WO2020063517A1 - 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法 - Google Patents

一种转子系统及其控制方法和燃气轮机发电机组及其控制方法 Download PDF

Info

Publication number
WO2020063517A1
WO2020063517A1 PCT/CN2019/107232 CN2019107232W WO2020063517A1 WO 2020063517 A1 WO2020063517 A1 WO 2020063517A1 CN 2019107232 W CN2019107232 W CN 2019107232W WO 2020063517 A1 WO2020063517 A1 WO 2020063517A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
magnetic
thrust
rotating shaft
radial
Prior art date
Application number
PCT/CN2019/107232
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
至玥腾风科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技集团有限公司 filed Critical 至玥腾风科技集团有限公司
Publication of WO2020063517A1 publication Critical patent/WO2020063517A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/268Starting drives for the rotor, acting directly on the rotor of the gas turbine to be started

Definitions

  • the invention relates to the technical field of rotor dynamics, in particular to a rotor system and a control method thereof, and a gas turbine generator set and a control method thereof.
  • the gas turbine mainly includes three components: a compressor, a combustion chamber and a turbine. After the air enters the compressor, it is compressed into high-temperature and high-pressure air, and then it is supplied to the combustion chamber to be mixed with fuel for combustion. The high-temperature and high-pressure gas produced by it is expanded in the turbine to perform work.
  • the rotor rotates at a high speed, the rotor is subjected to a radial force and an axial force.
  • a radial bearing and a thrust bearing need to be installed in the rotor system.
  • Traditional radial bearings and thrust bearings are ordinary contact bearings. As the rotor speed increases, especially when the rotor speed exceeds 40,000 revolutions per minute, ordinary contact bearings cannot meet the requirements due to the large mechanical wear. Demand for working speed.
  • the high-speed rotation of the gas turbine rotor drives the generator rotor to rotate to generate electricity.
  • the axial force on the rotor will further increase. If the thrust bearing is placed between the compressor and the turbine, not only will the center of gravity of the entire rotor system be biased to the turbine side, resulting in poor stability of the rotor system, but also due to the high temperature experienced by the hot end components of the turbine turbine during operation It is transmitted to the thrust bearing, which makes it impossible to adopt the aeromagnetic hybrid thrust bearing for the thrust bearing. If a thrust bearing is provided on the side of the coupling facing the generator, all the axial force of the rotor acts on the coupling, which may easily cause the coupling to be damaged.
  • the invention provides a rotor system and a control method thereof, and a gas turbine generator set and a control method thereof to solve the above problems.
  • the present invention provides a rotor system, including:
  • a first rotating shaft on which a turbine, a first radial bearing, a compressor, and a thrust bearing are sequentially arranged; the thrust bearing is located on a side where an air inlet of the compressor is located, and is in contact with the The compressors are spaced a predetermined distance apart so that the thrust bearings do not block the air inlets of the compressors;
  • a second rotating shaft connected to the first rotating shaft through a coupling, and a second radial bearing, a motor, and a third radial bearing are sequentially arranged on the second rotating shaft;
  • the first and second rotating shafts are both horizontally arranged, or the first and the second rotating shafts are both vertically installed;
  • the thrust bearing is a gas-magnetic hybrid thrust bearing, and the first radial bearing, the second radial bearing, and the third radial bearing are all non-contact bearings.
  • the present invention provides a control method of a rotor system for the rotor system of the first aspect, the method includes:
  • opening the static pressure bearing includes: opening a magnetic bearing in the bearing, and / or delivering gas to a static pressure intake orifice in the bearing;
  • Closing the static pressure bearing includes: closing the magnetic bearing in the bearing, and / or stopping the delivery of gas to the static pressure intake orifice in the bearing;
  • the rotating shaft is formed by connecting a first rotating shaft and a second rotating shaft through a coupling.
  • the present invention provides another control method of a rotor system for the rotor system of the first aspect, the method includes:
  • opening the static pressure bearing includes: opening a magnetic bearing in the bearing, and / or delivering gas to a static pressure intake orifice in the bearing;
  • Closing the static pressure bearing includes: closing a magnetic bearing in the bearing, and / or stopping supplying gas to a static pressure intake orifice in the bearing;
  • the rotating shaft is formed by connecting a first rotating shaft and a second rotating shaft through a coupling.
  • the present invention provides a gas turbine generator set including an air inlet, a combustion chamber, and the rotor system of the first aspect.
  • the air inlet is in communication with the air inlet of the compressor.
  • the air port is in communication with the air inlet of the combustion chamber, and the air outlet of the combustion chamber is in communication with the air intake of the turbine.
  • the present invention provides a method for controlling a gas turbine generator set for a gas turbine generator set in the fourth aspect, the method comprising:
  • the gas turbine generator set is started. After the air is compressed by the compressor, it enters the combustion chamber and the fuel in the combustion chamber is mixed for combustion. The high temperature and high pressure gas discharged from the combustion chamber impacts the turbine turbine, causing the turbine to rotate. Driving the motor to generate electricity through the rotating shaft;
  • opening the static pressure bearing includes: opening a magnetic bearing in the bearing, and / or delivering gas to a static pressure intake orifice in the bearing;
  • Closing the static pressure bearing includes: closing the magnetic bearing in the bearing, and / or stopping the delivery of gas to the static pressure intake orifice in the bearing;
  • the rotating shaft is formed by connecting a first rotating shaft and a second rotating shaft through a coupling.
  • the thrust bearing by placing the thrust bearing on the side where the air inlet of the compressor is located, that is, arranging the thrust bearing at the cold end of the rotor system, in this way, the thrust bearing can adopt a gas-magnetic hybrid thrust bearing; in addition, The center of gravity of the entire rotor system can also be located between the two farthest radial bearings to stabilize the structure of the entire rotor system, avoid instability during high-speed rotation, and meet the current high-speed requirements of gas turbines.
  • 1 to 12 are schematic structural diagrams of a rotor system according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a gas turbine generator set according to an embodiment of the present invention.
  • 14 to 19 are structural schematic diagrams of a radial bearing provided with a bearing damper
  • 20 to 23 are schematic structural diagrams of a foil-type aeromagnetic hybrid thrust bearing
  • 24 to 30 are schematic structural diagrams of a slot type aeromagnetic hybrid thrust bearing
  • 31 to 38 are structural schematic diagrams of a slot type aeromagnetic hybrid radial bearing
  • 39 to 41 are schematic structural diagrams of an integrated bearing provided in a rotor system
  • a rotor system includes:
  • the first rotating shaft 100 is provided with a turbine 200, a first radial bearing 500, a compressor 300, and a thrust bearing 700 in this order.
  • the thrust bearing 700 is located on the side of the air inlet of the compressor 300, and The compressors 300 are spaced a predetermined distance apart so that the thrust bearing 700 does not block the air inlet of the compressor 300;
  • the first rotating shaft 100 and the second rotating shaft 101 are both horizontally disposed;
  • the thrust bearing 700 is a gas-magnetic hybrid thrust bearing 700.
  • the first radial bearing 500, the second radial bearing 610, and the third radial bearing 620 are all non-contact bearings.
  • the first rotating shaft 100 and the second rotating shaft 101 are both horizontally formed to form a horizontal rotor system, which can be applied to a horizontal unit that requires a horizontal rotor system, such as a horizontal gas turbine generator set.
  • both the first rotating shaft 100 and the second rotating shaft 101 can be vertically arranged to form a vertical rotor system, which can be applied to a vertical unit that requires a vertical rotor system, such as a vertical gas turbine generator set.
  • the predetermined distance may be 0.5 times to 2 times the height of the blades at the air inlet of the impeller of the compressor 300, but is not limited thereto.
  • the specific size may be designed according to the specific parameters of the compressor 300 and the thrust bearing 700.
  • the thrust bearing 700 can be a gas-magnetic hybrid thrust bearing 700, thereby improving the control accuracy of the rotor system.
  • the thrust bearing 700 does not block the air inlet of the compressor 300.
  • the center of gravity of the entire rotor system can fall between the two most distal radial bearings to stabilize the structure of the entire rotor system, avoid instability during high-speed rotation, and meet the current high-speed requirements of gas turbines.
  • a fourth can be provided between the thrust bearing 700 and the compressor 300.
  • the radial bearing 800 makes the structure of the entire rotor system more stable.
  • the material of the turbine 200 turbine is ceramic material, ceramic fiber composite material, etc.
  • the horizontal rotor system shown in FIG. 3 is adopted, which is different from the horizontal rotor system shown in FIG. 1 only in that the diameter of the thrust plate of the thrust bearing 700 is small, and the interval between the thrust bearing 700 and the compressor 300 is described.
  • the predetermined distance can be reduced, that is, the axial length of the entire rotor system is shortened, and the stability of the rotor system is improved.
  • a fourth radial bearing 800 may also be added.
  • the position of the fourth radial bearing 800 may be between the coupling 102 and the
  • the specific positions of the thrust bearings 700 or between the thrust bearings 700 and the compressor 300 can be flexibly set according to the weight of each component in the rotor system.
  • radial bearings can also be provided at both ends of the rotor system, that is, a fifth radial bearing 801 is added, so that the rotor system is formed into a spindle shape to stabilize the structure of the entire rotor system. Avoids instability during high-speed rotation, and meets the current requirements for high speed of gas turbines.
  • the first radial bearing 500, the second radial bearing 610, the third radial bearing 620, the fourth radial bearing 800, and the fifth radial bearing 801 may all be non-contact radial bearings.
  • At least one of the first radial bearing 500, the second radial bearing 610, and the third radial bearing 620 is an aeromagnetic hybrid radial bearing Or gas hydrostatic bearings or gas dynamic hydrostatic hybrid radial bearings.
  • at least one of the first radial bearing 500, the second radial bearing 610, the third radial bearing 620, and the fourth radial bearing 800 is an aeromagnetic hybrid Radial bearings or aerostatic or aerodynamic and hydrostatic hybrid radial bearings.
  • At least one of the first radial bearing 500, the second radial bearing 610, the third radial bearing 620, the fourth radial bearing 800, and the fifth radial bearing 801 It is a gas-magnetic hybrid radial bearing or a gas hydrostatic bearing or a gas dynamic-hydrostatic hybrid radial bearing.
  • the first radial bearing 500 is a gas static pressure radial bearing or a gas dynamic static pressure hybrid radial bearing.
  • the second radial bearing 610 and the third radial bearing 620 are aeromagnetic hybrid radial bearings.
  • the fourth radial bearing 800 is a gas-magnetic hybrid radial bearing or a gas dynamic-static pressure hybrid radial bearing.
  • the fifth radial bearing 801 is a gas static pressure radial bearing or a gas dynamic static pressure hybrid radial bearing.
  • a magnetic component may be added to the first radial bearing 500 to form a gas-magnetic hybrid radial bearing. Because the magnetic element is not resistant to high temperatures, when the first radial bearing 500 is an aeromagnetic hybrid radial bearing, the magnetic component of the first radial bearing 500 is disposed on an area of the first radial bearing 500 away from the turbine 200.
  • 7 to 12 are schematic structural diagrams of a horizontal rotor system in which a first radial bearing 500 is set as an aeromagnetic hybrid radial bearing.
  • a heat insulation layer is disposed on a side of the turbine 200 near the first radial bearing 500.
  • the thermal insulation layer may be an aerogel or other materials.
  • the first radial bearing 500 and the fifth radial bearing 801 are preferably a gas dynamic static pressure hybrid radial bearing. Since oil pollution or impurities will not be generated during the above-mentioned fuel combustion process, the choice of gas dynamic and static pressure hybrid radial bearings can avoid the dry friction and wear of rotating shafts and bearings during the opening and closing stages of pure dynamic pressure bearings. There is no possibility that the orifice is blocked by oil.
  • the compressor 300 may be a centrifugal compressor 300, and the turbine 200 turbine may be a centrifugal turbine; the motor 400 may be a fluid dynamic bearing motor, and a portion of the second rotating shaft 101 corresponding to the bearing of the motor 400 may be provided with The first dynamic pressure generating groove.
  • the motor 400 may be a heuristic integrated motor.
  • the motor 400 can be turned on in a start-up mode to rotate the rotor system. After the rotation speed of the rotor system is increased to a preset speed, the working mode of the motor 400 can be switched to the power generation mode.
  • any of the horizontal rotor systems mentioned above can be applied to horizontal gas turbine generator sets, especially horizontal horizontal gas turbine generator sets.
  • the following description will be made by taking a rotor system applied to horizontal gas turbine generator sets as an example.
  • the gas turbine generator set preferably a micro gas turbine generator set, includes a compressor 300, a turbine 200, and a combustion chamber 330.
  • the inlet 320 of the gas turbine generator set communicates with the inlet of the compressor 300
  • the outlet of the compressor 300 communicates with the inlet of the combustion chamber 330
  • the compressor 300 may be a centrifugal compressor 300, and the turbine 200 turbine may be a centrifugal turbine; the bearing of the motor 400 may be a fluid dynamic pressure bearing, and a portion of the shaft 100 corresponding to the bearing of the motor 400 may be provided with a first dynamic pressure generation.
  • Slot 401; combustion chamber 330 may be an annular combustion chamber.
  • the intake duct 320 is formed by a casing of the motor 400 and a casing 310 of the gas turbine generator set. In this way, when the air enters the compressor 300 through the air inlet 320, the air flows through the casing of the motor 400, which can cool the motor 400.
  • the motor 400 is a heuristic integrated motor.
  • the thrust bearing in the rotor system can be aeromagnetic hybrid thrust bearing
  • the radial bearing can be aeromagnetic hybrid thrust bearing or aerodynamic and hydrostatic hybrid radial bearing.
  • a bearing that can perform lubrication without rotating the shaft as a hydrostatic bearing
  • a bearing that can work only when the shaft rotates to a certain speed is defined as a dynamic pressure bearing.
  • magnetic bearings and aerostatic bearings in aeromagnetic hybrid thrust bearings, and aerostatic bearings in aerodynamic and hydrostatic hybrid radial bearings can be referred to as hydrostatic bearings; while gas in aeromagnetic hybrid thrust bearings
  • the dynamic pressure bearing and the gas dynamic pressure bearing in the gas dynamic and static pressure hybrid radial bearing can be referred to as a dynamic pressure bearing.
  • the working process of a gas turbine generator set includes the following three steps:
  • the bearing starts.
  • the control system opens the hydrostatic bearing part in the radial bearing and the thrust bearing respectively to move the rotating shaft to a preset radial position and the thrust disk of the thrust bearing to a preset axial position.
  • the rotating shaft may be formed by connecting the first rotating shaft and the second rotating shaft through a coupling.
  • Opening the static pressure bearing may include: opening a magnetic bearing in the bearing, and / or delivering gas to a static pressure intake orifice in the bearing.
  • the micro gas turbine starts, the air enters the centrifugal compressor from the inlet, and after being compressed, it passes through the regenerator, and the high-temperature gas discharged from the turbine of the turbine 200 pre-heats the compressed air at the outlet of the compressor 300;
  • the heated air enters the combustion chamber and the fuel is mixed for combustion.
  • the high temperature and high pressure gas after the combustion chamber is fully burned impacts the turbine of the turbine 200 to rotate the turbine, and the turbine exhaust gas enters the regenerator to pre-heat the airflow from the compressor.
  • the exhaust pipe is discharged. Because the turbine is connected to the compressor, the turbine rotates to drive the compressor to rotate and drag the front-end generator to rotate and generate the output shaft work.
  • the control system controls the hydrostatic bearings in the radial and thrust bearings to stop working.
  • the control system controls the radial
  • the static pressure bearings of the bearings and thrust bearings are activated until the smoothness exceeds the critical speed.
  • the control system controls the radial bearings and the thrust shaft respectively.
  • the hydrostatic bearing part stops working.
  • the control system controls the hydrostatic bearing part of the radial bearing and the thrust bearing to stop working; when the rotation speed of the rotating shaft 100 drops to a predetermined value, preferably, when the rotation speed of 5% to 30% of the rated speed is controlled, The system controls the static pressure bearing part of the radial bearing and the thrust bearing to start until the rotation speed drops to 0, and the control system controls the static pressure bearing part of the radial bearing and the thrust bearing to stop working, respectively.
  • the compressor 300 includes a moving blade and a stationary blade, and further preferably, the stationary blade is a diffuser.
  • step S2 the process of "air enters the centrifugal compressor from the air inlet duct and is compressed" For: Air enters the centrifugal compressor blade and is compressed, and then enters the diffuser (static component) arranged in the circumferential direction to continue to be compressed.
  • the turbine of the turbine 200 includes a stationary blade and a moving blade, and further preferably, the stationary blade is a nozzle.
  • step S2 "the high-temperature and high-pressure gas after the combustion chamber is fully combusted against the turbine of the turbine 200
  • the process of “impacting and rotating the turbine” is: after the combustion chamber is fully burned, the high-temperature and high-pressure gas passes through nozzles (static components) arranged circumferentially at the outlet of the combustion chamber for expansion and acceleration, and then impacts the turbine rotor blades (that is, gas continues) Expands and does work on the turbine), turning the turbine.
  • An embodiment of the present invention provides a method for controlling a gas turbine generator set, including:
  • a motor is used as an example for a heuristic integrated motor to describe the startup process of a gas turbine generator set in detail.
  • the Gas Turbine Controller (Electronic Control Unit, ECU for short) sends a motor drive mode command to the Motor Power Controller (Data Processing Center, DPC for short); the DPC switches to the motor drive mode, and the DPC switches the direct current of the gas turbine's built-in battery Frequency conversion is performed to drive the motor, which drives the gas turbine to increase the speed.
  • ECU Electronic Control Unit
  • DPC Data Processing Center
  • the fuel valve is opened to enter the ignition program.
  • the air enters the compressor from the intake duct for compression, enters the regenerator, and is preheated by the high-temperature gas discharged from the turbine.
  • the pre-heated compressed air enters the combustion chamber and mixes with the fuel and burns.
  • the combustion chamber is fully burned with high-temperature and high-pressure gas.
  • the turbine enters the turbine to impact the turbine, causing the turbine turbine to rotate, and the turbine exhaust gas enters the regenerator to pre-heat the cold compressed air before entering the combustion chamber and is discharged from the exhaust pipe. Because the turbine is connected to the compressor and the motor through a rotating shaft, Turbine turbine rotation drives the compressor to rotate together to a self-sustaining speed.
  • the DPC hangs, the motor idling continues to increase the throttle, and the turbine continues to increase the power to increase the speed to the working speed.
  • the ECU sends a generator mode command to the DPC; the DPC switches to the generator mode and outputs the voltage and current required by the user after the AC power output from the motor is rectified and transformed.
  • the compressor is a centrifugal compressor, and the centrifugal compressor includes a moving blade and a stationary blade arranged along the circumferential direction, and the stationary blade is a diffuser.
  • the specific process of air entering the compressor from the intake port for compression can be: After the air moving into the centrifugal compressor, the moving blades are compressed, and then enter the circumferentially arranged diffuser (ie, the stationary blades) to continue to be compressed.
  • the turbine turbine is a centrifugal turbine, and the centrifugal turbine is provided with moving blades.
  • a stationary vane is arranged along the outlet of the combustion chamber, and the stationary vane is a nozzle.
  • the high-temperature and high-pressure gas after the combustion chamber is fully burned enters the turbine to perform work, and the specific process of rotating the turbine turbine can be as follows:
  • the high-temperature and high-pressure gas after the combustion chamber is fully burned passes through the nozzles (that is, (Blades) perform expansion and acceleration, and impinge on the rotor blades of the turbine to rotate the turbine.
  • closing the static pressure bearing includes: closing the magnetic bearing in the bearing, and / or stopping supplying gas to the static pressure intake orifice in the bearing.
  • the bearings in the rotor system are controlled so that the hydrostatic bearings in the radial and thrust bearings are opened until the rotation speed of the rotating shaft reaches the working speed.
  • the bearings in the rotor system are controlled so that the hydrostatic bearings in the radial and thrust bearings are opened until the rotation speed of the shaft is zero.
  • An embodiment of the present invention provides another method for controlling a gas turbine generator set, including:
  • the first preset value may be 5% to 30% of the rated rotation speed.
  • closing the static pressure bearing includes: closing the magnetic bearing in the bearing, and / or stopping supplying gas to the static pressure intake orifice in the bearing.
  • the second preset value may be equal to or not equal to the first preset value, and the second preset value may be 5% to 30% of the rated speed.
  • the bearings in the rotor system are controlled so that the hydrostatic bearings of the radial and thrust bearings are opened. In this way, the rotating shaft is lifted to the preset radial position by the static pressure bearing of the radial bearing; the thrust disk is pushed to the preset axial position by the static pressure bearing of the thrust bearing.
  • the rotation speed of the rotating shaft gradually increases.
  • the bearings in the rotor system are controlled to make radial bearings and thrust bearings.
  • the hydrostatic bearing in the middle stopped working.
  • the bearings in the rotor system are controlled so that the hydrostatic bearings of the radial bearing and the thrust bearing are opened again.
  • the bearings in the rotor system are controlled so that the hydrostatic bearings in the radial bearing and the thrust bearing stop working again.
  • the rotating speed of the rotating shaft gradually decreases.
  • the bearings in the rotor system are controlled, and the hydrostatic bearings of the radial and thrust bearings are opened again.
  • the bearings in the rotor system are controlled so that the hydrostatic bearings in the radial bearing and the thrust bearing stop working again.
  • the bearings in the rotor system are controlled, and the hydrostatic bearings of the radial and thrust bearings are opened again until the rotation speed is reduced to zero, and then the rotor is controlled.
  • the bearings in the system make the hydrostatic bearings in the radial and thrust bearings stop working again.
  • control method of the rotor system will be specifically described below based on the control method of the gas turbine generator set.
  • An embodiment of the present invention provides a control method of a rotor system, including:
  • the rotating shaft may be formed by connecting the first rotating shaft and the second rotating shaft through a coupling.
  • Opening the static pressure bearing may include: opening a magnetic bearing in the bearing, and / or delivering gas to a static pressure intake orifice in the bearing.
  • closing the static pressure bearing includes: closing the magnetic bearing in the bearing, and / or stopping supplying gas to the static pressure intake orifice in the bearing.
  • the bearings in the rotor system are controlled so that the hydrostatic bearings in the radial and thrust bearings are opened until the rotation speed of the rotating shaft is zero.
  • An embodiment of the present invention provides another control method of a rotor system, including:
  • opening a static pressure bearing includes: opening a magnetic bearing in the bearing, and / or delivering gas to a static pressure intake orifice in the bearing.
  • the first preset value may be 5% to 30% of the rated rotation speed.
  • closing the static pressure bearing includes: closing the magnetic bearing in the bearing, and / or stopping supplying gas to the static pressure intake orifice in the bearing.
  • the second preset value may be equal to or not equal to the first preset value, and the second preset value may be 5% to 30% of the rated speed.
  • the rotation speed of the shaft gradually increases.
  • the bearings in the rotor system are controlled, and the radial bearings and thrust bearings are controlled. Hydrostatic bearings stopped working.
  • the bearings in the rotor system are controlled so that the hydrostatic bearings of the radial bearing and the thrust bearing are opened again.
  • the bearings in the rotor system are controlled so that the hydrostatic bearings in the radial bearing and the thrust bearing stop working again.
  • the rotation speed of the rotating shaft gradually decreases.
  • the bearings in the rotor system are controlled so that the hydrostatic bearings of the radial and thrust bearings are opened again.
  • the bearings in the rotor system are controlled so that the hydrostatic bearings in the radial bearing and the thrust bearing stop working again.
  • the bearings in the rotor system are controlled, and the hydrostatic bearings of the radial and thrust bearings are opened again until the rotation speed is reduced to zero, and then the rotor is controlled.
  • the bearings in the system make the hydrostatic bearings in the radial and thrust bearings stop working again.
  • the thrust bearing and the radial bearing in the rotor system may adopt various structural forms.
  • various specific structural forms of thrust bearings and radial bearings in a rotor system, and specific control processes of each thrust bearing and each radial bearing in the entire rotor system control will be described in detail with reference to the drawings.
  • At least one of the first radial bearing, the second radial bearing, the third radial bearing, the fourth radial bearing, and the fifth radial bearing is capable of actively correcting the bearing and the rotating shaft.
  • the first radial bearing 500 includes:
  • the bearing inner ring 540 is sleeved on the first rotating shaft 100. There is a bearing gap between the bearing inner ring 540 and the first rotating shaft 100.
  • the bearing inner ring 540 is sleeved in the bearing body 520 and can move within the bearing body 520;
  • a bearing damper 530 is provided between the bearing inner ring 540 and the bearing body 520, and the bearing damper 530 can be disposed in close contact with the inner diameter surface of the bearing body 520.
  • the bearing damper 530 is made of a shape memory material.
  • the bearing The damper 530 can be plastically deformed by the bearing inner ring 540 to adjust the bearing clearance.
  • the clearance between the first radial bearing and the first rotating shaft (ie, the bearing clearance) is adjusted and corrected through the plastic deformation of the bearing damper 530 itself, so that the first radial bearing 500 and the first radial bearing 500
  • the fitting accuracy between a rotating shaft 100 is adjusted. Since the bearing damper 530 is made of a shape memory material, after the bearing damper 530 is plastically deformed, the shape of the bearing damper 530 will remain unchanged, so that between the first radial bearing 500 and the first rotating shaft 100 Maintain a more stable fit accuracy.
  • the bearing damper 530 may be made of a shape memory metal or a shape memory polymer, wherein the shape memory metal may be any one of titanium nickel alloy, copper zinc alloy, copper aluminum nickel alloy, copper molybdenum nickel alloy, and copper gold zinc alloy. Species. If the working environment of the bearing is a high-temperature environment, the bearing damper 530 may select a shape memory metal that can withstand high temperatures (for example, 300 ° C. or higher).
  • the first radial bearing 500 is installed on the first rotating shaft 100.
  • the bearing inner ring 540 of the first radial bearing 500 is under the combined action of the air film pressure, the rotating shaft gravity and the rotating shaft load. Adjust its position so that the bearing gap between the first rotating shaft 100 and the bearing inner ring 540 meets the needs of the smooth running of the bearing. In this way, the matching accuracy, ie, the coaxiality, between the first radial bearing 500 and the first rotating shaft 100 is adjusted or corrected.
  • the bearing damper 530 undergoes corresponding plastic deformation under the compression of the bearing inner ring 540, and then supports the bearing inner ring 540 at a new equilibrium position, completing the first rotating shaft 100 and the bearing inner ring 540. Adjustment or correction of the coaxiality between the shafts is performed to prevent the first rotating shaft 100 from causing wear and damage to the bearing inner ring 540.
  • the bearing damper 530 may include at least two adjustment units 531 (as shown in FIGS. 18 to 19).
  • the bearing damper may be an integral device formed by continuously setting the at least two adjustment units 531 described above, or may be It includes at least two independently provided adjustment members, and the adjustment member may include at least one adjustment unit 531. It can be understood that when an adjustment unit 531 forms an adjustment member, the adjustment unit 531 is equivalent to the adjustment member.
  • the bearing damper is an integral device formed by continuously setting at least two adjustment units, on the one hand, it can be faster during installation; on the other hand, different sizes or types of bearings may require different types of bearing dampers, which is applicable The scope is more limited.
  • the independently-adjusted adjustment members 531 can be applied to any bearing, and only a suitable number of adjustment members 531 need to be configured according to the size or type of the bearing, or a plurality of adjustment members 531
  • the arrangement may be a shape suitable for the bearing.
  • the adjusting unit 531 may have a half-shell structure and includes a protruding portion 532 and a supporting portion 533.
  • the protruding portion 532 and the supporting portion 533 are integrally formed.
  • the outer surface of the protruding portion 532 is a smooth curved surface, and the supporting portion 533 smoothly extends from the protruding portion 532 to the surroundings.
  • the entire adjusting unit 531 may be a convex portion 532 may be a portion where the adjusting unit 531 generates plastic deformation, and the supporting portion 533 may be a portion supporting the entire adjusting unit 531.
  • the adjustment unit 531 is set to the above-mentioned half-shell structure, so that the adjustment unit 531 is in a relatively stable state before and after the force is applied.
  • the protruding portion 532 faces the bearing inner ring 540, and the supporting portion 533 is disposed adjacent to the inner diameter surface of the bearing body 520.
  • the protruding portion 532 can be plastically deformed under the action of the bearing inner ring 540 to adjust the bearing clearance, that is, the bearing The gap between the ring 540 and the rotating shaft 100.
  • the adjustment unit 531 may also be a wave-shaped structure, a sawtooth-shaped structure, a spherical shell structure, a hemispherical shell structure, and the like.
  • the thickness of the adjusting unit 531 should not be too large; in order to make the adjusting unit 531 have more stable mechanical properties, the height of the adjusting unit 531 should not be too large.
  • the height H of the adjustment unit 531 may be between 1 mm and 3 mm, and the thickness L of the adjustment unit 531 may be between 0.1 mm and 0.3 mm.
  • the bearing's inner ring moves in the radial direction or axially swings around the axis at a certain angle to adjust the coaxiality of the shaft and the inner ring of the bearing until the bearing runs smoothly.
  • the adjustment member since the adjustment member is composed of a memory metal, the convex portion of the adjustment member on the squeezed side is plastically deformed under pressure, and is maintained in the deformed state. By adjusting the deformation of the component, the coaxiality between the radial bearing and the rotating shaft can be corrected, thereby reducing the machining accuracy and assembly accuracy of the bearing inner ring and the rotating shaft.
  • the adjusting members may be evenly distributed along the inner diameter surface of the bearing body 520 to form a ring-shaped bearing damper 530.
  • the adjusting members may also be axially evenly distributed along the inner diameter surface of the bearing body 520 to form a line
  • the bearing dampers 530 are arranged in a circular pattern; the adjustment members can also be evenly distributed along the inner diameter surface of the bearing body 520 and axially along the inner diameter surface of the bearing body 520 to form the bearing dampers 530 arranged in a multi-ring arrangement.
  • the above-mentioned setting methods of the adjusting members can make the adjustment process of the bearing gap more stable, and make the bearing gap more uniform.
  • a protective layer may be provided at a position corresponding to the installation of the radial bearing 500 on the first rotating shaft 100 to protect the mating surfaces of the first rotating shaft 100 and the radial bearing 500.
  • a protective layer may be provided at both ends of the first rotating shaft 100 corresponding to the positions where the radial bearings 500 are installed. In this way, during the startup or correction phase of the rotating shaft, friction occurs between the protective layer and the bearing inner ring 540, thereby protecting the mating surface of the first rotating shaft 100 and the bearing inner ring 540.
  • the protective layer may be made of Teflon, graphite, or Babbitt alloy, and the protective layer may be disposed on the first rotating shaft 100 in a coating manner.
  • the first radial bearing 500 in the embodiment of the present invention may be any one of gas bearings such as a dynamic pressure gas bearing, a static pressure gas bearing, and a dynamic and static pressure mixed gas bearing.
  • a dynamic pressure generating groove 541 is provided on an inner diameter surface of the bearing inner ring 540 or a circumferential surface of the rotating shaft 100 facing the bearing inner ring 540.
  • the dynamic pressure generating groove 541 can be formed by forging, rolling, etching, or stamping.
  • the bearing inner ring 540 may be made of stainless steel.
  • the amount of uplift varies with the angle, groove width, number of grooves, length, depth, and flatness of the dynamic pressure generating groove 541.
  • the magnitude of the air dynamic pressure generated in the dynamic pressure generating groove 541 is also related to the rotation speed of the first rotating shaft 100 and the bearing clearance.
  • the parameters of the dynamic pressure generating groove 541 can be designed according to the actual working conditions.
  • the dynamic pressure generating groove 541 may be provided at the middle portion of the circumferential surface of the first rotating shaft 100 corresponding to the bearing inner ring 540, or may be provided as two mutually independent dynamic pressure generating grooves 541 distributed symmetrically on both sides of the intermediate portion;
  • the pressure generating groove 541 may also be provided at the middle portion of the inner diameter surface of the bearing inner ring 540, or may be provided as two independent dynamic pressure generating grooves 541 distributed symmetrically at both ends of the inner diameter surface of the bearing inner ring 540.
  • the dynamic pressure generating grooves 541 may be arranged in a matrix. In this way, it is beneficial to make the air film more evenly distributed in the bearing gap.
  • the dynamic pressure generating groove 541 may be a V-shaped groove provided continuously or at intervals. In this way, when the rotating shaft rotates in the forward or reverse direction, the rotating shaft can be held in a non-contact manner in a desired manner, so that the rotating shaft has the advantages of high load capacity and good stability.
  • the dynamic pressure generating groove 541 may be provided as a herringbone groove or other shaped grooves.
  • the first radial bearing 500 is a static pressure gas bearing
  • the first radial bearing 500 is further provided with a static pressure intake throttle hole 521 that communicates the bearing gap with an external air source.
  • the static pressure intake throttle hole 521 is used for Transfer the external air source into the bearing gap.
  • the flow diameter of the static pressure air intake throttle hole 521 can be adjusted according to the actual working conditions such as air volume requirements.
  • the static pressure intake throttle hole 521 may pass through the bearing body 520, the bearing damper 530, and the bearing inner ring 540 in this order to communicate the bearing gap with an external air source.
  • the static pressure intake throttle hole 521 is divided into at least two branches in the radial bearing 500 and communicates with the bearing gap. In this way, the air film pressure in the bearing gap of the first radial bearing 500 can be made more uniform. Among them, the static pressure intake orifice 521 and the circulation diameter of each branch can be adjusted according to the actual working conditions such as the demand for air volume.
  • the first radial bearing 500 is a dynamic and static pressure mixed gas bearing
