WO2019137028A1 - 轴承、转子系统及轴承的控制方法 - Google Patents

轴承、转子系统及轴承的控制方法 Download PDF

Info

Publication number
WO2019137028A1
WO2019137028A1 PCT/CN2018/103445 CN2018103445W WO2019137028A1 WO 2019137028 A1 WO2019137028 A1 WO 2019137028A1 CN 2018103445 W CN2018103445 W CN 2018103445W WO 2019137028 A1 WO2019137028 A1 WO 2019137028A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
magnetic
rotating shaft
magnetic bearing
thrust
Prior art date
Application number
PCT/CN2018/103445
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
至玥腾风科技投资集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技投资集团有限公司 filed Critical 至玥腾风科技投资集团有限公司
Publication of WO2019137028A1 publication Critical patent/WO2019137028A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/08Rigid support of bearing units; Housings, e.g. caps, covers for spindles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/041Passive magnetic bearings with permanent magnets on one part attracting the other part
    • F16C32/0412Passive magnetic bearings with permanent magnets on one part attracting the other part for radial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines

Definitions

  • the present disclosure relates to the field of bearing technology, and in particular, to a bearing, a rotor system, and a method of controlling a bearing.
  • Gas turbines mainly include three major components: compressor, combustion chamber and turbine. After the air enters the compressor, it is compressed into high-temperature and high-pressure air, and then supplied to the combustion chamber to be mixed with the fuel for combustion. The high-temperature and high-pressure gas generated by the compressor expands and works in the turbine.
  • the rotor rotates at high speed, the rotor is subjected to forces in the radial or axial direction.
  • radial bearings and thrust bearings need to be installed in the rotor system.
  • the traditional radial bearing and thrust bearing are contact bearings. As the rotor speed increases, especially when the rotor speed exceeds 40,000 rpm, the contact bearing cannot meet the working speed requirement due to the large mechanical wear. .
  • the radial bearing and the thrust bearing are respectively processed and separately installed, thus, it is difficult to ensure the uniformity of the coaxiality in the processing or installation process of the radial bearing and the thrust bearing.
  • the present disclosure provides a control method for a bearing, a rotor system and a bearing to solve the problem that the coaxial bearing and the thrust bearing have low coaxiality consistency due to the machining and installation of the radial bearing and the thrust bearing respectively in the existing rotor system. problem.
  • the present disclosure provides a bearing for mounting on a rotating shaft
  • the bearing includes: a bearing shell, the bearing shell is a hollow rotating body, the bearing shell is provided with a first receiving cavity and a second receiving cavity; a radial sub-bearing in the cavity, the radial sub-bearing is disposed on the rotating shaft, the radial sub-bearing has a first gap between the rotating shaft; and the thrust sub-bearing disposed in the second receiving cavity, the thrust sub-bearing comprises a thrust a disk, and a first stator and a second stator respectively disposed on two sides of the thrust plate, the thrust disk is fixedly coupled to the rotating shaft, and the first stator and the second stator are respectively disposed on the rotating shaft; the first stator and the second In the stator, there is a second gap between each stator and the thrust disk.
  • the radial sub-bearing comprises a first magnetic bearing sleeved on the rotating shaft, the first magnetic bearing and the rotating shaft have a first gap, and the first magnetic bearing is circumferentially disposed with a plurality of first magnetic components;
  • the rotating shaft is movable in a radial direction of the rotating shaft under the magnetic force of the plurality of first magnetic members;
  • each of the first stator and the second stator includes a second magnetic bearing, and the second magnetic bearing is disposed circumferentially
  • a third magnetic member is disposed on the thrust plate, and the thrust plate is movable in an axial direction of the rotating shaft by a magnetic force between the plurality of second magnetic members and the third magnetic members.
  • the first magnetic bearing includes: a first magnetic bearing housing, the first magnetic bearing housing is sleeved on the rotating shaft, and the first magnetic bearing housing is provided with a plurality of first receiving slots in the circumferential direction, and the plurality of first magnetic poles
  • the component is disposed in the plurality of first receiving slots, and the magnetic poles of the plurality of first magnetic components face the rotating shaft; and the bearing sleeve sleeved between the first magnetic bearing housing and the rotating shaft, and the first between the bearing sleeve and the rotating shaft
  • the gap, the bearing sleeve cooperates with the first magnetic bearing housing to fix the plurality of first magnetic members to the first magnetic bearing housing.
  • the plurality of first magnetic components comprise a plurality of first permanent magnets, wherein the plurality of first permanent magnets are circumferentially disposed on the first magnetic bearing; or the plurality of first magnetic components comprise a plurality of first electromagnets a plurality of first electromagnets are circumferentially disposed on the first magnetic bearing, and each of the plurality of first electromagnets includes a first magnetic core disposed on the first magnetic bearing and wound around the first The first coil on the core.
  • the first magnetic bearing is disposed with a first dynamic pressure generating groove toward a side surface or a rotating shaft of the rotating shaft toward a circumferential surface of the first magnetic bearing.
  • the radial sub-bearing further comprises a plurality of first sensors disposed along a circumferential interval of the first magnetic bearing, the plurality of first sensors being a combination of any one or more of the following: a displacement for detecting the position of the rotating shaft a sensor; a pressure sensor for detecting a film pressure at the first gap; a speed sensor for detecting a rotational speed of the rotating shaft; and an acceleration sensor for detecting a rotational acceleration of the rotating shaft.
  • each of the plurality of first sensors includes a first sensor cover and a first sensor probe, the first end of the first sensor probe is connected to the first sensor cover, and the first sensor cover is fixed to the first sensor cover.
  • a magnetic bearing the first magnetic bearing is provided with a through hole for the first sensor probe to pass through; the second end of the first sensor probe passes through the through hole of the first magnetic bearing and extends to the first gap, And the second end of the first sensor probe is flush with the side of the first magnetic bearing that is close to the rotating shaft.
  • the second magnetic bearing comprises: a second magnetic bearing seat, the second magnetic bearing seat is disposed opposite to the thrust plate, and the second magnetic bearing seat is provided with a plurality of second receiving grooves, a plurality of second magnetic bodies
  • the component is disposed in the plurality of second receiving slots, and the magnetic poles of the plurality of second magnetic components face the side where the thrust disc is located;
  • the pressing ring is disposed on a side of the second magnetic bearing housing adjacent to the thrust disc, the pressing ring Cooperating with the second magnetic bearing housing, the plurality of second magnetic members are fixed to the second magnetic bearing housing.
  • the plurality of second magnetic components comprise a plurality of second permanent magnets, the plurality of second permanent magnets are circumferentially disposed on the second magnetic bearing; or the plurality of second magnetic components comprise a plurality of second electromagnets a plurality of second electromagnets are circumferentially disposed on the second magnetic bearing, and each of the plurality of second electromagnets includes a second magnetic core disposed on the second magnetic bearing and wound around the second The second coil on the core.
  • the third magnetic component comprises a magnetic material disposed on an end surface of the thrust disk facing the first stator and the second stator; wherein the magnetic material is distributed in a strip shape on the thrust disk to form a plurality of strip magnetic shapes
  • the plurality of strip-shaped magnetic portions are radially or annular; or the magnetic material is distributed in a dot shape on the thrust disk.
  • an end surface of the thrust disc facing the first stator and the second stator, or an end surface of the first stator and the second stator facing the thrust disc is disposed with a second dynamic pressure generating groove.
  • the second dynamic pressure generating grooves are arranged in a radial or concentric manner.
  • the second dynamic pressure generating groove includes a first spiral groove and a second spiral groove, the first spiral groove is surrounded by the second spiral groove, and the spiral directions of the first spiral groove and the second spiral groove are opposite, the first spiral One end of the groove near the second spiral groove is connected or disconnected from an end of the second spiral groove adjacent to the first spiral groove.
  • the thrust sub-bearing is further provided with a second sensor, and the second sensor is a combination of any one or more of the following: a displacement sensor for detecting the position of the thrust disc; and detecting a film pressure at the second gap a pressure sensor; a speed sensor for detecting the rotational speed of the thrust disk; and an acceleration sensor for detecting the rotational acceleration of the thrust disk.
  • the second sensor includes a second sensor cover and a second sensor probe, the first end of the second sensor probe is connected to the second sensor cover, the second sensor cover is fixed on the second magnetic bearing, and the second magnetic bearing is disposed on the second magnetic bearing a through hole for the second sensor probe to pass through; a second end of the second sensor probe passes through the through hole in the second magnetic bearing and extends to the second gap, and the second end of the second sensor probe It is flush with the side of the second magnetic bearing close to the thrust plate.
  • the bearing shell is further provided with a static pressure inlet orifice; wherein one end of the static pressure inlet orifice is connected to the external air source, and the other end is connected to the first gap via the radial sub-bearing, and is first
  • the stator and the second stator are in communication with the second gap, and the static pressure inlet orifice is for conveying the external air source to the first gap and the second gap.
  • the present disclosure provides a rotor system including a rotating shaft and a thrust bearing disposed on the rotating shaft and at least two radial bearings, the thrust bearing and the at least two radial bearings are non-contact bearings;
  • the thrust bearing and the radial bearing adjacent to the thrust bearing are integrated to form the bearing of any of the first aspects.
  • the shaft body of the rotating shaft is an integral structure, and the rotating shaft is horizontally arranged or vertically arranged; the motor, the compressor and the turbine are arranged in sequence on the rotating shaft; wherein the thrust bearing is arranged on the side of the turbine close to the side of the compressor Positionally, the predetermined position is such that the center of gravity of the rotor system is located between the two radial bearings that are furthest apart among the at least two radial bearings.
  • the shaft body of the rotating shaft is an integral structure, and the rotating shaft is horizontally disposed or vertically disposed; the rotating shaft is provided with a motor, a compressor, a turbine and two radial bearings, and the two radial bearings are non-contact bearings; the rotor
  • the system further includes a first casing and a second casing, wherein the first casing is connected to the second casing; wherein the generator, the thrust bearing and the two radial bearings are disposed in the first casing, the compressor and the through The average is set in the second casing, and the impeller of the compressor and the impeller of the turbine are disposed in the second casing.
  • the present disclosure provides a method of controlling a bearing according to any one of the second aspect, wherein the plurality of first magnetic members of the bearing are a plurality of first electromagnets, and the plurality of second magnetic members are a plurality of second electromagnets, the method comprising: opening the first magnetic bearing and the second magnetic bearing; controlling the rotating shaft to move in a radial direction of the rotating shaft under the magnetic force of the plurality of first magnetic components to move the rotating shaft to the preset a radial position; and controlling the thrust disk to move in an axial direction of the rotating shaft under a magnetic force between the plurality of second magnetic members and the third magnetic member to cause the thrust disk and the second magnetic body in the first stator a difference between the second gap between the bearings and the second gap between the thrust disc and the second magnetic bearing in the second stator is less than or equal to a predetermined value; after the rotational speed of the rotating shaft is accelerated to the operating speed, the first magnetic bearing is closed and The second magnetic bearing; when the rot
  • the present disclosure provides another method of controlling a bearing, the rotor system of any of the second aspect, wherein the plurality of first magnetic components of the bearing are a plurality of first electromagnets, and the plurality of second magnetic components a plurality of second electromagnets, the method comprising: opening the first magnetic bearing and the second magnetic bearing; controlling the rotating shaft to move in a radial direction of the rotating shaft under the magnetic force of the plurality of first magnetic components to move the rotating shaft to the pre- a radial position; and controlling the thrust disk to move in an axial direction of the rotating shaft under a magnetic force between the plurality of second magnetic members and the third magnetic member to cause the thrust disk and the second of the first stator a difference between a second gap between the magnetic bearings and a second gap between the thrust disk and the second magnetic bearing in the second stator is less than or equal to a predetermined value; after the rotational speed of the rotating shaft is accelerated to a first preset value, the first a magnetic bearing and a second
  • the first magnetic bearing and the second magnetic bearing are turned on, including: when the rotor system accelerates or decelerates to a first-order critical speed or a second-order critical speed Controlling the first magnetic bearing and the second magnetic bearing to be turned on at maximum power; or, when the rotor system accelerates or decelerates to a first-order critical speed or a second-order critical speed, controlling the first magnetic bearing and the second magnetic bearing to follow a preset frequency
  • the strobe mode is turned on.
  • the method further includes: when the first gap between the rotating shaft and the first magnetic bearing changes, opening the first magnetic bearing, causing the rotating shaft to be smaller toward the side away from the gap under the magnetic force of the plurality of first magnetic components The direction of movement; after the shaft is in the balanced radial position, the first magnetic bearing is closed.
  • the method further includes: when the load is loaded on the thrust plate, the thrust disk moves in the axial direction of the rotating shaft under the load load, and the second between the thrust disk and the second magnetic bearing in the first stator Opening the second magnetic bearing when the difference between the gap and the second gap between the thrust disk and the second magnetic bearing in the second stator is greater than a predetermined value; between the thrust disk and the second magnetic bearing in the first stator The second gap is closed by a difference between the second gap and the second gap between the thrust disk and the second magnetic bearing in the second stator being less than or equal to a predetermined value.
  • the structure is simple, the integration is high, and the processing and installation are easy, and the radial sub-bearing and the thrust sub-bearing can be effectively ensured during processing and installation.
  • the uniformity of the bearing is consistent.
  • the bearing of the present disclosure is a non-contact bearing, which can satisfy the requirement of high-speed rotation of the rotor.
  • Figure 1 is a cross-sectional view of a bearing provided by the first embodiment
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a cross-sectional view taken along line B-B of Figure 1;
  • FIG. 4 is a schematic structural view of a first magnetic bearing housing in a bearing provided by the first embodiment
  • Figure 5 is a schematic structural view of a second magnetic bearing housing in the bearing provided by the first embodiment
  • FIG. 6 is a schematic structural view showing a first dynamic pressure generating groove disposed on a bearing sleeve in the bearing provided in the first embodiment
  • FIG. 7 is a second structural schematic view showing a first dynamic pressure generating groove disposed on a bearing sleeve in the bearing provided in the first embodiment
  • FIG. 8 is a schematic structural view showing a first dynamic pressure generating groove disposed on a rotating shaft in the bearing provided in the first embodiment
  • FIG. 9 is a schematic structural view showing a structure in which a second dynamic pressure generating groove is disposed on a thrust plate in the bearing provided in the first embodiment;
  • Figure 10 is a second structural schematic view showing the arrangement of the second dynamic pressure generating groove on the thrust plate in the bearing provided by the first embodiment
  • Figure 11 is a schematic structural view showing a structure in which a second dynamic pressure generating groove is disposed on a pressure ring in the bearing provided in the first embodiment;
  • Figure 12 is a second structural schematic view showing the arrangement of the second dynamic pressure generating groove on the pressure ring in the bearing provided by the first embodiment
  • Figure 13 is a schematic structural view of a rotor system according to a second embodiment
  • Figure 14 is a schematic structural view of a rotor system according to a third embodiment
  • Figure 15 is a schematic structural view of a rotor system according to a fourth embodiment
  • FIG. 16 is a schematic structural view of another rotor system according to a fourth embodiment
  • Figure 17 is a schematic view showing the structure of a locking device provided in a rotor system according to a fifth embodiment
  • Figure 18 is a schematic view showing another structure of a locking device provided in a rotor system according to a fifth embodiment
  • Figure 19 is a schematic structural view of the direction C-C in Figure 18;
  • Figure 20 is a schematic view showing the structure of applying the wear-resistant coating on the rotating shaft according to the sixth embodiment
  • 21 is a schematic flow chart of a method for controlling a bearing according to a seventh embodiment
  • FIG. 22 is a schematic flow chart of another method for controlling a bearing according to a seventh embodiment
  • Figure 23 is a half cross-sectional view showing a trough type gas-magnetic hybrid radial bearing according to an eighth embodiment
  • Figure 24 is a half cross-sectional view showing another trough type gas-magnetic hybrid radial bearing provided by the eighth embodiment.
  • Figure 25 is an external view of a trough type gas-magnetic hybrid radial bearing provided by the eighth embodiment.
  • 26 is a schematic structural view of a fourth magnetic bearing in a groove type gas-magnetic hybrid radial bearing according to an eighth embodiment
  • Figure 27 is a schematic structural view of a fourth magnetic bearing housing in a groove type gas-magnetic hybrid radial bearing according to an eighth embodiment
  • FIG. 28 is a schematic structural view showing a third dynamic pressure generating groove disposed on a second bearing sleeve in a groove type gas magnetic hybrid radial bearing according to an eighth embodiment
  • 29 is a second schematic structural view showing a third dynamic pressure generating groove disposed on a second bearing sleeve in a groove type gas magnetic hybrid radial bearing according to an eighth embodiment
  • Figure 30 is a schematic view showing the structure of a third dynamic pressure generating groove provided on a rotating shaft in the groove type gas-magnetic hybrid radial bearing according to the eighth embodiment.
  • a bearing 1000 is mounted on a rotating shaft 100.
  • the bearing 1000 includes a bearing housing 1001.
  • the bearing housing 1001 is a hollow rotating body.
  • the bearing housing 1001 is provided with a first receiving cavity and a second receiving cavity.
  • the thrust sub-bearing 103 in the cavity, the thrust sub-bearing 103 includes a thrust disc 1031, and a first stator 1032 and a second stator 1033 respectively disposed on both sides of the thrust disc 1031.
  • the thrust disc 1031 is fixedly coupled to the rotating shaft 100, first The stator 1032 and the second stator 1033 are both disposed on the rotating shaft 100.
  • the first stator 1032 and the second stator 1033 have a second gap 105 between each stator and the thrust disc 1031.
  • the radial sub-bearing 102 and the thrust sub-bearing 103 are integrated in one bearing shell 1001, which is easy to process and install, has the characteristics of simple structure and high integration, and can effectively ensure radial direction during processing and installation.
  • the requirements of the coaxiality of the sub-bearing 102 and the thrust sub-bearing 103 are the same.
  • the first gap 104 is disposed in the radial sub-bearing 102
  • the second gap 105 is disposed in the thrust sub-bearing 103, so that the bearing of the present disclosure is a non-contact bearing, which can meet the requirement of high-speed rotation of the rotor.
  • the material of the bearing shell 1001 may be a non-magnetic material, preferably a hard aluminum material.
  • the first stator 1032 and the bearing housing 1001 may be integrally formed, and the second stator 1033 and the bearing housing 1001 may be detachably connected.
  • the bearing housing 1001 may be coupled to the housing of the gas turbine through a connecting member.
  • the radial sub-bearing 102 includes a first magnetic bearing 1021 sleeved on the rotating shaft 100.
  • the first magnetic bearing 1021 has a first gap 104 between the rotating shaft 100 and the first magnetic bearing 1021.
  • a plurality of first magnetic members 10211 are disposed; the rotating shaft 100 is movable in a radial direction of the rotating shaft 100 under the magnetic force of the plurality of first magnetic members 10211; each of the first stator 1032 and the second stator 1033
  • the stator includes a second magnetic bearing 1034, and a plurality of second magnetic members 10341 are circumferentially disposed on the second magnetic bearing 1034; a third magnetic member is disposed on the thrust disk 1031, and the thrust disk 1031 can be in the plurality of second magnetic members 10341 The magnetic force between the third magnetic member moves in the axial direction of the rotary shaft 100.
  • the first sub-space 104 and the first magnetic bearing 1021 are disposed in the radial sub-bearing 102 such that the radial sub-bearing 102 forms a gas-and-magnetic hybrid radial sub-bearing 102;
  • the second gap 105 and the second magnetic bearing 1034 are disposed in the bearing 103 such that the thrust sub-bearing 103 forms the gas-and-magnetic hybrid thrust sub-bearing 103.
  • the radial sub-bearing 102 and the thrust sub-bearing 103 can work together to stabilize the rotating shaft 100 in both the radial and axial directions; in addition, the gas bearing and magnetic in the radial sub-bearing 102 and the thrust sub-bearing 103
  • the bearings can also work together to control the shaft 100 in a timely and efficient manner.
  • the bearing of the preferred embodiment of the present disclosure can ensure the dynamic performance and stability of the rotating shaft 100, especially in the high-speed running state, and has strong anti-disturbing ability, thereby improving the bearing capacity of the bearing.
  • the bearing of the embodiment of the present disclosure can meet the requirements of a high-speed gas turbine or a gas turbine power generation combined unit.
  • the first magnetic bearing 1021 may be detachably mounted in the first receiving cavity.
  • the bearing further includes an end cover 106 disposed at an end of the bearing housing 1001 adjacent to the first receiving cavity, and the end cover 106 abuts the first magnetic bearing 1021 for fixing the first magnetic bearing 1021 to Inside the first receiving chamber.
  • the material of the end cap 106 may be a non-magnetic material, preferably a hard aluminum material.
  • the bearing housing 1001 is further provided with a static pressure air inlet orifice 107; wherein one end of the static pressure air inlet orifice 107 is connected to the external air source, and the other end is connected to the first gap 104 via the radial sub-bearing 102. And communicating with the second gap 105 via the first stator 1032 and the second stator 1033, the static pressure air intake orifice 107 is for conveying the external air source to the first gap 104 and the second gap 105.
  • the radial sub-bearing 102 and the thrust sub-bearing 103 each include a hydrostatic bearing, so that the radial sub-bearing 102 can constitute a gas dynamic pressure-magnetic
  • the radial radial bearing 102, the thrust sub-bearing 103 may constitute a gas dynamic hydrostatic-magnetic hybrid thrust sub-bearing 103.
  • the flow diameter of the static pressure inlet orifice 107 can be adjusted according to actual working conditions such as gas demand.
  • the bearing capacity of the bearing 1000 can be further increased.
  • the magnetic bearing and the hydrostatic bearing can be reserved for each other, and in the case where one of the faults, failure or failure to satisfy the opening condition, the other can serve the same function as the backup bearing.
  • the safety and reliability of the bearing 1000 are improved by controlling the gas static pressure bearing to be opened instead of the magnetic bearing to perform a corresponding action.
  • the first magnetic bearing 1021 includes: a first magnetic bearing housing 10212, the first magnetic bearing housing 10212 is sleeved on the rotating shaft 100, and the first magnetic bearing housing 10212 is on the upper edge.
  • a plurality of first receiving grooves 10213 are disposed in the circumferential direction, a plurality of first magnetic members 10211 are disposed in the plurality of first receiving grooves 10213, and magnetic poles of the plurality of first magnetic members 10211 are directed toward the rotating shaft 100;
  • a bearing sleeve 10212 between the magnetic bearing housing 10212 and the rotating shaft 100, a first gap 104 between the bearing sleeve 10212 and the rotating shaft 100, and the bearing sleeve 10212 cooperates with the first magnetic bearing housing 10212 to fix the plurality of first magnetic members 10211 On the first magnetic bearing housing 10212.
  • the gap between the magnetic core 1011 and the coil 1012 and the first magnetic bearing housing 10212 can be closed, thereby forming a stable and uniform film pressure between the bearing housing 10212 and the rotating shaft 100.
  • the size of the first gap 104 can be conveniently adjusted and controlled by providing bearing sleeves 10212 of different radial thicknesses.
  • the width of the first gap 104 between the bearing sleeve 10212 and the rotating shaft 100 may be 5 ⁇ m to 12 ⁇ m, preferably 8 ⁇ m to 10 ⁇ m.
  • the rotating shaft 100 when the rotating shaft 100 is not opened, the rotating shaft 100 is disposed coaxially with the bearing sleeve 10212. After the rotating shaft 100 is opened, the axis of the rotating shaft 100 is offset from either side of the axial center of the bearing sleeve 10212, and the eccentricity ⁇ is 0.3. Up to 0.5, to ensure that a wedge-shaped first gap 104 can be formed between the bearing sleeve 10212 and the rotating shaft 100. As the shaft 100 rotates, gas is forced into the first gap 104, creating pressure to support the load.
  • the eccentricity ⁇ e/(Rr), where e is the distance from the axis of the rotating shaft 100 to the axial center of the bearing sleeve 10212, R is the inner diameter of the bearing sleeve 10212, and r is the inner diameter of the rotating shaft 100, (Rr ) is the width of the bearing gap.
  • the first magnetic bearing housing 10212 is formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
  • the number of the first receiving grooves 10213 may be, but not limited to, six or eight, uniformly disposed along the circumferential direction of the first magnetic bearing housing 10212.
  • the magnetic force of the first magnetic bearing 1021 can be made more uniform and stable.
  • the plurality of first magnetic members 10211 may be disposed on the first magnetic bearing housing 10212 in other manners, which is not limited thereto.
  • the material of the bearing sleeve 10212 may be a non-magnetic material, preferably a hard aluminum material.
  • the plurality of first magnetic members 10211 include a plurality of first permanent magnets, and the plurality of first permanent magnets are circumferentially disposed on the first magnetic bearing 1021; or, the plurality of first magnetic members 10211 include a first electromagnet, wherein the plurality of first electromagnets are circumferentially disposed on the first magnetic bearing 1021, and each of the plurality of first electromagnets includes a first one disposed on the first magnetic bearing 1021. a magnetic core and a first coil wound on the first magnetic core.
  • the first magnetic component 10211 when the radial sub-bearing 102 only needs the first magnetic component 10211 to provide magnetic force without magnetron, the first magnetic component 10211 is preferably a permanent magnet; when the radial sub-bearing 102 simultaneously requires the first magnetic component 10211 to provide a magnetic force In the case of magnetron control, the first magnetic member 10211 is preferably an electromagnet.
  • the first magnetic member 10211 When the first magnetic member 10211 is an electromagnet, current is supplied to the first coil, that is, the first magnetic core can generate a magnetic force.
  • the magnitude of the magnetic current flowing into the first coil is different, and the magnitude of the magnetic force generated by the first magnetic core is also different; the direction of the current flowing into the first coil is different, and the magnetic poles of the first magnetic core are also different.
  • the first magnetic core may be formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
  • the first magnetic bearing 1021 faces the side wall of the rotating shaft 100, and/or the rotating shaft 100 is disposed with the first dynamic pressure generating groove 1022 toward the circumferential surface of the first magnetic bearing 1021.
  • the flowing gas existing in the first gap 104 is pressed into the first dynamic pressure generating groove 1022, thereby generating pressure to float the rotating shaft 100, so that the rotating shaft 100 is radially oriented. Keep it contactless.
  • the magnitude of the pressure generated by the first dynamic pressure generating groove 1022 varies depending on the angle of the first dynamic pressure generating groove 1022, the groove width, the groove length, the groove depth, the number of grooves, and the flatness. Further, the magnitude of the pressure generated by the first dynamic pressure generating groove 1022 is also related to the rotational speed of the rotating shaft 100 and the first gap 104.
  • the parameters of the first dynamic pressure generating groove 1022 can be designed according to actual working conditions.
  • the first dynamic pressure generating groove 1022 may be formed on the first magnetic bearing 1021 or the rotating shaft 100 by forging, rolling, etching, or punching.
  • the first dynamic pressure generating groove 1022 may be disposed on the bearing sleeve 10212.
  • the bearing sleeve 10212 may be made of a stainless steel material.
  • the first dynamic pressure generating groove 1022 may be disposed on the rotating shaft 100 at an intermediate portion corresponding to the circumferential surface of the bearing sleeve 10212, or may be disposed symmetrically distributed on both sides of the intermediate portion, and the two independent first dynamic pressures occur.
  • the first dynamic pressure generating groove 1022 may be disposed at an intermediate portion of the inner side wall of the bearing sleeve 10212, or may be disposed symmetrically distributed at two ends of the inner side wall of the bearing sleeve 10212, and the two parts of the first dynamic pressure generating groove 1022 are independent of each other. .
  • the first dynamic pressure generating grooves 1022 are arranged in a matrix. In this way, it is advantageous to distribute the gas film more evenly within the first gap 104.
  • the first dynamic pressure generating grooves 1022 are continuous or spaced V-shaped grooves.
  • the first dynamic pressure generating groove 1022 may be provided as a herringbone groove or a groove of another shape.
  • the radial sub-bearing 102 further includes a plurality of first sensors (not shown) disposed along a circumferential interval of the first magnetic bearing 1021, wherein the sensor probe of each of the first sensors is disposed at Within a gap 104.
  • parameters at the first gap 104 such as film pressure at the first gap 104, can be detected in real time.
  • the first magnetic bearing 1021 can actively control the radial sub-bearing 102 according to the detection result of the first sensor, and can achieve high precision in control.
  • each of the plurality of first sensors includes a first sensor cover and a first sensor probe, the first end of the first sensor probe is connected to the first sensor cover, and the first sensor cover is fixed to the first sensor cover.
  • a magnetic bearing 1021 the first magnetic bearing 1021 is provided with a through hole for the first sensor probe to pass through; the second end of the first sensor probe passes through the through hole of the first magnetic bearing 1021, and extends to the first A gap 104, and the second end of the first sensor probe is flush with a side of the first magnetic bearing 1021 that is adjacent to the shaft 100.
  • the first sensor can be more stably disposed on the first magnetic bearing 1021.
  • aligning the second end of the sensor probe with the side of the first magnetic bearing 1021 adjacent to the rotating shaft 100 can prevent the sensor probe from being touched by the rotating shaft 100, thereby facilitating protection of the sensor probe.
  • each of the plurality of first sensors is disposed between the adjacent two first magnetic components 10211.
  • the number of the first sensors may also be eight, and each of the first sensors is respectively disposed between the adjacent two first magnetic members 10211, each of the first A sensor is preferably disposed in the middle of the first magnetic bearing 1021.
  • the plurality of first sensors are any one or more of the following: a displacement sensor for detecting the position of the rotating shaft 100; a pressure sensor for detecting the film pressure at the first gap 104; and detecting the rotating shaft A speed sensor of 100 rpm; an acceleration sensor for detecting the rotational acceleration of the shaft 100.
  • the second magnetic bearing 1034 includes: a second magnetic bearing housing 10342, the second magnetic bearing housing 10342 is disposed opposite to the thrust disc 1031, and the second magnetic bearing housing 10342 is circumferentially A plurality of second accommodating grooves 10343 are disposed, a plurality of second magnetic members 10341 are disposed in the plurality of second accommodating grooves 10343, and magnetic poles of the plurality of second magnetic members 10341 are directed to a side of the thrust disk 1031; 10344, a pressure ring 10344 is disposed on a side of the second magnetic bearing housing 10342 near the thrust plate 1031, and the pressure ring 10344 cooperates with the second magnetic bearing housing 10342 to fix the plurality of second magnetic components 10341 to the second magnetic bearing housing 10342. on.
  • the second magnetic bearing housing 10342 is formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
  • the number of the second receiving grooves 10343 may be, but not limited to, six or eight, uniformly disposed along the circumferential direction of the second magnetic bearing housing 10342.
  • the magnetic force between the second magnetic bearing 1034 and the thrust disk 1031 can be made more uniform and stable.
