WO2020082965A1 - 一种燃气轮机发电机及控制方法 - Google Patents

一种燃气轮机发电机及控制方法 Download PDF

Info

Publication number
WO2020082965A1
WO2020082965A1 PCT/CN2019/107618 CN2019107618W WO2020082965A1 WO 2020082965 A1 WO2020082965 A1 WO 2020082965A1 CN 2019107618 W CN2019107618 W CN 2019107618W WO 2020082965 A1 WO2020082965 A1 WO 2020082965A1
Authority
WO
WIPO (PCT)
Prior art keywords
tesla
gas turbine
radial bearing
turbine generator
rotating shaft
Prior art date
Application number
PCT/CN2019/107618
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
至玥腾风科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技集团有限公司 filed Critical 至玥腾风科技集团有限公司
Publication of WO2020082965A1 publication Critical patent/WO2020082965A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/34Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants

Definitions

  • the invention relates to the technical field of power generation, in particular to a gas turbine generator and a control method thereof.
  • Tesla turbine is a bladeless turbine driven by fluid shear force, which is called a bladeless turbine.
  • Tesla turbine uses the boundary layer effect.
  • the fluid is affected by the viscous force, which will form a thin boundary layer on the edge of the tube wall or other objects. The greater the speed.
  • a high-speed fluid can drive a group of disks to rotate.
  • the efficiency of Tesla turbines can reach 95%, which is much higher than ordinary blade turbines.
  • the Tesla turbine has the advantage of high efficiency, due to the low torque of the Tesla turbine and the high sensitivity to mechanical friction, the existing Tesla turbine has a large power loss on the bearing, which leads to the existing special
  • the low efficiency of the Sela turbines has limited the popularization and application of the Tlas turbines.
  • the existing technology has used the characteristics of Tesla turbines to design turbines, such as: setting two Tesla turbines, setting a generator between two Tesla turbines, using the circulation of two Tesla turbines to do work, driving The generator generates electricity continuously.
  • a structure is not a gas turbine in the true sense. Compared with the traditional gas turbine, the efficiency is still low.
  • the existing technology is directly improved and the combustion chamber is added, the high temperature in the combustion chamber will cause damage to the generator. Therefore, there is no real gas turbine that uses the Tesla turbine as the compressor and turbine.
  • An object of the embodiments of the present invention is to provide a gas turbine generator.
  • a Tesla compressor and a Tesla turbine the structure is simplified, the volume is reduced, and the overall efficiency of the gas turbine generator is improved.
  • the first aspect of the embodiments of the present invention provides a gas turbine generator, including: a rotating shaft, a first radial bearing, a motor, a second radial bearing, a Tesla compressor, a combustion chamber, and a special Sela turbine and third radial bearing;
  • the rotating shaft sequentially passes through the first radial bearing, the motor, the second radial bearing, the Tesla compressor, the Tesla turbine, and the third radial bearing; the rotating shaft is in the first radial bearing ,
  • the stator of the motor rotates in the second radial bearing and the third radial bearing;
  • the rotating shaft is fixedly connected to the Tesla turbine disk of the Tesla compressor and the Tesla turbine disk of the Tesla turbine;
  • the intake inlet of the Tesla compressor communicates with the outside, the exhaust outlet communicates with the intake inlet of the combustion chamber, the exhaust outlet of the combustion chamber communicates with the intake inlet of the Tesla turbine, the Tes
  • the exhaust outlet of the pulling turbine is in communication with the outside world; the first radial bearing, the second radial bearing and the third radial bearing are all non-contact bearings.
  • gas turbine generator further includes:
  • a diffuser is provided between the exhaust outlet of the Tesla compressor and the intake inlet of the combustion chamber, and is used to pressurize the gas discharged from the exhaust outlet of the Tesla compressor.
  • gas turbine generator further includes:
  • a nozzle is provided between the exhaust outlet of the combustion chamber and the Tesla turbine, and is used to increase the speed of the gas discharged from the exhaust outlet of the combustion chamber.
  • gas turbine generator further includes:
  • a regenerator the compressed air inlet of the regenerator communicates with the exhaust outlet of the Tesla compressor, the compressed air outlet of the regenerator communicates with the intake inlet of the combustion chamber; the high temperature gas inlet of the regenerator It is in communication with the exhaust port of the Tesla turbine, and the high-temperature gas outlet of the regenerator is in communication with the outside world.
  • gas turbine generator further includes:
  • a housing, the rotating shaft, the first radial bearing, the motor, the second radial bearing, the Tesla compressor, the combustion chamber, the Tesla turbine, and the third radial bearing are all provided in the housing, the The end of the rotating shaft near the first radial bearing is provided at the air inlet of the housing;
  • the two ends of the air inlet of the casing are respectively connected with the air inlet of the Tesla compressor and the outside world;
  • Two ends of the gas outlet of the casing are respectively connected with the high-temperature gas outlet of the regenerator and the outside world.
  • the Tesla compressor includes a plurality of first discs with the same structure
  • the first disc is provided with a first positioning hole and at least one air inlet hole;