  • the first radial bearing 500 is provided with both a dynamic pressure generating groove 541 and a static pressure intake throttle hole 521. Since the dynamic pressure generating groove 541 and the static pressure intake throttle hole 521 have been described in the foregoing, in order to avoid repetition, details are not repeated here.
  • the first radial bearing 500 in the embodiment of the present invention may also be a gas-magnetic hybrid bearing, that is, on the basis of any of the above-mentioned gas bearings, a plurality of magnetic components are provided on the bearing body 520, and the first rotating shaft 100 may also be Correspondingly, magnetic components are provided, so that the first rotating shaft 100 can move in the radial direction of the rotating shaft under the magnetic force of a plurality of magnetic components.
  • the thrust bearing 700 in the rotor system may be a foil-type gas-magnetic hybrid thrust bearing. As shown in FIG. 20 to FIG. 23, the thrust bearing 700 includes:
  • a first thrust disc 5101 which is fixedly connected to the first rotating shaft 100;
  • a first stator 5102 and a second stator 5103 are disposed on the first rotating shaft 100, and the first stator 5102 and the second stator 5103 are respectively disposed on opposite sides of the first thrust plate 5101;
  • Each of the first stator 5102 and the second stator 5103 includes a first magnetic bearing 5104 and a first foil bearing 5105.
  • the first magnetic bearing 5104 is provided with a plurality of first magnetic components in a circumferential direction.
  • the first foil is provided with a second magnetic member capable of generating a magnetic force with the plurality of first magnetic members;
  • the first foil bearing 5105 is disposed between the first magnetic bearing 5104 and the first thrust disk 5101, and there is a first gap 5106 between the first magnetic bearing 5104 and the first thrust disk 5101.
  • the first foil bearing 5105 can be The magnetic force between the magnetic member and the second magnetic member moves in the axial direction of the first rotating shaft 100 under the action of the magnetic force.
  • the thrust bearing 700 is provided with a first gap 5106 and a first magnetic bearing 5104, so that the thrust bearing 700 forms a gas-magnetic hybrid thrust bearing.
  • the gas bearing in the thrust bearing 700 and the first magnetic bearing 5104 can work together.
  • the thrust bearing 700 is in a stable working state, it is supported by the gas bearing.
  • the first magnetic bearing 5104 is used to control and respond to the thrust bearing 700 in time.
  • the embodiments of the present invention can improve the dynamic performance and stability of the thrust bearing, especially under high-speed running conditions, and have strong anti-disturbance capability, thereby improving the bearing capacity of the thrust bearing.
  • the thrust bearing according to the embodiment of the present invention can meet the requirements of a high-speed rotor system, for example, a gas turbine or a gas turbine combined power generation unit.
  • the outer diameters of the first thrust plate 5101, the first stator 5102, and the second stator 5103 may be equal, and the structures of the first stator 5102 and the second stator 5103 may be completely the same.
  • the first stator 5102 and the second stator 5103 may be connected to the casing of the gas turbine through a connecting member.
  • the plurality of first magnetic components include a plurality of first permanent magnets, and the plurality of first permanent magnets are disposed on the first magnetic bearing 5104 in a circumferential direction;
  • the plurality of first magnetic components include a plurality of first electromagnets, the plurality of first electromagnets are disposed along the first magnetic bearing 5104 in a circumferential direction, and each of the plurality of first electromagnets includes a setting A first magnetic core 51041 on the first magnetic bearing 5104 and a first coil 51041 wound on the first magnetic core.
  • the first magnetic component when the thrust bearing 700 only needs magnetic components to provide magnetic force without magnetic control, the first magnetic component is preferably the first permanent magnet; when the thrust bearing 700 requires both magnetic force and magnetic control, the first magnetic component is preferably the first magnetic component.
  • An electromagnet when the thrust bearing 700 only needs magnetic components to provide magnetic force without magnetic control, the first magnetic component is preferably the first permanent magnet; when the thrust bearing 700 requires both magnetic force and magnetic control, the first magnetic component is preferably the first magnetic component.
  • An electromagnet when the thrust bearing 700 only needs magnetic components to provide magnetic force without magnetic control.
  • the first magnetic component is a first electromagnet
  • an electric current is passed to the first coil 51041, so that the first magnetic core 51041 can generate magnetic force.
  • the magnitude of the current flowing into the first coil 51041 is different, and the magnitude of the magnetic force generated by the first magnetic core 51041 is also different; the direction of the current flowing into the first coil 51041 is different, and the magnetic poles of the first magnetic core 51041 are also different.
  • the first magnetic core 51041 is formed by laminating several silicon steel sheets or silicon steel sheets.
  • the first magnetic bearing 5104 includes:
  • the first magnetic bearing block 51043 is disposed opposite to the first thrust plate 5101.
  • the first magnetic bearing block 51043 is provided with a plurality of first receiving grooves 51044 in a circumferential direction, and a plurality of first magnetic components is provided on In the plurality of first receiving grooves 51044, and the magnetic poles of the plurality of first magnetic components face the side where the first foil bearing 5105 is located;
  • the first end cover 51045 is disposed on a side of the first magnetic bearing block 51043 far from the first foil bearing 5105 and cooperates with the first foil bearing 5105 to fix the first magnetic component to the first Magnetic bearing seat 51043.
  • the first magnetic bearing block 51043 is formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
  • the number of the first accommodating grooves 51044 may be, but is not limited to, six or eight, and the first accommodating grooves 51044 are uniformly arranged along the circumferential direction of the first magnetic bearing seat 51043. In this way, the magnetic force between the first magnetic bearing block 51043 and the first foil bearing 5105 can be made more uniform and stable.
  • the plurality of first magnetic components may also be disposed on the first magnetic bearing block 51043 in other manners, which is not limited thereto.
  • the material of the first end cover 51045 may be a non-magnetic material, preferably a hard aluminum material.
  • the first foil bearing 5105 includes:
  • a first foil bearing block 51051 fixedly connected to the first magnetic bearing block 51043;
  • first foil 51052 and a second foil 51053 provided on the first foil bearing block 51051, the first foil 51052 is mounted on the first foil bearing block 51051, and the second foil 51053 is stacked on the first A side of the foil 51052 near the first thrust plate 5101;
  • the second foil 51053 is a flat foil, and the second magnetic component is disposed on the second foil 51053 so that the second foil 51053 can be placed on the first magnetic component under the magnetic force of the first magnetic component and the second magnetic component.
  • the shaft 100 moves in the axial direction; the first foil 51052 is an elastically deformable foil that can be elastically deformed when the second foil 51053 is moved.
  • the material of the first foil bearing seat 51051 is a non-magnetic material, and a hard aluminum material is preferred.
  • the first foil 51052 is an elastically deformed foil. Considering that the material of the magnetically conductive material is hard and brittle, it is not suitable as an elastically deformed foil. Therefore, the first foil 51052 is preferably a non-magnetic stainless steel strip.
  • the second foil 51053 by setting the second foil 51053 as a flat foil, it is convenient to control the distance between the second foil 51053 and the first thrust plate 5101, or to control the size of the first gap 5106.
  • the first foil 51052 uses an elastically deformable foil, on the one hand, it plays a role of connecting the second foil 51053 and the first foil bearing seat 51051, and on the other hand, it can realize the second foil 51053 relative to the first foil
  • the purpose of the bearing seat 51051 can be moved along the axial direction of the first rotating shaft 100.
  • the first foil 51052 is a wave-shaped elastically deformed foil, and the first foil 51052 is an unclosed ring shape.
  • An opening is provided on the first end, and the fixed end is fixed to the first end.
  • the other end of the opening is a movable end;
  • the wave pattern on the first foil 51052 stretches or contracts, and the movable end moves along the annular circumferential direction.
  • the first foil 51052 as a wave-shaped elastically deformed foil, it is convenient to take advantage of the wavy expansion or contraction characteristic to push the second foil 51053 in the axial direction of the first rotating shaft 100. mobile.
  • the shape of the first foil 51052 in the embodiment of the present invention is not limited to a wave shape, and other shapes that can generate elastic deformation can be applied to the first foil 51052 in the embodiment of the present invention.
  • the second magnetic component includes a first magnetic material disposed on a side surface of the second foil 51053 near the first magnetic bearing 5104;
  • the first magnetic material is distributed in a strip shape on the second foil 51053, and a plurality of strip-shaped magnetic portions are formed, and the plurality of strip-shaped magnetic portions are in a radial shape or a ring shape;
  • the first magnetic members are distributed in a dot shape on the second foil 51053.
  • the material of the second foil 51053 is preferably a non-magnetic material. After the first magnetic material is shielded from the surface of the second foil 51053, the first magnetic material may be covered with a ceramic coating.
  • the second foil 51053 can be made by sintering ceramic nanometer powder using 40% zirconia, 30% alpha alumina, and 30% magnesium aluminate spinel.
  • the magnetic force generated between the first magnetic material and the first magnetic component will be greatly increased, which will easily cause the second foil 51053 to deform.
  • the first magnetic material is distributed in stripes or dots on the second foil 51053, and the first The magnetic force generated between the magnetic material and the first magnetic component is controlled within a reasonable range, thereby preventing the second foil 51053 from being deformed due to excessive magnetic force.
  • the thrust bearing 700 further includes a first sensor 5107, and a sensor probe of the first sensor 5107 is disposed in the first gap 5106.
  • parameters at the first gap 5106 such as air film pressure at the first gap 5106, can be detected in real time.
  • the first magnetic bearing 5104 can actively control the thrust bearing 700 according to the detection result of the first sensor 5107, and can achieve a higher accuracy of the control.
  • the first sensor 5107 includes a first sensor cover 51071 and a first sensor probe 51072, a first end of the first sensor probe 51072 is connected to the first sensor cover 51071, and the first sensor cover 51071 is fixed on the first magnetic bearing 5104
  • the first magnetic bearing 5104 and the first foil bearing 5105 are provided with a through hole for the first sensor probe 51072 to pass through; the second end of the first sensor probe 51072 passes through the first magnetic bearing 5104 and the first foil
  • the through hole in the bearing 5105 extends to the first gap 5106, and the second end of the first sensor probe 51072 is flush with the side of the first foil bearing 5105 near the first thrust plate 5101.
  • the first sensor 5107 can be more stably disposed on the first magnetic bearing 5104 through the structure and installation manner of the first sensor 5107.
  • the second end of the first sensor probe 51072 is flush with the side of the first foil bearing 5105 near the first thrust plate 5101.
  • the first sensor probe 51072 can be prevented from being hit by the first thrust plate 5101.
  • Contact which is beneficial to protecting the first sensor probe 51072; on the other hand, it will not affect the air film in the first gap 5106, and avoid disturbance of the air film in the first gap 5106.
  • the first sensor 5107 is disposed between two adjacent first magnetic components.
  • each stator should be provided with at least one first sensor 5107, preferably one first sensor 5107, and the first sensor 5107 is preferably disposed between two adjacent first magnetic components.
  • the first sensor 5107 is any one or more of the following combinations:
  • a displacement sensor for detecting the position of the first thrust plate 5101
  • a pressure sensor for detecting a gas film pressure at the first gap 5106
  • An embodiment of the present invention provides a control method of a foil-type aeromagnetic hybrid thrust bearing, including:
  • the first thrust disk reaches a predetermined position between the first stator and the second stator under the action of the first magnetic bearing.
  • the first thrust disk and the first stator and the first The end faces of the two stators each have a first gap.
  • the first thrust disk starts to rotate relative to the first stator and the second stator under the condition of being lubricated by the air current in the first gap to prevent wear.
  • the specific process of turning on the first magnetic bearing is: input a current signal of a predetermined value to the first coil, and the first thrust plate reaches a predetermined position between the first stator and the second stator under the action of the first magnetic bearing.
  • the rotation speed of the first thrust disk As the rotation speed of the rotating shaft becomes larger, the rotation speed of the first thrust disk also increases synchronously.
  • the gas dynamic pressure bearing of the thrust bearing (the first thrust disk and the first stator and the first The first gap between the two stators is the gas dynamic pressure bearing that forms the thrust bearing.
  • the gas film pressure generated by the stator can stabilize the first thrust disk, and then the first magnetic bearing can be closed.
  • the first thrust disk When the rotor system is stopped, the first thrust disk is decelerated as the shaft decelerates. In order to keep the shaft stable during the entire rotor system shutdown, the first magnetic bearing is opened when the rotor system is stopped until the first thrust disk is completely stopped. After that, the first magnetic bearing can be closed.
  • An embodiment of the present invention also provides another control method of a foil-type aeromagnetic hybrid thrust bearing, including:
  • the first thrust disk reaches a predetermined position between the first stator and the second stator under the action of the first magnetic bearing.
  • the first thrust disk and the first stator and the first The end faces of the two stators each have a first gap.
  • the first thrust disk starts to rotate relative to the first stator and the second stator under the condition of being lubricated by the air current in the first gap to prevent wear.
  • the specific process of turning on the first magnetic bearing is: input a current signal of a predetermined value to the first coil, and the first thrust plate reaches a predetermined position between the first stator and the second stator under the action of the first magnetic bearing.
  • the rotation speed of the first thrust disk increases synchronously.
  • the dynamic pressure of the thrust bearing The gas film pressure generated by the bearing (the first gap between the first thrust disk and the first stator and the second stator, which forms the foil-type aeromagnetic hybrid thrust bearing), can stabilize the first thrust disk At that time, the first magnetic bearing can be closed.
  • the first thrust disk is decelerated as the shaft decelerates.
  • the speed of the shaft is lower than the second preset value, for example, 5% to 30% of the rated speed
  • the dynamic pressure of the thrust bearing gas at this time
  • the air film pressure generated by the bearing also decreases as the first thrust disk decelerates. Therefore, the first magnetic bearing needs to be opened to keep the first thrust disk stable. The first magnetic bearing can be closed until the first thrust disk is completely stopped. .
  • the above method further includes:
  • the first thrust plate moves in the axial direction of the shaft under the load, the first gap between the first thrust plate and the first foil bearing in the first stator
  • the first gap between the first thrust plate and the first foil bearing in the second stator is greater than a predetermined value, opening the first magnetic bearing in the first stator and the second stator;
  • the first sensor (here, the first sensor is preferably a pressure sensor) obtains a signal that the air pressure increases. At this time, the first magnetic bearing needs to be involved in work.
  • the first magnetic bearing does not completely directly apply magnetic force to the first thrust disk to move it to the first foil bearing on the other side, but uses magnetic force to move the first foil bearing on the other side away from the first
  • the direction of the thrust disc moves, so that the first gap between the first thrust disc and the first foil bearing on the other side is increased, thereby increasing the pressure on the side where the first gap becomes smaller and adapting to the weight of the load on the first thrust disc.
  • the first foil bearing in the second stator is controlled to move in the axial direction of the rotating shaft in a direction away from the first thrust plate under the magnetic force between the plurality of first magnetic components and the second magnetic component.
  • the first gap between the first thrust disk and the first foil bearing in the second stator is smaller than the first gap between the first thrust disk and the first foil bearing in the first stator, the first The first foil bearing in the stator moves in the axial direction of the rotating shaft in a direction away from the first thrust disk under the magnetic force between the plurality of first magnetic components and the second magnetic component.
  • opening the first magnetic bearing in the first stator and the second stator includes:
  • the first thrust plate moves in the axial direction of the shaft under the load, the first gap between the first thrust plate and the first foil bearing in the first stator
  • the first gap between the first thrust disk and the first foil bearing in the second stator is greater than a predetermined value, controlling the first magnetic bearing in the first stator and the second stator to open at maximum power; or,
  • the first thrust plate moves in the axial direction of the shaft under the load, the first gap between the first thrust plate and the first foil bearing in the first stator
  • the first magnetic bearing in the first stator and the second stator is controlled to flash at a preset frequency according to a preset frequency. The mode is turned on.
  • the first thrust disk may quickly approach the first foil bearing on one side, which may cause the first gap on that side to be too small momentarily, so that the local gas velocity at the first gap on that side is close to It even reaches the speed of sound, which causes the shock wave to generate air hammer self-excitation.
  • the generation of shock waves will cause disturbances and chaos in the local gas flow.
  • the velocity of the fluid changes from the speed of sound to the speed of subsonic, its pressure will decrease significantly in a stepwise manner.
  • the first foil bearing on the side is required to actively "avoid" the first thrust disk, so that the first gap on the side is increased to keep the air velocity as close as possible to the subsonic range to maintain its normal fluid. pressure.
  • the first magnetic bearing on the first stator and the second stator needs to be controlled at the same time, so that the magnetic poles of the first magnetic bearing are excited with the same polarity, that is, the side where the first gap is reduced generates suction for returning Suction of the first foil bearing on this side generates suction on the side where the first gap is increased, which is used to pull back the first thrust disk.
  • the magnetic force difference is generated by using the difference in the magnetic force acting distance on both sides, thereby pulling the first thrust disc to restore the first gap between the first thrust disc and the first foil bearing on both sides to normal, so that the first thrust disc is restarted Back to equilibrium.
  • the advantages of the first magnetic bearing for convenient real-time control are used to actively balance factors such as the unbalanced mass of the first thrust plate or the vortex of the first thrust plate that cause the first thrust plate to shift excessively, so that the first thrust plate It is fixed to a certain minimum range in the axial direction of the rotating shaft.
  • the position where the shock wave is generated that is, the linear velocity supersonic part
  • the first magnetic bearing can be controlled to generate the opposite by controlling the current magnitude and direction of the first magnetic bearing Force to balance shock action.
  • the control strategy of the first magnetic bearing is adjusted again to fix the first thrust plate in a certain minimum range in the most energy-saving manner.
  • the electromagnetic bearing and gas bearing work together, which improves the dynamic performance and stability of the bearing under high-speed running conditions, and has a strong anti-disturbance ability, thereby improving the bearing capacity of the bearing.
  • the electromagnetic bearing and the gas bearing adopt a parallel structure, which simplifies the structure, has a high degree of integration, is easy to process, manufacture and operate, and improves the overall performance of the bearing.
  • the first thrust plate of the bearing and the stator can be rotated in the bearing gap by using electromagnetic bearings, which improves the low-speed performance of the bearing, extends the service life of the bearing, and improves the safety of the bearing and the entire system. And reliability.
  • the foil-type aeromagnetic hybrid thrust bearing of the embodiment of the present invention has the advantage of fast response speed.
  • the foil can be appropriately deformed by the magnetic poles of the electromagnetic bearing, which can increase the maximum pressure on the side of the lubricating film in the bearing and prevent the leakage of lubricating air flow, and improve the resistance of the first thrust disk to disturbance.
  • the ability to eccentrically hit the wall also improves the bearing capacity of the bearing.
  • a low-cost pressure sensor is used to collect changes in the gas film pressure, and the deformation of the foil is controlled by a simple control method, which can provide higher rotor damping, thereby improving rotor stability.
  • the control method is simple, the machining accuracy of the bearing is not high.
  • the thrust bearing 700 in the rotor system may be a slot type aeromagnetic hybrid thrust bearing. As shown in FIG. 24 to FIG. 30, the thrust bearing 700 includes:
  • a second thrust plate 5201, the second thrust plate 5201 is fixedly connected to the first rotating shaft 100, and a third magnetic component is provided on the second thrust plate 5201;
  • the third stator 5202 and the fourth stator 5203 are disposed on the first rotating shaft 100, and the third stator 5202 and the fourth stator 5203 are disposed on opposite sides of the second thrust plate 5201, respectively;
  • Each of the third stator 5202 and the fourth stator 5203 includes a second magnetic bearing 5204.
  • the second magnetic bearing 5204 is provided along the circumferential direction with a plurality of fourth magnetic components capable of generating a magnetic force with the third magnetic component.
  • end faces of the second thrust plate 5201 facing the third stator 5202 and the fourth stator 5203, or end faces of the third stator 5202 and the fourth stator 5203 facing the second thrust plate 5201 are provided with a second dynamic pressure generating groove. 5205.
  • the thrust bearing 700 is provided with a second gap 5206 and a second magnetic bearing 5204, so that the thrust bearing 700 forms a gas-magnetic hybrid thrust bearing.
  • the gas bearing in the thrust bearing 700 and the second magnetic bearing 5204 can work together.
  • the thrust bearing 700 is in a stable working state, it is supported by the gas bearing.
  • the second magnetic bearing 5204 is used to control and respond to the thrust bearing 700 in time.
  • the embodiments of the present invention can improve the dynamic performance and stability of the thrust bearing, especially under high-speed running conditions, and have strong anti-disturbance capability, thereby improving the bearing capacity of the thrust bearing.
  • the thrust bearing according to the embodiment of the present invention can meet the requirements of a high-speed rotor system, for example, a gas turbine or a gas turbine combined power generation unit.
  • the outer diameters of the second thrust plate 5201, the third stator 5202, and the fourth stator 5203 may be equal, and the structures of the third stator 5202 and the fourth stator 5203 may be completely the same.
  • the third stator 5202 and the fourth stator 5203 may be connected to the casing of the gas turbine through a connecting member.
  • the flowing gas existing in the second gap 5206 is pressed into the second dynamic pressure generating groove 5205, thereby generating pressure to realize the second thrust disk 5201 in the axial direction.
  • the direction is kept non-contact.
  • the magnitude of the pressure generated by the second dynamic pressure generating groove 5205 varies with the angle, the width, the length, the depth, the number of grooves, and the flatness of the second dynamic pressure generating groove 5205.
  • the magnitude of the pressure generated by the second dynamic pressure generating groove 5205 is also related to the rotation speed of the second thrust plate 5201 and the second gap 5206.
  • the parameters of the second dynamic pressure generating groove 5205 can be designed according to actual working conditions.
  • the second dynamic pressure generating groove 5205 may be formed on the third stator 5202 and the fourth stator 5203 by forging, rolling, etching or stamping, or the second dynamic pressure generating groove 5205 may be formed by forging, rolling, or engraving. Etching or stamping is formed on the second thrust disc 5201.
  • the plurality of fourth magnetic components include a plurality of second permanent magnets, and the plurality of second permanent magnets are disposed on the second magnetic bearing 5204 in a circumferential direction;
  • the plurality of fourth magnetic components include a plurality of second electromagnets, the plurality of second electromagnets are disposed circumferentially on the second magnetic bearing 5204, and each of the plurality of second electromagnets includes a setting A second magnetic core 52041 on the second magnetic bearing 5204 and a second coil 52022 wound on the second magnetic core 52041.
  • the fourth magnetic component when the thrust bearing 700 only needs the magnetic component to provide magnetic force without the need for magnetic control, the fourth magnetic component is preferably the second permanent magnet; when the thrust bearing 700 requires both magnetic force and magnetic control, the fourth magnetic component is preferably the first Two electromagnets.
  • the fourth magnetic component is a second electromagnet
  • a current is passed to the second coil 52022, so that the second magnetic core 52041 can generate magnetic force.
  • the magnitude of the current flowing into the second coil 52022 is different, and the magnitude of the magnetic force generated by the second magnetic core 52041 is also different; the direction of the current flowing into the second coil 52022 is different, and the magnetic poles of the second magnetic core 52041 are also different.
  • the second magnetic core 52041 may be formed by laminating several silicon steel sheets or silicon steel sheets.
  • the second magnetic bearing 5204 includes:
  • the second magnetic bearing holder 52043 is disposed opposite to the second thrust plate 5201.
  • the second magnetic bearing holder 52043 is provided with a plurality of second receiving grooves 52044 in the circumferential direction, and a plurality of fourth magnetic components is provided on In the plurality of second accommodating grooves 52044, and the magnetic poles of the plurality of fourth magnetic components face the side where the second thrust disc 5201 is located;
  • the second end cover 52045 and the first pressure ring 52046, the second end cover 52045 is provided on the side of the second magnetic bearing block 52043 far from the second thrust plate 5201, and the first pressure ring 52046 is provided on the second magnetic bearing block 52043 Close to the second thrust plate 5201, the second end cover 52045 cooperates with the first pressure ring 52046 to fix a plurality of fourth magnetic components on the second magnetic bearing holder 52043.
  • the second magnetic bearing holder 52043 may be formed by laminating several silicon steel sheets or silicon steel sheets.
  • the number of the second accommodating grooves 52044 may be, but is not limited to, six or eight, and the second accommodating grooves 52044 are uniformly disposed along the circumferential direction of the second magnetic bearing holder 52043. In this way, the magnetic force between the second magnetic bearing 5204 and the second thrust disk 5201 can be made more uniform and stable.
  • the plurality of fourth magnetic components may also be disposed on the second magnetic bearing holder 52043 in other manners, which is not limited.
  • the material of the second end cap 52045 may be a non-magnetic material, and preferably a hard aluminum material.
  • the material of the first pressing ring 52046 may be a non-magnetic material, and preferably a hard aluminum material.
  • a second dynamic pressure generating groove 5205 may be provided on the first pressure ring 52046.
  • the first pressure ring 52046 may be made of stainless steel.
  • the third magnetic component includes a second magnetic material (not shown in the figure) disposed on the end faces of the second thrust disc 5201 facing the third stator 5202 and the fourth stator 5203;
  • the second magnetic material is distributed in a strip shape on the second thrust disk 5201, and a plurality of strip-shaped magnetic portions are formed, and the plurality of strip-shaped magnetic portions are in a radial shape or a ring shape;
  • the second magnetic members are distributed in a dot shape on the second thrust plate 5201.
  • the second magnetic material is distributed in a stripe shape or a dot shape on the second thrust disk 5201, and the magnetic force generated between the second magnetic material and the fourth magnetic component can be controlled within a reasonable range.
  • the second dynamic pressure generating grooves 5205 are arranged in a radial or concentric circle shape. In this way, the air film is more evenly distributed in the second gap 5206.
  • the second dynamic pressure generating groove 5205 includes a first spiral groove 52051 and a second spiral groove 52052.
  • the first spiral groove 52051 surrounds the second spiral groove 52052.
  • the first spiral groove 52051 and the second spiral groove 52052 The spiral direction is opposite.
  • An end of the first spiral groove 52051 near the second spiral groove 52052 is connected or disconnected with an end of the second spiral groove 52052 near the first spiral groove 52051.
  • the distance from the end of the first spiral groove 52051 near the second spiral groove 52052 to the axis of the first rotating shaft 100 is equal to the end of the first spiral groove 52051 near the second spiral groove 52052 to the third stator 5202 or the fourth stator. 5203 or the distance of the peripheral edge of the second thrust disc 5201.
  • the distance from the end of the second spiral groove 52052 near the first spiral groove 52051 to the axis of the first rotating shaft 100 is equal to the end of the second spiral groove 52052 near the first spiral groove 52051 to the third stator 5202 or the fourth stator. 5203 or the distance of the peripheral edge of the second thrust disc 5201.
  • the second thrust plate 5201 can be non-contact in a desired manner when the first rotating shaft 100 rotates forward or reverse.
  • the first rotating shaft 100 has the advantages of high load capacity and good stability.
  • each stator is further provided with a first static pressure intake throttle hole 5208, one end of the first static pressure intake throttle hole 5208 and the second gap 5206. Connected, the other end is connected to an external air source, which is used to transport the external air source into the second gap 5206.
  • a gas static pressure bearing can be formed by providing the first static pressure air intake throttle hole 5208, so that the thrust bearing 700 can constitute a gas dynamic static pressure-magnetic hybrid thrust bearing.
  • the flow diameter of the first static pressure air intake throttle hole 5208 can be adjusted according to the actual working conditions such as gas demand.
  • a plurality of first static pressure intake throttle holes 5208 are provided on each stator, and a plurality of first static pressure intake throttle holes 5208 are provided along the stator. Set the circumferential interval.
  • the plurality of first static pressure air intake throttle holes 5208 are arranged at intervals in the circumferential direction of the stator, and are preferably arranged at even intervals in the circumferential direction of the stator. In this way, the air film pressure in the second gap 5206 is more uniform.
  • the distance between the first static pressure intake throttle hole 5208 and the axis of the first rotating shaft 100 is greater than or equal to the first static pressure intake throttle hole 5208 to the stator.
  • the above-mentioned arrangement manner of the first static pressure air intake throttle hole 5208 can make the aerostatic bearing more stable. If the static pressure air intake throttle hole is too close to the axis of the first rotating shaft 100, the time cannot be timely.
  • the air film can effectively cover the entire end surface of the second thrust plate 5201, and the rotation of the second thrust plate 5201 is not stable enough.
  • the distance from the first static pressure intake throttle hole 5208 to the axial center of the first rotating shaft 100 is equal to the distance from the first static pressure intake throttle hole 5208 to the outer peripheral edge of the stator.
  • the thrust bearing 700 further includes a second sensor 5207, and a sensor probe of the second sensor 5207 is disposed in the second gap 5206.
  • parameters at the second gap 5206 can be detected in real time, such as the air film pressure at the second gap 5206.
  • the second magnetic bearing 5204 can actively control the thrust bearing 700 according to the detection result of the second sensor 5207, and can make the control achieve higher accuracy.
  • the second sensor 5207 includes a second sensor cover 52071 and a second sensor probe 52072, a first end of the second sensor probe 52072 is connected to the second sensor cover 52071, and the second sensor cover 52071 is fixed on the second magnetic bearing 5204
  • the second magnetic bearing 5204 is provided with a through hole for the second sensor probe 52072 to pass through; the second end of the second sensor probe 52072 passes through the through hole on the second magnetic bearing 5204 and extends to the second gap 5206.
  • the second end of the second sensor probe 52072 is flush with the side of the second magnetic bearing 5204 near the second thrust plate 5201.
  • the second sensor 5207 can be more stably disposed on the second magnetic bearing 5204 through the structure and installation manner of the second sensor 5207.
  • the second end of the second sensor probe 52072 is flush with the side of the second magnetic bearing 5204 near the second thrust disk 5201.
  • the second sensor probe 52072 can be prevented from being exposed to the second thrust disk 5201. Touching is beneficial to protect the second sensor probe 52072; on the other hand, it will not affect the air film in the second gap 5206, and avoid the air film in the second gap 5206 from being disturbed.
  • the second sensor 5207 is disposed between two adjacent fourth magnetic components.
  • At least one second sensor 5207 should be provided on each stator, and preferably one second sensor 5207 is provided, and the second sensor 5207 is preferably provided between two adjacent fourth magnetic components.
  • the second sensor 5207 is any one or more of the following combinations:
  • a displacement sensor for detecting the position of the second thrust disc 5201
  • An acceleration sensor for detecting the rotational acceleration of the second thrust plate 5201.
  • An embodiment of the present invention provides a control method of a slot type aeromagnetic hybrid thrust bearing, including:
  • the second thrust disk reaches a predetermined position between the third stator and the fourth stator under the action of the second magnetic bearing, and the second thrust disk and the third stator and the fourth stator Each of the end faces has a second gap.
  • the second thrust disk With the rotation of the rotating shaft, the second thrust disk starts to rotate relative to the third stator and the fourth stator under the condition of being lubricated by the air current in the second gap to prevent wear.
  • the specific process of turning on the second magnetic bearing is: inputting a current signal of a predetermined value to the second coil, and the second thrust disk reaches a predetermined position between the third stator and the fourth stator under the action of the second magnetic bearing.
  • the gas dynamic pressure bearing of the thrust bearing (the second thrust disk and the third stator and the fourth A second gap between the stators is a gas dynamic pressure bearing that forms the thrust bearing, which can stabilize the second thrust disk, and then the second magnetic bearing can be closed.
  • the second thrust disk When the rotor system is stopped, the second thrust disk is decelerated as the shaft decelerates.
  • the second magnetic bearing In order to keep the shaft stable during the entire rotor system shutdown, the second magnetic bearing is opened when the rotor system is stopped until the second thrust disk is completely stopped. After that, the second magnetic bearing can be closed.
  • An embodiment of the present invention also provides another control method of a slot type aeromagnetic hybrid thrust bearing, including:
  • the second thrust disk After the second magnetic bearing is turned on, the second thrust disk reaches a predetermined position between the third stator and the fourth stator under the action of the second magnetic bearing, and the second thrust disk and the third stator and the fourth stator Each of the end faces has a second gap.
  • the specific process of turning on the second magnetic bearing is: inputting a current signal of a predetermined value to the second coil, and the second thrust disk reaches a predetermined position between the third stator and the fourth stator under the action of the second magnetic bearing.
  • the rotation speed of the second thrust disk increases synchronously.
  • the dynamic pressure of gas of the thrust bearing The gas film pressure generated by the bearing (the second gap between the second thrust disk and the third stator and the fourth stator forms the grooved gas-magnetic hybrid thrust bearing) can stabilize the second thrust disk.
  • the second magnetic bearing can be closed.
  • the second thrust disk is decelerated as the shaft decelerates.