  • the plurality of second magnetic members 10341 may be disposed on the second magnetic bearing housing 10342 in other manners, which is not limited thereto.
  • the material of the pressure ring 10344 may be a non-magnetic material, preferably a hard aluminum material.
  • the intake passage of the static pressure intake orifice 107 communicates with the annular gas flow passage of the first stator 1032 and the annular gas flow passage of the second stator 1033 in two directions in the bearing housing 1001, respectively.
  • One end of the static pressure inlet of the first stator 1032 and the second stator 1033 passes through the pressure ring 10344 to communicate with the thrust disc 1031 and the second gap 105 between the two stators, and the other end is respectively ring-shaped with the first stator 1032.
  • the gas flow path is in communication with the annular gas flow path of the second stator 1033.
  • the plurality of second magnetic members 10341 include a plurality of second permanent magnets, and the plurality of second permanent magnets are circumferentially disposed on the second magnetic bearing 1034; or, the plurality of second magnetic members 10341 include a second electromagnet, the plurality of second electromagnets are circumferentially disposed on the second magnetic bearing 1034, and each of the plurality of second electromagnets includes a second disposed on the second magnetic bearing 1034 a magnetic core and a second coil wound on the second magnetic core.
  • the second magnetic member 10341 when the thrust sub-bearing 103 only needs the second magnetic member 10341 to provide magnetic force without magnetron, the second magnetic member 10341 is preferably a permanent magnet; when the thrust sub-bearing 103 simultaneously requires the second magnetic member 10341 to provide magnetic force and In the case of magnetron control, the second magnetic member 10341 is preferably an electromagnet.
  • the second magnetic member 10341 When the second magnetic member 10341 is an electromagnet, a current is supplied to the second coil, that is, the second core can generate a magnetic force.
  • the magnitude of the current flowing into the second coil is different, and the magnitude of the magnetic force generated by the second core is also different; the direction of the current flowing into the second coil is different, and the magnetic poles of the second core are also different.
  • the second magnetic core is formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
  • the third magnetic member includes a magnetic material (not shown) disposed on an end surface of the thrust disc 1031 facing the first stator 1032 and the second stator 1033; wherein the magnetic material is on the thrust disc 1031
  • the strips are distributed in a strip shape to form a plurality of strip-shaped magnetic portions, and the plurality of strip-shaped magnetic portions are radially or annular;
  • the magnetic material is distributed in a dot shape on the thrust disk 1031.
  • the magnetic material is distributed in a strip shape or a dot shape on the thrust disk 1031, and the magnetic force generated between the magnetic material and the second magnetic member 10341 can be controlled within a reasonable range.
  • an end surface of the thrust disk 1031 facing the first stator 1032 and the second stator 1033, and/or a second surface of the first stator 1032 and the second stator 1033 facing the thrust disk 1031 is provided with a second The dynamic pressure generating groove 1035.
  • the flowing gas existing in the second gap 105 is pressed into the second dynamic pressure generating groove 1035, thereby generating a pressure to realize that the thrust disk 1031 is non-contacted in the axial direction.
  • the magnitude of the pressure generated by the second dynamic pressure generating groove 1035 varies depending on the angle of the second dynamic pressure generating groove 1035, the groove width, the groove length, the groove depth, the number of grooves, and the flatness. Further, the magnitude of the pressure generated by the second dynamic pressure generating groove 1035 is also related to the rotational speed of the thrust disk 1031 and the second gap 105.
  • the parameters of the second dynamic pressure generating groove 1035 can be designed according to actual working conditions.
  • the second dynamic pressure generating groove 1035 may be formed on the first stator 1032 and the second stator 1033 by forging, rolling, etching or stamping, or the second dynamic pressure generating groove 1035 may be forged, rolled, or Etching or stamping or the like is formed on the thrust disk 1031.
  • the second dynamic pressure generating groove 1035 may be disposed on the pressure ring 10344.
  • the pressure ring 10344 may be made of a stainless steel material.
  • the second dynamic pressure generating grooves 1035 are arranged in a radial or concentric manner. In this way, it is advantageous to distribute the gas film more uniformly in the second gap 105.
  • the second dynamic pressure generating groove 1035 includes a first spiral groove 10351 and a second spiral groove 10352.
  • the first spiral groove 10351 surrounds the second spiral groove 10352, and the first spiral groove 10351 and the second spiral groove 10352 The spiral strikes the opposite direction, and one end of the first spiral groove 10351 close to the second spiral groove 10352 is connected or disconnected from one end of the second spiral groove 10352 close to the first spiral groove 10351.
  • the distance from the end of the first spiral groove 10351 near the second spiral groove 10352 to the axis of the rotating shaft 100 is equal to the end of the first spiral groove 10351 close to the second spiral groove 10352 to the first stator 1032 or the second stator 1033. Or the distance from the outer peripheral edge of the thrust disk 1031.
  • the distance from the end of the second spiral groove 10352 near the first spiral groove 10351 to the axis of the rotating shaft 100 is equal to the end of the second spiral groove 10352 close to the first spiral groove 10351 to the first stator 1032 or the second stator 1033.
  • the distance from the outer peripheral edge of the thrust disk 1031 is the distance from the outer peripheral edge of the thrust disk 1031.
  • the thrust disk 1031 can be held in a non-contact manner in a desired manner in the case where the rotary shaft 100 rotates in the forward direction or the reverse direction, so that the rotary shaft 100 has the advantages of high load capacity and good stability.
  • the thrust sub-bearing 103 is further provided with a second sensor (not shown), and the sensor probe of the second sensor is disposed in the second gap 105.
  • the parameters at the second gap 105 such as the film pressure at the second gap 105, can be detected in real time.
  • the second magnetic bearing 1034 can actively control the thrust sub-bearing 103 according to the detection result of the second sensor, and can achieve high precision in control.
  • the second sensor includes a second sensor cover and a second sensor probe, the first end of the second sensor probe is connected to the second sensor cover, the second sensor cover is fixed to the second magnetic bearing 1034, and the second magnetic bearing 1034 a through hole for the second sensor probe to pass through; a second end of the second sensor probe passes through the through hole in the second magnetic bearing 1034 and extends to the second gap 105, and the second sensor probe The two end portions are flush with the side of the second magnetic bearing 1034 close to the thrust disk 1031.
  • the second sensor can be more stably disposed on the second magnetic bearing 1034.
  • the second end portion of the second sensor probe is flush with the side of the second magnetic bearing 1034 adjacent to the thrust disc 1031, so that the second sensor probe can be prevented from being touched by the thrust disc 1031, thereby facilitating protection of the second Sensor probe.
  • the second sensor is disposed between the adjacent two second magnetic components 10341.
  • At least one second sensor should be provided on each stator, preferably a second sensor, which is preferably disposed between two adjacent second magnetic members 10341.
  • the second sensor is a combination of any one or more of the following: a displacement sensor for detecting the position of the thrust disk 1031; a pressure sensor for detecting the film pressure at the second gap 105; and detecting the thrust plate Speed sensor of 1031 speed; acceleration sensor for detecting the rotational acceleration of the thrust disk 1031.
  • An embodiment of the present disclosure provides a rotor system including: a rotating shaft, the shaft body of the rotating shaft is an integral structure, the rotating shaft is horizontally disposed; the motor, the compressor, and the turbine are sequentially disposed on the rotating shaft; and the thrust bearing disposed on the rotating shaft and At least two radial bearings, a thrust bearing and at least two radial bearings are non-contact bearings; wherein the thrust bearing is disposed at a preset position of the turbine near the side of the compressor, and the preset position is such that The center of gravity of the rotor system is located between two of the at least two radial bearings that are furthest apart.
  • the thrust bearing and the radial bearing adjacent to the thrust bearing are integrated to form the bearing provided in the present disclosure.
  • the thrust bearing is a bearing for restricting movement of the rotating shaft in the axial direction
  • the radial bearing is a bearing for restricting movement of the rotating shaft in the radial direction
  • both the thrust bearing and the radial bearing may adopt a non-contact bearing.
  • the shaft body of the rotating shaft is an integral structure, and it can be understood that the shaft body of the rotating shaft is a whole shaft, or the shaft body of the rotating shaft is rigidly connected by a plurality of shaft segments. Since the shaft body of the rotating shaft is an integral structure, the strength of the shaft bodies on the rotating shaft is uniform, which makes the position of the thrust bearing on the rotating shaft unrestricted.
  • the center of gravity of the entire rotor system should be between the two radial bearings that are furthest apart among the at least two radial bearings.
  • the entire rotor system forms a spindle structure that, unlike conventional cantilevered structures, enhances the stability of the overall rotor system.
  • the position of the thrust bearing in the rotating shaft is not limited, in the embodiment of the present disclosure, the number of the radial bearings of the at least two radial bearings, the position of each radial bearing, and the entire rotor system may be The parameters of the mass of each component (including the mass of the thrust bearing itself) are flexibly adjusted to the position of the thrust bearing so that the center of gravity of the entire rotor system is located between the two radial bearings that are furthest apart, preferably, the entire rotor The center of gravity of the system is located on the compressor.
  • the rotating shaft is horizontally disposed, and therefore, it is understood that the rotor system of the embodiment of the present disclosure is a horizontal rotor system that can be applied to a horizontal unit that requires the use of a horizontal rotor system, such as a horizontal gas turbine generator set.
  • an embodiment of the present disclosure provides a rotor system including a rotating shaft 100 and a thrust bearing 500.
  • the shaft body of the rotating shaft 100 is an integral structure, and the rotating shaft 100 is horizontally disposed.
  • the rotating shaft 100 is sequentially provided with a motor 200 and a compressor 300.
  • a turbine 400 a first radial bearing 600 and a second radial bearing 700 are further disposed on the rotating shaft, and the first radial bearing 600 and the second radial bearing 700 are both non-contact bearings, wherein the first radial direction
  • the bearing 600 and the thrust bearing 500 are integrated to form an integrated bearing 10000; the first radial bearing 600 is disposed on a side of the motor 200 remote from the compressor 300, and the second radial bearing 700 is disposed in the compressor 300 and the turbine 400
  • the thrust bearing 500 is disposed between the first radial bearing 600 and the motor 200.
  • non-contact bearings generally include electromagnetic bearings and air bearings.
  • problems such as too much energy consumption and heat generation; and when the surface linear velocity approaches or exceeds the speed of sound, a shock wave is generated, which causes the bearing to be unstable and even has catastrophic consequences such as a collision axis. .
  • the first radial bearing 600 may adopt a gas magnetic hybrid radial bearing or a gas dynamic and static pressure mixing diameter.
  • the second radial bearing 700 may employ a gas dynamic hydrostatic hybrid radial bearing in consideration of the fact that the magnetic member in the magnetic bearing cannot withstand the high temperature transmitted from the turbine 400.
  • the second radial bearing 700 may also adopt a pneumatically-mixed radial bearing, in which the magnetic component of the second radial bearing 700 is disposed on the second radial bearing 700 away from the turbine 400. Area. That is, the area on the second radial bearing 700 near the turbine 400 is not provided with a magnetic member.
  • a heat insulating layer (not shown) is disposed on a side of the turbine 400 adjacent to the second radial bearing 700.
  • the material of the heat insulating layer may be an aerogel or other material having good heat insulating properties.
  • the compressor 300 may be a centrifugal compressor 300, and the turbine 400 may be a centrifugal turbine;
  • the motor 200 may be a dynamic pressure bearing motor, and the rotating shaft 100 may be provided with a first motion corresponding to a bearing of the motor 200.
  • the pressure generating groove 201; the motor 200 may also be a heuristic integrated motor, such that when the rotor system is started, the motor 200 can be used as a motor to drive the rotor system to rotate; after the rotor system is started, the motor 200 can be used as a generator. In order to realize the rotor system to drive the generator to generate electricity.
  • the thrust bearing and the radial bearing in the rotor system of the embodiment of the present disclosure may also adopt other arrangements, and the embodiments of the present disclosure will not be described one by one because it cannot be exhaustive.
  • An embodiment of the present disclosure provides a rotor system including: a rotating shaft, the shaft body of the rotating shaft is an integral structure, the rotating shaft is vertically disposed; the motor, the compressor, and the turbine are sequentially disposed on the rotating shaft; and the thrust bearing disposed on the rotating shaft And at least two radial bearings, the thrust bearing and the at least two radial bearings are non-contact bearings; wherein the thrust bearing is disposed at a preset position of the turbine near the side of the compressor, and the preset position is capable of The center of gravity of the rotor system is located between two of the at least two radial bearings that are furthest apart.
  • the thrust bearing and the radial bearing adjacent to the thrust bearing are integrated to form the bearing provided in the present disclosure.
  • the thrust bearing is a bearing for restricting movement of the rotating shaft in the axial direction
  • the radial bearing is a bearing for restricting movement of the rotating shaft in the radial direction
  • the radial bearing may employ a non-contact bearing.
  • the shaft body of the rotating shaft is an integral structure, and it can be understood that the shaft body of the rotating shaft is a whole shaft, or the shaft body of the rotating shaft is rigidly connected by a plurality of shaft segments. Since the shaft body of the rotating shaft is an integral structure, the strength of the shaft bodies on the rotating shaft is uniform, which makes the position of the thrust bearing on the rotating shaft unrestricted.
  • the center of gravity of the entire rotor system should be between the two radial bearings that are furthest apart among the at least two radial bearings.
  • the entire rotor system forms a spindle structure that, unlike conventional cantilevered structures, enhances the stability of the overall rotor system.
  • the position of the thrust bearing in the rotating shaft is not limited, in the embodiment of the present disclosure, the number of the radial bearings of the at least two radial bearings, the position of each radial bearing, and the entire rotor system may be The parameters of the mass of each component (including the mass of the thrust bearing itself) are flexibly adjusted to the position of the thrust bearing so that the center of gravity of the entire rotor system is located between the two radial bearings that are furthest apart, preferably, the entire rotor The center of gravity of the system is located on the compressor.
  • the rotating shaft is vertically disposed. Therefore, it can be understood that the rotor system of the embodiment of the present disclosure is a vertical rotor system, which can be applied to a vertical unit that needs to use a vertical rotor system, such as a vertical gas turbine to generate electricity. unit.
  • the rotor system can be set upright. In this way, the center of gravity of the rotor system is in the axial center, no static deflection occurs, and the moment generated by gravity on the axis is zero, which can eliminate the influence of gravity on the rotation of the rotor system, thereby improving the stability of the rotor system.
  • the center of gravity of all components is downward, and the problems caused by the cantilever shaft structure caused by the horizontal arrangement of the rotor system can be avoided.
  • an embodiment of the present disclosure provides a rotor system including a rotating shaft 100 and a thrust bearing 500.
  • the shaft body of the rotating shaft 100 is an integral structure, and the rotating shaft 100 is vertically disposed; the rotating shaft 100 is sequentially provided with a motor 200 and a compressor.
  • first radial bearing 600 and a second radial bearing 700 are further disposed on the rotating shaft, and the first radial bearing 600 and the second radial bearing 700 are both non-contact bearings, wherein the first diameter
  • the bearing 600 and the thrust bearing 500 are integrated to form an integrated bearing 10000; the first radial bearing 600 is disposed on a side of the motor 200 remote from the compressor 300, and the second radial bearing 700 is disposed in the compressor 300 and the turbine 400
  • the thrust bearing 500 is disposed between the first radial bearing 600 and the motor 200.
  • non-contact bearings generally include electromagnetic bearings and air bearings.
  • problems such as too much energy consumption and heat generation; and when the surface linear velocity approaches or exceeds the speed of sound, a shock wave is generated, which causes the bearing to be unstable and even has catastrophic consequences such as a collision axis. .
  • the first radial bearing 600 may adopt a gas magnetic hybrid radial bearing or a gas dynamic and static pressure mixing diameter.
  • the second radial bearing 700 may employ a gas dynamic hydrostatic hybrid radial bearing in consideration of the fact that the magnetic member in the magnetic bearing cannot withstand the high temperature transmitted from the turbine 400.
  • the second radial bearing 700 may also adopt a pneumatically-mixed radial bearing, in which the magnetic component of the second radial bearing 700 is disposed on the second radial bearing 700 away from the turbine 400. Area. That is, the area on the second radial bearing 700 near the turbine 400 is not provided with a magnetic member.
  • a heat insulating layer (not shown) is disposed on a side of the turbine 400 adjacent to the second radial bearing 700.
  • the material of the heat insulating layer may be an aerogel or other material having good heat insulating properties.
  • the compressor 300 may be a centrifugal compressor 300, and the turbine 400 may be a centrifugal turbine;
  • the motor 200 may be a dynamic pressure bearing motor, and the rotating shaft 100 may be provided with a first motion corresponding to a bearing of the motor 200.
  • the pressure generating groove 201; the motor 200 may also be a heuristic integrated motor, such that when the rotor system is started, the motor 200 can be used as a motor to drive the rotor system to rotate; after the rotor system is started, the motor 200 can be used as a generator. In order to realize the rotor system to drive the generator to generate electricity.
  • the thrust bearing and the radial bearing in the rotor system of the embodiment of the present disclosure may also adopt other arrangements, and the embodiments of the present disclosure will not be described one by one because it cannot be exhaustive.
  • Embodiments of the present disclosure provide a rotor system including: a rotating shaft, the shaft body of the rotating shaft is an integral structure, the rotating shaft is horizontally disposed or vertically disposed; the motor, the compressor, the turbine, the thrust bearing, and the two radial directions are disposed on the rotating shaft
  • the bearing, the two radial bearings are non-contact bearings; and, the first casing and the second casing, the first casing is connected to the second casing; wherein the motor, the thrust bearing and the two radial bearings are It is disposed in the first casing, and the compressor and the through-average are disposed in the second casing; the impeller of the compressor and the turbine impeller are disposed in the second casing.
  • the thrust bearing and the radial bearing adjacent to the thrust bearing are integrated to form the bearing provided in the present disclosure.
  • the thrust bearing is a bearing for restricting movement of the rotating shaft in the axial direction
  • the radial bearing is a bearing for restricting movement of the rotating shaft in the radial direction
  • the radial bearing can be a non-contact bearing.
  • the first casing and the second casing may be positioned and connected through a stop (not shown), wherein the thrust bearing and all the radial bearings may all be disposed on the first casing (may be It is understood to be inside the motor casing, and the second casing (which can be understood as a gas turbine casing) does not need to be provided with bearings.
  • the second casing which can be understood as a gas turbine casing
  • the utility model reduces the processing precision and assembly precision of the gas turbine motor unit, reduces the cost, and is suitable for engineering mass production.
  • the rotating shaft may be horizontally disposed or vertically. Therefore, it can be understood that the rotor system of the embodiment of the present disclosure is applicable to both a horizontal unit requiring a rotor system and a rotor system.
  • Vertical units such as horizontal gas turbine motors, or vertical gas turbine motors.
  • the shaft body of the rotating shaft is an integral structure, the gas turbine rotor and the motor rotor are connected by using a coupling different from the prior art.
  • the shaft body of the rotating shaft is a unitary structure, the strength of the shaft bodies on the rotating shaft is uniform, which makes the position of the thrust bearing on the rotating shaft unrestricted.
  • the axial length in the first casing is shortened, so that the stability of the entire rotor system can be further improved.
  • a heat insulation layer (not shown) may be disposed on the turbine of the turbine and/or the compressor, wherein the material of the heat insulation layer may be Aerogels or other materials with good thermal insulation; turbines of turbines can also be made of materials with lower thermal conductivity, for example turbines made of ceramic materials.
  • an embodiment of the present disclosure provides a rotor system including a rotating shaft 100 and a thrust bearing 500.
  • the shaft body of the rotating shaft 100 is an integral structure, and the rotating shaft 100 is horizontally disposed; the motor 200 and the compressor 300 disposed on the rotating shaft 100 are provided.
  • a turbine 400, a thrust bearing 500, a first radial bearing 600 and a second radial bearing 700, the first radial bearing 600 and the second radial bearing 700 are both non-contact bearings, wherein the first radial bearing 600 and thrust bearing 500 are integrated to form an integrated bearing 10000; and a first casing 800 and a second casing 900, the first casing 800 is connected to the second casing 900, wherein the motor 200, the thrust bearing 500, the first A radial bearing 600 and a second radial bearing 700 are both disposed in the first casing 800, and the compressor 300 and the turbine 400 are both disposed in the second casing 900.
  • the first radial bearing 600 is disposed on a side of the motor 200 remote from the second casing 900, the second radial bearing 700 is disposed on a side of the motor 200 adjacent to the second casing 900; and the thrust bearing 500 is disposed at the first diameter Between the bearing 600 and the motor 200.
  • non-contact bearings generally include electromagnetic bearings and air bearings.
  • problems such as too much energy consumption and heat generation; and when the surface linear velocity approaches or exceeds the speed of sound, a shock wave is generated, which causes the bearing to be unstable and even has catastrophic consequences such as a collision axis. .
  • the first radial bearing 600 may be a pneumatically-mixed radial bearing or a gas dynamic static pressure mixing.
  • the radial bearing; the second radial bearing 700 may be a pneumatically-mixed radial bearing or a gas dynamic-static hybrid radial bearing.
  • the bearing capacity of the second radial bearing 700 is greater than the bearing capacity of the first radial bearing 600.
  • the weight of the motor 200 and the thrust bearing 500 are both large, and the center of gravity of the entire rotor system is biased toward the side of the first radial bearing 600.
  • increasing the bearing capacity of the second radial bearing 700 helps to improve the stability of the entire rotor system.
  • the compressor 300 may be a centrifugal compressor 300, and the turbine of the turbine 400 may be a centrifugal turbine; the motor 200 is a dynamic pressure bearing motor, and the portion of the shaft 100 corresponding to the motor 200 may be provided with a first The dynamic pressure generating groove 201.
  • the motor 200 can also be a heuristic integrated motor.
  • the motor 200 can be turned on in the start mode to rotate the rotor system.
  • the operating mode of the motor 200 can be switched to the power generation mode.
  • an embodiment of the present disclosure provides another rotor system including a rotating shaft 100 and a thrust bearing 500.
  • the shaft body of the rotating shaft 100 is an integral structure, and the rotating shaft 100 is vertically disposed; the motor 200 disposed on the rotating shaft 100 is compressed.
  • the machine 300, the turbine 400, the thrust bearing 500, the first radial bearing 600 and the second radial bearing 700, the first radial bearing 600 and the second radial bearing 700 are both non-contact bearings, wherein the first diameter Integrating the bearing 600 and the thrust bearing 500 to form an integrated bearing 10000; and a first casing 800 and a second casing 900, the first casing 800 is coupled to the second casing 900, wherein the motor 200 and the thrust bearing 500
  • the first radial bearing 600 and the second radial bearing 700 are both disposed in the first casing 800, and the compressor 300 and the turbine 400 are both disposed in the second casing 900.
  • the first radial bearing 600 is disposed on a side of the motor 200 remote from the second casing 900, the second radial bearing 700 is disposed on a side of the motor 200 adjacent to the second casing 900; and the thrust bearing 500 is disposed at the first diameter Between the bearing 600 and the motor 200.
  • the shaft When the rotor system of the present disclosure is used on a mobile device, such as an extended-range electric vehicle, the shaft is in direct contact with the bearing without the rotor system operating.
  • the rotation of the rotating shaft relative to the radial or axial direction of the bearing due to bumps or vibrations causes wear between the rotating shaft and the bearing, thereby affecting the accuracy and life of the bearing.
  • the rotor system of the embodiment of the present disclosure is provided with a locking device for locking the rotating shaft when the rotor system is not in operation.
  • the structure and arrangement of the locking device are not unique.
  • two embodiments of the locking device provided with the locking device are specifically described below with reference to FIG.
  • the locking device 110 includes a telescopic tightening unit 111, a connecting rod 112 and a fixing member 113.
  • One end of the connecting rod 112 is connected to the fixing member 113, and the other end is connected to the telescopic tightening unit 111.
  • the telescopic tightening unit 111 faces the end surface of the rotating shaft 100 away from the end of the turbine 400, and the other end of the fixing member 113 is fixedly coupled to the housing in which the rotor system of the present disclosure is mounted.
  • the telescopic tightening unit 111 of the locking device 110 acts and pushes the rotating shaft 100 in the axial direction of the rotating shaft 100, so that the stator of the thrust bearing 500 contacts the thrust plate, thereby axially fixing the rotating shaft 100 while utilizing The friction between the stator of the thrust bearing 500 and the thrust disk radially fixes the rotating shaft 100.
  • the telescopic tightening unit 111 is provided with a tip portion (not shown), and an end surface of the rotating shaft 100 away from the end of the turbine 400 is provided with a tip hole (not shown). In the locked state, the tip portion is inserted into the top hole of the rotating shaft 100, so that the rotating shaft 100 can be better fixed to prevent wear and damage to the rotating shaft 100 and the bearing during running of the vehicle.
  • the locking device 120 may also be provided as a locking device of a ferrule structure.
  • the locking device 120 includes a telescopic unit 121 and a ferrule 122, and the ferrule 122 is coupled to the telescopic end of the telescopic unit 122.
  • the ferrule 122 may be a semi-circular ferrule having a radius equal to or slightly larger than the radius of the rotating shaft 100.
  • the axis of the ferrule 122 is disposed parallel to the axis of the rotating shaft 100, and the telescopic unit 121 is mounted to a substantially axial intermediate position of the rotating shaft 100, and is fixedly connected.
  • the telescopic unit 121 When the rotor system is stopped, the telescopic unit 121 is extended, so that the ferrule 122 is caught by the rotating shaft 100, and the rotating shaft 100 is pushed into contact with the radial bearing, thereby radially fixing the rotating shaft 100 while utilizing the radial bearing and the rotating shaft 100.
  • the frictional force fixes the shaft 100 axially.
  • the telescopic unit 121 may select a component such as a piston type cylinder or a hydraulic cylinder that can realize telescopic control.
  • the position of the locking device 120 on the rotating shaft 100 may not be limited.
  • the locking device 120 is disposed between the two farthest radial bearings in the rotor system.
  • FIGS. 17 and 18 are both based on the rotor system arrangement shown in FIG. 13, and the locking devices are provided in the rotor system of other embodiments of the present disclosure, which will not be described herein.
  • the locking device can lock the rotating shaft when the rotor system is not working. In this way, it is possible to prevent the rotation of the rotating shaft from being radial or axial with respect to the bearing, so that the accuracy and life of the bearing can be improved.
  • the shaft When the rotor system of the present disclosure is used on a mobile device, such as an extended-range electric vehicle, the shaft is in direct contact with the bearing without the rotor system operating.
  • the rotation of the rotating shaft relative to the radial or axial direction of the bearing due to bumps or vibrations causes wear between the rotating shaft and the bearing, thereby affecting the accuracy and life of the bearing.
  • the rotor system of the embodiment of the present disclosure is coated with an anti-friction coating 101 at a portion where the bearing of the rotating shaft 100 is mounted, as shown in FIG.
  • the wear-resistant coating 101 is applied to the portion of the rotating shaft 100 where the bearing is mounted, and the wear of the rotating shaft 100 and the bearing can be effectively prevented.
  • the wear-resistant coating 101 is preferably a material having chemical stability, corrosion resistance, high lubricating non-stickiness, and good aging resistance, such as polytetrafluoroethylene.
  • the wear-resistant coating 101 in FIG. 19 is based on the rotor system arrangement shown in FIG. 13, and the locking device is provided in the rotor system of other embodiments of the present disclosure, which will not be described herein.
  • the following is a control method for a bearing in the rotor system in which the bearing of the embodiment of the present disclosure (wherein the first magnetic component in the first magnetic bearing is the first electromagnet and the second magnetic component in the second magnetic bearing is the second electromagnet) Describe in detail.
  • an embodiment of the present disclosure provides a method for controlling a bearing, including:
  • the rotating shaft is lifted by the plurality of first magnetic members and reaches a preset radial position (the radial position of the rotating shaft can be detected by the displacement sensor) And, the thrust disk reaches a predetermined position between the first stator and the second stator by a magnetic force between the plurality of second magnetic members and the third magnetic members.
  • the shaft rotates, the shaft begins to rotate under the lubrication of the airflow in the first gap to prevent wear; the thrust disc starts to rotate relative to the first stator and the second stator while being lubricated by the airflow in the second gap, To prevent wear.
  • the specific process of opening the first magnetic bearing and the second magnetic bearing is: inputting a current signal of a predetermined value to the first coil and the second coil.
  • the gas dynamic pressure bearing of the radial sub-bearing and the thrust sub-bearing (the first gap is formed between the first magnetic bearing and the rotating shaft to form a radial sub-
  • the gas dynamic pressure bearing of the bearing, the second gap between the thrust disc and the stator, that is, the gas dynamic pressure bearing forming the thrust sub-bearing) can stabilize the rotating shaft and the thrust disc, and the first magnetic bearing and the first can be closed. Two magnetic bearings.
  • the shaft When the rotor system is stopped, the shaft is decelerated. In order to keep the shaft stable during the whole rotor system shutdown, the first magnetic bearing and the second magnetic bearing are opened when the rotor system is stopped, and the first shaft can be closed after the shaft is completely stopped. Magnetic bearing and second magnetic bearing.
  • the embodiment of the present disclosure further provides another method for controlling a bearing, including:
  • the first magnetic bearing and the second magnetic bearing are turned on until the rotating shaft returns to the equilibrium position.
  • the first magnetic bearing and the second magnetic bearing are turned on, including: when the rotor system accelerates to a first-order critical speed or a second-order critical speed, the first control The magnetic bearing and the second magnetic bearing are turned on at maximum power; or, when the rotor system is accelerated to the first critical speed or the second critical speed, the first magnetic bearing and the second magnetic bearing are controlled to be strobed in accordance with a preset frequency.
  • the first magnetic bearing and the second magnetic bearing are turned on until the rotating shaft returns to the equilibrium position.
  • the first magnetic bearing and the second magnetic bearing are turned on, including: when the rotor system is decelerated to a first-order critical speed or a second-order critical speed, the first control The magnetic bearing and the second magnetic bearing are turned on at maximum power; or, when the rotor system is decelerated to a first-order critical speed or a second-order critical speed, the first magnetic bearing and the second magnetic bearing are controlled to be strobed in accordance with a preset frequency.
  • the rotating shaft is lifted by the plurality of first magnetic members and reaches a preset radial position (the radial position of the rotating shaft can be detected by the displacement sensor) And, the thrust disk reaches a predetermined position between the first stator and the second stator by a magnetic force between the plurality of second magnetic members and the third magnetic members.
  • the shaft rotates, the shaft begins to rotate under the lubrication of the airflow in the first gap to prevent wear; the thrust disc starts to rotate relative to the first stator and the second stator while being lubricated by the airflow in the second gap, To prevent wear.
