WO2019137029A1 - 转子系统及其控制方法和燃气轮机发电机组及其控制方法 - Google Patents
转子系统及其控制方法和燃气轮机发电机组及其控制方法 Download PDFInfo
- Publication number
- WO2019137029A1 WO2019137029A1 PCT/CN2018/103446 CN2018103446W WO2019137029A1 WO 2019137029 A1 WO2019137029 A1 WO 2019137029A1 CN 2018103446 W CN2018103446 W CN 2018103446W WO 2019137029 A1 WO2019137029 A1 WO 2019137029A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bearing
- magnetic
- thrust
- stator
- rotating shaft
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 101
- 230000002706 hydrostatic effect Effects 0.000 claims description 138
- 239000011888 foil Substances 0.000 claims description 136
- 230000003068 static effect Effects 0.000 claims description 100
- 238000002485 combustion reaction Methods 0.000 claims description 33
- 230000009471 action Effects 0.000 claims description 17
- 238000004891 communication Methods 0.000 claims description 8
- 239000000446 fuel Substances 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 230000005611 electricity Effects 0.000 claims description 4
- 238000007514 turning Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 abstract description 8
- 239000000523 sample Substances 0.000 description 43
- 230000008569 process Effects 0.000 description 37
- 229910000976 Electrical steel Inorganic materials 0.000 description 30
- 230000001276 controlling effect Effects 0.000 description 25
- 239000000463 material Substances 0.000 description 24
- 239000000696 magnetic material Substances 0.000 description 23
- 230000035939 shock Effects 0.000 description 17
- 230000000875 corresponding effect Effects 0.000 description 11
- 230000001133 acceleration Effects 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 238000013459 approach Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000010030 laminating Methods 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000010248 power generation Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 238000011217 control strategy Methods 0.000 description 3
- 238000013016 damping Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000005489 elastic deformation Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/06—Arrangements of bearings; Lubricating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
Definitions
- the present disclosure relates to the field of rotor technology, and in particular, to a rotor system and a control method thereof, and a gas turbine generator set and a control method thereof.
- Gas turbines mainly include three major components: compressor, combustion chamber and turbine. After the air enters the compressor, it is compressed into high-temperature and high-pressure air, and then supplied to the combustion chamber to be mixed with the fuel for combustion. The high-temperature and high-pressure gas generated by the compressor expands and works in the turbine. When the rotor rotates at a high speed, the rotor is subjected to forces in the radial direction and forces in the axial direction. In order to limit the radial and axial movement of the shaft, radial bearings and thrust bearings need to be installed in the rotor system. The traditional radial bearing and thrust bearing are contact bearings. As the rotor speed increases, especially when the rotor speed exceeds 40,000 rpm, the contact bearing cannot meet the working speed requirement due to the large mechanical wear. .
- the gas turbine generator set in the prior art, a structure in which the gas turbine and the generator are separated is generally adopted, and the gas turbine rotor and the generator rotor are connected through a coupling, and the gas turbine casing and the generator casing are connected by a nozzle.
- the gas turbine rotor and the generator rotor are respectively supported by bearings located in the gas turbine casing and the generator casing, and the stators of the bearings located in the gas turbine casing and the generator casing are fixedly connected to the gas turbine casing and the generator casing, respectively.
- the bearings in the gas turbine casing and the generator casing must be coaxially arranged.
- the present disclosure provides a rotor system and a control method thereof, and a gas turbine generator set and a control method thereof, to solve the above problems of the existing gas turbine generator set.
- the present disclosure provides a rotor system including: a rotating shaft, the shaft body of the rotating shaft is an integral structure, the rotating shaft is horizontally disposed or vertically disposed; the motor, the compressor, the turbine, the thrust bearing, and the two diameters are disposed on the rotating shaft
- the bearing, the thrust bearing and the two radial bearings are non-contact bearings; and, the first casing and the second casing, the first casing is connected to the second casing; wherein the generator, the thrust bearing and the two The radial bearings are all disposed in the first casing, and the compressor and the through-average are disposed in the second casing; the impeller of the compressor and the turbine impeller are disposed in the second casing.
- a thermal insulation layer is provided on the turbine and/or on the turbine.
- the two radial bearings comprise a first radial bearing and a second radial bearing, the first radial bearing is disposed on a side of the generator remote from the second casing, and the second radial bearing is disposed on the generator a side of the second casing; wherein the thrust bearing is disposed between the first radial bearing and the generator; or the thrust bearing is disposed between the generator and the second radial bearing; or the thrust bearing is disposed at The side of the second radial bearing that is adjacent to the second casing.
- the bearing capacity of the second radial bearing is greater than the bearing capacity of the first radial bearing.
- first casing and the second casing are positioned and connected through the slots.
- the motor is a dynamic pressure bearing motor, and a first dynamic pressure generating groove is disposed at a position of the bearing corresponding to the generator of the rotating shaft.
- the motor is a heuristic integrated motor.
- the rotor system further includes a locking device for locking the shaft when the shaft is static.
- the portion of the shaft on which the bearing is mounted is coated with an anti-wear coating.
- the thrust bearing is a pneumatic hybrid thrust bearing; at least one of the at least two radial bearings is a pneumatic hybrid radial bearing or a gas dynamic static pressure hybrid radial bearing.
- the magnetic component of the second radial bearing is disposed on a region of the second radial bearing that is remote from the turbine.
- the gas magnetic hybrid thrust bearing is a foil type gas magnetic hybrid thrust bearing
- the foil type gas magnetic hybrid thrust bearing comprises: a first thrust disc, the first thrust disc is fixedly connected to the rotating shaft; and is disposed on the rotating shaft a first stator and a second stator, the first stator and the second stator are respectively disposed on opposite sides of the first thrust plate;
- each of the stators includes a first magnetic bearing and a first foil bearing
- the first magnetic bearing is provided with a plurality of first magnetic members circumferentially
- the first foil bearing is provided with a second magnetic member that generates a magnetic force between the plurality of first magnetic members; wherein the first foil bearing is disposed between the first magnetic bearing and the first thrust plate and has a first gap with the first thrust plate
- the first foil bearing is movable in the axial direction of the rotating shaft by the magnetic force between the first magnetic member and the second magnetic member.
- the gas magnetic hybrid thrust bearing is a trough type gas magnetic hybrid thrust bearing
- the trough type gas magnetic hybrid thrust bearing comprises: a second thrust disc, the second thrust disc is fixedly connected to the rotating shaft, and the second thrust disc is provided with a first a third magnetic component; and a third stator and a fourth stator that are disposed on the rotating shaft, the third stator and the fourth stator are respectively disposed on opposite sides of the second thrust disc; each of the third stator and the fourth stator
- the stator includes a second magnetic bearing, and the second magnetic bearing is circumferentially provided with a plurality of fourth magnetic members capable of generating a magnetic force with the third magnetic member, and the second magnetic bearing and the second thrust plate have a second gap therebetween
- the second thrust disk is movable in an axial direction of the rotating shaft by a magnetic force between the third magnetic member and the plurality of fourth magnetic members; wherein the second thrust disk faces the third stator and the fourth stator The end face, or the end faces of the third stator and the
- each stator is further provided with a first static pressure intake throttle hole, one end of the first static pressure air intake throttle hole communicates with the second gap, and the other end is connected An external air source for delivering an external source of air into the second gap.
- the gas-magnetic hybrid radial bearing is a trough type gas-magnetic hybrid radial bearing
- the trough type gas-magnetic hybrid radial bearing comprises: a fourth magnetic bearing sleeved on the rotating shaft, and the fourth magnetic bearing is arranged circumferentially a plurality of seventh magnetic members; a fourth magnetic bearing facing the side wall of the rotating shaft, or a rotating shaft facing the circumferential surface of the fourth magnetic bearing; a third dynamic pressure generating groove; wherein the fourth magnetic bearing and the rotating shaft have a Four gaps, and the rotating shaft is movable in the radial direction of the rotating shaft by the magnetic force of the plurality of seventh magnetic members.
- the fourth magnetic bearing is further provided with a second static pressure air inlet orifice, one end of the second static pressure air inlet orifice communicates with the fourth gap, and the other end is connected with an external air source for externally The gas source is delivered into the fourth gap.
- the thrust bearing and the radial bearing adjacent to the thrust bearing are integrated to form an integrated bearing
- the integrated bearing comprises: a third bearing shell, the third bearing shell is a hollow rotating body, and the third bearing
- the housing is provided with a first receiving cavity and a second receiving cavity; a radial sub-bearing disposed in the first receiving cavity, the radial sub-bearing is disposed on the rotating shaft, and the fifth gap is between the radial sub-bearing and the rotating shaft;
- the radial sub-bearing comprises a fifth magnetic bearing sleeved on the rotating shaft, a fifth gap between the fifth magnetic bearing and the rotating shaft, and a plurality of eighth magnetic components are circumferentially disposed on the fifth magnetic bearing;
- the rotating shaft is movable in a radial direction of the rotating shaft under the magnetic force of the plurality of eighth magnetic members;
- each of the fifth stator and the sixth stator includes a sixth magnetic bearing, and the sixth magnetic bearing is disposed circumferentially a plurality of ninth magnetic members;
- a third tenth magnetic plate is disposed on the third thrust plate, and the third thrust plate is movable in an axial direction of the rotating shaft by a magnetic force between the plurality of ninth magnetic members and the tenth magnetic member .
- the third bearing shell is further provided with a third static pressure air inlet orifice; wherein one end of the third static pressure air inlet orifice is connected to the external air source, and the other end is connected to the fifth gap via the radial bearing. And/or communicating with the sixth gap via the fifth stator and the sixth stator for conveying the external air source to the fifth gap and/or the sixth gap.
- the present disclosure provides a method of controlling a rotor system for the rotor system described above, the method comprising: opening a hydrostatic bearing in a radial bearing and a thrust bearing to move the rotating shaft to a predetermined radial position to cause a thrust The thrust disc of the bearing moves to a preset axial position; after the rotational speed of the rotating shaft is accelerated to the working speed, the static bearing in the radial bearing and the thrust bearing is closed; when the rotor system is stopped, the hydrostatic bearing and the thrust in the radial bearing are opened a hydrostatic bearing in a bearing; after the speed of the rotating shaft is decelerated to zero, the hydrostatic bearing in the radial bearing and the thrust bearing is closed; wherein the opening of the hydrostatic bearing comprises: opening the magnetic bearing in the bearing, and/or into the bearing The static pressure intake orifice delivers gas; closing the hydrostatic bearing includes: closing the magnetic bearing in the bearing, and/or stopping the delivery of gas to the static pressure inlet orifice in the bearing
- the present disclosure provides a control method for another rotor system for the above rotor system, the method comprising: opening a hydrostatic bearing in a radial bearing and a thrust bearing to move the rotating shaft to a preset radial position, The thrust plate of the thrust bearing moves to a preset axial position; after the rotational speed of the rotating shaft accelerates to a first preset value, the hydrostatic bearing in the radial bearing and the thrust bearing is closed; the rotor system accelerates to a first-order critical speed or a second-order criticality At speed, the hydrostatic bearing in the radial bearing and the thrust bearing is turned on; after the smoothness of the rotor system exceeds the first-order critical speed or the second-order critical speed, the hydrostatic bearing in the radial bearing and the thrust bearing is closed; the rotor system is decelerated to one When the critical or second-order critical speed is used, the hydrostatic bearing in the radial bearing and the thrust bearing is opened; after the smoothness of the rotor system
- the hydrostatic bearing in the radial bearing and the hydrostatic bearing in the thrust bearing are opened; the rotation speed of the shaft is decelerated to Thereafter, the hydrostatic bearing in the radial bearing and the thrust bearing is closed; wherein the hydrostatic bearing is opened, including: opening the magnetic bearing in the bearing, and/or, delivering gas to the static pressure inlet orifice in the bearing; Hydrostatic bearings include: closing the magnetic bearings in the bearings, and/or stopping the delivery of gas to the static pressure inlet orifices in the bearings.
- the hydrostatic bearing in the thrust bearing is opened to move the thrust disc of the thrust bearing to a preset axial position, including: opening the first magnetic bearing in the first stator and the second stator, and controlling the first thrust The disk moves in the axial direction of the rotating shaft under the magnetic force of the plurality of first magnetic members such that the first gap between the first thrust disk and the first foil bearing in the first stator is equal to the first thrust disk a first gap with the first foil bearing in the second stator; the method further comprising: when the load is loaded on the first thrust disk, the first thrust disk moves in the axial direction of the rotating shaft under the load load, Opening the first gap when the first gap between the first thrust disc and the first foil bearing in the first stator is not equal to the first gap between the first thrust disc and the first foil bearing in the second stator a first magnetic bearing in the stator and the second stator; a first gap between the first thrust disk and the first foil bearing in the first stator being equal to the first foil in the first thrust disk and the second stator a first gap
- the hydrostatic bearing in the thrust bearing is opened to move the thrust disc of the thrust bearing to a preset axial position, including: opening a second magnetic bearing in the third stator and the fourth stator, and controlling the second thrust disc Moving in the axial direction of the rotating shaft by the magnetic force between the third magnetic member and the plurality of fourth magnetic members, so that the second gap between the second thrust disk and the second magnetic bearing in the third stator is The difference between the second gap between the second thrust disk and the second magnetic bearing in the fourth stator is less than or equal to a predetermined value; the method further includes: when the load is loaded on the second thrust disk, the second thrust disk is under load load Moving in the axial direction of the rotating shaft, the second gap between the second thrust disk and the second magnetic bearing in the third stator and the second magnetic bearing between the second thrust disk and the fourth stator When the difference between the two gaps is greater than a predetermined value, opening a second magnetic bearing in the third stator or the fourth stator; and a second gap and a second thrust between the second thrust disk and
- the hydrostatic bearing in the thrust bearing is opened to move the thrust disc of the thrust bearing to a preset axial position, including: opening a second magnetic bearing of the third stator and the fourth stator; and/or, starting the external a gas source that delivers gas to the second gap through the first static pressure inlet orifice; controls the magnetic force of the second thrust disk between the third magnetic member and the fourth magnetic member, and/or the pushing action of the gas Moving downward in the axial direction of the rotating shaft such that a second gap between the second thrust disk and the second magnetic bearing in the third stator is between the second thrust bearing and the second magnetic bearing in the fourth stator The difference of the second gap is less than or equal to a predetermined value.
- the hydrostatic bearing in the radial bearing is opened to move the rotating shaft to a preset radial position, including: opening the third magnetic bearing, and controlling the diameter of the rotating shaft in the rotating shaft under the magnetic force of the plurality of fifth magnetic components Moving in the direction to move the rotating shaft to the preset radial position; the method further comprises: when the third gap between the rotating shaft and the second foil bearing changes, opening the third magnetic bearing to make the gap smaller The second foil bearing moves in a direction close to the rotating shaft under the magnetic force between the plurality of fifth magnetic members and the sixth magnetic member; after the rotating shaft is in the balanced radial position, the third magnetic bearing is closed.
- the hydrostatic bearing in the radial bearing is opened to move the rotating shaft to a preset radial position, including: opening the fourth magnetic bearing, and controlling the diameter of the rotating shaft in the rotating shaft under the magnetic force of the plurality of seventh magnetic components Moving in the direction to move the rotating shaft to the preset radial position; the method further comprises: when the fourth gap between the rotating shaft and the fourth magnetic bearing changes, opening the fourth magnetic bearing, so that the rotating shaft is in the seventh The magnetic member moves under a magnetic force away from the side where the gap becomes smaller; after the rotating shaft is in the balanced radial position, the fourth magnetic bearing is closed.
- the hydrostatic bearing in the radial bearing is opened to move the rotating shaft to a preset radial position, including: opening the fourth magnetic bearing; and/or, starting the external air source, and passing the second static pressure air inlet
- the flow hole transports the gas to the fourth gap; the control shaft moves under the magnetic force of the plurality of seventh magnetic members, and/or the gas is pushed in the radial direction of the rotating shaft to move the rotating shaft to the preset radial direction position.
- the present disclosure provides a gas turbine generator set including an intake passage, a combustion chamber, and the above-described rotor system.
- the intake passage is in communication with an intake port of the compressor, and an air outlet of the compressor is connected to an intake port of the combustion chamber.
- the air outlet of the combustion chamber is connected to the inlet of the turbine.
- the present disclosure provides a control method for a gas turbine generator set for the gas turbine generator set, the method comprising: opening a hydrostatic bearing in a radial bearing and a thrust bearing to move the rotating shaft to a preset radial position, The thrust plate of the thrust bearing is moved to a preset axial position; the gas turbine generator set is started, and the air is compressed by the compressor to enter the combustion chamber and the fuel in the combustion chamber is mixed and combusted; the high temperature and high pressure gas discharged from the combustion chamber impacts the turbine of the turbine The turbine is rotated, and the turbine drives the motor to generate electricity through the rotating shaft; after the rotating speed of the rotating shaft is accelerated to the working speed, the static bearing in the radial bearing and the thrust bearing is closed; when the gas turbine generator set is stopped, the static bearing in the radial bearing is opened.
- the hydrostatic bearing in the thrust bearing after the rotational speed of the rotating shaft is decelerated to zero, the hydrostatic bearing in the radial bearing and the thrust bearing is closed; wherein the opening of the hydrostatic bearing comprises: opening the magnetic bearing in the bearing, and/or a static pressure air intake orifice in the bearing delivers gas; closing the static pressure bearing includes: closing the bearing The magnetic bearing, and/or, stops the delivery of gas to the static pressure inlet orifice in the bearing.
- the present disclosure by arranging all the bearings in the same casing, it is only necessary to ensure the machining accuracy of the portion of the casing for setting the bearing stator, and the casing is used for connecting the bearing stator during assembly.
- the part can be completed by one card loading process. It can be seen that the present disclosure reduces the processing precision and assembly precision of the gas turbine generator set, reduces the cost, and is suitable for engineering mass production.
- the impeller of the compressor against the turbine impeller the axial length in the first casing is shortened, so that the stability of the entire rotor system can be further improved.
- FIG. 1 is a schematic structural view of a rotor system according to a first embodiment
- FIG. 2 is a schematic structural view of another rotor system provided by the first embodiment
- FIG. 3 is a schematic structural view of another rotor system provided by the first embodiment
- FIG. 4 is a schematic structural view of a rotor system according to a second embodiment
- Figure 5 is a schematic structural view of another rotor system provided by the second embodiment
- FIG. 6 is a schematic structural view of another rotor system according to a second embodiment
- FIG. 7 is a schematic structural view of a locking device provided in a rotor system according to a third embodiment
- FIG. 8 is a schematic structural view of another locking device provided in a rotor system according to a third embodiment
- Figure 9 is a schematic structural view of the E-E direction of Figure 8.
- Figure 10 is a schematic view showing the structure of applying an anti-friction coating on a rotating shaft according to a fourth embodiment
- FIG. 11 is a schematic structural view of a gas turbine generator set provided by a fifth embodiment
- FIG. 12 is a schematic flow chart of a control method of a gas turbine generator set according to a fifth embodiment
- FIG. 13 is a schematic flow chart of another control method of a gas turbine generator set according to a fifth embodiment
- FIG. 14 is a schematic flow chart of a control method of a rotor system according to a sixth embodiment
- 15 is a schematic flow chart of another method for controlling a rotor system according to a sixth embodiment
- Figure 16 is a cross-sectional view showing a foil type gas magnetic hybrid thrust bearing according to a seventh embodiment
- FIG. 17 is a schematic structural view of a first magnetic bearing in a foil type gas magnetic hybrid thrust bearing according to a seventh embodiment
- FIG. 18 is a schematic structural view of a first magnetic bearing housing of a foil type gas magnetic hybrid thrust bearing according to a seventh embodiment
- FIG. 19 is a schematic structural view of a first foil in a foil type gas magnetic hybrid thrust bearing according to a seventh embodiment
- Figure 20 is a cross-sectional view showing a trough type gas magnetic hybrid thrust bearing according to an eighth embodiment
- 21 is a schematic structural view of a second magnetic bearing in a groove type gas magnetic hybrid thrust bearing according to an eighth embodiment
- Figure 22 is a schematic structural view of a second magnetic bearing housing of the trough type gas magnetic hybrid thrust bearing provided by the eighth embodiment
- FIG. 23 is a schematic structural view showing a second dynamic pressure generating groove provided on a second thrust plate in the groove type gas magnetic hybrid thrust bearing provided in the eighth embodiment;
- Figure 24 is a second structural schematic view showing the arrangement of the second dynamic pressure generating groove on the second thrust plate in the trough type gas magnetic hybrid thrust bearing provided in the eighth embodiment;
- 25 is a schematic structural view showing a second dynamic pressure generating groove provided on a first pressure ring in a groove type gas magnetic hybrid thrust bearing according to an eighth embodiment
- 26 is a second structural schematic view showing a second dynamic pressure generating groove disposed on a first pressure ring in a groove type gas magnetic hybrid thrust bearing according to an eighth embodiment
- Figure 27 is a half cross-sectional view showing a trough type gas-magnetic hybrid radial bearing according to a ninth embodiment
- Figure 28 is a half cross-sectional view showing another trough type gas-magnetic hybrid radial bearing according to a ninth embodiment
- Figure 29 is an external view of a trough type gas-magnetic hybrid radial bearing provided by a ninth embodiment
- FIG. 30 is a schematic structural view of a fourth magnetic bearing in a groove type gas magnetic hybrid radial bearing according to a ninth embodiment
- Figure 31 is a schematic structural view of a fourth magnetic bearing housing in a groove type gas-magnetic hybrid radial bearing according to a ninth embodiment
- FIG. 32 is a schematic structural view showing a third dynamic pressure generating groove disposed on a second bearing sleeve in a groove type gas magnetic hybrid radial bearing according to a ninth embodiment
- FIG. 33 is a second structural schematic view showing a third dynamic pressure generating groove disposed on a second bearing sleeve in a groove type gas magnetic hybrid radial bearing according to a ninth embodiment
- Figure 34 is a schematic structural view showing a third dynamic pressure generating groove provided on a rotating shaft in the groove type gas-magnetic hybrid radial bearing according to the ninth embodiment;
- FIG. 35 to 40 and FIG. 1 to FIG. 6 are schematic structural views of a rotor system using an integrated bearing
- Figure 41 is a cross-sectional view showing an integrated bearing according to a tenth embodiment
- Figure 42 is a cross-sectional view taken along line A-A of Figure 47;
- Figure 43 is a cross-sectional view taken along line B-B of Figure 47;
- Figure 44 is a schematic structural view showing the arrangement of a fifth dynamic pressure generating groove on the third bearing sleeve in the integrated bearing according to the tenth embodiment
- 45 is a second structural schematic view showing the fifth dynamic pressure generating groove disposed on the third bearing sleeve in the integrated bearing provided by the tenth embodiment;
- Figure 46 is a schematic structural view showing the fifth dynamic pressure generating groove disposed on the rotating shaft in the integrated bearing according to the tenth embodiment
- Figure 47 is a schematic structural view showing the arrangement of a sixth dynamic pressure generating groove on the third thrust plate in the integrated bearing according to the tenth embodiment
- Figure 48 is a second structural schematic view showing the arrangement of the sixth dynamic pressure generating groove on the third thrust plate in the integrated bearing provided by the tenth embodiment
- FIG. 49 is a schematic structural view showing a sixth dynamic pressure generating groove provided on a fifth stator in the integrated bearing according to the tenth embodiment
- Fig. 50 is a view showing the structure of the sixth dynamic pressure generating groove provided on the fifth stator in the integrated bearing according to the tenth embodiment.
- Embodiments of the present disclosure provide a rotor system including: a rotating shaft, the shaft body of the rotating shaft is an integral structure, the rotating shaft is horizontally disposed or vertically disposed; the motor, the compressor, the turbine, the thrust bearing, and the two radial directions are disposed on the rotating shaft
- the bearing, the thrust bearing and the two radial bearings are non-contact bearings; and, the first casing and the second casing, the first casing is connected to the second casing; wherein the generator, the thrust bearing and the two The radial bearings are all disposed in the first casing, and the compressor and the through-average are disposed in the second casing; the impeller of the compressor and the turbine impeller are disposed in the second casing.
- the thrust bearing is a bearing for restricting movement of the rotating shaft in the axial direction
- the radial bearing is a bearing for restricting movement of the rotating shaft in the radial direction
- both the thrust bearing and the radial bearing may adopt a non-contact bearing.
- the gas turbine rotor is connected to the generator rotor by using a coupling different from the prior art.
- the shaft body of the rotating shaft is a unitary structure, the strength of the shaft bodies on the rotating shaft is uniform, which makes the position of the thrust bearing on the rotating shaft unrestricted.
- the axial length in the first casing is shortened, so that the stability of the entire rotor system can be further improved.
- the first casing and the second casing may be positioned and connected through a stop (not shown), wherein the thrust bearing and all the radial bearings may all be disposed on the first casing (may be It is understood to be inside the generator casing, and the second casing (which can be understood as a gas turbine casing) does not need to be provided with bearings.
- the second casing which can be understood as a gas turbine casing
- the utility model reduces the processing precision and assembly precision of the gas turbine generator set, reduces the cost, and is suitable for engineering mass production.
- the rotating shaft may be horizontally disposed or vertically. Therefore, it can be understood that the rotor system of the embodiment of the present disclosure is applicable to both a horizontal unit requiring a rotor system and a rotor system.
- the vertical unit such as the gas turbine generator set to be described in detail below, can be either a horizontal gas turbine generator set or a vertical gas turbine generator set.
- a heat insulation layer (not shown) may be disposed on the turbine of the turbine and/or the compressor, wherein the material of the heat insulation layer may be Aerogels or other materials with good thermal insulation; turbines of turbines can also be made of materials with lower thermal conductivity, for example turbines made of ceramic materials.
- the rotor system includes a rotating shaft 100.
- the shaft body of the rotating shaft 100 is an integral structure, and the rotating shaft 100 is horizontally disposed.
- the motor 200, the compressor 300, the turbine 400, and the thrust bearing 500 are disposed on the rotating shaft 100.
- a first radial bearing 600 and a second radial bearing 700, the thrust bearing 500, the first radial bearing 600 and the second radial bearing 700 are both non-contact bearings; and the first casing 800 and the second casing 900, the first casing 800 is connected to the second casing 900, wherein the motor 200, the thrust bearing 500, the first radial bearing 600 and the second radial bearing 700 are all disposed in the first casing 800, and the compressor 300 And the turbine 400 are disposed in the second casing 900; the impeller of the compressor 300 and the impeller of the turbine 400 are disposed adjacent to each other in the second casing 900.
- the first radial bearing 600 is disposed on a side of the motor 200 remote from the second casing 900, and the second radial bearing 700 is disposed on a side of the motor 200 adjacent to the second casing 900.
- the thrust bearing 500 is disposed between the first radial bearing 600 and the motor 200, as shown in FIG. 1; or, the thrust bearing 500 is disposed between the motor 200 and the second radial bearing 700, as shown in FIG. 2;
- the thrust bearing 500 is disposed on a side of the second radial bearing 700 that is adjacent to the second casing 900, as shown in FIG.
- the thrust bearing 500 is disposed on the side of the second radial bearing 700 close to the second casing 900, that is, the thrust bearing 500 is disposed close to the second machine.
- non-contact bearings generally include electromagnetic bearings and air bearings.
- problems such as too much energy consumption and heat generation; and when the surface linear velocity approaches or exceeds the speed of sound, a shock wave is generated, which causes the bearing to be unstable and even has catastrophic consequences such as a collision axis. .
- the thrust bearing 500 may adopt a gas magnetic hybrid thrust bearing, and the first radial bearing 600 may be adopted.
- the gas magnetic hybrid radial bearing or the gas dynamic static pressure hybrid radial bearing; the second radial bearing 700 may be a pneumatic magnetic radial bearing or a gas dynamic static pressure hybrid radial bearing.
- the bearing capacity of the second radial bearing 700 is greater than the bearing capacity of the first radial bearing 600.
- the weight of the motor 200 and the thrust bearing 500 are both large, and the center of gravity of the entire rotor system is biased toward the side of the first radial bearing 600.
- increasing the bearing capacity of the second radial bearing 700 helps to improve the stability of the entire rotor system.
- the compressor 300 may be a centrifugal compressor 300, and the turbine of the turbine 400 may be a centrifugal turbine; the bearing of the motor 200 may be a fluid dynamic bearing, and the portion of the shaft 100 corresponding to the bearing of the motor 200 may be provided with The first dynamic pressure generating groove 201.
- the motor 200 can also be a heuristic integrated motor.
- the motor 200 can be turned on in the start mode to rotate the rotor system.
- the operating mode of the motor 200 can be switched to the power generation mode.
- the rotor system includes: a rotating shaft 100.
- the shaft body of the rotating shaft 100 is an integral structure, and the rotating shaft 100 is vertically disposed; the motor 200, the compressor 300, the turbine 400, and the thrust bearing disposed on the rotating shaft 100 500, a first radial bearing 600 and a second radial bearing 700, the thrust bearing 500, the first radial bearing 600 and the second radial bearing 700 are both non-contact bearings; and the first casing 800 and the second machine ⁇ 900, the first casing 800 is connected to the second casing 900, wherein the motor 200, the thrust bearing 500, the first radial bearing 600 and the second radial bearing 700 are all disposed in the first casing 800, the compressor Both the 300 and the turbine 400 are disposed within the second casing 900; the impeller of the compressor 300 and the impeller of the turbine 400 are disposed adjacent to each other within the second casing 900.
- the first radial bearing 600 is disposed on a side of the motor 200 remote from the second casing 900, and the second radial bearing 700 is disposed on a side of the motor 200 adjacent to the second casing 900.
- the thrust bearing 500 is disposed between the first radial bearing 600 and the motor 200, as shown in FIG. 4; or, the thrust bearing 500 is disposed between the motor 200 and the second radial bearing 700, as shown in FIG. 5;
- the thrust bearing 500 is disposed on a side of the second radial bearing 700 that is adjacent to the second casing 900, as shown in FIG.
- the shaft When the rotor system of the present disclosure is used on a mobile device, such as an extended-range electric vehicle, the shaft is in direct contact with the bearing without the rotor system operating.
- the rotation of the rotating shaft relative to the radial or axial direction of the bearing due to bumps or vibrations causes wear between the rotating shaft and the bearing, thereby affecting the accuracy and life of the bearing.
- the rotor system of the embodiment of the present disclosure is provided with a locking device for locking the rotating shaft when the rotor system is not in operation.