  • the speed of the shaft is lower than the second preset value, such as 5% to 30% of the rated speed, the gas movement of the thrust bearing at this time
  • the gas film pressure generated by the pressure bearing also decreases with the deceleration of the second thrust disk. Therefore, the second magnetic bearing needs to be opened to keep the second thrust disk stable, and the second magnetic disk can be turned off after the second thrust disk is completely stopped. Bearings.
  • the above method further includes:
  • the second thrust plate moves in the axial direction of the shaft under the load, and the second gap between the second thrust plate and the second magnetic bearing in the third stator and the first
  • the difference between the second gap between the two thrust disks and the second magnetic bearing in the fourth stator is greater than a predetermined value, opening the third stator or the second magnetic bearing in the fourth stator;
  • the second sensor (The second sensor here is preferably a pressure sensor.) A signal that the air pressure increases is obtained.
  • the second magnetic bearing needs to be involved in work.
  • the second magnetic bearing applies a magnetic force to the second thrust plate to move it to the second magnetic bearing on the other side.
  • the second magnetic bearing stops working.
  • the fourth stator is controlled In the second magnetic bearing, the second thrust disk moves in the axial direction of the rotating shaft in a direction away from the fourth stator under the magnetic force between the third magnetic component and the plurality of fourth magnetic components.
  • the third stator in the third stator is controlled.
  • the two magnetic bearings move the second thrust disk in the axial direction of the rotating shaft in a direction away from the third stator under the magnetic force between the third magnetic component and the plurality of fourth magnetic components.
  • turning on the second magnetic bearing in the third stator or the fourth stator includes:
  • the second thrust plate moves in the axial direction of the shaft under the load, and the second gap between the second thrust plate and the second magnetic bearing in the third stator and the first
  • the difference between the second gap between the two thrust disks and the second magnetic bearing in the fourth stator is greater than a predetermined value, control the second magnetic bearing in the third stator or the fourth stator to open at the maximum power; or,
  • the second thrust plate moves in the axial direction of the shaft under the load, and the second gap between the second thrust plate and the second magnetic bearing in the third stator and the first
  • control the second magnetic bearing in the third stator or the fourth stator to strobe according to a preset frequency On.
  • the second thrust disk may quickly approach the second magnetic bearing on one side, which may cause the second gap on that side to be too small momentarily, making the local gas velocity at the second gap on that side approach or even close Reaching the speed of sound, causing shock waves to generate air hammer self-excitation.
  • the generation of shock waves will cause disturbances and chaos in the local gas flow.
  • the velocity of the fluid changes from the speed of sound to the speed of subsonic, its pressure will decrease significantly in a stepwise manner.
  • the second magnetic bearing stops working.
  • the electromagnetic bearing and the gas hydrostatic bearing can be used as spares for each other.
  • the other Can serve the same role as a spare bearing.
  • the external air source is controlled to be opened to perform corresponding actions instead of the electromagnetic bearing, thereby improving the safety and reliability of the bearing.
  • the second magnetic bearing uses the advantages of the second magnetic bearing to facilitate real-time control, actively balancing factors such as the unbalanced mass of the second thrust disk or the vortex of the second thrust disk that caused the second thrust disk to shift excessively, so that the second thrust disk It is fixed to a certain minimum range in the axial direction of the rotating shaft.
  • the position where the shock wave is generated that is, the linear velocity supersonic part
  • the second magnetic bearing can generate the opposite by controlling the current magnitude and direction of the second magnetic bearing. Force to balance shock action. After the shock wave is stable, adjust the control strategy of the second magnetic bearing again to fix the second thrust disk in a certain minimum range in the most energy-saving manner.
  • the electromagnetic bearing and gas bearing work together, which improves the dynamic performance and stability of the bearing under high-speed running conditions, and has a strong anti-disturbance ability, thereby improving the bearing capacity of the bearing.
  • the electromagnetic bearing and the gas bearing adopt a parallel structure, which simplifies the structure, has a high degree of integration, is easy to process, manufacture and operate, and improves the overall performance of the bearing.
  • the slot type gas magnetic hybrid thrust bearing of the embodiment of the present invention has the advantage of fast response speed.
  • the aerostatic bearing was added to form a grooved dynamic and static pressure-magnetic hybrid thrust bearing.
  • an electromagnetic bearing and a gas static pressure bearing are provided at the same time, the bearing capacity of the bearing is further increased, and the electromagnetic bearing and the gas static pressure are increased.
  • the bearings can be backed up to each other. In the event that one of them fails, fails, or fails to meet the opening conditions, the other can serve as a backup bearing.
  • the control system controls the opening of the aerostatic bearing to perform a corresponding action instead of the electromagnetic bearing, thereby improving the safety and reliability of the bearing.
  • the radial bearing in the rotor system may be a foil-type gas-magnetic hybrid radial bearing.
  • the radial bearing in the rotor system may be a slot type gas-magnetic hybrid radial bearing.
  • the third radial bearing 620 includes:
  • a fourth dynamic bearing 6201 is provided with a third dynamic pressure generating groove 6202 on a side surface of the second rotating shaft 101 or a circumferential surface of the second rotating shaft 101 toward the fourth magnetic bearing 6201;
  • the fourth magnetic bearing 6201 and the second rotating shaft 101 have a fourth gap 6203, and the second rotating shaft 101 can move in the radial direction of the second rotating shaft 101 under the magnetic force of a plurality of seventh magnetic components.
  • a fourth gap 6203 and a fourth magnetic bearing 6201 are provided in the third radial bearing 620, so that the third radial bearing 620 forms a gas-magnetic hybrid radial bearing.
  • the gas bearing in the third radial bearing 620 and the fourth magnetic bearing 6201 can work together.
  • the third radial bearing 620 is in a stable working state, it is supported by a gas bearing; and in the third radial bearing, When the 620 is in an unstable working state, the fourth magnetic bearing 6201 is used to control and respond to the third radial bearing 620 in time.
  • the embodiments of the present invention can improve the dynamic performance and stability of the radial bearing, especially under high-speed running conditions, and have strong anti-disturbance capability, thereby improving the bearing capacity of the radial bearing.
  • the radial bearing according to the embodiment of the present invention can meet the requirements of a high-speed rotor system, for example, a gas turbine or a gas turbine combined power generation unit.
  • the second rotating shaft 101 may be formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
  • the flowing gas existing in the fourth gap 6203 is pressed into the third dynamic pressure generating groove 6202, thereby generating pressure to float the second rotating shaft 101 to achieve the second
  • the rotating shaft 101 is non-contactly held in the radial direction.
  • the magnitude of the pressure generated by the third dynamic pressure generating groove 6202 varies with the angle, the width, the length, the depth, the number of grooves, and the flatness of the third dynamic pressure generating groove 6202.
  • the magnitude of the pressure generated by the third dynamic pressure generating groove 6202 is also related to the rotation speed of the second rotating shaft 101 and the fourth gap 6203.
  • the parameters of the third dynamic pressure generating groove 6202 can be designed according to actual working conditions.
  • the third dynamic pressure generating groove 6202 may be formed on the fourth magnetic bearing 6201 or the rotating shaft by means of forging, rolling, etching or stamping.
  • the plurality of seventh magnetic components include a plurality of fourth permanent magnets, and the plurality of fourth permanent magnets are disposed on the fourth magnetic bearing 6201 in a circumferential direction;
  • the plurality of seventh magnetic components include a plurality of fourth electromagnets, the plurality of fourth electromagnets are disposed circumferentially on the fourth magnetic bearing 6201, and each of the plurality of fourth electromagnets includes a setting A fourth magnetic core 62011 on the fourth magnetic bearing 6201 and a fourth coil 62012 wound on the fourth magnetic core 62011.
  • the seventh magnetic component is preferably the fourth permanent magnet; when the foil type aeromagnetic hybrid thrust bearing requires both magnetic force and magnetic control
  • the seventh magnetic member is preferably a fourth electromagnet.
  • the seventh magnetic component is a fourth electromagnet
  • a current is passed to the fourth coil 62012, so that the fourth magnetic core 62011 can generate magnetic force.
  • the magnitude of the current flowing into the fourth coil 62012 is different, and the magnitude of the magnetic force generated by the fourth magnetic core 62011 is also different; the direction of the current flowing into the fourth coil 62012 is different, and the magnetic poles of the fourth magnetic core 62011 are also different.
  • the fourth magnetic core 62011 may be formed by laminating several silicon steel sheets or silicon steel sheets.
  • the fourth magnetic bearing 6201 includes:
  • the fourth magnetic bearing block 62013 and the fourth magnetic bearing block 62013 are sleeved on the second rotating shaft 101.
  • the fourth magnetic bearing block 62013 is provided with a plurality of fourth receiving grooves 62014 along the circumferential direction, and a plurality of seventh magnetic components is provided on In the plurality of fourth accommodating slots 62014, and the magnetic poles of the plurality of seventh magnetic components face the second rotating shaft 101;
  • the second bearing shell 62015 is sleeved outside the fourth magnetic bearing seat 62013;
  • a second bearing sleeve 62016 sleeved between the fourth magnetic bearing block 62013 and the second rotating shaft 101;
  • a fifth end cover 62017 and a sixth end cover 62018 respectively provided at both ends of the second bearing housing 62015;
  • the second bearing sleeve 62016, the fifth end cover 62017, and the sixth end cover 62018 cooperate to fix a plurality of seventh magnetic components on the fourth magnetic bearing seat 62013.
  • the gap between the fourth magnetic core 62011 and the fourth coil 62012 can be closed, thereby forming a stable and uniform between the second bearing sleeve 62016 and the second rotating shaft 101. Air membrane pressure.
  • the size of the fourth gap 6203 can be easily adjusted and controlled by providing the second bearing sleeve 62016 with a different radial thickness.
  • the width of the fourth gap 6203 between the second bearing sleeve 62016 and the second rotating shaft 101 may be 5 ⁇ m to 12 ⁇ m, and preferably 8 ⁇ m to 10 ⁇ m.
  • the fourth magnetic bearing seat 62013 may be formed by laminating several silicon steel sheets or silicon steel sheets.
  • the number of the fourth accommodating grooves 62014 may be, but is not limited to, six or eight, and the fourth accommodating grooves 62014 are uniformly arranged along the circumferential direction of the fourth magnetic bearing holder 62013. In this way, the magnetic force between the fourth magnetic bearing 6201 and the second rotating shaft 101 can be made more uniform and stable.
  • the plurality of seventh magnetic components may also be disposed on the fourth magnetic bearing holder 62013 in other manners, which is not limited.
  • the material of the fifth end cap 62017 and the sixth end cap 62018 may be a non-magnetic material, preferably a hard aluminum material.
  • the material of the second bearing sleeve 62016 may be a non-magnetic material, preferably a hard aluminum material.
  • the material of the second bearing shell 62015 may be a non-magnetic material, preferably a hard aluminum material.
  • the fifth end cover 62017 and the sixth end cover 62018 are each provided with a boss having the same outer diameter as the inner diameter of the second bearing shell 62015, and the bosses of the fifth end cover 62017 and the sixth end cover 62018 are used to remove the two The end is fixed and pressed to form the silicon steel sheet or silicon steel sheet of the fourth magnetic bearing seat 62013.
  • a third dynamic pressure generating groove 6202 may be provided on the second bearing sleeve 62016.
  • the second bearing sleeve 62016 may be made of stainless steel.
  • the third dynamic pressure generating groove 6202 may be provided on the second rotating shaft 101 at a middle portion corresponding to a circumferential surface of the second bearing sleeve 62016, or may be provided symmetrically distributed on both sides of the middle portion and separated from each other.
  • the third dynamic pressure generating groove 6202 may also be provided in the middle portion of the inner wall of the second bearing sleeve 62016, or may be arranged symmetrically at two ends of the inner wall of the second bearing sleeve 62016, independently of each other. Part of the third dynamic pressure generating groove 6202.
  • the third dynamic pressure generating grooves 6202 are arranged in a matrix. In this way, the gas film is more evenly distributed in the fourth gap 6203.
  • the third dynamic pressure generating groove 6202 is a V-shaped groove provided continuously or at intervals.
  • the second rotating shaft 101 by adopting the setting manner of the third dynamic pressure generating groove 6202 described above, when the second rotating shaft 101 rotates forward or reverse, the rotating shaft can be held in a non-contact manner in a desired manner. Therefore, the second rotating shaft 101 has the advantages of high load capacity and good stability.
  • the third dynamic pressure generating groove 6202 may be provided as a V-shaped groove, or a herringbone-shaped groove or other shaped grooves.
  • the fourth magnetic bearing 6201 is also provided with a second static pressure intake throttle hole 6205.
  • One end of the second static pressure intake throttle hole 6205 is in communication with the fourth gap 6203, and the other end is connected to an external air source. It is used to convey the external air source into the fourth gap 6203.
  • a gas static pressure bearing can be formed by providing the above-mentioned second static pressure intake throttle hole 6205, so that the slot type gas magnetic hybrid third radial bearing 620 can constitute a slot type gas dynamic static pressure-magnetic hybrid Radial bearings.
  • the flow diameter of the second static pressure intake throttle hole 6205 can be adjusted according to the actual working conditions such as gas demand.
  • the second static pressure intake orifice 6205 is divided into at least two branches in the fourth magnetic bearing 6201 and communicates with the fourth gap 6203.
  • the second static pressure air intake throttle hole 6205 can pass through the fifth end cover 62017 or the sixth end cover 62018, the fourth magnetic bearing 6201, and the second bearing sleeve 62016 in order, and the external air source and the Four gaps 6203 communicate. Further, the second static pressure air intake throttle hole 6205 may be divided into two or more branches to communicate with the fourth gap 6203, so that the gas film pressure in the fourth gap 6203 is more uniform. Further, the fifth end cover 62017 or the sixth end cover 62018 may be provided with an annular groove, and a plurality of second static pressure intake throttle holes 6205 may be provided in an annular region corresponding to the annular groove of the fourth magnetic bearing 6201.
  • a second static pressure air intake orifice 6205 is provided in each fourth magnetic core 62011 or in every two adjacent fourth magnetic cores 62011.
  • the second static pressure air intake orifice 6205 and the circulation diameter of the branch can be adjusted according to the actual working conditions such as gas demand.
  • the grooved gas-magnetic hybrid third radial bearing 620 further includes a plurality of fourth sensors 6204 disposed at intervals along the circumferential direction of the fourth magnetic bearing 6201, wherein a sensor probe of each fourth sensor 6204 is disposed at the fourth Within the gap 6203.
  • parameters at the fourth gap 6203 such as the air film pressure at the fourth gap 6203, can be detected in real time.
  • the fourth magnetic bearing 6201 can actively control the third radial bearing 620 according to the detection result of the fourth sensor 6204, and can make the control achieve higher accuracy.
  • each fourth sensor 6204 includes a fourth sensor cover 62041 and a fourth sensor probe 62040, and a first end of the fourth sensor probe 62041 is connected to the fourth sensor cover 62041 and the fourth sensor
  • the cover 62041 is fixed on the fourth magnetic bearing 6201.
  • the fourth magnetic bearing 6201 is provided with a through hole for the fourth sensor probe 62041 to pass through.
  • the second end of the fourth sensor probe 62041 passes through the fourth magnetic bearing 6201.
  • the through hole extends to the fourth gap 6203, and the second end of the fourth sensor probe 62041 is flush with the side of the fourth magnetic bearing 6201 near the second rotating shaft 101.
  • the fourth sensor 6204 can be more stably disposed on the fourth magnetic bearing 6201 through the structure and installation manner of the fourth sensor 6204.
  • the second end of the fourth sensor probe 62041 is flush with the side of the fourth magnetic bearing 6201 near the second rotation shaft 101.
  • the fourth sensor probe 62041 can be prevented from being touched by the second rotation shaft 101. Therefore, it is beneficial to protect the fourth sensor probe 62041; on the other hand, it will not affect the air film in the fourth gap 6203, and avoid the air film in the fourth gap 6203 from being disturbed.
  • the number of the fourth sensors 6204 may be the same as the number of the seventh magnetic components.
  • the fourth sensor 6204 may be disposed between two adjacent seventh magnetic components, or may be disposed through the seventh magnetic component, which is not limited in the embodiment of the present invention.
  • Each fourth sensor 6204 is preferably disposed in the middle of the fourth magnetic bearing 6201.
  • the plurality of fourth sensors 6204 are any one or more of the following combinations:
  • a displacement sensor for detecting the position of the second rotating shaft 101
  • a pressure sensor for detecting the gas film pressure at the fourth gap 6203
  • a speed sensor for detecting the rotation speed of the second rotating shaft 101
  • An acceleration sensor for detecting a rotational acceleration of the second rotating shaft 101 An acceleration sensor for detecting a rotational acceleration of the second rotating shaft 101.
  • An embodiment of the present invention provides a control method of a slot type aeromagnetic hybrid radial bearing, including:
  • the rotating shaft is lifted up and reaches a preset radial position by the fourth magnetic bearing, and there is a fourth gap between the fourth magnetic bearing and the rotating shaft.
  • the specific process of opening the fourth magnetic bearing is: input a current signal of a predetermined value to the fourth coil, and the rotating shaft is lifted up by the fourth magnetic bearing and reaches a preset radial position.
  • the gas dynamic pressure bearing of the radial bearing (a fourth gap is set between the fourth magnetic bearing and the rotating shaft to form the gas dynamic of the radial bearing Pressure bearing) can stabilize the rotating shaft, and then the fourth magnetic bearing can be closed.
  • the rotating shaft is decelerated.
  • the fourth magnetic bearing is opened when the rotor system is stopped, and the fourth magnetic bearing can be closed after the shaft is completely stopped.
  • An embodiment of the present invention also provides another control method of a slot type aeromagnetic hybrid radial bearing, including:
  • the fourth magnetic bearing is turned on until the rotating shaft returns to a balanced radial position.
  • the fourth magnetic bearing when the rotation speed of the rotating shaft is accelerated to the first-order critical speed or the second-order critical speed, the fourth magnetic bearing is turned on, including:
  • the fourth magnetic bearing is controlled to open at the maximum power
  • the fourth magnetic bearing is controlled to open in a strobe manner according to a preset frequency.
  • the fourth magnetic bearing is turned on until the rotating shaft returns to a balanced radial position.
  • the fourth magnetic bearing when the rotation speed of the rotating shaft is reduced to the first-order critical speed or the second-order critical speed, the fourth magnetic bearing is turned on, including:
  • the fourth magnetic bearing is controlled to be opened at the maximum power
  • the fourth magnetic bearing is controlled to open in a strobe manner according to a preset frequency.
  • the rotating shaft is lifted up and reaches a preset radial position by the fourth magnetic bearing, and there is a fourth gap between the fourth magnetic bearing and the rotating shaft.
  • the specific process of opening the fourth magnetic bearing is: input a current signal of a predetermined value to the fourth coil, and the rotating shaft is lifted up by the fourth magnetic bearing and reaches a preset radial position.
  • the gas dynamic pressure bearing of the radial bearing (between the fourth magnetic bearing and the rotating shaft) Setting the fourth gap, that is, the gas dynamic pressure bearing forming the radial bearing, can stabilize the rotating shaft, and the fourth magnetic bearing can be closed at that time.
  • the rotating shaft is decelerated.
  • the rotating speed of the rotating shaft drops to a second preset value, for example, 5% to 30% of the rated speed
  • the fourth magnetic bearing is opened, and the fourth shaft can be closed until the rotating shaft is completely stopped. Magnetic bearings.
  • the method further includes:
  • the fourth magnetic bearing is turned on, so that the rotating shaft is moved away from the gap and becomes smaller under the magnetic force of the plurality of seventh magnetic components. Move in the direction of
  • the fourth sensor (the fourth sensor here is preferably a pressure sensor) obtains a signal that the air pressure increases. At this time, the fourth magnetic bearing needs to intervene .
  • the fourth magnetic bearing applies magnetic force to the shaft to suspend it upward. When the shaft reaches a new equilibrium position, the fourth magnetic bearing stops working.
  • the rotating shaft may quickly approach the fourth magnetic bearing, which may cause the gap between the rotating shaft and the fourth magnetic bearing to be too small instantaneously, so that the local gas velocity at the reduced gap approaches or even reaches the speed of sound.
  • the generation of shock waves will cause disturbances and chaos in the local gas flow.
  • the velocity of the fluid changes from the speed of sound to the speed of subsonic, its pressure will decrease significantly in a stepwise manner.
  • it is necessary to control the seventh magnetic component of the fourth magnetic bearing to turn on at a preset frequency in order to provide a damping effect on the disturbance, thereby effectively suppressing the external disturbance.
  • the fourth magnetic bearing stops working.
  • the electromagnetic bearing (the seventh magnetic component in the fourth magnetic bearing is an electromagnet to form an electromagnetic bearing) and the gas static pressure bearing (the first magnetic bearing provided on the fourth magnetic bearing)
  • the electromagnetic bearing and the gas static pressure bearing can be used as backups for each other. In the event that one of them fails, fails or cannot meet the opening conditions, the other can be used as a backup. Bearings play the same role. For example, when a failure of an electromagnetic bearing is detected, the external air source is controlled to be opened to perform corresponding actions instead of the electromagnetic bearing, thereby improving the safety and reliability of the bearing.
  • the fourth magnetic bearing uses the advantages of the fourth magnetic bearing to facilitate real-time control, actively balancing factors such as unbalanced mass of the shaft or vortex of the shaft, which causes excessive displacement of the shaft, so that the shaft is fixed in a certain small range in the radial direction.
  • the position where the shock wave is generated that is, the linear velocity supersonic position
  • the fourth magnetic bearing can be balanced by controlling the current magnitude and direction of the fourth magnetic bearing, etc. Shock effect.
  • the electromagnetic bearing and gas bearing work together, which improves the dynamic performance and stability of the bearing under high-speed running conditions, and has a strong anti-disturbance ability, thereby improving the bearing capacity of the bearing.
  • the electromagnetic bearing and the gas bearing adopt a nested structure, which simplifies the structure, has a high degree of integration, is easy to process, manufacture and operate, and improves the comprehensive performance of the bearing.
  • the grooved aeromagnetic hybrid radial bearing of the embodiment of the present invention has the advantage of fast response speed.
  • the aerostatic bearing was added to form a grooved dynamic and static pressure-magnetic hybrid thrust bearing.
  • an electromagnetic bearing and a gas static pressure bearing are provided at the same time, the bearing capacity of the bearing is further increased, and the electromagnetic bearing and the gas static pressure are increased.
  • the bearings can be backed up to each other. In the event that one of them fails, fails, or fails to meet the opening conditions, the other can serve as a backup bearing.
  • the control system controls the opening of the aerostatic bearing to perform a corresponding action instead of the electromagnetic bearing, thereby improving the safety and reliability of the bearing.
  • the thrust bearing and the radial bearing adjacent to the thrust bearing may be integrated to form an integrated bearing.
  • 39 to 41 illustrate three structural schematic diagrams of integrating a thrust bearing and a radial bearing adjacent to the thrust bearing to form an integrated bearing 1000.
  • the integrated bearing 1000 includes:
  • a third bearing shell 1001, the third bearing shell 1001 is a hollow rotating body, and the third bearing shell 1001 is provided with a first receiving cavity and a second receiving cavity;
  • the thruster bearing 1003 is disposed in the second receiving cavity, and the thruster bearing 1003 includes a third thrust plate 10031, and a fifth stator 10032 and a sixth stator 10033 respectively disposed on both sides of the third thrust plate 10031.
  • the thrust disk 10031 is fixedly connected to the rotating shaft 100, and the fifth stator 10032 and the sixth stator 10033 are threaded on the rotating shaft 100.
  • each of the stator and the third thrust disk 10031 has The sixth gap 1005.
  • the radial sub-bearing 1002 and the thrust sub-bearing 1003 are integrated into a bearing housing, which is easy to process and install, has the characteristics of simplified structure and high integration, and can effectively ensure the radial sub-assembly during processing and installation.
  • the coaxiality of the bearing 1002 and the thrust bearing 1003 is consistent.
  • a fifth gap 1004 is provided in the radial sub-bearing 1002 and a sixth gap 1005 is provided in the thrust sub-bearing 1003, so that the bearing of the present invention is a non-contact bearing, which can meet the requirements of high-speed rotation of the rotor.
  • the material of the third bearing housing 1001 may be a non-magnetic material, and a hard aluminum material is preferred.
  • the fifth stator 10032 and the third bearing shell 1001 may be integrally formed, and the sixth stator 10033 and the third bearing shell 1001 may be detachably connected.
  • the third bearing housing 1001 may be connected to a casing of the gas turbine through a connecting member.
  • each of the radial sub-bearing 1002 and the thrust sub-bearing 1003 may include a magnetic bearing.
  • the structure of the magnetic sub-bearing in the radial sub-bearing 1002 is as follows:
  • the radial sub-bearing 1002 includes a fifth magnetic bearing 10021 sleeved on the rotating shaft 100.
  • the fifth magnetic bearing 10021 is detachably installed in the first receiving cavity.
  • the fifth magnetic bearing 10021 is provided with a plurality of eighth magnetics in a circumferential direction. component;
  • the rotating shaft 100 can move in the radial direction of the rotating shaft 100 under the magnetic force of a plurality of eighth magnetic members.
  • the fifth magnetic bearing 10021 includes:
  • a fifth magnetic bearing seat the fifth magnetic bearing seat is sleeved on the rotating shaft 100, a plurality of fifth receiving grooves are provided on the fifth magnetic bearing seat in the circumferential direction, and a plurality of eighth magnetic components are provided in the plurality of fifth receiving grooves. Inside, and the magnetic poles of the plurality of eighth magnetic components face the rotating shaft 100;
  • a third bearing sleeve 10022 sleeved between the fifth magnetic bearing block and the rotating shaft 100, and the third bearing sleeve 10022 cooperates with the fifth magnetic bearing block to fix a plurality of eighth magnetic components on the fifth magnetic bearing block.
  • the integrated bearing 1000 may further include a seventh end cap 1006.
  • the seventh end cap 1006 is disposed at an end of the third bearing housing 1001 near the first receiving cavity, and the seventh end cap 1006 and the fifth magnet The bearing seat is abutted for fixing the radial sub-bearing 1002 in the first receiving cavity.
  • each of the radial sub-bearing 1002 and the thrust sub-bearing 1003 may include a magnetic bearing.
  • the structure of the magnetic bearing in the thrust sub-bearing 1003 is as follows:
  • Each of the fifth stator 10032 and the sixth stator 10033 includes a sixth magnetic bearing 10034, and the sixth magnetic bearing 10034 is provided with a plurality of ninth magnetic components in a circumferential direction;
  • the third thrust disk 10031 is provided with a tenth magnetic component, and the third thrust disk 10031 can move in the axial direction of the rotating shaft 100 under the magnetic force between the plurality of ninth magnetic components and the tenth magnetic component.
  • sixth magnetic bearing 10034 includes:
  • the sixth magnetic bearing seat is disposed opposite to the third thrust plate 10031.
  • the sixth magnetic bearing seat is provided with a plurality of sixth receiving grooves in the circumferential direction, and a plurality of ninth magnetic components are provided in a plurality of sixth. In the receiving groove, and the magnetic poles of the plurality of ninth magnetic components face the side on which the third thrust disk 10031 is located;
  • the second pressure ring is disposed on a side of the sixth magnetic bearing seat near the third thrust plate 10031.
  • the second pressure ring cooperates with the sixth magnetic bearing seat to fix a plurality of ninth magnetic components to the sixth Magnetic bearing seat.
  • the eighth magnetic component in the fifth magnetic bearing 10021 is an electromagnet
  • the ninth magnetic component in the sixth magnetic bearing 10034 is (Electromagnet)
  • the fifth stator 10032 may be integrally formed with the third bearing housing 1001, and the sixth stator 10033 may be detachably connected with the third bearing housing 1001.
  • both the radial sub-bearing 1002 and the thrust sub-bearing 1003 may be provided with a dynamic pressure generating groove.
  • the structural form of the dynamic sub-bearing 1002 with the dynamic pressure generating groove is as follows:
  • a fourth dynamic pressure generating groove 10023 is provided on the circumferential surface of the radial sub-bearing 1002 toward the side wall of the rotating shaft 100 or the rotating shaft 100 faces the radial sub-bearing 1002.
  • the fourth dynamic pressure generating grooves 10023 are arranged in a matrix.
  • the fourth dynamic pressure generating groove 10023 is a V-shaped groove provided continuously or at intervals.
  • both the radial sub-bearing 1002 and the thrust sub-bearing 1003 may be provided with a dynamic pressure generating groove.
  • the structural form of the dynamic sub-bearing provided in the thrust sub-bearing 1003 is as follows:
  • End faces of the third thrust plate 10031 facing the fifth stator 10032 and the sixth stator 10033, or end faces of the fifth stator 10032 and the sixth stator 10033 facing the third thrust plate 10031 are provided with a fifth dynamic pressure generating groove 10035.
  • the fifth dynamic pressure generating grooves 10035 are arranged radially or concentrically.
  • the fifth dynamic pressure generating groove 10035 includes a first spiral groove and a second spiral groove.
  • the first spiral groove surrounds the second spiral groove.
  • the spiral directions of the first spiral groove and the second spiral groove are opposite.
  • An end of the groove near the second spiral groove is connected or disconnected with an end of the second spiral groove near the first spiral groove.
  • a dynamic pressure generating groove is provided in the integrated bearing 1000, so that the integrated bearing 1000 includes a dynamic pressure gas bearing.
  • an electromagnetic bearing and a dynamic pressure gas bearing are provided at the same time, the dynamic performance and stability of the integrated bearing 1000 under high-speed running conditions are improved, and the anti-disturbance capability is strong, thereby improving the bearing capacity of the bearing.
  • the electromagnetic bearing and the dynamic pressure gas bearing adopt a nested parallel structure, which simplifies the structure, has a high degree of integration, is easy to process, manufacture and operate, and improves the comprehensive performance of the integrated bearing 1000.
  • the integrated bearing 1000 may further be provided with a static pressure intake throttle hole, and its structure is as follows:
  • the third bearing shell 1001 is also provided with a third static pressure intake throttle hole 1007;
  • One end of the third static pressure air intake orifice 1007 is connected to an external air source, and the other end is in communication with the fifth gap 1004 through a radial sub-bearing 1002, and / or via the fifth stator 10032 and the sixth stator 10033 and the first stator 10033.
  • the six gaps 1005 communicate with each other and are used to deliver an external air source to the fifth gap 1004 and / or the sixth gap 1005.
  • the integrated bearing 1000 may further be provided with a static pressure intake throttle hole, so that the integrated bearing 1000 includes a gas static pressure bearing.
  • the bearing capacity of the integrated bearing 1000 can be further increased.
  • electromagnetic bearings and aerostatic bearings can be backed up to each other. In the event that one of them fails, fails, or fails to meet the opening conditions, the other can serve as a backup bearing. For example, when a failure of the electromagnetic bearing is detected, the safety and reliability of the integrated bearing 1000 is improved by controlling the opening of the aerostatic bearing to perform the corresponding action instead of the electromagnetic bearing.
  • both the radial sub-bearing 1002 and the thrust sub-bearing 1003 may be provided with sensors, and the structural forms are as follows:
  • a fifth sensor (not shown) is disposed on the radial sub-bearing 1002, and a sensor probe of the fifth sensor is disposed within the fifth gap 1004.
  • parameters at the fifth gap 1004 can be detected in real time, such as the gas film pressure at the fifth gap 1004.
  • the fifth magnetic bearing 10021 can actively control the radial sub-bearing 102 according to the detection result of the fifth sensor, and can make the control achieve high accuracy.
  • each of the fifth sensors includes a first sensor cover and a fifth sensor probe, a first end of the fifth sensor probe is connected to the fifth sensor cover, and the fifth sensor cover is fixed to the fifth sensor cover.
  • the fifth magnetic bearing 10021 is provided with a through hole for the fifth sensor probe to pass through; the second end of the fifth sensor probe passes through the through hole on the fifth magnetic bearing 10021 and extends to the first There are five gaps 1004, and the second end of the fifth sensor probe is flush with the side of the fifth magnetic bearing 10021 near the rotating shaft 100.
  • the fifth sensor can be more stably installed on the fifth magnetic bearing 10021.
  • the second end of the sensor probe is flush with the side of the fifth magnetic bearing 10021 near the rotating shaft 100.
  • the sensor probe can be prevented from being touched by the rotating shaft 100, which is beneficial to protecting the sensor probe;
  • the air film in the fifth gap 1004 will not be affected, and the air film in the fifth gap 1004 will not be disturbed.
  • the thruster bearing 1003 is provided with a sixth sensor (not shown in the figure), and a sensor probe of the sixth sensor is disposed in the sixth gap 1005.
  • parameters at the sixth gap 1005 can be detected in real time, such as the gas film pressure at the sixth gap 1005.
  • the sixth magnetic bearing 10034 can actively control the thruster bearing 103 according to the detection result of the sixth sensor, and can make the control achieve higher accuracy.
  • the sixth sensor includes a sixth sensor cover and a sixth sensor probe, the first end of the sixth sensor probe is connected to the sixth sensor cover, the sixth sensor cover is fixed on the sixth magnetic bearing 10034, and the sixth magnetic bearing 10034 A through hole is provided for the sixth sensor probe to pass through; the second end of the sixth sensor probe passes through the through hole on the sixth magnetic bearing 10034 and extends to the sixth gap 1005. The two ends are flush with a side of the sixth magnetic bearing 10034 near the third thrust plate 10031.
  • the sixth sensor can be more stably set on the sixth magnetic bearing 10034.
  • the second end of the sixth sensor probe is flush with the side of the sixth magnetic bearing 10034 near the third thrust plate 10031.
  • the sixth sensor probe can be prevented from being touched by the third thrust plate 10031. Therefore, it is beneficial to protect the sixth sensor probe; on the other hand, it will not affect the air film in the sixth gap 1005 and avoid the air film in the sixth gap 1005 from being disturbed.
  • an integrated bearing (wherein the eighth magnetic component in the fifth magnetic bearing is an electromagnet and the ninth magnetic component in the sixth magnetic bearing is an electromagnet) participates in specific control when the rotor system is controlled.
  • the method can refer to the foregoing related description, and can achieve the same beneficial effects. To avoid repetition, this is not repeated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种转子系统及其控制方法和燃气轮机发电机组及其控制方法。转子系统包括:第一转轴(100),第一转轴(100)上依次设置有透平(200)、第一径向轴承(500)、压气机(300)和推力轴承(700),推力轴承(700)位于压气机(300)的进气口所在的一侧,且与压气机(300)之间间隔预定距离,以使推力轴承(700)不阻挡压气机(300)的进气口;与第一转轴(100)通过联轴器(102)连接的第二转轴(101),第二转轴(101)上依次设置有第二径向轴承(610)、电机(400)和第三径向轴承(620)。通过将推力轴承(700)布置在转子系统的冷端,推力轴承(700)可采用气磁混合推力轴承;还能够使整个转子系统的重心位于最远两个径向轴承之间,以使整个转子系统结构稳定。