  • the specific process of opening the first magnetic bearing and the second magnetic bearing is: inputting a current signal of a predetermined value to the first coil and the second coil.
  • the gas dynamic pressure bearing of the radial sub-bearing and the thrust sub-bearing (the first magnetic bearing) a gas dynamic pressure bearing is formed between the rotating shaft and the gas dynamic pressure bearing which forms a radial sub-bearing, and a second gap is formed between the thrust disc and the stator, that is, a gas dynamic pressure bearing forming a thrust sub-bearing.
  • the thrust plate is stable, and the first magnetic bearing and the second magnetic bearing can be closed at that time.
  • the rotational speed of the rotating shaft is getting smaller and smaller.
  • the second preset value for example, 5% to 30% of the rated rotational speed
  • the radial sub-bearing and the thrust sub-bearing are The film pressure generated by the gas dynamic pressure bearing also decreases with the deceleration of the shaft or the thrust disc. Therefore, it is necessary to open the first magnetic bearing and the second magnetic bearing to stabilize the rotating shaft and the thrust disc until the speed of the rotating shaft is zero.
  • the first magnetic bearing and the second magnetic bearing can be closed.
  • the method further includes: when the first gap between the rotating shaft and the first magnetic bearing changes, opening the first magnetic bearing, so that the rotating shaft becomes smaller away from the gap under the magnetic force of the plurality of first magnetic components. The direction of the side moves; after the rotating shaft is in the balanced radial position, the first magnetic bearing is closed.
  • the first sensor (the first sensor here preferably the pressure sensor) obtains a signal of increasing air pressure, and the first magnetic bearing needs to be intervened.
  • the first magnetic bearing applies a magnetic force to the rotating shaft to suspend upward, and when the rotating shaft reaches a new balanced radial position, the first magnetic bearing stops working.
  • the rotating shaft may quickly approach the first magnetic bearing, which may cause the first gap between the rotating shaft and the first magnetic bearing to be too small, so that the local gas flow rate at the first gap is reduced. Even reaching the speed of sound, causing the shock wave to produce air hammer self-excitation. The generation of shock waves can cause local gas flow to be disturbed and confusing.
  • the velocity of the fluid changes between sonic and subsonic, its pressure drops stepwise. In this case, it is necessary to control the first magnetic member of the first magnetic bearing to be turned on at a preset frequency to provide a damping effect on the disturbance, thereby effectively suppressing external disturbance. After the shaft returns to the new equilibrium radial position, the first magnetic bearing stops working.
  • the advantage of the first magnetic bearing is convenient for real-time control, the unbalanced mass of the rotating shaft or the whirl of the rotating shaft is actively balanced, and the rotating shaft is excessively offset, so that the rotating shaft is fixed in a certain minimum range in the radial direction.
  • the position where the shock wave is generated ie, the linear velocity supersonic portion
  • the first magnetic bearing can be balanced by controlling the magnitude and direction of the current of the first magnetic bearing. Shock wave action. After the shock wave is stabilized, the control strategy of the first magnetic bearing is adjusted again to fix the rotating shaft in a very small range in the most energy-saving manner.
  • the method further includes: when the load is loaded on the thrust plate, the thrust disk moves in the axial direction of the rotating shaft under the load load, and the first between the thrust disk and the second magnetic bearing in the first stator When the difference between the second gap and the second gap between the thrust disk and the second magnetic bearing in the second stator is greater than a predetermined value, the second magnetic bearing is opened; when the thrust disk and the second magnetic bearing in the first stator The difference between the second gap and the second gap between the thrust disk and the second magnetic bearing in the second stator is less than or equal to a predetermined value, and the second magnetic bearing is closed.
  • the second sensor When the load is loaded on the thrust plate, the second gap between the thrust disk and the second magnetic bearing of the first stator or the second stator is reduced to approach the second magnetic bearing of the side, the second sensor (here The second sensor, preferably the pressure sensor, obtains a signal of increased air pressure, at which point the second magnetic bearing requires intervention.
  • the second magnetic bearing applies a magnetic force to the thrust plate to move to the second magnetic bearing on the other side, and when the thrust plate reaches a new equilibrium position, the second magnetic bearing can be stopped.
  • the thrust plate and the first fixed Controlling the second magnetic bearing in the second stator by the difference between the second gap between the second magnetic bearings and the second gap between the thrust disk and the second magnetic bearing in the second stator is greater than a predetermined value
  • the thrust disk is moved in the axial direction of the rotating shaft in a direction away from the second stator by a magnetic force between the first magnetic member and the plurality of second magnetic members.
  • the thrust disk and the first stator Controlling a difference between the second gap between the second magnetic bearing and the second gap between the thrust disk and the second magnetic bearing in the second stator is greater than a predetermined value, thereby controlling the second magnetic bearing in the first stator
  • the thrust disk moves in an axial direction of the rotating shaft in a direction away from the first stator by a magnetic force between the first magnetic member and the plurality of second magnetic members.
  • the thrust plate moves in the axial direction of the rotating shaft under the load load, and the second gap between the thrust plate and the second magnetic bearing in the first stator and the thrust plate Opening the second magnetic bearing in the first stator or the second stator when the difference between the second gap between the second magnetic bearing and the second magnetic bearing in the second stator is greater than a predetermined value, including: when the load is loaded on the thrust plate, the thrust The disk moves in the axial direction of the rotating shaft under the load of the load, and the second gap between the thrust disk and the second magnetic bearing in the first stator is between the thrust disk and the second magnetic bearing in the second stator When the difference of the second gap is greater than a predetermined value, controlling the second magnetic bearing in the first stator or the second stator to be turned on with maximum power; or, when the load is loaded on the thrust plate, the thrust disk is under the load load Moving in the axial direction of the rotating shaft, the difference between the second gap between the thrust disk and the second magnetic bearing in the first stator
  • the thrust plate may quickly approach the second magnetic bearing on one side, which may cause the second gap on the side to be too small, so that the local gas flow rate at the second gap on the side approaches or even reaches the speed of sound. , which causes the shock wave to generate air hammer self-excitation.
  • the generation of shock waves can cause local gas flow to be disturbed and confusing.
  • the velocity of the fluid changes between sonic and subsonic, its pressure drops stepwise. In this case, it is necessary to control the second magnetic bearings in the first stator and the second stator to be turned on at a preset frequency to provide a damping effect on the disturbance, thereby effectively suppressing external disturbances.
  • the second magnetic bearing stops working.
  • the advantage of the second magnetic bearing is convenient for real-time control, the unbalanced mass of the thrust plate or the whirl of the thrust disk is actively balanced, and the thrust plate is excessively offset, so that the thrust plate is fixed in the axial direction of the rotating shaft. In a very small range.
  • the position where the shock wave is generated ie, the linear velocity supersonic portion
  • the magnitude and direction of the current of the second magnetic bearing are controlled to cause the second magnetic bearing to generate an opposite force. Balance the shock.
  • the control strategy of the second magnetic bearing is adjusted again to fix the thrust disk in a very small range in the most energy-saving manner.
  • the bearing is simultaneously provided with a magnetic bearing (wherein the first magnetic component in the first magnetic bearing is the first electromagnet, the second magnetic component in the second magnetic bearing is the second electromagnet) and the gas
  • a hydrostatic bearing a hydrostatic air intake orifice is provided on the bearing housing
  • the magnetic bearing and the hydrostatic bearing can be used alternately, and in the case where one of the faults, failure or failure to satisfy the opening condition, the other can As a backup bearing plays the same role.
  • the external air source is turned on to replace the magnetic bearing to perform a corresponding action, thereby improving the safety and reliability of the bearing.
  • the external air source When the first magnetic bearing and the second magnetic bearing are in a fault state, the external air source is turned on, and the gas is supplied to the first gap and the second gap through the static pressure air inlet orifice; and the rotating shaft is controlled by the gas along the rotating shaft. Radially moving to move the rotating shaft to a preset radial position; and controlling the thrust disk to move in the axial direction of the rotating shaft under the action of the gas to make the thrust disk and the second magnetic bearing in the first stator The second gap therebetween is equal to the second gap between the thrust disk and the second magnetic bearing in the second stator.
  • the above embodiment corresponds to the control method of the bearing when the first magnetic bearing and the second magnetic bearing are in a fault state when the rotor system is in the opening phase.
  • the control of the bearing can be realized by turning on or off the external air source, which is not described in detail because it is easy to understand.
  • the step of opening the first magnetic bearing and the second magnetic bearing comprises: opening when the first magnetic bearing and the second magnetic bearing are in a normal state a first magnetic bearing and a second magnetic bearing, and opening an external air source, conveying gas to the first gap and the second gap through the static pressure air inlet orifice; controlling the rotating shaft under the magnetic force of the plurality of first magnetic components Moving in a radial direction of the rotating shaft to move the rotating shaft to a preset radial position; and controlling the thrust disk to move in an axial direction of the rotating shaft under a magnetic force between the plurality of second magnetic members and the third magnetic member a step of causing a second gap between the thrust disk and the second magnetic bearing in the first stator to be equal to a second gap between the thrust disk and the second magnetic bearing in the second stator, including: controlling the rotating shaft The magnetic action of the first magnetic member and the movement of the gas in the radial direction of the rotating shaft to move the rotating shaft to the pre
  • the bearing capacity of the bearing of the embodiment of the present disclosure can be further improved by adopting an embodiment in which the magnetic bearing and the gas static bearing are simultaneously opened.
  • the preferred embodiment of the present disclosure has the following beneficial effects:
  • the magnetic bearing and the gas bearing work together to improve the dynamic performance and stability of the bearing under high-speed operation, and the resistance to disturbance is strong, thereby improving the bearing capacity of the bearing.
  • the magnetic bearing and the gas bearing adopt a nested structure, which simplifies the structure, has high integration, is easy to process, manufacture and operate, and improves the comprehensive performance of the bearing.
  • the magnetic bearing can be used to rotate the rotating shaft, which improves the low-speed performance of the bearing, prolongs the service life of the bearing, and improves the safety and reliability of the bearing and the entire system.
  • the radial sub-bearing of the embodiment of the present disclosure has the advantage of a fast response speed compared to the conventional gas dynamic hydrostatic hybrid radial sub-bearing using a combination of a gas hydrostatic bearing and a gas dynamic pressure bearing.
  • the gas hydrostatic bearing is added to form a dynamic-static-magnetic hybrid radial sub-bearing.
  • the bearing capacity of the bearing is further increased, the magnetic bearing and the static pressure of the gas
  • the bearings can be used interchangeably, and the other can function as a backup bearing in the event that one of the faults fails, fails, or fails to meet the opening conditions.
  • the control system controls the gas hydrostatic bearing to open in place of the magnetic bearing to perform a corresponding action, thereby improving the safety and reliability of the bearing.
  • a radial bearing separately provided in the rotor system may adopt various structural forms. If the radial bearing adopts a pneumatically-mixed radial bearing, it may be
  • the foil type gas magnetic hybrid radial bearing can also be a groove type gas magnetic hybrid radial bearing.
  • FIG. 23 to FIG. 30 are schematic structural views of a groove type gas magnetic hybrid radial bearing according to an embodiment of the present disclosure.
  • the groove type gas magnetic hybrid radial bearing 6200 includes: a fourth magnetic bearing 6201 sleeved on the rotating shaft 100, and a plurality of seventh magnetic components are circumferentially disposed on the fourth magnetic bearing 6201
  • the fourth magnetic bearing 6201 is disposed toward the side wall of the rotating shaft 100, or the rotating shaft 100 is disposed on the circumferential surface of the fourth magnetic bearing 6201 with a third dynamic pressure generating groove 6202; wherein the fourth magnetic bearing 6201 and the rotating shaft 100 have the same
  • the four gaps 6203 and the rotating shaft 100 are movable in the radial direction of the rotating shaft 100 by the magnetic force of the plurality of seventh magnetic members.
  • the radial bearing 6200 is formed into a gas-and magnetic-mixed radial bearing by providing a fourth gap 6203 and a fourth magnetic bearing 6201 in the radial bearing 6200.
  • the gas bearing in the radial bearing 6200 and the fourth magnetic bearing 6201 can work together, relying on the gas bearing to achieve support when the radial bearing 6200 is in a stable working state; and the radial bearing 6200 is in an unstable operation.
  • the radial bearing 6200 is controlled and responded in time by the fourth magnetic bearing 6201.
  • the embodiments of the present disclosure can improve the dynamic performance and stability of the radial bearing, especially in the high-speed operation state, and have strong anti-disturbance capability, thereby improving the bearing capacity of the radial bearing.
  • the radial bearings of the embodiments of the present disclosure are capable of meeting the needs of high speed rotor systems, such as gas turbine or gas turbine power generation combined units.
  • the rotating shaft 100 may be formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
  • the flowing gas existing in the fourth gap 6203 is pressed into the third dynamic pressure generating groove 6202, thereby generating pressure to float the rotating shaft 100 to realize the radial direction of the rotating shaft 100. It is kept non-contact.
  • the magnitude of the pressure generated by the third dynamic pressure generating groove 6202 varies depending on the angle of the third dynamic pressure generating groove 6202, the groove width, the groove length, the groove depth, the number of grooves, and the flatness. Further, the magnitude of the pressure generated by the third dynamic pressure generating groove 6202 is also related to the rotational speed of the rotating shaft 100 and the fourth gap 6203.
  • the parameters of the third dynamic pressure generating groove 6202 can be designed according to actual working conditions.
  • the third dynamic pressure generating groove 6202 may be formed on the fourth magnetic bearing 6201 or the rotating shaft by forging, rolling, etching, or punching.
  • the plurality of seventh magnetic components comprise a plurality of fourth permanent magnets, wherein the plurality of fourth permanent magnets are circumferentially disposed on the fourth magnetic bearing 6201; or the plurality of seventh magnetic components comprise a plurality of fourth electromagnetic components Iron, a plurality of fourth electromagnets are circumferentially disposed on the fourth magnetic bearing 6201, and each of the plurality of fourth electromagnets includes a fourth magnetic core 62011 disposed on the fourth magnetic bearing 6201 and The fourth coil 62012 is wound around the fourth core 62011.
  • the seventh magnetic member when the groove type gas magnetic hybrid radial bearing 6200 only requires the magnetic member to provide magnetic force without magnetron, the seventh magnetic member is preferably a fourth permanent magnet; when the foil type gas magnetic hybrid thrust bearing requires magnetic force at the same time In the case of magnetron control, the seventh magnetic member is preferably a fourth electromagnet.
  • the seventh magnetic member is the fourth electromagnet
  • a current is applied to the fourth coil 62012, that is, the fourth magnetic core 62011 can generate a magnetic force.
  • the magnitude of the current flowing into the fourth coil 62012 is different, and the magnitude of the magnetic force generated by the fourth core 62011 is also different.
  • the direction of the current flowing into the fourth coil 62012 is different, and the magnetic poles of the fourth core 62011 are also different.
  • the fourth magnetic core 62011 may be formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
  • the fourth magnetic bearing 6201 includes: a fourth magnetic bearing housing 62013, the fourth magnetic bearing housing 62013 is sleeved on the rotating shaft 100, and a fourth magnetic receiving seat 62013 is disposed on the fourth magnetic bearing housing 62013 with a plurality of fourth receiving slots 62014 a plurality of seventh magnetic members are disposed in the plurality of fourth receiving grooves 62014, and the magnetic poles of the plurality of seventh magnetic members are oriented toward the rotating shaft 100; and the second bearing housing 62015 is disposed outside the fourth magnetic bearing housing 62013; a second bearing sleeve 62016 between the fourth magnetic bearing housing 62013 and the rotating shaft 100; and a fifth end cover 62017 and a sixth end cover 62018 respectively disposed at two ends of the second bearing housing 62015; wherein, the second bearing sleeve 62016 The fifth end cover 62017 and the sixth end cover 62218 cooperate to fix the plurality of seventh magnetic members to the fourth magnetic bearing housing 62013.
  • the gap between the fourth magnetic core 62011 and the fourth coil 62012 can be closed, thereby forming a stable and uniform air film between the second bearing sleeve 62016 and the rotating shaft 100. pressure.
  • the size of the fourth gap 6203 can be conveniently adjusted and controlled by providing the second bearing sleeves 62016 of different radial thicknesses.
  • the width of the fourth gap 6203 between the second bearing sleeve 62016 and the rotating shaft 100 may be 5 ⁇ m to 12 ⁇ m, preferably 8 ⁇ m to 10 ⁇ m.
  • the fourth magnetic bearing housing 62013 may be formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
  • the number of the fourth accommodating grooves 62014 may be, but not limited to, six or eight, and is uniformly disposed along the circumferential direction of the fourth magnetic bearing housing 62013.
  • the magnetic force between the fourth magnetic bearing 6201 and the rotating shaft 100 can be made more uniform and stable.
  • the plurality of seventh magnetic members may be disposed on the fourth magnetic bearing housing 62013 in other manners, which is not limited thereto.
  • the material of the fifth end cap 62017 and the sixth end cap 62018 may each be a non-magnetic material, preferably a hard aluminum material.
  • the material of the second bearing sleeve 62016 may be a non-magnetic material, preferably a hard aluminum material.
  • the material of the second bearing shell 62015 may be a non-magnetic material, preferably a hard aluminum material.
  • the fifth end cover 62017 and the sixth end cover 62018 are each provided with a boss having the same outer diameter as the inner diameter of the second bearing shell 62015, and the bosses of the fifth end cover 62017 and the sixth end cover 62218 are used for The end fixes and compacts the silicon steel sheet or the silicon steel sheet constituting the fourth magnetic bearing housing 62013.
  • the third dynamic pressure generating groove 6202 may be disposed on the second bearing sleeve 62016.
  • the second bearing sleeve 62016 may be made of a stainless steel material.
  • the third dynamic pressure generating groove 6202 may be disposed on the rotating shaft 100 at an intermediate portion corresponding to the circumferential surface of the second bearing sleeve 62016, or may be disposed symmetrically distributed on both sides of the intermediate portion and independent of each other.
  • the pressure generating groove 6202; the third dynamic pressure generating groove 6202 may be disposed at an intermediate portion of the inner side wall of the second bearing sleeve 62016, or may be disposed symmetrically distributed at two ends of the inner side wall of the second bearing sleeve 62016, and independent of each other.
  • the third dynamic pressure generating grooves 6202 are arranged in a matrix, so that the gas film is more uniformly distributed in the fourth gap 6203.
  • the third dynamic pressure generating groove 6202 is a continuous or spaced V-shaped groove.
  • the rotating shaft can be held in a non-contact manner in a desired manner in the case where the rotating shaft 100 rotates in the forward or reverse direction.
  • the rotating shaft 100 has the advantages of high load capacity and good stability.
  • the third dynamic pressure generating groove 6202 may be provided as a chevron groove or a groove of other shapes, in addition to being provided as a V-shaped groove.
  • the fourth magnetic bearing 6201 is further provided with a second static pressure air inlet orifice 6205, one end of the second static pressure air inlet orifice 6205 is in communication with the fourth gap 6203, and the other end is connected to an external air source.
  • a second static pressure air inlet orifice 6205 one end of the second static pressure air inlet orifice 6205 is in communication with the fourth gap 6203, and the other end is connected to an external air source.
  • the gas static pressure bearing can be formed by providing the second static pressure air inlet orifice 6205, so that the groove type gas magnetic hybrid radial bearing 6200 can form a trough gas dynamic static pressure-magnetic hybrid radial direction. Bearing.
  • the flow diameter of the second hydrostatic inlet orifice 6205 can be adjusted according to actual working conditions such as gas demand.
  • the second hydrostatic air intake orifice 6205 is divided into at least two branches into the fourth gap 6203 in the fourth magnetic bearing 6201.
  • the second static pressure air intake orifice 6205 may sequentially pass through the fifth end cover 62017 or the sixth end cover 62018, the fourth magnetic bearing 6201, and the second bearing sleeve 62016, and the external air source and the first The four gaps 6203 are connected. Further, the second hydrostatic air intake orifice 6205 can be divided into two or more branches to communicate with the fourth gap 6203 such that the film pressure in the fourth gap 6203 is more uniform. Further, the fifth end cover 62017 or the sixth end cover 62018 may be provided with an annular groove, and a plurality of second static pressure air intake orifices 6205 may be disposed in the annular region corresponding to the fourth magnetic bearing 6201 and the annular groove.
  • a second hydrostatic air intake orifice 6205 is provided in each of the fourth cores 62011 or in every two adjacent fourth cores 62011.
  • the second static pressure inlet orifice 6205 and the flow diameter of the branch can be adjusted according to actual working conditions such as gas demand.
  • the trough type gas magnetic hybrid radial bearing 6200 further includes a plurality of fourth sensors 6204 disposed along a circumferential interval of the fourth magnetic bearing 6201, wherein the sensor probe of each fourth sensor 6204 is disposed in the fourth gap 6203 Inside.
  • the parameter at the fourth gap 6203 can be detected in real time, for example, the film pressure at the fourth gap 6203.
  • the fourth magnetic bearing 6201 can actively control the radial bearing 6200 according to the detection result of the fourth sensor 6204, and can achieve high precision in control.
  • each of the plurality of fourth sensors 6204 includes a fourth sensor cover 62041 and a fourth sensor probe 62242.
  • the first end of the fourth sensor probe62042 is connected to the fourth sensor cover 62041, and the fourth sensor
  • the cover 62041 is fixed on the fourth magnetic bearing 6201, and the fourth magnetic bearing 6201 is provided with a through hole for the fourth sensor probe62042 to pass through; the second end of the fourth sensor probe 62242 passes through the fourth magnetic bearing 6201.
  • the through hole extends to the fourth gap 6203, and the second end portion of the fourth sensor probe 62242 is flush with the side of the fourth magnetic bearing 6201 near the rotating shaft 100.
  • the fourth sensor 6204 can be more stably disposed on the fourth magnetic bearing 6201 by the structural form and the mounting manner of the fourth sensor 6204 described above.
  • the second end portion of the fourth sensor probe 62242 is flush with the side of the fourth magnetic bearing 6201 near the rotating shaft 100.
  • the fourth sensor probe 62242 can be prevented from being touched by the rotating shaft 100, thereby facilitating the contact.
  • the fourth sensor probe 62242 is protected; on the other hand, the air film in the fourth gap 6203 is not affected, and the gas film in the fourth gap 6203 is prevented from being disturbed.
  • each of the plurality of fourth sensors 6204 is disposed between the adjacent two seventh magnetic components.
  • the number of the fourth sensors 6204 may be the same as the number of the seventh magnetic components.
  • the fourth sensor 6204 may be disposed between the two adjacent seventh magnetic components, or may be disposed through the seventh magnetic component, which is not limited by the embodiment of the present disclosure.
  • Each of the fourth sensors 6204 is preferably disposed at a middle portion of the fourth magnetic bearing 6201.
  • the plurality of fourth sensors 6204 are any combination of one or more of: a displacement sensor for detecting the position of the rotating shaft 100; a pressure sensor for detecting the film pressure at the fourth gap 6203; for detecting A speed sensor for rotating the shaft 100; an acceleration sensor for detecting the rotational acceleration of the rotating shaft 100.
  • Embodiments of the present disclosure provide a method for controlling a slot type gas magnetic hybrid radial bearing, including:
  • the fourth magnetic bearing is turned on, and the control shaft is moved in a radial direction of the rotating shaft by the magnetic force of the plurality of seventh magnetic members, and the rotating shaft is pushed to a preset radial position.
  • the rotating shaft is lifted by the fourth magnetic bearing and reaches a preset radial position, and the fourth magnetic bearing and the rotating shaft have a fourth gap.
  • the specific process of opening the fourth magnetic bearing is: inputting a current signal of a predetermined value to the fourth coil, and the rotating shaft is lifted by the fourth magnetic bearing and reaches a preset radial position.
  • the gas dynamic pressure bearing of the radial bearing (the fourth magnetic gap between the fourth magnetic bearing and the rotating shaft forms a gas motion of the radial bearing)
  • the film pressure generated by the pressure bearing can stabilize the shaft, and the fourth magnetic bearing can be closed at that time.
  • the rotating shaft is decelerated.
  • the fourth magnetic bearing is opened when the rotor system is stopped, and the fourth magnetic bearing can be closed after the rotating shaft is completely stopped.
  • the embodiment of the present disclosure further provides a control method for another trough type gas magnetic hybrid radial bearing, comprising:
  • the fourth magnetic bearing is opened until the rotating shaft returns to the equilibrium radial position.
  • the fourth magnetic bearing when the rotational speed of the rotating shaft is accelerated to a first-order critical speed or a second-order critical speed, the fourth magnetic bearing is turned on, including: when the rotational speed of the rotating shaft is accelerated to a first-order critical speed or a second-order critical speed, the fourth magnetic bearing is controlled to The maximum power is turned on; or, when the rotational speed of the rotating shaft is accelerated to the first critical speed or the second critical speed, the fourth magnetic bearing is controlled to be strobed in accordance with the preset frequency.
  • the fourth magnetic bearing is turned on until the rotating shaft returns to the equilibrium radial position.
  • the fourth magnetic bearing when the rotational speed of the rotating shaft is decelerated to a first-order critical speed or a second-order critical speed, the fourth magnetic bearing is turned on, including: when the rotational speed of the rotating shaft is decelerated to a first-order critical speed or a second-order critical speed, the fourth magnetic bearing is controlled to The maximum power is turned on; or, when the rotational speed of the rotating shaft is decelerated to the first critical speed or the second critical speed, the fourth magnetic bearing is controlled to be strobed in accordance with the preset frequency.
  • the rotating shaft is lifted by the fourth magnetic bearing and reaches a preset radial position, and the fourth magnetic bearing and the rotating shaft have a fourth gap.
  • the specific process of opening the fourth magnetic bearing is: inputting a current signal of a predetermined value to the fourth coil, and the rotating shaft is lifted by the fourth magnetic bearing and reaches a preset radial position.
  • the radial dynamic bearing of the radial bearing (between the fourth magnetic bearing and the rotating shaft)
  • the film pressure generated by the fourth gap that is, the gas dynamic pressure bearing forming the radial bearing, can stabilize the shaft, and the fourth magnetic bearing can be closed at that time.
  • the rotating shaft is decelerated.
  • the rotating shaft speed drops to a second preset value, for example, 5% to 30% of the rated speed
  • the fourth magnetic bearing is turned on, and the fourth magnetic bearing is turned off until the rotating shaft is completely stopped. Magnetic bearing.
  • the method further includes: when the fourth gap between the rotating shaft and the fourth magnetic bearing changes, opening the fourth magnetic bearing, so that the rotating shaft is smaller toward the side away from the gap under the magnetic force of the plurality of seventh magnetic members The direction of movement; after the shaft is in the balanced radial position, the fourth magnetic bearing is closed.
  • the fourth sensor (the fourth sensor here is preferably a pressure sensor) obtains a signal of increasing air pressure, and the fourth magnetic bearing needs to be intervened.
  • the fourth magnetic bearing applies a magnetic force to the rotating shaft to suspend upward, and when the rotating shaft reaches a new equilibrium position, the fourth magnetic bearing stops working.
  • the rotating shaft may quickly approach the fourth magnetic bearing, which may cause the gap between the rotating shaft and the fourth magnetic bearing to be too small, so that the local gas flow rate at the reduced gap approaches or even reaches the speed of sound. Therefore, the shock wave is generated by the shock wave.
  • the generation of shock waves can cause local gas flow to be disturbed and confusing.
  • the velocity of the fluid changes between sonic and subsonic, its pressure drops stepwise. In this case, it is necessary to control the seventh magnetic member of the fourth magnetic bearing to be turned on at a preset frequency to provide a damping effect on the disturbance, thereby effectively suppressing the external disturbance. After the shaft returns to the new balanced radial position, the fourth magnetic bearing stops working.
  • the electromagnetic bearing is provided at the same time (the seventh magnetic component in the fourth magnetic bearing is an electromagnet that forms an electromagnetic bearing) and the gas static pressure bearing (the fourth magnetic bearing is provided on the fourth magnetic bearing)
  • the electromagnetic bearing and the hydrostatic bearing can be used alternately, and in the case where one of the faults, failure or failure to meet the opening condition, the other can be used as a backup.
  • the bearings play the same role. For example, in the case where an electromagnetic bearing failure is detected, the external air source is turned on to replace the electromagnetic bearing to perform a corresponding action, thereby improving the safety and reliability of the bearing.
  • the following embodiments may be included: opening the fourth magnetic bearing; and/or starting the external air source through the second static pressure air inlet section
  • the flow hole transports the gas to the fourth gap; the control shaft moves under the magnetic force of the plurality of seventh magnetic members, and/or the gas is pushed in the radial direction of the rotating shaft to move the rotating shaft to the preset radial direction position.
  • the bearing capacity of the radial bearing of the embodiment of the present disclosure can be further improved.
  • the fourth magnetic bearing is used to facilitate the advantages of real-time control, and the unbalanced mass of the rotating shaft or the whirl of the rotating shaft is actively balanced, which causes the excessive rotation of the rotating shaft, so that the rotating shaft is fixed in a certain minimum range in the radial direction.
  • the position where the shock wave is generated ie, the linear velocity supersonic portion
  • the fourth magnetic bearing can be balanced by the opposite force by controlling the magnitude and direction of the current of the fourth magnetic bearing. Shock wave action.
  • the control strategy of the fourth magnetic bearing is adjusted again to fix the rotating shaft in a very small range in the most energy-saving manner.
  • the electromagnetic bearing cooperates with the gas bearing to improve the dynamic performance and stability of the bearing under high-speed operation, and has strong resistance to disturbance, thereby improving the bearing capacity of the bearing.
  • the electromagnetic bearing and the gas bearing adopt a nested structure, which simplifies the structure, has high integration, is easy to process, manufacture and operate, and improves the comprehensive performance of the bearing.
  • the trough type gas-magnetic hybrid radial bearing of the embodiment of the present disclosure has the advantage of a fast response speed with respect to the conventional gas dynamic hydrostatic hybrid thrust bearing using a combination of a gas hydrostatic bearing and a gas dynamic pressure bearing.
  • the gas hydrostatic bearing is added to form a trough dynamic-static-magnetic hybrid thrust bearing.
  • the bearing capacity of the bearing is further increased, and the electromagnetic bearing and the gas static pressure are further increased.
  • the bearings can be used interchangeably, and the other can function as a backup bearing in the event that one of the faults fails, fails, or fails to meet the opening conditions.
  • the control system controls the gas hydrostatic bearing to open to replace the electromagnetic bearing to perform a corresponding action, thereby improving the safety and reliability of the bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种轴承、转子系统及轴承的控制方法,其中轴承(1000)包括:轴承壳(1001),轴承壳(1001)为中空回转体,轴承壳(1001)设置有第一容纳腔和第二容纳腔;设置于第一容纳腔内的径向子轴承(102);径向子轴承(102)穿设于转轴(100)上,径向子轴承(102)与转轴(100)之间具有第一间隙(104);以及设置于第二容纳腔内的推力子轴承(103),推力子轴承(103)包括推力盘(1031),以及分别设置于推力盘(1031)两侧的第一定子(1032)和第二定子(1033),推力盘(1031)固定连接于转轴(100)上,第一定子(1032)和第二定子(1033)均穿设于转轴(100)上;第一定子(1032)和第二定子(1033)中,每个定子(1032、1033)与推力盘(1031)之间具有第二间隙(105)。其结构简单、集成度高,在加工和安装时能够有效保证径向子轴承和推力子轴承同轴度一致的要求。