- the locking device 110 includes a telescopic tightening unit 111 , a connecting rod 112 and a fixing component 113 .
- One end of the connecting rod 112 is connected to the fixing component 113 , and the other end is connected to the telescopic tightening unit 111 .
- the telescopic tightening unit 111 faces the end surface of the rotating shaft 100 away from the end of the turbine 400, and the other end of the fixing member 113 is fixedly coupled to the housing in which the rotor system of the present disclosure is mounted.
- the telescopic tightening unit 111 of the locking device 110 acts and pushes the rotating shaft 100 in the axial direction of the rotating shaft 100, so that the stator of the thrust bearing 500 contacts the thrust plate, thereby axially fixing the rotating shaft 100 while utilizing The friction between the stator of the thrust bearing 500 and the thrust disk radially fixes the rotating shaft 100.
- the telescopic tightening unit 111 is provided with a tip portion (not shown), and an end surface of the rotating shaft 100 away from the end of the turbine 400 is provided with a tip hole (not shown). In the locked state, the tip portion is inserted into the top hole of the rotating shaft 100, so that the rotating shaft 100 can be better fixed to prevent wear and damage to the rotating shaft 100 and the bearing during running of the vehicle.
- the locking device 120 can also be provided as a locking device of a ferrule structure.
- the locking device 120 includes a telescopic unit 121 and a ferrule 122, and the ferrule 122 is coupled to the telescopic end of the telescopic unit 122.
- the ferrule 122 may be a semi-circular ferrule having a radius equal to or slightly larger than the radius of the rotating shaft 100.
- the axis of the ferrule 122 is disposed parallel to the axis of the rotating shaft 100, and the telescopic unit 121 is mounted to a substantially axial intermediate position of the rotating shaft 100, and is fixedly connected.
- the telescopic unit 121 When the rotor system is stopped, the telescopic unit 121 is extended, so that the ferrule 122 is caught by the rotating shaft 100, and the rotating shaft 100 is pushed into contact with the radial bearing, thereby radially fixing the rotating shaft 100 while utilizing the radial bearing and the rotating shaft 100.
- the frictional force fixes the shaft 100 axially.
- the telescopic unit 121 may select a component such as a piston type cylinder or a hydraulic cylinder that can realize telescopic control.
- the position of the locking device 120 on the rotating shaft 100 may not be limited.
- the locking device 120 is disposed between the two farthest radial bearings in the rotor system.
- FIGS. 7 and 8 are both based on the rotor system arrangement shown in FIG. 1, and the locking device is provided in the rotor system of other embodiments of the present disclosure, which will not be described herein.
- the locking device can lock the rotating shaft when the rotor system is not working. In this way, it is possible to prevent the rotation of the rotating shaft from being radial or axial with respect to the bearing, so that the accuracy and life of the bearing can be improved.
- the shaft When the rotor system of the present disclosure is used on a mobile device, such as an extended-range electric vehicle, the shaft is in direct contact with the bearing without the rotor system operating.
- the rotation of the rotating shaft relative to the radial or axial direction of the bearing due to bumps or vibrations causes wear between the rotating shaft and the bearing, thereby affecting the accuracy and life of the bearing.
- the rotor system of the embodiment of the present disclosure is coated with an anti-friction coating 101 at a portion where the bearing of the rotating shaft 100 is mounted, as shown in FIG.
- the wear-resistant coating 101 is applied to the portion of the rotating shaft 100 where the bearing is mounted, and the wear of the rotating shaft 100 and the bearing can be effectively prevented.
- the wear-resistant coating 101 is preferably a material having chemical stability, corrosion resistance, high lubricating non-stickiness, and good aging resistance, such as polytetrafluoroethylene.
- any of the rotor systems of the first embodiment to the fourth embodiment described above can be applied to a horizontal gas turbine generator set, and is particularly suitable for a horizontal micro gas turbine generator set.
- the following is an example of a rotor system applied to a horizontal gas turbine generator set. Specifically, it will be explained.
- an embodiment of the present disclosure provides a gas turbine generator set including a casing 310, an intake passage 320, and a combustion chamber 330, and any one of the above-described first to sixth embodiments, a rotor system.
- the shaft 100, the motor 200, the compressor 300, the turbine 400, and a thrust bearing and a radial bearing (not shown) disposed on the rotating shaft 100 are included.
- the intake passage 320 communicates with the intake port of the compressor 300
- the air outlet of the compressor 300 communicates with the intake port of the combustion chamber 330
- the air outlet of the combustion chamber 330 communicates with the intake port of the turbine 400.
- the compressor 300 may be a centrifugal compressor 300, and the turbine 400 may be a centrifugal turbine; the bearing of the motor 200 may be a fluid dynamic bearing, and the shaft 100 may be provided with a first dynamic pressure corresponding to the bearing of the motor 200.
- the tank 201; the combustion chamber 330 may be an annular combustion chamber.
- the intake passage 320 is formed by the outer casing of the electric machine 200 and the outer casing 310 of the gas turbine generator set.
- the air flows through the outer casing of the motor 200, and the motor 200 can be cooled.
- the motor 200 is a heuristic integrated motor.
- the thrust bearing in the rotor system can be a pneumatically-mixed thrust bearing
- the radial bearing can be a pneumatic-compositive thrust bearing or a gas-hydrostatic hybrid radial bearing.
- a bearing that can perform lubrication without rotating the shaft 100 is defined as a hydrostatic bearing
- a bearing that can be operated when the rotating shaft 100 is rotated to a certain speed is defined as a dynamic pressure bearing.
- the magnetic bearing and the gas static pressure bearing in the gas magnetic hybrid thrust bearing, and the gas static pressure bearing in the gas dynamic static pressure hybrid radial bearing can be called a static pressure bearing; and the gas in the gas magnetic hybrid thrust bearing Dynamic pressure bearings, as well as gas dynamic pressure bearings in gas dynamic and static pressure hybrid radial bearings, can be called dynamic pressure bearings.
- an embodiment of the present disclosure provides a control method for a gas turbine generator set, including:
- opening the hydrostatic bearing comprises: opening a magnetic bearing in the bearing, and/or delivering gas to the static pressure inlet orifice in the bearing.
- the motor-inspired integrated motor is taken as an example to describe the starting process of the gas turbine generator set.
- the gas turbine controller (Electronic Control Unit, ECU for short) sends a motor drive mode command to the motor power controller (Data Processing Center, DPC for short); the DPC switches to the motor drive mode, and the DPC converts the DC power of the built-in battery of the gas turbine.
- the frequency conversion is carried out to drive the motor to work, and the motor drives the gas turbine to increase the rotation speed.
- the fuel valve is opened and the ignition procedure is entered.
- the air enters the compressor from the intake port and is compressed to enter the regenerator and is preheated by the high temperature gas discharged from the turbine.
- the preheated compressed air enters the combustion chamber to mix with the fuel and burns, and the high temperature and high pressure gas after the combustion chamber is fully burned.
- the turbine enters the turbine to impact the turbine, and the turbine turbine rotates.
- the turbine exhaust enters the regenerator to preheat the cold compressed air before entering the combustion chamber and is exhausted by the exhaust pipe. Since the turbine is connected to the compressor and the motor through the rotating shaft, Turbine turbine rotation drives the compressor to rotate to the self-sustaining speed.
- the DPC hangs, the motor idles to continue to increase the throttle, and the turbine continues to increase the power to increase the speed to the working speed.
- the ECU sends a generator mode command to the DPC; the DPC switches to the generator mode, and the alternating current output from the motor is rectified and transformed to output the voltage and current required by the user.
- the compressor is a centrifugal compressor
- the centrifugal compressor comprises a bucket and a vane arranged in a circumferential direction
- the vane is a diffuser.
- the specific process of air entering the compressor from the intake port for compression may be: after the air entering the centrifugal compressor is compressed, the diffuser (ie, the vane) that is placed in the circumferential direction continues to be compressed.
- the turbine turbine is a centrifugal turbine, and the centrifugal turbine is provided with a bucket.
- the combustion chamber outlet is arranged with a vane in the circumferential direction, and the vane is a nozzle.
- the specific process of rotating the turbine turbine may be: the high-temperature and high-pressure gas after the combustion chamber is fully combusted passes through the nozzle arranged circumferentially at the exit of the combustion chamber (ie, static After the expansion is accelerated, the blade of the turbine is impacted to rotate the turbine.
- closing the hydrostatic bearing includes: closing the magnetic bearing in the bearing, and/or stopping the delivery of gas to the static pressure inlet orifice in the bearing.
- the bearings in the rotor system are controlled such that the hydrostatic bearings in the radial bearing and the thrust bearing are always opened until the rotational speed of the rotating shaft reaches the operating speed.
- the bearings in the rotor system are controlled so that the static pressure bearings in the radial bearing and the thrust bearing are always open until the rotational speed of the rotating shaft is zero.
- an embodiment of the present disclosure provides another control method for a gas turbine generator set, including:
- opening the hydrostatic bearing comprises: opening a magnetic bearing in the bearing, and/or delivering gas to the static pressure inlet orifice in the bearing.
- the first preset value may be 5% to 30% of the rated speed.
- closing the hydrostatic bearing includes: closing the magnetic bearing in the bearing, and/or stopping the delivery of gas to the static pressure inlet orifice in the bearing.
- the second preset value may be equal to the first preset value, or may not be equal to the first preset value, and the second preset value may be 5% to 30% of the rated speed.
- the bearings in the rotor system are controlled to open the hydrostatic bearings of the radial bearing and the thrust bearing.
- the rotating shaft is lifted to a predetermined radial position under the action of the hydrostatic bearing of the radial bearing; the thrust disc is pushed to the preset axial position by the hydrostatic bearing of the thrust bearing.
- the rotational speed of the rotating shaft is gradually increased.
- a first preset value for example, 5% to 30% of the rated rotational speed
- the bearings in the rotor system are controlled to make the radial bearing and the thrust bearing.
- the hydrostatic bearing in the middle stops working.
- the bearings in the rotor system are controlled to re-open the hydrostatic bearings of the radial bearing and the thrust bearing.
- the bearings in the rotor system are controlled so that the hydrostatic bearings in the radial bearing and the thrust bearing are stopped again.
- the rotational speed of the rotating shaft gradually decreases.
- the bearings in the rotor system are controlled, and the static bearing of the radial bearing and the thrust bearing is opened again.
- the bearings in the rotor system are controlled, so that the hydrostatic bearings in the radial bearing and the thrust bearing are stopped again.
- the bearing in the rotor system is controlled, and the hydrostatic bearing of the radial bearing and the thrust bearing is opened again until the rotational speed drops to zero, and the rotor is controlled.
- the bearings in the system cause the hydrostatic bearings in the radial and thrust bearings to stop working again.
- control method of the rotor system will be specifically described below based on the above control method of the gas turbine generator set.
- an embodiment of the present disclosure provides a method for controlling a rotor system, including:
- opening the hydrostatic bearing comprises: opening a magnetic bearing in the bearing, and/or delivering gas to the static pressure inlet orifice in the bearing.
- closing the hydrostatic bearing includes: closing the magnetic bearing in the bearing, and/or stopping the delivery of gas to the static pressure inlet orifice in the bearing.
- the bearings in the rotor system are controlled to open the hydrostatic bearings of the radial bearing and the thrust bearing.
- the rotating shaft is lifted to a predetermined radial position under the action of the hydrostatic bearing of the radial bearing; the thrust disc is pushed to the preset axial position by the hydrostatic bearing of the thrust bearing.
- the hydrostatic bearing in the radial bearing and the thrust bearing is always open until the rotational speed of the rotating shaft reaches the working speed.
- the bearings in the rotor system are controlled so that the static pressure bearings in the radial bearing and the thrust bearing are always open until the rotational speed of the rotating shaft is zero.
- an embodiment of the present disclosure provides another method for controlling a rotor system, including:
- the opening of the hydrostatic bearing includes: opening the magnetic bearing in the bearing, and/or delivering gas to the static pressure inlet orifice in the bearing.
- the first preset value may be 5% to 30% of the rated speed.
- closing the hydrostatic bearing includes: closing the magnetic bearing in the bearing, and/or stopping the delivery of gas to the static pressure inlet orifice in the bearing.
- the second preset value may be equal to the first preset value, or may not be equal to the first preset value, and the second preset value may be 5% to 30% of the rated speed.
- the bearings in the rotor system are controlled to open the hydrostatic bearings of the radial bearing and the thrust bearing.
- the rotating shaft is lifted to a predetermined radial position under the action of the hydrostatic bearing of the radial bearing; the thrust disc is pushed to the preset axial position by the hydrostatic bearing of the thrust bearing.
- the rotational speed of the rotating shaft is gradually increased.
- a first preset value for example, 5% to 30% of the rated rotational speed
- the bearings in the rotor system are controlled to be made in the radial bearing and the thrust bearing.
- the hydrostatic bearing stops working.
- the bearings in the rotor system are controlled to re-open the hydrostatic bearings of the radial bearing and the thrust bearing.
- the bearings in the rotor system are controlled so that the hydrostatic bearings in the radial bearing and the thrust bearing are stopped again.
- the rotational speed of the rotating shaft gradually decreases.
- the bearings in the rotor system are controlled, and the hydrostatic bearings of the radial bearing and the thrust bearing are opened again.
- the bearings in the rotor system are controlled, so that the hydrostatic bearings in the radial bearing and the thrust bearing are stopped again.
- the bearing in the rotor system is controlled, and the hydrostatic bearing of the radial bearing and the thrust bearing is opened again until the rotational speed drops to zero, and the rotor is controlled.
- the bearings in the system cause the hydrostatic bearings in the radial and thrust bearings to stop working again.
- the thrust bearing and the radial bearing in the rotor system can adopt various structural forms.
- a foil-type gas-magnetic hybrid thrust bearing or a groove-type gas-magnetic hybrid thrust bearing may be included;
- a foil-type gas-magnetic hybrid radial bearing may be included or Grooved gas-magnetic hybrid radial bearings.
- FIG. 16 to FIG. 19 are schematic structural views of a foil type gas magnetic hybrid thrust bearing according to an embodiment of the present disclosure.
- the foil-type gas-magnetic hybrid thrust bearing 5100 includes: a first thrust plate 5101, the first thrust plate 5101 is fixedly coupled to the rotating shaft 100; and a first setting that is disposed on the rotating shaft 100 a child 5102 and a second stator 5103, the first stator 5102 and the second stator 5103 are respectively disposed on opposite sides of the first thrust plate 5101; in the first stator 5102 and the second stator 5103, each stator includes a first magnetic a bearing 5104 and a first foil bearing 5105.
- the first magnetic bearing 5104 is circumferentially provided with a plurality of first magnetic members, and the first foil bearing 5105 is provided with a magnetic force capable of generating a magnetic force with the plurality of first magnetic members.
- the first foil bearing 5105 is disposed between the first magnetic bearing 5104 and the first thrust plate 5101 and has a first gap 5106 with the first thrust plate 5101, and the first foil bearing 5105 It is possible to move in the axial direction of the rotary shaft 100 by the magnetic force between the first magnetic member and the second magnetic member.
- the thrust bearing 5100 is formed into a gas and magnetic hybrid thrust bearing by providing the first gap 5106 and the first magnetic bearing 5104 in the thrust bearing 5100.
- the gas bearing in the thrust bearing 5100 and the first magnetic bearing 5104 can work together, and when the thrust bearing 5100 is in a stable working state, the support is supported by the gas bearing; and when the thrust bearing 5100 is in an unstable working state, The thrust bearing 5100 is controlled and responsive in time by the first magnetic bearing 5104.
- the embodiments of the present disclosure can improve the dynamic performance and stability of the thrust bearing, especially in the high-speed running state, and have strong anti-disturbance capability, thereby improving the bearing capacity of the thrust bearing.
- the thrust bearing of the embodiment of the present disclosure can satisfy the requirements of a high-speed rotor system, for example, a gas turbine or a gas turbine power generation combined unit.
- the outer diameters of the first thrust plate 5101, the first stator 5102, and the second stator 5103 may be equal, and the structures of the first stator 5102 and the second stator 5103 may be identical.
- the first stator 5102 and the second stator 5103 may be coupled to the casing of the gas turbine through a connecting member.
- the plurality of first magnetic components comprise a plurality of first permanent magnets, wherein the plurality of first permanent magnets are circumferentially disposed on the first magnetic bearing 5104; or the plurality of first magnetic components comprise a plurality of first electromagnetic components Iron, a plurality of first electromagnets are circumferentially disposed on the first magnetic bearing 5104, and each of the plurality of first electromagnets includes a first magnetic core 51041 disposed on the first magnetic bearing 5104 and A first coil 51402 wound on the first core.
- the first magnetic member when the foil type gas magnetic hybrid thrust bearing 5100 only requires the magnetic member to provide magnetic force without magnetron, the first magnetic member is preferably the first permanent magnet; when the foil type pneumatic hybrid thrust bearing 5100 is simultaneously required In the case of magnetic force and magnetron control, the first magnetic member is preferably a first electromagnet.
- the first magnetic component is the first electromagnet
- current is applied to the first coil 51402, that is, the first magnetic core 51041 can generate a magnetic force.
- the magnitude of the current flowing into the first coil 51044 is different, and the magnitude of the magnetic force generated by the first core 51041 is also different; the direction of the current flowing into the first coil 51402 is different, and the magnetic poles of the first core 51041 are also different.
- the first magnetic core 51041 is formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
- the first magnetic bearing 5104 includes: a first magnetic bearing housing 51043, the first magnetic bearing housing 51043 is disposed opposite to the first thrust plate 5101, and the first magnetic bearing housing 51043 is circumferentially disposed with a plurality of first receiving portions.
- the groove 51044, the plurality of first magnetic members are disposed in the plurality of first receiving grooves 51044, and the magnetic poles of the plurality of first magnetic members face the side where the first foil bearing 5105 is located; the first end cover 51045, the first end The cover 51045 is disposed on a side of the first magnetic bearing housing 51043 away from the first foil bearing 5105 and cooperates with the first foil bearing 5105 to fix the first magnetic component to the first magnetic bearing housing 51043.
- the first magnetic bearing housing 51043 is formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
- the number of the first receiving grooves 51044 may be, but not limited to, six or eight, uniformly disposed along the circumferential direction of the first magnetic bearing housing 51043. In this way, the magnetic force between the first magnetic bearing housing 51043 and the first foil bearing 5105 can be made more uniform and stable.
- the plurality of first magnetic components may be disposed on the first magnetic bearing housing 51043 in other manners, which is not limited thereto.
- the material of the first end cap 51045 may be a non-magnetic material, preferably a hard aluminum material.
- the first foil bearing 5105 includes: a first foil bearing housing 51051 fixedly coupled to the first magnetic bearing housing 51043; and a first foil 51052 and a first foil disposed on the first foil bearing housing 51051 a second foil piece 51052, the first foil piece 51052 is mounted on the first foil bearing block 51051, and the second foil piece 51053 is stacked on the side of the first foil piece 51052 near the first thrust plate 5101;
- the second foil 51053 is a flat foil, and the second magnetic component is disposed on the second foil 51053 so that the second foil 51053 can be on the rotating shaft 100 under the magnetic force of the first magnetic component and the second magnetic component.
- the axial direction moves;
- the first foil 51052 is an elastically deformable foil that can be elastically deformed when the second foil 51053 moves.
- the material of the first foil bearing housing 51051 is a non-magnetic material, preferably a hard aluminum material.
- the first foil 51052 is an elastically deformable foil. Considering that the material of the magnetic conductive material is hard and brittle, it is not suitable as an elastic deformation foil. Therefore, the first foil 51052 is preferably a non-magnetic stainless steel belt.
- the second foil 51053 as a flat foil, it is convenient to control the distance between the second foil 51053 and the first thrust plate 5101, or to facilitate control of the size of the first gap 5106.
- the first foil 51052 adopts an elastically deformable foil, on the one hand, to connect the second foil 51053 and the first foil bearing seat 51051, and on the other hand, to realize the second foil 51053 relative to the first foil.
- the bearing housing 51051 can be moved along the axial direction of the rotating shaft 100.
- the first foil 51052 is a wave-shaped elastic deformation foil, and the first foil 51052 is an unclosed ring, and an opening is disposed thereon, one end of the opening is a fixed end, and the fixed end is fixed to the first On the foil bearing housing 51051, the other end of the opening is a movable end;
- the wave pattern on the first foil 51052 expands or contracts, and the movable end moves in the circumferential direction of the ring.
- the first foil piece 51052 as a wave-shaped elastically deformed foil, it is easy to push the second foil piece 51053 to move in the axial direction of the rotary shaft 100 by utilizing the expansion or contraction characteristics of the wave pattern.
- the shape of the first foil 51052 in the embodiment of the present disclosure is not limited to a wave shape, and other shapes capable of elastic deformation can be applied to the first foil 51052 of the embodiment of the present disclosure.
- the second magnetic component comprises a first magnetic material disposed on a side surface of the second foil 51053 adjacent to the first magnetic bearing 5104; wherein the first magnetic material is stripe on the second foil 51053
- the plurality of strip-shaped magnetic portions are formed in a radial shape or a ring shape; or the first magnetic members are distributed in a dot shape on the second foil 51053.
- the material of the second foil 51053 is preferably a non-magnetic material. After the first magnetic material is covered on the surface of the second foil 51053, the first magnetic material may be covered with a ceramic coating.
- the second foil 51053 can be made by sintering ceramic nano-powder using 40% zirconia, 30% alpha alumina, and 30% magnesium aluminate spinel.
- the magnetic force generated between the first magnetic material and the first magnetic member is greatly increased, which easily causes the second foil 51053 to be deformed.
- the first magnetic material is distributed in a strip shape or a dot shape on the second foil 51053, and the first The magnetic force generated between the magnetic material and the first magnetic member is controlled within a reasonable range, thereby preventing the second foil 51053 from being deformed by an excessive magnetic force.
- the foil type gas magnetic hybrid thrust bearing 5100 further includes a first sensor 5107, and the sensor probe of the first sensor 5107 is disposed in the first gap 5106.
- the parameters at the first gap 5106 such as the film pressure at the first gap 5106, etc.
- the first magnetic bearing 5104 can actively control the thrust bearing 5100 according to the detection result of the first sensor 5107, and can achieve high precision in control.
- the first sensor 5107 includes a first sensor cover 51071 and a first sensor probe 51072.
- the first end of the first sensor probe 51072 is connected to the first sensor cover 51071.
- the first sensor cover 51071 is fixed on the first magnetic bearing 5104.
- the first magnetic bearing 5104 and the first foil bearing 5105 are provided with through holes for the first sensor probe 51072 to pass through; the second end of the first sensor probe 51072 passes through the first magnetic bearing 5104 and the first foil
- the through hole in the bearing 5105 extends to the first gap 5106, and the second end portion of the first sensor probe 51072 is flush with the side of the first foil bearing 5105 adjacent to the first thrust plate 5101.
- the first sensor 5107 can be more stably disposed on the first magnetic bearing 5104 by the structural form and the mounting manner of the first sensor 5107.
- the second end of the first sensor probe 51072 is flush with the side of the first foil bearing 5105 adjacent to the first thrust plate 5101.
- the first sensor probe 51072 can be prevented from being touched by the first thrust plate 5101. Touching, thereby facilitating protection of the first sensor probe 51072; on the other hand, does not affect the air film in the first gap 5106, avoiding disturbance of the gas film in the first gap 5106.
- the first sensor 5107 is disposed between two adjacent first magnetic components.
- At least one first sensor 5107 should be disposed on each stator, preferably a first sensor 5107, which is preferably disposed between two adjacent first magnetic members.
- the first sensor 5107 is a combination of any one or more of the following: a displacement sensor for detecting the position of the first thrust plate 5101; a pressure sensor for detecting the film pressure at the first gap 5106; A speed sensor that detects the rotational speed of the first thrust plate 5101; an acceleration sensor that detects the rotational acceleration of the first thrust plate 5101.
- Embodiments of the present disclosure provide a method for controlling a foil type gas magnetic hybrid thrust bearing, including:
- the first magnetic bearing in the first stator and the second stator is opened, and the first thrust disk is controlled to move in the axial direction of the rotating shaft under the magnetic force of the plurality of first magnetic components, so that the first thrust disk and the first thrust disk A first gap between the first foil bearings in the first stator is equal to a first gap between the first thrust disk and the first foil bearing in the second stator.
- the first thrust disk reaches the predetermined position between the first stator and the second stator under the action of the first magnetic bearing, the first thrust plate and the first stator and the first The end faces of the two stators each have a first gap.
- the first thrust disk begins to rotate relative to the first stator and the second stator while being lubricated by the airflow in the first gap to prevent wear.
- the specific process of opening the first magnetic bearing is to input a current signal of a predetermined value to the first coil, and the first thrust disk reaches a predetermined position between the first stator and the second stator under the action of the first magnetic bearing.
- the rotational speed of the rotating shaft becomes larger and larger, the rotational speed of the first thrust disc also increases synchronously.
- the gas dynamic pressure bearing of the thrust bearing (the first thrust disc and the first stator and the first The film pressure generated by the first gap between the two stators, that is, the gas dynamic pressure bearing forming the thrust bearing, can stabilize the first thrust plate, and the first magnetic bearing can be closed at that time.
- the first thrust plate decelerates as the shaft decelerates.
- the first magnetic bearing is opened when the rotor system is stopped until the first thrust plate stops completely. The first magnetic bearing can then be closed.
- the embodiment of the present disclosure further provides a control method for another foil type gas magnetic hybrid thrust bearing, comprising:
- the first magnetic bearing in the first stator and the second stator is opened, and the first thrust disk is controlled to move in the axial direction of the rotating shaft under the magnetic force of the plurality of first magnetic components, so that the first thrust disk and the first thrust disk A first gap between the first foil bearings in the first stator is equal to a first gap between the first thrust disk and the first foil bearing in the second stator.
- the first thrust disk reaches the predetermined position between the first stator and the second stator under the action of the first magnetic bearing, the first thrust plate and the first stator and the first The end faces of the two stators each have a first gap.
- the first thrust disk begins to rotate relative to the first stator and the second stator while being lubricated by the airflow in the first gap to prevent wear.
- the specific process of opening the first magnetic bearing is to input a current signal of a predetermined value to the first coil, and the first thrust disk reaches a predetermined position between the first stator and the second stator under the action of the first magnetic bearing.
- the rotational speed of the rotating shaft becomes larger and larger, the rotational speed of the first thrust disk also increases synchronously.
- the gas dynamic pressure of the thrust bearing The film pressure generated by the bearing (the first gap between the first thrust plate and the first stator and the second stator, that is, the gas dynamic pressure bearing forming the foil type gas magnetic hybrid thrust bearing) can stabilize the first thrust plate At that time, the first magnetic bearing can be closed.
- the first thrust disc decelerates as the shaft decelerates.
- a second preset value such as 5% to 30% of the rated speed
- the gas dynamic pressure of the thrust bearing The film pressure generated by the bearing also decreases with the deceleration of the first thrust disc. Therefore, the first magnetic bearing needs to be opened to stabilize the first thrust disc until the first thrust disc is completely stopped, and then the first magnetic bearing can be closed. .
- the method further includes: when the load is loaded on the first thrust plate, the first thrust plate moves in the axial direction of the rotating shaft under the load load, and the first thrust disk and the first one in the first stator Opening a first magnetic bearing in the first stator and the second stator when a first gap between the foil bearings is not equal to a first gap between the first thrust disk and the first foil bearing in the second stator; Closing the first setting when the first gap between the first thrust disk and the first foil bearing in the first stator is equal to the first gap between the first thrust disk and the first foil bearing in the second stator a first magnetic bearing in the sub and second stator.
- the first sensor (here the first sensor, preferably the pressure sensor) obtains a signal of increased air pressure, at which point the first magnetic bearing requires intervention.
- the first magnetic bearing does not directly apply magnetic force to the first thrust plate, moving it to the first foil bearing on the other side, but uses magnetic force to move the first foil bearing on the other side away from the first.
- the direction of the thrust disc moves to increase the first gap between the first thrust disc and the first foil bearing on the other side, thereby increasing the pressure on the side of the first gap and adapting to the weight of the load on the first thrust disc.
- the airflow pressure on the two first gaps is automatically redistributed.
- the first foil bearing in the second stator is controlled to move in the axial direction of the rotating shaft in a direction away from the first thrust disk by a magnetic force between the plurality of first magnetic members and the second magnetic member.
- the first foil bearing in the stator moves in an axial direction of the rotating shaft in a direction away from the first thrust disk by a magnetic force between the plurality of first magnetic members and the second magnetic member.
- the first thrust plate moves in the axial direction of the rotating shaft under the load load, and between the first thrust plate and the first foil bearing in the first stator Opening the first magnetic gap in the first stator and the second stator when the first gap is not equal to the first gap between the first thrust disc and the first foil bearing in the second stator, including: when the load is loaded In the first thrust plate, the first thrust disk moves in the axial direction of the rotating shaft under the load load, and the first gap between the first thrust disk and the first foil bearing in the first stator is not equal to the first Controlling the first magnetic bearing in the first stator and the second stator to open at maximum power when a first gap between the thrust disk and the first foil bearing in the second stator; or, when the load is at first a thrust disc, the first thrust disc moves in an axial direction of the rotating shaft under the load of the load, and the first gap between the first thrust disc and the first foil bearing in the first stator is not equal to the first thrust disc With the first gap between
- the first thrust disc may quickly approach the first foil bearing on one side, which may cause the first gap on the side to be too small, so that the local gas flow rate at the first gap on the side is close. Even reaching the speed of sound, causing the shock wave to produce air hammer self-excitation. The generation of shock waves can cause local gas flow to be disturbed and confusing.
- the velocity of the fluid changes between sonic and subsonic, its pressure drops stepwise.
- the first foil bearing on the side is required to actively "avoid" the first thrust disk, so that the first gap of the side is increased to maintain the air velocity as much as possible in the subsonic range to maintain its normal fluid. pressure.
- the first magnetic bearing on the first stator and the second stator such that the magnetic poles of the first magnetic bearing are excited by the same polarity, that is, the side of the first gap is reduced to generate suction for returning The first foil bearing on the side is sucked, and the side of the first gap is increased to generate suction for pulling back the first thrust disk.
- the difference in the magnetic force acting on both sides is used to generate a magnetic difference, thereby pulling the first thrust plate to restore the first gap between the first thrust plate and the first foil bearing on both sides to normal, thereby causing the first thrust plate to be re-established. Go back to equilibrium.