Description

一种转子系统及其控制方法和燃气轮机发电机组及其控制方法 技术领域
本发明涉及转子动力学技术领域,尤其涉及一种转子系统及其控制方法和燃气轮机发电机组及其控制方法。
背景技术
燃气轮机主要包括压气机、燃烧室及透平三大部件。空气进入压气机后被压缩成高温高压的空气,然后供给燃烧室与燃料混合燃烧,其产生的高温高压燃气在透平中膨胀做功。转子高速转动时,转子会受到径向方向的力和轴向方向的力。为了限制转轴发生径向和轴向上的移动,转子系统中需要安装径向轴承和推力轴承。传统的径向轴承和推力轴承均为普通的接触式轴承,随着转子转速的提高,尤其是转子转速每分钟超过40000转时,普通的接触式轴承由于存在较大的机械磨损,已不能满足工作转速的需求。
对于燃气轮机发电机组,通过燃气轮机转子的高速旋转带动发电机转子旋转进而发电。对于采用联轴器将燃气轮机转子与发电机转子进行连接的转子系统而言,随着转子转速的提高,转子受到的轴向力也会进一步提高。若将推力轴承设置于压气机和透平之间,不仅会使得整个转子系统的重心偏向透平侧,从而导致转子系统的稳定性差,而且由于透平涡轮热端部件在工作时经受的高温会传递到推力轴承,这使得推力轴承不能采用气磁混合推力轴承。如果将推力轴承设置于联轴器朝向发电机一侧,则转子的轴向力全部作用到联轴器上,容易导致联轴器损坏。
可见,目前亟需提供一种新的转子系统,以解决现有燃气轮机发电机组存在的上述问题。
发明内容
本发明提供一种转子系统及其控制方法和燃气轮机发电机组及其控制方法,以解决上述问题。
第一方面,本发明提供一种转子系统,包括:
第一转轴,所述第一转轴上依次设置有透平、第一径向轴承、压气机和推力轴承,所述推力轴承位于所述压气机的进气口所在的一侧,且与所述压气机之间间隔预定距离,以使所述推力轴承不阻挡所述压气机的进气口;
与所述第一转轴通过联轴器连接的第二转轴,所述第二转轴上依次设置有第二径向轴承、电机和第三径向轴承;
所述第一转轴和所述第二转轴均水平设置,或者,所述第一转轴和所述第二转轴均竖向设置;
所述推力轴承为气磁混合推力轴承,所述第一径向轴承、所述第二径向轴承和所述第三径向轴承均为非接触式轴承。
第二方面,本发明提供一种转子系统的控制方法,用于第一方面的转子系统,所述方法包括:
开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使所述推力轴承的推力盘移动至预设轴向位置;
所述转轴的转速加速至工作转速之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
所述转子系统停机时,开启所述径向轴承中的静压轴承和所述推力轴承中的静压轴承;
所述转轴的转速减速至零之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
其中,开启所述静压轴承包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体;
关闭所述静压轴承包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体;
所述转轴由第一转轴和第二转轴通过联轴器连接形成。
第三方面,本发明提供另一种转子系统的控制方法,用于第一方面的转子系统,所述方法包括:
开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使所述推力轴承的推力盘移动至预设轴向位置;
所述转轴的转速加速至第一预设值之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
所述转子系统加速至一阶临界速度或二阶临界速度时,开启所述径向轴承和所述推力轴承中的静压轴承;
所述转子系统平稳度过所述一阶临界速度或所述二阶临界速度之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
所述转子系统停机过程中,当所述转子系统减速至所述一阶临界速度或所述二阶临界速度时,开启所述径向轴承和所述推力轴承中的静压轴承;
所述转子系统平稳度过所述一阶临界速度或所述二阶临界速度之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
所述转轴的转速减速至第二预设值时,开启所述径向轴承中的静压轴承和所述推力轴承中的静压轴承;
所述转轴的转速减速至零之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
其中,开启所述静压轴承,包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体;
关闭所述静压轴承,包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体;
所述转轴由第一转轴和第二转轴通过联轴器连接形成。
第四方面,本发明提供一种燃气轮机发电机组,包括进气道、燃烧室和第一方面的转子系统,所述进气道与所述压气机的进气口连通,所述压气机的出气口与所述燃烧室的进气口连通,所述燃烧室的出气口与所述透平的进气口连通。
第五方面,本发明提供一种燃气轮机发电机组的控制方法,用于第四方面的燃气轮机发电机组,所述方法包括:
开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使所述推力轴承的推力盘移动至预设轴向位置;
启动燃气轮机发电机组,空气经压气机压缩后进入燃烧室和所述燃烧室内的燃料混合燃烧;所述燃烧室排出的高温高压气体对透平的涡轮进行冲击,使所述涡轮旋转,所述涡轮通过所述转轴带动电机旋转发电;
所述转轴的转速加速至工作转速之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
所述燃气轮机发电机组停机时,开启所述径向轴承中的静压轴承和所述推力轴承中的静压轴承;
所述转轴的转速减速至零之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
其中,开启所述静压轴承包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体;
关闭所述静压轴承包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体;
所述转轴由第一转轴和第二转轴通过联轴器连接形成。
本发明中,通过将推力轴承设置于压气机的进气口所在的一侧,也就是说,将推力轴承布置在转子系统的冷端,这样,推力轴承可采用气磁混合推力轴承;另外,还能够使整个转子系统的重心位于最远两个径向轴承之间,以使整个转子系统结构稳定,避免高速旋转时发生失稳情况,满足目前燃气轮机高转速的要求。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获取其他的附图。
图1至图12是本发明实施例提供的转子系统的结构示意图;
图13是本发明实施例提供的燃气轮机发电机组的结构示意图;
图14至图19是设置有轴承阻尼器的径向轴承的结构示意图;
图20至图23是箔片式气磁混合推力轴承的结构示意图;
图24至图30是槽式气磁混合推力轴承的结构示意图;
图31至图38是槽式气磁混合径向轴承的结构示意图;
图39至图41是转子系统中设置集成式轴承的结构示意图;
图42至图51是集成式轴承的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获取的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种转子系统,包括:
第一转轴100,第一转轴100上依次设置有透平200、第一径向轴承500、压气机300和推力轴承700,推力轴承700位于压气机300的进气口所在的一侧,且与压气机300之间间隔预定距离,以使推力轴承700不阻挡压气机300的进气口;
与第一转轴100通过联轴器102连接的第二转轴101,第二转轴101上依次设置有第二径向轴承610、电机400和第三径向轴承620;
第一转轴100和第二转轴101均水平设置;
推力轴承700为气磁混合推力轴承700,第一径向轴承500、第二径向轴承610和第三径向轴承620均为非接触式轴承。
图1中,第一转轴100和第二转轴101均水平设置,形成水平转子系统,其可以适用于需要使用水平转子系统的卧式机组,例如卧式燃气轮机发电机组。
本发明实施例中,第一转轴100和第二转轴101均可以竖向设置,形成立式转子系统,其可以适用于需要使用立式转子系统的立式机组,例如立式燃气轮机发电机组。
上述预定距离可以为压气机300的叶轮的进气口处叶片的高度的0.5倍至2倍,但不限于此,其具体尺寸可以根据压气机300和推力轴承700的具体参数进行设计。
上述设置能够使推力轴承700远离转子系统的热端,因此推力轴承700可以为气磁混合推力轴承700,进而提高转子系统的控制精度;同时推力轴承700又不会挡住压气机300的进气口,且整个转子系统的重心可以落在两个最远端的径向轴承之间,以使整个转子系统结构稳定,避免高速旋转时发生失稳情况,满足目前燃气轮机高转速的要求。
如图2所示,在图1的基础上,为了避免推力轴承700挡住压气机300的进口,延长第一转轴100的长度,这样,可以在推力轴承700和压气机300之间再设置第四径向轴承800,使得整个转子系统的结构更加稳定。
对于轻质的透平200涡轮,譬如透平200涡轮的材质为陶瓷材料、陶瓷纤维复合材料等,当推力轴承700的推力盘的直径较小,阻挡燃气轮机进气口的情况不严重,则可以采用如图3所示的水平转子系统,其与图1示出的水平转子系统的区别仅在于推力轴承700的推力盘的直径较小,且推力轴承700与压气机300之间间隔的所述预定距离可以减少,即缩短了整个转子系统的轴向长度,提高了转子系统的稳定性。
如图4和图5所示,在图3的基础上,为了增强整个转子系统的稳定性,也可以增加第四径向轴承800,第四径向轴承800的位置可以在联轴器102与推力轴承700之间或推力轴承700与压气机300之间,其具体位置的设置可以根据转子系统中各部件重量的不同进行灵活设置。
如图6所示,在图1的基础上,也可以在转子系统的两端设置径向轴承,即增加第五径向轴承801,使得转子系统形成纺锤体形,以使整个转子系统结构稳定,避免高速旋转时发生失稳情况,满足目前燃气轮机高转速的要求。
上述各实施方式中,第一径向轴承500、第二径向轴承610、第三径向轴承620、第四径向轴承800和第五径向轴承801均可以为非接触式径向轴承。
可选的,对于图1至图6所示的转子系统,第一径向轴承500、第二径向轴承610和第三径向轴承620中的至少一个径向轴承为气磁混合径向轴承或气体静压轴承或气体动静压混合径向轴承。对于图4和图5所示的转子系统,第一径向轴承500、第二径向轴承610、第三径向轴承620和第四径向轴承800中的至少一个径向轴承为气磁混合径向轴承或气体静压轴承或气体动静压混合径向轴承。对于图6所示的转子系统,第一径向轴承500、第二径向轴承610、第三径向轴承620、第四径向轴承800和第五径向轴承801中的至少一个径向轴承为气磁混合径向轴承或气体静压轴承或气体动静压混合径向轴承。
具体的,对于图1至图6所示的转子系统,第一径向轴承500为气体静压径向轴承或者气体动静压混合径向轴承。对于图1至图6所示的转子系统,第二径向轴承610和第三径向轴承620为气磁混合径向轴承。对于图4和图5所示的转子系统,第四径向轴承800为气磁混合径向轴承或气体动静压混合径向轴承。对于图6所示的转子系统,第五径向轴承801为气体静压径向轴承或者气体动静压混合径向轴承。
在第一径向轴承500为气体静压径向轴承或者气体动静压混合径向轴承的基础上,可为第一径向轴承500增加磁性元件,形成气磁混合径向轴承。由于磁性元件不耐高温,因此,第一径向轴承500为气磁混合径向轴承时,第一径向轴承500的磁性部件设置于第一径向轴承500上的远离透平200的区域。图7至图12为将第一径向轴承500设置为气磁混合径向轴承的水平转子系统的结构示意图。
为保护第一径向轴承500上的磁性元件,可以通过减少透平200辐射至第一径向轴承500上的热能的方式实现。具体的,透平200上靠近第一径向轴承500的一侧设置有隔热层。这里,隔热层可以是气凝胶或其它材料。
当转子系统应用于燃料为氢气、甲醇、乙醇、乙二醇等醇类气体的燃气轮机发电机组时,第一径向轴承500、第五径向轴承801优选气体动静压混合径向轴承。由于上述燃料燃烧过程中不会产生油污或者杂质等,选择气体动静压混合径向轴承既能避免纯动压轴承在开启和关闭阶段的干摩擦,磨损旋转轴和轴承,同时静压轴承的静压节流孔不会存在被油污堵塞的可能。
本发明实施例中,压气机300可以为离心压气机300,透平200涡轮可以为离心式涡轮;电机400可以为流体动压轴承电机,第二转轴101对应电机400的轴承的部位可以设置有第一动压发生槽。
进一步的,电机400还可以是启发一体式电机。
这样,在转子系统初始启动时刻,可以将电机400以启动模式开启,以使转子系统转动,当转子系统的转速提升至预设转速后,可以将电机400的工作模式切换到发电模式。
上述有关水平转子系统的各种实施方式,也可以适用于立式转子系统,为避免重复,对此不作赘述。
上述任一种水平转子系统均可以适用于卧式燃气轮机发电机组,尤其适用于卧式微燃气轮机发电机组,下面以转子系统应用于卧式燃气轮机发电机组为例进行具体地说明。
如图13所示,燃气轮机发电机组,优选微燃气轮机发电机组,包括压气机300、透平200、燃烧室330。
其中,燃气轮机发电机组的进气道320与压气机300的进气口连通,压气机300的出气口与燃烧室330的进气口连通,燃烧室330的出气口与透平200的进气口连通。
其中,压气机300可以为离心压气机300,透平200涡轮可以为离心式涡轮;电机400的轴承可以为流体动压轴承,转轴100对应电机400的轴承的部位可以设置有第一动压发生槽401;燃烧室330可以为环形燃烧室。
可选的,进气道320由电机400的外壳和燃气轮机发电机组的外壳310形成。这样,当空气由进气道320进入压气机300时,空气流经电机400的外壳,能够对电机400起到冷却作用。
可选的,电机400为启发一体式电机。
下面就燃气轮机发电机组的工作过程进行具体说明。
如前所示,转子系统中的推力轴承可以采用气磁混合推力轴承,径向轴承可以采用气磁混合推力轴承或气体动静压混合径向轴承。为了便于描述,我们将不需要转轴转动就能起到润滑作用的轴承定义为静压轴承,转轴转动到一定速度时才能工作的轴承定义为动压轴承。依此逻辑,气磁混合推力轴承中的磁轴承和气体静压轴承,以及气体动静压混合径向轴承中的气体静压轴承均可以称为静压轴承;而气磁混合推力轴承中的气体动压轴承,以及气体动静压混合径向轴承中的气体动压轴承均可以称为动压轴承。
燃气轮机发电机组的工作过程包括以下三个步骤:
S1:轴承启动,控制系统分别开启径向轴承和推力轴承中的静压轴承部分,以使转轴移动至预设径向位置,使推力轴承的推力盘移动至预设轴向位置。
其中,转轴可由第一转轴和第二转轴通过联轴器连接形成。
开启静压轴承可包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体。
S2:微燃气轮机启动,空气由进气道进入离心式压气机,被压缩后通过回热器,由透平200的涡轮排出的高温气体对压气机300出口的被压缩的空气进行预加热;预加热后的空气进入燃烧室和燃料混合燃烧,燃烧室充分燃烧后的高温高压气体对透平200的涡轮进行冲击,使涡轮旋转,涡轮排气进入回热器对压气机出口气流预加热后由尾气管排出,由于涡轮与压气机连接,从而涡轮旋转带动压气机一起旋转并拖动前端发电机旋转发电输出轴功,在此过程中,所述转轴100的转速达到预定值时,优选,额定转速的5%-30%时,控制系统分别控制径向轴承和推力轴承中的静压轴承部分停止工作,当转轴100的转速过一阶临界或二阶临界速度时,控制系统分别控制径向轴承和推力轴承的静压轴承部分启动,直至平稳度过临界速度后,控制系统分别控制径向轴承和推力轴承中的静压轴承部分停止工作。
S3:停机,微燃气轮机停止工作,转轴100的转速逐渐下降,当转轴100转速过一阶临界或二阶临界速度时,控制系统分别控制径向轴承和推力轴承的静压轴承部分启动,直至平稳度过临界速度后,控制系统分别控制径向轴承和推力轴承中的静压轴承部分停止工作;所述转轴100的转速降至预定值时,优选,额定转速的5%-30%时,控制系统分别控制径向轴承和推力轴承的静压轴承部分启动直至转速降为0后,所述控制系统分别控制径向轴承和推力轴承中的静压轴承部分停止工作。
优选的,所述压气机300包括动叶和静叶,进一步优选,所述静叶为扩压器,所述步骤S2中:“空气由进气道进入离心式压气机,被压缩”的过程为:空气进入离心式压气机动叶被压缩后进入周向布置的扩压器(静止部件)继续被压缩。
优选的,所述透平200的涡轮包括静叶和动叶,进一步优选,所述静叶为喷嘴,所述步骤S2中“所述燃烧室充分燃烧后的高温高压气体对透平200的涡轮进行冲击,使涡轮旋 转”的过程为:所述燃烧室充分燃烧后的高温高压气体通过燃烧室出口周向布置的喷嘴(静止部件)进行膨胀加速后,对涡轮动叶进行冲击(即燃气继续膨胀并对涡轮作功),使涡轮旋转。
本发明实施例提供一种燃气轮机发电机组的控制方法,包括:
S11、开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使推力轴承的推力盘移动至预设轴向位置。
S12、启动燃气轮机发电机组,空气经压气机压缩后进入燃烧室和燃烧室内的燃料混合燃烧;燃烧室排出的高温高压气体对透平的涡轮进行冲击,使涡轮旋转,涡轮通过转轴带动电机旋转发电。
以下以电机为启发一体式电机为例,对燃气轮机发电机组的启动过程进行具体描述。
燃气轮机控制器(Electronic Control Unit,简称ECU)接收到启动信号后,对电机功率控制器(Data Processing Center,简称DPC)发送电机驱动模式指令;DPC切换到电机驱动模式,DPC将燃气轮机内置电池的直流电进行变频,驱动电机工作,电机带动燃气轮机提升转速。
待燃气轮机的转速提升至点火转速后,打开燃料阀,进入点火程序。空气由进气道进入压气机进行压缩后进入回热器并被来自涡轮排出的高温气体预热,预热后的压缩空气进入燃烧室与燃料混合并燃烧,燃烧室充分燃烧后的高温高压气体进入透平对涡轮进行冲击,使透平涡轮旋转,涡轮排气进入回热器对进入燃烧室前的冷压缩空气预加热后由尾气管排出,由于透平与压气机和电机通过转轴连接,透平涡轮旋转带动压气机一起旋转至自持速度。
燃气轮机到达自持转速后,DPC挂起,电机空转继续增加油门,涡轮继续提升功率,使转速提升至工作转速。ECU对DPC发送发电机模式指令;DPC切换到发电机模式,并将电机输出的交流电通过整流变压后输出用户所需电压电流。
其中,压气机为离心式压气机,该离心式压气机包括动叶和沿周向布置的静叶,静叶为扩压器。这样,空气由进气道进入压气机进行压缩的具体过程可以为:空气进入离心式压气机的动叶被压缩后,进入沿周向布置的扩压器(即静叶)继续被压缩。
其中,透平涡轮为离心式涡轮,该离心式涡轮设置有动叶。燃烧室出口沿周向布置有静叶,该静叶为喷嘴。这样,燃烧室充分燃烧后的高温高压气体进入透平做功,使透平涡轮旋转的具体过程可以为:燃烧室充分燃烧后的高温高压气体通过在燃烧室出口沿周向布置的喷嘴(即静叶)进行膨胀加速后,对涡轮的动叶进行冲击,使涡轮旋转。
S13、转轴的转速加速至工作转速之后,关闭径向轴承和推力轴承中的静压轴承。
其中,关闭静压轴承包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
S14、燃气轮机发电机组停机时,开启径向轴承中的静压轴承和推力轴承中的静压轴承。
S15、转轴的转速减速至零之后,关闭径向轴承和推力轴承中的静压轴承。
在上述过程中,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承一直开启至转轴的转速达到工作转速。
燃气轮机发电机组停机时,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承一直开启至转轴的转速为零。
本发明实施例提供另一种燃气轮机发电机组的控制方法,包括:
S21、开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使推力轴承的推力盘移动至预设轴向位置。
S22、启动燃气轮机发电机组,空气经压气机压缩后进入燃烧室和燃烧室内的燃料混合燃烧;燃烧室排出的高温高压气体对透平的涡轮进行冲击,使涡轮旋转,涡轮通过转轴带动电机旋转发电。
S23、转轴的转速加速至第一预设值之后,关闭径向轴承和推力轴承中的静压轴承。
其中,第一预设值可以是额定转速的5%至30%。
其中,关闭静压轴承,包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
S24、转子系统加速至一阶临界速度或二阶临界速度时,开启径向轴承和推力轴承中的静压轴承。
S25、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭径向轴承和推力轴承中的静压轴承。
S26、燃气轮机发电机组停机过程中,当转子系统减速至一阶临界速度或二阶临界速度时,开启径向轴承和推力轴承中的静压轴承。
S27、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭径向轴承和推力轴承中的静压轴承。
S28、转轴的转速减速至第二预设值时,开启径向轴承中的静压轴承和推力轴承中的静压轴承。
其中,第二预设值可以等于第一预设值,也可以不等于第一预设值,第二预设值可以是额定转速的5%至30%。
S29、转轴的转速减速至零之后,关闭径向轴承和推力轴承中的静压轴承。
在上述过程中,燃气轮机发电机组启动之前,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承开启。这样,转轴在径向轴承的静压轴承的作用下,被托起至预设径向位置;推力盘在推力轴承的静压轴承的作用下,被推动至预设轴向位置。
燃气轮机发电机组启动之后,转轴的转速逐渐增大,当转轴的转速达到第一预设值时,例如额定转速的5%至30%时,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承停止工作。当转轴的转速达到一阶临界速度或二阶临界速度时,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承重新开启。在转轴的转速平稳度过一阶临界速度或二阶临界速度之后,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承再次停止工作。
燃气轮机发电机组停机过程中,转轴的转速逐渐下降,当转轴的转速达到二阶临界速度或一阶临界速度时,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承再次开启。在转轴的转速平稳度过二阶临界速度或一阶临界速度之后,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承再次停止工作。当转轴的转速下降至预定值时,例如额定转速的5%至30%时,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承再次开启直至转速降为零之后,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承再次停止工作。
下面基于上述燃气轮机发电机组的控制方法,对转子系统的控制方法进行具体说明。
本发明实施例提供一种转子系统的控制方法,包括:
S101、开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使推力轴承的推力盘移动至预设轴向位置。
其中,转轴可由第一转轴和第二转轴通过联轴器连接形成。
开启静压轴承可包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体。
S102、转轴的转速加速至工作转速之后,关闭径向轴承和推力轴承中的静压轴承。
其中,关闭静压轴承包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
S103、转子系统停机时,开启径向轴承中的静压轴承和推力轴承中的静压轴承。
S104、转轴的转速减速至零之后,关闭径向轴承和推力轴承中的静压轴承。
在上述过程中,转子系统启动之前,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承开启。这样,转轴在径向轴承的静压轴承的作用下,被托起至预设径向位置;推力盘在推力轴承的静压轴承的作用下,被推动至预设轴向位置。径向轴承和推力轴承中的静压轴承一直开启至转轴的转速达到工作转速。
转子系统停机时,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承一直开启至转轴的转速为零。
本发明实施例提供另一种转子系统的控制方法,包括:
S201、开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使推力轴承的推力盘移动至预设轴向位置。
其中,开启静压轴承,包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体。
S202、转轴的转速加速至第一预设值之后,关闭径向轴承和推力轴承中的静压轴承。
其中,第一预设值可以是额定转速的5%至30%。
其中,关闭静压轴承,包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
S203、转子系统加速至一阶临界速度或二阶临界速度时,开启径向轴承和推力轴承中的静压轴承。
S204、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭径向轴承和推力轴承中的静压轴承。
S205、转子系统减速至一阶临界速度或二阶临界速度时,开启径向轴承和推力轴承中的静压轴承。
S206、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭径向轴承和推力轴承中的静压轴承。
S207、转轴的转速减速至第二预设值时,开启径向轴承中的静压轴承和推力轴承中的静压轴承。
其中,第二预设值可以等于第一预设值,也可以不等于第一预设值,第二预设值可以是额定转速的5%至30%。
S208、转轴的转速减速至零之后,关闭径向轴承和推力轴承中的静压轴承。
在上述过程中,转子系统启动之前,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承开启。这样,转轴在径向轴承的静压轴承的作用下,被托起至预设径向位置;推力盘在推力轴承的静压轴承的作用下,被推动至预设轴向位置。
转子系统启动之后,转轴的转速逐渐增大,当转轴的转速达到第一预设值时,例如额定转速的5%至30%时,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承停止工作。当转轴的转速达到一阶临界速度或二阶临界速度时,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承重新开启。在转轴的转速平稳度过一阶临界速度或二阶临界速度之后,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承再次停止工作。
转子系统停机过程中,转轴的转速逐渐下降,当转轴的转速达到二阶临界速度或一阶临界速度时,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承再次开启。在转轴的转速平稳度过二阶临界速度或一阶临界速度之后,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承再次停止工作。当转轴的转速下降至预定值时,例如额定转速的5%至30%时,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承再次开启直至转速降为零之后,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承再次停止工作。
本发明实施例中,转子系统中的推力轴承和径向轴承可以采用多种结构形式。下面结合附图分别对转子系统中的推力轴承和径向轴承的各种具体结构形式,以及各推力轴承和各径向轴承在整个转子系统控制中的具体控制过程进行详细地说明。
本发明实施例中,第一径向轴承、第二径向轴承、第三径向轴承、第四径向轴承和第五径向轴承中的至少一个径向轴承为能够主动校正轴承与转轴之间同轴度的径向轴承。
以第一径向轴承为例,如图14至图19所示,第一径向轴承500包括:
轴承本体520;
套设于第一转轴100上的轴承内圈540,轴承内圈540与第一转轴100之间具有轴承 间隙,轴承内圈540套设于轴承本体520内,且能够在轴承本体520内移动;
以及,设置于轴承内圈540与轴承本体520之间的轴承阻尼器530,该轴承阻尼器530可以与轴承本体520的内径面相贴设置,该轴承阻尼器530由形状记忆材料制成,该轴承阻尼器530能够在轴承内圈540的作用下发生塑性变形,以调整轴承间隙。
本发明实施例中,通过轴承阻尼器530自身的塑性变形实现对第一径向轴承与第一转轴之间的间隙(即轴承间隙)进行调整与矫正,从而使得第一径向轴承500与第一转轴100之间的配合精度得以调整。由于轴承阻尼器530由形状记忆材料制成,因此,在轴承阻尼器530产生塑性变形后,轴承阻尼器530的形状将保持不变,从而使得第一径向轴承500与第一转轴100之间保持较稳定的配合精度。
轴承阻尼器530可以由形状记忆金属或形状记忆聚合物制成,其中,形状记忆金属可以为钛镍合金、铜锌合金、铜铝镍合金、铜钼镍合金及铜金锌合金中的任意一种。若轴承的工作环境为高温环境,则轴承阻尼器530可选择耐高温(例如300℃以上)的形状记忆金属。