Description

轴承、转子系统及轴承的控制方法
相关申请的交叉引用
本申请主张在2018年1月12日在中国提交的中国专利申请号No.201810032639.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及轴承技术领域,尤其涉及一种轴承、转子系统及轴承的控制方法。
背景技术
燃气轮机主要包括压气机、燃烧室及透平三大部件。空气进入压气机后被压缩成高温高压的空气,然后供给燃烧室与燃料混合燃烧,其产生的高温高压燃气在透平中膨胀做功。转子高速转动时,转子会受到径向方向或轴向方向的力。为了限制转轴发生径向或轴向上的移动,转子系统中需要安装径向轴承和推力轴承。传统的径向轴承和推力轴承均为接触式轴承,随着转子转速的提高,尤其是转子转速每分钟超过40000转时,接触式轴承由于存在较大的机械磨损,已不能满足工作转速的需求。
现有转子系统中,径向轴承和推力轴承均分别加工且分别安装,这样,导致径向轴承和推力轴承在加工或安装过程中很难保证同轴度一致的要求。
发明内容
本公开提供一种轴承、转子系统及轴承的控制方法,以解决现有转子系统中因径向轴承和推力轴承分别加工、安装而导致径向轴承和推力轴承的同轴度一致性较低的问题。
第一方面,本公开提供一种轴承,用于安装于转轴上,轴承包括:轴承壳,轴承壳为中空回转体,轴承壳设置有第一容纳腔和第二容纳腔;设置于第一容纳腔内的径向子轴承,径向子轴承穿设于转轴上,径向子轴承与转轴之间具有第一间隙;以及,设置于第二容纳腔内的推力子轴承,推力子轴承包括推力盘,以及分别设置于推力盘两侧的第一定子和第二定子,推力盘固定连接于转轴上,第一定子和第二定子均穿设于转轴上;第一定子和第二定子中,每个定子与推力盘之间具有第二间隙。
可选的,径向子轴承包括套设于转轴上的第一磁轴承,第一磁轴承与转轴之间具有第一间隙,第一磁轴承上沿周向设置有多个第一磁性部件;转轴能够在多个第一磁性部件的磁力作用下在转轴的径向方向上移动;第一定子和第二定子中,每个定子包括第二磁轴承,第二磁轴承上沿周向设置有多个第二磁性部件;推力盘上设置有第三磁性部件,推力盘能够在多个第二磁性部件和第三磁性部件之间的磁力作用下在转轴的轴向方向上移动。
可选的,第一磁轴承包括:第一磁轴承座,第一磁轴承座套设于转轴上,第一磁轴承座上沿周向设置有多个第一容纳槽,多个第一磁性部件设置于多个第一容纳槽内,且多个第一磁性部件的磁极朝向转轴;以及,套设于第一磁轴承座与转轴之间的轴承套,轴承套与转轴之间具有第一间隙,轴承套与第一磁轴承座配合,将多个第一磁性部件固定于第一 磁轴承座上。
可选的,多个第一磁性部件包括多个第一永磁体,多个第一永磁体在第一磁轴承上沿周向设置;或者,多个第一磁性部件包括多个第一电磁铁,多个第一电磁铁在第一磁轴承上沿周向设置,多个第一电磁铁中的每个第一电磁铁包括设置于第一磁轴承上的第一磁芯及缠绕于第一磁芯上的第一线圈。
可选的,第一磁轴承朝向转轴的侧壁或转轴朝向第一磁轴承的圆周面设置有第一动压发生槽。
可选的,径向子轴承还包括沿第一磁轴承的周向间隔设置的多个第一传感器,多个第一传感器为以下任意一种或多种的组合:用于检测转轴位置的位移传感器;用于检测第一间隙处的气膜压力的压力传感器;用于检测转轴转速的速度传感器;用于检测转轴旋转加速度的加速度传感器。
可选的,多个第一传感器中,每个第一传感器包括传第一感器盖和第一传感器探头,第一传感器探头的第一端连接第一传感器盖,第一传感器盖固定于第一磁轴承上,第一磁轴承上设有用于供第一传感器探头穿过的通孔;第一传感器探头的第二端穿过第一磁轴承上的通孔,并伸至第一间隙,且第一传感器探头的第二端端部与第一磁轴承的靠近转轴的一侧平齐。
可选的,第二磁轴承包括:第二磁轴承座,第二磁轴承座与推力盘相对设置,第二磁轴承座上沿周向设置有多个第二容纳槽,多个第二磁性部件设置于多个第二容纳槽内,且多个第二磁性部件的磁极朝向推力盘所在的一侧;压环,压环设置于第二磁轴承座的靠近推力盘的一侧,压环与第二磁轴承座配合,将多个第二磁性部件固定于第二磁轴承座上。
可选的,多个第二磁性部件包括多个第二永磁体,多个第二永磁体在第二磁轴承上沿周向设置;或者,多个第二磁性部件包括多个第二电磁铁,多个第二电磁铁在第二磁轴承上沿周向设置,多个第二电磁铁中的每个第二电磁铁包括设置于第二磁轴承上的第二磁芯及缠绕于第二磁芯上的第二线圈。
可选的,第三磁性部件包括设置于推力盘的面向第一定子和第二定子的端面上的磁性材料;其中,磁性材料在推力盘上呈条状分布,而形成多个条状磁性部,多个条状磁性部呈辐射状或环状;或者,磁性材料在推力盘上呈点状分布。
可选的,推力盘的面向第一定子和第二定子的端面,或,第一定子和第二定子的面向推力盘的端面上设置有第二动压发生槽。
可选的,第二动压发生槽呈辐射状或同心圆状排布。
可选的,第二动压发生槽包括第一螺旋槽和第二螺旋槽,第一螺旋槽环绕于第二螺旋槽外,第一螺旋槽和第二螺旋槽的螺旋走向相反,第一螺旋槽的靠近第二螺旋槽的一端与第二螺旋槽的靠近第一螺旋槽的一端连接或断开。
可选的,推力子轴承上还设置有第二传感器,第二传感器为以下任意一种或多种的组合:用于检测推力盘位置的位移传感器;用于检测第二间隙处的气膜压力的压力传感器;用于检测推力盘转速的速度传感器;用于检测推力盘旋转加速度的加速度传感器。
可选的,第二传感器包括第二传感器盖和第二传感器探头,第二传感器探头的第一端连接第二传感器盖,第二传感器盖固定于第二磁轴承上,第二磁轴承上设有用于供第二传感器探头穿过的通孔;第二传感器探头的第二端穿过第二磁轴承上的通孔,并伸至第二间 隙,且第二传感器探头的第二端端部与第二磁轴承的靠近推力盘的一侧平齐。
可选的,轴承壳还设置有静压进气节流孔;其中,静压进气节流孔的一端连接外部气源,另一端经径向子轴承与第一间隙相通,并经第一定子和第二定子与第二间隙相通,静压进气节流孔用于将外部气源输送至第一间隙和第二间隙。
第二方面,本公开提供一种转子系统,其特征在于,包括转轴和设置于转轴上的推力轴承和至少两个径向轴承,推力轴承和至少两个径向轴承均为非接触式轴承;推力轴承和与推力轴承相邻的径向轴承集成一体,形成第一方面中任一项的轴承。
可选的,转轴的轴体为一体结构,转轴水平设置或竖向设置;转轴上依次设置有电机、压气机和透平;其中,推力轴承设置于透平的靠近压气机的一侧的预设位置上,预设位置为能够使转子系统的重心位于至少两个径向轴承中相距最远的两个径向轴承之间的位置。
可选的,转轴的轴体为一体结构,转轴水平设置或竖向设置;转轴上设置有电机、压气机、透平和两个径向轴承,两个径向轴承均为非接触式轴承;转子系统还包括第一机匣和第二机匣,第一机匣与第二机匣连接;其中,发电机、推力轴承和两个径向轴承均设置于第一机匣内,压气机和透平均设置于第二机匣内,压气机的叶轮与透平的叶轮在第二机匣内相靠设置。
第三方面,本公开提供一种轴承的控制方法,用于第二方面中任一项的转子系统,轴承的多个第一磁性部件为多个第一电磁铁,多个第二磁性部件为多个第二电磁铁,方法包括:开启第一磁轴承和第二磁轴承;控制转轴在多个第一磁性部件的磁力作用下在转轴的径向方向上移动,以使转轴移动至预设径向位置;以及,控制推力盘在多个第二磁性部件和第三磁性部件之间的磁力作用下在转轴的轴向方向上移动,以使推力盘与第一定子中的第二磁轴承之间的第二间隙与推力盘与第二定子中的第二磁轴承之间的第二间隙的差值小于或等于预定值;转轴的转速加速至工作转速之后,关闭第一磁轴承和第二磁轴承;转子系统停机时,开启第一磁轴承和第二磁轴承;转轴的转速减速至零之后,关闭第一磁轴承和第二磁轴承。
第四方面,本公开提供另一种轴承的控制方法,用于第二方面中任一项的转子系统,轴承的多个第一磁性部件为多个第一电磁铁,多个第二磁性部件为多个第二电磁铁,方法包括:开启第一磁轴承和第二磁轴承;控制转轴在多个第一磁性部件的磁力作用下在转轴的径向方向上移动,以使转轴移动至预设径向位置;以及,控制推力盘在多个第二磁性部件和第三磁性部件之间的磁力作用下在转轴的轴向方向上移动,以使推力盘与第一定子中的第二磁轴承之间的第二间隙与推力盘与第二定子中的第二磁轴承之间的第二间隙的差值小于或等于预定值;转轴的转速加速至第一预设值之后,关闭第一磁轴承和第二磁轴承;转子系统加速至一阶临界速度或二阶临界速度时,开启第一磁轴承和第二磁轴承;转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭第一磁轴承和第二磁轴承;转子系统停机过程中,当转子系统减速至一阶临界速度或二阶临界速度时,开启第一磁轴承和第二磁轴承;转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭第一磁轴承和第二磁轴承;转轴的转速减速至第二预设值时,开启第一磁轴承和第二磁轴承;转轴的转速减速至零之后,关闭第一磁轴承和第二磁轴承。
可选的,转子系统加速或减速至一阶临界速度或二阶临界速度时,开启第一磁轴承和第二磁轴承,包括:转子系统加速或减速至一阶临界速度或二阶临界速度时,控制第一磁 轴承和第二磁轴承以最大功率开启;或者,转子系统加速或减速至一阶临界速度或二阶临界速度时,控制第一磁轴承和第二磁轴承按照预设频率以频闪的方式开启。
可选的,方法还包括:当转轴与第一磁轴承之间的第一间隙发生变化时,开启第一磁轴承,使转轴在多个第一磁性部件的磁力作用下向远离间隙变小侧的方向移动;转轴处于平衡径向位置之后,关闭第一磁轴承。
可选的,方法还包括:当载荷负载在推力盘,推力盘在载荷负载的作用下在转轴的轴向方向上移动,推力盘与第一定子中的第二磁轴承之间的第二间隙与推力盘与第二定子中的第二磁轴承之间的第二间隙的差值大于预定值时,开启第二磁轴承;当推力盘与第一定子中的第二磁轴承之间的第二间隙与推力盘与第二定子中的第二磁轴承之间的第二间隙的差值小于或者等于预定值,关闭第二磁轴承。
本公开中,通过将径向子轴承和推力子轴承集成在一个轴承壳内,其结构简单、集成度高,且易于加工和安装,在加工和安装时能够有效保证径向子轴承和推力子轴承的同轴度一致的要求。另外,本公开由于径向子轴承和推力子轴承中均设置有间隙,本公开的轴承为非接触式轴承,能够满足转子高速转动的需求。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获取其他的附图。
图1是第一实施例提供的一种轴承的剖视图;
图2是图1中A-A向的剖视图;
图3是图1中B-B向的剖视图;
图4是第一实施例提供的轴承中第一磁轴承座的结构示意图;
图5是第一实施例提供的轴承中第二磁轴承座的结构示意图;
图6是第一实施例提供的轴承中在轴承套上设置第一动压发生槽的结构示意图之一;
图7是第一实施例提供的轴承中在轴承套上设置第一动压发生槽的结构示意图之二;
图8是第一实施例提供的轴承中在转轴上设置第一动压发生槽的结构示意图;
图9是第一实施例提供的轴承中在推力盘上设置第二动压发生槽的结构示意图之一;
图10是第一实施例提供的轴承中在推力盘上设置第二动压发生槽的结构示意图之二;
图11是第一实施例提供的轴承中在压环上设置第二动压发生槽的结构示意图之一;
图12是第一实施例提供的轴承中在压环上设置第二动压发生槽的结构示意图之二;
图13是第二实施例提供的一种转子系统的结构示意图;
图14是第三实施例提供的一种转子系统的结构示意图;
图15是第四实施例提供的一种转子系统的结构示意图;
图16是第四实施例提供的另一种转子系统的结构示意图;
图17是第五实施例提供的一种在转子系统中设置锁紧装置的结构示意图;
图18是第五实施例提供的另一种在转子系统中设置锁紧装置的结构示意图;
图19是图18中C-C向的结构示意图;
图20是第六实施例提供的在转轴上涂覆防磨涂层的结构示意图;
图21是第七实施例提供的一种轴承的控制方法的流程示意图;
图22是第七实施例提供的另一种轴承的控制方法的流程示意图;
图23是第八实施例提供的一种槽式气磁混合径向轴承的半剖视图;
图24是第八实施例提供的另一种槽式气磁混合径向轴承的半剖视图;
图25是第八实施例提供的一种槽式气磁混合径向轴承的外部视图;
图26是第八实施例提供的槽式气磁混合径向轴承中第四磁轴承的结构示意图;
图27是第八实施例提供的槽式气磁混合径向轴承中第四磁轴承座的结构示意图;
图28是第八实施例提供的槽式气磁混合径向轴承中在第二轴承套上设置第三动压发生槽的结构示意图之一;
图29是第八实施例提供的槽式气磁混合径向轴承中在第二轴承套上设置第三动压发生槽的结构示意图之二;
图30是第八实施例提供的槽式气磁混合径向轴承中在转轴上设置第三动压发生槽的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获取的所有其他实施例,都属于本公开保护的范围。
第一实施例
如图1至图12所示,轴承1000,用于安装于转轴100上,轴承1000包括:轴承壳1001,轴承壳1001为中空回转体,轴承壳1001设置有第一容纳腔和第二容纳腔;设置于第一容纳腔内的径向子轴承102,径向子轴承102穿设于转轴100上,径向子轴承102与转轴100之间具有第一间隙104;以及,设置于第二容纳腔内的推力子轴承103,推力子轴承103包括推力盘1031,以及分别设置于推力盘1031两侧的第一定子1032和第二定子1033,推力盘1031固定连接于转轴100上,第一定子1032和第二定子1033均穿设于转轴100上;第一定子1032和第二定子1033中,每个定子与推力盘1031之间具有第二间隙105。
本公开实施例中,将径向子轴承102和推力子轴承103集成在一个轴承壳1001内,易于加工和安装,具有结构简单、集成度高的特点,在加工和安装时能够有效保证径向子轴承102和推力子轴承103的同轴度一致的要求。另外,由于径向子轴承102中设置有第一间隙104,推力子轴承103中设置有第二间隙105,使得本公开的轴承为非接触式轴承,能够满足转子高速转动的需求。
其中,轴承壳1001的材料可以是非磁性材料,优选硬铝材料。
其中,第一定子1032与轴承壳1001可以一体成型,第二定子1033与轴承壳1001可以是可拆卸连接。
当本公开实施例的轴承应用于燃气轮机或者燃气轮机发电联合机组时,轴承壳1001可以通过连接件与燃气轮机的壳体连接。
本公开优选实施例中,径向子轴承102包括套设于转轴100上的第一磁轴承1021,第一磁轴承1021与转轴100之间具有第一间隙104,第一磁轴承1021上沿周向设置有多个第一磁性部件10211;转轴100能够在多个第一磁性部件10211的磁力作用下在转轴100的径向方向上移动;第一定子1032和第二定子1033中,每个定子包括第二磁轴承1034,第二磁轴承1034上沿周向设置有多个第二磁性部件10341;推力盘1031上设置有第三磁性部件,推力盘1031能够在多个第二磁性部件10341和第三磁性部件之间的磁力作用下在转轴100的轴向方向上移动。
本公开优选实施例中,通过在径向子轴承102中设置第一间隙104和第一磁轴承1021,从而使该径向子轴承102形成气、磁混合径向子轴承102;通过在推力子轴承103中设置第二间隙105和第二磁轴承1034,从而使该推力子轴承103形成气、磁混合推力子轴承103。
工作时,径向子轴承102和推力子轴承103能够协同工作,使转轴100在径向和轴向方向上均保持稳定;另外,径向子轴承102和推力子轴承103中的气体轴承与磁轴承也能够协同工作,对转轴100进行及时、有效地控制。
可见,本公开优选实施例的轴承能够保证转轴100,尤其在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了轴承的承载能力。本公开实施例的轴承能够满足高转速的燃气轮机或者燃气轮机发电联合机组等的需求。
可选的,第一磁轴承1021可以是可拆卸安装于第一容纳腔内。
进一步的,轴承还包括端盖106,端盖106设置于轴承壳1001的靠近第一容纳腔的端部,端盖106与第一磁轴承1021抵接,用于将第一磁轴承1021固定于第一容纳腔内。其中,端盖106的材料可以为非磁性材料,优选硬铝材料。
可选的,轴承壳1001还设置有静压进气节流孔107;其中,静压进气节流孔107的一端连接外部气源,另一端经径向子轴承102与第一间隙104相通,并经第一定子1032和第二定子1033与第二间隙105相通,静压进气节流孔107用于将外部气源输送至第一间隙104和第二间隙105。
本公开实施例中,通过设置上述静压进气节流孔107,从而使径向子轴承102和推力子轴承103均包括气体静压轴承,从而径向子轴承102可以构成气体动静压-磁混合径向子轴承102,推力子轴承103可以构成气体动静压-磁混合推力子轴承103。其中,静压进气节流孔107的流通直径可以根据气量需求等实际工况进行调节。
由于同时设置有磁轴承和气体静压轴承,能够使轴承1000的承载力进一步加大。另外,磁轴承和气体静压轴承可以相互备用,在其中一方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到磁轴承故障的情况,通过控制气体静压轴承开启以替代磁轴承执行相应的动作,从而提高轴承1000的安全性和可靠性。
为了更好地理解本公开实施例的轴承中每个子轴承的具体结构,下面分别对径向子轴承102和推力子轴承103进行进一步地说明。
其中,对于径向子轴承102:作为一种实施方式,第一磁轴承1021包括:第一磁轴承座10212,第一磁轴承座10212套设于转轴100上,第一磁轴承座10212上沿周向设置有多个第一容纳槽10213,多个第一磁性部件10211设置于多个第一容纳槽10213内,且 多个第一磁性部件10211的磁极朝向转轴100;以及,套设于第一磁轴承座10212与转轴100之间的轴承套10212,轴承套10212与转轴100之间具有第一间隙104,轴承套10212与第一磁轴承座10212配合,将多个第一磁性部件10211固定于第一磁轴承座10212上。
该实施方式中,通过设置轴承套10212,能够封闭磁芯1011以及线圈1012与第一磁轴承座10212之间的间隙,从而在轴承套10212和转轴100之间形成稳定、均匀的气膜压力。另外,通过设置不同径向厚度的轴承套10212能够方便地调节和控制第一间隙104的大小。
其中,轴承套10212与转轴100之间的第一间隙104的宽度可以为5μm至12μm,优选8μm至10μm。
需要说明的是,转轴100未开启时,转轴100与轴承套10212同轴心设置,转轴100开启后,转轴100的轴心偏离轴承套10212的轴心的任意一侧,且偏心率ε为0.3至0.5,以保证轴承套10212与转轴100之间能够形成楔状的第一间隙104。在转轴100旋转时,气体被压入第一间隙104,从而产生压力来支撑负载。其中,偏心率ε=e/(R-r),其中,e为转轴100的轴心至轴承套10212的轴心之间的距离,R为轴承套10212的内径,r为转轴100的内径,(R-r)为轴承间隙的宽度。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本公开的优选实施例中,第一磁轴承座10212由若干硅钢片或者矽钢片叠压而成。第一容纳槽10213的数量可以为但不限于为六个或八个,沿第一磁轴承座10212的周向均匀设置。这样,能够使第一磁轴承1021的磁力更加均匀、稳定。需要说明的是,多个第一磁性部件10211还可以采用其他方式设置于第一磁轴承座10212上,对此不进行限定。轴承套10212的材料可以是非磁性材料,优选硬铝材料。
作为一种实施方式,多个第一磁性部件10211包括多个第一永磁体,多个第一永磁体在第一磁轴承1021上沿周向设置;或者,多个第一磁性部件10211包括多个第一电磁铁,多个第一电磁铁在第一磁轴承1021上沿周向设置,多个第一电磁铁中的每个第一电磁铁包括设置于第一磁轴承1021上的第一磁芯及缠绕于第一磁芯上的第一线圈。
该实施方式中,当径向子轴承102仅需要第一磁性部件10211提供磁力而无需磁控时,第一磁性部件10211优选永磁体;当径向子轴承102同时需要第一磁性部件10211提供磁力和磁控时,第一磁性部件10211优选电磁铁。
当第一磁性部件10211为电磁铁时,往第一线圈通入电流,即可以使第一磁芯产生磁力。往第一线圈通入电流的大小不同,第一磁芯产生的磁力大小也不同;往第一线圈通入电流的方向不同,第一磁芯的磁极也不同。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本公开的优选实施例中,第一磁芯可以由若干硅钢片或者矽钢片叠压而成。
作为一种实施方式,第一磁轴承1021朝向转轴100的侧壁,和/或转轴100朝向第一磁轴承1021的圆周面设置有第一动压发生槽1022。
该实施方式中,当转轴100旋转时,存在于第一间隙104的流动气体被压入第一动压发生槽1022内,从而产生压力,使转轴100上浮,以实现转轴100沿径向方向被非接触地保持。其中,第一动压发生槽1022产生压力的大小随第一动压发生槽1022的角度、槽宽、槽长、槽深、槽数以及平面度的不同而变化。此外,第一动压发生槽1022产生压力 的大小也和转轴100的旋转速度以及第一间隙104有关。可以根据实际工况对第一动压发生槽1022的参数进行设计。第一动压发生槽1022可以通过锻造、滚轧、刻蚀或冲压等方式形成于第一磁轴承1021或转轴100上。
结合前述实施方式,该实施方式中,可以在轴承套10212上设置第一动压发生槽1022,为便于第一动压发生槽1022的加工,轴承套10212可以由不锈钢材料制成。具体地,第一动压发生槽1022可以设置在转轴100上对应轴承套10212的圆周面的中间部分,也可以设置为对称分布在中间部分的两侧、相互独立的两部分第一动压发生槽1022;第一动压发生槽1022还可以设置在轴承套10212内侧壁的中间部分,也可以设置为对称分布在轴承套10212内侧壁两端、相互独立的两部分第一动压发生槽1022。
可选的,第一动压发生槽1022呈矩阵排布。这样,有利于使气膜更均匀地分布于第一间隙104内。
进一步的,第一动压发生槽1022为连续或间隔设置的V形槽。这样,能够在转轴100正向旋转或者反向旋转的情况下,转轴100都能以期望的方式非接触式地保持,从而使转轴100具有负载能力高及稳定性好的优点。第一动压发生槽1022除了设置为V形槽,还可以设置为人字形槽或其它形状的槽。
作为一种实施方式,径向子轴承102还包括沿第一磁轴承1021的周向间隔设置的多个第一传感器(图中未示出),其中每个第一传感器的传感器探头设置于第一间隙104内。
这样,能够实时检测第一间隙104处的参数,例如第一间隙104处的气膜压力等。这样,第一磁轴承1021可以根据第一传感器的检测结果对径向子轴承102进行主动控制,并能够使控制达到较高的精度。
可选的,多个第一传感器中,每个第一传感器包括传第一感器盖和第一传感器探头,第一传感器探头的第一端连接第一传感器盖,第一传感器盖固定于第一磁轴承1021上,第一磁轴承1021上设有用于供第一传感器探头穿过的通孔;第一传感器探头的第二端穿过第一磁轴承1021上的通孔,并伸至第一间隙104,且第一传感器探头的第二端端部与第一磁轴承1021的靠近转轴100的一侧平齐。
这样,能够使第一传感器更稳定地设置于第一磁轴承1021上。此外,将传感器探头的第二端端部与第一磁轴承1021的靠近转轴100的一侧平齐,能够避免传感器探头受到转轴100的碰触,从而有利于保护传感器探头。