- the advantage of the first magnetic bearing is convenient for real-time control, and the unbalanced mass of the first thrust disk or the whirl of the first thrust disk is actively balanced, and the first thrust disk is excessively offset, so that the first thrust disk is made. It is fixed in a certain minimum range in the axial direction of the rotating shaft.
- the position at which the shock wave is generated ie, the linear velocity supersonic portion
- the first magnetic bearing is reversed by controlling the magnitude and direction of the current of the first magnetic bearing. Force to balance the shock.
- the control strategy of the first magnetic bearing is adjusted again to fix the first thrust plate in a very small range in the most energy-saving manner.
- the electromagnetic bearing cooperates with the gas bearing to improve the dynamic performance and stability of the bearing under high-speed operation, and has strong resistance to disturbance, thereby improving the bearing capacity of the bearing.
- the electromagnetic bearing and the gas bearing adopt a parallel structure, which simplifies the structure, has high integration, is easy to process, manufacture and operate, and improves the comprehensive performance of the bearing.
- the bearing can be rotated by the electromagnetic bearing to drive the thrust disc and the stator in the bearing clearance, which improves the low speed performance of the bearing, prolongs the service life of the bearing, and improves the safety and reliability of the bearing and the whole system. Sex.
- the foil-type gas-magnetic hybrid thrust bearing of the embodiment of the present disclosure has the advantage of a fast response speed compared to the conventional gas dynamic static pressure hybrid thrust bearing using a combination of a gas hydrostatic bearing and a gas dynamic pressure bearing.
- the magnetic pole of the electromagnetic bearing can attract the foil to moderately deform, improve the maximum pressure on the lubricating film side of the bearing and prevent leakage of the lubricating gas flow, and improve the thrust plate against the disturbed eccentric collision.
- the ability of the wall which in turn increases the bearing capacity of the bearing.
- the pressure sensor is used to collect the pressure change of the film, and the deformation of the foil is controlled by a simple control method to provide higher rotor damping, thereby improving rotor stability.
- the simple control method due to the simple control method, the machining accuracy of the bearing is not high.
- FIG. 20 to FIG. 26 are schematic structural views of a groove type gas magnetic hybrid thrust bearing according to an embodiment of the present disclosure.
- the trough-type gas-magnetic hybrid thrust bearing 5200 includes: a second thrust disc 5201, the second thrust disc 5201 is fixedly coupled to the rotating shaft 100, and the second thrust disc 5201 is provided with a third magnetic component; And a third stator 5202 and a fourth stator 5203 disposed on the rotating shaft 100, the third stator 5202 and the fourth stator 5203 are respectively disposed on opposite sides of the second thrust plate 5201; the third stator 5202 and the fourth stator 5203 Each of the stators includes a second magnetic bearing 5204.
- the second magnetic bearing 5204 is circumferentially disposed with a plurality of fourth magnetic members capable of generating a magnetic force with the third magnetic member, and the second magnetic bearing 5204 and the second thrust.
- the thrust bearing 5200 is formed into a gas and magnetic hybrid thrust bearing by providing a second gap 5206 and a second magnetic bearing 5204 in the thrust bearing 5200.
- the gas bearing in the thrust bearing 5200 and the second magnetic bearing 5204 can work together, and when the thrust bearing 5200 is in a stable working state, the support is supported by the gas bearing; and when the thrust bearing 5200 is in an unstable working state, The thrust bearing 5200 is controlled and responsive in time by the second magnetic bearing 5204.
- the embodiments of the present disclosure can improve the dynamic performance and stability of the thrust bearing, especially in the high-speed running state, and have strong anti-disturbance capability, thereby improving the bearing capacity of the thrust bearing.
- the thrust bearing of the embodiment of the present disclosure can satisfy the requirements of a high-speed rotor system, for example, a gas turbine or a gas turbine power generation combined unit.
- the outer diameters of the second thrust plate 5201, the third stator 5202, and the fourth stator 5203 may be equal, and the structures of the third stator 5202 and the fourth stator 5203 may be identical.
- the third stator 5202 and the fourth stator 5203 may be coupled to the casing of the gas turbine through a joint.
- the flowing gas existing in the second gap 5206 is pressed into the second dynamic pressure generating groove 5205, thereby generating pressure to realize the axial direction of the second thrust plate 5201.
- the direction is maintained in a non-contact manner.
- the magnitude of the pressure generated by the second dynamic pressure generating groove 5205 varies depending on the angle of the second dynamic pressure generating groove 5205, the groove width, the groove length, the groove depth, the number of grooves, and the flatness. Further, the magnitude of the pressure generated by the second dynamic pressure generating groove 5205 is also related to the rotational speed of the second thrust disk 5201 and the second gap 5206.
- the parameters of the second dynamic pressure generating groove 5205 can be designed according to actual working conditions.
- the second dynamic pressure generating groove 5205 may be formed on the third stator 5202 and the fourth stator 5203 by forging, rolling, etching or stamping, or the second dynamic pressure generating groove 5205 may be forged, rolled, and engraved. Etching or stamping or the like is formed on the second thrust plate 5201.
- the plurality of fourth magnetic components comprise a plurality of second permanent magnets, the plurality of second permanent magnets are circumferentially disposed on the second magnetic bearing 5204; or the plurality of fourth magnetic components comprise a plurality of second electromagnetic components Iron, a plurality of second electromagnets are circumferentially disposed on the second magnetic bearing 5204, and each of the plurality of second electromagnets includes a second magnetic core 52041 disposed on the second magnetic bearing 5204 and The second coil 52042 is wound around the second core 52041.
- the fourth magnetic member when the trough type gas magnetic hybrid thrust bearing 5200 only requires the magnetic member to provide magnetic force without magnetron, the fourth magnetic member is preferably a second permanent magnet; when the trough type pneumatic hybrid thrust bearing 5200 requires both magnetic force and In the case of magnetron control, the fourth magnetic member is preferably a second electromagnet.
- a current is applied to the second coil 52242, that is, the second magnetic core 52041 can generate a magnetic force.
- the magnitude of the current flowing into the second coil 52242 is different, and the magnitude of the magnetic force generated by the second core 52041 is also different; the direction in which the current is applied to the second coil 52242 is different, and the magnetic pole of the second core 52041 is also different.
- the second magnetic core 52041 may be formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
- the second magnetic bearing 5204 includes: a second magnetic bearing housing 52043, the second magnetic bearing housing 52043 is disposed opposite to the second thrust plate 5201, and the second magnetic bearing housing 52043 is circumferentially disposed with a plurality of second receiving portions.
- the groove 52044, the plurality of fourth magnetic members are disposed in the plurality of second receiving grooves 52044, and the magnetic poles of the plurality of fourth magnetic members face the side where the second thrust plate 5201 is located; the second end cover 52045 and the first pressing ring 52046, the second end cover 52045 is disposed on a side of the second magnetic bearing housing 52043 away from the second thrust plate 5201, and the first pressure ring 52046 is disposed on a side of the second magnetic bearing housing 52043 near the second thrust plate 5201.
- the second end cap 52045 cooperates with the first pressure ring 52046 to fix the plurality of fourth magnetic components to the second magnetic bearing housing 52043.
- the second magnetic bearing housing 52043 may be formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
- the number of the second accommodating grooves 52044 may be, but not limited to, six or eight, and is uniformly disposed along the circumferential direction of the second magnetic bearing housing 52043.
- the magnetic force between the second magnetic bearing 5204 and the second thrust plate 5201 can be made more uniform and stable.
- the plurality of fourth magnetic components may be disposed on the second magnetic bearing housing 52043 in other manners, which is not limited thereto.
- the material of the second end cap 52045 may be a non-magnetic material, preferably a hard aluminum material.
- the material of the first pressure ring 52046 may be a non-magnetic material, preferably a hard aluminum material.
- the second dynamic pressure generating groove 5205 may be disposed on the first pressure ring 52046.
- the first pressure ring 52046 may be made of a stainless steel material.
- the third magnetic component includes a second magnetic material (not shown) disposed on an end surface of the second thrust plate 5201 facing the third stator 5202 and the fourth stator 5203; wherein the second magnetic material is The second thrust plate 5201 is distributed in a strip shape to form a plurality of strip-shaped magnetic portions, and the plurality of strip-shaped magnetic portions are radially or annular; or the second magnetic member is distributed in a dot shape on the second thrust plate 5201 .
- the second magnetic material is distributed in a strip shape or a dot shape on the second thrust plate 5201, and the magnetic force generated between the second magnetic material and the fourth magnetic member can be controlled within a reasonable range.
- the second dynamic pressure generating grooves 5205 are arranged in a radial or concentric manner, so that the gas film is more uniformly distributed in the second gap 5206.
- the second dynamic pressure generating groove 5205 includes a first spiral groove 52051 and a second spiral groove 52052.
- the first spiral groove 52051 surrounds the second spiral groove 52052, and the first spiral groove 52051 and the second spiral groove 52052 The spiral strikes in the opposite direction, and one end of the first spiral groove 52051 near the second spiral groove 52052 is connected or disconnected from one end of the second spiral groove 52052 near the first spiral groove 52051.
- the distance from the end of the first spiral groove 52051 near the second spiral groove 52052 to the axis of the rotating shaft 100 is equal to the end of the first spiral groove 52051 near the second spiral groove 52052 to the third stator 5202 or the fourth stator 5203 or The distance of the outer peripheral edge of the second thrust plate 5201.
- the distance from the end of the second spiral groove 52052 near the first spiral groove 52051 to the axis of the rotating shaft 100 is equal to the end of the second spiral groove 52052 near the first spiral groove 52051 to the third stator 5202 or the fourth stator 5203 or The distance of the outer peripheral edge of the second thrust plate 5201.
- the second thrust plate 5201 can be non-contactly in a desired manner in the case where the rotating shaft 100 rotates in the forward or reverse direction. It is maintained so that the rotating shaft 100 has the advantages of high load capacity and good stability.
- each of the third stator 5202 and the fourth stator 5203 is further provided with a first static pressure intake throttle hole 5208, and one end of the first static pressure air intake throttle hole 5208 and the second gap 5206 The other end is connected to an external air source for conveying the external air source into the second gap 5206.
- the gas static pressure bearing can be formed by providing the first static pressure intake throttle hole 5208, so that the thrust bearing 5200 can constitute a gas dynamic static pressure-magnetic hybrid thrust bearing.
- the flow diameter of the first hydrostatic inlet orifice 5208 can be adjusted according to actual working conditions such as gas demand.
- each of the stators is provided with a plurality of first static pressure intake throttle holes 5208, and a plurality of first static pressure intake throttle holes 5208 are along the stator.
- the circumferential interval is set.
- the plurality of first hydrostatic air intake orifices 5208 are spaced apart along the circumferential direction of the stator, preferably evenly spaced along the circumferential direction of the stator. Thus, it is advantageous to make the film pressure in the second gap 5206 more uniform.
- the distance between the first static pressure intake throttle hole 5208 and the axis of the rotating shaft 100 is greater than or equal to the first static pressure intake throttle hole 5208 to the outer circumference of the stator. The distance from the edge.
- the first static pressure intake throttle hole 5208 is disposed in such a manner that the gas static pressure bearing is more stable. If the static pressure air intake throttle hole is too close to the axial center of the rotating shaft 100, the method cannot be timely and effectively.
- the air film is covered with the entire end surface of the second thrust plate 5201, so that the rotation of the second thrust plate 5201 is not stabilized.
- the distance from the first static pressure inlet orifice 5208 to the axis of the shaft 100 is equal to the distance of the first hydrostatic inlet orifice 5208 to the outer peripheral edge of the stator.
- the trough type gas magnetic hybrid thrust bearing 5200 further includes a second sensor 5207, and the sensor probe of the second sensor 5207 is disposed in the second gap 5206.
- the parameters at the second gap 5206 such as the film pressure at the second gap 5206, etc.
- the second magnetic bearing 5204 can actively control the thrust bearing 5200 according to the detection result of the second sensor 5207, and can achieve high precision in control.
- the second sensor 5207 includes a second sensor cover 52071 and a second sensor probe 52072.
- the first end of the second sensor probe 52072 is connected to the second sensor cover 52071, and the second sensor cover 52071 is fixed to the second magnetic bearing 5204.
- the second magnetic bearing 5204 is provided with a through hole for the second sensor probe 52072 to pass through; the second end of the second sensor probe 52072 passes through the through hole of the second magnetic bearing 5204 and extends to the second gap 5206 And the second end portion of the second sensor probe 52072 is flush with the side of the second magnetic bearing 5204 near the second thrust plate 5201.
- the second sensor 5207 can be more stably disposed on the second magnetic bearing 5204 by the structural form and the mounting manner of the second sensor 5207.
- the second end portion of the second sensor probe 52072 is flush with the side of the second magnetic bearing 5204 adjacent to the second thrust plate 5201.
- the second sensor probe 52072 can be prevented from being subjected to the second thrust plate 5201. The touch is beneficial to protect the second sensor probe 52072; on the other hand, it does not affect the air film in the second gap 5206, and the gas film in the second gap 5206 is prevented from being disturbed.
- the second sensor 5207 is disposed between the adjacent two fourth magnetic components.
- At least one second sensor 5207 should be disposed on each stator, preferably a second sensor 5207, which is preferably disposed between adjacent two fourth magnetic members.
- the second sensor 5207 is a combination of any one or more of the following: a displacement sensor for detecting the position of the second thrust plate 5201; a pressure sensor for detecting the film pressure at the second gap 5206; A speed sensor that detects the rotational speed of the second thrust plate 5201; an acceleration sensor that detects the rotational acceleration of the second thrust plate 5201.
- Embodiments of the present disclosure provide a control method for a trough type gas magnetic hybrid thrust bearing, including:
- the second thrust plate reaches the predetermined position between the third stator and the fourth stator under the action of the second magnetic bearing, and the second thrust plate is combined with the third stator and the fourth stator.
- the end faces each have a second gap.
- the second thrust disc begins to rotate relative to the third and fourth stators while being lubricated by the airflow in the second gap to prevent wear.
- the specific process of opening the second magnetic bearing is: inputting a current signal of a predetermined value to the second coil, and the second thrust disk reaches a predetermined position between the third stator and the fourth stator under the action of the second magnetic bearing.
- the rotational speed of the rotating shaft becomes larger and larger, the rotational speed of the second thrust disc also increases synchronously.
- the gas dynamic pressure bearing of the thrust bearing (the second thrust disc and the third stator and the fourth The film pressure generated by the second gap between the stators, that is, the gas dynamic pressure bearing forming the thrust bearing, can stabilize the second thrust plate, and the second magnetic bearing can be closed at that time.
- the second thrust plate decelerates as the shaft decelerates.
- the second magnetic bearing is opened when the rotor system is stopped until the second thrust plate stops completely. The second magnetic bearing can then be closed.
- the embodiment of the present disclosure further provides a control method for another trough type gas magnetic hybrid thrust bearing, comprising:
- the second thrust plate reaches the predetermined position between the third stator and the fourth stator under the action of the second magnetic bearing, and the second thrust plate is combined with the third stator and the fourth stator.
- the end faces each have a second gap.
- the second thrust disc begins to rotate relative to the third and fourth stators while being lubricated by the airflow in the second gap to prevent wear.
- the specific process of opening the second magnetic bearing is: inputting a current signal of a predetermined value to the second coil, and the second thrust disk reaches a predetermined position between the third stator and the fourth stator under the action of the second magnetic bearing.
- the rotational speed of the rotating shaft becomes larger and larger, the rotational speed of the second thrust disc also increases synchronously.
- the gas dynamic pressure of the thrust bearing The film pressure generated by the bearing (the second gap between the second thrust plate and the third stator and the fourth stator, that is, the gas dynamic pressure bearing forming the groove type gas magnetic hybrid thrust bearing) can stabilize the second thrust plate.
- the second magnetic bearing can be closed.
- the second thrust disc decelerates as the shaft decelerates.
- the speed of the shaft is lower than the second preset value, for example, 5% to 30% of the rated speed, at this time, the gas movement of the thrust bearing
- the film pressure generated by the pressure bearing also decreases with the deceleration of the second thrust plate. Therefore, the second magnetic bearing needs to be opened to stabilize the second thrust plate until the second thrust plate is completely stopped, and then the second magnetic body can be turned off. Bearing.
- the method further includes: when the load is loaded on the second thrust plate, the second thrust disk moves in the axial direction of the rotating shaft under the load load, and the second magnetic force in the second thrust disk and the third stator Opening a second magnetic bearing in the third stator or the fourth stator when a difference between the second gap between the bearings and the second gap between the second thrust disc and the second magnetic bearing in the fourth stator is greater than a predetermined value a difference between a second gap between the second thrust disk and the second magnetic bearing in the third stator and a second gap between the second thrust disk and the second magnetic bearing in the fourth stator is less than or equal to a predetermined The value closes the second magnetic bearing in the third stator or the fourth stator.
- the second sensor (The second sensor here is preferably a pressure sensor) to obtain a signal of increased air pressure, at which time the second magnetic bearing needs to be intervened.
- the second magnetic bearing applies a magnetic force to the second thrust plate to move to the second magnetic bearing on the other side, and after the second thrust plate reaches a new equilibrium position, the second magnetic bearing stops working.
- the second gap between the second thrust plate and the second magnetic bearing in the third stator is smaller than the second gap between the second thrust plate and the second magnetic bearing in the fourth stator
- the second thrust Controlling the fourth stator by a difference between a second gap between the disk and the second magnetic bearing in the third stator and a second gap between the second thrust disk and the second magnetic bearing in the fourth stator being greater than a predetermined value
- the second magnetic bearing moves the second thrust disk in the axial direction of the rotating shaft in a direction away from the fourth stator under the magnetic force between the third magnetic member and the plurality of fourth magnetic members.
- the second gap between the second thrust disc and the second magnetic bearing in the fourth stator is smaller than the second gap between the second thrust disc and the second magnetic bearing in the third stator, and the second thrust disc and the second Controlling a difference between a second gap between the second magnetic bearings in the three stators and a second gap between the second thrust disk and the second magnetic bearing in the fourth stator is greater than a predetermined value, thereby controlling the third of the third stators
- the two-magnetic bearing moves the second thrust disk in the axial direction of the rotating shaft in a direction away from the third stator under the magnetic force between the third magnetic member and the plurality of fourth magnetic members.
- the second thrust plate moves in the axial direction of the rotating shaft under the load load, and the second between the second thrust plate and the second magnetic bearing in the third stator Opening the second magnetic bearing in the third stator or the fourth stator when the difference between the second gap and the second gap between the second thrust disk and the second magnetic bearing in the fourth stator is greater than a predetermined value, including: when the load Loaded in the second thrust disc, the second thrust disc moves in the axial direction of the rotating shaft under the load load, and the second gap and the second thrust between the second thrust disc and the second magnetic bearing in the third stator Controlling the second magnetic bearing in the third stator or the fourth stator to be turned on at maximum power when the difference between the second gap between the disk and the second magnetic bearing in the fourth stator is greater than a predetermined value; or, when the load is at a second thrust disc, the second thrust disc moves in the axial direction of the rotating shaft under the load of the load, and the second gap and the second thrust disc between the second thrust
- the second thrust disc may quickly approach the second magnetic bearing on one side, which may cause the second gap on the side to be too small, so that the local gas flow rate at the second gap on the side is close to or even The speed of sound is reached, which causes the shock wave to generate self-excitation.
- the generation of shock waves can cause local gas flow to be disturbed and confusing.
- the velocity of the fluid changes between sonic and subsonic, its pressure drops stepwise.
- an electromagnetic bearing is disposed at the same time (the fourth magnetic component in the second magnetic bearing is an electromagnet that forms an electromagnetic bearing) and a hydrostatic bearing (on the third stator and the fourth stator)
- the electromagnetic bearing and the gas static pressure bearing may be mutually reserved, and in the case where one of the faults, failure or failure to satisfy the opening condition, the other side Can be used as a backup bearing to play the same role.
- the external air source is turned on to replace the electromagnetic bearing to perform a corresponding action, thereby improving the safety and reliability of the bearing.
- the step of "turning on the hydrostatic bearing in the thrust bearing to move the thrust disc of the thrust bearing to the preset axial position" is The embodiment may include an embodiment of: opening a second magnetic bearing of the third stator and the fourth stator; and/or, starting an external air source, delivering gas to the second gap through the first static pressure air intake orifice; controlling the second The thrust disk moves in the axial direction of the rotating shaft under the action of the magnetic force between the third magnetic member and the fourth magnetic member, and/or the pushing force of the gas, so that the second thrust disk and the second one of the third stator A difference between the second gap between the magnetic bearings and the second gap between the second thrust disk and the second magnetic bearing in the fourth stator is less than or equal to a predetermined value.
- the advantage of the second magnetic bearing is convenient for real-time control, and the unbalanced mass of the second thrust disk or the whirl of the second thrust disk is actively balanced, which causes the second thrust disk to be excessively offset, so that the second thrust disk It is fixed in a certain minimum range in the axial direction of the rotating shaft.
- the position at which the shock wave is generated ie, the linear velocity supersonic portion
- the second magnetic bearing is reversed by controlling the magnitude and direction of the current of the second magnetic bearing. Force to balance the shock.
- the control strategy of the second magnetic bearing is adjusted again to fix the second thrust plate in a very small range in the most energy-saving manner.
- the electromagnetic bearing cooperates with the gas bearing to improve the dynamic performance and stability of the bearing under high-speed operation, and has strong resistance to disturbance, thereby improving the bearing capacity of the bearing.
- the electromagnetic bearing and the gas bearing adopt a parallel structure, which simplifies the structure, has high integration, is easy to process, manufacture and operate, and improves the comprehensive performance of the bearing.
- the trough type gas-magnetic hybrid thrust bearing of the embodiment of the present disclosure has the advantage of fast response speed compared to the conventional gas dynamic hydrostatic hybrid thrust bearing using a combination of a gas hydrostatic bearing and a gas dynamic pressure bearing.
- the gas hydrostatic bearing is added to form a trough dynamic-static-magnetic hybrid thrust bearing.
- the bearing capacity of the bearing is further increased, and the electromagnetic bearing and the gas static pressure are further increased.
- the bearings can be used interchangeably, and the other can function as a backup bearing in the event that one of the faults fails, fails, or fails to meet the opening conditions.
- the control system controls the gas hydrostatic bearing to open to replace the electromagnetic bearing to perform a corresponding action, thereby improving the safety and reliability of the bearing.
- FIG. 34 are schematic structural views of a groove type gas magnetic hybrid radial bearing according to an embodiment of the present disclosure.
- the groove type gas magnetic hybrid radial bearing 6200 includes: a fourth magnetic bearing 6201 sleeved on the rotating shaft 100, and a plurality of seventh magnetic components are circumferentially disposed on the fourth magnetic bearing 6201
- the fourth magnetic bearing 6201 is disposed toward the side wall of the rotating shaft 100, or the rotating shaft 100 is disposed on the circumferential surface of the fourth magnetic bearing 6201 with a third dynamic pressure generating groove 6202; wherein the fourth magnetic bearing 6201 and the rotating shaft 100 have the same
- the four gaps 6203 and the rotating shaft 100 are movable in the radial direction of the rotating shaft 100 by the magnetic force of the plurality of seventh magnetic members.
- the radial bearing 6200 is formed into a gas-and magnetic-mixed radial bearing by providing a fourth gap 6203 and a fourth magnetic bearing 6201 in the radial bearing 6200.
- the gas bearing in the radial bearing 6200 and the fourth magnetic bearing 6201 can work together, relying on the gas bearing to achieve support when the radial bearing 6200 is in a stable working state; and the radial bearing 6200 is in an unstable operation.
- the radial bearing 6200 is controlled and responded in time by the fourth magnetic bearing 6201.
- the embodiments of the present disclosure can improve the dynamic performance and stability of the radial bearing, especially in the high-speed operation state, and have strong anti-disturbance capability, thereby improving the bearing capacity of the radial bearing.
- the radial bearings of the embodiments of the present disclosure are capable of meeting the needs of high speed rotor systems, such as gas turbine or gas turbine power generation combined units.
- the rotating shaft 100 may be formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
- the flowing gas existing in the fourth gap 6203 is pressed into the third dynamic pressure generating groove 6202, thereby generating pressure to float the rotating shaft 100 to realize the radial direction of the rotating shaft 100. It is kept non-contact.
- the magnitude of the pressure generated by the third dynamic pressure generating groove 6202 varies depending on the angle of the third dynamic pressure generating groove 6202, the groove width, the groove length, the groove depth, the number of grooves, and the flatness. Further, the magnitude of the pressure generated by the third dynamic pressure generating groove 6202 is also related to the rotational speed of the rotating shaft 100 and the fourth gap 6203.
- the parameters of the third dynamic pressure generating groove 6202 can be designed according to actual working conditions.
- the third dynamic pressure generating groove 6202 may be formed on the fourth magnetic bearing 6201 or the rotating shaft by forging, rolling, etching, or punching.
- the plurality of seventh magnetic components comprise a plurality of fourth permanent magnets, wherein the plurality of fourth permanent magnets are circumferentially disposed on the fourth magnetic bearing 6201; or the plurality of seventh magnetic components comprise a plurality of fourth electromagnetic components Iron, a plurality of fourth electromagnets are circumferentially disposed on the fourth magnetic bearing 6201, and each of the plurality of fourth electromagnets includes a fourth magnetic core 62011 disposed on the fourth magnetic bearing 6201 and The fourth coil 62012 is wound around the fourth core 62011.
- the seventh magnetic member when the groove type gas magnetic hybrid radial bearing 6200 only requires the magnetic member to provide magnetic force without magnetron, the seventh magnetic member is preferably a fourth permanent magnet; when the foil type gas magnetic hybrid thrust bearing requires magnetic force at the same time In the case of magnetron control, the seventh magnetic member is preferably a fourth electromagnet.
- the seventh magnetic member is the fourth electromagnet
- a current is applied to the fourth coil 62012, that is, the fourth magnetic core 62011 can generate a magnetic force.
- the magnitude of the current flowing into the fourth coil 62012 is different, and the magnitude of the magnetic force generated by the fourth core 62011 is also different.
- the direction of the current flowing into the fourth coil 62012 is different, and the magnetic poles of the fourth core 62011 are also different.
- the fourth magnetic core 62011 may be formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
- the fourth magnetic bearing 6201 includes: a fourth magnetic bearing housing 62013, the fourth magnetic bearing housing 62013 is sleeved on the rotating shaft 100, and a fourth magnetic receiving seat 62013 is disposed on the fourth magnetic bearing housing 62013 with a plurality of fourth receiving slots 62014 a plurality of seventh magnetic members are disposed in the plurality of fourth receiving grooves 62014, and the magnetic poles of the plurality of seventh magnetic members are oriented toward the rotating shaft 100; and the second bearing housing 62015 is disposed outside the fourth magnetic bearing housing 62013; a second bearing sleeve 62016 between the fourth magnetic bearing housing 62013 and the rotating shaft 100; and a fifth end cover 62017 and a sixth end cover 62018 respectively disposed at the two ends of the second bearing housing 62015;
- the second bearing sleeve 62016, the fifth end cover 62017 and the sixth end cover 62018 cooperate to fix the plurality of seventh magnetic members to the fourth magnetic bearing housing 62013.
- the gap between the fourth magnetic core 62011 and the fourth coil 62012 can be closed, thereby forming a stable and uniform air film between the second bearing sleeve 62016 and the rotating shaft 100. pressure.
- the size of the fourth gap 6203 can be conveniently adjusted and controlled by providing the second bearing sleeves 62016 of different radial thicknesses.
- the width of the fourth gap 6203 between the second bearing sleeve 62016 and the rotating shaft 100 may be 5 ⁇ m to 12 ⁇ m, preferably 8 ⁇ m to 10 ⁇ m.
- the fourth magnetic bearing housing 62013 may be formed by laminating a plurality of silicon steel sheets or silicon steel sheets.
- the number of the fourth accommodating grooves 62014 may be, but not limited to, six or eight, and is uniformly disposed along the circumferential direction of the fourth magnetic bearing housing 62013.
- the magnetic force between the fourth magnetic bearing 6201 and the rotating shaft 100 can be made more uniform and stable.
- the plurality of seventh magnetic members may be disposed on the fourth magnetic bearing housing 62013 in other manners, which is not limited thereto.
- the material of the fifth end cap 62017 and the sixth end cap 62018 may each be a non-magnetic material, preferably a hard aluminum material.
- the material of the second bearing sleeve 62016 may be a non-magnetic material, preferably a hard aluminum material.
- the material of the second bearing shell 62015 may be a non-magnetic material, preferably a hard aluminum material.
- the fifth end cover 62017 and the sixth end cover 62018 are each provided with a boss having the same outer diameter as the inner diameter of the second bearing shell 62015, and the bosses of the fifth end cover 62017 and the sixth end cover 62218 are used for The end fixes and compacts the silicon steel sheet or the silicon steel sheet constituting the fourth magnetic bearing housing 62013.
- the third dynamic pressure generating groove 6202 may be disposed on the second bearing sleeve 62016.
- the second bearing sleeve 62016 may be made of a stainless steel material.
- the third dynamic pressure generating groove 6202 may be disposed on the rotating shaft 100 at an intermediate portion corresponding to the circumferential surface of the second bearing sleeve 62016, or may be disposed symmetrically distributed on both sides of the intermediate portion and independent of each other.
- the pressure generating groove 6202; the third dynamic pressure generating groove 6202 may be disposed at an intermediate portion of the inner side wall of the second bearing sleeve 62016, or may be disposed symmetrically distributed at two ends of the inner side wall of the second bearing sleeve 62016, and independent of each other.
- the third dynamic pressure generating grooves 6202 are arranged in a matrix, so that the gas film is more uniformly distributed in the fourth gap 6203.
- the third dynamic pressure generating groove 6202 is a continuous or spaced V-shaped groove.
- the rotating shaft can be held in a non-contact manner in a desired manner in the case where the rotating shaft 100 rotates in the forward or reverse direction.
- the rotating shaft 100 has the advantages of high load capacity and good stability.
- the third dynamic pressure generating groove 6202 may be provided as a chevron groove or a groove of other shapes, in addition to being provided as a V-shaped groove.
- the fourth magnetic bearing 6201 is further provided with a second static pressure air inlet orifice 6205, one end of the second static pressure air inlet orifice 6205 is in communication with the fourth gap 6203, and the other end is connected to an external air source.