本发明实施例中,第一径向轴承500安装于第一转轴100上,在转轴启动后,第一径向轴承500的轴承内圈540在气膜压力、转轴重力和转轴负载的共同作用下调整自身的位置,以使第一转轴100和轴承内圈540之间的轴承间隙满足轴承平稳运转的需求。这样,第一径向轴承500与第一转轴100之间的配合精度,即同轴度得到调整或矫正。
在上述过程中,轴承阻尼器530在轴承内圈540的挤压作用下发生了相应的塑性变形,进而将轴承内圈540支撑在新的平衡位置,完成第一转轴100和轴承内圈540之间同轴度的调整或矫正,以避免第一转轴100对轴承内圈540造成磨损和损坏。
本发明实施例中,轴承阻尼器530可以包括至少两个调整单元531(如图18至图19所示),轴承阻尼器可以为上述至少两个调整单元531连续设置形成的整体器件,也可以包括至少两个独立设置的调整构件,该调整构件可包括至少一个调整单元531。可以理解的,当一个调整单元531形成一个调整构件时,调整单元531即等同于调整构件。当轴承阻尼器为至少两个调整单元连续设置形成的整体器件时,一方面,在安装时可以更加快捷;另一方面,不同尺寸或种类的轴承可能需要配置不同类型的轴承阻尼器,其适用范围较为局限。当轴承阻尼器包括至少两个独立设置的调整构件时,独立设置的调整构件531可以适用于任何轴承,只需要根据轴承的尺寸或种类配置合适数量的调整构件531,或者将多个调整构件531排布为适用于轴承的形状即可。
本发明实施例中,如图18至图19所示,调整单元531可以为半壳体结构,包括凸起部532和支撑部533,凸起部532与支撑部533一体成型。该凸起部532的外表面为平滑的弧形曲面,该支撑部533自凸起部532向四周平滑伸展。整个调整单元531可以为凸起部532可以作为调整单元531产生塑性变形的部位,支撑部533可以作为支撑整个调整单元531的部位。将调整单元531设置为上述半壳体结构,使得调整单元531在受力前后均处于较稳定的状态。
该凸起部532朝向轴承内圈540,支撑部533与轴承本体520的内径面相贴设置;该凸起部532能够在轴承内圈540的作用下发生塑性变形,以调整轴承间隙,即轴承内圈540与转轴100之间的间隙。
除了上述半壳体结构之外,调整单元531还可以是波浪形结构、锯齿形结构、球壳结构、半球壳结构等等。
本发明实施例中,为了使调整单元531具有较佳的塑性变形性能,调整单元531的厚度不宜过大;为了使调整单元531具有较稳定的力学性能,调整单元531的高度不宜过大。调整单元531的高度H可以为1mm至3mm之间,调整单元531的厚度L可以为0.1mm至0.3mm之间。
在转轴启动后的轴承初始运转阶段,轴承内圈在径向上移动或者轴向上绕轴线摆动一定角度,以调整转轴与轴承内圈的同轴度,直至达到轴承平稳运转状态。在上述调整过程中,由于调整构件由记忆金属构成,被挤压一侧的调整构件的凸起部受压发生塑性变形, 并且保持在该变形状态。通过调整构件的变形能够矫正径向轴承和转轴之间的同轴度,从而可以降低轴承内圈和转轴的加工精度和装配精度。
本发明实施例中,调整构件可沿轴承本体520的内径面周向均布,形成呈环状排布的轴承阻尼器530;调整构件还可沿轴承本体520的内径面轴向均布,形成呈线型排布的轴承阻尼器530;调整构件还可沿轴承本体520的内径面周向均布,且沿轴承本体520的内径面轴向均布,形成呈多环排布的轴承阻尼器530。上述调整构件的设置方式均可以使轴承间隙的调整过程更加平稳,使得轴承间隙更加均匀。
本发明实施例中,在径向轴承500首次运转之前,可在第一转轴100的对应安装径向轴承500的位置设置保护层,以保护第一转轴100和径向轴承500的配合面。具体的,可在第一转轴100的对应安装径向轴承500的位置的两端设置保护层。这样,在转轴启动或校正阶段,保护层先与轴承内圈540之间发生摩擦,从而对第一转轴100与轴承内圈540的配合面起到保护作用。该保护层可以采用特佛伦、石墨、巴氏合金等材料,该保护层可以采用涂覆的方式设置于第一转轴100上。
本发明实施例中的第一径向轴承500可以是动压气体轴承、静压气体轴承、动静压混合气体轴承等气体轴承中的任一种。
当第一径向轴承500为动压气体轴承时,轴承内圈540的内径面或转轴100朝向轴承内圈540的圆周面上设置有动压发生槽541。
该动压发生槽541可以通过锻造、滚轧、刻蚀或冲压而形成。为便于动压发生槽541的加工,轴承内圈540可以由不锈钢材料制成。在第一转轴100相对于轴承内圈540高速转动时,在动压发生槽541内产生空气动压,使转轴100上浮。其中,上浮的量随动压发生槽541的角度、槽宽、槽数、长度、深度以及平面度的不同而变化。此外,动压发生槽541内产生的空气动压的大小也和第一转轴100的旋转速度以及轴承间隙有关。可以根据实际工况对动压发生槽541的参数进行设计。
动压发生槽541可以设置在第一转轴100上对应轴承内圈540的圆周面的中间部分,也可以设置为对称分布在中间部分的两侧、相互独立的两部分动压发生槽541;动压发生槽541还可以设置在轴承内圈540内径面的中间部分,也可以设置为对称分布在轴承内圈540内径面两端、相互独立的两部分动压发生槽541。
本发明实施例中,动压发生槽541可呈矩阵排布。这样,有利于使气膜更均匀地分布于轴承间隙内。
本发明实施例中,动压发生槽541可为连续或间隔设置的V形槽。这样,能够在转轴正向旋转或者反向旋转的情况下,转轴都能以期望的方式非接触式地保持,从而使转轴具有负载能力高及稳定性好的优点。动压发生槽541除了设置为V形槽,还可以设置为人字形槽或其它形状的槽。
当第一径向轴承500为静压气体轴承时,第一径向轴承500还设置有连通轴承间隙与外接气源的静压进气节流孔521,静压进气节流孔521用于将外接气源输送至轴承间隙内。该静压进气节流孔521的流通直径可以根据气量需求等实际工况进行调节。
本发明实施例中,静压进气节流孔521可依次穿过轴承本体520、轴承阻尼器530和轴承内圈540,将轴承间隙与外接气源连通。
本发明实施例中,静压进气节流孔521在径向轴承500内分成至少两个支路连通至轴承间隙内。这样,能够使第一径向轴承500的轴承间隙内的气膜压力更加均匀。其中,静压进气节流孔521以及各支路的流通直径可以根据气量需求等实际工况进行调节。
当第一径向轴承500为动静压混合气体轴承时,该第一径向轴承500既设置有动压发生槽541,也设置有静压进气节流孔521。由于前述已经分别对动压发生槽541和静压进气节流孔521进行说明,为避免重复,此处不再赘述。
本发明实施例的第一径向轴承500还可以为气磁混合轴承,即在上述任一种气体轴承的基础上,在轴承本体520上设置有多个磁性部件,第一转轴100上也可相应地设置磁性部件,这样,第一转轴100能够在多个磁性部件的磁力作用下在转轴的径向方向上移动。
本发明实施例中,转子系统中的推力轴承700可以为箔片式气磁混合推力轴承,如图20至图23所示,推力轴承700包括:
第一推力盘5101,第一推力盘5101固定连接于第一转轴100上;
以及,穿设于第一转轴100上的第一定子5102和第二定子5103,第一定子5102和第二定子5103分别设置于第一推力盘5101的相对两侧;
第一定子5102和第二定子5103中,每个定子包括第一磁轴承5104和第一箔片轴承5105,第一磁轴承5104上沿周向设置有多个第一磁性部件,第一箔片轴承5105设置有能够与多个第一磁性部件之间产生磁力的第二磁性部件;
其中,第一箔片轴承5105设置于第一磁轴承5104与第一推力盘5101之间,并与第一推力盘5101之间具有第一间隙5106,且第一箔片轴承5105能够在第一磁性部件和第二磁性部件之间的磁力作用下在第一转轴100的轴向方向上移动。
本发明实施例中,通过在推力轴承700中设置第一间隙5106和第一磁轴承5104,从而使该推力轴承700形成气、磁混合推力轴承。
工作时,推力轴承700中的气体轴承与第一磁轴承5104能够协同工作,在推力轴承700处于稳定的工作状态时,依靠气体轴承实现支承;而在推力轴承700处于非稳定的工作状态时,依靠第一磁轴承5104及时对推力轴承700进行控制和响应。
可见,本发明实施例能够改善推力轴承,尤其在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了推力轴承的承载能力。本发明实施例的推力轴承能够满足高转速的转子系统,例如,燃气轮机或者燃气轮机发电联合机组等的需求。
本发明实施例中,第一推力盘5101、第一定子5102和第二定子5103的外径可以相等,且第一定子5102和第二定子5103的结构可以完全相同。
当本发明实施例的转子系统应用于燃气轮机或者燃气轮机发电联合机组时,第一定子5102和第二定子5103可以通过连接件与燃气轮机的壳体连接。
可选的,多个第一磁性部件包括多个第一永磁体,多个第一永磁体在第一磁轴承5104上沿周向设置;
或者,多个第一磁性部件包括多个第一电磁铁,多个第一电磁铁在第一磁轴承5104上沿周向设置,多个第一电磁铁中的每个第一电磁铁包括设置于第一磁轴承5104上的第一磁芯51041及缠绕于第一磁芯上的第一线圈51042。
本发明实施例中,当推力轴承700仅需要磁性部件提供磁力而无需磁控时,第一磁性部件优选第一永磁体;当推力轴承700同时需要磁力和磁控时,第一磁性部件优选第一电磁铁。
当第一磁性部件为第一电磁铁时,往第一线圈51042通入电流,即可以使第一磁芯51041产生磁力。往第一线圈51042通入电流的大小不同,第一磁芯51041产生的磁力大小也不同;往第一线圈51042通入电流的方向不同,第一磁芯51041的磁极也不同。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本发明的优选实施例中,第一磁芯51041由若干硅钢片或者矽钢片叠压而成。
可选的,第一磁轴承5104包括:
第一磁轴承座51043,第一磁轴承座51043与第一推力盘5101相对设置,第一磁轴承座51043上沿周向设置有多个第一容纳槽51044,多个第一磁性部件设置于多个第一容纳槽51044内,且多个第一磁性部件的磁极朝向第一箔片轴承5105所在的一侧;
第一端盖51045,第一端盖51045设置于第一磁轴承座51043的远离第一箔片轴承5105的一侧,并与第一箔片轴承5105配合,将第一磁性部件固定于第一磁轴承座51043上。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本发明的优选实施例中,第一磁轴承座51043由若干硅钢片或者矽钢片叠压而成。第一容纳槽51044的数量可以为但不限于为六个或八个,沿第一磁轴承座51043的周向均匀设置。这样,能够使第一磁轴承座51043与第一箔片轴承5105之间的磁力更加均匀、稳定。需要说明的是,多个第一磁性部件还可以采用其他方式设置于第一磁轴承座51043上,对此不进行限定。第 一端盖51045的材料可以是非磁性材料,优选硬铝材料。
可选的,第一箔片轴承5105包括:
与第一磁轴承座51043固定连接的第一箔片轴承座51051;
以及,设置于第一箔片轴承座51051上的第一箔片51052和第二箔片51053,第一箔片51052安装于第一箔片轴承座51051上,第二箔片51053叠设于第一箔片51052的靠近第一推力盘5101的一侧;
其中,第二箔片51053为平箔片,第二磁性部件设置于第二箔片51053上,以使第二箔片51053能够在第一磁性部件和第二磁性部件的磁力作用下在第一转轴100的轴向方向上移动;第一箔片51052为能够在第二箔片51053移动时发生弹性变形的弹性变形箔片。
其中,第一箔片轴承座51051的材料为非磁性材料,优选硬铝材料。第一箔片51052为弹性变形箔片,考虑到导磁材料的材质较硬且脆,不宜作为弹性变形箔片,因此,第一箔片51052优选不导磁的不锈钢带。
本发明实施例中,通过将第二箔片51053设置为平箔片,便于控制第二箔片51053与第一推力盘5101之间的距离,或者说,便于控制第一间隙5106的大小。第一箔片51052采用能够弹性变形的箔片,一方面起到连接第二箔片51053和第一箔片轴承座51051的作用,另一方面可以实现第二箔片51053相对于第一箔片轴承座51051可沿第一转轴100的轴向移动的目的。
可选的,第一箔片51052为呈波浪状的弹性变形箔片,且第一箔片51052为不封闭的环形,其上设有一开口,开口的一端为固定端,固定端固定于第一箔片轴承座51051上,开口的另一端为活动端;
其中,第二箔片51053在第一转轴100的轴向方向上移动时,第一箔片51052上的波浪纹伸展或收缩,活动端沿环形的周向移动。
本发明实施例中,通过将第一箔片51052设置为呈波浪状的弹性变形箔片,便于利用波浪纹的伸展或收缩特性,推动第二箔片51053在第一转轴100的轴向方向上移动。
需要说明的是,本发明实施例中的第一箔片51052的形状并不局限于波浪状,其它能够产生弹性变形的形状均可以适用于本发明实施例的第一箔片51052。
可选的,第二磁性部件包括设置于第二箔片51053的靠近第一磁轴承5104的一侧表面上的第一磁性材料;
其中,第一磁性材料在第二箔片51053上呈条状分布,而形成多个条状磁性部,多个条状磁性部呈辐射状或环状;
或者,第一磁性部件在第二箔片51053上呈点状分布。
其中,第二箔片51053的材料优选非导磁材料,在第二箔片51053的表面遮喷第一磁性材料后,可以用陶瓷涂层覆盖第一磁性材料。第二箔片51053可以通过使用40%的氧化锆、30%的α氧化铝和30%的铝酸镁尖晶石的陶瓷纳米微粉烧结制成。
若第二箔片51053的表面完全覆盖第一磁性材料,则会大幅增加第一磁性材料与第一磁性部件之间产生的磁力,这样容易导致第二箔片51053发生变形。鉴于此,本发明实施例中,通过在第二箔片51053的表面遮喷第一磁性材料,使第一磁性材料在第二箔片51053上呈条状分布或点状分布,可以将第一磁性材料与第一磁性部件之间产生的磁力控制在合理的范围,从而避免第二箔片51053因过大的磁力而发生变形。
可选的,推力轴承700还包括第一传感器5107,第一传感器5107的传感器探头设置于第一间隙5106内。
本发明实施例中,通过设置第一传感器5107,能够实时检测第一间隙5106处的参数,例如第一间隙5106处的气膜压力等。这样,第一磁轴承5104可以根据第一传感器5107的检测结果对推力轴承700进行主动控制,并能够使控制达到较高的精度。
可选的,第一传感器5107包括第一传感器盖51071和第一传感器探头51072,第一传感器探头51072的第一端连接第一传感器盖51071,第一传感器盖51071固定于第一磁轴承5104上,第一磁轴承5104和第一箔片轴承5105上设有用于供第一传感器探头51072穿 过的通孔;第一传感器探头51072的第二端穿过第一磁轴承5104和第一箔片轴承5105上的通孔,并伸至第一间隙5106,且第一传感器探头51072的第二端端部与第一箔片轴承5105的靠近第一推力盘5101的一侧平齐。
本发明实施例中,通过上述第一传感器5107的结构形式和安装方式,能够使第一传感器5107更稳定地设置于第一磁轴承5104上。将第一传感器探头51072的第二端端部与第一箔片轴承5105的靠近第一推力盘5101的一侧平齐,一方面,能够避免第一传感器探头51072受到第一推力盘5101的碰触,从而有利于保护第一传感器探头51072;另一方面,不会对第一间隙5106内的气膜产生影响,避免第一间隙5106内的气膜发生扰动。
可选的,第一传感器5107设置于相邻的两个第一磁性部件之间。
本发明实施例中,每个定子上均应当设置至少一个第一传感器5107,优选设置一个第一传感器5107,该第一传感器5107优选设置在相邻两个第一磁性部件之间。
可选的,第一传感器5107为以下任意一种或多种的组合:
用于检测第一推力盘5101位置的位移传感器;
用于检测第一间隙5106处的气膜压力的压力传感器;
用于检测第一推力盘5101转速的速度传感器;
用于检测第一推力盘5101旋转加速度的加速度传感器。
下面以本发明实施例的推力轴承(其中,第一磁轴承中的第一磁性部件为电磁铁)参与转子系统的控制过程时的具体控制方法进行详细地说明。
本发明实施例提供一种箔片式气磁混合推力轴承的控制方法,包括:
S511、开启第一定子和第二定子中的第一磁轴承,控制第一推力盘在多个第一磁性部件的磁力作用下在转轴的轴向方向上移动,以使第一推力盘与第一定子中的第一箔片轴承之间的第一间隙与第一推力盘与第二定子中的第一箔片轴承之间的第一间隙的差值小于或等于预定值。
S512、转轴的转速加速至工作转速之后,关闭第一定子和第二定子中的第一磁轴承。
S513、转子系统停机时,开启第一定子和第二定子中的第一磁轴承。
S514、转轴的转速减速至零之后,关闭第一定子和第二定子中的第一磁轴承。
在上述过程中,第一磁轴承开启后,第一推力盘在第一磁轴承的作用下到达第一定子和第二定子之间的预定位置,第一推力盘与第一定子和第二定子的端面均具有第一间隙。
随着转轴的转动,第一推力盘在受第一间隙中气流润滑的情况下相对第一定子和第二定子开始转动,以防止磨损。第一磁轴承开启的具体过程为:向第一线圈输入预定值的电流信号,第一推力盘在第一磁轴承的作用下到达第一定子和第二定子之间的预定位置。
随着转轴的转速越来越大,第一推力盘的转速也同步增大,当转轴的转速到达工作转速时,该推力轴承的气体动压轴承(第一推力盘与第一定子和第二定子之间设置第一间隙即形成该推力轴承的气体动压轴承)产生的气膜压力可以将第一推力盘稳定,届时可以关闭第一磁轴承。
在转子系统停机时,第一推力盘随着转轴减速而减速,为了使转轴在整个转子系统停机过程中保持稳定,在转子系统停机时即开启第一磁轴承,直到第一推力盘完全停下后即可关闭第一磁轴承。
本发明实施例还提供另一种箔片式气磁混合推力轴承的控制方法,包括:
S521、开启第一定子和第二定子中的第一磁轴承,控制第一推力盘在多个第一磁性部件的磁力作用下在转轴的轴向方向上移动,以使第一推力盘与第一定子中的第一箔片轴承之间的第一间隙与第一推力盘与第二定子中的第一箔片轴承之间的第一间隙的差值小于或等于预定值。
S522、转轴的转速加速至第一预设值之后,关闭第一定子和第二定子中的第一磁轴承。
S523、转轴的转速减速至第二预设值时,开启第一定子和第二定子中的第一磁轴承。
S524、转轴的转速减速至零之后,关闭第一定子和第二定子中的第一磁轴承。
在上述过程中,第一磁轴承开启后,第一推力盘在第一磁轴承的作用下到达第一定子 和第二定子之间的预定位置,第一推力盘与第一定子和第二定子的端面均具有第一间隙。
随着转轴的转动,第一推力盘在受第一间隙中气流润滑的情况下相对第一定子和第二定子开始转动,以防止磨损。第一磁轴承开启的具体过程为:向第一线圈输入预定值的电流信号,第一推力盘在第一磁轴承的作用下到达第一定子和第二定子之间的预定位置。
随着转轴的转速越来越大,第一推力盘的转速也同步增大,当转轴的转速到达第一预设值,例如额定转速的5%至30%时,该推力轴承的气体动压轴承(第一推力盘与第一定子和第二定子之间设置第一间隙即形成该箔片式气磁混合推力轴承的气体动压轴承)产生的气膜压力可以将第一推力盘稳定,届时可以关闭第一磁轴承。
在转子系统停机过程中,第一推力盘随着转轴减速而减速,当转轴的转速低于第二预设值,例如额定转速的5%至30%时,此时,推力轴承的气体动压轴承产生的气膜压力也随第一推力盘减速而减小,因此,需要开启第一磁轴承以使第一推力盘保持稳定,直到第一推力盘完全停下后即可关闭第一磁轴承。
可选的,上述方法还包括:
当载荷负载在第一推力盘,第一推力盘在载荷负载的作用下在转轴的轴向方向上移动,第一推力盘与第一定子中的第一箔片轴承之间的第一间隙与第一推力盘与第二定子中的第一箔片轴承之间的第一间隙大于预定值时,开启第一定子和第二定子中的第一磁轴承;
当第一推力盘与第一定子中的第一箔片轴承之间的第一间隙与第一推力盘与第二定子中的第一箔片轴承之间的第一间隙的差值小于或等于预定值时,关闭第一定子和第二定子中的第一磁轴承。
当载荷负载在第一推力盘上,使第一推力盘与第一定子或第二定子的第一箔片轴承之间的第一间隙变小而接近该侧的第一箔片轴承时,第一传感器(这里的第一传感器优选压力传感器)获得气压增大的信号,此时第一磁轴承需要介入工作。第一磁轴承并不完全直接将磁力作用于第一推力盘上,使其向另一侧的第一箔片轴承移动,而是使用磁力将另一侧的第一箔片轴承朝远离第一推力盘的方向移动,使第一推力盘与另一侧的第一箔片轴承之间的第一间隙提高,从而提高第一间隙变小侧的压力,适应第一推力盘上负载的重量,自动重新分配两个第一间隙上的气流压力。当第一推力盘达到新的平衡位置时,第一磁轴承停止工作。
具体的,若第一推力盘与第一定子中的第一箔片轴承之间的第一间隙小于第一推力盘与第二定子中的第一箔片轴承之间的第一间隙,则控制第二定子中的第一箔片轴承在多个第一磁性部件与第二磁性部件之间的磁力作用下,朝远离第一推力盘的方向在转轴的轴向方向上移动。
若第一推力盘与第二定子中的第一箔片轴承之间的第一间隙小于第一推力盘与第一定子中的第一箔片轴承之间的第一间隙,则控制第一定子中的第一箔片轴承在多个第一磁性部件与第二磁性部件之间的磁力作用下,朝远离第一推力盘的方向在转轴的轴向方向上移动。
可选的,当载荷负载在第一推力盘,第一推力盘在载荷负载的作用下在转轴的轴向方向上移动,第一推力盘与第一定子中的第一箔片轴承之间的第一间隙与第一推力盘与第二定子中的第一箔片轴承之间的第一间隙大于预定值时,开启第一定子和第二定子中的第一磁轴承,包括:
当载荷负载在第一推力盘,第一推力盘在载荷负载的作用下在转轴的轴向方向上移动,第一推力盘与第一定子中的第一箔片轴承之间的第一间隙与第一推力盘与第二定子中的第一箔片轴承之间的第一间隙大于预定值时,控制第一定子和第二定子中的第一磁轴承以最大功率开启;或者,
当载荷负载在第一推力盘,第一推力盘在载荷负载的作用下在转轴的轴向方向上移动,第一推力盘与第一定子中的第一箔片轴承之间的第一间隙与第一推力盘与第二定子中的第一箔片轴承之间的第一间隙大于预定值时,控制第一定子和第二定子中的第一磁轴承按照预设频率以频闪的方式开启。
当有外部冲击扰动发生时,第一推力盘可能快速地接近某侧第一箔片轴承,则有可能导致该侧的第一间隙瞬间过小,使该侧第一间隙处的局部气体流速接近甚至达到音速,从而引发激波产生气锤自激现象。激波的产生会导致局部气体流动发生扰动和混乱,当流体速度在音速到亚音速之间变化时其压力呈阶梯式显著下降。这种情况下,需要该侧第一箔片轴承主动“避让”第一推力盘,从而使该侧的第一间隙增大以使气流速度尽可能维持在亚音速区间,以维护其正常的流体压力。具体的,需要同时控制第一定子和第二定子上的第一磁轴承,使第一磁轴承的磁极以相同的极性励磁,即第一间隙减小的一侧产生吸力,用于回吸该侧第一箔片轴承,第一间隙增大的一侧产生吸力,用于拉回第一推力盘。这样,利用两侧磁力作用距离的差产生磁力差,以此拉动第一推力盘使第一推力盘与两侧第一箔片轴承之间的第一间隙恢复正常,从而使第一推力盘重新回到平衡状态。
在上述过程中,利用第一磁轴承方便实时控制的优点,主动平衡第一推力盘的不平衡质量或第一推力盘涡动等导致第一推力盘过度偏移的因素,使第一推力盘在转轴的轴向方向上固定在某一极小范围内。另外,在第一推力盘的加速过程中,可以准确定位产生激波的位置(即线速度超声速部位),并通过控制第一磁轴承的电流大小和方向等,使第一磁轴承产生相反的力来平衡激波作用。待激波平稳后,再次调整第一磁轴承的控制策略,以最节能的方式将第一推力盘固定在某一极小范围内。
综合上述,本发明实施例具有如下有益效果:
其一,电磁轴承与气体轴承协同工作,改善了轴承在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了轴承的承载能力。同时,电磁轴承与气体轴承采用并联结构,简化了结构,集成度高,易加工、制造和操作,提高了轴承的综合性能。在转子系统启动或停机时,可以用电磁轴承使轴承的第一推力盘与定子在轴承间隙内转动,提高了轴承的低速性能,延长了轴承的使用寿命,能够提高轴承及整个系统的安全性和可靠性。
其二,相对于传统的采用气体静压轴承和气体动压轴承结合的气体动静压混合推力轴承,本发明实施例的箔片式气磁混合推力轴承具有响应速度快的优点。
其三,通过在箔片上设置磁性材料,通过电磁轴承的磁极的吸引能够使箔片适度变形,提高轴承中润滑气膜一侧的最高压力和防止润滑气流泄漏,提高第一推力盘抗受扰动偏心撞壁的能力,从而也提高了轴承的承载能力。
其四,采用成本较低的压力传感器采集气膜压力变化,通过简单的控制方法控制箔片的变形,可提供较高转子阻尼,从而提高转子稳定性。另外,由于控制方法简单,对轴承的加工精度要求不高。
本发明实施例中,转子系统中的推力轴承700可以为槽式气磁混合推力轴承,如图24至图30所示,推力轴承700包括:
第二推力盘5201,第二推力盘5201固定连接于第一转轴100上,第二推力盘5201上设置有第三磁性部件;
以及,穿设于第一转轴100上的第三定子5202和第四定子5203,第三定子5202和第四定子5203分别设置于第二推力盘5201的相对两侧;
第三定子5202和第四定子5203中,每个定子包括第二磁轴承5204,第二磁轴承5204上沿周向设置有能够与第三磁性部件之间产生磁力的多个第四磁性部件,第二磁轴承5204与第二推力盘5201之间具有第二间隙5206,且第二推力盘5201能够在第三磁性部件和多个第四磁性部件之间的磁力作用下在第一转轴100的轴向方向上移动;
其中,第二推力盘5201的面向第三定子5202和第四定子5203的端面,或,第三定子5202和第四定子5203的面向第二推力盘5201的端面上设置有第二动压发生槽5205。
本发明实施例中,通过在推力轴承700中设置第二间隙5206和第二磁轴承5204,从而使该推力轴承700形成气、磁混合推力轴承。
工作时,推力轴承700中的气体轴承与第二磁轴承5204能够协同工作,在推力轴承700处于稳定的工作状态时,依靠气体轴承实现支承;而在推力轴承700处于非稳定的工作状态时,依靠第二磁轴承5204及时对推力轴承700进行控制和响应。
可见,本发明实施例能够改善推力轴承,尤其在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了推力轴承的承载能力。本发明实施例的推力轴承能够满足高转速的转子系统,例如,燃气轮机或者燃气轮机发电联合机组等的需求。
本发明实施例中,第二推力盘5201、第三定子5202和第四定子5203的外径可以相等,且第三定子5202和第四定子5203的结构可以完全相同。
当本发明实施例的转子系统应用于燃气轮机时,第三定子5202和第四定子5203可以通过连接件与燃气轮机的壳体连接。
本发明实施例中,当第二推力盘5201旋转时,存在于第二间隙5206的流动气体被压入第二动压发生槽5205内,从而产生压力,以实现第二推力盘5201沿轴向方向被非接触地保持。其中,第二动压发生槽5205产生压力的大小随第二动压发生槽5205的角度、槽宽、槽长、槽深、槽数以及平面度的不同而变化。此外,第二动压发生槽5205产生压力的大小也和第二推力盘5201的旋转速度以及第二间隙5206有关。可以根据实际工况对第二动压发生槽5205的参数进行设计。第二动压发生槽5205可以通过锻造、滚轧、刻蚀或冲压等方式形成于第三定子5202和第四定子5203上,或者,第二动压发生槽5205可以通过锻造、滚轧、刻蚀或冲压等方式形成于第二推力盘5201上。
可选的,多个第四磁性部件包括多个第二永磁体,多个第二永磁体在第二磁轴承5204上沿周向设置;
或者,多个第四磁性部件包括多个第二电磁铁,多个第二电磁铁在第二磁轴承5204上沿周向设置,多个第二电磁铁中的每个第二电磁铁包括设置于第二磁轴承5204上的第二磁芯52041及缠绕于第二磁芯52041上的第二线圈52042。
本发明实施例中,当推力轴承700仅需要磁性部件提供磁力而无需磁控时,第四磁性部件优选第二永磁体;当推力轴承700同时需要磁力和磁控时,第四磁性部件优选第二电磁铁。
当第四磁性部件为第二电磁铁时,往第二线圈52042通入电流,即可以使第二磁芯52041产生磁力。往第二线圈52042通入电流的大小不同,第二磁芯52041产生的磁力大小也不同;往第二线圈52042通入电流的方向不同,第二磁芯52041的磁极也不同。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本发明的优选实施例中,第二磁芯52041可以由若干硅钢片或者矽钢片叠压而成。
可选的,第二磁轴承5204包括:
第二磁轴承座52043,第二磁轴承座52043与第二推力盘5201相对设置,第二磁轴承座52043上沿周向设置有多个第二容纳槽52044,多个第四磁性部件设置于多个第二容纳槽52044内,且多个第四磁性部件的磁极朝向第二推力盘5201所在的一侧;
第二端盖52045和第一压环52046,第二端盖52045设置于第二磁轴承座52043的远离第二推力盘5201的一侧,第一压环52046设置于第二磁轴承座52043的靠近第二推力盘5201的一侧,第二端盖52045与第一压环52046配合,将多个第四磁性部件固定于第二磁轴承座52043上。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本发明的优选实施例中,第二磁轴承座52043可以由若干硅钢片或者矽钢片叠压而成。第二容纳槽52044的数量可以为但不限于为六个或八个,沿第二磁轴承座52043的周向均匀设置。这样,能够使第二磁轴承5204与第二推力盘5201之间的磁力更加均匀、稳定。需要说明的是,多个第四磁性部件还可以采用其他方式设置于第二磁轴承座52043上,对此不进行限定。第二端盖52045的材料可以为非磁性材料,优选硬铝材料。第一压环52046的材料可以为非磁性材料,优选硬铝材料。
本发明实施例中,可以在第一压环52046上设置第二动压发生槽5205,为便于第二动压发生槽5205的加工,第一压环52046可以由不锈钢材料制成。
可选的,第三磁性部件包括设置于第二推力盘5201的面向第三定子5202和第四定子5203的端面上的第二磁性材料(图中未示出);
其中,第二磁性材料在第二推力盘5201上呈条状分布,而形成多个条状磁性部,多个条状磁性部呈辐射状或环状;