可选的,多个第一传感器中,每个第一传感器分别设置于相邻的两个第一磁性部件10211之间。例如,当第一磁性部件10211的数量为八个时,第一传感器的数量也可以为八个,每个第一传感器分别设置于相邻的两个第一磁性部件10211之间,每个第一传感器优选设置于第一磁轴承1021的中部。
可选的,多个第一传感器为以下任意一种或多种的组合:用于检测转轴100位置的位移传感器;用于检测第一间隙104处的气膜压力的压力传感器;用于检测转轴100转速的速度传感器;用于检测转轴100旋转加速度的加速度传感器。
其中,对于推力子轴承103:作为一种实施方式,第二磁轴承1034包括:第二磁轴承座10342,第二磁轴承座10342与推力盘1031相对设置,第二磁轴承座10342上沿周向设置有多个第二容纳槽10343,多个第二磁性部件10341设置于多个第二容纳槽10343内,且多个第二磁性部件10341的磁极朝向推力盘1031所在的一侧;压环10344,压环 10344设置于第二磁轴承座10342的靠近推力盘1031的一侧,压环10344与第二磁轴承座10342配合,将多个第二磁性部件10341固定于第二磁轴承座10342上。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本公开的优选实施例中,第二磁轴承座10342由若干硅钢片或者矽钢片叠压而成。第二容纳槽10343的数量可以为但不限于为六个或八个,沿第二磁轴承座10342的周向均匀设置。这样,能够使第二磁轴承1034与推力盘1031之间的磁力更加均匀、稳定。需要说明的是,多个第二磁性部件10341还可以采用其他方式设置于第二磁轴承座10342上,对此不进行限定。压环10344的材料可以为非磁性材料,优选硬铝材料。
对应该实施方式的结构,静压进气节流孔107的进气路在轴承壳1001分两路分别与第一定子1032的环形气体流道和第二定子1033的环形气体流道连通,第一定子1032和第二定子1033的静压进气路一端穿过压环10344与推力盘1031和两个定子之间的第二间隙105连通,另一端分别与第一定子1032的环形气体流道和第二定子1033的环形气体流道连通。
作为一种实施方式,多个第二磁性部件10341包括多个第二永磁体,多个第二永磁体在第二磁轴承1034上沿周向设置;或者,多个第二磁性部件10341包括多个第二电磁铁,多个第二电磁铁在第二磁轴承1034上沿周向设置,多个第二电磁铁中的每个第二电磁铁包括设置于第二磁轴承1034上的第二磁芯及缠绕于第二磁芯上的第二线圈。
本公开实施例中,当推力子轴承103仅需要第二磁性部件10341提供磁力而无需磁控时,第二磁性部件10341优选永磁体;当推力子轴承103同时需要第二磁性部件10341提供磁力和磁控时,第二磁性部件10341优选电磁铁。
当第二磁性部件10341为电磁铁时,往第二线圈通入电流,即可以使第二磁芯产生磁力。往第二线圈通入电流的大小不同,第二磁芯产生的磁力大小也不同;往第二线圈通入电流的方向不同,第二磁芯的磁极也不同。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本公开的优选实施例中,第二磁芯由若干硅钢片或者矽钢片叠压而成。
作为一种实施方式,第三磁性部件包括设置于推力盘1031的面向第一定子1032和第二定子1033的端面上的磁性材料(图中未示出);其中,磁性材料在推力盘1031上呈条状分布,而形成多个条状磁性部,多个条状磁性部呈辐射状或环状;
或者,磁性材料在推力盘1031上呈点状分布。
该实施方式中,使磁性材料在推力盘1031上呈条状分布或点状分布,可以将磁性材料与第二磁性部件10341之间产生的磁力控制在合理的范围。
作为一种实施方式,推力盘1031的面向第一定子1032和第二定子1033的端面,和/或,第一定子1032和第二定子1033的面向推力盘1031的端面上设置有第二动压发生槽1035。
本公开实施例中,当推力盘1031旋转时,存在于第二间隙105的流动气体被压入第二动压发生槽1035内,从而产生压力,以实现推力盘1031沿轴向方向被非接触地保持。其中,第二动压发生槽1035产生压力的大小随第二动压发生槽1035的角度、槽宽、槽长、槽深、槽数以及平面度的不同而变化。此外,第二动压发生槽1035产生压力的大小也和推力盘1031的旋转速度以及第二间隙105有关。可以根据实际工况对第二动压发生槽1035 的参数进行设计。第二动压发生槽1035可以通过锻造、滚轧、刻蚀或冲压等方式形成于第一定子1032和第二定子1033上,或者,第二动压发生槽1035可以通过锻造、滚轧、刻蚀或冲压等方式形成于推力盘1031上。
结合前述实施方式,该实施方式中,可以在压环10344上设置第二动压发生槽1035,为便于第二动压发生槽1035的加工,压环10344可以由不锈钢材料制成。
可选的,第二动压发生槽1035呈辐射状或同心圆状排布。这样,有利于使气膜更均匀地分布于第二间隙105内。
可选的,第二动压发生槽1035包括第一螺旋槽10351和第二螺旋槽10352,第一螺旋槽10351环绕于第二螺旋槽10352外,第一螺旋槽10351和第二螺旋槽10352的螺旋走向相反,第一螺旋槽10351的靠近第二螺旋槽10352的一端与第二螺旋槽10352的靠近第一螺旋槽10351的一端连接或断开。
其中,第一螺旋槽10351的靠近第二螺旋槽10352的一端至转轴100的轴心的距离等于第一螺旋槽10351的靠近第二螺旋槽10352的一端至第一定子1032或第二定子1033或推力盘1031的外周边缘的距离。或者,第二螺旋槽10352的靠近第一螺旋槽10351的一端至转轴100的轴心的距离等于第二螺旋槽10352的靠近第一螺旋槽10351的一端至第一定子1032或第二定子1033或推力盘1031的外周边缘的距离。
这样,能够在转轴100正向旋转或者反向旋转的情况下,推力盘1031都能以期望的方式非接触式地保持,从而使转轴100具有负载能力高及稳定性好的优点。
作为一种实施方式,推力子轴承103上还设置有第二传感器(图中未示出),第二传感器的传感器探头设置于第二间隙105内。
这样,能够实时检测第二间隙105处的参数,例如第二间隙105处的气膜压力等。这样,第二磁轴承1034可以根据第二传感器的检测结果对推力子轴承103进行主动控制,并能够使控制达到较高的精度。
可选的,第二传感器包括第二传感器盖和第二传感器探头,第二传感器探头的第一端连接第二传感器盖,第二传感器盖固定于第二磁轴承1034上,第二磁轴承1034上设有用于供第二传感器探头穿过的通孔;第二传感器探头的第二端穿过第二磁轴承1034上的通孔,并伸至第二间隙105,且第二传感器探头的第二端端部与第二磁轴承1034的靠近推力盘1031的一侧平齐。
这样,能够使第二传感器更稳定地设置于第二磁轴承1034上。此外,将第二传感器探头的第二端端部与第二磁轴承1034的靠近推力盘1031的一侧平齐,能够避免第二传感器探头受到推力盘1031的碰触,从而有利于保护第二传感器探头。
可选的,第二传感器设置于相邻的两个第二磁性部件10341之间。
其中,每个定子上均应当设置至少一个第二传感器,优选设置一个第二传感器,该第二传感器优选设置在相邻两个第二磁性部件10341之间。
可选的,第二传感器为以下任意一种或多种的组合:用于检测推力盘1031位置的位移传感器;用于检测第二间隙105处的气膜压力的压力传感器;用于检测推力盘1031转速的速度传感器;用于检测推力盘1031旋转加速度的加速度传感器。
第二实施例
本公开实施例提供一种转子系统,包括:转轴,转轴的轴体为一体结构,转轴水平设 置;依次设置于转轴上的电机、压气机和透平;以及,设置于转轴上的推力轴承和至少两个径向轴承,推力轴承和至少两个径向轴承均为非接触式轴承;其中,推力轴承设置于透平的靠近压气机的一侧的预设位置上,预设位置为能够使转子系统的重心位于至少两个径向轴承中相距最远的两个径向轴承之间的位置。
本公开实施例中,推力轴承和与推力轴承相邻的径向轴承集成一体,形成本公开中提供的轴承。
本公开实施例中,推力轴承为用于限制转轴在轴向方向上移动的轴承,径向轴承为用于限制转轴在径向方向上移动的轴承。
随着转子转速的提高,普通的轴承均已无法满足高转速转子的需要。因此,本公开实施例中,为了适应转子高速转动的发展需求,推力轴承和径向轴承均可以采用非接触式轴承。
本公开实施例中,转轴的轴体为一体结构,可以理解为,转轴的轴体为一整根轴,或者,转轴的轴体通过多个轴段刚性连接而成。由于转轴的轴体为一体结构,转轴上各处轴体的强度具有一致性,这使得推力轴承在转轴上的设置位置不受限制。
进一步的,为了使整个转子系统在高速旋转时也能保持结构稳定,整个转子系统的重心应位于上述至少两个径向轴承中相距最远的两个径向轴承之间。这样,整个转子系统形成纺锤体结构,区别于传统的悬臂式结构,本公开实施例提高了整个转子系统的稳定性。由于推力轴承在转轴的设置位置不受限制,因此,本公开实施例中,可以根据上述至少两个径向轴承的径向轴承的设置数量、每个径向轴承的设置位置以及整个转子系统中各部件的质量(包括推力轴承自身的质量)等参数对推力轴承的设置位置进行灵活地调整,以使整个转子系统的重心位于相距最远的两个径向轴承之间,优选的,整个转子系统的重心位于压气机上。
本公开实施例中,转轴水平设置,因此,可以理解地,本公开实施例的转子系统为水平转子系统,其可以适用于需要使用水平转子系统的卧式机组,例如卧式燃气轮机发电机组。
如图13所示,本公开实施例提供一种转子系统,包括转轴100和推力轴承500,转轴100的轴体为一体结构,转轴100水平设置;转轴100上依次设置有电机200、压气机300和透平400;转轴上还设置有第一径向轴承600和第二径向轴承700,第一径向轴承600和第二径向轴承700均为非接触式轴承,其中,第一径向轴承600和推力轴承500集成一体,形成集成式轴承10000;第一径向轴承600设置于电机200的远离压气机300的一侧,第二径向轴承700设置于压气机300和透平400之间,推力轴承500设置于第一径向轴承600与电机200之间。
目前,非接触式轴承一般包括电磁轴承和空气轴承。然而,电磁轴承在长期开启时存在能耗太大以及发热等问题;而空气轴承在表面线速度接近或者超过音速时,会产生激波,从而导致轴承失稳,甚至产生撞轴等灾难性后果。
因此,考虑到燃气轮机或者燃气轮机发电机组高转速的发展需求,为了提高径向轴承的工作性能,本公开实施例中,第一径向轴承600可以采用气磁混合径向轴承或气体动静压混合径向轴承。第二径向轴承700由于靠近透平400,考虑到磁轴承中的磁性部件无法耐受透平400传来的高温,第二径向轴承700可以采用气体动静压混合径向轴承。
作为另一种实施方式,第二径向轴承700也可以采用气磁混合径向轴承,该方式下,第二径向轴承700的磁性部件设置于第二径向轴承700上的远离透平400的区域。也就是说,第二径向轴承700上的靠近透平400的区域不设置磁性部件。
为保护第二径向轴承700上的磁性部件,可以通过减少透平400辐射至第二径向轴承700上的热能的方式实现。具体的,透平400上靠近第二径向轴承700的一侧设置有隔热层(图中未示出)。这里,隔热层的材料可以是气凝胶或隔热性能良好的其它材料。
本公开实施例中,压气机300可以为离心压气机300,透平400涡轮可以为离心式涡轮;电机200可以为动压轴承电机,转轴100对应电机200的轴承的部位可以设置有第一动压发生槽201;电机200还可以是启发一体式电机,这样,在转子系统启动时,电机200可以作为电动机使用,以驱动转子系统转动;当转子系统启动之后,电机200可以作为发电机使用,以实现转子系统驱动发电机发电。
本公开实施例的转子系统中的推力轴承和径向轴承还可以采用其它设置方式,由于无法穷举,本公开实施例不再一一说明。
第三实施例
本公开实施例提供一种转子系统,包括:转轴,转轴的轴体为一体结构,转轴竖向设置;依次设置于转轴上的电机、压气机和透平;以及,设置于转轴上的推力轴承和至少两个径向轴承,推力轴承和至少两个径向轴承均为非接触式轴承;其中,推力轴承设置于透平的靠近压气机的一侧的预设位置上,预设位置为能够使转子系统的重心位于至少两个径向轴承中相距最远的两个径向轴承之间的位置。
本公开实施例中,推力轴承和与推力轴承相邻的径向轴承集成一体,形成本公开中提供的轴承。
本公开实施例中,推力轴承为用于限制转轴在轴向方向上移动的轴承,径向轴承为用于限制转轴在径向方向上移动的轴承。
随着转子转速的提高,普通的轴承均已无法满足高转速转子的需要。因此,本公开实施例中,为了适应转子高速转动的发展需求,径向轴承可以采用非接触式轴承。
本公开实施例中,转轴的轴体为一体结构,可以理解为,转轴的轴体为一整根轴,或者,转轴的轴体通过多个轴段刚性连接而成。由于转轴的轴体为一体结构,转轴上各处轴体的强度具有一致性,这使得推力轴承在转轴上的设置位置不受限制。
进一步的,为了使整个转子系统在高速旋转时也能保持结构稳定,整个转子系统的重心应位于上述至少两个径向轴承中相距最远的两个径向轴承之间。这样,整个转子系统形成纺锤体结构,区别于传统的悬臂式结构,本公开实施例提高了整个转子系统的稳定性。由于推力轴承在转轴的设置位置不受限制,因此,本公开实施例中,可以根据上述至少两个径向轴承的径向轴承的设置数量、每个径向轴承的设置位置以及整个转子系统中各部件的质量(包括推力轴承自身的质量)等参数对推力轴承的设置位置进行灵活地调整,以使整个转子系统的重心位于相距最远的两个径向轴承之间,优选的,整个转子系统的重心位于压气机上。
本公开实施例中,转轴竖向设置,因此,可以理解地,本公开实施例的转子系统为立式转子系统,其可以适用于需要使用立式转子系统的立式机组,例如立式燃气轮机发电机组。
由于推力轴承和径向轴承均采用非接触式轴承,使得转子系统能够立式设置。这样,转子系统的重心处于轴心,不会产生静挠曲,且重力在轴线上产生的力矩为零,能够消除重力对转子系统的转动产生影响,从而能够提高转子系统的稳定性。同时,由于转子系统立式设置,所有部件的重心向下,能够避免因转子系统水平设置而导致的悬臂轴式结构所带来的问题。
如图14所示,本公开实施例提供一种转子系统,包括转轴100和推力轴承500,转轴100的轴体为一体结构,转轴100竖向设置;转轴100上依次设置有电机200、压气机300和透平400;转轴上还设置有第一径向轴承600和第二径向轴承700,第一径向轴承600和第二径向轴承700均为非接触式轴承,其中,第一径向轴承600和推力轴承500集成一体,形成集成式轴承10000;第一径向轴承600设置于电机200的远离压气机300的一侧,第二径向轴承700设置于压气机300和透平400之间,推力轴承500设置于第一径向轴承600与电机200之间。
目前,非接触式轴承一般包括电磁轴承和空气轴承。然而,电磁轴承在长期开启时存在能耗太大以及发热等问题;而空气轴承在表面线速度接近或者超过音速时,会产生激波,从而导致轴承失稳,甚至产生撞轴等灾难性后果。
因此,考虑到燃气轮机或者燃气轮机发电机组高转速的发展需求,为了提高径向轴承的工作性能,本公开实施例中,第一径向轴承600可以采用气磁混合径向轴承或气体动静压混合径向轴承。第二径向轴承700由于靠近透平400,考虑到磁轴承中的磁性部件无法耐受透平400传来的高温,第二径向轴承700可以采用气体动静压混合径向轴承。
作为另一种实施方式,第二径向轴承700也可以采用气磁混合径向轴承,该方式下,第二径向轴承700的磁性部件设置于第二径向轴承700上的远离透平400的区域。也就是说,第二径向轴承700上的靠近透平400的区域不设置磁性部件。
为保护第二径向轴承700上的磁性部件,可以通过减少透平400辐射至第二径向轴承700上的热能的方式实现。具体的,透平400上靠近第二径向轴承700的一侧设置有隔热层(图中未示出)。这里,隔热层的材料可以是气凝胶或隔热性能良好的其它材料。
本公开实施例中,压气机300可以为离心压气机300,透平400涡轮可以为离心式涡轮;电机200可以为动压轴承电机,转轴100对应电机200的轴承的部位可以设置有第一动压发生槽201;电机200还可以是启发一体式电机,这样,在转子系统启动时,电机200可以作为电动机使用,以驱动转子系统转动;当转子系统启动之后,电机200可以作为发电机使用,以实现转子系统驱动发电机发电。
本公开实施例的转子系统中的推力轴承和径向轴承还可以采用其它设置方式,由于无法穷举,本公开实施例不再一一说明。
第四实施例
本公开实施例提供一种转子系统,包括:转轴,转轴的轴体为一体结构,转轴水平设置或竖向设置;设置于转轴上的电机、压气机、透平、推力轴承和两个径向轴承,两个径向轴承均为非接触式轴承;以及,第一机匣和第二机匣,第一机匣与第二机匣连接;其中,电机、推力轴承和两个径向轴承均设置于第一机匣内,压气机和透平均设置于第二机匣内;压气机的叶轮与透平的叶轮在第二机匣内相靠设置。
本公开实施例中,推力轴承和与推力轴承相邻的径向轴承集成一体,形成本公开中提 供的轴承。
本公开实施例中,推力轴承为用于限制转轴在轴向方向上移动的轴承,径向轴承为用于限制转轴在径向方向上移动的轴承。
随着转子转速的提高,接触式轴承由于存在较大的机械磨损,均已无法满足高转速转子的需要。因此,本公开实施例中,为了适应转子高速转动的发展需求,径向轴承均可以采用非接触式轴承。
本公开实施例中,第一机匣和第二机匣可以通过止口(图中未示出)定位并连接,其中,推力轴承和所有的径向轴承可以全部设置在第一机匣(可以理解为电机机匣)内,而第二机匣(可以理解为燃气轮机机匣)内无需设置轴承。这样,只需保证第一机匣内用于设置轴承定子的部位的加工精度即可,在装配时第一机匣内用于连接轴承定子的部位通过一次装卡加工即可完成,可见,本公开降低了燃气轮机电机组的加工精度和装配精度,降低了成本,适合工程化批量生产。
本公开实施例中,转轴可以水平设置,也可以竖向设置,因此,可以理解地,本公开实施例的转子系统既适用于需要使用转子系统的卧式机组,也适用于需要使用转子系统的立式机组,例如卧式燃气轮机电机组,或立式燃气轮机电机组。
本公开实施例中,由于转轴的轴体为一体结构,从而区别于现有技术中采用联轴器将燃气轮机转子与电机转子进行连接。与现有技术相比,由于转轴的轴体为一体结构,转轴上各处轴体的强度具有一致性,这使得推力轴承在转轴上的设置位置不受限制。
本公开实施例中,通过将压气机的叶轮与透平的叶轮相靠设置,使得第一机匣内的轴向长度缩短,从而能够进一步提高整个转子系统的稳定性。
进一步的,为降低透平产生的热量对压气机效率的影响,可以在透平的涡轮上和/或压气机上设置隔热层(图中未示出),其中,隔热层的材料可以是气凝胶或隔热性能良好的其它材料;透平的涡轮还可以采用导热系数较低的材料制造,例如,用陶瓷材料制造透平的涡轮。
如图15所示,本公开实施例提供一种转子系统,包括转轴100和推力轴承500,转轴100的轴体为一体结构,转轴100水平设置;设置于转轴100上的电机200、压气机300、透平400、推力轴承500、第一径向轴承600和第二径向轴承700,第一径向轴承600和第二径向轴承700均为非接触式轴承,其中,第一径向轴承600和推力轴承500集成一体,形成集成式轴承10000;以及第一机匣800和第二机匣900,第一机匣800与第二机匣900连接,其中,电机200、推力轴承500、第一径向轴承600和第二径向轴承700均设置于第一机匣800内,压气机300和透平400均设置于第二机匣900内。
第一径向轴承600设置于电机200的远离第二机匣900的一侧,第二径向轴承700设置于电机200的靠近第二机匣900的一侧;推力轴承500设置于第一径向轴承600与电机200之间。
目前,非接触式轴承一般包括电磁轴承和空气轴承。然而,电磁轴承在长期开启时存在能耗太大以及发热等问题;而空气轴承在表面线速度接近或者超过音速时,会产生激波,从而导致轴承失稳,甚至产生撞轴等灾难性后果。
因此,考虑到燃气轮机电机组高转速的发展需求,为了提高推力轴承和径向轴承的工作性能,本公开实施例中,第一径向轴承600可以采用气磁混合径向轴承或气体动静压混 合径向轴承;第二径向轴承700可以采用气磁混合径向轴承或气体动静压混合径向轴承。
可选的,第二径向轴承700的承载力大于第一径向轴承600的承载力。
本公开实施例中,一般的,电机200和推力轴承500的重量均较大,整个转子系统的重心会偏向于第一径向轴承600一侧。鉴于此,提高第二径向轴承700的承载力有助于提高整个转子系统的稳定性。
本公开实施例中,压气机300可以为离心压气机300,透平400的涡轮可以为离心式涡轮;电机200为动压轴承电机,转轴100的对应电机200的轴承的部位可以设置有第一动压发生槽201。
进一步的,电机200还可以是启发一体式电机。
这样,在转子系统初始启动时刻,可以将电机200以启动模式开启,以使转子系统转动,当转子系统的转速提升至预设转速后,可以将电机200的工作模式切换到发电模式。
如图16所示,本公开实施例提供另一种转子系统,包括转轴100和推力轴承500,转轴100的轴体为一体结构,转轴100竖向设置;设置于转轴100上的电机200、压气机300、透平400、推力轴承500、第一径向轴承600和第二径向轴承700,第一径向轴承600和第二径向轴承700均为非接触式轴承,其中,第一径向轴承600和推力轴承500集成一体,形成集成式轴承10000;以及第一机匣800和第二机匣900,第一机匣800与第二机匣900连接,其中,电机200、推力轴承500、第一径向轴承600和第二径向轴承700均设置于第一机匣800内,压气机300和透平400均设置于第二机匣900内。
第一径向轴承600设置于电机200的远离第二机匣900的一侧,第二径向轴承700设置于电机200的靠近第二机匣900的一侧;推力轴承500设置于第一径向轴承600与电机200之间。
其余均可参照图11中的相关说明,并能达到相同的技术效果,为避免重复,本公开实施例对此不作赘述。
第五实施例
当本公开的转子系统用于移动设备上时,例如增程式电动汽车,在转子系统不工作的情况下,转轴与轴承直接接触。汽车在行驶过程中,由于颠簸或者振动引起转轴相对于轴承径向或者轴向的移动,使得转轴和轴承之间产生磨损,进而影响轴承的精度和寿命。
因此,为了解决上述问题,在本公开其它实施例的基础上,本公开实施例的转子系统设置锁紧装置,该锁紧装置用于在转子系统不工作时,锁紧转轴。
本公开实施例中,锁紧装置的结构形式及设置方式并不唯一,为便于理解,下面结合图9对转子系统中设置有锁紧装置的两种实施方式进行具体描述。
一种实施方式下,如图17所示,锁紧装置110包括伸缩顶紧单元111、连接杆112和固定部件113,连接杆112的一端连接固定部件113,另一端连接伸缩顶紧单元111,伸缩顶紧单元111正对转轴100的远离透平400的一端的端面,固定部件113的另一端固定连接到安装本公开的转子系统的壳体。
在转子系统停机时,锁紧装置110的伸缩顶紧单元111动作,并沿转轴100的轴向推动转轴100,使得推力轴承500的定子与推力盘接触,从而将转轴100轴向固定,同时利用推力轴承500的定子与推力盘之间的摩擦力将转轴100径向固定。