- a second static pressure air inlet orifice 6205 one end of the second static pressure air inlet orifice 6205 is in communication with the fourth gap 6203, and the other end is connected to an external air source.
- the gas static pressure bearing can be formed by providing the second static pressure air inlet orifice 6205, so that the groove type gas magnetic hybrid radial bearing 6200 can form a trough gas dynamic static pressure-magnetic hybrid radial direction. Bearing.
- the flow diameter of the second hydrostatic inlet orifice 6205 can be adjusted according to actual working conditions such as gas demand.
- the second hydrostatic air intake orifice 6205 is divided into at least two branches into the fourth gap 6203 in the fourth magnetic bearing 6201.
- the second static pressure air intake orifice 6205 may sequentially pass through the fifth end cover 62017 or the sixth end cover 62018, the fourth magnetic bearing 6201, and the second bearing sleeve 62016, and the external air source and the first The four gaps 6203 are connected. Further, the second hydrostatic air intake orifice 6205 can be divided into two or more branches to communicate with the fourth gap 6203 such that the film pressure in the fourth gap 6203 is more uniform. Further, the fifth end cover 62017 or the sixth end cover 62018 may be provided with an annular groove, and a plurality of second static pressure air intake orifices 6205 may be disposed in the annular region corresponding to the fourth magnetic bearing 6201 and the annular groove.
- a second hydrostatic air intake orifice 6205 is provided in each of the fourth cores 62011 or in every two adjacent fourth cores 62011.
- the second static pressure inlet orifice 6205 and the flow diameter of the branch can be adjusted according to actual working conditions such as gas demand.
- the trough type gas magnetic hybrid radial bearing 6200 further includes a plurality of fourth sensors 6204 disposed along a circumferential interval of the fourth magnetic bearing 6201, wherein the sensor probe of each fourth sensor 6204 is disposed in the fourth gap 6203 Inside.
- the parameter at the fourth gap 6203 can be detected in real time, for example, the film pressure at the fourth gap 6203.
- the fourth magnetic bearing 6201 can actively control the radial bearing 6200 according to the detection result of the fourth sensor 6204, and can achieve high precision in control.
- each of the plurality of fourth sensors 6204 includes a fourth sensor cover 62041 and a fourth sensor probe 62242.
- the first end of the fourth sensor probe62042 is connected to the fourth sensor cover 62041, and the fourth sensor
- the cover 62041 is fixed on the fourth magnetic bearing 6201, and the fourth magnetic bearing 6201 is provided with a through hole for the fourth sensor probe62042 to pass through; the second end of the fourth sensor probe 62242 passes through the fourth magnetic bearing 6201.
- the through hole extends to the fourth gap 6203, and the second end portion of the fourth sensor probe 62242 is flush with the side of the fourth magnetic bearing 6201 near the rotating shaft 100.
- the fourth sensor 6204 can be more stably disposed on the fourth magnetic bearing 6201 by the structural form and the mounting manner of the fourth sensor 6204 described above.
- the second end portion of the fourth sensor probe 62242 is flush with the side of the fourth magnetic bearing 6201 near the rotating shaft 100.
- the fourth sensor probe 62242 can be prevented from being touched by the rotating shaft 100, thereby facilitating the contact.
- the fourth sensor probe 62242 is protected; on the other hand, the air film in the fourth gap 6203 is not affected, and the gas film in the fourth gap 6203 is prevented from being disturbed.
- the number of the fourth sensors 6204 may be the same as the number of the seventh magnetic components.
- the fourth sensor 6204 may be disposed between the two adjacent seventh magnetic components, or may be disposed through the seventh magnetic component, which is not limited by the embodiment of the present disclosure.
- Each of the fourth sensors 6204 is preferably disposed at a middle portion of the fourth magnetic bearing 6201.
- the plurality of fourth sensors 6204 are any combination of one or more of: a displacement sensor for detecting the position of the rotating shaft 100; a pressure sensor for detecting the film pressure at the fourth gap 6203; for detecting A speed sensor for rotating the shaft 100; an acceleration sensor for detecting the rotational acceleration of the rotating shaft 100.
- Embodiments of the present disclosure provide a method for controlling a slot type gas magnetic hybrid radial bearing, including:
- the fourth magnetic bearing is turned on, and the control shaft is moved in a radial direction of the rotating shaft by the magnetic force of the plurality of seventh magnetic members, and the rotating shaft is pushed to a preset radial position.
- the rotating shaft is lifted by the fourth magnetic bearing and reaches a preset radial position, and the fourth magnetic bearing and the rotating shaft have a fourth gap.
- the specific process of opening the fourth magnetic bearing is: inputting a current signal of a predetermined value to the fourth coil, and the rotating shaft is lifted by the fourth magnetic bearing and reaches a preset radial position.
- the gas dynamic pressure bearing of the radial bearing (the fourth magnetic gap between the fourth magnetic bearing and the rotating shaft forms a gas motion of the radial bearing)
- the film pressure generated by the pressure bearing can stabilize the shaft, and the fourth magnetic bearing can be closed at that time.
- the rotating shaft is decelerated.
- the fourth magnetic bearing is opened when the rotor system is stopped, and the fourth magnetic bearing can be closed after the rotating shaft is completely stopped.
- the embodiment of the present disclosure further provides a control method for another trough type gas magnetic hybrid radial bearing, comprising:
- the fourth magnetic bearing is opened until the rotating shaft returns to the equilibrium radial position.
- the fourth magnetic bearing when the rotational speed of the rotating shaft is accelerated to a first-order critical speed or a second-order critical speed, the fourth magnetic bearing is turned on, including: when the rotational speed of the rotating shaft is accelerated to a first-order critical speed or a second-order critical speed, the fourth magnetic bearing is controlled to The maximum power is turned on; or, when the rotational speed of the rotating shaft is accelerated to the first critical speed or the second critical speed, the fourth magnetic bearing is controlled to be strobed in accordance with the preset frequency.
- the fourth magnetic bearing is turned on until the rotating shaft returns to the equilibrium radial position.
- the fourth magnetic bearing when the rotational speed of the rotating shaft is decelerated to a first-order critical speed or a second-order critical speed, the fourth magnetic bearing is turned on, including: when the rotational speed of the rotating shaft is decelerated to a first-order critical speed or a second-order critical speed, the fourth magnetic bearing is controlled to The maximum power is turned on; or, when the rotational speed of the rotating shaft is decelerated to the first critical speed or the second critical speed, the fourth magnetic bearing is controlled to be strobed in accordance with the preset frequency.
- the rotating shaft is lifted by the fourth magnetic bearing and reaches a preset radial position, and the fourth magnetic bearing and the rotating shaft have a fourth gap.
- the specific process of opening the fourth magnetic bearing is: inputting a current signal of a predetermined value to the fourth coil, and the rotating shaft is lifted by the fourth magnetic bearing and reaches a preset radial position.
- the radial dynamic bearing of the radial bearing (between the fourth magnetic bearing and the rotating shaft)
- the film pressure generated by the fourth gap that is, the gas dynamic pressure bearing forming the radial bearing, can stabilize the shaft, and the fourth magnetic bearing can be closed at that time.
- the rotating shaft is decelerated.
- the rotating shaft speed drops to a second preset value, for example, 5% to 30% of the rated speed
- the fourth magnetic bearing is turned on, and the fourth magnetic bearing is turned off until the rotating shaft is completely stopped. Magnetic bearing.
- the method further includes: when the fourth gap between the rotating shaft and the fourth magnetic bearing changes, opening the fourth magnetic bearing, so that the rotating shaft is smaller toward the side away from the gap under the magnetic force of the plurality of seventh magnetic members The direction of movement; after the shaft is in the balanced radial position, the fourth magnetic bearing is closed.
- the fourth sensor (the fourth sensor here is preferably a pressure sensor) obtains a signal of increasing air pressure, and the fourth magnetic bearing needs to be intervened.
- the fourth magnetic bearing applies a magnetic force to the rotating shaft to suspend upward, and when the rotating shaft reaches a new equilibrium position, the fourth magnetic bearing stops working.
- the rotating shaft may quickly approach the fourth magnetic bearing, which may cause the gap between the rotating shaft and the fourth magnetic bearing to be too small, so that the local gas flow rate at the reduced gap approaches or even reaches the speed of sound. Therefore, the shock wave is generated by the shock wave.
- the generation of shock waves can cause local gas flow to be disturbed and confusing.
- the velocity of the fluid changes between sonic and subsonic, its pressure drops stepwise. In this case, it is necessary to control the seventh magnetic member of the fourth magnetic bearing to be turned on at a preset frequency to provide a damping effect on the disturbance, thereby effectively suppressing the external disturbance. After the shaft returns to the new balanced radial position, the fourth magnetic bearing stops working.
- the electromagnetic bearing is provided at the same time (the seventh magnetic component in the fourth magnetic bearing is an electromagnet that forms an electromagnetic bearing) and the gas static pressure bearing (the fourth magnetic bearing is provided on the fourth magnetic bearing)
- the electromagnetic bearing and the hydrostatic bearing can be used alternately, and in the case where one of the faults, failure or failure to meet the opening condition, the other can be used as a backup.
- the bearings play the same role. For example, in the case where an electromagnetic bearing failure is detected, the external air source is turned on to replace the electromagnetic bearing to perform a corresponding action, thereby improving the safety and reliability of the bearing.
- the step of "turning on the hydrostatic bearing in the radial bearing to move the rotating shaft to the preset radial position" may include The following embodiment: opening the fourth magnetic bearing; or, starting the external air source, conveying the gas to the fourth gap through the second static pressure air intake orifice; controlling the rotating shaft under the magnetic force of the plurality of seventh magnetic components, or The movement of the gas moves in the radial direction of the rotating shaft to move the rotating shaft to a predetermined radial position.
- the fourth magnetic bearing is used to facilitate the advantages of real-time control, and the unbalanced mass of the rotating shaft or the whirl of the rotating shaft is actively balanced, which causes the excessive rotation of the rotating shaft, so that the rotating shaft is fixed in a certain minimum range in the radial direction.
- the position where the shock wave is generated ie, the linear velocity supersonic portion
- the fourth magnetic bearing can be balanced by the opposite force by controlling the magnitude and direction of the current of the fourth magnetic bearing. Shock wave action.
- the control strategy of the fourth magnetic bearing is adjusted again to fix the rotating shaft in a very small range in the most energy-saving manner.
- the electromagnetic bearing cooperates with the gas bearing to improve the dynamic performance and stability of the bearing under high-speed operation, and has strong resistance to disturbance, thereby improving the bearing capacity of the bearing.
- the electromagnetic bearing and the gas bearing adopt a nested structure, which simplifies the structure, has high integration, is easy to process, manufacture and operate, and improves the comprehensive performance of the bearing.
- the trough type gas-magnetic hybrid radial bearing of the embodiment of the present disclosure has the advantage of a fast response speed with respect to the conventional gas dynamic hydrostatic hybrid thrust bearing using a combination of a gas hydrostatic bearing and a gas dynamic pressure bearing.
- the gas hydrostatic bearing is added to form a trough dynamic-static-magnetic hybrid thrust bearing.
- the bearing capacity of the bearing is further increased, and the electromagnetic bearing and the gas static pressure are further increased.
- the bearings can be used interchangeably, and the other can function as a backup bearing in the event that one of the faults fails, fails, or fails to meet the opening conditions.
- the control system controls the gas hydrostatic bearing to open to replace the electromagnetic bearing to perform a corresponding action, thereby improving the safety and reliability of the bearing.
- the thrust bearing and the radial bearing adjacent to the thrust bearing can be integrated to form an integrated bearing.
- FIGS. 35 to 40 show a schematic structural view of integrating the thrust bearing and the radial bearing adjacent to the thrust bearing to form the integrated bearing 1000.
- FIG. 50 are schematic structural views of an integrated bearing according to an embodiment of the present disclosure.
- the integrated bearing 1000 includes: a third bearing housing 1001, the third bearing housing 1001 is a hollow rotating body, and the third bearing housing 1001 is provided with a first receiving cavity and a second receiving cavity; a radial sub-bearing 1002 in the first receiving cavity, the radial sub-bearing 1002 is disposed on the rotating shaft 100, and has a fifth gap 1004 between the radial sub-bearing 1002 and the rotating shaft 100; and is disposed in the second receiving cavity
- the thrust sub-bearing 1003, the thrust sub-bearing 1003 includes a third thrust disc 10031, and a fifth stator 10032 and a sixth stator 10033 respectively disposed on two sides of the third thrust disc 10031.
- the third thrust disc 10031 is fixedly coupled to the rotating shaft 100,
- the fifth stator 10032 and the sixth stator 10033 are both disposed on the rotating shaft 100; in the fifth stator 10032 and the sixth stator 10033, there is a sixth gap 1005 between each stator and the third thrust plate 10031.
- the radial sub-bearing 1002 and the thrust sub-bearing 1003 are integrated in one bearing shell, which is easy to process and install, has the characteristics of simplified structure and high integration, and can effectively ensure the radial sub-process during processing and installation.
- the sixth gap 1005 is disposed in the thrust sub-bearing 1003, so that the bearing of the present disclosure is a non-contact bearing, which can meet the requirement of high-speed rotation of the rotor.
- the material of the third bearing shell 1001 may be a non-magnetic material, preferably a hard aluminum material. 33
- the fifth stator 10032 and the third bearing shell 1001 may be integrally formed, and the sixth stator 10033 and the third bearing shell 1001 may be detachably connected.
- the third bearing housing 1001 may be coupled to the housing of the gas turbine through a connecting member.
- both the radial sub-bearing 1002 and the thrust sub-bearing 1003 may include a magnetic bearing.
- the structural form of the magnetic bearing disposed in the radial sub-bearing 1002 is as follows: the radial sub-bearing 1002 includes a sleeve disposed on the rotating shaft 100.
- the fifth magnetic bearing 10021, the fifth magnetic bearing 10021 is detachably mounted in the first receiving cavity, and the fifth magnetic bearing 10021 is circumferentially disposed with a plurality of eighth magnetic members; wherein the rotating shaft 100 can be in the plurality of eighth The magnetic member moves in the radial direction of the rotary shaft 100 by the magnetic force.
- the fifth magnetic bearing 10021 includes: a fifth magnetic bearing housing, the fifth magnetic bearing housing is sleeved on the rotating shaft 100, and the fifth magnetic bearing housing is provided with a plurality of fifth receiving slots in the circumferential direction, and a plurality of eighth The magnetic component is disposed in the plurality of fifth receiving slots, and the magnetic poles of the plurality of eighth magnetic components are oriented toward the rotating shaft 100; and the third bearing sleeve 10022 is disposed between the fifth magnetic bearing housing and the rotating shaft 100, and the third bearing The sleeve 10022 cooperates with the fifth magnetic bearing housing to fix the plurality of eighth magnetic members to the fifth magnetic bearing housing.
- the integrated bearing 1000 may further include a seventh end cover 1006.
- the seventh end cover 1006 is disposed at an end of the third bearing housing 1001 near the first receiving cavity, and the seventh end cover 1006 and the fifth magnetic end.
- the bearing seat abuts for fixing the radial sub-bearing 1002 in the first receiving cavity.
- the radial sub-bearing 1002 and the thrust sub-bearing 1003 may each include a magnetic bearing, wherein the structural form of the magnetic bearing disposed in the thrust sub-bearing 1003 is as follows: each of the fifth stator 10032 and the sixth stator 10033
- the stator includes a sixth magnetic bearing 10034.
- the sixth magnetic bearing 10034 is provided with a plurality of ninth magnetic members in the circumferential direction;
- the third thrust plate 10031 is provided with a tenth magnetic member, and the third thrust plate 10031 can be in the plurality of ninth
- the magnetic force between the magnetic member and the tenth magnetic member moves in the axial direction of the rotary shaft 100.
- the sixth magnetic bearing 10034 includes: a sixth magnetic bearing housing, the sixth magnetic bearing housing is disposed opposite to the third thrust disc 10031, and the sixth magnetic bearing housing is provided with a plurality of sixth receiving slots in the circumferential direction, and a plurality of The ninth magnetic component is disposed in the plurality of sixth receiving slots, and the magnetic poles of the plurality of ninth magnetic components are facing the side where the third thrust disc 10031 is located; the second pressing ring is disposed on the sixth magnetic bearing housing Adjacent to the side of the third thrust plate 10031, the second pressure ring cooperates with the sixth magnetic bearing housing to fix the plurality of ninth magnetic members to the sixth magnetic bearing housing.
- the eighth magnetic component of the fifth magnetic bearing 10021 is an electromagnet
- the ninth magnetic component of the sixth magnetic bearing 10034 is Electromagnet
- the thrust plate and the stator in the integrated bearing 1000 and the rotating shaft and the bearing sleeve can be rotated in the gap by the electromagnetic bearing, thereby improving the low-speed performance of the integrated bearing 1000 and prolonging the integration.
- the service life of the bearing 1000 can improve the safety and reliability of the integrated bearing 1000 and the entire rotor system.
- the fifth stator 10032 may be integrally formed with the third bearing housing 1001, and the sixth stator 10033 may be detachably coupled to the third bearing housing 1001.
- the radial sub-bearing 1002 and the thrust sub-bearing 1003 may each be provided with a dynamic pressure generating groove.
- the structural form of the dynamic pressure generating groove in the radial sub-bearing 1002 is as follows: the radial sub-bearing 1002 faces the rotating shaft 100.
- the side wall or the rotating shaft 100 is provided with a fourth dynamic pressure generating groove 10023 toward the circumferential surface of the radial sub-bearing 1002.
- the fourth dynamic pressure generating grooves 10023 are arranged in a matrix.
- the fourth dynamic pressure generating groove 10023 is a V-shaped groove which is continuously or spaced apart.
- the radial sub-bearing 1002 and the thrust sub-bearing 1003 may each be provided with a dynamic pressure generating groove.
- the structural form of the dynamic pressure generating groove in the thrust sub-bearing 1003 is as follows:
- the end faces of the third thrust plate 10031 facing the fifth stator 10032 and the sixth stator 10033, or the end faces of the fifth stator 10032 and the sixth stator 10033 facing the third thrust plate 10031 are provided with a fifth dynamic pressure generating groove 10035.
- the fifth dynamic pressure generating grooves 10035 are arranged in a radial or concentric manner.
- the fifth dynamic pressure generating groove 10035 includes a first spiral groove and a second spiral groove.
- the first spiral groove surrounds the second spiral groove, and the spiral directions of the first spiral groove and the second spiral groove are opposite, the first spiral One end of the groove near the second spiral groove is connected or disconnected from an end of the second spiral groove adjacent to the first spiral groove.
- the integrated bearing 1000 includes a dynamic pressure gas bearing by providing a dynamic pressure generating groove in the integrated bearing 1000.
- the electromagnetic bearing and the dynamic pressure gas bearing are simultaneously provided, the dynamic performance and stability of the integrated bearing 1000 under high-speed operation state are improved, and the anti-disturbing ability is strong, thereby improving the bearing capacity of the bearing.
- the electromagnetic bearing and the dynamic pressure gas bearing adopt a nested parallel structure, which simplifies the structure, has high integration degree, is easy to process, manufacture and operate, and improves the comprehensive performance of the integrated bearing 1000.
- the integrated bearing 1000 may further be provided with a static pressure intake throttle hole, and the structural form is as follows: the third bearing shell 1001 is further provided with a third static pressure intake throttle hole 1007; wherein, the third static One end of the pressure air intake orifice 1007 is connected to an external air source, the other end is in communication with the fifth gap 1004 via the radial sub-bearing 1002, and/or is communicated with the sixth gap 1005 via the fifth stator 10032 and the sixth stator 10033. Used to deliver an external source of air to the fifth gap 1004 and/or the sixth gap 1005.
- the hydrostatic inlet orifice may also be provided by the integrated bearing 1000 such that the integrated bearing 1000 includes a hydrostatic bearing.
- the bearing capacity of the integrated bearing 1000 can be further increased.
- the electromagnetic bearing and the hydrostatic bearing can be reserved for each other, and in the case where one of the faults, failure, or failure to satisfy the opening condition, the other can serve the same function as the backup bearing.
- the safety of the integrated bearing 1000 is improved by controlling the gas static pressure bearing to be opened instead of the electromagnetic bearing to perform a corresponding action.
- both the radial sub-bearing 1002 and the thrust sub-bearing 1003 may be provided with sensors, which are respectively configured as follows: a radial sub-bearing 1002 is provided with a fifth sensor (not shown), and a fifth sensor The sensor probe is disposed within the fifth gap 1004.
- the parameters at the fifth gap 1004, such as the film pressure at the fifth gap 1004, can be detected in real time.
- the fifth magnetic bearing 10021 can actively control the radial sub-bearing 102 according to the detection result of the fifth sensor, and can achieve high precision in control.
- each of the plurality of fifth sensors includes a first sensor cover and a fifth sensor probe, the first end of the fifth sensor probe is connected to the fifth sensor cover, and the fifth sensor cover is fixed to the fifth sensor cover.
- the fifth magnetic bearing 10021 is provided with a through hole for the fifth sensor probe to pass through; the second end of the fifth sensor probe passes through the through hole of the fifth magnetic bearing 10021, and extends to the first The gap is 1004, and the second end portion of the fifth sensor probe is flush with the side of the fifth magnetic bearing 10021 near the rotating shaft 100.
- the fifth sensor can be more stably disposed on the fifth magnetic bearing 10021.
- the second end of the sensor probe is flush with the side of the fifth magnetic bearing 10021 near the rotating shaft 100.
- the sensor probe can be prevented from being touched by the rotating shaft 100, thereby protecting the sensor probe;
- the air film in the fifth gap 1004 is not affected, and the gas film in the fifth gap 1004 is prevented from being disturbed.
- a sixth sensor (not shown) is disposed on the thrust sub-bearing 1003, and the sensor probe of the sixth sensor is disposed in the sixth gap 1005.
- the parameters at the sixth gap 1005, such as the film pressure at the sixth gap 1005, can be detected in real time.
- the sixth magnetic bearing 10034 can actively control the thrust sub-bearing 103 according to the detection result of the sixth sensor, and can achieve high precision in control.
- the sixth sensor includes a sixth sensor cover and a sixth sensor probe, the first end of the sixth sensor probe is connected to the sixth sensor cover, the sixth sensor cover is fixed on the sixth magnetic bearing 10034, and the sixth magnetic bearing 10034 a through hole for the sixth sensor probe to pass through; a second end of the sixth sensor probe passes through the through hole of the sixth magnetic bearing 10034, and extends to the sixth gap 1005, and the sixth sensor probe The two end portions are flush with the side of the sixth magnetic bearing 10034 that is adjacent to the third thrust plate 10031.
- the sixth sensor can be more stably disposed on the sixth magnetic bearing 10034.
- the second end portion of the sixth sensor probe is flush with the side of the sixth magnetic bearing 10034 adjacent to the third thrust plate 10031.
- the sixth sensor probe can be prevented from being touched by the third thrust plate 10031. Therefore, it is advantageous to protect the sixth sensor probe; on the other hand, it does not affect the gas film in the sixth gap 1005, and the gas film in the sixth gap 1005 is prevented from being disturbed.
