/或
    所述第二连接件(207)的最大弹力为F6’,所述第二推力轴承本体(204)的气膜轴向力为F3,其中,F6’+F3>F1。
  9. 根据权利要求6所述的燃气轮机发电机组,其特征在于,所述推力轴承(200)还包括:
    定位件(206),其依次穿过所述第一连接件(205)、所述第一推力轴承本体(203)和所述第二推力轴承本体(204);
    所述定位件(206)分别与所述第一推力轴承本体(203)和所述第二推力轴承本体(204)间隙配合。
  10. 根据权利要求9所述的燃气轮机发电机组,其特征在于,还包括:第一机匣(400a)和第二机匣(500a);
    所述第一机匣(400a)套设在所述第一推力盘(201)外部且位于所述压气机(400)与所述第一推力轴承本体(203)之间;
    所述第二机匣(500a)套设在所述第二推力轴承本体(204)和所述第二推力盘(202)外部,且位于所述第一机匣(400a)与所述涡轮(500)之间;
    所述第一推力轴承本体(203)与所述第一推力盘(201)之间沿径向形成第一径向间隙,所述第一径向间隙的宽度为a;
    所述第二推力轴承本体(204)与所述第二推力盘(202)之间沿径向形成第二径向间隙,所述第二径向间隙的宽度为b;
    所述第一推力轴承本体(203)与所述定位件(206)之间沿径向形成第三径向间 隙,所述第三径向间隙的宽度为c;
    所述第二推力轴承本体(204)与所述定位件(206)之间沿径向形成第四径向间隙,所述第四径向间隙的宽度为d;
    所述第一推力轴承本体(203)和/或所述第二推力轴承本体(204)与所述第二机匣(500a)之间沿径向形成第五径向间隙,所述第五径向间隙的宽度为g;
    其中,b<c<g<a,c=d。
  11. 根据权利要求5所述的燃气轮机发电机组,其特征在于,还包括:第一机匣(400a)和第二机匣(500a);
    所述第一机匣(400a)套设在所述第一推力盘(201)外部且位于所述压气机(400)与所述第一推力轴承本体(203)之间;
    所述第二机匣(500a)套设在所述第二推力轴承本体(204)和所述第二推力盘(202)外部,且位于所述第一机匣(400a)与所述涡轮(500)之间;
    所述第一推力轴承本体(203)与所述第一推力盘(201)之间沿径向形成第一径向间隙,所述第一径向间隙的宽度为a;
    所述第二推力轴承本体(204)与所述第二推力盘(202)之间沿径向形成第二径向间隙,所述第二径向间隙的宽度为b;
    所述第一推力轴承本体(203)和/或所述第二推力轴承本体(204)与所述第二机匣(500a)之间沿径向形成第五径向间隙,所述第五径向间隙的宽度为g;
    其中,b<g<a。
  12. 根据权利要求5所述的燃气轮机发电机组,其特征在于,
    所述第一推力轴承本体(203)与所述第一推力盘(201)之间沿径向形成第一径向间隙,所述第一径向间隙的宽度为a;
    所述推力轴承(200)的最大许用间隙为δ;
    其中,a>δ。
  13. 根据权利要求5所述的燃气轮机发电机组,其特征在于,还包括:第一机匣(400a)和第二机匣(500a);
    所述第一机匣(400a)套设在所述第一推力盘(201)外部且位于所述压气机(400)与所述第一推力轴承本体(203)之间;
    所述第二机匣(500a)套设在所述第二推力轴承本体(204)和所述第二推力盘(202)外部,且位于所述第一机匣(400a)与所述涡轮(500)之间;
    所述第一推力轴承本体(203)与所述第一机匣(400a)之间沿轴向形成第三轴向间隙,所述第三轴向间隙的宽度为h;
    所述第二推力轴承本体(204)与所述第二机匣(500a)之间沿轴向形成第四轴向间隙,所述第四轴向间隙的宽度为i;
    所述第一推力轴承本体(203)与所述第一推力盘(201)之间沿轴向形成的所述 轴向间隙为第一轴向间隙,所述第一轴向间隙的宽度为e;
    所述第二推力轴承本体(204)与所述第二推力盘(202)之间沿轴向形成的所述轴向间隙为第二轴向间隙,所述第二轴向间隙的宽度为f;
    其中,h<e,i<f。
  14. 根据权利要求13所述的燃气轮机发电机组,其特征在于,还包括:第三机匣(400b)和第四机匣(500b);
    所述第三机匣(400b)位于所述压气机(400)靠近所述发电机(300)的一侧,与所述第一机匣(400a)相对设置;
    所述第四机匣(500b)位于所述涡轮(500)远离所述压气机(400)的一侧,与所述第二机匣(500a)相对设置;
    所述压气机(400)的表面与所述第三机匣(400b)的表面之间形成第一表面间隙,所述第一表面间隙的宽度为j;
    涡轮500的表面与第四机匣500b的表面之间形成第二表面间隙,第二表面间隙的宽度为k;
    其中,h+f<j,i+e<k。
  15. 根据权利要求3所述的燃气轮机发电机组,其特征在于,所述发电机本体包括:电机定子(301)和电机机壳(304);
    所述转轴(100)形成所述发电机(300)的电机转子;
    所述电机定子(301)套设在所述转轴(100)上,并位于所述电机机壳(304)内,其包括:电机定子铁芯(3011)、电机绕组(3012)和绕组封装(3013);
    所述电机定子铁芯(3011)套设在所述转轴(100)上;所述电机绕组(3012)绕制在所述电机定子铁芯(3011)上;所述绕组封装(3013)包覆在所述电机绕组(3012)上;
    所述径向轴承套设在所述转轴(100)上,位于所述绕组封装(3013)与所述转轴(100)之间。
  16. 根据权利要求15所述的燃气轮机发电机组,其特征在于,
    所述径向轴承包括第一径向轴承(302)和第二径向轴承(303);
    所述绕组封装(3013)内部形成有转轴安装孔,用于套设在所述转轴(100)上;所述转轴安装孔沿轴向的两端分别形成有第一径向轴承座孔和第二径向轴承座孔;
    所述第一径向轴承(302)和所述第二径向轴承(303)分别位于所述第一径向轴承座孔和所述第二径向轴承座孔内。
  17. 根据权利要求16所述的燃气轮机发电机组,其特征在于,
    所述径向间隙包括所述第一径向轴承(302)与所述转轴(100)之间形成的第六径向间隙和所述第二径向轴承(303)与所述转轴(100)之间形成的第七径向间隙;
    所述第一径向轴承(302)的外壁上形成有第一径向轴承气腔槽,所述第一径向轴 承气腔槽与所述第一径向轴承座孔的孔壁围成第一径向轴承气腔(T1);所述第一径向轴承气腔(T1)与所述第六径向间隙连通,且与所述外部气源连通;
    所述第二径向轴承(303)的外壁上形成有第二径向轴承气腔槽,所述第二径向轴承气腔槽与所述第二径向轴承座孔的孔壁围成第二径向轴承气腔(T2);所述第二径向轴承气腔(T2)与所述第七径向间隙连通,且与所述外部气源连通。
PCT/CN2019/107391 2018-10-21 2019-09-24 一种燃气轮机发电机组 WO2020082960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811225662.3 2018-10-21
CN201811225662.3A CN109252960A (zh) 2018-10-21 2018-10-21 一种燃气轮机发电机组