  • the rotating shaft passes through a plurality of first positioning holes of the first disk and is fixedly connected to the first disk.
  • a spacer for adjusting a gap is provided between adjacent first disks.
  • the Tesla turbine includes: a turbine casing and a plurality of second discs with the same structure disposed in the turbine casing;
  • the turbine housing is provided with an intake inlet of a Tesla turbine communicating with the exhaust outlet of the combustion chamber;
  • the second disc is provided with a second positioning hole and at least one exhaust hole;
  • the rotating shaft passes through the turbine housing and passes through the second positioning hole of the second disk to be fixedly connected to the plurality of second disks.
  • the plurality of first discs are mounted on the rotating shaft by keys and fixed with spring washers.
  • air intake holes which are evenly distributed on the surface of the first disc.
  • the first disc is a static flow type or a centrifugal type
  • both surfaces of the static flow type first disc are smooth planes
  • the centrifugal type first disc is provided with pressurizing elements on both surfaces.
  • the supercharging element is a supercharging groove or a supercharging protrusion provided on both surfaces of the first disc;
  • pressurizing metal foils matching the shape of the pressurizing grooves are provided, and both ends of the pressurizing metal foil are respectively adjacent to the two adjacent first circles Connection of the pressurizing tank of the disk;
  • both surfaces of the static flow type second disc are smooth planes.
  • the first disc is made of ordinary steel
  • the material of the second disc is carbon fiber toughened ceramics, preferably a metal-based carbon fiber composite ceramic material.
  • the gap between the adjacent second disks is 2-12 microns, preferably 3-9 microns.
  • metal-based carbon fiber composite ceramic material is made by the following steps:
  • Ceramics are sintered on the surface of the anodized metal-based carbon fiber composite material to obtain the metal-based carbon fiber composite ceramic material.
  • the rotation speed of the gas turbine generator is 50,000-200,000 rpm, preferably 100,000 rpm.
  • the fuel of the gas turbine generator is selected from any one of gasoline, diesel, and methanol.
  • the motor is a dynamic pressure bearing motor or a heuristic integrated motor.
  • the motor is a heuristic integrated dynamic pressure bearing motor;
  • the combustion chamber is a metal shell structure in which a ceramic bush is provided inside or the inner wall has a ceramic coating or the inner wall is ceramicized.
  • the rotating shaft includes: a first rotating shaft and a second rotating shaft connected by a coupling;
  • the first rotating shaft is connected to the motor and the Tesla compressor;
  • the second rotating shaft is connected to the Tesla turbine.
  • the power generation power of the gas turbine generator is 0.1kW-10kW, preferably 0.5kW-3kW.
  • the second aspect of the present invention provides an application of the gas turbine generator according to any one of the foregoing technical solutions, the gas turbine generator is used for extended-range electric vehicles, extended-range electric motorcycles, household portable power supplies, unmanned Aircraft or aircraft other than drones.
  • a third aspect of the present invention provides a gas turbine generator control method according to any one of the foregoing technical solutions, including:
  • a fourth aspect of the present invention provides a control method for a gas turbine generator according to any one of the foregoing technical solutions, including:
  • the rotor system accelerates to the first-order critical speed or the second-order critical speed, and opens the static pressure bearing in the radial bearing;
  • the first preset value and / or the second preset value are 5% -30% of the rated speed of the motor.
  • opening the static pressure bearing includes: opening the magnetic bearing in the bearing, and / or delivering gas to the static pressure intake orifice in the bearing;
  • Closing the static pressure bearing includes: closing the magnetic bearing in the bearing, and / or stopping gas delivery to the static pressure intake orifice in the bearing.
  • Starting the gas turbine generator includes starting the shaft including the following steps:
  • the gas turbine generator controller controls the built-in battery to supply power to the motor.
  • the motor enters the drive motor mode, and the motor drives the Tesla compressor and Tesla turbine to work and increase the speed;
  • the pressure gas is generated in the combustion chamber and pushes the Tesla turbine (700) to rotate.
  • the Tesla turbine drives the Tesla compressor to rotate together to a self-sustaining speed;
  • the gas turbine generator controller controls the motor to switch to the power generation mode.
  • regenerators Through the use of regenerators, the high-temperature exhaust gas of Tesla turbines is recovered by waste heat, which further improves the utilization rate of energy and the efficiency of gas turbine generators;
  • Tesla turbine discs made of carbon fiber toughened ceramic materials the strength of the discs and the erosion resistance of high temperature gas jets are improved; at the same time, it is not easy to meet the requirements of larger size discs Deformation
  • Tesla gas turbine generators are widely used, and can be preferably used in occasions where small size and small power generators are required.
  • FIG. 1 is a perspective view of a gas turbine generator provided by an embodiment of the present invention.
  • FIG. 2 is a three-dimensional schematic diagram of a Tesla compressor provided by an embodiment of the present invention.