- the integrated bearing (wherein the eighth magnetic component in the fifth magnetic bearing is an electromagnet, and the ninth magnetic component in the sixth magnetic bearing is an electromagnet) participates in specific control of the control process of the rotor system
- the eighth magnetic component in the fifth magnetic bearing is an electromagnet
- the ninth magnetic component in the sixth magnetic bearing is an electromagnet
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
一种转子系统,包括转轴(100),转轴(100)的轴体为一体结构,转轴(100)水平设置或竖向设置;设置于转轴(100)上的电机(200)、压气机(300)、透平(400)、推力轴承(500)和至少两个径向轴承(600),推力轴承(500)和两个径向轴承(600)均为非接触式轴承;第一机匣(800)和第二机匣(900),第一机匣(800)与第二机匣(900)连接;其中,发电机(200)、推力轴承(500)和两个径向轴承(600)均设置于第一机匣(800)内,压气机(300)和透平(400)均设置于第二机匣(900)内,压气机(300)的叶轮与透平(400)的叶轮在第二机匣(900)内相靠设置。通过将轴承全部设置于同一个机匣内,可降低转子系统的加工精度和装配精度,且降低了成本。还公开了一种该转子系统的控制方法、具有该转子系统的燃气轮机发电机组和该燃气轮机发电机组的控制方法。
Description
相关申请的交叉引用
本申请主张在2018年1月12日在中国提交的中国专利申请号No.201810031822.4的优先权,其全部内容通过引用包含于此。
本公开涉及转子技术领域,尤其涉及一种转子系统及其控制方法和燃气轮机发电机组及其控制方法。
燃气轮机主要包括压气机、燃烧室及透平三大部件。空气进入压气机后被压缩成高温高压的空气,然后供给燃烧室与燃料混合燃烧,其产生的高温高压燃气在透平中膨胀做功。转子高速转动时,转子会受到径向方向的力和轴向方向的力。为了限制转轴发生径向和轴向上的移动,转子系统中需要安装径向轴承和推力轴承。传统的径向轴承和推力轴承均为接触式轴承,随着转子转速的提高,尤其是转子转速每分钟超过40000转时,接触式轴承由于存在较大的机械磨损,已不能满足工作转速的需求。
对于燃气轮机发电机组,现有技术中,通常采用燃气轮机与发电机分体的结构,燃气轮机转子与发电机转子通过联轴器连接,燃气轮机机匣与发电机机匣之间通过止口定位连接。燃气轮机转子与发电机转子分别通过位于燃气轮机机匣与发电机机匣内的轴承支承,位于燃气轮机机匣与发电机机匣内的轴承的定子分别与燃气轮机机匣与发电机机匣固定连接。而为保证燃气轮机发电机组正常工作,燃气轮机机匣与发电机机匣内的轴承必须同轴设置。这样,燃气轮机机匣与发电机机匣的加工和装配精度,尤其是燃气轮机机匣与发电机机匣定位止口的加工和配合精度需要较大提高,从而导致燃气轮机发电机组的加工成本上升,且可靠性下降。
可见,目前亟需提供一种新的转子系统,以解决现有燃气轮机发电机组存在的上述问题。
发明内容
本公开提供一种转子系统及其控制方法和燃气轮机发电机组及其控制方法,以解决现有燃气轮机发电机组存在的上述问题。
一方面,本公开提供一种转子系统,包括:转轴,转轴的轴体为一体结构,转轴水平设置或竖向设置;设置于转轴上的电机、压气机、透平、推力轴承和两个径向轴承,推力轴承和两个径向轴承均为非接触式轴承;以及,第一机匣和第二机匣,第一机匣与第二机匣连接;其中,发电机、推力轴承和两个径向轴承均设置于第一机匣内,压气机和透平均设置于第二机匣内;压气机的叶轮与透平的叶轮在第二机匣内相靠设置。
可选的,透平的涡轮上和/或压气机上设置有隔热层。
可选的,两个径向轴承包括第一径向轴承和第二径向轴承,第一径向轴承设置于发电 机的远离第二机匣的一侧,第二径向轴承设置于发电机的靠近第二机匣的一侧;其中,推力轴承设置于第一径向轴承与发电机之间;或者,推力轴承设置于发电机与第二径向轴承之间;或者,推力轴承设置于第二径向轴承的靠近第二机匣的一侧。
可选的,第二径向轴承的承载力大于第一径向轴承的承载力。
可选的,第一机匣和第二机匣通过止口定位并连接。
可选的,电机为动压轴承电机,转轴的对应发电机的轴承的部位设置有第一动压发生槽。
可选的,电机为启发一体式电机。
可选的,转子系统还包括锁紧装置,锁紧装置用于在转轴静态时锁紧转轴。
可选的,转轴的安装轴承的部位涂覆有防磨涂层。
可选的,推力轴承为气磁混合推力轴承;至少两个径向轴承中的至少一个径向轴承为气磁混合径向轴承或者气体动静压混合径向轴承。
可选的,当第二径向轴承为气磁混合径向轴承时,第二径向轴承的磁性部件设置于第二径向轴承上的远离透平的区域。
可选的,气磁混合推力轴承为箔片式气磁混合推力轴承,箔片式气磁混合推力轴承包括:第一推力盘,第一推力盘固定连接于转轴上;以及,穿设于转轴上的第一定子和第二定子,第一定子和第二定子分别设置于第一推力盘的相对两侧;
第一定子和第二定子中,每个定子包括第一磁轴承和第一箔片轴承,第一磁轴承上沿周向设置有多个第一磁性部件,第一箔片轴承设置有能够与多个第一磁性部件之间产生磁力的第二磁性部件;其中,第一箔片轴承设置于第一磁轴承与第一推力盘之间,并与第一推力盘之间具有第一间隙,且第一箔片轴承能够在第一磁性部件和第二磁性部件之间的磁力作用下在转轴的轴向方向上移动。
可选的,气磁混合推力轴承为槽式气磁混合推力轴承,槽式气磁混合推力轴承包括:第二推力盘,第二推力盘固定连接于转轴上,第二推力盘上设置有第三磁性部件;以及,穿设于转轴上的第三定子和第四定子,第三定子和第四定子分别设置于第二推力盘的相对两侧;第三定子和第四定子中,每个定子包括第二磁轴承,第二磁轴承上沿周向设置有能够与第三磁性部件之间产生磁力的多个第四磁性部件,第二磁轴承与第二推力盘之间具有第二间隙,且第二推力盘能够在第三磁性部件和多个第四磁性部件之间的磁力作用下在转轴的轴向方向上移动;其中,第二推力盘的面向第三定子和第四定子的端面,或,第三定子和第四定子的面向第二推力盘的端面上设置有第二动压发生槽。
可选的,第三定子和第四定子中,每个定子上还设置有第一静压进气节流孔,第一静压进气节流孔的一端与第二间隙相通,另一端连接外部气源,用于将外部气源输送至第二间隙内。
可选的,气磁混合径向轴承为槽式气磁混合径向轴承,槽式气磁混合径向轴承包括:套设于转轴上的第四磁轴承,第四磁轴承上沿周向设置有多个第七磁性部件;第四磁轴承朝向转轴的侧壁,或转轴朝向第四磁轴承的圆周面上设置有第三动压发生槽;其中,第四磁轴承与转轴之间具有第四间隙,且转轴能够在多个第七磁性部件的磁力作用下在转轴的径向方向上移动。
可选的,第四磁轴承上还设置有第二静压进气节流孔,第二静压进气节流孔的一端与 第四间隙相通,另一端连接外部气源,用于将外部气源输送至第四间隙内。
可选的,转子系统中,推力轴承和与推力轴承相邻的径向轴承集成一体,形成集成式轴承,集成式轴承包括:第三轴承壳,第三轴承壳为中空回转体,第三轴承壳设置有第一容纳腔和第二容纳腔;设置于第一容纳腔内的径向子轴承,径向子轴承穿设于转轴上,径向子轴承与转轴之间具有第五间隙;以及,设置于第二容纳腔内的推力子轴承,推力子轴承包括第三推力盘,以及分别设置于推力盘两侧的第五定子和第六定子,推力盘固定连接于转轴上,第五定子和第六定子均穿设于转轴上;第五定子和第六定子中,每个定子与第三推力盘之间具有第六间隙。
可选的,径向子轴承包括套设于转轴上的第五磁轴承,第五磁轴承与转轴之间具有第五间隙,第五磁轴承上沿周向设置有多个第八磁性部件;转轴能够在多个第八磁性部件的磁力作用下在转轴的径向方向上移动;第五定子和第六定子中,每个定子包括第六磁轴承,第六磁轴承上沿周向设置有多个第九磁性部件;第三推力盘上设置有第十磁性部件,第三推力盘能够在多个第九磁性部件和第十磁性部件之间的磁力作用下在转轴的轴向方向上移动。
可选的,第三轴承壳还设置有第三静压进气节流孔;其中,第三静压进气节流孔的一端连接外部气源,另一端经径向轴承与第五间隙相通,和/或,经第五定子和第六定子与第六间隙相通,用于将外部气源输送至第五间隙和/或第六间隙。
另一方面,本公开提供一种转子系统的控制方法,用于上述转子系统,方法包括:开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使推力轴承的推力盘移动至预设轴向位置;转轴的转速加速至工作转速之后,关闭径向轴承和推力轴承中的静压轴承;转子系统停机时,开启径向轴承中的静压轴承和推力轴承中的静压轴承;转轴的转速减速至零之后,关闭径向轴承和推力轴承中的静压轴承;其中,开启静压轴承包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体;关闭静压轴承包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
另一方面,本公开提供另一种转子系统的控制方法,用于上述转子系统,方法包括:开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使推力轴承的推力盘移动至预设轴向位置;转轴的转速加速至第一预设值之后,关闭径向轴承和推力轴承中的静压轴承;转子系统加速至一阶临界速度或二阶临界速度时,开启径向轴承和推力轴承中的静压轴承;转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭径向轴承和推力轴承中的静压轴承;转子系统减速至一阶临界速度或二阶临界速度时,开启径向轴承和推力轴承中的静压轴承;转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭径向轴承和推力轴承中的静压轴承;转轴的转速减速至第二预设值时,开启径向轴承中的静压轴承和推力轴承中的静压轴承;转轴的转速减速至零之后,关闭径向轴承和推力轴承中的静压轴承;其中,开启静压轴承,包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体;关闭静压轴承,包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
可选的,开启推力轴承中的静压轴承,以使推力轴承的推力盘移动至预设轴向位置,包括:开启第一定子和第二定子中的第一磁轴承,控制第一推力盘在多个第一磁性部件的磁力作用下在转轴的轴向方向上移动,以使第一推力盘与第一定子中的第一箔片轴承之间 的第一间隙等于第一推力盘与第二定子中的第一箔片轴承之间的第一间隙;方法还包括:当载荷负载在第一推力盘,第一推力盘在载荷负载的作用下在转轴的轴向方向上移动,第一推力盘与第一定子中的第一箔片轴承之间的第一间隙不等于第一推力盘与第二定子中的第一箔片轴承之间的第一间隙时,开启第一定子和第二定子中的第一磁轴承;当第一推力盘与第一定子中的第一箔片轴承之间的第一间隙等于第一推力盘与第二定子中的第一箔片轴承之间的第一间隙,关闭第一定子和第二定子中的第一磁轴承。
可选的,开启推力轴承中的静压轴承,以使推力轴承的推力盘移动至预设轴向位置,包括:开启第三定子和第四定子中的第二磁轴承,控制第二推力盘在第三磁性部件与多个第四磁性部件之间的磁力作用下在转轴的轴向方向上移动,以使第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值小于或等于预定值;方法还包括:当载荷负载在第二推力盘,第二推力盘在载荷负载的作用下在转轴的轴向方向上移动,第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值大于预定值时,开启第三定子或第四定子中的第二磁轴承;当第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值小于或者等于预定值,关闭第三定子或第四定子中的第二磁轴承。
可选的,开启推力轴承中的静压轴承,以使推力轴承的推力盘移动至预设轴向位置,包括:开启第三定子和第四定子的第二磁轴承;和/或,启动外部气源,通过第一静压进气节流孔向第二间隙处输送气体;控制第二推力盘在第三磁性部件与第四磁性部件之间的磁力作用下,和/或气体的推动作用下在转轴的轴向方向上移动,以使第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值小于或等于预定值。
可选的,开启径向轴承中的静压轴承,以使转轴移动至预设径向位置,包括:开启第三磁轴承,控制转轴在多个第五磁性部件的磁力作用下在转轴的径向方向上移动,以使转轴移动至预设径向位置;方法还包括:当转轴与第二箔片轴承之间的第三间隙发生变化时,开启第三磁轴承,使间隙变小侧对应的第二箔片轴承在多个第五磁性部件与第六磁性部件之间的磁力作用下向靠近转轴的方向移动;转轴处于平衡径向位置之后,关闭第三磁轴承。
可选的,开启径向轴承中的静压轴承,以使转轴移动至预设径向位置,包括:开启第四磁轴承,控制转轴在多个第七磁性部件的磁力作用下在转轴的径向方向上移动,以使转轴移动至预设径向位置;方法还包括:当转轴与第四磁轴承之间的第四间隙发生变化时,开启第四磁轴承,使转轴在多个第七磁性部件的磁力作用下向远离间隙变小侧的方向移动;转轴处于平衡径向位置之后,关闭第四磁轴承。
可选的,开启径向轴承中的静压轴承,以使转轴移动至预设径向位置,包括:开启第四磁轴承;和/或,启动外部气源,通过第二静压进气节流孔向第四间隙处输送气体;控制转轴在多个第七磁性部件的磁力作用下,和/或气体的推动作用下在转轴的径向方向上移动,以使转轴移动至预设径向位置。
另一方面,本公开提供一种燃气轮机发电机组,包括进气道、燃烧室和上述转子系统,进气道与压气机的进气口连通,压气机的出气口与燃烧室的进气口连通,燃烧室的出气口与透平的进气口连通。
另一方面,本公开提供一种燃气轮机发电机组的控制方法,用于上述燃气轮机发电机组,方法包括:开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使推力轴承的推力盘移动至预设轴向位置;启动燃气轮机发电机组,空气经压气机压缩后进入燃烧室和燃烧室内的燃料混合燃烧;燃烧室排出的高温高压气体对透平的涡轮进行冲击,使涡轮旋转,涡轮通过转轴带动电机旋转发电;转轴的转速加速至工作转速之后,关闭径向轴承和推力轴承中的静压轴承;燃气轮机发电机组停机时,开启径向轴承中的静压轴承和推力轴承中的静压轴承;转轴的转速减速至零之后,关闭径向轴承和推力轴承中的静压轴承;其中,开启静压轴承包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体;关闭静压轴承包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
本公开中,通过将轴承全部设置在同一个机匣内,这样只需保证该机匣内用于设置轴承定子的部位的加工精度即可,在装配时该机匣内用于连接轴承定子的部位通过一次装卡加工即可完成,可见,本公开降低了燃气轮机发电机组的加工精度和装配精度,降低了成本,适合工程化批量生产。同时,通过将压气机的叶轮与透平的叶轮相靠设置,使得第一机匣内的轴向长度缩短,从而能够进一步提高整个转子系统的稳定性。
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获取其他的附图。
图1是第一实施例提供的一种转子系统的结构示意图;
图2是第一实施例提供的另一种转子系统的结构示意图;
图3是第一实施例提供的另一种转子系统的结构示意图;
图4是第二实施例提供的一种转子系统的结构示意图;
图5是第二实施例提供的另一种转子系统的结构示意图;
图6是第二实施例提供的另一种转子系统的结构示意图;
图7是第三实施例提供的一种在转子系统中设置锁紧装置的结构示意图;
图8是第三实施例提供的另一种在转子系统中设置锁紧装置的结构示意图;
图9是图8中E-E向的结构示意图;
图10是第四实施例提供的在转轴上涂覆防磨涂层的结构示意图;
图11是第五实施例提供的一种燃气轮机发电机组的结构示意图;
图12是第五实施例提供的一种燃气轮机发电机组的控制方法的流程示意图;
图13是第五实施例提供的另一种燃气轮机发电机组的控制方法的流程示意图;
图14是第六实施例提供的一种转子系统的控制方法的流程示意图;
图15是第六实施例提供的另一种转子系统的控制方法的流程示意图;
图16是第七实施例提供的一种箔片式气磁混合推力轴承的剖视图;
图17是第七实施例提供的箔片式气磁混合推力轴承中第一磁轴承的结构示意图;
图18是第七实施例提供的箔片式气磁混合推力轴承中第一磁轴承座的结构示意图;
图19是第七实施例提供的箔片式气磁混合推力轴承中第一箔片的结构示意图;
图20是第八实施例提供的一种槽式气磁混合推力轴承的剖视图;
图21是第八实施例提供的槽式气磁混合推力轴承中第二磁轴承的结构示意图;
图22是第八实施例提供的槽式气磁混合推力轴承中第二磁轴承座的结构示意图;
图23是第八实施例提供的槽式气磁混合推力轴承中在第二推力盘上设置第二动压发生槽的结构示意图之一;
图24是第八实施例提供的槽式气磁混合推力轴承中在第二推力盘上设置第二动压发生槽的结构示意图之二;
图25是第八实施例提供的槽式气磁混合推力轴承中在第一压环上设置第二动压发生槽的结构示意图之一;
图26是第八实施例提供的槽式气磁混合推力轴承中在第一压环上设置第二动压发生槽的结构示意图之二;
图27是第九实施例提供的一种槽式气磁混合径向轴承的半剖视图;
图28是第九实施例提供的另一种槽式气磁混合径向轴承的半剖视图;
图29是第九实施例提供的一种槽式气磁混合径向轴承的外部视图;
图30是第九实施例提供的槽式气磁混合径向轴承中第四磁轴承的结构示意图;
图31是第九实施例提供的槽式气磁混合径向轴承中第四磁轴承座的结构示意图;
图32是第九实施例提供的槽式气磁混合径向轴承中在第二轴承套上设置第三动压发生槽的结构示意图之一;
图33是第九实施例提供的槽式气磁混合径向轴承中在第二轴承套上设置第三动压发生槽的结构示意图之二;
图34是第九实施例提供的槽式气磁混合径向轴承中在转轴上设置第三动压发生槽的结构示意图;
图35至图40与图1至图6对应的使用集成式轴承的转子系统的结构示意图;
图41是第十实施例提供的一种集成式轴承的剖视图;
图42是图47中A-A向的剖视图;
图43是图47中B-B向的剖视图;
图44是第十实施例提供的集成式轴承中在第三轴承套上设置第五动压发生槽的结构示意图之一;
图45是第十实施例提供的集成式轴承中在第三轴承套上设置第五动压发生槽的结构示意图之二;
图46是第十实施例提供的集成式轴承中在转轴上设置第五动压发生槽的结构示意图;
图47是第十实施例提供的集成式轴承中在第三推力盘上设置第六动压发生槽的结构示意图之一;
图48是第十实施例提供的集成式轴承中在第三推力盘上设置第六动压发生槽的结构示意图之二;
图49是第十实施例提供的集成式轴承中在第五定子上设置第六动压发生槽的结构示意图之一;
图50是第十实施例提供的集成式轴承中在第五定子上设置第六动压发生槽的结构示 意图之二。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获取的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供一种转子系统,包括:转轴,转轴的轴体为一体结构,转轴水平设置或竖向设置;设置于转轴上的电机、压气机、透平、推力轴承和两个径向轴承,推力轴承和两个径向轴承均为非接触式轴承;以及,第一机匣和第二机匣,第一机匣与第二机匣连接;其中,发电机、推力轴承和两个径向轴承均设置于第一机匣内,压气机和透平均设置于第二机匣内;压气机的叶轮与透平的叶轮在第二机匣内相靠设置。
本公开实施例中,推力轴承为用于限制转轴在轴向方向上移动的轴承,径向轴承为用于限制转轴在径向方向上移动的轴承。
随着转子转速的提高,接触式轴承由于存在较大的机械磨损,均已无法满足高转速转子的需要。因此,本公开实施例中,为了适应转子高速转动的发展需求,推力轴承和径向轴承均可以采用非接触式轴承。
本公开实施例中,由于转轴的轴体为一体结构,从而区别于现有技术中采用联轴器将燃气轮机转子与发电机转子进行连接。与现有技术相比,由于转轴的轴体为一体结构,转轴上各处轴体的强度具有一致性,这使得推力轴承在转轴上的设置位置不受限制。
本公开实施例中,通过将压气机的叶轮与透平的叶轮相靠设置,使得第一机匣内的轴向长度缩短,从而能够进一步提高整个转子系统的稳定性。
本公开实施例中,第一机匣和第二机匣可以通过止口(图中未示出)定位并连接,其中,推力轴承和所有的径向轴承可以全部设置在第一机匣(可以理解为发电机机匣)内,而第二机匣(可以理解为燃气轮机机匣)内无需设置轴承。这样,只需保证第一机匣内用于设置轴承定子的部位的加工精度即可,在装配时第一机匣内用于连接轴承定子的部位通过一次装卡加工即可完成,可见,本公开降低了燃气轮机发电机组的加工精度和装配精度,降低了成本,适合工程化批量生产。
本公开实施例中,转轴可以水平设置,也可以竖向设置,因此,可以理解地,本公开实施例的转子系统既适用于需要使用转子系统的卧式机组,也适用于需要使用转子系统的立式机组,例如下文将要具体说明的燃气轮机发电机组既可以是卧式燃气轮机发电机组,又可以是立式燃气轮机发电机组。
进一步的,为降低透平产生的热量对压气机效率的影响,可以在透平的涡轮上和/或压气机上设置隔热层(图中未示出),其中,隔热层的材料可以是气凝胶或隔热性能良好的其它材料;透平的涡轮还可以采用导热系数较低的材料制造,例如,用陶瓷材料制造透平的涡轮。
为使本公开实施例的转子系统的整体技术方案更好地理解,下面结合各附图,对本公开实施例提供的转子系统中各轴承的设置方式分别进行具体说明。
第一实施例
如图1至图3所示,转子系统包括:转轴100,转轴100的轴体为一体结构,转轴100水平设置;设置于转轴100上的电机200、压气机300、透平400、推力轴承500、第一径向轴承600和第二径向轴承700,推力轴承500、第一径向轴承600和第二径向轴承700均为非接触式轴承;以及第一机匣800和第二机匣900,第一机匣800与第二机匣900连接,其中,电机200、推力轴承500、第一径向轴承600和第二径向轴承700均设置于第一机匣800内,压气机300和透平400均设置于第二机匣900内;压气机300的叶轮与透平400的叶轮在第二机匣900内相靠设置。
第一径向轴承600设置于电机200的远离第二机匣900的一侧,第二径向轴承700设置于电机200的靠近第二机匣900的一侧。
推力轴承500设置于第一径向轴承600与电机200之间,如图1所示;或者,推力轴承500设置于电机200与第二径向轴承700之间,如图2所示;或者,推力轴承500设置于第二径向轴承700的靠近第二机匣900的一侧,如图3所示。
需要说明的是,对于图3所示的实施方式,由于推力轴承500设置于第二径向轴承700的靠近第二机匣900的一侧,也就是说,推力轴承500设置于靠近第二机匣900内的压气机的位置,为了避免推力轴承500的推力盘挡住压气机300的进气口,图3所示的实施方式适用于推力盘直径较小的推力轴承500。
目前,非接触式轴承一般包括电磁轴承和空气轴承。然而,电磁轴承在长期开启时存在能耗太大以及发热等问题;而空气轴承在表面线速度接近或者超过音速时,会产生激波,从而导致轴承失稳,甚至产生撞轴等灾难性后果。
因此,考虑到燃气轮机发电机组高转速的发展需求,为了提高推力轴承和径向轴承的工作性能,本公开实施例中,推力轴承500可以采用气磁混合推力轴承,第一径向轴承600可以采用气磁混合径向轴承或气体动静压混合径向轴承;第二径向轴承700可以采用气磁混合径向轴承或气体动静压混合径向轴承。
可选的,第二径向轴承700的承载力大于第一径向轴承600的承载力。
本公开实施例中,一般的,电机200和推力轴承500的重量均较大,整个转子系统的重心会偏向于第一径向轴承600一侧。鉴于此,提高第二径向轴承700的承载力有助于提高整个转子系统的稳定性。
本公开实施例中,压气机300可以为离心压气机300,透平400的涡轮可以为离心式涡轮;电机200的轴承可以为流体动压轴承,转轴100对应电机200的轴承的部位可以设置有第一动压发生槽201。
进一步的,电机200还可以是启发一体式电机。
这样,在转子系统初始启动时刻,可以将电机200以启动模式开启,以使转子系统转动,当转子系统的转速提升至预设转速后,可以将电机200的工作模式切换到发电模式。
第二实施例
如图4至图6所示,转子系统包括:转轴100,转轴100的轴体为一体结构,转轴100竖向设置;设置于转轴100上的电机200、压气机300、透平400、推力轴承500、第一径向轴承600和第二径向轴承700,推力轴承500、第一径向轴承600和第二径向轴承700均为非接触式轴承;以及第一机匣800和第二机匣900,第一机匣800与第二机匣900连接,其中,电机200、推力轴承500、第一径向轴承600和第二径向轴承700均设置于第一机匣800内,压 气机300和透平400均设置于第二机匣900内;压气机300的叶轮与透平400的叶轮在第二机匣900内相靠设置。
第一径向轴承600设置于电机200的远离第二机匣900的一侧,第二径向轴承700设置于电机200的靠近第二机匣900的一侧。
推力轴承500设置于第一径向轴承600与电机200之间,如图4所示;或者,推力轴承500设置于电机200与第二径向轴承700之间,如图5所示;或者,推力轴承500设置于第二径向轴承700的靠近第二机匣900的一侧,如图6所示。
其余均可参照第一实施例中的相关说明,并能达到相同的技术效果,为避免重复,本公开实施例对此不作赘述。
第三实施例
当本公开的转子系统用于移动设备上时,例如增程式电动汽车,在转子系统不工作的情况下,转轴与轴承直接接触。汽车在行驶过程中,由于颠簸或者振动引起转轴相对于轴承径向或者轴向的移动,使得转轴和轴承之间产生磨损,进而影响轴承的精度和寿命。
因此,为了解决上述问题,在本公开其它实施例的基础上,本公开实施例的转子系统设置锁紧装置,该锁紧装置用于在转子系统不工作时,锁紧转轴。
本公开实施例中,锁紧装置的结构形式及设置方式并不唯一,为便于理解,下面结合附图对两种实施方式进行具体描述。
一种实施方式下,如图7所示,锁紧装置110包括伸缩顶紧单元111、连接杆112和固定部件113,连接杆112的一端连接固定部件113,另一端连接伸缩顶紧单元111,伸缩顶紧单元111正对转轴100的远离透平400的一端的端面,固定部件113的另一端固定连接到安装本公开的转子系统的壳体。
在转子系统停机时,锁紧装置110的伸缩顶紧单元111动作,并沿转轴100的轴向推动转轴100,使得推力轴承500的定子与推力盘接触,从而将转轴100轴向固定,同时利用推力轴承500的定子与推力盘之间的摩擦力将转轴100径向固定。
进一步地,伸缩顶紧单元111设置有顶尖部(图中未示出),转轴100的远离透平400的一端的端面设置有顶尖孔(图中未示出)。在锁紧状态下,顶尖部顶入转轴100的顶尖孔,从而能够更好地将转轴100固定,防止在车辆的行驶过程中,造成对转轴100和轴承的磨损和损坏。
另一种实施方式下,如图8至图9所示,锁紧装置120也可以设置为卡套结构的锁紧装置。具体的,锁紧装置120包括伸缩单元121和卡套122,卡套122连接到伸缩单元122的伸缩端。卡套122可以为半圆卡套,其半径等于或者稍微大于转轴100的半径,卡套122的轴线与转轴100的轴线平行设置,伸缩单元121安装到转轴100的大致轴向中间位置,并固定连接至安装本公开的转子系统的壳体。
在转子系统停机时,伸缩单元121伸出,使卡套122卡住转轴100,并将转轴100推动到与径向轴承接触,从而将转轴100径向固定,同时利用径向轴承与转轴100的摩擦力将转轴100轴向固定。
进一步地,伸缩单元121可以选择活塞式气缸或者液压缸等可实现伸缩控制的部件。
在该实施方式下,锁紧装置120在转轴100上的设置位置可以不作限定,优选地,锁紧装置120设置于转子系统中的最远的两个径向轴承之间。
需要说明的是,图7与图8中的锁紧装置均基于图1示出的转子系统设置,对于在本公开其它实施例的转子系统中设置锁紧装置,在此不作一一描述。
本公开实施例中,通过设置锁紧装置,在转子系统不工作时,锁紧装置能够锁紧转轴。这样,能够防止转轴相对于轴承径向或者轴向的移动,从而能够提高轴承的精度和寿命。
第四实施例
当本公开的转子系统用于移动设备上时,例如增程式电动汽车,在转子系统不工作的情况下,转轴与轴承直接接触。汽车在行驶过程中,由于颠簸或者振动引起转轴相对于轴承径向或者轴向的移动,使得转轴和轴承之间产生磨损,进而影响轴承的精度和寿命。
因此,为了解决上述问题,在本公开其它实施例的基础上,本公开实施例的转子系统,在转轴100的安装轴承的部位涂有防磨涂层101,如图10所示。
在转轴100的安装轴承的部位涂有防磨涂层101,可以有效防止转轴100和轴承的磨损。该防磨涂层101优先选用化学稳定性、耐腐蚀性、高润滑不粘性和良好的抗老化耐力的材料,例如聚四氟乙烯等。
上述第一实施例至第四实施例中的任一种转子系统均可以适用于卧式燃气轮机发电机组,尤其适用于卧式微燃气轮机发电机组,下面以转子系统应用于卧式燃气轮机发电机组为例进行具体地说明。
第五实施例
如图11所示,本公开实施例提供一种燃气轮机发电机组,包括外壳310、进气道320和燃烧室330以及上述第一实施例至第六实施例中的任一种转子系统,转子系统包括转轴100、电机200、压气机300、透平400及设置于转轴100上的推力轴承和径向轴承(图中未示出)。其中,进气道320与压气机300的进气口连通,压气机300的出气口与燃烧室330的进气口连通,燃烧室330的出气口与透平400的进气口连通。
其中,压气机300可以为离心压气机300,透平400涡轮可以为离心式涡轮;电机200的轴承可以为流体动压轴承,转轴100对应电机200的轴承的部位可以设置有第一动压发生槽201;燃烧室330可以为环形燃烧室。
可选的,进气道320由电机200的外壳和燃气轮机发电机组的外壳310形成。这样,当空气由进气道320进入压气机300时,空气流经电机200的外壳,能够对电机200起到冷却作用。
可选的,电机200为启发一体式电机。
下面就燃气轮机发电机组的工作过程进行具体说明。
如前所示,转子系统中的推力轴承可以采用气磁混合推力轴承,径向轴承可以采用气磁混合推力轴承或气体动静压混合径向轴承。为了便于描述,我们将不需要转轴100转动就能起到润滑作用的轴承定义为静压轴承,转轴100转动到一定速度时才能工作的轴承定义为动压轴承。依此逻辑,气磁混合推力轴承中的磁轴承和气体静压轴承,以及气体动静压混合径向轴承中的气体静压轴承均可以称为静压轴承;而气磁混合推力轴承中的气体动压轴承,以及气体动静压混合径向轴承中的气体动压轴承均可以称为动压轴承。
如图12所示,本公开实施例提供一种燃气轮机发电机组的控制方法,包括:
S11、开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使推力轴承的推力盘移动至预设轴向位置。
其中,开启静压轴承包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体。
S12、启动燃气轮机发电机组,空气经压气机压缩后进入燃烧室和燃烧室内的燃料混合燃烧;燃烧室排出的高温高压气体对透平的涡轮进行冲击,使涡轮旋转,涡轮通过转轴带动电机旋转发电。
以下以电机为启发一体式电机为例,对燃气轮机发电机组的启动过程进行具体描述。
燃气轮机控制器(Electronic Control Unit,简称ECU)接收到启动信号后,对电机功率控制器(Data Processing Center,简称DPC)发送电机驱动模式指令;DPC切换到电机驱动模式,DPC将燃气轮机内置电池的直流电进行变频,驱动电机工作,电机带动燃气轮机提升转速。
待燃气轮机的转速提升至点火转速后,打开燃料阀,进入点火程序。空气由进气道进入压气机进行压缩后进入回热器并被来自涡轮排出的高温气体预热,预热后的压缩空气进入燃烧室与燃料混合并燃烧,燃烧室充分燃烧后的高温高压气体进入透平对涡轮进行冲击,使透平涡轮旋转,涡轮排气进入回热器对进入燃烧室前的冷压缩空气预加热后由尾气管排出,由于透平与压气机和电机通过转轴连接,透平涡轮旋转带动压气机一起旋转至自持速度。
燃气轮机到达自持转速后,DPC挂起,电机空转继续增加油门,涡轮继续提升功率,使转速提升至工作转速。ECU对DPC发送发电机模式指令;DPC切换到发电机模式,并将电机输出的交流电通过整流变压后输出用户所需电压电流。