Publications (1)

Publication Number Publication Date
WO2020082960A1 true WO2020082960A1 (zh) 2020-04-30

Family

ID=65045594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107391 WO2020082960A1 (zh) 2018-10-21 2019-09-24 一种燃气轮机发电机组

Country Status (2)

Country Link
CN (1) CN109252960A (zh)
WO (1) WO2020082960A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252960A (zh) * 2018-10-21 2019-01-22 至玥腾风科技投资集团有限公司 一种燃气轮机发电机组
CN109193990B (zh) * 2018-10-21 2024-06-25 刘慕华 一种电机及其装配方法
CN109184914B (zh) * 2018-10-21 2024-09-17 刘慕华 一种转子系统及燃气轮机发电机组
CN111042924A (zh) * 2019-12-25 2020-04-21 迅玲腾风汽车动力科技(北京)有限公司 一种转子系统及微型燃气轮机发电机组
CN111042923A (zh) * 2019-12-25 2020-04-21 迅玲腾风汽车动力科技(北京)有限公司 一种转子系统及微型燃气轮机发电机组
CN110985211B (zh) * 2019-12-25 2024-03-08 至玥腾风科技集团有限公司 一种燃气轮机定心结构、加工方法、转子系统及发电机组
CN111075563A (zh) * 2019-12-27 2020-04-28 至玥腾风科技集团有限公司 一种冷热电三联供微型燃气轮机设备
CN111156180A (zh) * 2020-01-19 2020-05-15 至玥腾风科技集团有限公司 一种压气机、转子系统及微型燃气轮机
CN111255710A (zh) * 2020-01-19 2020-06-09 至玥腾风科技集团有限公司 一种转子系统、微型燃气轮机发电机组及除冰方法
CN112555026B (zh) * 2020-11-18 2023-12-26 靳新中 平衡轴向力的多推力盘燃气轮机
CN113586181A (zh) * 2021-07-27 2021-11-02 永旭腾风新能源动力科技(北京)有限公司 转动装置及燃气轮机
CN113565637A (zh) * 2021-07-27 2021-10-29 永旭腾风新能源动力科技(北京)有限公司 一种转动装置及燃气轮机
CN114294255A (zh) * 2022-01-11 2022-04-08 永旭腾风新能源动力科技(北京)有限公司 一种具有平衡轴向力结构的燃气轮机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1727654A (zh) * 2004-07-30 2006-02-01 三星Techwin株式会社 涡轮发电机和具有该涡轮发电机的燃料电池系统
JP2009197772A (ja) * 2008-02-25 2009-09-03 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のスラスト軸受装置
CN102900533A (zh) * 2012-10-24 2013-01-30 哈尔滨东安发动机(集团)有限公司 微型燃气轮机发电装置
CN105715669A (zh) * 2014-12-17 2016-06-29 易安迪机车公司 用于涡轮增压器的双推力轴承
CN108291575A (zh) * 2015-10-08 2018-07-17 伯明翰高性能涡轮机械公司 气体轴承或关于气体轴承的改进
CN108496018A (zh) * 2015-11-25 2018-09-04 日本精工株式会社 主轴装置
CN109163014A (zh) * 2018-10-21 2019-01-08 至玥腾风科技投资集团有限公司 一种推力轴承、转子系统及燃气轮机发电机组
CN109184914A (zh) * 2018-10-21 2019-01-11 至玥腾风科技投资集团有限公司 一种转子系统及燃气轮机发电机组
CN109252960A (zh) * 2018-10-21 2019-01-22 至玥腾风科技投资集团有限公司 一种燃气轮机发电机组
CN209324516U (zh) * 2018-10-21 2019-08-30 至玥腾风科技投资集团有限公司 一种转子系统及燃气轮机发电机组
CN209324520U (zh) * 2018-10-21 2019-08-30 至玥腾风科技投资集团有限公司 一种燃气轮机发电机组