进一步地,伸缩顶紧单元111设置有顶尖部(图中未示出),转轴100的远离透平 400的一端的端面设置有顶尖孔(图中未示出)。在锁紧状态下,顶尖部顶入转轴100的顶尖孔,从而能够更好地将转轴100固定,防止在车辆的行驶过程中,造成对转轴100和轴承的磨损和损坏。
另一种实施方式下,如图18至图19所示,锁紧装置120也可以设置为卡套结构的锁紧装置。具体的,锁紧装置120包括伸缩单元121和卡套122,卡套122连接到伸缩单元122的伸缩端。卡套122可以为半圆卡套,其半径等于或者稍微大于转轴100的半径,卡套122的轴线与转轴100的轴线平行设置,伸缩单元121安装到转轴100的大致轴向中间位置,并固定连接至安装本公开的转子系统的壳体。
在转子系统停机时,伸缩单元121伸出,使卡套122卡住转轴100,并将转轴100推动到与径向轴承接触,从而将转轴100径向固定,同时利用径向轴承与转轴100的摩擦力将转轴100轴向固定。
进一步地,伸缩单元121可以选择活塞式气缸或者液压缸等可实现伸缩控制的部件。
在该实施方式下,锁紧装置120在转轴100上的设置位置可以不作限定,优选地,锁紧装置120设置于转子系统中的最远的两个径向轴承之间。
需要说明的是,图17与图18中的锁紧装置均基于图13示出的转子系统设置,对于在本公开其它实施例的转子系统中设置锁紧装置,在此不作一一描述。
本公开实施例中,通过设置锁紧装置,在转子系统不工作时,锁紧装置能够锁紧转轴。这样,能够防止转轴相对于轴承径向或者轴向的移动,从而能够提高轴承的精度和寿命。
第六实施例
当本公开的转子系统用于移动设备上时,例如增程式电动汽车,在转子系统不工作的情况下,转轴与轴承直接接触。汽车在行驶过程中,由于颠簸或者振动引起转轴相对于轴承径向或者轴向的移动,使得转轴和轴承之间产生磨损,进而影响轴承的精度和寿命。
因此,为了解决上述问题,在本公开其它实施例的基础上,本公开实施例的转子系统,在转轴100的安装轴承的部位涂有防磨涂层101,如图19所示。
在转轴100的安装轴承的部位涂有防磨涂层101,可以有效防止转轴100和轴承的磨损。该防磨涂层101优先选用化学稳定性、耐腐蚀性、高润滑不粘性和良好的抗老化耐力的材料,例如聚四氟乙烯等。
需要说明的是,图19中的防磨涂层101基于图13示出的转子系统设置,对于在本公开其它实施例的转子系统中设置锁紧装置,在此不作一一描述。
第七实施例
下面以本公开实施例的轴承(其中,第一磁轴承中的第一磁性部件为第一电磁铁,第二磁轴承中的第二磁性部件为第二电磁铁)在转子系统中的控制方法进行详细地说明。
如图21所示,本公开实施例提供一种轴承的控制方法,包括:
S1011、开启第一磁轴承和第二磁轴承。
S1012、控制转轴在多个第一磁性部件的磁力作用下在转轴的径向方向上移动,以使转轴移动至预设径向位置;以及,控制推力盘在多个第二磁性部件和第三磁性部件之间的磁力作用下在转轴的轴向方向上移动,以使推力盘与第一定子中的第二磁轴承之间的第二间隙与推力盘与第二定子中的第二磁轴承之间的第二间隙的差值小于或等于预定值。
S1013、转轴的转速加速至工作转速之后,关闭第一磁轴承和第二磁轴承。
S1014、转子系统停机时,开启第一磁轴承和第二磁轴承。
S1015、转轴的转速减速至零之后,关闭第一磁轴承和第二磁轴承。
在上述过程中,第一磁轴承和第二磁轴承开启后,转轴在多个第一磁性部件的作用下托起并到达预设径向位置(可以通过位移传感器对转轴的径向位置进行检测),以及,推力盘在多个第二磁性部件和第三磁性部件之间的磁力作用下到达第一定子和第二定子之间的预定位置。随着转轴的转动,转轴在受第一间隙中气流润滑的情况下开始转动,以防止磨损;推力盘在受第二间隙中气流润滑的情况下相对第一定子和第二定子开始转动,以防止磨损。
其中,第一磁轴承和第二磁轴承开启的具体过程为:向第一线圈和第二线圈输入预定值的电流信号。
随着转轴的转速越来越大,当转轴的转速到达工作转速时,径向子轴承和推力子轴承的气体动压轴承(第一磁轴承与转轴之间设置第一间隙即形成径向子轴承的气体动压轴承,推力盘与定子之间设置第二间隙即形成推力子轴承的气体动压轴承)产生的气膜压力可以将转轴和推力盘稳定,届时可以关闭第一磁轴承和第二磁轴承。
在转子系统停机时,转轴减速,为了使转轴在整个转子系统停机过程中保持稳定,在转子系统停机时即开启第一磁轴承和第二磁轴承,直到转轴完全停下后即可关闭第一磁轴承和第二磁轴承。
如图22所示,本公开实施例还提供另一种轴承的控制方法,包括:
S1021、开启第一磁轴承和第二磁轴承。
S1022、控制转轴在多个第一磁性部件的磁力作用下在转轴的径向方向上移动,以使转轴移动至预设径向位置;以及,控制推力盘在多个第二磁性部件和第三磁性部件之间的磁力作用下在转轴的轴向方向上移动,以使推力盘与第一定子中的第二磁轴承之间的第二间隙与推力盘与第二定子中的第二磁轴承之间的第二间隙的差值小于或等于预定值。
S1023、转轴的转速加速至第一预设值之后,关闭第一磁轴承和第二磁轴承。
S1024、转子系统加速至一阶临界速度或二阶临界速度时,开启第一磁轴承和第二磁轴承。
具体的,当转轴与第一磁轴承之间的第一间隙处的气体流速达到一阶临界速度或二阶临界速度时,开启第一磁轴承和第二磁轴承,直至转轴恢复至平衡位置。
可选的,转子系统加速至一阶临界速度或二阶临界速度时,开启第一磁轴承和第二磁轴承,包括:转子系统加速至一阶临界速度或二阶临界速度时,控制第一磁轴承和第二磁轴承以最大功率开启;或者,转子系统加速至一阶临界速度或二阶临界速度时,控制第一磁轴承和第二磁轴承按照预设频率以频闪的方式开启。
S1025、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭第一磁轴承和第二磁轴承。
S1026、转子系统停机过程中,当转子系统减速至一阶临界速度或二阶临界速度时,开启第一磁轴承和第二磁轴承。
具体的,当转轴与第一磁轴承之间的第一间隙处的气体流速减速至一阶临界速度或二阶临界速度时,开启第一磁轴承和第二磁轴承,直至转轴恢复至平衡位置。
可选的,转子系统减速至一阶临界速度或二阶临界速度时,开启第一磁轴承和第二磁 轴承,包括:转子系统减速至一阶临界速度或二阶临界速度时,控制第一磁轴承和第二磁轴承以最大功率开启;或者,转子系统减速至一阶临界速度或二阶临界速度时,控制第一磁轴承和第二磁轴承按照预设频率以频闪的方式开启。
S1027、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭第一磁轴承和第二磁轴承。
S1028、转轴的转速减速至第二预设值时,开启第一磁轴承和第二磁轴承。
S1029、转轴的转速减速至零之后,关闭第一磁轴承和第二磁轴承。
在上述过程中,第一磁轴承和第二磁轴承开启后,转轴在多个第一磁性部件的作用下托起并到达预设径向位置(可以通过位移传感器对转轴的径向位置进行检测),以及,推力盘在多个第二磁性部件和第三磁性部件之间的磁力作用下到达第一定子和第二定子之间的预定位置。随着转轴的转动,转轴在受第一间隙中气流润滑的情况下开始转动,以防止磨损;推力盘在受第二间隙中气流润滑的情况下相对第一定子和第二定子开始转动,以防止磨损。
其中,第一磁轴承和第二磁轴承开启的具体过程为:向第一线圈和第二线圈输入预定值的电流信号。
随着转轴的转速越来越大,当转轴的转速到达第一预设值,例如额定转速的5%至30%时,径向子轴承和推力子轴承的气体动压轴承(第一磁轴承与转轴之间设置第一间隙即形成径向子轴承的气体动压轴承,推力盘与定子之间设置第二间隙即形成推力子轴承的气体动压轴承)产生的气膜压力可以将转轴和推力盘稳定,届时可以关闭第一磁轴承和第二磁轴承。
在转子系统停机过程中,转轴的转速越来越小,当转轴的转速低于第二预设值,例如额定转速的5%至30%时,此时,径向子轴承和推力子轴承的气体动压轴承产生的气膜压力也随转轴或推力盘减速而减小,因此,需要开启第一磁轴承和第二磁轴承,以使转轴和推力盘保持稳定,直到转轴的速度为零后即可关闭第一磁轴承和第二磁轴承。
可选的,上述方法还包括:当转轴与第一磁轴承之间的第一间隙发生变化时,开启第一磁轴承,使转轴在多个第一磁性部件的磁力作用下向远离间隙变小侧的方向移动;转轴处于平衡径向位置之后,关闭第一磁轴承。
当载荷负载在转轴上,使转轴逐渐下降并接近下方的第一磁轴承时,第一传感器(这里的第一传感器优选压力传感器)获得气压增大的信号,此时第一磁轴承需要介入工作。第一磁轴承将磁力作用于转轴上使其向上悬浮,当转轴达到新的平衡径向位置时,第一磁轴承停止工作。
当有外部冲击扰动发生时,转轴可能快速地接近第一磁轴承,则有可能导致转轴与第一磁轴承之间的第一间隙瞬间过小,使第一间隙减小处的局部气体流速接近甚至达到音速,从而引发激波产生气锤自激现象。激波的产生会导致局部气体流动发生扰动和混乱,当流体速度在音速到亚音速之间变化时其压力呈阶梯式显著下降。这种情况下,需要控制第一磁轴承的第一磁性部件以预设频率轮流开启,以提供对扰动的阻尼作用,从而有效抑制外部扰动。当转轴恢复至新的平衡径向位置之后,第一磁轴承停止工作。
在上述过程中,利用第一磁轴承方便实时控制的优点,主动平衡转轴的不平衡质量或转轴涡动等导致转轴过度偏移的因素,使转轴在径向方向上固定在某一极小范围内。另外, 在转轴的加速过程中,可以准确定位产生激波的位置(即线速度超声速部位),并通过控制第一磁轴承的电流大小和方向等,使第一磁轴承产生相反的力来平衡激波作用。待激波平稳后,再次调整第一磁轴承的控制策略,以最节能的方式将转轴固定在某一极小范围内。
可选的,上述方法还包括:当载荷负载在推力盘,推力盘在载荷负载的作用下在转轴的轴向方向上移动,推力盘与第一定子中的第二磁轴承之间的第二间隙与推力盘与第二定子中的第二磁轴承之间的第二间隙的差值大于预定值时,开启第二磁轴承;当推力盘与第一定子中的第二磁轴承之间的第二间隙与推力盘与第二定子中的第二磁轴承之间的第二间隙的差值小于或者等于预定值,关闭第二磁轴承。
当载荷负载在推力盘上,使推力盘与第一定子或第二定子的第二磁轴承之间的第二间隙变小而接近该侧的第二磁轴承时,第二传感器(这里的第二传感器优选压力传感器)获得气压增大的信号,此时第二磁轴承需要介入工作。第二磁轴承将磁力作用于推力盘上,使其向另一侧的第二磁轴承移动,当推力盘达到新的平衡位置时,第二磁轴承可以停止工作。
具体的,若推力盘与第一定子中的第二磁轴承之间的第二间隙小于推力盘与第二定子中的第二磁轴承之间的第二间隙,且推力盘与第一定子中的第二磁轴承之间的第二间隙与推力盘与第二定子中的第二磁轴承之间的第二间隙的差值大于预定值,则控制第二定子中的第二磁轴承,使推力盘在第一磁性部件与多个第二磁性部件之间的磁力作用下,朝远离第二定子的方向在转轴的轴向方向上移动。
若推力盘与第二定子中的第二磁轴承之间的第二间隙小于推力盘与第一定子中的第二磁轴承之间的第二间隙,且推力盘与第一定子中的第二磁轴承之间的第二间隙与推力盘与第二定子中的第二磁轴承之间的第二间隙的差值大于预定值,则控制第一定子中的第二磁轴承,使推力盘在第一磁性部件与多个第二磁性部件之间的磁力作用下,朝远离第一定子的方向在转轴的轴向方向上移动。
可选的,当载荷负载在推力盘,推力盘在载荷负载的作用下在转轴的轴向方向上移动,推力盘与第一定子中的第二磁轴承之间的第二间隙与推力盘与第二定子中的第二磁轴承之间的第二间隙的差值大于预定值时,开启第一定子或第二定子中的第二磁轴承,包括:当载荷负载在推力盘,推力盘在载荷负载的作用下在转轴的轴向方向上移动,推力盘与第一定子中的第二磁轴承之间的第二间隙与推力盘与第二定子中的第二磁轴承之间的第二间隙的差值大于预定值时,控制第一定子或第二定子中的第二磁轴承以最大功率开启;或者,当载荷负载在推力盘,推力盘在载荷负载的作用下在转轴的轴向方向上移动,推力盘与第一定子中的第二磁轴承之间的第二间隙与推力盘与第二定子中的第二磁轴承之间的第二间隙的差值大于预定值时,控制第一定子或第二定子中的第二磁轴承按照预设频率以频闪的方式开启。
当有外部冲击扰动发生时,推力盘可能快速地接近某侧第二磁轴承,则有可能导致该侧的第二间隙瞬间过小,使该侧第二间隙处的局部气体流速接近甚至达到音速,从而引发激波产生气锤自激现象。激波的产生会导致局部气体流动发生扰动和混乱,当流体速度在音速到亚音速之间变化时其压力呈阶梯式显著下降。这种情况下,需要控制第一定子和第二定子中的第二磁轴承以预设频率轮流开启,以提供对扰动的阻尼作用,从而有效抑制外部扰动。当推力盘重新回到平衡状态之后,第二磁轴承停止工作。
在上述过程中,利用第二磁轴承方便实时控制的优点,主动平衡推力盘的不平衡质量或推力盘涡动等导致推力盘过度偏移的因素,使推力盘在转轴的轴向方向上固定在某一极小范围内。另外,在推力盘的加速过程中,可以准确定位产生激波的位置(即线速度超声速部位),并通过控制第二磁轴承的电流大小和方向等,使第二磁轴承产生相反的力来平衡激波作用。待激波平稳后,再次调整第二磁轴承的控制策略,以最节能的方式将推力盘固定在某一极小范围内。
本公开实施例中,对于轴承同时设置有磁轴承(其中,第一磁轴承中的第一磁性部件为第一电磁铁,第二磁轴承中的第二磁性部件为第二电磁铁)和气体静压轴承(轴承壳上设置有静压进气节流孔)的情况下,磁轴承和气体静压轴承可以相互备用,在其中一方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到磁轴承故障的情况下,控制外部气源开启以替代磁轴承执行相应的动作,从而提高轴承的安全性和可靠性。
具体的,可以包括如下实施方式:
当第一磁轴承和第二磁轴承处于故障状态时,开启外部气源,通过静压进气节流孔向第一间隙和第二间隙处输送气体;控制转轴在气体的作用下沿转轴的径向移动,以使转轴移动至预设径向位置;以及,控制推力盘在气体的作用下在转轴的轴向方向上移动,以使推力盘与第一定子中的第二磁轴承之间的第二间隙等于推力盘与第二定子中的第二磁轴承之间的第二间隙。
上述实施方式对应转子系统开启阶段时,当第一磁轴承和第二磁轴承处于故障状态时,轴承的控制方法。对于转子系统其它阶段的控制方法,可以通过开启或关闭外部气源实现对轴承的控制,由于容易理解,因此不作具体描述。
可选的,当第一磁轴承和第二磁轴承处于正常状态时,开启第一磁轴承和第二磁轴承的步骤,包括:当第一磁轴承和第二磁轴承处于正常状态时,开启第一磁轴承和第二磁轴承,并开启外部气源,通过静压进气节流孔向第一间隙和第二间隙处输送气体;控制转轴在多个第一磁性部件的磁力作用下在转轴的径向方向上移动,以使转轴移动至预设径向位置;以及,控制推力盘在多个第二磁性部件和第三磁性部件之间的磁力作用下在转轴的轴向方向上移动,以使推力盘与第一定子中的第二磁轴承之间的第二间隙等于推力盘与第二定子中的第二磁轴承之间的第二间隙的步骤,包括:控制转轴在多个第一磁性部件的磁力作用以及在气体的作用下在转轴的径向方向上移动,以使转轴移动至预设径向位置;以及,控制推力盘在多个第二磁性部件和第三磁性部件之间的磁力作用以及在气体的作用下在转轴的轴向方向上移动,以使推力盘与第一定子中的第二磁轴承之间的第二间隙等于推力盘与第二定子中的第二磁轴承之间的第二间隙。
这样,通过采用同时开启磁轴承和气体静压轴承的实施方式,能够进一步提高本公开实施例的轴承的承载力。
此外,在磁轴承处于正常状态时,也可以只开启气体静压轴承,由于容易理解,对此不作赘述。
综合上述,本公开优选实施例具有如下有益效果:
其一,磁轴承与气体轴承协同工作,改善了轴承在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了轴承的承载能力。同时,磁轴承与气体轴承采用嵌套结 构,简化了结构,集成度高,易加工、制造和操作,提高了轴承的综合性能。在转子系统开启或停机时,可以用磁轴承使转轴转动,提高了轴承的低速性能,延长了轴承的使用寿命,能够提高轴承及整个系统的安全性和可靠性。
其二,相对于传统的采用气体静压轴承和气体动压轴承结合的气体动静压混合径向子轴承,本公开实施例的径向子轴承具有响应速度快的优点。
其三,增加了气体静压轴承,形成动静压-磁混合径向子轴承,在同时设置有磁轴承和气体静压轴承的情况下,轴承的承载力进一步加大,磁轴承和气体静压轴承可以相互备用,在其中一方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到磁轴承故障的情况,控制系统控制气体静压轴承开启以替代磁轴承执行相应的动作,从而提高轴承的安全性和可靠性。
本公开中,转子系统中单独设置的径向轴承(如图13中示出的第二径向轴承700)可以采用多种结构形式,若径向轴承采用气磁混合径向轴承,则可以是箔片式气磁混合径向轴承,也可以是槽式气磁混合径向轴承。
下面结合附图分别对槽式气磁混合径向轴承的具体结构形式,以及在整个转子系统控制中的具体控制过程进行详细地说明。
第八实施例
图23至图30为本公开实施例提供的槽式气磁混合径向轴承的结构示意图。
如图23至图30所示,槽式气磁混合径向轴承6200包括:套设于转轴100上的第四磁轴承6201,第四磁轴承6201上沿周向设置有多个第七磁性部件;第四磁轴承6201朝向转轴100的侧壁,或转轴100朝向第四磁轴承6201的圆周面上设置有第三动压发生槽6202;其中,第四磁轴承6201与转轴100之间具有第四间隙6203,且转轴100能够在多个第七磁性部件的磁力作用下在转轴100的径向方向上移动。
本公开实施例中,通过在径向轴承6200中设置第四间隙6203和第四磁轴承6201,从而使该径向轴承6200形成气、磁混合径向轴承。
工作时,径向轴承6200中的气体轴承与第四磁轴承6201能够协同工作,在径向轴承6200处于稳定的工作状态时,依靠气体轴承实现支承;而在径向轴承6200处于非稳定的工作状态时,依靠第四磁轴承6201及时对径向轴承6200进行控制和响应。
可见,本公开实施例能够改善径向轴承,尤其在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了径向轴承的承载能力。本公开实施例的径向轴承能够满足高转速的转子系统,例如,燃气轮机或者燃气轮机发电联合机组等的需求。
本公开实施例中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,转轴100可以由若干硅钢片或者矽钢片叠压而成。
本公开实施例中,当转轴100旋转时,存在于第四间隙6203的流动气体被压入第三动压发生槽6202内,从而产生压力,使转轴100上浮,以实现转轴100沿径向方向被非接触地保持。其中,第三动压发生槽6202产生压力的大小随第三动压发生槽6202的角度、槽宽、槽长、槽深、槽数以及平面度的不同而变化。此外,第三动压发生槽6202产生压力的大小也和转轴100的旋转速度以及第四间隙6203有关。可以根据实际工况对第三动压发生槽6202的参数进行设计。第三动压发生槽6202可以通过锻造、滚轧、刻蚀或冲压等方式形成于第四磁轴承6201或转轴上。
可选的,多个第七磁性部件包括多个第四永磁体,多个第四永磁体在第四磁轴承6201上沿周向设置;或者,多个第七磁性部件包括多个第四电磁铁,多个第四电磁铁在第四磁轴承6201上沿周向设置,多个第四电磁铁中的每个第四电磁铁包括设置于第四磁轴承6201上的第四磁芯62011及缠绕于第四磁芯62011上的第四线圈62012。
本公开实施例中,当槽式气磁混合径向轴承6200仅需要磁性部件提供磁力而无需磁控时,第七磁性部件优选第四永磁体;当箔片式气磁混合推力轴承同时需要磁力和磁控时,第七磁性部件优选第四电磁铁。
当第七磁性部件为第四电磁铁时,往第四线圈62012通入电流,即可以使第四磁芯62011产生磁力。往第四线圈62012通入电流的大小不同,第四磁芯62011产生的磁力大小也不同;往第四线圈62012通入电流的方向不同,第四磁芯62011的磁极也不同。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本公开的优选实施例中,第四磁芯62011可以由若干硅钢片或者矽钢片叠压而成。
可选的,第四磁轴承6201包括:第四磁轴承座62013,第四磁轴承座62013套设于转轴100上,第四磁轴承座62013上沿周向设置有多个第四容纳槽62014,多个第七磁性部件设置于多个第四容纳槽62014内,且多个第七磁性部件的磁极朝向转轴100;套设于第四磁轴承座62013外的第二轴承壳62015;套设于第四磁轴承座62013与转轴100之间的第二轴承套62016;以及,分别设置于第二轴承壳62015两端的第五端盖62017和第六端盖62018;其中,第二轴承套62016、第五端盖62017及第六端盖62018配合,将多个第七磁性部件固定于第四磁轴承座62013上。
本公开实施例中,通过设置第二轴承套62016,能够封闭第四磁芯62011以及第四线圈62012之间的间隙,从而在第二轴承套62016和转轴100之间形成稳定、均匀的气膜压力。另外,通过设置不同径向厚度的第二轴承套62016能够方便地调节和控制第四间隙6203的大小。
其中,第二轴承套62016与转轴100之间的第四间隙6203的宽度可以为5μm至12μm,优选8μm至10μm。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本公开的优选实施例中,第四磁轴承座62013可以由若干硅钢片或者矽钢片叠压而成。第四容纳槽62014的数量可以为但不限于为六个或八个,沿第四磁轴承座62013的周向均匀设置。这样,能够使第四磁轴承6201与转轴100之间的磁力更加均匀、稳定。需要说明的是,多个第七磁性部件还可以采用其他方式设置于第四磁轴承座62013上,对此不进行限定。第五端盖62017和第六端盖62018的材料均可以是非磁性材料,优选硬铝材料。第二轴承套62016的材料可以是非磁性材料,优选硬铝材料。第二轴承壳62015的材料可以是非磁性材料,优选硬铝材料。
优选的,第五端盖62017和第六端盖62018均设置有外径与第二轴承壳62015的内径相同的凸台,第五端盖62017和第六端盖62018的凸台用于从两端固定和压紧组成第四磁轴承座62013的硅钢片或者矽钢片。
本公开实施例中,可以在第二轴承套62016上设置第三动压发生槽6202,为便于第三动压发生槽6202的加工,第二轴承套62016可以由不锈钢材料制成。具体地,第三动压发生槽6202可以设置在转轴100上对应第二轴承套62016的圆周面的中间部分,也可 以设置为对称分布在中间部分的两侧、相互独立的两部分第三动压发生槽6202;第三动压发生槽6202还可以设置在第二轴承套62016内侧壁的中间部分,也可以设置为对称分布在第二轴承套62016内侧壁两端、相互独立的两部分第三动压发生槽6202。
可选的,第三动压发生槽6202呈矩阵排布,这样,有利于使气膜更均匀地分布于第四间隙6203内。
可选的,第三动压发生槽6202为连续或间隔设置的V形槽。
本公开实施例中,通过采用上述第三动压发生槽6202的设置方式,能够在转轴100正向旋转或者反向旋转的情况下,转轴都能以期望的方式非接触式地保持,从而使转轴100具有负载能力高及稳定性好的优点。第三动压发生槽6202除了设置为V形槽,还可以设置为人字形槽或其它形状的槽。
可选的,第四磁轴承6201上还设置有第二静压进气节流孔6205,第二静压进气节流孔6205的一端与第四间隙6203相通,另一端连接外部气源,用于将外部气源输送至第四间隙6203内。