或者,第二磁性部件在第二推力盘5201上呈点状分布。
本发明实施例中,使第二磁性材料在第二推力盘5201上呈条状分布或点状分布,可以将第二磁性材料与第四磁性部件之间产生的磁力控制在合理的范围。
可选的,第二动压发生槽5205呈辐射状或同心圆状排布,这样,有利于使气膜更均匀地分布于第二间隙5206内。
可选的,第二动压发生槽5205包括第一螺旋槽52051和第二螺旋槽52052,第一螺旋槽52051环绕于第二螺旋槽52052外,第一螺旋槽52051和第二螺旋槽52052的螺旋走向相反,第一螺旋槽52051的靠近第二螺旋槽52052的一端与第二螺旋槽52052的靠近第一螺旋槽52051的一端连接或断开。
其中,第一螺旋槽52051的靠近第二螺旋槽52052的一端至第一转轴100的轴心的距离等于第一螺旋槽52051的靠近第二螺旋槽52052的一端至第三定子5202或第四定子5203或第二推力盘5201的外周边缘的距离。或者,第二螺旋槽52052的靠近第一螺旋槽52051的一端至第一转轴100的轴心的距离等于第二螺旋槽52052的靠近第一螺旋槽52051的一端至第三定子5202或第四定子5203或第二推力盘5201的外周边缘的距离。
本发明实施例中,通过采用上述第二动压发生槽5205的设置方式,能够在第一转轴100正向旋转或者反向旋转的情况下,第二推力盘5201都能以期望的方式非接触式地保持,从而使第一转轴100具有负载能力高及稳定性好的优点。
可选的,第三定子5202和第四定子5203中,每个定子上还设置有第一静压进气节流孔5208,第一静压进气节流孔5208的一端与第二间隙5206相通,另一端连接外部气源,用于将外部气源输送至第二间隙5206内。
本发明实施例中,通过设置上述第一静压进气节流孔5208,可以形成气体静压轴承,从而该推力轴承700可以构成气体动静压-磁混合推力轴承。其中,第一静压进气节流孔5208的流通直径可以根据气量需求等实际工况进行调节。
可选的,第三定子5202和第四定子5203中,每个定子上设置有多个第一静压进气节流孔5208,且多个第一静压进气节流孔5208沿定子的周向间隔设置。
本发明实施例中,多个第一静压进气节流孔5208沿定子的周向间隔设置,优选沿定子的周向均匀间隔设置。这样,有利于使第二间隙5206内的气膜压力更加均匀。
可选的,第三定子5202和第四定子5203中,第一静压进气节流孔5208至第一转轴100的轴心的距离大于或者等于第一静压进气节流孔5208至定子的外周边缘的距离。
本发明实施例中,上述第一静压进气节流孔5208的设置方式可以使气体静压轴承更加稳定,如果静压进气节流孔过于靠近第一转轴100的轴心,则无法及时有效地使气膜布满整个第二推力盘5201的端面,使第二推力盘5201的旋转不够稳定。优选的,第一静压进气节流孔5208至第一转轴100的轴心的距离等于第一静压进气节流孔5208至定子的外周边缘的距离。
可选的,推力轴承700还包括第二传感器5207,第二传感器5207的传感器探头设置于第二间隙5206内。
本发明实施例中,通过设置第二传感器5207,能够实时检测第二间隙5206处的参数,例如第二间隙5206处的气膜压力等。这样,第二磁轴承5204可以根据第二传感器5207的检测结果对推力轴承700进行主动控制,并能够使控制达到较高的精度。
可选的,第二传感器5207包括第二传感器盖52071和第二传感器探头52072,第二传感器探头52072的第一端连接第二传感器盖52071,第二传感器盖52071固定于第二磁轴承5204上,第二磁轴承5204上设有用于供第二传感器探头52072穿过的通孔;第二传感器探头52072的第二端穿过第二磁轴承5204上的通孔,并伸至第二间隙5206,且第二传感器探头52072的第二端端部与第二磁轴承5204的靠近第二推力盘5201的一侧平齐。
本发明实施例中,通过上述第二传感器5207的结构形式和安装方式,能够使第二传感 器5207更稳定地设置于第二磁轴承5204上。此外,将第二传感器探头52072的第二端端部与第二磁轴承5204的靠近第二推力盘5201的一侧平齐,一方面,能够避免第二传感器探头52072受到第二推力盘5201的碰触,从而有利于保护第二传感器探头52072;另一方面,不会对第二间隙5206内的气膜产生影响,避免第二间隙5206内的气膜发生扰动。
可选的,第二传感器5207设置于相邻的两个第四磁性部件之间。
本发明实施例中,每个定子上均应当设置至少一个第二传感器5207,优选设置一个第二传感器5207,该第二传感器5207优选设置在相邻两个第四磁性部件之间。
可选的,第二传感器5207为以下任意一种或多种的组合:
用于检测第二推力盘5201位置的位移传感器;
用于检测第二间隙5206处的气膜压力的压力传感器;
用于检测第二推力盘5201转速的速度传感器;
用于检测第二推力盘5201旋转加速度的加速度传感器。
下面以本发明实施例的推力轴承(其中,第二磁轴承中的第四磁性部件为电磁铁)参与转子系统的控制过程时的具体控制方法进行详细地说明。
本发明实施例提供一种槽式气磁混合推力轴承的控制方法,包括:
S531、开启第三定子和第四定子中的第二磁轴承,控制第二推力盘在第三磁性部件与多个第四磁性部件之间的磁力作用下在转轴的轴向方向上移动,以使第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值小于或等于预定值。
S532、转轴的转速加速至工作转速之后,关闭第三定子和第四定子中的第二磁轴承。
S533、转子系统停机时,开启第三定子和第四定子中的第二磁轴承。
S534、转轴的转速减速至零之后,关闭第三定子和第四定子中的第二磁轴承。
在上述过程中,第二磁轴承开启后,第二推力盘在第二磁轴承的作用下到达第三定子和第四定子之间的预定位置,第二推力盘与第三定子和第四定子的端面均具有第二间隙。
随着转轴的转动,第二推力盘在受第二间隙中气流润滑的情况下相对第三定子和第四定子开始转动,以防止磨损。第二磁轴承开启的具体过程为:向第二线圈输入预定值的电流信号,第二推力盘在第二磁轴承的作用下到达第三定子和第四定子之间的预定位置。
随着转轴的转速越来越大,第二推力盘的转速也同步增大,当转轴的转速到达工作转速时,该推力轴承的气体动压轴承(第二推力盘与第三定子和第四定子之间设置第二间隙即形成该推力轴承的气体动压轴承)产生的气膜压力可以将第二推力盘稳定,届时可以关闭第二磁轴承。
在转子系统停机时,第二推力盘随着转轴减速而减速,为了使转轴在整个转子系统停机过程中保持稳定,在转子系统停机时即开启第二磁轴承,直到第二推力盘完全停下后即可关闭第二磁轴承。
本发明实施例还提供另一种槽式气磁混合推力轴承的控制方法,包括:
S541、开启第三定子和第四定子中的第二磁轴承,控制第二推力盘在第三磁性部件与多个第四磁性部件之间的磁力作用下在转轴的轴向方向上移动,以使第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值小于或等于预定值。
S542、转轴的转速加速至第一预设值之后,关闭第三定子和第四定子中的第二磁轴承。
S543、转轴的转速减速至第二预设值时,开启第三定子和第四定子中的第二磁轴承。
S544、转轴的转速减速至零之后,关闭第三定子和第四定子中的第二磁轴承。
在上述过程中,第二磁轴承开启后,第二推力盘在第二磁轴承的作用下到达第三定子和第四定子之间的预定位置,第二推力盘与第三定子和第四定子的端面均具有第二间隙。随着转轴的转动,第二推力盘在受第二间隙中气流润滑的情况下相对第三定子和第四定子开始转动,以防止磨损。第二磁轴承开启的具体过程为:向第二线圈输入预定值的电流信号,第二推力盘在第二磁轴承的作用下到达第三定子和第四定子之间的预定位置。
随着转轴的转速越来越大,第二推力盘的转速也同步增大,当转轴的转速到达第二预设值,例如额定转速的5%至30%时,该推力轴承的气体动压轴承(第二推力盘与第三定子和第四定子之间设置第二间隙即形成该槽式气磁混合推力轴承的气体动压轴承)产生的气膜压力可以将第二推力盘稳定,届时可以关闭第二磁轴承。
在转子系统停机过程中,第二推力盘随着转轴减速而减速,当转轴的转速低于第二预设值时,例如额定转速的5%至30%时,此时,推力轴承的气体动压轴承产生的气膜压力也随第二推力盘减速而减小,因此,需要开启第二磁轴承以使第二推力盘保持稳定,直到第二推力盘完全停下后即可关闭第二磁轴承。
可选的,上述方法还包括:
当载荷负载在第二推力盘,第二推力盘在载荷负载的作用下在转轴的轴向方向上移动,第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值大于预定值时,开启所述第三定子或所述第四定子中的第二磁轴承;
当第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值小于或者等于预定值,关闭第三定子或第四定子中的第二磁轴承。
当载荷负载在第二推力盘上,使第二推力盘与第三定子或第四定子的第二磁轴承之间的第二间隙变小而接近该侧的第二磁轴承时,第二传感器(这里的第二传感器优选压力传感器)获得气压增大的信号,此时第二磁轴承需要介入工作。第二磁轴承将磁力作用于第二推力盘上,使其向另一侧的第二磁轴承移动,当第二推力盘达到新的平衡位置之后,第二磁轴承停止工作。
具体的,若第二推力盘与第三定子中的第二磁轴承之间的第二间隙小于第二推力盘与第四定子中的第二磁轴承之间的第二间隙,且第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值大于预定值,则控制第四定子中的第二磁轴承,使第二推力盘在第三磁性部件与多个第四磁性部件之间的磁力作用下,朝远离第四定子的方向在转轴的轴向方向上移动。
若第二推力盘与第四定子中的第二磁轴承之间的第二间隙小于第二推力盘与第三定子中的第二磁轴承之间的第二间隙,且第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值大于预定值,则控制第三定子中的第二磁轴承,使第二推力盘在第三磁性部件与多个第四磁性部件之间的磁力作用下,朝远离第三定子的方向在转轴的轴向方向上移动。
可选的,当载荷负载在第二推力盘,第二推力盘在载荷负载的作用下在转轴的轴向方向上移动,第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值大于预定值时,开启第三定子或第四定子中的第二磁轴承,包括:
当载荷负载在第二推力盘,第二推力盘在载荷负载的作用下在转轴的轴向方向上移动,第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值大于预定值时,控制第三定子或第四定子中的第二磁轴承以最大功率开启;或者,
当载荷负载在第二推力盘,第二推力盘在载荷负载的作用下在转轴的轴向方向上移动,第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值大于预定值时,控制第三定子或第四定子中的第二磁轴承按照预设频率以频闪的方式开启。
当有外部冲击扰动发生时,第二推力盘可能快速地接近某侧第二磁轴承,则有可能导致该侧的第二间隙瞬间过小,使该侧第二间隙处的局部气体流速接近甚至达到音速,从而引发激波产生气锤自激现象。激波的产生会导致局部气体流动发生扰动和混乱,当流体速度在音速到亚音速之间变化时其压力呈阶梯式显著下降。这种情况下,需要控制第三定子 或第四定子中的第二磁轴承以最大功率开启,或者控制第三定子或第四定子中的第二磁轴承按照预设频率以频闪的方式轮流开启,以提供对扰动的阻尼作用,从而有效抑制外部扰动。当第二推力盘重新回到平衡状态之后,第二磁轴承停止工作。
需要说明的是,本发明实施例中,对于同时设置有电磁轴承(第二磁轴承中的第四磁性部件为电磁铁即形成电磁轴承)和气体静压轴承(第三定子和第四定子上设置的第一静压进气节流孔即形成气体静压轴承)的情况下,电磁轴承和气体静压轴承可以相互备用,在其中一方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到电磁轴承故障的情况下,控制外部气源开启以替代电磁轴承执行相应的动作,从而提高轴承的安全性和可靠性。
本发明实施例中,对于同时设置有电磁轴承和气体静压轴承的情况下,对于“开启所述推力轴承中的静压轴承,以使所述推力轴承的推力盘移动至预设轴向位置”的步骤,可以包括如下实施方式:
开启所述第三定子和所述第四定子的第二磁轴承;和/或,启动外部气源,通过所述第一静压进气节流孔向所述第二间隙处输送气体;
控制所述第二推力盘在所述第三磁性部件与所述第四磁性部件之间的磁力作用下,和/或所述气体的推动作用下在所述转轴的轴向方向上移动,以使所述第二推力盘与所述第三定子中的第二磁轴承之间的所述第二间隙与所述第二推力盘与所述第四定子中的第二磁轴承之间的所述第二间隙的差值小于或等于所述预定值。
在上述过程中,利用第二磁轴承方便实时控制的优点,主动平衡第二推力盘的不平衡质量或第二推力盘涡动等导致第二推力盘过度偏移的因素,使第二推力盘在转轴的轴向方向上固定在某一极小范围内。另外,在第二推力盘的加速过程中,可以准确定位产生激波的位置(即线速度超声速部位),并通过控制第二磁轴承的电流大小和方向等,使第二磁轴承产生相反的力来平衡激波作用。待激波平稳后,再次调整第二磁轴承的控制策略,以最节能的方式将第二推力盘固定在某一极小范围内。
综合上述,本发明实施例具有如下有益效果:
其一,电磁轴承与气体轴承协同工作,改善了轴承在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了轴承的承载能力。同时,电磁轴承与气体轴承采用并联结构,简化了结构,集成度高,易加工、制造和操作,提高了轴承的综合性能。在转子系统启动或停机时,可以用电磁轴承使轴承的推力盘与定子在第二间隙内转动,提高了轴承的低速性能,延长了轴承的使用寿命,能够提高轴承及整个系统的安全性和可靠性。
其二,相对于传统的采用气体静压轴承和气体动压轴承结合的气体动静压混合推力轴承,本发明实施例的槽式气磁混合推力轴承具有响应速度快的优点。
其三,增加了气体静压轴承,形成槽式动静压-磁混合推力轴承,在同时设置有电磁轴承和气体静压轴承的情况下,轴承的承载力进一步加大,电磁轴承和气体静压轴承可以相互备用,在其中一方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到电磁轴承故障的情况,控制系统控制气体静压轴承开启以替代电磁轴承执行相应的动作,从而提高轴承的安全性和可靠性。
本发明实施例中,转子系统中的径向轴承可以为箔片式气磁混合径向轴承。
关于上述箔片式气磁混合径向轴承的具体方案,可以参见申请号为CN201810030888.1的专利申请文件中的相关说明,且能够达到相同的有益效果,为避免重复,本发明实施例对此不作赘述。
本发明实施例中,转子系统中的径向轴承可以为槽式气磁混合径向轴承。以第三径向轴承620为例,如图31至图38所示,第三径向轴承620包括:
套设于第二转轴101上的第四磁轴承6201,第四磁轴承6201上沿周向设置有多个第七磁性部件;
第四磁轴承6201朝向第二转轴101的侧壁,或第二转轴101朝向第四磁轴承6201的圆周面上设置有第三动压发生槽6202;
其中,第四磁轴承6201与第二转轴101之间具有第四间隙6203,且第二转轴101能够在多个第七磁性部件的磁力作用下在第二转轴101的径向方向上移动。
本发明实施例中,通过在第三径向轴承620中设置第四间隙6203和第四磁轴承6201,从而使该第三径向轴承620形成气、磁混合径向轴承。
工作时,第三径向轴承620中的气体轴承与第四磁轴承6201能够协同工作,在第三径向轴承620处于稳定的工作状态时,依靠气体轴承实现支承;而在第三径向轴承620处于非稳定的工作状态时,依靠第四磁轴承6201及时对第三径向轴承620进行控制和响应。
可见,本发明实施例能够改善径向轴承,尤其在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了径向轴承的承载能力。本发明实施例的径向轴承能够满足高转速的转子系统,例如,燃气轮机或者燃气轮机发电联合机组等的需求。
本发明实施例中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,第二转轴101可以由若干硅钢片或者矽钢片叠压而成。
本发明实施例中,当第二转轴101旋转时,存在于第四间隙6203的流动气体被压入第三动压发生槽6202内,从而产生压力,使第二转轴101上浮,以实现第二转轴101沿径向方向被非接触地保持。其中,第三动压发生槽6202产生压力的大小随第三动压发生槽6202的角度、槽宽、槽长、槽深、槽数以及平面度的不同而变化。此外,第三动压发生槽6202产生压力的大小也和第二转轴101的旋转速度以及第四间隙6203有关。可以根据实际工况对第三动压发生槽6202的参数进行设计。第三动压发生槽6202可以通过锻造、滚轧、刻蚀或冲压等方式形成于第四磁轴承6201或转轴上。
可选的,多个第七磁性部件包括多个第四永磁体,多个第四永磁体在第四磁轴承6201上沿周向设置;
或者,多个第七磁性部件包括多个第四电磁铁,多个第四电磁铁在第四磁轴承6201上沿周向设置,多个第四电磁铁中的每个第四电磁铁包括设置于第四磁轴承6201上的第四磁芯62011及缠绕于第四磁芯62011上的第四线圈62012。
本发明实施例中,当第三径向轴承620仅需要磁性部件提供磁力而无需磁控时,第七磁性部件优选第四永磁体;当箔片式气磁混合推力轴承同时需要磁力和磁控时,第七磁性部件优选第四电磁铁。
当第七磁性部件为第四电磁铁时,往第四线圈62012通入电流,即可以使第四磁芯62011产生磁力。往第四线圈62012通入电流的大小不同,第四磁芯62011产生的磁力大小也不同;往第四线圈62012通入电流的方向不同,第四磁芯62011的磁极也不同。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本发明的优选实施例中,第四磁芯62011可以由若干硅钢片或者矽钢片叠压而成。
可选的,第四磁轴承6201包括:
第四磁轴承座62013,第四磁轴承座62013套设于第二转轴101上,第四磁轴承座62013上沿周向设置有多个第四容纳槽62014,多个第七磁性部件设置于多个第四容纳槽62014内,且多个第七磁性部件的磁极朝向第二转轴101;
套设于第四磁轴承座62013外的第二轴承壳62015;
套设于第四磁轴承座62013与第二转轴101之间的第二轴承套62016;
以及,分别设置于第二轴承壳62015两端的第五端盖62017和第六端盖62018;
其中,第二轴承套62016、第五端盖62017及第六端盖62018配合,将多个第七磁性部件固定于第四磁轴承座62013上。
本发明实施例中,通过设置第二轴承套62016,能够封闭第四磁芯62011以及第四线圈62012之间的间隙,从而在第二轴承套62016和第二转轴101之间形成稳定、均匀的气膜压力。另外,通过设置不同径向厚度的第二轴承套62016能够方便地调节和控制第四间隙6203的大小。
其中,第二轴承套62016与第二转轴101之间的第四间隙6203的宽度可以为5μm至12μm,优选8μm至10μm。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本发明的优选实施例中,第四磁轴承座62013可以由若干硅钢片或者矽钢片叠压而成。第四容纳槽62014的数量可以为但不限于为六个或八个,沿第四磁轴承座62013的周向均匀设置。这样,能够使第四磁轴承6201与第二转轴101之间的磁力更加均匀、稳定。需要说明的是,多个第七磁性部件还可以采用其他方式设置于第四磁轴承座62013上,对此不进行限定。第五端盖62017和第六端盖62018的材料均可以是非磁性材料,优选硬铝材料。第二轴承套62016的材料可以是非磁性材料,优选硬铝材料。第二轴承壳62015的材料可以是非磁性材料,优选硬铝材料。
优选的,第五端盖62017和第六端盖62018均设置有外径与第二轴承壳62015的内径相同的凸台,第五端盖62017和第六端盖62018的凸台用于从两端固定和压紧组成第四磁轴承座62013的硅钢片或者矽钢片。
本发明实施例中,可以在第二轴承套62016上设置第三动压发生槽6202,为便于第三动压发生槽6202的加工,第二轴承套62016可以由不锈钢材料制成。具体地,第三动压发生槽6202可以设置在第二转轴101上对应第二轴承套62016的圆周面的中间部分,也可以设置为对称分布在中间部分的两侧、相互独立的两部分第三动压发生槽6202;第三动压发生槽6202还可以设置在第二轴承套62016内侧壁的中间部分,也可以设置为对称分布在第二轴承套62016内侧壁两端、相互独立的两部分第三动压发生槽6202。
可选的,第三动压发生槽6202呈矩阵排布,这样,有利于使气膜更均匀地分布于第四间隙6203内。
可选的,第三动压发生槽6202为连续或间隔设置的V形槽。
本发明实施例中,通过采用上述第三动压发生槽6202的设置方式,能够在第二转轴101正向旋转或者反向旋转的情况下,转轴都能以期望的方式非接触式地保持,从而使第二转轴101具有负载能力高及稳定性好的优点。第三动压发生槽6202除了设置为V形槽,还可以设置为人字形槽或其它形状的槽。
可选的,第四磁轴承6201上还设置有第二静压进气节流孔6205,第二静压进气节流孔6205的一端与第四间隙6203相通,另一端连接外部气源,用于将外部气源输送至第四间隙6203内。
本发明实施例中,通过设置上述第二静压进气节流孔6205,可以形成气体静压轴承,从而该槽式气磁混合第三径向轴承620可以构成槽式气体动静压-磁混合径向轴承。其中,第二静压进气节流孔6205的流通直径可以根据气量需求等实际工况进行调节。
可选的,第二静压进气节流孔6205在第四磁轴承6201内分成至少两个支路连通至第四间隙6203内。
本发明实施例中,第二静压进气节流孔6205可以依次穿过第五端盖62017或第六端盖62018、第四磁轴承6201以及第二轴承套62016,将外部气源与第四间隙6203连通。进一步地,第二静压进气节流孔6205可以分为两个或者更多个支路连通至第四间隙6203,使得第四间隙6203内的气膜压力更加均匀。进一步的,第五端盖62017或第六端盖62018上可以设置有环形槽,可在第四磁轴承6201与该环形槽对应的环形区域内设置多个第二静压进气节流孔6205,例如,在每个第四磁芯62011中或每两个相邻的第四磁芯62011中设置一个第二静压进气节流孔6205。其中,第二静压进气节流孔6205以及支路的流通直径可以根据气量需求等实际工况进行调节。
可选的,槽式气磁混合第三径向轴承620还包括沿第四磁轴承6201的周向间隔设置的多个第四传感器6204,其中每个第四传感器6204的传感器探头设置于第四间隙6203内。
本发明实施例中,通过设置第四传感器6204,能够实时检测第四间隙6203处的参数,例如第四间隙6203处的气膜压力。这样,第四磁轴承6201可以根据第四传感器6204的检测结果对第三径向轴承620进行主动控制,并能够使控制达到较高的精度。
可选的,多个第四传感器6204中,每个第四传感器6204包括第四传感器盖62041和第四传感器探头62042,第四传感器探头62042的第一端连接第四传感器盖62041,第四传 感器盖62041固定于第四磁轴承6201上,第四磁轴承6201上设有用于供第四传感器探头62042穿过的通孔;第四传感器探头62042的第二端穿过第四磁轴承6201上的通孔,并伸至第四间隙6203,且第四传感器探头62042的第二端端部与第四磁轴承6201的靠近第二转轴101的一侧平齐。
本发明实施例中,通过上述第四传感器6204的结构形式和安装方式,能够使第四传感器6204更稳定地设置于第四磁轴承6201上。此外,将第四传感器探头62042的第二端端部与第四磁轴承6201的靠近第二转轴101的一侧平齐,一方面,能够避免第四传感器探头62042受到第二转轴101的碰触,从而有利于保护第四传感器探头62042;另一方面,不会对第四间隙6203内的气膜产生影响,避免第四间隙6203内的气膜发生扰动。
本发明实施例中,第四传感器6204的数量可以与第七磁性部件的数量相同。第四传感器6204可以设置于相邻的两个第七磁性部件之间,也可以穿过第七磁性部件设置,本发明实施例对此不作限定。每个第四传感器6204优选设置于第四磁轴承6201的中部。
可选的,多个第四传感器6204为以下任意一种或多种的组合:
用于检测第二转轴101位置的位移传感器;
用于检测第四间隙6203处的气膜压力的压力传感器;
用于检测第二转轴101转速的速度传感器;
用于检测第二转轴101旋转加速度的加速度传感器。
下面以本发明实施例的槽式气磁混合径向轴承(其中,第四磁轴承中的第七磁性部件为电磁铁)参与转子系统的控制过程时的具体控制方法进行详细地说明。
本发明实施例提供一种槽式气磁混合径向轴承的控制方法,包括:
S631、开启第四磁轴承,控制转轴在多个第七磁性部件的磁力作用下在转轴的径向方向上移动,推动转轴至预设径向位置。
S632、转轴的转速加速至工作转速之后,关闭第四磁轴承。
S633、转子系统停机时,开启第四磁轴承。
S634、转轴的转速减速至零之后,关闭第四磁轴承。
在上述过程中,第四磁轴承开启后,转轴在第四磁轴承的作用下托起并到达预设径向位置,第四磁轴承与转轴之间具有第四间隙。
随着转轴的转动,转轴在受第四间隙中气流润滑的情况下开始转动,以防止磨损。第四磁轴承开启的具体过程为:向第四线圈输入预定值的电流信号,转轴在第四磁轴承的作用下托起并到达预设径向位置。
随着转轴的转速越来越大,当转轴的转速到达工作转速时,该径向轴承的气体动压轴承(第四磁轴承与转轴之间设置第四间隙即形成该径向轴承的气体动压轴承)产生的气膜压力可以将转轴稳定,届时可以关闭第四磁轴承。
在转子系统停机时,转轴减速,为了使转轴在整个转子系统停机过程中保持稳定,在转子系统停机时即开启第四磁轴承,直到转轴完全停下后即可关闭第四磁轴承。
本发明实施例还提供另一种槽式气磁混合径向轴承的控制方法,包括:
S641、开启第四磁轴承,控制转轴在多个第七磁性部件的磁力作用下在转轴的径向方向上移动,推动转轴至预设径向位置。
S642、转轴的转速加速至第一预设值之后,关闭第四磁轴承。
S643、转轴的转速加速至一阶临界速度或二阶临界速度时,开启第四磁轴承。
具体的,当转轴与第四磁轴承之间的第四间隙处的气体流速达到一阶临界速度或二阶临界速度时,开启第四磁轴承,直至转轴恢复至平衡径向位置。
可选的,转轴的转速加速至一阶临界速度或二阶临界速度时,开启第四磁轴承,包括:
转轴的转速加速至一阶临界速度或二阶临界速度时,控制第四磁轴承以最大功率开启;或者,
转轴的转速加速至一阶临界速度或二阶临界速度时,控制第四磁轴承按照预设频率以频闪的方式开启。
S644、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭第四磁轴承。
S645、转子系统停机过程中,当转子系统减速至一阶临界速度或二阶临界速度时,开启第四磁轴承。
具体的,当转轴与第四磁轴承之间的第四间隙处的气体流速减速至一阶临界速度或二阶临界速度时,开启第四磁轴承,直至转轴恢复至平衡径向位置。
可选的,转轴的转速减速至一阶临界速度或二阶临界速度时,开启第四磁轴承,包括:
转轴的转速减速至一阶临界速度或二阶临界速度时,控制第四磁轴承以最大功率开启;或者,
转轴的转速减速至一阶临界速度或二阶临界速度时,控制第四磁轴承按照预设频率以频闪的方式开启。
S646、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭第四磁轴承。
S647、转轴的转速减速至第二预设值时,开启第四磁轴承。
S648、转轴的转速减速至零之后,关闭第四磁轴承。
在上述过程中,第四磁轴承开启后,转轴在第四磁轴承的作用下托起并到达预设径向位置,第四磁轴承与转轴之间具有第四间隙。
随着转轴的转动,转轴在受第四间隙中气流润滑的情况下开始转动,以防止磨损。第四磁轴承开启的具体过程为:向第四线圈输入预定值的电流信号,转轴在第四磁轴承的作用下托起并到达预设径向位置。
随着转轴的转速越来越大,当转轴的转速到达第一预设值,例如额定转速的5%至30%时,该径向轴承的气体动压轴承(第四磁轴承与转轴之间设置第四间隙即形成该径向轴承的气体动压轴承)产生的气膜压力可以将转轴稳定,届时可以关闭第四磁轴承。
在转子系统停机过程中,转轴减速,当转轴的转速降至第二预设值,例如额定转速的5%至30%时,开启第四磁轴承,直到转轴完全停下后即可关闭第四磁轴承。
可选的,所述方法还包括:
当所述转轴与所述第四磁轴承之间的第四间隙发生变化时,开启所述第四磁轴承,使转轴在所述多个第七磁性部件的磁力作用下向远离间隙变小侧的方向移动;
所述转轴处于平衡径向位置之后,关闭所述第四磁轴承。
当载荷负载在转轴上,使转轴逐渐下降并接近下方的第四磁轴承时,第四传感器(这里的第四传感器优选压力传感器)获得气压增大的信号,此时第四磁轴承需要介入工作。第四磁轴承将磁力作用于转轴上使其向上悬浮,当转轴达到新的平衡位置时,第四磁轴承停止工作。
当有外部冲击扰动发生时,转轴可能快速地接近第四磁轴承,则有可能导致转轴与第四磁轴承之间的间隙瞬间过小,使间隙减小处的局部气体流速接近甚至达到音速,从而引发激波产生气锤自激现象。激波的产生会导致局部气体流动发生扰动和混乱,当流体速度在音速到亚音速之间变化时其压力呈阶梯式显著下降。这种情况下,需要控制第四磁轴承的第七磁性部件以预设频率轮流开启,以提供对扰动的阻尼作用,从而有效抑制外部扰动。当转轴恢复至新的平衡径向位置之后,第四磁轴承停止工作。
需要说明的是,本发明实施例中,对于同时设置有电磁轴承(第四磁轴承中的第七磁性部件为电磁铁即形成电磁轴承)和气体静压轴承(第四磁轴承上设置的第二静压进气节流孔即形成气体静压轴承)的情况下,电磁轴承和气体静压轴承可以相互备用,在其中一方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到电磁轴承故障的情况下,控制外部气源开启以替代电磁轴承执行相应的动作,从而提高轴承的安全性和可靠性。