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201221413Y (zh) * 2008-07-18 2009-04-15 罗立峰 热力发电核心机
CN202034877U (zh) * 2011-05-13 2011-11-09 沈阳工程学院 一种内置式永磁转子高速电机

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1727654A (zh) * 2004-07-30 2006-02-01 三星Techwin株式会社 涡轮发电机和具有该涡轮发电机的燃料电池系统
JP2009197772A (ja) * 2008-02-25 2009-09-03 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のスラスト軸受装置
CN102900533A (zh) * 2012-10-24 2013-01-30 哈尔滨东安发动机(集团)有限公司 微型燃气轮机发电装置
CN105715669A (zh) * 2014-12-17 2016-06-29 易安迪机车公司 用于涡轮增压器的双推力轴承
CN108291575A (zh) * 2015-10-08 2018-07-17 伯明翰高性能涡轮机械公司 气体轴承或关于气体轴承的改进
CN108496018A (zh) * 2015-11-25 2018-09-04 日本精工株式会社 主轴装置
CN109163014A (zh) * 2018-10-21 2019-01-08 至玥腾风科技投资集团有限公司 一种推力轴承、转子系统及燃气轮机发电机组
CN109184914A (zh) * 2018-10-21 2019-01-11 至玥腾风科技投资集团有限公司 一种转子系统及燃气轮机发电机组
CN109252960A (zh) * 2018-10-21 2019-01-22 至玥腾风科技投资集团有限公司 一种燃气轮机发电机组
CN209324516U (zh) * 2018-10-21 2019-08-30 至玥腾风科技投资集团有限公司 一种转子系统及燃气轮机发电机组
CN209324520U (zh) * 2018-10-21 2019-08-30 至玥腾风科技投资集团有限公司 一种燃气轮机发电机组

Also Published As

Publication number Publication date
CN109252960A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2020082960A1 (zh) 一种燃气轮机发电机组
WO2020082963A1 (zh) 一种转子系统及燃气轮机发电机组
CN109163014B (zh) 一种推力轴承、转子系统及燃气轮机发电机组
EP3011179B1 (en) Assembly with bearings and spacer
US8016554B2 (en) Combination hydrodynamic and rolling bearing system
KR20100091259A (ko) 하우징 체결방법
US8616831B2 (en) Simplified housing for a fuel cell compressor
CN101014753A (zh) 涡轮机机座内的滚珠轴承衬套的旋转和轴向保持装置
WO2019137028A1 (zh) 轴承、转子系统及轴承的控制方法
JP2006097585A (ja) エアセパレータの取付構造及びそれを備えたガスタービン
CN209324520U (zh) 一种燃气轮机发电机组
CN110030381B (zh) 一种适于高速高压用动密封装置及航空器
KR20220048030A (ko) 병렬 베어링 및 로터 시스템
JP2007154885A (ja) ガスタービンエンジンの組立方法及び装置
US20200308971A1 (en) Face seal assembly with thermal management circuit and an associated method thereof
US9534632B2 (en) Bearing structure of turbo charger
EP2519716B1 (en) Gas turbine engine and foil bearing system
WO2020134430A1 (zh) 轴承支撑组件及其加工方法、离心压缩机
CN209324516U (zh) 一种转子系统及燃气轮机发电机组
US10954816B2 (en) Turbocharger
CN103821771A (zh) 用于轴流式涡轮压缩机机壳的壳体的径向固定和定位凸缘
US11226000B2 (en) Thrust supporting apparatus
CN210509969U (zh) 一种推力轴承、转子系统及燃气轮机发电机组
WO2020082964A1 (zh) 一种电机及其装配方法
CN108779800B (zh) 用于涡轮机械的磁性轴承

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19877070

Country of ref document: EP

Kind code of ref document: A1