其中,压气机为离心式压气机,该离心式压气机包括动叶和沿周向布置的静叶,静叶为扩压器。这样,空气由进气道进入压气机进行压缩的具体过程可以为:空气进入离心式压气机的动叶被压缩后,进入沿周向布置的扩压器(即静叶)继续被压缩。
其中,透平涡轮为离心式涡轮,该离心式涡轮设置有动叶。燃烧室出口沿周向布置有静叶,该静叶为喷嘴。这样,燃烧室充分燃烧后的高温高压气体进入透平做功,使透平涡轮旋转的具体过程可以为:燃烧室充分燃烧后的高温高压气体通过在燃烧室出口沿周向布置的喷嘴(即静叶)进行膨胀加速后,对涡轮的动叶进行冲击,使涡轮旋转。
S13、转轴的转速加速至工作转速之后,关闭径向轴承和推力轴承中的静压轴承。
其中,关闭静压轴承包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
S14、燃气轮机发电机组停机时,开启径向轴承中的静压轴承和推力轴承中的静压轴承。
S15、转轴的转速减速至零之后,关闭径向轴承和推力轴承中的静压轴承。
在上述过程中,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承一直开启至转轴的转速达到工作转速。
燃气轮机发电机组停机时,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承一直开启至转轴的转速为零。
如图13所示,本公开实施例提供另一种燃气轮机发电机组的控制方法,包括:
S21、开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使推力轴承的推力盘移动至预设轴向位置。
其中,开启静压轴承包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体。
S22、启动燃气轮机发电机组,空气经压气机压缩后进入燃烧室和燃烧室内的燃料混合燃烧;燃烧室排出的高温高压气体对透平的涡轮进行冲击,使涡轮旋转,涡轮通过转轴带动电机旋转发电。
S23、转轴的转速加速至第一预设值之后,关闭径向轴承和推力轴承中的静压轴承。
其中,第一预设值可以是额定转速的5%至30%。
其中,关闭静压轴承,包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
S24、转子系统加速至一阶临界速度或二阶临界速度时,开启径向轴承和推力轴承中的静压轴承。
S25、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭径向轴承和推力轴承中的静压轴承。
S26、燃气轮机发电机组停机过程中,当转子系统减速至一阶临界速度或二阶临界速度时,开启径向轴承和推力轴承中的静压轴承。
S27、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭径向轴承和推力轴承中的静压轴承。
S28、转轴的转速减速至第二预设值时,开启径向轴承中的静压轴承和推力轴承中的静压轴承。
其中,第二预设值可以等于第一预设值,也可以不等于第一预设值,第二预设值可以是额定转速的5%至30%。
S29、转轴的转速减速至零之后,关闭径向轴承和推力轴承中的静压轴承。
在上述过程中,燃气轮机发电机组启动之前,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承开启。这样,转轴在径向轴承的静压轴承的作用下,被托起至预设径向位置;推力盘在推力轴承的静压轴承的作用下,被推动至预设轴向位置。
燃气轮机发电机组启动之后,转轴的转速逐渐增大,当转轴的转速达到第一预设值时,例如额定转速的5%至30%时,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承停止工作。当转轴的转速达到一阶临界速度或二阶临界速度时,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承重新开启。在转轴的转速平稳度过一阶临界速度或二阶临界速度之后,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承再次停止工作。
燃气轮机发电机组停机过程中,转轴的转速逐渐下降,当转轴的转速达到二阶临界速度或一阶临界速度时,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承再次开启。在转轴的转速平稳度过二阶临界速度或一阶临界速度之后,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承再次停止工作。当转轴的转速下降至预定值时,例如额定转速的5%至30%时,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承再次开启直至转速降为零之后,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承再次停止工作。
下面基于上述燃气轮机发电机组的控制方法,对转子系统的控制方法进行具体说明。
第六实施例
如图14所示,本公开实施例提供一种转子系统的控制方法,包括:
S101、开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使推力轴承的推力盘移动至预设轴向位置。
其中,开启静压轴承包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体。
S102、转轴的转速加速至工作转速之后,关闭径向轴承和推力轴承中的静压轴承。
其中,关闭静压轴承包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
S103、转子系统停机时,开启径向轴承中的静压轴承和推力轴承中的静压轴承。
S104、转轴的转速减速至零之后,关闭径向轴承和推力轴承中的静压轴承。
在上述过程中,转子系统启动之前,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承开启。这样,转轴在径向轴承的静压轴承的作用下,被托起至预设径向位置;推力盘在推力轴承的静压轴承的作用下,被推动至预设轴向位置。径向轴承和推力轴承中的静压轴承一直开启至转轴的转速达到工作转速。
转子系统停机时,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承一直开启至转轴的转速为零。
如图15所示,本公开实施例提供另一种转子系统的控制方法,包括:
S201、开启径向轴承和推力轴承中的静压轴承,以使转轴移动至预设径向位置,使推力轴承的推力盘移动至预设轴向位置。
其中,开启静压轴承,包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体。
S202、转轴的转速加速至第一预设值之后,关闭径向轴承和推力轴承中的静压轴承。
其中,第一预设值可以是额定转速的5%至30%。
其中,关闭静压轴承,包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
S203、转子系统加速至一阶临界速度或二阶临界速度时,开启径向轴承和推力轴承中的静压轴承。
S204、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭径向轴承和推力轴承中的静压轴承。
S205、转子系统减速至一阶临界速度或二阶临界速度时,开启径向轴承和推力轴承中的静压轴承。
S206、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭径向轴承和推力轴承中的静压轴承。
S207、转轴的转速减速至第二预设值时,开启径向轴承中的静压轴承和推力轴承中的静压轴承。
其中,第二预设值可以等于第一预设值,也可以不等于第一预设值,第二预设值可以是额定转速的5%至30%。
S208、转轴的转速减速至零之后,关闭径向轴承和推力轴承中的静压轴承。
在上述过程中,转子系统启动之前,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承开启。这样,转轴在径向轴承的静压轴承的作用下,被托起至预设径向位置;推力盘在推力轴承的静压轴承的作用下,被推动至预设轴向位置。
转子系统启动之后,转轴的转速逐渐增大,当转轴的转速达到第一预设值时,例如额定转速的5%至30%时,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承停止工作。当转轴的转速达到一阶临界速度或二阶临界速度时,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承重新开启。在转轴的转速平稳度过一阶临界速度或二阶临界速度之后,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承再次停止工作。
转子系统停机时,转轴的转速逐渐下降,当转轴的转速达到二阶临界速度或一阶临界速度时,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承再次开启。在转轴的转速平稳度过二阶临界速度或一阶临界速度之后,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承再次停止工作。当转轴的转速下降至预定值时,例如额定转速的5%至30%时,控制转子系统中的轴承,使径向轴承和推力轴承的静压轴承再次开启直至转速降为零之后,控制转子系统中的轴承,使径向轴承和推力轴承中的静压轴承再次停止工作。
结合上述内容,我们清楚地了解了本公开实施例中提供的转子系统的整体结构,使用上述转子系统的燃气轮机发电机组的整体结构,燃气轮机发电机组的控制方法以及转子系统的控制方法。
需要说明的是,转子系统中的推力轴承和径向轴承可以采用多种结构形式。对于气磁混合推力轴承而言,可以包括箔片式气磁混合推力轴承或槽式气磁混合推力轴承;对于气磁混合径向轴承而言,可以包括箔片式气磁混合径向轴承或槽式气磁混合径向轴承。
下面结合附图分别对转子系统中的推力轴承和径向轴承的各种具体结构形式,以及各推力轴承和各径向轴承在整个转子系统控制中的具体控制过程进行详细地说明。
第七实施例
图16至图19为本公开实施例提供的箔片式气磁混合推力轴承的结构示意图。
如图16至图19所示,箔片式气磁混合推力轴承5100包括:第一推力盘5101,第一推力盘5101固定连接于转轴100上;以及,穿设于转轴100上的第一定子5102和第二定子5103,第一定子5102和第二定子5103分别设置于第一推力盘5101的相对两侧;第一定子5102和第二定子5103中,每个定子包括第一磁轴承5104和第一箔片轴承5105,第一磁轴承5104上沿周向设置有多个第一磁性部件,第一箔片轴承5105设置有能够与多个第一磁性部件之间产生磁力的第二磁性部件;其中,第一箔片轴承5105设置于第一磁轴承5104与第一推力盘5101之间,并与第一推力盘5101之间具有第一间隙5106,且第一箔片轴承5105能够在第一磁性部件和第二磁性部件之间的磁力作用下在转轴100的轴向方向上移动。
本公开实施例中,通过在推力轴承5100中设置第一间隙5106和第一磁轴承5104,从而使该推力轴承5100形成气、磁混合推力轴承。
工作时,推力轴承5100中的气体轴承与第一磁轴承5104能够协同工作,在推力轴承5100处于稳定的工作状态时,依靠气体轴承实现支承;而在推力轴承5100处于非稳定的工作状态时,依靠第一磁轴承5104及时对推力轴承5100进行控制和响应。
可见,本公开实施例能够改善推力轴承,尤其在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了推力轴承的承载能力。本公开实施例的推力轴承能够满足高 转速的转子系统,例如,燃气轮机或者燃气轮机发电联合机组等的需求。
本公开实施例中,第一推力盘5101、第一定子5102和第二定子5103的外径可以相等,且第一定子5102和第二定子5103的结构可以完全相同。
当本公开实施例的转子系统应用于燃气轮机或者燃气轮机发电联合机组时,第一定子5102和第二定子5103可以通过连接件与燃气轮机的壳体连接。
可选的,多个第一磁性部件包括多个第一永磁体,多个第一永磁体在第一磁轴承5104上沿周向设置;或者,多个第一磁性部件包括多个第一电磁铁,多个第一电磁铁在第一磁轴承5104上沿周向设置,多个第一电磁铁中的每个第一电磁铁包括设置于第一磁轴承5104上的第一磁芯51041及缠绕于第一磁芯上的第一线圈51042。
本公开实施例中,当箔片式气磁混合推力轴承5100仅需要磁性部件提供磁力而无需磁控时,第一磁性部件优选第一永磁体;当箔片式气磁混合推力轴承5100同时需要磁力和磁控时,第一磁性部件优选第一电磁铁。
当第一磁性部件为第一电磁铁时,往第一线圈51042通入电流,即可以使第一磁芯51041产生磁力。往第一线圈51042通入电流的大小不同,第一磁芯51041产生的磁力大小也不同;往第一线圈51042通入电流的方向不同,第一磁芯51041的磁极也不同。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本公开的优选实施例中,第一磁芯51041由若干硅钢片或者矽钢片叠压而成。
可选的,第一磁轴承5104包括:第一磁轴承座51043,第一磁轴承座51043与第一推力盘5101相对设置,第一磁轴承座51043上沿周向设置有多个第一容纳槽51044,多个第一磁性部件设置于多个第一容纳槽51044内,且多个第一磁性部件的磁极朝向第一箔片轴承5105所在的一侧;第一端盖51045,第一端盖51045设置于第一磁轴承座51043的远离第一箔片轴承5105的一侧,并与第一箔片轴承5105配合,将第一磁性部件固定于第一磁轴承座51043上。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本公开的优选实施例中,第一磁轴承座51043由若干硅钢片或者矽钢片叠压而成。第一容纳槽51044的数量可以为但不限于为六个或八个,沿第一磁轴承座51043的周向均匀设置。这样,能够使第一磁轴承座51043与第一箔片轴承5105之间的磁力更加均匀、稳定。需要说明的是,多个第一磁性部件还可以采用其他方式设置于第一磁轴承座51043上,对此不进行限定。第一端盖51045的材料可以是非磁性材料,优选硬铝材料。
可选的,第一箔片轴承5105包括:与第一磁轴承座51043固定连接的第一箔片轴承座51051;以及,设置于第一箔片轴承座51051上的第一箔片51052和第二箔片51053,第一箔片51052安装于第一箔片轴承座51051上,第二箔片51053叠设于第一箔片51052的靠近第一推力盘5101的一侧;
其中,第二箔片51053为平箔片,第二磁性部件设置于第二箔片51053上,以使第二箔片51053能够在第一磁性部件和第二磁性部件的磁力作用下在转轴100的轴向方向上移动;第一箔片51052为能够在第二箔片51053移动时发生弹性变形的弹性变形箔片。
其中,第一箔片轴承座51051的材料为非磁性材料,优选硬铝材料。第一箔片51052为弹性变形箔片,考虑到导磁材料的材质较硬且脆,不宜作为弹性变形箔片,因此,第一箔片51052优选不导磁的不锈钢带。
本公开实施例中,通过将第二箔片51053设置为平箔片,便于控制第二箔片51053与第一推力盘5101之间的距离,或者说,便于控制第一间隙5106的大小。第一箔片51052采用能够弹性变形的箔片,一方面起到连接第二箔片51053和第一箔片轴承座51051的作用,另一方面可以实现第二箔片51053相对于第一箔片轴承座51051可沿转轴100的轴向移动的目的。
可选的,第一箔片51052为呈波浪状的弹性变形箔片,且第一箔片51052为不封闭的环形,其上设有一开口,开口的一端为固定端,固定端固定于第一箔片轴承座51051上,开口的另一端为活动端;
其中,第二箔片51053在转轴100的轴向方向上移动时,第一箔片51052上的波浪纹伸展或收缩,活动端沿环形的周向移动。
本公开实施例中,通过将第一箔片51052设置为呈波浪状的弹性变形箔片,便于利用波浪纹的伸展或收缩特性,推动第二箔片51053在转轴100的轴向方向上移动。
需要说明的是,本公开实施例中的第一箔片51052的形状并不局限于波浪状,其它能够产生弹性变形的形状均可以适用于本公开实施例的第一箔片51052。
可选的,第二磁性部件包括设置于第二箔片51053的靠近第一磁轴承5104的一侧表面上的第一磁性材料;其中,第一磁性材料在第二箔片51053上呈条状分布,而形成多个条状磁性部,多个条状磁性部呈辐射状或环状;或者,第一磁性部件在第二箔片51053上呈点状分布。
其中,第二箔片51053的材料优选非导磁材料,在第二箔片51053的表面遮喷第一磁性材料后,可以用陶瓷涂层覆盖第一磁性材料。第二箔片51053可以通过使用40%的氧化锆、30%的α氧化铝和30%的铝酸镁尖晶石的陶瓷纳米微粉烧结制成。
若第二箔片51053的表面完全覆盖第一磁性材料,则会大幅增加第一磁性材料与第一磁性部件之间产生的磁力,这样容易导致第二箔片51053发生变形。鉴于此,本公开实施例中,通过在第二箔片51053的表面遮喷第一磁性材料,使第一磁性材料在第二箔片51053上呈条状分布或点状分布,可以将第一磁性材料与第一磁性部件之间产生的磁力控制在合理的范围,从而避免第二箔片51053因过大的磁力而发生变形。
可选的,箔片式气磁混合推力轴承5100还包括第一传感器5107,第一传感器5107的传感器探头设置于第一间隙5106内。
本公开实施例中,通过设置第一传感器5107,能够实时检测第一间隙5106处的参数,例如第一间隙5106处的气膜压力等。这样,第一磁轴承5104可以根据第一传感器5107的检测结果对推力轴承5100进行主动控制,并能够使控制达到较高的精度。
可选的,第一传感器5107包括第一传感器盖51071和第一传感器探头51072,第一传感器探头51072的第一端连接第一传感器盖51071,第一传感器盖51071固定于第一磁轴承5104上,第一磁轴承5104和第一箔片轴承5105上设有用于供第一传感器探头51072穿过的通孔;第一传感器探头51072的第二端穿过第一磁轴承5104和第一箔片轴承5105上的通孔,并伸至第一间隙5106,且第一传感器探头51072的第二端端部与第一箔片轴承5105的靠近第一推力盘5101的一侧平齐。
本公开实施例中,通过上述第一传感器5107的结构形式和安装方式,能够使第一传感器5107更稳定地设置于第一磁轴承5104上。将第一传感器探头51072的第二端端部与第一 箔片轴承5105的靠近第一推力盘5101的一侧平齐,一方面,能够避免第一传感器探头51072受到第一推力盘5101的碰触,从而有利于保护第一传感器探头51072;另一方面,不会对第一间隙5106内的气膜产生影响,避免第一间隙5106内的气膜发生扰动。
可选的,第一传感器5107设置于相邻的两个第一磁性部件之间。
本公开实施例中,每个定子上均应当设置至少一个第一传感器5107,优选设置一个第一传感器5107,该第一传感器5107优选设置在相邻两个第一磁性部件之间。
可选的,第一传感器5107为以下任意一种或多种的组合:用于检测第一推力盘5101位置的位移传感器;用于检测第一间隙5106处的气膜压力的压力传感器;用于检测第一推力盘5101转速的速度传感器;用于检测第一推力盘5101旋转加速度的加速度传感器。
下面以本公开实施例的箔片式气磁混合推力轴承(其中,第一磁轴承中的第一磁性部件为电磁铁)参与转子系统的控制过程时的具体控制方法进行详细地说明。
本公开实施例提供一种箔片式气磁混合推力轴承的控制方法,包括:
S511、开启第一定子和第二定子中的第一磁轴承,控制第一推力盘在多个第一磁性部件的磁力作用下在转轴的轴向方向上移动,以使第一推力盘与第一定子中的第一箔片轴承之间的第一间隙等于第一推力盘与第二定子中的第一箔片轴承之间的第一间隙。
S512、转轴的转速加速至工作转速之后,关闭第一定子和第二定子中的第一磁轴承。
S513、转子系统停机时,开启第一定子和第二定子中的第一磁轴承。
S514、转轴的转速减速至零之后,关闭第一定子和第二定子中的第一磁轴承。
在上述过程中,第一磁轴承开启后,第一推力盘在第一磁轴承的作用下到达第一定子和第二定子之间的预定位置,第一推力盘与第一定子和第二定子的端面均具有第一间隙。
随着转轴的转动,第一推力盘在受第一间隙中气流润滑的情况下相对第一定子和第二定子开始转动,以防止磨损。第一磁轴承开启的具体过程为:向第一线圈输入预定值的电流信号,第一推力盘在第一磁轴承的作用下到达第一定子和第二定子之间的预定位置。
随着转轴的转速越来越大,第一推力盘的转速也同步增大,当转轴的转速到达工作转速时,该推力轴承的气体动压轴承(第一推力盘与第一定子和第二定子之间设置第一间隙即形成该推力轴承的气体动压轴承)产生的气膜压力可以将第一推力盘稳定,届时可以关闭第一磁轴承。
在转子系统停机时,第一推力盘随着转轴减速而减速,为了使转轴在整个转子系统停机过程中保持稳定,在转子系统停机时即开启第一磁轴承,直到第一推力盘完全停下后即可关闭第一磁轴承。
本公开实施例还提供另一种箔片式气磁混合推力轴承的控制方法,包括:
S521、开启第一定子和第二定子中的第一磁轴承,控制第一推力盘在多个第一磁性部件的磁力作用下在转轴的轴向方向上移动,以使第一推力盘与第一定子中的第一箔片轴承之间的第一间隙等于第一推力盘与第二定子中的第一箔片轴承之间的第一间隙。
S522、转轴的转速加速至第一预设值之后,关闭第一定子和第二定子中的第一磁轴承。
S523、转轴的转速减速至第二预设值时,开启第一定子和第二定子中的第一磁轴承。
S524、转轴的转速减速至零之后,关闭第一定子和第二定子中的第一磁轴承。
在上述过程中,第一磁轴承开启后,第一推力盘在第一磁轴承的作用下到达第一定子和第二定子之间的预定位置,第一推力盘与第一定子和第二定子的端面均具有第一间隙。
随着转轴的转动,第一推力盘在受第一间隙中气流润滑的情况下相对第一定子和第二定子开始转动,以防止磨损。第一磁轴承开启的具体过程为:向第一线圈输入预定值的电流信号,第一推力盘在第一磁轴承的作用下到达第一定子和第二定子之间的预定位置。
随着转轴的转速越来越大,第一推力盘的转速也同步增大,当转轴的转速到达第一预设值,例如额定转速的5%至30%时,该推力轴承的气体动压轴承(第一推力盘与第一定子和第二定子之间设置第一间隙即形成该箔片式气磁混合推力轴承的气体动压轴承)产生的气膜压力可以将第一推力盘稳定,届时可以关闭第一磁轴承。
在转子系统停机过程中,第一推力盘随着转轴减速而减速,当转轴的转速低于第二预设值,例如额定转速的5%至30%时,此时,推力轴承的气体动压轴承产生的气膜压力也随第一推力盘减速而减小,因此,需要开启第一磁轴承以使第一推力盘保持稳定,直到第一推力盘完全停下后即可关闭第一磁轴承。
可选的,上述方法还包括:当载荷负载在第一推力盘,第一推力盘在载荷负载的作用下在转轴的轴向方向上移动,第一推力盘与第一定子中的第一箔片轴承之间的第一间隙不等于第一推力盘与第二定子中的第一箔片轴承之间的第一间隙时,开启第一定子和第二定子中的第一磁轴承;当第一推力盘与第一定子中的第一箔片轴承之间的第一间隙等于第一推力盘与第二定子中的第一箔片轴承之间的第一间隙,关闭第一定子和第二定子中的第一磁轴承。
当载荷负载在第一推力盘上,使第一推力盘与第一定子或第二定子的第一箔片轴承之间的第一间隙变小而接近该侧的第一箔片轴承时,第一传感器(这里的第一传感器优选压力传感器)获得气压增大的信号,此时第一磁轴承需要介入工作。第一磁轴承并不完全直接将磁力作用于第一推力盘上,使其向另一侧的第一箔片轴承移动,而是使用磁力将另一侧的第一箔片轴承朝远离第一推力盘的方向移动,使第一推力盘与另一侧的第一箔片轴承之间的第一间隙提高,从而提高第一间隙变小侧的压力,适应第一推力盘上负载的重量,自动重新分配两个第一间隙上的气流压力。当第一推力盘达到新的平衡位置时,第一磁轴承停止工作。
具体的,若第一推力盘与第一定子中的第一箔片轴承之间的第一间隙小于第一推力盘与第二定子中的第一箔片轴承之间的第一间隙,则控制第二定子中的第一箔片轴承在多个第一磁性部件与第二磁性部件之间的磁力作用下,朝远离第一推力盘的方向在转轴的轴向方向上移动。
若第一推力盘与第二定子中的第一箔片轴承之间的第一间隙小于第一推力盘与第一定子中的第一箔片轴承之间的第一间隙,则控制第一定子中的第一箔片轴承在多个第一磁性部件与第二磁性部件之间的磁力作用下,朝远离第一推力盘的方向在转轴的轴向方向上移动。
可选的,当载荷负载在第一推力盘,第一推力盘在载荷负载的作用下在转轴的轴向方向上移动,第一推力盘与第一定子中的第一箔片轴承之间的第一间隙不等于第一推力盘与第二定子中的第一箔片轴承之间的第一间隙时,开启第一定子和第二定子中的第一磁轴承,包括:当载荷负载在第一推力盘,第一推力盘在载荷负载的作用下在转轴的轴向方向上移动,第一推力盘与第一定子中的第一箔片轴承之间的第一间隙不等于第一推力盘与第二定子中的第一箔片轴承之间的第一间隙时,控制第一定子和第二定子中的第一磁轴承以最大 功率开启;或者,当载荷负载在第一推力盘,第一推力盘在载荷负载的作用下在转轴的轴向方向上移动,第一推力盘与第一定子中的第一箔片轴承之间的第一间隙不等于第一推力盘与第二定子中的第一箔片轴承之间的第一间隙时,控制第一定子和第二定子中的第一磁轴承按照预设频率以频闪的方式开启。
当有外部冲击扰动发生时,第一推力盘可能快速地接近某侧第一箔片轴承,则有可能导致该侧的第一间隙瞬间过小,使该侧第一间隙处的局部气体流速接近甚至达到音速,从而引发激波产生气锤自激现象。激波的产生会导致局部气体流动发生扰动和混乱,当流体速度在音速到亚音速之间变化时其压力呈阶梯式显著下降。这种情况下,需要该侧第一箔片轴承主动“避让”第一推力盘,从而使该侧的第一间隙增大以使气流速度尽可能维持在亚音速区间,以维护其正常的流体压力。具体的,需要同时控制第一定子和第二定子上的第一磁轴承,使第一磁轴承的磁极以相同的极性励磁,即第一间隙减小的一侧产生吸力,用于回吸该侧第一箔片轴承,第一间隙增大的一侧产生吸力,用于拉回第一推力盘。这样,利用两侧磁力作用距离的差产生磁力差,以此拉动第一推力盘使第一推力盘与两侧第一箔片轴承之间的第一间隙恢复正常,从而使第一推力盘重新回到平衡状态。
在上述过程中,利用第一磁轴承方便实时控制的优点,主动平衡第一推力盘的不平衡质量或第一推力盘涡动等导致第一推力盘过度偏移的因素,使第一推力盘在转轴的轴向方向上固定在某一极小范围内。另外,在第一推力盘的加速过程中,可以准确定位产生激波的位置(即线速度超声速部位),并通过控制第一磁轴承的电流大小和方向等,使第一磁轴承产生相反的力来平衡激波作用。待激波平稳后,再次调整第一磁轴承的控制策略,以最节能的方式将第一推力盘固定在某一极小范围内。
综合上述,本公开实施例具有如下有益效果:
其一,电磁轴承与气体轴承协同工作,改善了轴承在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了轴承的承载能力。同时,电磁轴承与气体轴承采用并联结构,简化了结构,集成度高,易加工、制造和操作,提高了轴承的综合性能。在转子系统启动或停机时,可以用电磁轴承使轴承的推力盘与定子在轴承间隙内转动,提高了轴承的低速性能,延长了轴承的使用寿命,能够提高轴承及整个系统的安全性和可靠性。
其二,相对于传统的采用气体静压轴承和气体动压轴承结合的气体动静压混合推力轴承,本公开实施例的箔片式气磁混合推力轴承具有响应速度快的优点。
其三,通过在箔片上设置磁性材料,通过电磁轴承的磁极的吸引能够使箔片适度变形,提高轴承中润滑气膜一侧的最高压力和防止润滑气流泄漏,提高推力盘抗受扰动偏心撞壁的能力,从而也提高了轴承的承载能力。
其四,采用成本较低的压力传感器采集气膜压力变化,通过简单的控制方法控制箔片的变形,可提供较高转子阻尼,从而提高转子稳定性。另外,由于控制方法简单,对轴承的加工精度要求不高。
第八实施例
图20至图26为本公开实施例提供的槽式气磁混合推力轴承的结构示意图。
如图20至图26所示,槽式气磁混合推力轴承5200包括:第二推力盘5201,第二推力盘5201固定连接于转轴100上,第二推力盘5201上设置有第三磁性部件;以及,穿设于转轴100上的第三定子5202和第四定子5203,第三定子5202和第四定子5203分别设置于第二推 力盘5201的相对两侧;第三定子5202和第四定子5203中,每个定子包括第二磁轴承5204,第二磁轴承5204上沿周向设置有能够与第三磁性部件之间产生磁力的多个第四磁性部件,第二磁轴承5204与第二推力盘5201之间具有第二间隙5206,且第二推力盘5201能够在第三磁性部件和多个第四磁性部件之间的磁力作用下在转轴100的轴向方向上移动;其中,第二推力盘5201的面向第三定子5202和第四定子5203的端面,或,第三定子5202和第四定子5203的面向第二推力盘5201的端面上设置有第二动压发生槽5205。
本公开实施例中,通过在推力轴承5200中设置第二间隙5206和第二磁轴承5204,从而使该推力轴承5200形成气、磁混合推力轴承。
工作时,推力轴承5200中的气体轴承与第二磁轴承5204能够协同工作,在推力轴承5200处于稳定的工作状态时,依靠气体轴承实现支承;而在推力轴承5200处于非稳定的工作状态时,依靠第二磁轴承5204及时对推力轴承5200进行控制和响应。
可见,本公开实施例能够改善推力轴承,尤其在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了推力轴承的承载能力。本公开实施例的推力轴承能够满足高转速的转子系统,例如,燃气轮机或者燃气轮机发电联合机组等的需求。
本公开实施例中,第二推力盘5201、第三定子5202和第四定子5203的外径可以相等,且第三定子5202和第四定子5203的结构可以完全相同。
当本公开实施例的转子系统应用于燃气轮机时,第三定子5202和第四定子5203可以通过连接件与燃气轮机的壳体连接。
本公开实施例中,当第二推力盘5201旋转时,存在于第二间隙5206的流动气体被压入第二动压发生槽5205内,从而产生压力,以实现第二推力盘5201沿轴向方向被非接触地保持。其中,第二动压发生槽5205产生压力的大小随第二动压发生槽5205的角度、槽宽、槽长、槽深、槽数以及平面度的不同而变化。此外,第二动压发生槽5205产生压力的大小也和第二推力盘5201的旋转速度以及第二间隙5206有关。可以根据实际工况对第二动压发生槽5205的参数进行设计。第二动压发生槽5205可以通过锻造、滚轧、刻蚀或冲压等方式形成于第三定子5202和第四定子5203上,或者,第二动压发生槽5205可以通过锻造、滚轧、刻蚀或冲压等方式形成于第二推力盘5201上。
可选的,多个第四磁性部件包括多个第二永磁体,多个第二永磁体在第二磁轴承5204上沿周向设置;或者,多个第四磁性部件包括多个第二电磁铁,多个第二电磁铁在第二磁轴承5204上沿周向设置,多个第二电磁铁中的每个第二电磁铁包括设置于第二磁轴承5204上的第二磁芯52041及缠绕于第二磁芯52041上的第二线圈52042。
本公开实施例中,当槽式气磁混合推力轴承5200仅需要磁性部件提供磁力而无需磁控时,第四磁性部件优选第二永磁体;当槽式气磁混合推力轴承5200同时需要磁力和磁控时,第四磁性部件优选第二电磁铁。
当第四磁性部件为第二电磁铁时,往第二线圈52042通入电流,即可以使第二磁芯52041产生磁力。往第二线圈52042通入电流的大小不同,第二磁芯52041产生的磁力大小也不同;往第二线圈52042通入电流的方向不同,第二磁芯52041的磁极也不同。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本公开的优选实施例中,第二磁芯52041可以由若干硅钢片或者矽钢片叠压而成。
可选的,第二磁轴承5204包括:第二磁轴承座52043,第二磁轴承座52043与第二推力 盘5201相对设置,第二磁轴承座52043上沿周向设置有多个第二容纳槽52044,多个第四磁性部件设置于多个第二容纳槽52044内,且多个第四磁性部件的磁极朝向第二推力盘5201所在的一侧;第二端盖52045和第一压环52046,第二端盖52045设置于第二磁轴承座52043的远离第二推力盘5201的一侧,第一压环52046设置于第二磁轴承座52043的靠近第二推力盘5201的一侧,第二端盖52045与第一压环52046配合,将多个第四磁性部件固定于第二磁轴承座52043上。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本公开的优选实施例中,第二磁轴承座52043可以由若干硅钢片或者矽钢片叠压而成。第二容纳槽52044的数量可以为但不限于为六个或八个,沿第二磁轴承座52043的周向均匀设置。这样,能够使第二磁轴承5204与第二推力盘5201之间的磁力更加均匀、稳定。需要说明的是,多个第四磁性部件还可以采用其他方式设置于第二磁轴承座52043上,对此不进行限定。第二端盖52045的材料可以为非磁性材料,优选硬铝材料。第一压环52046的材料可以为非磁性材料,优选硬铝材料。