本发明实施例中,对于同时设置有电磁轴承和气体静压轴承的情况下,对于“开启所述径向轴承中的静压轴承,以使所述转轴移动至预设径向位置,”的步骤,可以包括如下实施方式:
开启所述第四磁轴承;和/或,启动外部气源,通过所述第二静压进气节流孔向所述第 四间隙处输送气体;
控制所述转轴在所述多个第七磁性部件的磁力作用下,和/或所述气体的推动作用下在所述转轴的径向方向上移动,以使所述转轴移动至预设径向位置。
在上述过程中,利用第四磁轴承方便实时控制的优点,主动平衡转轴的不平衡质量或转轴涡动等导致转轴过度偏移的因素,使转轴在径向方向上固定在某一极小范围内。另外,在转轴的加速过程中,可以准确定位产生激波的位置(即线速度超声速部位),并通过控制第四磁轴承的电流大小和方向等,使第四磁轴承产生相反的力来平衡激波作用。待激波平稳后,再次调整第四磁轴承的控制策略,以最节能的方式将转轴固定在某一极小范围内。
综合上述,本发明实施例具有如下有益效果:
其一,电磁轴承与气体轴承协同工作,改善了轴承在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了轴承的承载能力。同时,电磁轴承与气体轴承采用嵌套结构,简化了结构,集成度高,易加工、制造和操作,提高了轴承的综合性能。在转子系统启动或停机时,可以用电磁轴承使轴承的推力盘与定子在第一间隙内转动,提高了轴承的低速性能,延长了轴承的使用寿命,能够提高轴承及整个系统的安全性和可靠性。
其二,相对于传统的采用气体静压轴承和气体动压轴承结合的气体动静压混合推力轴承,本发明实施例的槽式气磁混合径向轴承具有响应速度快的优点。
其三,增加了气体静压轴承,形成槽式动静压-磁混合推力轴承,在同时设置有电磁轴承和气体静压轴承的情况下,轴承的承载力进一步加大,电磁轴承和气体静压轴承可以相互备用,在其中一方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到电磁轴承故障的情况,控制系统控制气体静压轴承开启以替代电磁轴承执行相应的动作,从而提高轴承的安全性和可靠性。
本发明实施例中,转子系统中,推力轴承和与推力轴承相邻的径向轴承可以集成一体,形成集成式轴承。图39至图41示出了三种将推力轴承和与推力轴承相邻的径向轴承集成形成集成式轴承1000的结构示意图。
图42至图51为本发明实施例提供的集成式轴承的结构示意图。
如图42至图51所示,集成式轴承1000包括:
第三轴承壳1001,第三轴承壳1001为中空回转体,第三轴承壳1001设置有第一容纳腔和第二容纳腔;
设置于第一容纳腔内的径向子轴承1002,径向子轴承1002穿设于转轴100上,径向子轴承1002与转轴100之间具有第五间隙1004;
以及,设置于第二容纳腔内的推力子轴承1003,推力子轴承1003包括第三推力盘10031,以及分别设置于第三推力盘10031两侧的第五定子10032和第六定子10033,第三推力盘10031固定连接于转轴100上,第五定子10032和第六定子10033均穿设于转轴100上;第五定子10032和第六定子10033中,每个定子与第三推力盘10031之间具有第六间隙1005。
本发明实施例中,将径向子轴承1002和推力子轴承1003集成在一个轴承壳内,易于加工和安装,具有结构简化、集成度高的特点,在加工和安装时能够有效保证径向子轴承1002和推力子轴承1003的同轴度一致的要求。另外,由于径向子轴承1002中设置有第五间隙1004,推力子轴承1003中设置有第六间隙1005,使得本发明的轴承为非接触式轴承,能够满足转子高速转动的需求。
其中,第三轴承壳1001的材料可以是非磁性材料,优选硬铝材料。
其中,第五定子10032与第三轴承壳1001可以一体成型,第六定子10033与第三轴承壳1001可以是可拆卸连接。
当本发明实施例的转子系统应用于燃气轮机或者燃气轮机发电联合机组时,第三轴承壳1001可以通过连接件与燃气轮机的壳体连接。
本发明实施例中,径向子轴承1002和推力子轴承1003均可以包括磁轴承,其中,径向子轴承1002中设置磁轴承的结构形式如下:
径向子轴承1002包括套设于转轴100上的第五磁轴承10021,第五磁轴承10021可拆卸安装于第一容纳腔内,第五磁轴承10021上沿周向设置有多个第八磁性部件;
其中,转轴100能够在多个第八磁性部件的磁力作用下在转轴100的径向方向上移动。
进一步的,第五磁轴承10021包括:
第五磁轴承座,第五磁轴承座套设于转轴100上,第五磁轴承座上沿周向设置有多个第五容纳槽,多个第八磁性部件设置于多个第五容纳槽内,且多个第八磁性部件的磁极朝向转轴100;
以及,套设于第五磁轴承座与转轴100之间的第三轴承套10022,第三轴承套10022与第五磁轴承座配合,将多个第八磁性部件固定于第五磁轴承座上。
上述径向子轴承1002中设置磁轴承的其它具体实施方式可以参见实施例十中的相关说明,并能够达到相同的有益效果,为避免重复,对此不作赘述。
本发明实施例中,集成式轴承1000还可以包括第七端盖1006,第七端盖1006设置于第三轴承壳1001的靠近第一容纳腔的端部,第七端盖1006与第五磁轴承座抵接,用于将径向子轴承1002固定于第一容纳腔内。
本发明实施例中,径向子轴承1002和推力子轴承1003均可以包括磁轴承,其中,推力子轴承1003中设置磁轴承的结构形式如下:
第五定子10032和第六定子10033中,每个定子包括第六磁轴承10034,第六磁轴承10034上沿周向设置有多个第九磁性部件;
第三推力盘10031上设置有第十磁性部件,第三推力盘10031能够在多个第九磁性部件和第十磁性部件之间的磁力作用下在转轴100的轴向方向上移动。
进一步的,第六磁轴承10034包括:
第六磁轴承座,第六磁轴承座与第三推力盘10031相对设置,第六磁轴承座上沿周向设置有多个第六容纳槽,多个第九磁性部件设置于多个第六容纳槽内,且多个第九磁性部件的磁极朝向第三推力盘10031所在的一侧;
第二压环,第二压环设置于第六磁轴承座的靠近第三推力盘10031的一侧,第二压环与第六磁轴承座配合,将多个第九磁性部件固定于第六磁轴承座上。
上述推力子轴承1003中设置磁轴承的其它具体实施方式可以参见实施例十中的相关说明,并能够达到相同的有益效果,为避免重复,对此不作赘述。
本发明实施例中,通过在集成式轴承1000中设置磁轴承,尤其是电磁轴承(其第五磁轴承10021中的第八磁性部件为电磁铁,第六磁轴承10034中的第九磁性部件为电磁铁),在转子系统启动或停机时,可以用电磁轴承使集成式轴承1000中的推力盘与定子以及转轴与轴承套在间隙内转动,提高了集成式轴承1000的低速性能,延长了集成式轴承1000的使用寿命,能够提高集成式轴承1000及整个转子系统的安全性和可靠性。
本发明实施例中,第五定子10032可以与第三轴承壳1001一体成型,第六定子10033可以与第三轴承壳1001可拆卸连接。
本发明实施例中,径向子轴承1002和推力子轴承1003均可以设置动压发生槽,其中,径向子轴承1002中设置动压发生槽的结构形式如下:
径向子轴承1002朝向转轴100的侧壁,或转轴100朝向径向子轴承1002的圆周面设置有第四动压发生槽10023。
进一步的,第四动压发生槽10023呈矩阵排布。
进一步的,第四动压发生槽10023为连续或间隔设置的V形槽。
上述径向子轴承1002中设置动压发生槽的其它具体实施方式可以参见实施例十二中的相关说明,并能够达到相同的有益效果,为避免重复,对此不作赘述。
本发明实施例中,径向子轴承1002和推力子轴承1003均可以设置动压发生槽,其中,推力子轴承1003中设置动压发生槽的结构形式如下:
第三推力盘10031的面向第五定子10032和第六定子10033的端面,或,第五定子10032和第六定子10033的面向第三推力盘10031的端面上设置有第五动压发生槽10035。
进一步的,第五动压发生槽10035呈辐射状或同心圆状排布。
进一步的,第五动压发生槽10035包括第一螺旋槽和第二螺旋槽,第一螺旋槽环绕于第二螺旋槽外,第一螺旋槽和第二螺旋槽的螺旋走向相反,第一螺旋槽的靠近第二螺旋槽的一端与第二螺旋槽的靠近第一螺旋槽的一端连接或断开。
上述推力子轴承1003中设置动压发生槽的其它具体实施方式可以参见实施例十中的相关说明,并能够达到相同的有益效果,为避免重复,对此不作赘述。
本发明实施例中,通过在集成式轴承1000中设置动压发生槽,从而使集成式轴承1000包括动压气体轴承。在同时设置有电磁轴承和动压气体轴承的情况下,改善了集成式轴承1000在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了轴承的承载能力。同时,电磁轴承与动压气体轴承采用嵌套并联结构,简化了结构,集成度高,易加工、制造和操作,提高了集成式轴承1000的综合性能。
本发明实施例中,集成式轴承1000还可以设置静压进气节流孔,其结构形式如下:
第三轴承壳1001还设置有第三静压进气节流孔1007;
其中,第三静压进气节流孔1007的一端连接外部气源,另一端经径向子轴承1002与第五间隙1004相通,和/或,经第五定子10032和第六定子10033与第六间隙1005相通,用于将外部气源输送至第五间隙1004和/或第六间隙1005。
本发明实施例中,通过集成式轴承1000还可以设置静压进气节流孔,从而使集成式轴承1000包括气体静压轴承。在同时设置有电磁轴承和气体静压轴承的情况下,能够使集成式轴承1000的承载力进一步加大。另外,电磁轴承和气体静压轴承可以相互备用,在其中一方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到电磁轴承故障的情况,通过控制气体静压轴承开启以替代电磁轴承执行相应的动作,从而提高集成式轴承1000的安全性和可靠性。
上述集成式轴承1000设置静压进气节流孔的其它具体实施方式可以参见前述相关说明,并能够达到相同的有益效果,为避免重复,对此不作赘述。
本发明实施例中,径向子轴承1002和推力子轴承1003均可以设置传感器,其结构形式分别如下:
径向子轴承1002上设置有第五传感器(图中未示出),第五传感器的传感器探头设置于第五间隙1004内。
这样,能够实时检测第五间隙1004处的参数,例如第五间隙1004处的气膜压力等。这样,第五磁轴承10021可以根据第五传感器的检测结果对径向子轴承102进行主动控制,并能够使控制达到较高的精度。
可选的,多个第五传感器中,每个第五传感器包括传第一感器盖和第五传感器探头,第五传感器探头的第一端连接第五传感器盖,第五传感器盖固定于第五磁轴承10021上,第五磁轴承10021上设有用于供第五传感器探头穿过的通孔;第五传感器探头的第二端穿过第五磁轴承10021上的通孔,并伸至第五间隙1004,且第五传感器探头的第二端端部与第五磁轴承10021的靠近转轴100的一侧平齐。
这样,能够使第五传感器更稳定地设置于第五磁轴承10021上。此外,将传感器探头的第二端端部与第五磁轴承10021的靠近转轴100的一侧平齐,一方面,能够避免传感器探头受到转轴100的碰触,从而有利于保护传感器探头;另一方面,不会对第五间隙1004内的气膜产生影响,避免第五间隙1004内的气膜发生扰动。
推力子轴承1003上设置有第六传感器(图中未示出),第六传感器的传感器探头设置于第六间隙1005内。
这样,能够实时检测第六间隙1005处的参数,例如第六间隙1005处的气膜压力等。这样,第六磁轴承10034可以根据第六传感器的检测结果对推力子轴承103进行主动控制,并能够使控制达到较高的精度。
可选的,第六传感器包括第六传感器盖和第六传感器探头,第六传感器探头的第一端连接第六传感器盖,第六传感器盖固定于第六磁轴承10034上,第六磁轴承10034上设有 用于供第六传感器探头穿过的通孔;第六传感器探头的第二端穿过第六磁轴承10034上的通孔,并伸至第六间隙1005,且第六传感器探头的第二端端部与第六磁轴承10034的靠近第三推力盘10031的一侧平齐。
这样,能够使第六传感器更稳定地设置于第六磁轴承10034上。此外,将第六传感器探头的第二端端部与第六磁轴承10034的靠近第三推力盘10031的一侧平齐,一方面,能够避免第六传感器探头受到第三推力盘10031的碰触,从而有利于保护第六传感器探头;另一方面,不会对第六间隙1005内的气膜产生影响,避免第六间隙1005内的气膜发生扰动。
上述径向轴承和推力轴承中设置传感器的其它具体实施方式可以分别参见前述相关说明,并能够达到相同的有益效果,为避免重复,对此不作赘述。
本发明实施例中,集成式轴承(其中,第五磁轴承中的第八磁性部件为电磁铁,第六磁轴承中的第九磁性部件为电磁铁)参与转子系统的控制过程时的具体控制方法可以参见前述相关说明,并能达到相同的有益效果,为避免重复,对此不作重复。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种转子系统,其特征在于,包括:
    第一转轴,所述第一转轴上依次设置有透平、第一径向轴承、压气机和推力轴承,所述推力轴承位于所述压气机的进气口所在的一侧,且与所述压气机之间间隔预定距离,以使所述推力轴承不阻挡所述压气机的进气口;
    与所述第一转轴通过联轴器连接的第二转轴,所述第二转轴上依次设置有第二径向轴承、电机和第三径向轴承;
    所述第一转轴和所述第二转轴均水平设置,或者,所述第一转轴和所述第二转轴均竖向设置;
    所述推力轴承为气磁混合推力轴承,所述第一径向轴承、所述第二径向轴承和所述第三径向轴承均为非接触式径向轴承。
  2. 根据权利要求1所述的转子系统,其特征在于,所述压气机与所述推力轴承之间,或者,所述推力轴承与所述联轴器之间设置有第四径向轴承;
    和/或,
    所述透平的远离所述压气机的一侧还设置有第五径向轴承;
    所述第四径向轴承和第五径向轴承均为非接触式径向轴承。
  3. 根据权利要求1所述的转子系统,其特征在于,所述第一径向轴承、所述第二径向轴承和所述第三径向轴承中的至少一个径向轴承包括:
    轴承本体;
    轴承内圈,所述轴承内圈套设于所述轴承本体内,且能够在所述轴承本体内移动;
    以及,设置于所述轴承内圈与所述轴承本体之间的轴承阻尼器,所述轴承阻尼器能够在所述轴承内圈的作用下发生塑性变形,以调整所述轴承内圈与转轴之间的轴承间隙;
    所述转轴为所述第一转轴或所述第二转轴。
  4. 根据权利要求1所述的转子系统,其特征在于,所述电机为流体动压轴承电机,所述第二转轴的对应所述电机的轴承的部位设置有第一动压发生槽;
    和/或,
    所述电机为启发一体式电机。
  5. 根据权利要求1或2所述的转子系统,其特征在于,所述第一径向轴承、所述第二径向轴承、所述第三径向轴承和所述第四径向轴承中的至少一个径向轴承为气磁混合径向轴承或气体静压轴承或气体动静压混合径向轴承;
    所述第五径向轴承为气体静压径向轴承或气体动静压混合径向轴承;
    所述第一径向轴承为所述气磁混合径向轴承时,所述第一径向轴承的磁性部件设置于所述第一径向轴承上的远离所述透平的区域。
  6. 根据权利要求1所述的转子系统,其特征在于,所述推力轴承为箔片式气磁混合推力轴承,包括:
    第一推力盘,所述第一推力盘固定连接于所述第一转轴上;
    以及,穿设于所述第一转轴上的第一定子和第二定子,所述第一定子和所述第二定子分别设置于所述第一推力盘的相对两侧;
    所述第一定子和所述第二定子中,每个定子包括第一磁轴承和第一箔片轴承,所述第一磁轴承上沿周向设置有多个第一磁性部件,所述第一箔片轴承设置有能够与所述多个第一磁性部件之间产生磁力的第二磁性部件;
    其中,所述第一箔片轴承设置于所述第一磁轴承与所述第一推力盘之间,并与所述第一推力盘之间具有第一间隙,且所述第一箔片轴承能够在所述第一磁性部件和所述第二磁性部件之间的磁力作用下在所述转轴的轴向方向上移动;
    或者,
    所述推力轴承为槽式气磁混合推力轴承,包括:
    第二推力盘,所述第二推力盘固定连接于所述第一转轴上,所述第二推力盘上设置有第三磁性部件;
    以及,穿设于所述第一转轴上的第三定子和第四定子,所述第三定子和所述第四定子分别设置于所述第二推力盘的相对两侧;
    所述第三定子和所述第四定子中,每个定子包括第二磁轴承,所述第二磁轴承上沿周向设置有能够与所述第三磁性部件之间产生磁力的多个第四磁性部件,所述第二磁轴承与所述第二推力盘之间具有第二间隙,且所述第二推力 盘能够在所述第三磁性部件和所述多个第四磁性部件之间的磁力作用下在所述转轴的轴向方向上移动;
    其中,所述第二推力盘的面向所述第三定子和所述第四定子的端面,或,所述第三定子和所述第四定子的面向所述第二推力盘的端面上设置有第二动压发生槽。
  7. 根据权利要求6所述的转子系统,其特征在于,
    所述第三定子和所述第四定子中,每个定子上还设置有连通所述第二间隙与外接气源的第一静压进气节流孔,所述第一静压进气节流孔用于将外接气源输送至所述第二间隙内。
  8. 根据权利要求5所述的转子系统,其特征在于,
    所述气磁混合径向轴承为箔片式气磁混合径向轴承,所述箔片式气磁混合径向轴承包括:
    套设于转轴上的第三磁轴承,所述第三磁轴承上沿周向设置有多个第五磁性部件;
    套设于所述转轴上,并位于所述第三磁轴承和所述转轴之间的第二箔片轴承,所述第二箔片轴承上设有能够与所述多个第五磁性部件之间产生磁力的第六磁性部件;
    其中,所述转轴为所述第一转轴或所述第二转轴;所述第二箔片轴承与所述转轴之间具有第三间隙,且所述第二箔片轴承能够在所述多个第五磁性部件和所述第六磁性部件的磁力作用下在所述转轴的径向方向上移动;
    或者,
    所述气磁混合径向轴承为槽式气磁混合径向轴承,所述槽式气磁混合径向轴承包括:
    套设于转轴上的第四磁轴承,所述第四磁轴承上沿周向设置有多个第七磁性部件;
    所述第四磁轴承朝向所述转轴的侧壁,或所述转轴朝向所述第四磁轴承的圆周面上设置有第三动压发生槽;
    其中,所述转轴为所述第一转轴或所述第二转轴;所述第四磁轴承与所述转轴之间具有第四间隙,且所述转轴能够在所述多个第七磁性部件的磁力作用 下在所述转轴的径向方向上移动。
  9. 根据权利要求8所述的转子系统,其特征在于,
    所述第四磁轴承上还设置有连通所述第四间隙与外接气源的第二静压进气节流孔,所述第二静压进气节流孔用于将外接气源输送至所述第四间隙内。
  10. 根据权利要求1所述的转子系统,其特征在于,
    所述转子系统中,所述推力轴承和与所述推力轴承相邻的径向轴承集成一体,形成集成式轴承,所述集成式轴承包括:
    轴承座,所述轴承座为中空回转体,所述轴承座设置有第一容纳腔和第二容纳腔;
    设置于所述第一容纳腔内的径向子轴承,所述径向子轴承穿设于所述第一转轴上,所述径向子轴承与所述第一转轴之间具有第五间隙;
    以及,设置于所述第二容纳腔内的推力子轴承,所述推力子轴承包括第三推力盘,以及分别设置于所述推力盘两侧的第五定子和第六定子,所述推力盘固定连接于所述第一转轴上,所述第五定子和所述第六定子均穿设于所述第一转轴上;所述第五定子和所述第六定子中,每个定子与所述第三推力盘之间具有第六间隙。
  11. 根据权利要求10所述的转子系统,其特征在于,
    所述径向子轴承包括套设于所述第一转轴上的第五磁轴承,所述第五磁轴承与所述第一转轴之间具有所述第五间隙,所述第五磁轴承上沿周向设置有多个第八磁性部件;所述第一转轴能够在所述多个第八磁性部件的磁力作用下在所述第一转轴的径向方向上移动;
    所述第五定子和所述第六定子中,每个定子包括第六磁轴承,所述第六磁轴承上沿周向设置有多个第九磁性部件;所述第三推力盘上设置有第十磁性部件,所述第三推力盘能够在所述多个第九磁性部件和所述第十磁性部件之间的磁力作用下在所述第一转轴的轴向方向上移动。
  12. 根据权利要求10所述的转子系统,其特征在于,
    所述轴承座还设置有第三静压进气节流孔;
    其中,所述第三静压进气节流孔的一端连接外接气源,另一端经所述径向子轴承与所述第五间隙相通,和/或,经所述第五定子和所述第六定子与所述 第六间隙相通,用于将外接气源输送至所述第五间隙和/或第六间隙。
  13. 一种转子系统的控制方法,用于如权利要求1至12中任一项所述的转子系统,其特征在于,所述方法包括:
    开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使所述推力轴承的推力盘移动至预设轴向位置;
    所述转轴的转速加速至工作转速之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
    所述转子系统停机时,开启所述径向轴承中的静压轴承和所述推力轴承中的静压轴承;
    所述转轴的转速减速至零之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
    其中,开启所述静压轴承包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体;
    关闭所述静压轴承包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体;
    所述转轴由第一转轴和第二转轴通过联轴器连接形成。
  14. 一种转子系统的控制方法,用于如权利要求1至12中任一项所述的转子系统,其特征在于,所述方法包括:
    开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使所述推力轴承的推力盘移动至预设轴向位置;
    所述转轴的转速加速至第一预设值之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
    所述转子系统加速至一阶临界速度或二阶临界速度时,开启所述径向轴承和所述推力轴承中的静压轴承;
    所述转子系统平稳度过所述一阶临界速度或所述二阶临界速度之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
    所述转子系统停机过程中,当所述转子系统减速至所述一阶临界速度或所述二阶临界速度时,开启所述径向轴承和所述推力轴承中的静压轴承;
    所述转子系统平稳度过所述一阶临界速度或所述二阶临界速度之后,关闭 所述径向轴承和所述推力轴承中的静压轴承;
    所述转轴的转速减速至第二预设值时,开启所述径向轴承中的静压轴承和所述推力轴承中的静压轴承;
    所述转轴的转速减速至零之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
    其中,开启所述静压轴承,包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体;
    关闭所述静压轴承,包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体;
    所述转轴由第一转轴和第二转轴通过联轴器连接形成。
  15. 根据权利要求14所述的方法,用于如权利要求6所述的转子系统,其特征在于,
    所述推力轴承为箔片式气磁混合推力轴承时,开启所述推力轴承中的静压轴承,以使所述推力轴承的第一推力盘移动至预设轴向位置,包括:
    开启所述第一定子和所述第二定子中的第一磁轴承,控制所述第一推力盘在所述多个第一磁性部件的磁力作用下在所述转轴的轴向方向上移动,以使所述第一推力盘与所述第一定子中的第一箔片轴承之间的所述第一间隙与所述第一推力盘与所述第二定子中的第一箔片轴承之间的所述第一间隙的差值小于或等于预定值;
    所述方法还包括:
    当载荷负载在所述第一推力盘,所述第一推力盘在载荷负载的作用下在所述转轴的轴向方向上移动,所述第一推力盘与所述第一定子中的第一箔片轴承之间的所述第一间隙与所述第一推力盘与所述第二定子中的第一箔片轴承之间的所述第一间隙大于预定值时,开启所述第一定子和所述第二定子中的第一磁轴承;
    当所述第一推力盘与所述第一定子中的第一箔片轴承之间的所述第一间隙与所述第一推力盘与所述第二定子中的第一箔片轴承之间的所述第一间隙的差值小于或等于预定值时,关闭所述第一定子和所述第二定子中的第一磁轴承;
    所述推力轴承为槽式气磁混合推力轴承时,开启所述推力轴承中的静压轴承,以使所述推力轴承的第一推力盘移动至预设轴向位置,包括:
    开启所述第三定子和所述第四定子中的第二磁轴承,控制所述第二推力盘在所述第三磁性部件与所述多个第四磁性部件之间的磁力作用下在所述转轴的轴向方向上移动,以使所述第二推力盘与所述第三定子中的第二磁轴承之间的所述第二间隙与所述第二推力盘与所述第四定子中的第二磁轴承之间的所述第二间隙的差值小于或等于预定值;
    所述方法还包括:
    当载荷负载在所述第二推力盘,所述第二推力盘在载荷负载的作用下在所述转轴的轴向方向上移动,所述第二推力盘与所述第三定子中的第二磁轴承之间的所述第二间隙与所述第二推力盘与所述第四定子中的第二磁轴承之间的所述第二间隙的差值大于所述预定值时,开启所述第三定子或所述第四定子中的第二磁轴承;
    当所述第二推力盘与所述第三定子中的第二磁轴承之间的所述第二间隙与所述第二推力盘与所述第四定子中的第二磁轴承之间的所述第二间隙的差值小于或者等于所述预定值,关闭所述第三定子或所述第四定子中的第二磁轴承。
  16. 根据权利要求14所述的方法,用于如权利要求7所述的转子系统,其特征在于,
    开启所述推力轴承中的静压轴承,以使所述推力轴承的推力盘移动至预设轴向位置,包括:
    开启所述第三定子和所述第四定子的第二磁轴承;和/或,启动外接气源,通过所述第一静压进气节流孔向所述第二间隙处输送气体;
    控制所述第二推力盘在所述第三磁性部件与所述第四磁性部件之间的磁力作用下,和/或所述气体的推动作用下在所述转轴的轴向方向上移动,以使所述第二推力盘与所述第三定子中的第二磁轴承之间的所述第二间隙与所述第二推力盘与所述第四定子中的第二磁轴承之间的所述第二间隙的差值小于或等于所述预定值。
  17. 根据权利要求14所述的方法,用于如权利要求8所述的转子系统, 其特征在于,
    所述气磁混合径向轴承为箔片式气磁混合径向轴承时,开启所述径向轴承中的静压轴承,以使所述转轴移动至预设径向位置,包括:
    开启所述第三磁轴承,控制所述转轴在所述多个第五磁性部件的磁力作用下在所述转轴的径向方向上移动,以使所述转轴移动至预设径向位置;
    所述方法还包括:
    当所述转轴与所述第二箔片轴承之间的第三间隙发生变化时,开启所述第三磁轴承,使间隙变小侧对应的第二箔片轴承在所述多个第五磁性部件与所述第六磁性部件之间的磁力作用下向靠近所述转轴的方向移动;
    所述转轴处于平衡径向位置之后,关闭所述第三磁轴承;
    所述气磁混合径向轴承为槽式气磁混合径向轴承时,开启所述径向轴承中的静压轴承,以使所述转轴移动至预设径向位置,包括:
    开启所述第四磁轴承,控制所述转轴在所述多个第七磁性部件的磁力作用下在所述转轴的径向方向上移动,以使所述转轴移动至预设径向位置;
    所述方法还包括:
    当所述转轴与所述第四磁轴承之间的第四间隙发生变化时,开启所述第四磁轴承,使所述转轴在所述多个第七磁性部件的磁力作用下向远离间隙变小侧的方向移动;
    所述转轴处于平衡径向位置之后,关闭所述第四磁轴承。
  18. 根据权利要求14所述的方法,用于如权利要求9所述的转子系统,其特征在于,
    开启所述径向轴承中的静压轴承,以使所述转轴移动至预设径向位置,包括:
    开启所述第四磁轴承;和/或,启动外接气源,通过所述第二静压进气节流孔向所述第四间隙处输送气体;
    控制所述转轴在所述多个第七磁性部件的磁力作用下,和/或所述气体的推动作用下在所述转轴的径向方向上移动,以使所述转轴移动至预设径向位置。
  19. 一种燃气轮机发电机组,其特征在于,包括进气道、燃烧室和权利要 求1至12中任一项所述的转子系统,所述进气道与所述压气机的进气口连通,所述压气机的出气口与所述燃烧室的进气口连通,所述燃烧室的出气口与所述透平的进气口连通。
  20. 一种燃气轮机发电机组的控制方法,用于如权利要求19所述的燃气轮机发电机组,其特征在于,所述方法包括:
    开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使所述推力轴承的推力盘移动至预设轴向位置;
    启动燃气轮机发电机组,空气经压气机压缩后进入燃烧室和所述燃烧室内的燃料混合燃烧;所述燃烧室排出的高温高压气体对透平的涡轮进行冲击,使所述涡轮旋转,所述涡轮通过所述转轴带动电机旋转发电;
    所述转轴的转速加速至工作转速之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
    所述燃气轮机发电机组停机时,开启所述径向轴承中的静压轴承和所述推力轴承中的静压轴承;
    所述转轴的转速减速至零之后,关闭所述径向轴承和所述推力轴承中的静压轴承;
    其中,开启所述静压轴承包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体;
    关闭所述静压轴承包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体;
    所述转轴由第一转轴和第二转轴通过联轴器连接形成。
PCT/CN2019/107232 2018-09-30 2019-09-23 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法 WO2020063517A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811159301.3A CN110966094B (zh) 2018-09-30 2018-09-30 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
CN201811159301.3 2018-09-30