本公开实施例中,通过设置上述第二静压进气节流孔6205,可以形成气体静压轴承,从而该槽式气磁混合径向轴承6200可以构成槽式气体动静压-磁混合径向轴承。其中,第二静压进气节流孔6205的流通直径可以根据气量需求等实际工况进行调节。
可选的,第二静压进气节流孔6205在第四磁轴承6201内分成至少两个支路连通至第四间隙6203内。
本公开实施例中,第二静压进气节流孔6205可以依次穿过第五端盖62017或第六端盖62018、第四磁轴承6201以及第二轴承套62016,将外部气源与第四间隙6203连通。进一步地,第二静压进气节流孔6205可以分为两个或者更多个支路连通至第四间隙6203,使得第四间隙6203内的气膜压力更加均匀。进一步的,第五端盖62017或第六端盖62018上可以设置有环形槽,可在第四磁轴承6201与该环形槽对应的环形区域内设置多个第二静压进气节流孔6205,例如,在每个第四磁芯62011中或每两个相邻的第四磁芯62011中设置一个第二静压进气节流孔6205。其中,第二静压进气节流孔6205以及支路的流通直径可以根据气量需求等实际工况进行调节。
可选的,槽式气磁混合径向轴承6200还包括沿第四磁轴承6201的周向间隔设置的多个第四传感器6204,其中每个第四传感器6204的传感器探头设置于第四间隙6203内。
本公开实施例中,通过设置第四传感器6204,能够实时检测第四间隙6203处的参数,例如第四间隙6203处的气膜压力。这样,第四磁轴承6201可以根据第四传感器6204的检测结果对径向轴承6200进行主动控制,并能够使控制达到较高的精度。
可选的,多个第四传感器6204中,每个第四传感器6204包括第四传感器盖62041和第四传感器探头62042,第四传感器探头62042的第一端连接第四传感器盖62041,第四传感器盖62041固定于第四磁轴承6201上,第四磁轴承6201上设有用于供第四传感器探头62042穿过的通孔;第四传感器探头62042的第二端穿过第四磁轴承6201上的通孔,并伸至第四间隙6203,且第四传感器探头62042的第二端端部与第四磁轴承6201的靠近转轴100的一侧平齐。
本公开实施例中,通过上述第四传感器6204的结构形式和安装方式,能够使第四传感器6204更稳定地设置于第四磁轴承6201上。此外,将第四传感器探头62042的第二端 端部与第四磁轴承6201的靠近转轴100的一侧平齐,一方面,能够避免第四传感器探头62042受到转轴100的碰触,从而有利于保护第四传感器探头62042;另一方面,不会对第四间隙6203内的气膜产生影响,避免第四间隙6203内的气膜发生扰动。
可选的,多个第四传感器6204中,每个第四传感器6204分别设置于相邻的两个第七磁性部件之间。
本公开实施例中,第四传感器6204的数量可以与第七磁性部件的数量相同。第四传感器6204可以设置于相邻的两个第七磁性部件之间,也可以穿过第七磁性部件设置,本公开实施例对此不作限定。每个第四传感器6204优选设置于第四磁轴承6201的中部。
可选的,多个第四传感器6204为以下任意一种或多种的组合:用于检测转轴100位置的位移传感器;用于检测第四间隙6203处的气膜压力的压力传感器;用于检测转轴100转速的速度传感器;用于检测转轴100旋转加速度的加速度传感器。
下面以本公开实施例的槽式气磁混合径向轴承(其中,第四磁轴承中的第七磁性部件为电磁铁)参与转子系统的控制过程时的具体控制方法进行详细地说明。
本公开实施例提供一种槽式气磁混合径向轴承的控制方法,包括:
S631、开启第四磁轴承,控制转轴在多个第七磁性部件的磁力作用下在转轴的径向方向上移动,推动转轴至预设径向位置。
S632、转轴的转速加速至工作转速之后,关闭第四磁轴承。
S633、转子系统停机时,开启第四磁轴承。
S634、转轴的转速减速至零之后,关闭第四磁轴承。
在上述过程中,第四磁轴承开启后,转轴在第四磁轴承的作用下托起并到达预设径向位置,第四磁轴承与转轴之间具有第四间隙。
随着转轴的转动,转轴在受第四间隙中气流润滑的情况下开始转动,以防止磨损。第四磁轴承开启的具体过程为:向第四线圈输入预定值的电流信号,转轴在第四磁轴承的作用下托起并到达预设径向位置。
随着转轴的转速越来越大,当转轴的转速到达工作转速时,该径向轴承的气体动压轴承(第四磁轴承与转轴之间设置第四间隙即形成该径向轴承的气体动压轴承)产生的气膜压力可以将转轴稳定,届时可以关闭第四磁轴承。
在转子系统停机时,转轴减速,为了使转轴在整个转子系统停机过程中保持稳定,在转子系统停机时即开启第四磁轴承,直到转轴完全停下后即可关闭第四磁轴承。
本公开实施例还提供另一种槽式气磁混合径向轴承的控制方法,包括:
S641、开启第四磁轴承,控制转轴在多个第七磁性部件的磁力作用下在转轴的径向方向上移动,推动转轴至预设径向位置。
S642、转轴的转速加速至第一预设值之后,关闭第四磁轴承。
S643、转轴的转速加速至一阶临界速度或二阶临界速度时,开启第四磁轴承。
具体的,当转轴与第四磁轴承之间的第四间隙处的气体流速达到一阶临界速度或二阶临界速度时,开启第四磁轴承,直至转轴恢复至平衡径向位置。
可选的,转轴的转速加速至一阶临界速度或二阶临界速度时,开启第四磁轴承,包括:转轴的转速加速至一阶临界速度或二阶临界速度时,控制第四磁轴承以最大功率开启;或者,转轴的转速加速至一阶临界速度或二阶临界速度时,控制第四磁轴承按照预设频率以 频闪的方式开启。
S644、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭第四磁轴承。
S645、转子系统停机过程中,当转子系统减速至一阶临界速度或二阶临界速度时,开启第四磁轴承。
具体的,当转轴与第四磁轴承之间的第四间隙处的气体流速减速至一阶临界速度或二阶临界速度时,开启第四磁轴承,直至转轴恢复至平衡径向位置。
可选的,转轴的转速减速至一阶临界速度或二阶临界速度时,开启第四磁轴承,包括:转轴的转速减速至一阶临界速度或二阶临界速度时,控制第四磁轴承以最大功率开启;或者,转轴的转速减速至一阶临界速度或二阶临界速度时,控制第四磁轴承按照预设频率以频闪的方式开启。
S646、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭第四磁轴承。
S647、转轴的转速减速至第二预设值时,开启第四磁轴承。
S648、转轴的转速减速至零之后,关闭第四磁轴承。
在上述过程中,第四磁轴承开启后,转轴在第四磁轴承的作用下托起并到达预设径向位置,第四磁轴承与转轴之间具有第四间隙。
随着转轴的转动,转轴在受第四间隙中气流润滑的情况下开始转动,以防止磨损。第四磁轴承开启的具体过程为:向第四线圈输入预定值的电流信号,转轴在第四磁轴承的作用下托起并到达预设径向位置。
随着转轴的转速越来越大,当转轴的转速到达第一预设值,例如额定转速的5%至30%时,该径向轴承的气体动压轴承(第四磁轴承与转轴之间设置第四间隙即形成该径向轴承的气体动压轴承)产生的气膜压力可以将转轴稳定,届时可以关闭第四磁轴承。
在转子系统停机过程中,转轴减速,当转轴的转速降至第二预设值,例如额定转速的5%至30%时,开启第四磁轴承,直到转轴完全停下后即可关闭第四磁轴承。
可选的,方法还包括:当转轴与第四磁轴承之间的第四间隙发生变化时,开启第四磁轴承,使转轴在多个第七磁性部件的磁力作用下向远离间隙变小侧的方向移动;转轴处于平衡径向位置之后,关闭第四磁轴承。
当载荷负载在转轴上,使转轴逐渐下降并接近下方的第四磁轴承时,第四传感器(这里的第四传感器优选压力传感器)获得气压增大的信号,此时第四磁轴承需要介入工作。第四磁轴承将磁力作用于转轴上使其向上悬浮,当转轴达到新的平衡位置时,第四磁轴承停止工作。
当有外部冲击扰动发生时,转轴可能快速地接近第四磁轴承,则有可能导致转轴与第四磁轴承之间的间隙瞬间过小,使间隙减小处的局部气体流速接近甚至达到音速,从而引发激波产生气锤自激现象。激波的产生会导致局部气体流动发生扰动和混乱,当流体速度在音速到亚音速之间变化时其压力呈阶梯式显著下降。这种情况下,需要控制第四磁轴承的第七磁性部件以预设频率轮流开启,以提供对扰动的阻尼作用,从而有效抑制外部扰动。当转轴恢复至新的平衡径向位置之后,第四磁轴承停止工作。
需要说明的是,本公开实施例中,对于同时设置有电磁轴承(第四磁轴承中的第七磁性部件为电磁铁即形成电磁轴承)和气体静压轴承(第四磁轴承上设置的第二静压进气节流孔即形成气体静压轴承)的情况下,电磁轴承和气体静压轴承可以相互备用,在其中一 方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到电磁轴承故障的情况下,控制外部气源开启以替代电磁轴承执行相应的动作,从而提高轴承的安全性和可靠性。
本公开实施例中,对于同时设置有电磁轴承和气体静压轴承的情况下,可以包括如下实施方式:开启第四磁轴承;和/或,启动外部气源,通过第二静压进气节流孔向第四间隙处输送气体;控制转轴在多个第七磁性部件的磁力作用下,和/或气体的推动作用下在转轴的径向方向上移动,以使转轴移动至预设径向位置。
其中,对于同时开启第四磁轴承和气体静压轴承的实施方式,能够进一步提高本公开实施例的径向轴承的承载力。
在上述过程中,利用第四磁轴承方便实时控制的优点,主动平衡转轴的不平衡质量或转轴涡动等导致转轴过度偏移的因素,使转轴在径向方向上固定在某一极小范围内。另外,在转轴的加速过程中,可以准确定位产生激波的位置(即线速度超声速部位),并通过控制第四磁轴承的电流大小和方向等,使第四磁轴承产生相反的力来平衡激波作用。待激波平稳后,再次调整第四磁轴承的控制策略,以最节能的方式将转轴固定在某一极小范围内。
综合上述,本公开实施例具有如下有益效果:
其一,电磁轴承与气体轴承协同工作,改善了轴承在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了轴承的承载能力。同时,电磁轴承与气体轴承采用嵌套结构,简化了结构,集成度高,易加工、制造和操作,提高了轴承的综合性能。在转子系统启动或停机时,可以用电磁轴承使轴承的推力盘与定子在第一间隙内转动,提高了轴承的低速性能,延长了轴承的使用寿命,能够提高轴承及整个系统的安全性和可靠性。
其二,相对于传统的采用气体静压轴承和气体动压轴承结合的气体动静压混合推力轴承,本公开实施例的槽式气磁混合径向轴承具有响应速度快的优点。
其三,增加了气体静压轴承,形成槽式动静压-磁混合推力轴承,在同时设置有电磁轴承和气体静压轴承的情况下,轴承的承载力进一步加大,电磁轴承和气体静压轴承可以相互备用,在其中一方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到电磁轴承故障的情况,控制系统控制气体静压轴承开启以替代电磁轴承执行相应的动作,从而提高轴承的安全性和可靠性。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种轴承,用于安装于转轴上,其特征在于,所述轴承包括:
    轴承壳,所述轴承壳为中空回转体,所述轴承壳设置有第一容纳腔和第二容纳腔;
    设置于所述第一容纳腔内的径向子轴承,所述径向子轴承穿设于所述转轴上,所述径向子轴承与所述转轴之间具有第一间隙;
    以及,设置于所述第二容纳腔内的推力子轴承,所述推力子轴承包括推力盘,以及分别设置于所述推力盘两侧的第一定子和第二定子,所述推力盘固定连接于所述转轴上,所述第一定子和所述第二定子均穿设于所述转轴上;所述第一定子和所述第二定子中,每个定子与所述推力盘之间具有第二间隙。
  2. 根据权利要求1所述的轴承,其特征在于,
    所述径向子轴承包括套设于所述转轴上的第一磁轴承,所述第一磁轴承与所述转轴之间具有所述第一间隙,所述第一磁轴承上沿周向设置有多个第一磁性部件;所述转轴能够在所述多个第一磁性部件的磁力作用下在所述转轴的径向方向上移动;
    所述第一定子和所述第二定子中,每个定子包括第二磁轴承,所述第二磁轴承上沿周向设置有多个第二磁性部件;所述推力盘上设置有第三磁性部件,所述推力盘能够在所述多个第二磁性部件和所述第三磁性部件之间的磁力作用下在所述转轴的轴向方向上移动。
  3. 根据权利要求2所述的轴承,其特征在于,
    所述第一磁轴承包括:
    第一磁轴承座,所述第一磁轴承座套设于所述转轴上,所述第一磁轴承座上沿周向设置有多个第一容纳槽,所述多个第一磁性部件设置于所述多个第一容纳槽内,且所述多个第一磁性部件的磁极朝向所述转轴;
    以及,套设于所述第一磁轴承座与所述转轴之间的轴承套,所述轴承套与所述转轴之间具有所述第一间隙,所述轴承套与所述第一磁轴承座配合,将所述多个第一磁性部件固定于所述第一磁轴承座上。
  4. 根据权利要求2所述的轴承,其特征在于,
    所述多个第一磁性部件包括多个第一永磁体,所述多个第一永磁体在所述第一磁轴承上沿周向设置;
    或者,所述多个第一磁性部件包括多个第一电磁铁,所述多个第一电磁铁在所述第一磁轴承上沿周向设置,所述多个第一电磁铁中的每个第一电磁铁包括设置于所述第一磁轴承上的第一磁芯及缠绕于所述第一磁芯上的第一线圈。
  5. 根据权利要求2所述的轴承,其特征在于,
    所述第一磁轴承朝向所述转轴的侧壁或所述转轴朝向所述第一磁轴承的圆周面设置有第一动压发生槽。
  6. 根据权利要求2所述的轴承,其特征在于,
    所述径向子轴承还包括沿所述第一磁轴承的周向间隔设置的多个第一传感器,所述多个第一传感器为以下任意一种或多种的组合:
    用于检测所述转轴位置的位移传感器;
    用于检测所述第一间隙处的气膜压力的压力传感器;
    用于检测所述转轴转速的速度传感器;
    用于检测所述转轴旋转加速度的加速度传感器。
  7. 根据权利要求6所述的轴承,其特征在于,
    所述多个第一传感器中,每个第一传感器包括传第一感器盖和第一传感器探头,所述第一传感器探头的第一端连接所述第一传感器盖,所述第一传感器盖固定于所述第一磁轴承上,所述第一磁轴承上设有用于供所述第一传感器探头穿过的通孔;所述第一传感器探头的第二端穿过所述第一磁轴承上的通孔,并伸至所述第一间隙,且所述第一传感器探头的第二端端部与所述第一磁轴承的靠近所述转轴的一侧平齐。
  8. 根据权利要求2所述的轴承,其特征在于,
    所述第二磁轴承包括:
    第二磁轴承座,所述第二磁轴承座与所述推力盘相对设置,所述第二磁轴承座上沿周向设置有多个第二容纳槽,所述多个第二磁性部件设置于所述多个第二容纳槽内,且所述多个第二磁性部件的磁极朝向所述推力盘所在的一侧;
    压环,所述压环设置于所述第二磁轴承座的靠近所述推力盘的一侧,所述压环与所述第二磁轴承座配合,将所述多个第二磁性部件固定于所述第二磁轴承座上。
  9. 根据权利要求2所述的轴承,其特征在于,
    所述多个第二磁性部件包括多个第二永磁体,所述多个第二永磁体在所述第二磁轴承上沿周向设置;
    或者,所述多个第二磁性部件包括多个第二电磁铁,所述多个第二电磁铁在所述第二磁轴承上沿周向设置,所述多个第二电磁铁中的每个第二电磁铁包括设置于所述第二磁轴承上的第二磁芯及缠绕于所述第二磁芯上的第二线圈。
  10. 根据权利要求2所述的轴承,其特征在于,
    所述第三磁性部件包括设置于所述推力盘的面向所述第一定子和所述第二定子的端面上的磁性材料;
    其中,所述磁性材料在所述推力盘上呈条状分布,而形成多个条状磁性部,所述多个条状磁性部呈辐射状或环状;
    或者,所述磁性材料在所述推力盘上呈点状分布。
  11. 根据权利要求2所述的轴承,其特征在于,
    所述推力盘的面向所述第一定子和所述第二定子的端面,或,所述第一定子和所述第二定子的面向所述推力盘的端面上设置有第二动压发生槽。
  12. 根据权利要求11所述的轴承,其特征在于,
    所述第二动压发生槽呈辐射状或同心圆状排布。
  13. 根据权利要求12所述的轴承,其特征在于,
    所述第二动压发生槽包括第一螺旋槽和第二螺旋槽,所述第一螺旋槽环绕于所述第二螺旋槽外,所述第一螺旋槽和所述第二螺旋槽的螺旋走向相反,所述第一螺旋槽的靠近所述第二螺旋槽的一端与所述第二螺旋槽的靠近所述第一螺旋槽的一端连接或断开。
  14. 根据权利要求2所述的轴承,其特征在于,
    所述推力子轴承上还设置有第二传感器,所述第二传感器为以下任意一种或多种的 组合:
    用于检测所述推力盘位置的位移传感器;
    用于检测所述第二间隙处的气膜压力的压力传感器;
    用于检测所述推力盘转速的速度传感器;
    用于检测所述推力盘旋转加速度的加速度传感器。
  15. 根据权利要求14所述的轴承,其特征在于,
    所述第二传感器包括第二传感器盖和第二传感器探头,所述第二传感器探头的第一端连接所述第二传感器盖,所述第二传感器盖固定于所述第二磁轴承上,所述第二磁轴承上设有用于供所述第二传感器探头穿过的通孔;所述第二传感器探头的第二端穿过所述第二磁轴承上的通孔,并伸至所述第二间隙,且所述第二传感器探头的第二端端部与所述第二磁轴承的靠近所述推力盘的一侧平齐。
  16. 根据权利要求2所述的轴承,其特征在于,
    所述轴承壳还设置有静压进气节流孔;
    其中,所述静压进气节流孔的一端连接外部气源,另一端经所述径向子轴承与所述第一间隙相通,并经所述第一定子和所述第二定子与所述第二间隙相通,所述静压进气节流孔用于将外部气源输送至所述第一间隙和所述第二间隙。
  17. 一种转子系统,其特征在于,
    包括转轴和设置于所述转轴上的推力轴承和至少两个径向轴承,所述推力轴承和所述至少两个径向轴承均为非接触式轴承;
    所述推力轴承和与所述推力轴承相邻的径向轴承集成一体,形成如权利要求2至15中任一项所述的轴承。
  18. 根据权利要求17所述的转子系统,其特征在于,
    所述转轴的轴体为一体结构,所述转轴水平设置或竖向设置;
    所述转轴上依次设置有电机、压气机和透平;
    其中,所述推力轴承设置于所述透平的靠近所述压气机的一侧的预设位置上,所述预设位置为能够使所述转子系统的重心位于所述至少两个径向轴承中相距最远的两个径向轴承之间的位置。
  19. 根据权利要求17所述的转子系统,其特征在于,
    所述转轴的轴体为一体结构,所述转轴水平设置或竖向设置;
    所述转轴上设置有电机、压气机、透平和两个径向轴承,所述两个径向轴承均为非接触式轴承;
    所述转子系统还包括第一机匣和第二机匣,所述第一机匣与所述第二机匣连接;
    其中,所述发电机、所述推力轴承和所述两个径向轴承均设置于所述第一机匣内,所述压气机和所述透平均设置于所述第二机匣内,所述压气机的叶轮与所述透平的叶轮在所述第二机匣内相靠设置。
  20. 一种轴承的控制方法,用于如权利要求17至19中任一项所述的转子系统,所述第一磁轴承中的所述第一磁性部件为第一电磁铁,所述第二磁轴承中的所述第二磁性部件为第二电磁铁,其特征在于,所述方法包括:
    开启所述第一磁轴承和所述第二磁轴承;
    控制所述转轴在所述多个第一磁性部件的磁力作用下在所述转轴的径向方向上移动,以使所述转轴移动至预设径向位置;以及,控制所述推力盘在所述多个第二磁性部件和所述第三磁性部件之间的磁力作用下在所述转轴的轴向方向上移动,以使所述推力盘与所述第一定子中的第二磁轴承之间的所述第二间隙与所述推力盘与所述第二定子中的第二磁轴承之间的所述第二间隙的差值小于或等于所述预定值;
    所述转轴的转速加速至工作转速之后,关闭所述第一磁轴承和所述第二磁轴承;
    所述转子系统停机时,开启所述第一磁轴承和所述第二磁轴承;
    所述转轴的转速减速至零之后,关闭所述第一磁轴承和所述第二磁轴承。
  21. 一种轴承的控制方法,用于如权利要求17至19中任一项所述的转子系统,所述第一磁轴承中的所述第一磁性部件为第一电磁铁,所述第二磁轴承中的所述第二磁性部件为第二电磁铁,其特征在于,所述方法包括:
    开启所述第一磁轴承和所述第二磁轴承;
    控制所述转轴在所述多个第一磁性部件的磁力作用下在所述转轴的径向方向上移动,以使所述转轴移动至预设径向位置;以及,控制所述推力盘在所述多个第二磁性部件和所述第三磁性部件之间的磁力作用下在所述转轴的轴向方向上移动,以使所述推力盘与所述第一定子中的第二磁轴承之间的所述第二间隙与所述推力盘与所述第二定子中的第二磁轴承之间的所述第二间隙的差值小于或等于所述预定值;
    所述转轴的转速加速至第一预设值之后,关闭所述第一磁轴承和所述第二磁轴承;
    所述转子系统加速至一阶临界速度或二阶临界速度时,开启所述第一磁轴承和所述第二磁轴承;
    所述转子系统平稳度过所述一阶临界速度或所述二阶临界速度之后,关闭所述第一磁轴承和所述第二磁轴承;
    所述转子系统停机过程中,当所述转子系统减速至所述一阶临界速度或所述二阶临界速度时,开启所述第一磁轴承和所述第二磁轴承;
    所述转子系统平稳度过所述一阶临界速度或所述二阶临界速度之后,关闭所述第一磁轴承和所述第二磁轴承;
    所述转轴的转速减速至第二预设值时,开启所述第一磁轴承和所述第二磁轴承;
    所述转轴的转速减速至零之后,关闭所述第一磁轴承和所述第二磁轴承。
  22. 根据权利要求21所述的方法,其特征在于,
    所述转子系统加速或减速至一阶临界速度或二阶临界速度时,开启所述第一磁轴承和所述第二磁轴承,包括:
    所述转子系统加速或减速至一阶临界速度或二阶临界速度时,控制所述第一磁轴承和所述第二磁轴承以最大功率开启;或者,
    所述转子系统加速或减速至一阶临界速度或二阶临界速度时,控制所述第一磁轴承和所述第二磁轴承按照预设频率以频闪的方式开启。
  23. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    当所述转轴与所述第一磁轴承之间的第一间隙发生变化时,开启所述第一磁轴承,使所述转轴在所述多个第一磁性部件的磁力作用下向远离间隙变小侧的方向移动;
    所述转轴处于平衡径向位置之后,关闭所述第一磁轴承。
  24. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    当载荷负载在所述推力盘,所述推力盘在载荷负载的作用下在所述转轴的轴向方向上移动,所述推力盘与所述第一定子中的第二磁轴承之间的所述第二间隙与所述推力盘与所述第二定子中的第二磁轴承之间的所述第二间隙的差值大于所述预定值时,开启所述第二磁轴承;
    当所述推力盘与所述第一定子中的第二磁轴承之间的所述第二间隙与所述推力盘与所述第二定子中的第二磁轴承之间的所述第二间隙的差值小于或者等于所述预定值,关闭所述第二磁轴承。
PCT/CN2018/103445 2018-01-12 2018-08-31 轴承、转子系统及轴承的控制方法 WO2019137028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810032639.6 2018-01-12
CN201810032639.6A CN108869558B (zh) 2018-01-12 2018-01-12 一种轴承、转子系统及轴承的控制方法