本公开实施例中,可以在第一压环52046上设置第二动压发生槽5205,为便于第二动压发生槽5205的加工,第一压环52046可以由不锈钢材料制成。
可选的,第三磁性部件包括设置于第二推力盘5201的面向第三定子5202和第四定子5203的端面上的第二磁性材料(图中未示出);其中,第二磁性材料在第二推力盘5201上呈条状分布,而形成多个条状磁性部,多个条状磁性部呈辐射状或环状;或者,第二磁性部件在第二推力盘5201上呈点状分布。
本公开实施例中,使第二磁性材料在第二推力盘5201上呈条状分布或点状分布,可以将第二磁性材料与第四磁性部件之间产生的磁力控制在合理的范围。
可选的,第二动压发生槽5205呈辐射状或同心圆状排布,这样,有利于使气膜更均匀地分布于第二间隙5206内。
可选的,第二动压发生槽5205包括第一螺旋槽52051和第二螺旋槽52052,第一螺旋槽52051环绕于第二螺旋槽52052外,第一螺旋槽52051和第二螺旋槽52052的螺旋走向相反,第一螺旋槽52051的靠近第二螺旋槽52052的一端与第二螺旋槽52052的靠近第一螺旋槽52051的一端连接或断开。
其中,第一螺旋槽52051的靠近第二螺旋槽52052的一端至转轴100的轴心的距离等于第一螺旋槽52051的靠近第二螺旋槽52052的一端至第三定子5202或第四定子5203或第二推力盘5201的外周边缘的距离。或者,第二螺旋槽52052的靠近第一螺旋槽52051的一端至转轴100的轴心的距离等于第二螺旋槽52052的靠近第一螺旋槽52051的一端至第三定子5202或第四定子5203或第二推力盘5201的外周边缘的距离。
本公开实施例中,通过采用上述第二动压发生槽5205的设置方式,能够在转轴100正向旋转或者反向旋转的情况下,第二推力盘5201都能以期望的方式非接触式地保持,从而使转轴100具有负载能力高及稳定性好的优点。
可选的,第三定子5202和第四定子5203中,每个定子上还设置有第一静压进气节流孔5208,第一静压进气节流孔5208的一端与第二间隙5206相通,另一端连接外部气源,用于将外部气源输送至第二间隙5206内。
本公开实施例中,通过设置上述第一静压进气节流孔5208,可以形成气体静压轴承, 从而该推力轴承5200可以构成气体动静压-磁混合推力轴承。其中,第一静压进气节流孔5208的流通直径可以根据气量需求等实际工况进行调节。
可选的,第三定子5202和第四定子5203中,每个定子上设置有多个第一静压进气节流孔5208,且多个第一静压进气节流孔5208沿定子的周向间隔设置。
本公开实施例中,多个第一静压进气节流孔5208沿定子的周向间隔设置,优选沿定子的周向均匀间隔设置。这样,有利于使第二间隙5206内的气膜压力更加均匀。
可选的,第三定子5202和第四定子5203中,第一静压进气节流孔5208至转轴100的轴心的距离大于或者等于第一静压进气节流孔5208至定子的外周边缘的距离。
本公开实施例中,上述第一静压进气节流孔5208的设置方式可以使气体静压轴承更加稳定,如果静压进气节流孔过于靠近转轴100的轴心,则无法及时有效地使气膜布满整个第二推力盘5201的端面,使第二推力盘5201的旋转不够稳定。优选的,第一静压进气节流孔5208至转轴100的轴心的距离等于第一静压进气节流孔5208至定子的外周边缘的距离。
可选的,槽式气磁混合推力轴承5200还包括第二传感器5207,第二传感器5207的传感器探头设置于第二间隙5206内。
本公开实施例中,通过设置第二传感器5207,能够实时检测第二间隙5206处的参数,例如第二间隙5206处的气膜压力等。这样,第二磁轴承5204可以根据第二传感器5207的检测结果对推力轴承5200进行主动控制,并能够使控制达到较高的精度。
可选的,第二传感器5207包括第二传感器盖52071和第二传感器探头52072,第二传感器探头52072的第一端连接第二传感器盖52071,第二传感器盖52071固定于第二磁轴承5204上,第二磁轴承5204上设有用于供第二传感器探头52072穿过的通孔;第二传感器探头52072的第二端穿过第二磁轴承5204上的通孔,并伸至第二间隙5206,且第二传感器探头52072的第二端端部与第二磁轴承5204的靠近第二推力盘5201的一侧平齐。
本公开实施例中,通过上述第二传感器5207的结构形式和安装方式,能够使第二传感器5207更稳定地设置于第二磁轴承5204上。此外,将第二传感器探头52072的第二端端部与第二磁轴承5204的靠近第二推力盘5201的一侧平齐,一方面,能够避免第二传感器探头52072受到第二推力盘5201的碰触,从而有利于保护第二传感器探头52072;另一方面,不会对第二间隙5206内的气膜产生影响,避免第二间隙5206内的气膜发生扰动。
可选的,第二传感器5207设置于相邻的两个第四磁性部件之间。
本公开实施例中,每个定子上均应当设置至少一个第二传感器5207,优选设置一个第二传感器5207,该第二传感器5207优选设置在相邻两个第四磁性部件之间。
可选的,第二传感器5207为以下任意一种或多种的组合:用于检测第二推力盘5201位置的位移传感器;用于检测第二间隙5206处的气膜压力的压力传感器;用于检测第二推力盘5201转速的速度传感器;用于检测第二推力盘5201旋转加速度的加速度传感器。
下面以本公开实施例的槽式气磁混合推力轴承(其中,第二磁轴承中的第四磁性部件为电磁铁)参与转子系统的控制过程时的具体控制方法进行详细地说明。
本公开实施例提供一种槽式气磁混合推力轴承的控制方法,包括:
S531、开启第三定子和第四定子中的第二磁轴承,控制第二推力盘在第三磁性部件与多个第四磁性部件之间的磁力作用下在转轴的轴向方向上移动,以使第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二 间隙的差值小于或等于预定值。
S532、转轴的转速加速至工作转速之后,关闭第三定子和第四定子中的第二磁轴承。
S533、转子系统停机时,开启第三定子和第四定子中的第二磁轴承。
S534、转轴的转速减速至零之后,关闭第三定子和第四定子中的第二磁轴承。
在上述过程中,第二磁轴承开启后,第二推力盘在第二磁轴承的作用下到达第三定子和第四定子之间的预定位置,第二推力盘与第三定子和第四定子的端面均具有第二间隙。
随着转轴的转动,第二推力盘在受第二间隙中气流润滑的情况下相对第三定子和第四定子开始转动,以防止磨损。第二磁轴承开启的具体过程为:向第二线圈输入预定值的电流信号,第二推力盘在第二磁轴承的作用下到达第三定子和第四定子之间的预定位置。
随着转轴的转速越来越大,第二推力盘的转速也同步增大,当转轴的转速到达工作转速时,该推力轴承的气体动压轴承(第二推力盘与第三定子和第四定子之间设置第二间隙即形成该推力轴承的气体动压轴承)产生的气膜压力可以将第二推力盘稳定,届时可以关闭第二磁轴承。
在转子系统停机时,第二推力盘随着转轴减速而减速,为了使转轴在整个转子系统停机过程中保持稳定,在转子系统停机时即开启第二磁轴承,直到第二推力盘完全停下后即可关闭第二磁轴承。
本公开实施例还提供另一种槽式气磁混合推力轴承的控制方法,包括:
S541、开启第三定子和第四定子中的第二磁轴承,控制第二推力盘在第三磁性部件与多个第四磁性部件之间的磁力作用下在转轴的轴向方向上移动,以使第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值小于或等于预定值。
S542、转轴的转速加速至第一预设值之后,关闭第三定子和第四定子中的第二磁轴承。
S543、转轴的转速减速至第二预设值时,开启第三定子和第四定子中的第二磁轴承。
S544、转轴的转速减速至零之后,关闭第三定子和第四定子中的第二磁轴承。
在上述过程中,第二磁轴承开启后,第二推力盘在第二磁轴承的作用下到达第三定子和第四定子之间的预定位置,第二推力盘与第三定子和第四定子的端面均具有第二间隙。
随着转轴的转动,第二推力盘在受第二间隙中气流润滑的情况下相对第三定子和第四定子开始转动,以防止磨损。第二磁轴承开启的具体过程为:向第二线圈输入预定值的电流信号,第二推力盘在第二磁轴承的作用下到达第三定子和第四定子之间的预定位置。
随着转轴的转速越来越大,第二推力盘的转速也同步增大,当转轴的转速到达第二预设值,例如额定转速的5%至30%时,该推力轴承的气体动压轴承(第二推力盘与第三定子和第四定子之间设置第二间隙即形成该槽式气磁混合推力轴承的气体动压轴承)产生的气膜压力可以将第二推力盘稳定,届时可以关闭第二磁轴承。
在转子系统停机过程中,第二推力盘随着转轴减速而减速,当转轴的转速低于第二预设值时,例如额定转速的5%至30%时,此时,推力轴承的气体动压轴承产生的气膜压力也随第二推力盘减速而减小,因此,需要开启第二磁轴承以使第二推力盘保持稳定,直到第二推力盘完全停下后即可关闭第二磁轴承。
可选的,上述方法还包括:当载荷负载在第二推力盘,第二推力盘在载荷负载的作用下在转轴的轴向方向上移动,第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第 二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值大于预定值时,开启第三定子或第四定子中的第二磁轴承;当第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值小于或者等于预定值,关闭第三定子或第四定子中的第二磁轴承。
当载荷负载在第二推力盘上,使第二推力盘与第三定子或第四定子的第二磁轴承之间的第二间隙变小而接近该侧的第二磁轴承时,第二传感器(这里的第二传感器优选压力传感器)获得气压增大的信号,此时第二磁轴承需要介入工作。第二磁轴承将磁力作用于第二推力盘上,使其向另一侧的第二磁轴承移动,当第二推力盘达到新的平衡位置之后,第二磁轴承停止工作。
具体的,若第二推力盘与第三定子中的第二磁轴承之间的第二间隙小于第二推力盘与第四定子中的第二磁轴承之间的第二间隙,且第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值大于预定值,则控制第四定子中的第二磁轴承,使第二推力盘在第三磁性部件与多个第四磁性部件之间的磁力作用下,朝远离第四定子的方向在转轴的轴向方向上移动。
若第二推力盘与第四定子中的第二磁轴承之间的第二间隙小于第二推力盘与第三定子中的第二磁轴承之间的第二间隙,且第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值大于预定值,则控制第三定子中的第二磁轴承,使第二推力盘在第三磁性部件与多个第四磁性部件之间的磁力作用下,朝远离第三定子的方向在转轴的轴向方向上移动。
可选的,当载荷负载在第二推力盘,第二推力盘在载荷负载的作用下在转轴的轴向方向上移动,第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值大于预定值时,开启第三定子或第四定子中的第二磁轴承,包括:当载荷负载在第二推力盘,第二推力盘在载荷负载的作用下在转轴的轴向方向上移动,第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值大于预定值时,控制第三定子或第四定子中的第二磁轴承以最大功率开启;或者,当载荷负载在第二推力盘,第二推力盘在载荷负载的作用下在转轴的轴向方向上移动,第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值大于预定值时,控制第三定子或第四定子中的第二磁轴承按照预设频率以频闪的方式开启。
当有外部冲击扰动发生时,第二推力盘可能快速地接近某侧第二磁轴承,则有可能导致该侧的第二间隙瞬间过小,使该侧第二间隙处的局部气体流速接近甚至达到音速,从而引发激波产生气锤自激现象。激波的产生会导致局部气体流动发生扰动和混乱,当流体速度在音速到亚音速之间变化时其压力呈阶梯式显著下降。这种情况下,需要控制第三定子或第四定子中的第二磁轴承以最大功率开启,或者控制第三定子或第四定子中的第二磁轴承按照预设频率以频闪的方式轮流开启,以提供对扰动的阻尼作用,从而有效抑制外部扰动。当第二推力盘重新回到平衡状态之后,第二磁轴承停止工作。
需要说明的是,本公开实施例中,对于同时设置有电磁轴承(第二磁轴承中的第四磁性部件为电磁铁即形成电磁轴承)和气体静压轴承(第三定子和第四定子上设置的第一静压进气节流孔即形成气体静压轴承)的情况下,电磁轴承和气体静压轴承可以相互备用, 在其中一方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到电磁轴承故障的情况下,控制外部气源开启以替代电磁轴承执行相应的动作,从而提高轴承的安全性和可靠性。
本公开实施例中,对于同时设置有电磁轴承和气体静压轴承的情况下,对于“开启推力轴承中的静压轴承,以使推力轴承的推力盘移动至预设轴向位置”的步骤,可以包括如下实施方式:开启第三定子和第四定子的第二磁轴承;和/或,启动外部气源,通过第一静压进气节流孔向第二间隙处输送气体;控制第二推力盘在第三磁性部件与第四磁性部件之间的磁力作用下,和/或气体的推动作用下在转轴的轴向方向上移动,以使第二推力盘与第三定子中的第二磁轴承之间的第二间隙与第二推力盘与第四定子中的第二磁轴承之间的第二间隙的差值小于或等于预定值。
在上述过程中,利用第二磁轴承方便实时控制的优点,主动平衡第二推力盘的不平衡质量或第二推力盘涡动等导致第二推力盘过度偏移的因素,使第二推力盘在转轴的轴向方向上固定在某一极小范围内。另外,在第二推力盘的加速过程中,可以准确定位产生激波的位置(即线速度超声速部位),并通过控制第二磁轴承的电流大小和方向等,使第二磁轴承产生相反的力来平衡激波作用。待激波平稳后,再次调整第二磁轴承的控制策略,以最节能的方式将第二推力盘固定在某一极小范围内。
综合上述,本公开实施例具有如下有益效果:
其一,电磁轴承与气体轴承协同工作,改善了轴承在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了轴承的承载能力。同时,电磁轴承与气体轴承采用并联结构,简化了结构,集成度高,易加工、制造和操作,提高了轴承的综合性能。在转子系统启动或停机时,可以用电磁轴承使轴承的推力盘与定子在第二间隙内转动,提高了轴承的低速性能,延长了轴承的使用寿命,能够提高轴承及整个系统的安全性和可靠性。
其二,相对于传统的采用气体静压轴承和气体动压轴承结合的气体动静压混合推力轴承,本公开实施例的槽式气磁混合推力轴承具有响应速度快的优点。
其三,增加了气体静压轴承,形成槽式动静压-磁混合推力轴承,在同时设置有电磁轴承和气体静压轴承的情况下,轴承的承载力进一步加大,电磁轴承和气体静压轴承可以相互备用,在其中一方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到电磁轴承故障的情况,控制系统控制气体静压轴承开启以替代电磁轴承执行相应的动作,从而提高轴承的安全性和可靠性。
第九实施例
图27至图34为本公开实施例提供的槽式气磁混合径向轴承的结构示意图。
如图27至图34所示,槽式气磁混合径向轴承6200包括:套设于转轴100上的第四磁轴承6201,第四磁轴承6201上沿周向设置有多个第七磁性部件;第四磁轴承6201朝向转轴100的侧壁,或转轴100朝向第四磁轴承6201的圆周面上设置有第三动压发生槽6202;其中,第四磁轴承6201与转轴100之间具有第四间隙6203,且转轴100能够在多个第七磁性部件的磁力作用下在转轴100的径向方向上移动。
本公开实施例中,通过在径向轴承6200中设置第四间隙6203和第四磁轴承6201,从而使该径向轴承6200形成气、磁混合径向轴承。
工作时,径向轴承6200中的气体轴承与第四磁轴承6201能够协同工作,在径向轴承 6200处于稳定的工作状态时,依靠气体轴承实现支承;而在径向轴承6200处于非稳定的工作状态时,依靠第四磁轴承6201及时对径向轴承6200进行控制和响应。
可见,本公开实施例能够改善径向轴承,尤其在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了径向轴承的承载能力。本公开实施例的径向轴承能够满足高转速的转子系统,例如,燃气轮机或者燃气轮机发电联合机组等的需求。
本公开实施例中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,转轴100可以由若干硅钢片或者矽钢片叠压而成。
本公开实施例中,当转轴100旋转时,存在于第四间隙6203的流动气体被压入第三动压发生槽6202内,从而产生压力,使转轴100上浮,以实现转轴100沿径向方向被非接触地保持。其中,第三动压发生槽6202产生压力的大小随第三动压发生槽6202的角度、槽宽、槽长、槽深、槽数以及平面度的不同而变化。此外,第三动压发生槽6202产生压力的大小也和转轴100的旋转速度以及第四间隙6203有关。可以根据实际工况对第三动压发生槽6202的参数进行设计。第三动压发生槽6202可以通过锻造、滚轧、刻蚀或冲压等方式形成于第四磁轴承6201或转轴上。
可选的,多个第七磁性部件包括多个第四永磁体,多个第四永磁体在第四磁轴承6201上沿周向设置;或者,多个第七磁性部件包括多个第四电磁铁,多个第四电磁铁在第四磁轴承6201上沿周向设置,多个第四电磁铁中的每个第四电磁铁包括设置于第四磁轴承6201上的第四磁芯62011及缠绕于第四磁芯62011上的第四线圈62012。
本公开实施例中,当槽式气磁混合径向轴承6200仅需要磁性部件提供磁力而无需磁控时,第七磁性部件优选第四永磁体;当箔片式气磁混合推力轴承同时需要磁力和磁控时,第七磁性部件优选第四电磁铁。
当第七磁性部件为第四电磁铁时,往第四线圈62012通入电流,即可以使第四磁芯62011产生磁力。往第四线圈62012通入电流的大小不同,第四磁芯62011产生的磁力大小也不同;往第四线圈62012通入电流的方向不同,第四磁芯62011的磁极也不同。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本公开的优选实施例中,第四磁芯62011可以由若干硅钢片或者矽钢片叠压而成。
可选的,第四磁轴承6201包括:第四磁轴承座62013,第四磁轴承座62013套设于转轴100上,第四磁轴承座62013上沿周向设置有多个第四容纳槽62014,多个第七磁性部件设置于多个第四容纳槽62014内,且多个第七磁性部件的磁极朝向转轴100;套设于第四磁轴承座62013外的第二轴承壳62015;套设于第四磁轴承座62013与转轴100之间的第二轴承套62016;以及,分别设置于第二轴承壳62015两端的第五端盖62017和第六端盖62018;
其中,第二轴承套62016、第五端盖62017及第六端盖62018配合,将多个第七磁性部件固定于第四磁轴承座62013上。
本公开实施例中,通过设置第二轴承套62016,能够封闭第四磁芯62011以及第四线圈62012之间的间隙,从而在第二轴承套62016和转轴100之间形成稳定、均匀的气膜压力。另外,通过设置不同径向厚度的第二轴承套62016能够方便地调节和控制第四间隙6203的大小。
其中,第二轴承套62016与转轴100之间的第四间隙6203的宽度可以为5μm至12μm,优选8μm至10μm。
其中,由于硅钢片或矽钢片具有磁导率高、涡流损耗低等物理特性,本公开的优选实施例中,第四磁轴承座62013可以由若干硅钢片或者矽钢片叠压而成。第四容纳槽62014的数量可以为但不限于为六个或八个,沿第四磁轴承座62013的周向均匀设置。这样,能够使第四磁轴承6201与转轴100之间的磁力更加均匀、稳定。需要说明的是,多个第七磁性部件还可以采用其他方式设置于第四磁轴承座62013上,对此不进行限定。第五端盖62017和第六端盖62018的材料均可以是非磁性材料,优选硬铝材料。第二轴承套62016的材料可以是非磁性材料,优选硬铝材料。第二轴承壳62015的材料可以是非磁性材料,优选硬铝材料。
优选的,第五端盖62017和第六端盖62018均设置有外径与第二轴承壳62015的内径相同的凸台,第五端盖62017和第六端盖62018的凸台用于从两端固定和压紧组成第四磁轴承座62013的硅钢片或者矽钢片。
本公开实施例中,可以在第二轴承套62016上设置第三动压发生槽6202,为便于第三动压发生槽6202的加工,第二轴承套62016可以由不锈钢材料制成。具体地,第三动压发生槽6202可以设置在转轴100上对应第二轴承套62016的圆周面的中间部分,也可以设置为对称分布在中间部分的两侧、相互独立的两部分第三动压发生槽6202;第三动压发生槽6202还可以设置在第二轴承套62016内侧壁的中间部分,也可以设置为对称分布在第二轴承套62016内侧壁两端、相互独立的两部分第三动压发生槽6202。
可选的,第三动压发生槽6202呈矩阵排布,这样,有利于使气膜更均匀地分布于第四间隙6203内。
可选的,第三动压发生槽6202为连续或间隔设置的V形槽。
本公开实施例中,通过采用上述第三动压发生槽6202的设置方式,能够在转轴100正向旋转或者反向旋转的情况下,转轴都能以期望的方式非接触式地保持,从而使转轴100具有负载能力高及稳定性好的优点。第三动压发生槽6202除了设置为V形槽,还可以设置为人字形槽或其它形状的槽。
可选的,第四磁轴承6201上还设置有第二静压进气节流孔6205,第二静压进气节流孔6205的一端与第四间隙6203相通,另一端连接外部气源,用于将外部气源输送至第四间隙6203内。
本公开实施例中,通过设置上述第二静压进气节流孔6205,可以形成气体静压轴承,从而该槽式气磁混合径向轴承6200可以构成槽式气体动静压-磁混合径向轴承。其中,第二静压进气节流孔6205的流通直径可以根据气量需求等实际工况进行调节。
可选的,第二静压进气节流孔6205在第四磁轴承6201内分成至少两个支路连通至第四间隙6203内。
本公开实施例中,第二静压进气节流孔6205可以依次穿过第五端盖62017或第六端盖62018、第四磁轴承6201以及第二轴承套62016,将外部气源与第四间隙6203连通。进一步地,第二静压进气节流孔6205可以分为两个或者更多个支路连通至第四间隙6203,使得第四间隙6203内的气膜压力更加均匀。进一步的,第五端盖62017或第六端盖62018上可以设置有环形槽,可在第四磁轴承6201与该环形槽对应的环形区域内设置多个第二静压进气节流孔6205,例如,在每个第四磁芯62011中或每两个相邻的第四磁芯62011中设置一个第二静压进气节流孔6205。其中,第二静压进气节流孔6205以及支路的流通直径可以根据气量 需求等实际工况进行调节。
可选的,槽式气磁混合径向轴承6200还包括沿第四磁轴承6201的周向间隔设置的多个第四传感器6204,其中每个第四传感器6204的传感器探头设置于第四间隙6203内。
本公开实施例中,通过设置第四传感器6204,能够实时检测第四间隙6203处的参数,例如第四间隙6203处的气膜压力。这样,第四磁轴承6201可以根据第四传感器6204的检测结果对径向轴承6200进行主动控制,并能够使控制达到较高的精度。
可选的,多个第四传感器6204中,每个第四传感器6204包括第四传感器盖62041和第四传感器探头62042,第四传感器探头62042的第一端连接第四传感器盖62041,第四传感器盖62041固定于第四磁轴承6201上,第四磁轴承6201上设有用于供第四传感器探头62042穿过的通孔;第四传感器探头62042的第二端穿过第四磁轴承6201上的通孔,并伸至第四间隙6203,且第四传感器探头62042的第二端端部与第四磁轴承6201的靠近转轴100的一侧平齐。
本公开实施例中,通过上述第四传感器6204的结构形式和安装方式,能够使第四传感器6204更稳定地设置于第四磁轴承6201上。此外,将第四传感器探头62042的第二端端部与第四磁轴承6201的靠近转轴100的一侧平齐,一方面,能够避免第四传感器探头62042受到转轴100的碰触,从而有利于保护第四传感器探头62042;另一方面,不会对第四间隙6203内的气膜产生影响,避免第四间隙6203内的气膜发生扰动。
本公开实施例中,第四传感器6204的数量可以与第七磁性部件的数量相同。第四传感器6204可以设置于相邻的两个第七磁性部件之间,也可以穿过第七磁性部件设置,本公开实施例对此不作限定。每个第四传感器6204优选设置于第四磁轴承6201的中部。
可选的,多个第四传感器6204为以下任意一种或多种的组合:用于检测转轴100位置的位移传感器;用于检测第四间隙6203处的气膜压力的压力传感器;用于检测转轴100转速的速度传感器;用于检测转轴100旋转加速度的加速度传感器。
下面以本公开实施例的槽式气磁混合径向轴承(其中,第四磁轴承中的第七磁性部件为电磁铁)参与转子系统的控制过程时的具体控制方法进行详细地说明。
本公开实施例提供一种槽式气磁混合径向轴承的控制方法,包括:
S631、开启第四磁轴承,控制转轴在多个第七磁性部件的磁力作用下在转轴的径向方向上移动,推动转轴至预设径向位置。
S632、转轴的转速加速至工作转速之后,关闭第四磁轴承。
S633、转子系统停机时,开启第四磁轴承。
S634、转轴的转速减速至零之后,关闭第四磁轴承。
在上述过程中,第四磁轴承开启后,转轴在第四磁轴承的作用下托起并到达预设径向位置,第四磁轴承与转轴之间具有第四间隙。
随着转轴的转动,转轴在受第四间隙中气流润滑的情况下开始转动,以防止磨损。第四磁轴承开启的具体过程为:向第四线圈输入预定值的电流信号,转轴在第四磁轴承的作用下托起并到达预设径向位置。
随着转轴的转速越来越大,当转轴的转速到达工作转速时,该径向轴承的气体动压轴承(第四磁轴承与转轴之间设置第四间隙即形成该径向轴承的气体动压轴承)产生的气膜压力可以将转轴稳定,届时可以关闭第四磁轴承。
在转子系统停机时,转轴减速,为了使转轴在整个转子系统停机过程中保持稳定,在转子系统停机时即开启第四磁轴承,直到转轴完全停下后即可关闭第四磁轴承。
本公开实施例还提供另一种槽式气磁混合径向轴承的控制方法,包括:
S641、开启第四磁轴承,控制转轴在多个第七磁性部件的磁力作用下在转轴的径向方向上移动,推动转轴至预设径向位置。
S642、转轴的转速加速至第一预设值之后,关闭第四磁轴承。
S643、转轴的转速加速至一阶临界速度或二阶临界速度时,开启第四磁轴承。
具体的,当转轴与第四磁轴承之间的第四间隙处的气体流速达到一阶临界速度或二阶临界速度时,开启第四磁轴承,直至转轴恢复至平衡径向位置。
可选的,转轴的转速加速至一阶临界速度或二阶临界速度时,开启第四磁轴承,包括:转轴的转速加速至一阶临界速度或二阶临界速度时,控制第四磁轴承以最大功率开启;或者,转轴的转速加速至一阶临界速度或二阶临界速度时,控制第四磁轴承按照预设频率以频闪的方式开启。
S644、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭第四磁轴承。
S645、转子系统停机过程中,当转子系统减速至一阶临界速度或二阶临界速度时,开启第四磁轴承。
具体的,当转轴与第四磁轴承之间的第四间隙处的气体流速减速至一阶临界速度或二阶临界速度时,开启第四磁轴承,直至转轴恢复至平衡径向位置。
可选的,转轴的转速减速至一阶临界速度或二阶临界速度时,开启第四磁轴承,包括:转轴的转速减速至一阶临界速度或二阶临界速度时,控制第四磁轴承以最大功率开启;或者,转轴的转速减速至一阶临界速度或二阶临界速度时,控制第四磁轴承按照预设频率以频闪的方式开启。
S646、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭第四磁轴承。
S647、转轴的转速减速至第二预设值时,开启第四磁轴承。
S648、转轴的转速减速至零之后,关闭第四磁轴承。
在上述过程中,第四磁轴承开启后,转轴在第四磁轴承的作用下托起并到达预设径向位置,第四磁轴承与转轴之间具有第四间隙。
随着转轴的转动,转轴在受第四间隙中气流润滑的情况下开始转动,以防止磨损。第四磁轴承开启的具体过程为:向第四线圈输入预定值的电流信号,转轴在第四磁轴承的作用下托起并到达预设径向位置。
随着转轴的转速越来越大,当转轴的转速到达第一预设值,例如额定转速的5%至30%时,该径向轴承的气体动压轴承(第四磁轴承与转轴之间设置第四间隙即形成该径向轴承的气体动压轴承)产生的气膜压力可以将转轴稳定,届时可以关闭第四磁轴承。
在转子系统停机过程中,转轴减速,当转轴的转速降至第二预设值,例如额定转速的5%至30%时,开启第四磁轴承,直到转轴完全停下后即可关闭第四磁轴承。
可选的,方法还包括:当转轴与第四磁轴承之间的第四间隙发生变化时,开启第四磁轴承,使转轴在多个第七磁性部件的磁力作用下向远离间隙变小侧的方向移动;转轴处于平衡径向位置之后,关闭第四磁轴承。
当载荷负载在转轴上,使转轴逐渐下降并接近下方的第四磁轴承时,第四传感器(这 里的第四传感器优选压力传感器)获得气压增大的信号,此时第四磁轴承需要介入工作。第四磁轴承将磁力作用于转轴上使其向上悬浮,当转轴达到新的平衡位置时,第四磁轴承停止工作。
当有外部冲击扰动发生时,转轴可能快速地接近第四磁轴承,则有可能导致转轴与第四磁轴承之间的间隙瞬间过小,使间隙减小处的局部气体流速接近甚至达到音速,从而引发激波产生气锤自激现象。激波的产生会导致局部气体流动发生扰动和混乱,当流体速度在音速到亚音速之间变化时其压力呈阶梯式显著下降。这种情况下,需要控制第四磁轴承的第七磁性部件以预设频率轮流开启,以提供对扰动的阻尼作用,从而有效抑制外部扰动。当转轴恢复至新的平衡径向位置之后,第四磁轴承停止工作。
需要说明的是,本公开实施例中,对于同时设置有电磁轴承(第四磁轴承中的第七磁性部件为电磁铁即形成电磁轴承)和气体静压轴承(第四磁轴承上设置的第二静压进气节流孔即形成气体静压轴承)的情况下,电磁轴承和气体静压轴承可以相互备用,在其中一方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到电磁轴承故障的情况下,控制外部气源开启以替代电磁轴承执行相应的动作,从而提高轴承的安全性和可靠性。
本公开实施例中,对于同时设置有电磁轴承和气体静压轴承的情况下,对于“开启径向轴承中的静压轴承,以使转轴移动至预设径向位置,”的步骤,可以包括如下实施方式:开启第四磁轴承;或,启动外部气源,通过第二静压进气节流孔向第四间隙处输送气体;控制转轴在多个第七磁性部件的磁力作用下,或气体的推动作用下在转轴的径向方向上移动,以使转轴移动至预设径向位置。
在上述过程中,利用第四磁轴承方便实时控制的优点,主动平衡转轴的不平衡质量或转轴涡动等导致转轴过度偏移的因素,使转轴在径向方向上固定在某一极小范围内。另外,在转轴的加速过程中,可以准确定位产生激波的位置(即线速度超声速部位),并通过控制第四磁轴承的电流大小和方向等,使第四磁轴承产生相反的力来平衡激波作用。待激波平稳后,再次调整第四磁轴承的控制策略,以最节能的方式将转轴固定在某一极小范围内。
综合上述,本公开实施例具有如下有益效果:
其一,电磁轴承与气体轴承协同工作,改善了轴承在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了轴承的承载能力。同时,电磁轴承与气体轴承采用嵌套结构,简化了结构,集成度高,易加工、制造和操作,提高了轴承的综合性能。在转子系统启动或停机时,可以用电磁轴承使轴承的推力盘与定子在第一间隙内转动,提高了轴承的低速性能,延长了轴承的使用寿命,能够提高轴承及整个系统的安全性和可靠性。
其二,相对于传统的采用气体静压轴承和气体动压轴承结合的气体动静压混合推力轴承,本公开实施例的槽式气磁混合径向轴承具有响应速度快的优点。
其三,增加了气体静压轴承,形成槽式动静压-磁混合推力轴承,在同时设置有电磁轴承和气体静压轴承的情况下,轴承的承载力进一步加大,电磁轴承和气体静压轴承可以相互备用,在其中一方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到电磁轴承故障的情况,控制系统控制气体静压轴承开启以替代电磁轴承执行相应的动作,从而提高轴承的安全性和可靠性。
第十实施例
转子系统中,推力轴承和与推力轴承相邻的径向轴承可以集成一体,形成集成式轴承。
分别对应图1至图6所示的转子系统,图35至图40示出了将推力轴承和与推力轴承相邻的径向轴承集成形成集成式轴承1000的结构示意图。
图41至图50为本公开实施例提供的集成式轴承的结构示意图。