Publications (1)

Publication Number Publication Date
WO2020063517A1 true WO2020063517A1 (zh) 2020-04-02

Family

ID=69951041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107232 WO2020063517A1 (zh) 2018-09-30 2019-09-23 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法

Country Status (2)

Country Link
CN (1) CN110966094B (zh)
WO (1) WO2020063517A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU226126U1 (ru) * 2023-09-19 2024-05-21 Акционерное Общество "Гт Энерго" Газотурбинная установка

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113915150A (zh) * 2020-07-08 2022-01-11 上海海立电器有限公司 离心压缩机
CN115596767A (zh) * 2022-09-30 2023-01-13 哈尔滨工业大学(Cn) 一种带有磁流体阻尼器的气体静压转台

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288256A (ja) * 1993-04-06 1994-10-11 Toyota Motor Corp ガスタービン
JP2006083715A (ja) * 2004-09-14 2006-03-30 Hitachi Ltd ガスタービン発電装置及びその製造方法
CN101413440A (zh) * 2008-11-26 2009-04-22 沈阳黎明航空发动机(集团)有限责任公司 微型燃气轮机发电机组
CN201896664U (zh) * 2010-12-01 2011-07-13 哈尔滨东安发动机(集团)有限公司 微型燃气轮机发电装置
CN103233819A (zh) * 2013-04-11 2013-08-07 哈尔滨耦合动力工程技术中心有限公司 耦合式燃气轮机-变频发电机热电联供系统及联供方法
CN106321243A (zh) * 2016-09-27 2017-01-11 北京动力机械研究所 一种微型燃气轮机发电站
CN208858776U (zh) * 2018-09-30 2019-05-14 至玥腾风科技投资集团有限公司 一种推力轴承和转子系统
CN208918699U (zh) * 2018-09-30 2019-05-31 至玥腾风科技投资集团有限公司 一种转子系统和燃气轮机发电机组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2258699A (en) * 1991-08-10 1993-02-17 Rolls Royce Business Ventures Shaft bearing arrangement
JP3609258B2 (ja) * 1998-05-19 2005-01-12 日本電産株式会社 モータ
JP2004084877A (ja) * 2002-08-28 2004-03-18 Honda Motor Co Ltd フォイル軸受け
US7112036B2 (en) * 2003-10-28 2006-09-26 Capstone Turbine Corporation Rotor and bearing system for a turbomachine
JP2006211837A (ja) * 2005-01-28 2006-08-10 Hitachi Ltd プラント設備
US20160047309A1 (en) * 2014-08-15 2016-02-18 General Electric Company Power train architectures with hybrid-type low-loss bearings and low-density materials
CN105545956B (zh) * 2016-03-04 2019-05-14 至玥腾风科技投资集团有限公司 一种电磁使能的主动式动压气体轴承

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288256A (ja) * 1993-04-06 1994-10-11 Toyota Motor Corp ガスタービン
JP2006083715A (ja) * 2004-09-14 2006-03-30 Hitachi Ltd ガスタービン発電装置及びその製造方法
CN101413440A (zh) * 2008-11-26 2009-04-22 沈阳黎明航空发动机(集团)有限责任公司 微型燃气轮机发电机组
CN201896664U (zh) * 2010-12-01 2011-07-13 哈尔滨东安发动机(集团)有限公司 微型燃气轮机发电装置
CN103233819A (zh) * 2013-04-11 2013-08-07 哈尔滨耦合动力工程技术中心有限公司 耦合式燃气轮机-变频发电机热电联供系统及联供方法
CN106321243A (zh) * 2016-09-27 2017-01-11 北京动力机械研究所 一种微型燃气轮机发电站
CN208858776U (zh) * 2018-09-30 2019-05-14 至玥腾风科技投资集团有限公司 一种推力轴承和转子系统
CN208918699U (zh) * 2018-09-30 2019-05-31 至玥腾风科技投资集团有限公司 一种转子系统和燃气轮机发电机组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU226126U1 (ru) * 2023-09-19 2024-05-21 Акционерное Общество "Гт Энерго" Газотурбинная установка
RU226127U1 (ru) * 2023-09-28 2024-05-21 Акционерное Общество "Гт Энерго" Газотурбинная установка

Also Published As

Publication number Publication date
CN110966094B (zh) 2024-04-02
CN110966094A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
CA3087367C (en) Rotor system and control method thereof, as well as gas turbine generator set and control method thereof
WO2019137026A1 (zh) 一种推力轴承、转子系统及推力轴承的控制方法
WO2019137028A1 (zh) 轴承、转子系统及轴承的控制方法
CN110552746A (zh) 一种转子系统和燃气轮机发电机组
WO2019137025A1 (zh) 一种径向轴承、转子系统及径向轴承的控制方法
CN208605232U (zh) 一种转子系统和燃气轮机发电机组
WO2020063517A1 (zh) 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
WO2020082965A1 (zh) 一种燃气轮机发电机及控制方法
WO2019137023A1 (zh) 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
WO2019137024A1 (zh) 一种推力轴承、转子系统及推力轴承的控制方法
CN208236900U (zh) 一种推力轴承和转子系统
CN208123260U (zh) 一种径向轴承和转子系统
CN110552790B (zh) 一种动力系统及其控制方法
CN208010407U (zh) 一种转子系统和燃气轮机发电机组
CN208918699U (zh) 一种转子系统和燃气轮机发电机组
CN110552960B (zh) 一种推力轴承、转子系统及推力轴承的控制方法
WO2019137029A1 (zh) 转子系统及其控制方法和燃气轮机发电机组及其控制方法
CN208123262U (zh) 一种推力轴承和转子系统
CN208123261U (zh) 一种推力轴承和转子系统
CN110966303A (zh) 一种推力轴承及其制作方法和转子系统
CN110966305A (zh) 一种轴承阻尼器、径向轴承、推力轴承和转子系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19865806

Country of ref document: EP

Kind code of ref document: A1