Publications (1)

Publication Number Publication Date
WO2019137028A1 true WO2019137028A1 (zh) 2019-07-18

Family

ID=64325938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103445 WO2019137028A1 (zh) 2018-01-12 2018-08-31 轴承、转子系统及轴承的控制方法

Country Status (2)

Country Link
CN (1) CN108869558B (zh)
WO (1) WO2019137028A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109236860B (zh) * 2018-11-30 2024-04-16 广西恒达电机科技有限公司 一种用于旋转机械转子的组合轴承
CN110848253A (zh) * 2019-11-11 2020-02-28 北京航空航天大学 一种三自由度径向-轴向一体化混合磁轴承
CN111005768A (zh) * 2019-11-21 2020-04-14 中国航发沈阳黎明航空发动机有限责任公司 一种航空发动机转子电磁配重装置
CN111200349B (zh) * 2020-02-11 2021-04-23 南通大学 一种高精度定位的复合式电机
CN114251363B (zh) * 2020-09-24 2024-05-03 武汉科技大学 一种适用于真空环境条件下主动控制的气体静压电主轴
CN114017138B (zh) * 2021-11-24 2023-12-26 重庆江增船舶重工有限公司 一种抵消超临界二氧化碳透平热应力的结构
CN116754197A (zh) * 2023-06-13 2023-09-15 小米汽车科技有限公司 一种电机转子的测试系统
CN117588493B (zh) * 2024-01-19 2024-04-16 山东天瑞重工有限公司 一种径轴向一体式磁悬浮轴承和空压机用磁悬浮电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1759518A (zh) * 2003-01-21 2006-04-12 帕特里克·T·麦克马伦 带有最小功率的磁性轴承和电机/发电机的能量储存飞轮
JP2006153037A (ja) * 2004-11-25 2006-06-15 Kobe Univ 磁気軸受装置
JP5192271B2 (ja) * 2008-03-31 2013-05-08 川崎重工業株式会社 磁気軸受装置
CN206206403U (zh) * 2016-11-21 2017-05-31 南京磁谷科技有限公司 一种磁轴承结构

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173951A (ja) * 1992-12-10 1994-06-21 Ebara Corp 磁気軸受装置
JP3680226B2 (ja) * 1995-10-13 2005-08-10 光洋精工株式会社 磁気軸受装置
JPH11254205A (ja) * 1998-03-04 1999-09-21 Mori Seiki Co Ltd 工作機械における主軸の支持方法及び工作機械の主軸ヘッド
JP2001124076A (ja) * 1999-10-21 2001-05-08 Toshiba Corp スラスト磁気軸受装置
JP2002021843A (ja) * 2000-07-06 2002-01-23 Mitsubishi Heavy Ind Ltd スラスト軸受装置
JP2002364637A (ja) * 2001-06-07 2002-12-18 Matsushita Electric Ind Co Ltd 動圧気体軸受装置
US7112036B2 (en) * 2003-10-28 2006-09-26 Capstone Turbine Corporation Rotor and bearing system for a turbomachine
KR101036790B1 (ko) * 2008-10-31 2011-05-25 한국과학기술연구원 하이브리드 스러스트 베어링
CN103061869B (zh) * 2013-01-09 2015-04-08 北京理工大学 电涡轮增压器
KR101343876B1 (ko) * 2013-07-24 2013-12-20 한국기계연구원 래디얼 및 쓰러스트 일체형 보조 베어링이 구비된 복합 자기 베어링
JP2016169809A (ja) * 2015-03-13 2016-09-23 三菱重工業株式会社 回転機械及び回転機械のバランス調整方法
CN204572784U (zh) * 2015-04-30 2015-08-19 南京艾凌节能技术有限公司 一种并联式永磁磁悬浮轴承
CN204572785U (zh) * 2015-04-30 2015-08-19 南京艾凌节能技术有限公司 一种永磁磁悬浮轴承的组合结构
CN105149621A (zh) * 2015-09-01 2015-12-16 上海大学 磁悬浮与人字槽动静压气体混合轴承支承的电主轴
CN105545956B (zh) * 2016-03-04 2019-05-14 至玥腾风科技投资集团有限公司 一种电磁使能的主动式动压气体轴承
CN105570300B (zh) * 2016-03-16 2018-01-02 珠海格力节能环保制冷技术研究中心有限公司 一种轴向磁悬浮轴承
KR101897461B1 (ko) * 2016-06-23 2018-10-29 한국기계연구원 쓰러스트 자기베어링의 편향력 보상장치
CN106357052A (zh) * 2016-09-26 2017-01-25 南京磁谷科技有限公司 一种磁悬浮电机风冷结构
CN106402157B (zh) * 2016-11-16 2018-07-10 常州工学院 失稳后实现再悬浮的磁悬浮轴承控制系统及其控制方法
CN106594072B (zh) * 2016-11-29 2017-11-14 北京航空航天大学 一种无推力盘径轴向一体化永磁偏置磁轴承
CN106505780B (zh) * 2016-12-15 2024-03-26 南通金驰机电有限公司 一种磁悬浮永磁直驱高速电机
CN206626094U (zh) * 2017-03-02 2017-11-10 常州市翰琪电机有限公司 一种智能化磁悬浮电主轴装置
CN208123273U (zh) * 2018-01-12 2018-11-20 至玥腾风科技投资集团有限公司 一种轴承和转子系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1759518A (zh) * 2003-01-21 2006-04-12 帕特里克·T·麦克马伦 带有最小功率的磁性轴承和电机/发电机的能量储存飞轮
JP2006153037A (ja) * 2004-11-25 2006-06-15 Kobe Univ 磁気軸受装置
JP5192271B2 (ja) * 2008-03-31 2013-05-08 川崎重工業株式会社 磁気軸受装置
CN206206403U (zh) * 2016-11-21 2017-05-31 南京磁谷科技有限公司 一种磁轴承结构

Also Published As

Publication number Publication date
CN108869558A (zh) 2018-11-23
CN108869558B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
WO2019137028A1 (zh) 轴承、转子系统及轴承的控制方法
WO2019137026A1 (zh) 一种推力轴承、转子系统及推力轴承的控制方法
US11421591B2 (en) Rotor system and control method thereof, as well as gas turbine generator set and control method thereof
WO2019137025A1 (zh) 一种径向轴承、转子系统及径向轴承的控制方法
WO2019137024A1 (zh) 一种推力轴承、转子系统及推力轴承的控制方法
CN110249145B (zh) 用于轴慢滚动控制的推力主动磁轴承
WO2019137023A1 (zh) 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
CN108868890A (zh) 一种特斯拉涡轮机及控制方法
CN110552746A (zh) 一种转子系统和燃气轮机发电机组
CN208123260U (zh) 一种径向轴承和转子系统
CN208236900U (zh) 一种推力轴承和转子系统
CN208123273U (zh) 一种轴承和转子系统
WO2020063517A1 (zh) 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
CN207999283U (zh) 一种转子系统和燃气轮机发电机组
CN208010407U (zh) 一种转子系统和燃气轮机发电机组
CN116336078A (zh) 一种自然电磁磁悬浮与气体动压悬浮组合悬浮轴系
CN208123261U (zh) 一种推力轴承和转子系统
CN208123262U (zh) 一种推力轴承和转子系统
CN110552960B (zh) 一种推力轴承、转子系统及推力轴承的控制方法
CN208010406U (zh) 一种转子系统和燃气轮机发电机组
CN108868893B (zh) 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
Park et al. Design and evaluation of hybrid magnetic bearings for turbo compressors
Heshmat et al. Experimental investigation of 150 mm diameter large hybrid foil/magnetic bearing
Swanson et al. Performance of a Foil-Magnetic Hybrid Bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18900427

Country of ref document: EP

Kind code of ref document: A1