如图41至图50所示,集成式轴承1000包括:第三轴承壳1001,第三轴承壳1001为中空回转体,第三轴承壳1001设置有第一容纳腔和第二容纳腔;设置于第一容纳腔内的径向子轴承1002,径向子轴承1002穿设于转轴100上,径向子轴承1002与转轴100之间具有第五间隙1004;以及,设置于第二容纳腔内的推力子轴承1003,推力子轴承1003包括第三推力盘10031,以及分别设置于第三推力盘10031两侧的第五定子10032和第六定子10033,第三推力盘10031固定连接于转轴100上,第五定子10032和第六定子10033均穿设于转轴100上;第五定子10032和第六定子10033中,每个定子与第三推力盘10031之间具有第六间隙1005。
本公开实施例中,将径向子轴承1002和推力子轴承1003集成在一个轴承壳内,易于加工和安装,具有结构简化、集成度高的特点,在加工和安装时能够有效保证径向子轴承1002和推力子轴承1003的同轴度一致的要求。另外,由于径向子轴承1002中设置有第五间隙1004,推力子轴承1003中设置有第六间隙1005,使得本公开的轴承为非接触式轴承,能够满足转子高速转动的需求。
其中,第三轴承壳1001的材料可以是非磁性材料,优选硬铝材料。33
其中,第五定子10032与第三轴承壳1001可以一体成型,第六定子10033与第三轴承壳1001可以是可拆卸连接。
当本公开实施例的转子系统应用于燃气轮机或者燃气轮机发电联合机组时,第三轴承壳1001可以通过连接件与燃气轮机的壳体连接。
本公开实施例中,径向子轴承1002和推力子轴承1003均可以包括磁轴承,其中,径向子轴承1002中设置磁轴承的结构形式如下:径向子轴承1002包括套设于转轴100上的第五磁轴承10021,第五磁轴承10021可拆卸安装于第一容纳腔内,第五磁轴承10021上沿周向设置有多个第八磁性部件;其中,转轴100能够在多个第八磁性部件的磁力作用下在转轴100的径向方向上移动。
进一步的,第五磁轴承10021包括:第五磁轴承座,第五磁轴承座套设于转轴100上,第五磁轴承座上沿周向设置有多个第五容纳槽,多个第八磁性部件设置于多个第五容纳槽内,且多个第八磁性部件的磁极朝向转轴100;以及,套设于第五磁轴承座与转轴100之间的第三轴承套10022,第三轴承套10022与第五磁轴承座配合,将多个第八磁性部件固定于第五磁轴承座上。
上述径向子轴承1002中设置磁轴承的其它具体实施方式可以参见第九实施例中的相关说明,并能够达到相同的有益效果,为避免重复,对此不作赘述。
本公开实施例中,集成式轴承1000还可以包括第七端盖1006,第七端盖1006设置于第三轴承壳1001的靠近第一容纳腔的端部,第七端盖1006与第五磁轴承座抵接,用于将径向子轴承1002固定于第一容纳腔内。
本公开实施例中,径向子轴承1002和推力子轴承1003均可以包括磁轴承,其中,推力子轴承1003中设置磁轴承的结构形式如下:第五定子10032和第六定子10033中,每个定子包括第六磁轴承10034,第六磁轴承10034上沿周向设置有多个第九磁性部件;第三推力盘 10031上设置有第十磁性部件,第三推力盘10031能够在多个第九磁性部件和第十磁性部件之间的磁力作用下在转轴100的轴向方向上移动。
进一步的,第六磁轴承10034包括:第六磁轴承座,第六磁轴承座与第三推力盘10031相对设置,第六磁轴承座上沿周向设置有多个第六容纳槽,多个第九磁性部件设置于多个第六容纳槽内,且多个第九磁性部件的磁极朝向第三推力盘10031所在的一侧;第二压环,第二压环设置于第六磁轴承座的靠近第三推力盘10031的一侧,第二压环与第六磁轴承座配合,将多个第九磁性部件固定于第六磁轴承座上。
上述推力子轴承1003中设置磁轴承的其它具体实施方式可以参见第九实施例中的相关说明,并能够达到相同的有益效果,为避免重复,对此不作赘述。
本公开实施例中,通过在集成式轴承1000中设置磁轴承,尤其是电磁轴承(其第五磁轴承10021中的第八磁性部件为电磁铁,第六磁轴承10034中的第九磁性部件为电磁铁),在转子系统启动或停机时,可以用电磁轴承使集成式轴承1000中的推力盘与定子以及转轴与轴承套在间隙内转动,提高了集成式轴承1000的低速性能,延长了集成式轴承1000的使用寿命,能够提高集成式轴承1000及整个转子系统的安全性和可靠性。
本公开实施例中,第五定子10032可以与第三轴承壳1001一体成型,第六定子10033可以与第三轴承壳1001可拆卸连接。
本公开实施例中,径向子轴承1002和推力子轴承1003均可以设置动压发生槽,其中,径向子轴承1002中设置动压发生槽的结构形式如下:径向子轴承1002朝向转轴100的侧壁,或转轴100朝向径向子轴承1002的圆周面设置有第四动压发生槽10023。
进一步的,第四动压发生槽10023呈矩阵排布。
进一步的,第四动压发生槽10023为连续或间隔设置的V形槽。
上述径向子轴承1002中设置动压发生槽的其它具体实施方式可以参见第九实施例中的相关说明,并能够达到相同的有益效果,为避免重复,对此不作赘述。
本公开实施例中,径向子轴承1002和推力子轴承1003均可以设置动压发生槽,其中,推力子轴承1003中设置动压发生槽的结构形式如下:
第三推力盘10031的面向第五定子10032和第六定子10033的端面,或,第五定子10032和第六定子10033的面向第三推力盘10031的端面上设置有第五动压发生槽10035。
进一步的,第五动压发生槽10035呈辐射状或同心圆状排布。
进一步的,第五动压发生槽10035包括第一螺旋槽和第二螺旋槽,第一螺旋槽环绕于第二螺旋槽外,第一螺旋槽和第二螺旋槽的螺旋走向相反,第一螺旋槽的靠近第二螺旋槽的一端与第二螺旋槽的靠近第一螺旋槽的一端连接或断开。
上述推力子轴承1003中设置动压发生槽的其它具体实施方式可以参见第九实施例中的相关说明,并能够达到相同的有益效果,为避免重复,对此不作赘述。
本公开实施例中,通过在集成式轴承1000中设置动压发生槽,从而使集成式轴承1000包括动压气体轴承。在同时设置有电磁轴承和动压气体轴承的情况下,改善了集成式轴承1000在高速运转状态下的动态性能和稳定性,抗受扰动能力强,进而提高了轴承的承载能力。同时,电磁轴承与动压气体轴承采用嵌套并联结构,简化了结构,集成度高,易加工、制造和操作,提高了集成式轴承1000的综合性能。
本公开实施例中,集成式轴承1000还可以设置静压进气节流孔,其结构形式如下:第 三轴承壳1001还设置有第三静压进气节流孔1007;其中,第三静压进气节流孔1007的一端连接外部气源,另一端经径向子轴承1002与第五间隙1004相通,和/或,经第五定子10032和第六定子10033与第六间隙1005相通,用于将外部气源输送至第五间隙1004和/或第六间隙1005。
本公开实施例中,通过集成式轴承1000还可以设置静压进气节流孔,从而使集成式轴承1000包括气体静压轴承。在同时设置有电磁轴承和气体静压轴承的情况下,能够使集成式轴承1000的承载力进一步加大。另外,电磁轴承和气体静压轴承可以相互备用,在其中一方故障、失效或者无法满足开启条件的情况下,另一方可作为备用轴承起到相同的作用。例如,在检测到电磁轴承故障的情况,通过控制气体静压轴承开启以替代电磁轴承执行相应的动作,从而提高集成式轴承1000的安全性和可靠性。
上述集成式轴承1000设置静压进气节流孔的其它具体实施方式可以参见第八实施例和第九实施例中的相关说明,并能够达到相同的有益效果,为避免重复,对此不作赘述。
本公开实施例中,径向子轴承1002和推力子轴承1003均可以设置传感器,其结构形式分别如下:径向子轴承1002上设置有第五传感器(图中未示出),第五传感器的传感器探头设置于第五间隙1004内。
这样,能够实时检测第五间隙1004处的参数,例如第五间隙1004处的气膜压力等。这样,第五磁轴承10021可以根据第五传感器的检测结果对径向子轴承102进行主动控制,并能够使控制达到较高的精度。
可选的,多个第五传感器中,每个第五传感器包括传第一感器盖和第五传感器探头,第五传感器探头的第一端连接第五传感器盖,第五传感器盖固定于第五磁轴承10021上,第五磁轴承10021上设有用于供第五传感器探头穿过的通孔;第五传感器探头的第二端穿过第五磁轴承10021上的通孔,并伸至第五间隙1004,且第五传感器探头的第二端端部与第五磁轴承10021的靠近转轴100的一侧平齐。
这样,能够使第五传感器更稳定地设置于第五磁轴承10021上。此外,将传感器探头的第二端端部与第五磁轴承10021的靠近转轴100的一侧平齐,一方面,能够避免传感器探头受到转轴100的碰触,从而有利于保护传感器探头;另一方面,不会对第五间隙1004内的气膜产生影响,避免第五间隙1004内的气膜发生扰动。
推力子轴承1003上设置有第六传感器(图中未示出),第六传感器的传感器探头设置于第六间隙1005内。
这样,能够实时检测第六间隙1005处的参数,例如第六间隙1005处的气膜压力等。这样,第六磁轴承10034可以根据第六传感器的检测结果对推力子轴承103进行主动控制,并能够使控制达到较高的精度。
可选的,第六传感器包括第六传感器盖和第六传感器探头,第六传感器探头的第一端连接第六传感器盖,第六传感器盖固定于第六磁轴承10034上,第六磁轴承10034上设有用于供第六传感器探头穿过的通孔;第六传感器探头的第二端穿过第六磁轴承10034上的通孔,并伸至第六间隙1005,且第六传感器探头的第二端端部与第六磁轴承10034的靠近第三推力盘10031的一侧平齐。
这样,能够使第六传感器更稳定地设置于第六磁轴承10034上。此外,将第六传感器探头的第二端端部与第六磁轴承10034的靠近第三推力盘10031的一侧平齐,一方面,能够 避免第六传感器探头受到第三推力盘10031的碰触,从而有利于保护第六传感器探头;另一方面,不会对第六间隙1005内的气膜产生影响,避免第六间隙1005内的气膜发生扰动。
上述径向轴承和推力轴承中设置传感器的其它具体实施方式可以分别参见第九实施例和第八实施例中的相关说明,并能够达到相同的有益效果,为避免重复,对此不作赘述。
需要说明的是,在第七实施例至第九实施例中相关的技术方案,同样适用于本公开实施例,并能达到相同的有益效果,为避免重复,对此不作赘述。
本公开实施例中,集成式轴承(其中,第五磁轴承中的第八磁性部件为电磁铁,第六磁轴承中的第九磁性部件为电磁铁)参与转子系统的控制过程时的具体控制方法可以参见第九实施例和第八实施例中的相关说明,并能达到相同的有益效果,为避免重复,对此不作重复。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
Claims (28)
- 一种转子系统,其特征在于,包括:转轴,所述转轴的轴体为一体结构,所述转轴水平设置或竖向设置;设置于所述转轴上的电机、压气机、透平、推力轴承和两个径向轴承,所述推力轴承和所述两个径向轴承均为非接触式轴承;以及,第一机匣和第二机匣,所述第一机匣与所述第二机匣连接;其中,所述发电机、所述推力轴承和所述两个径向轴承均设置于所述第一机匣内,所述压气机和所述透平均设置于所述第二机匣内;所述压气机的叶轮与所述透平的叶轮在所述第二机匣内相靠设置。
- 根据权利要求1所述的转子系统,其特征在于,所述透平的涡轮上和/或所述压气机上设置有隔热层。
- 根据权利要求1所述的转子系统,其特征在于,所述两个径向轴承包括第一径向轴承和第二径向轴承,所述第一径向轴承设置于所述发电机的远离所述第二机匣的一侧,所述第二径向轴承设置于所述发电机的靠近所述第二机匣的一侧;其中,所述推力轴承设置于所述第一径向轴承与所述发电机之间;或者,所述推力轴承设置于所述发电机与所述第二径向轴承之间;或者,所述推力轴承设置于所述第二径向轴承的靠近所述第二机匣的一侧。
- 根据权利要求3所述的转子系统,其特征在于,所述第二径向轴承的承载力大于所述第一径向轴承的承载力。
- 根据权利要求1所述的转子系统,其特征在于,所述第一机匣和所述第二机匣通过止口定位并连接。
- 根据权利要求1所述的转子系统,其特征在于,所述电机为动压轴承电机,所述转轴的对应所述发电机的轴承的部位设置有第一动压发生槽。
- 根据权利要求1所述的转子系统,其特征在于,所述电机为启发一体式电机。
- 根据权利要求1所述的转子系统,其特征在于,所述转子系统还包括锁紧装置,所述锁紧装置用于在所述转轴静态时锁紧所述转轴。
- 根据权利要求1所述的转子系统,其特征在于,所述转轴的安装轴承的部位涂覆有防磨涂层。
- 根据权利要求2所述的转子系统,其特征在于,所述推力轴承为气磁混合推力轴承;所述至少两个径向轴承中的至少一个径向轴承为气磁混合径向轴承或者气体动静压混合径向轴承。
- 根据权利要求10所述的转子系统,其特征在于,当所述第二径向轴承为气磁混合径向轴承时,所述第二径向轴承的磁性部件设置于所述第二径向轴承上的远离所述透平的区域。
- 根据权利要求10所述的转子系统,其特征在于,所述气磁混合推力轴承为箔片式气磁混合推力轴承,所述箔片式气磁混合推力轴承包括:第一推力盘,所述第一推力盘固定连接于所述转轴上;以及,穿设于所述转轴上的第一定子和第二定子,所述第一定子和所述第二定子分别设置于所述第一推力盘的相对两侧;所述第一定子和所述第二定子中,每个定子包括第一磁轴承和第一箔片轴承,所述第一磁轴承上沿周向设置有多个第一磁性部件,所述第一箔片轴承设置有能够与所述多个第一磁性部件之间产生磁力的第二磁性部件;其中,所述第一箔片轴承设置于所述第一磁轴承与所述第一推力盘之间,并与所述第一推力盘之间具有第一间隙,且所述第一箔片轴承能够在所述第一磁性部件和所述第二磁性部件之间的磁力作用下在所述转轴的轴向方向上移动。
- 根据权利要求10所述的转子系统,其特征在于,所述气磁混合推力轴承为槽式气磁混合推力轴承,所述槽式气磁混合推力轴承包括:第二推力盘,所述第二推力盘固定连接于所述转轴上,所述第二推力盘上设置有第三磁性部件;以及,穿设于所述转轴上的第三定子和第四定子,所述第三定子和所述第四定子分别设置于所述第二推力盘的相对两侧;所述第三定子和所述第四定子中,每个定子包括第二磁轴承,所述第二磁轴承上沿周向设置有能够与所述第三磁性部件之间产生磁力的多个第四磁性部件,所述第二磁轴承与所述第二推力盘之间具有第二间隙,且所述第二推力盘能够在所述第三磁性部件和所述多个第四磁性部件之间的磁力作用下在所述转轴的轴向方向上移动;其中,所述第二推力盘的面向所述第三定子和所述第四定子的端面,或,所述第三定子和所述第四定子的面向所述第二推力盘的端面上设置有第二动压发生槽。
- 根据权利要求13所述的转子系统,其特征在于,所述第三定子和所述第四定子中,每个定子上还设置有第一静压进气节流孔,所述第一静压进气节流孔的一端与所述第二间隙相通,另一端连接外部气源,用于将外部气源输送至所述第二间隙内。
- 根据权利要求10所述的转子系统,其特征在于,所述气磁混合径向轴承为槽式气磁混合径向轴承,所述槽式气磁混合径向轴承包括:套设于所述转轴上的第四磁轴承,所述第四磁轴承上沿周向设置有多个第七磁性部件;所述第四磁轴承朝向所述转轴的侧壁,或所述转轴朝向所述第四磁轴承的圆周面上设置有第三动压发生槽;其中,所述第四磁轴承与所述转轴之间具有第四间隙,且所述转轴能够在所述多个第七磁性部件的磁力作用下在所述转轴的径向方向上移动。
- 根据权利要求15所述的转子系统,其特征在于,所述第四磁轴承上还设置有第二静压进气节流孔,所述第二静压进气节流孔的一端与所述第四间隙相通,另一端连接外部气源,用于将外部气源输送至所述第四间隙内。
- 根据权利要求1所述的转子系统,其特征在于,所述转子系统中,所述推力轴承和与所述推力轴承相邻的径向轴承集成一体,形成集成式轴承,所述集成式轴承包括:第三轴承壳,所述第三轴承壳为中空回转体,所述第三轴承壳设置有第一容纳腔和第二容纳腔;设置于所述第一容纳腔内的径向子轴承,所述径向子轴承穿设于所述转轴上,所述径向子轴承与所述转轴之间具有第五间隙;以及,设置于所述第二容纳腔内的推力子轴承,所述推力子轴承包括第三推力盘,以及分别设置于所述推力盘两侧的第五定子和第六定子,所述推力盘固定连接于所述转轴上,所述第五定子和所述第六定子均穿设于所述转轴上;所述第五定子和所述第六定子中,每个定子与所述第三推力盘之间具有第六间隙。
- 根据权利要求17所述的转子系统,其特征在于,所述径向子轴承包括套设于所述转轴上的第五磁轴承,所述第五磁轴承与所述转轴之间具有所述第五间隙,所述第五磁轴承上沿周向设置有多个第八磁性部件;所述转轴能够在所述多个第八磁性部件的磁力作用下在所述转轴的径向方向上移动;所述第五定子和所述第六定子中,每个定子包括第六磁轴承,所述第六磁轴承上沿周向设置有多个第九磁性部件;所述第三推力盘上设置有第十磁性部件,所述第三推力盘能够在所述多个第九磁性部件和所述第十磁性部件之间的磁力作用下在所述转轴的轴向方向上移动。
- 根据权利要求17所述的转子系统,其特征在于,所述第三轴承壳还设置有第三静压进气节流孔;其中,所述第三静压进气节流孔的一端连接外部气源,另一端经所述径向轴承与所述第五间隙相通,和/或,经所述第五定子和所述第六定子与所述第六间隙相通,用于将外部气源输送至所述第五间隙和/或第六间隙。
- 一种转子系统的控制方法,用于如权利要求10至19中任一项所述的转子系统,其特征在于,所述方法包括:开启所述径向轴承和所述推力轴承中的静压轴承,以使所述转轴移动至预设径向位置,使所述推力轴承的推力盘移动至预设轴向位置;所述转轴的转速加速至工作转速之后,关闭所述径向轴承和所述推力轴承中的静压轴承;所述转子系统停机时,开启所述径向轴承中的静压轴承和所述推力轴承中的静压轴承;所述转轴的转速减速至零之后,关闭所述径向轴承和所述推力轴承中的静压轴承;其中,开启所述静压轴承包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体;关闭所述静压轴承包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
- 一种转子系统的控制方法,用于如权利要求10至19中任一项所述的转子系统,其特征在于,所述方法包括:开启所述径向轴承和所述推力轴承中的静压轴承,以使所述转轴移动至预设径向位 置,使所述推力轴承的推力盘移动至预设轴向位置;所述转轴的转速加速至第一预设值之后,关闭所述径向轴承和所述推力轴承中的静压轴承;所述转子系统加速至一阶临界速度或二阶临界速度时,开启所述径向轴承和所述推力轴承中的静压轴承;所述转子系统平稳度过所述一阶临界速度或所述二阶临界速度之后,关闭所述径向轴承和所述推力轴承中的静压轴承;所述转子系统停机过程中,当所述转子系统减速至所述一阶临界速度或所述二阶临界速度时,开启所述径向轴承和所述推力轴承中的静压轴承;所述转子系统平稳度过所述一阶临界速度或所述二阶临界速度之后,关闭所述径向轴承和所述推力轴承中的静压轴承;所述转轴的转速减速至第二预设值时,开启所述径向轴承中的静压轴承和所述推力轴承中的静压轴承;所述转轴的转速减速至零之后,关闭所述径向轴承和所述推力轴承中的静压轴承;其中,开启所述静压轴承,包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体;关闭所述静压轴承,包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
- 根据权利要求21所述的方法,用于如权利要求12所述的转子系统,其特征在于,开启所述推力轴承中的静压轴承,以使所述推力轴承的推力盘移动至预设轴向位置,包括:开启所述第一定子和所述第二定子中的第一磁轴承,控制所述第一推力盘在所述多个第一磁性部件的磁力作用下在所述转轴的轴向方向上移动,以使所述第一推力盘与所述第一定子中的第一箔片轴承之间的所述第一间隙等于所述第一推力盘与所述第二定子中的第一箔片轴承之间的所述第一间隙;所述方法还包括:当载荷负载在所述第一推力盘,所述第一推力盘在载荷负载的作用下在所述转轴的轴向方向上移动,所述第一推力盘与所述第一定子中的第一箔片轴承之间的所述第一间隙不等于所述第一推力盘与所述第二定子中的第一箔片轴承之间的所述第一间隙时,开启所述第一定子和所述第二定子中的第一磁轴承;当所述第一推力盘与所述第一定子中的第一箔片轴承之间的所述第一间隙等于所述第一推力盘与所述第二定子中的第一箔片轴承之间的所述第一间隙,关闭所述第一定子和所述第二定子中的第一磁轴承。
- 根据权利要求21所述的方法,用于如权利要求13所述的转子系统,其特征在于,开启所述推力轴承中的静压轴承,以使所述推力轴承的推力盘移动至预设轴向位置,包括:开启所述第三定子和所述第四定子中的第二磁轴承,控制所述第二推力盘在所述第 三磁性部件与所述多个第四磁性部件之间的磁力作用下在所述转轴的轴向方向上移动,以使所述第二推力盘与所述第三定子中的第二磁轴承之间的所述第二间隙与所述第二推力盘与所述第四定子中的第二磁轴承之间的所述第二间隙的差值小于或等于预定值;所述方法还包括:当载荷负载在所述第二推力盘,所述第二推力盘在载荷负载的作用下在所述转轴的轴向方向上移动,所述第二推力盘与所述第三定子中的第二磁轴承之间的所述第二间隙与所述第二推力盘与所述第四定子中的第二磁轴承之间的所述第二间隙的差值大于所述预定值时,开启所述第三定子或所述第四定子中的第二磁轴承;当所述第二推力盘与所述第三定子中的第二磁轴承之间的所述第二间隙与所述第二推力盘与所述第四定子中的第二磁轴承之间的所述第二间隙的差值小于或者等于所述预定值,关闭所述第三定子或所述第四定子中的第二磁轴承。
- 根据权利要求21所述的方法,用于如权利要求14所述的转子系统,其特征在于,开启所述推力轴承中的静压轴承,以使所述推力轴承的推力盘移动至预设轴向位置,包括:开启所述第三定子和所述第四定子的第二磁轴承;和/或,启动外部气源,通过所述第一静压进气节流孔向所述第二间隙处输送气体;控制所述第二推力盘在所述第三磁性部件与所述第四磁性部件之间的磁力作用下,和/或所述气体的推动作用下在所述转轴的轴向方向上移动,以使所述第二推力盘与所述第三定子中的第二磁轴承之间的所述第二间隙与所述第二推力盘与所述第四定子中的第二磁轴承之间的所述第二间隙的差值小于或等于所述预定值。
- 根据权利要求21所述的方法,用于如权利要求15所述的转子系统,其特征在于,开启所述径向轴承中的静压轴承,以使所述转轴移动至预设径向位置,包括:开启所述第四磁轴承,控制所述转轴在所述多个第七磁性部件的磁力作用下在所述转轴的径向方向上移动,以使所述转轴移动至预设径向位置;所述方法还包括:当所述转轴与所述第四磁轴承之间的第四间隙发生变化时,开启所述第四磁轴承,使所述转轴在所述多个第七磁性部件的磁力作用下向远离间隙变小侧的方向移动;所述转轴处于平衡径向位置之后,关闭所述第四磁轴承。
- 根据权利要求21所述的方法,用于如权利要求16所述的转子系统,其特征在于,开启所述径向轴承中的静压轴承,以使所述转轴移动至预设径向位置,包括:开启所述第四磁轴承;和/或,启动外部气源,通过所述第二静压进气节流孔向所述第四间隙处输送气体;控制所述转轴在所述多个第七磁性部件的磁力作用下,和/或所述气体的推动作用下在所述转轴的径向方向上移动,以使所述转轴移动至预设径向位置。
- 一种燃气轮机发电机组,其特征在于,包括进气道、燃烧室和权利要求1至19中任一项所述的转子系统,所述进气道与所述压气机的进气口连通,所述压气机的出气口 与所述燃烧室的进气口连通,所述燃烧室的出气口与所述透平的进气口连通。
- 一种燃气轮机发电机组的控制方法,用于如权利要求27所述的燃气轮机发电机组,其特征在于,所述方法包括:开启所述径向轴承和所述推力轴承中的静压轴承,以使所述转轴移动至预设径向位置,使所述推力轴承的推力盘移动至预设轴向位置;启动所述燃气轮机发电机组,空气经所述压气机压缩后进入所述燃烧室和所述燃烧室内的燃料混合燃烧;所述燃烧室排出的高温高压气体对所述透平的涡轮进行冲击,使所述涡轮旋转,所述涡轮通过所述转轴带动所述电机旋转发电;所述转轴的转速加速至工作转速之后,关闭所述径向轴承和所述推力轴承中的静压轴承;所述燃气轮机发电机组停机时,开启所述径向轴承中的静压轴承和所述推力轴承中的静压轴承;所述转轴的转速减速至零之后,关闭所述径向轴承和所述推力轴承中的静压轴承;其中,开启所述静压轴承包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体;关闭所述静压轴承包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810031822.4A CN108868893B (zh) | 2018-01-12 | 2018-01-12 | 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法 |
CN201810031822.4 | 2018-01-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019137029A1 true WO2019137029A1 (zh) | 2019-07-18 |
Family
ID=64325936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/103446 WO2019137029A1 (zh) | 2018-01-12 | 2018-08-31 | 转子系统及其控制方法和燃气轮机发电机组及其控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108868893B (zh) |
WO (1) | WO2019137029A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111075563A (zh) * | 2019-12-27 | 2020-04-28 | 至玥腾风科技集团有限公司 | 一种冷热电三联供微型燃气轮机设备 |
CN113606139A (zh) * | 2021-08-06 | 2021-11-05 | 珠海格力电器股份有限公司 | 压缩机及其关机方法、空调器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN205135718U (zh) * | 2015-11-26 | 2016-04-06 | 北京全三维能源科技股份有限公司 | 汽轮机及其螺栓组合转子 |
CN105705746A (zh) * | 2013-10-24 | 2016-06-22 | 沃尔沃卡车集团 | 涡轮复合单元 |
CN206352515U (zh) * | 2016-12-30 | 2017-07-25 | 山东矿机集团股份有限公司 | 涡轮转子 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5497615A (en) * | 1994-03-21 | 1996-03-12 | Noe; James C. | Gas turbine generator set |
CN1268848C (zh) * | 2004-09-17 | 2006-08-09 | 沈阳黎明航空发动机(集团)有限责任公司 | 一种采用电磁轴承的轴流风机 |
CN1730959A (zh) * | 2005-08-19 | 2006-02-08 | 南京航空航天大学 | 磁气混合轴承及弹性箔片制作方法 |
CN101975656B (zh) * | 2010-09-06 | 2011-12-07 | 西安交通大学 | 一种微型燃气轮机模拟转子动态性能测试实验装置 |
CN201896664U (zh) * | 2010-12-01 | 2011-07-13 | 哈尔滨东安发动机(集团)有限公司 | 微型燃气轮机发电装置 |
CN102767562B (zh) * | 2012-07-18 | 2015-01-14 | 清华大学 | 一种用于电磁轴承系统的气体动静压混合止推保护轴承 |
CN104019131A (zh) * | 2014-06-20 | 2014-09-03 | 吴宏 | 高速电机用气体动静压混合轴承系统及该电动旋转机械 |
CN105889097B (zh) * | 2015-05-19 | 2019-01-04 | 罗立峰 | 一种超高速鼓风机 |
CN205858958U (zh) * | 2015-05-19 | 2017-01-04 | 罗立峰 | 一种小微型燃气轮发电机 |
CN105545956B (zh) * | 2016-03-04 | 2019-05-14 | 至玥腾风科技投资集团有限公司 | 一种电磁使能的主动式动压气体轴承 |
CN106762139B (zh) * | 2017-01-22 | 2018-09-04 | 中国科学院工程热物理研究所 | 一种具有嵌入式叶片的燃气轮机 |
CN208010407U (zh) * | 2018-01-12 | 2018-10-26 | 至玥腾风科技投资集团有限公司 | 一种转子系统和燃气轮机发电机组 |
-
2018
- 2018-01-12 CN CN201810031822.4A patent/CN108868893B/zh active Active
- 2018-08-31 WO PCT/CN2018/103446 patent/WO2019137029A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105705746A (zh) * | 2013-10-24 | 2016-06-22 | 沃尔沃卡车集团 | 涡轮复合单元 |
CN205135718U (zh) * | 2015-11-26 | 2016-04-06 | 北京全三维能源科技股份有限公司 | 汽轮机及其螺栓组合转子 |
CN206352515U (zh) * | 2016-12-30 | 2017-07-25 | 山东矿机集团股份有限公司 | 涡轮转子 |
Also Published As
Publication number | Publication date |
---|---|
CN108868893A (zh) | 2018-11-23 |
CN108868893B (zh) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019137022A1 (zh) | 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法 | |
WO2019137026A1 (zh) | 一种推力轴承、转子系统及推力轴承的控制方法 | |
CN110552746B (zh) | 一种转子系统和燃气轮机发电机组 | |
WO2019137024A1 (zh) | 一种推力轴承、转子系统及推力轴承的控制方法 | |
WO2019137028A1 (zh) | 轴承、转子系统及轴承的控制方法 | |
CN208605232U (zh) | 一种转子系统和燃气轮机发电机组 | |
WO2019137025A1 (zh) | 一种径向轴承、转子系统及径向轴承的控制方法 | |
WO2019137023A1 (zh) | 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法 | |
CN208123260U (zh) | 一种径向轴承和转子系统 | |
WO2020063517A1 (zh) | 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法 | |
CN208010407U (zh) | 一种转子系统和燃气轮机发电机组 | |
WO2019137029A1 (zh) | 转子系统及其控制方法和燃气轮机发电机组及其控制方法 | |
CN208236900U (zh) | 一种推力轴承和转子系统 | |
CN208123261U (zh) | 一种推力轴承和转子系统 | |
CN207999283U (zh) | 一种转子系统和燃气轮机发电机组 | |
CN208123273U (zh) | 一种轴承和转子系统 | |
CN208010406U (zh) | 一种转子系统和燃气轮机发电机组 | |
CN208918699U (zh) | 一种转子系统和燃气轮机发电机组 | |
CN208123262U (zh) | 一种推力轴承和转子系统 | |
CN110552960B (zh) | 一种推力轴承、转子系统及推力轴承的控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18899402 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.10.2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18899402 Country of ref document: EP Kind code of ref document: A1 |