  • FIG. 3 is a plan cross-sectional view of a Tesla compressor provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a first disc provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a centrifugal first disk pressurizing tank provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the structure of the centrifugal first disk pressurization protrusion provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a centrifugal first disc pressurized metal foil provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a centrifugal first disc installed with a pressurized metal foil provided by an embodiment of the present invention
  • FIG. 9 is a schematic diagram of the air flow direction of the Tesla compressor provided by the embodiment of the present invention.
  • FIG. 10 is a perspective cross-sectional view of a Tesla turbine provided by an embodiment of the present invention.
  • FIG. 11 is a flow chart of the preparation method of the metal-based carbon fiber composite ceramic material of the Tesla turbine disk of the present invention.
  • FIG. 12 is a flowchart of a first control method of a gas turbine generator provided by an embodiment of the present invention.
  • FIG. 13 is a flowchart of a second control method of a gas turbine generator provided by an embodiment of the present invention.
  • FIG. 1 is a perspective view of a gas turbine generator provided by an embodiment of the present invention.
  • a first aspect of an embodiment of the present invention provides a gas turbine generator, including: a rotating shaft 100, a first radial bearing 200, a motor 300, a second radial bearing 400, a Tesla compressor 500, Combustion chamber 600, Tesla turbine 700 and third radial bearing 800.
  • the rotating shaft 100 passes through the first radial bearing 200, the motor 300, the second radial bearing 400, the Tesla compressor 500, the Tesla turbine 700, and the third radial bearing 800 in this order.
  • the rotating shaft 100 rotates in the first radial bearing 200, the stator of the motor 300, the second radial bearing 400 and the third radial bearing 800; the rotating shaft 100 and the Tesla turbine disk and Tesla of the Tesla compressor 500
  • the Tesla turbine disk of the turbine 700 is fixedly connected.
  • the intake inlet of the Tesla compressor 500 communicates with the outside, the exhaust outlet communicates with the intake inlet of the combustion chamber 600, the exhaust outlet of the combustion chamber 600 communicates with the intake inlet of the Tesla turbine 700, the Tesla turbine
  • the exhaust outlet of 700 communicates with the outside world.
  • the first radial bearing 200, the second radial bearing 400, and the third radial bearing 800 are all non-contact bearings.
  • the ordinary mechanical bearings can no longer meet the requirements of the working speed. Due to the absence of mechanical contact, the speed of the rotor system is only limited by the strength of the material, the power consumption and noise are extremely low, and it can be applied to a variety of complex application environments.
  • the gas turbine generator further includes a diffuser.
  • the diffuser is provided between the exhaust outlet of the Tesla compressor 500 and the intake inlet of the combustion chamber 600 (not shown in the figure). The velocity of the gas discharged from the exhaust outlet of the Tesla compressor 500 is converted into pressure, and the high-pressure gas enters the combustion chamber 600 to be burned.
  • a nozzle (not shown) is provided between the exhaust outlet of the combustion chamber 600 and the Tesla turbine 700, and the nozzle converts the pressure of the high-temperature high-pressure gas discharged from the exhaust outlet of the combustion chamber 600 into gas The flow rate of high-speed gas enters the Tesla turbine 700 to do work.
  • the gas turbine generator further includes a regenerator 610, the compressed air inlet of the regenerator 610 communicates with the exhaust outlet of the Tesla compressor 500, the compressed air outlet of the regenerator 610 and the intake inlet of the combustion chamber 600 Connected, the compressed air inlet and the compressed air outlet of the regenerator 610 are connected; the high temperature gas inlet of the regenerator 610 communicates with the exhaust port of the Tesla turbine 700, and the high temperature gas outlet of the regenerator 610 communicates with the outside world.
  • the high-temperature gas inlet of the heater 610 communicates with the high-temperature gas outlet.
  • the regenerator 610 uses the high-temperature exhaust gas of the Tesla turbine 700 to preheat the intake air of the intake inlet of the combustion chamber 600, which further improves the combustion efficiency.
  • the gas turbine generator further includes a housing 900, a rotating shaft 100, a first radial bearing 200, a motor 300, a second radial bearing 400, a Tesla compressor 500, a combustion chamber 600, a Tesla turbine 700 and a first
  • the three radial bearings 800 are all disposed in the housing 900.
  • the one end of the rotating shaft 100 near the first radial bearing 200 is provided at the air inlet 910 of the housing 900, and the two ends of the air inlet 910 communicate with the air inlet of the Tesla turbine 700 and the outside world; Both ends of the gas port 920 communicate with the high-temperature gas outlet of the regenerator 610 and the outside, respectively.
  • FIG. 2 is a perspective schematic diagram of a Tesla compressor provided by an embodiment of the present invention.
  • FIG 3 is a plan cross-sectional view of a Tesla compressor provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a first disc provided by an embodiment of the present invention.
  • the Tesla compressor 500 includes a plurality of first discs 510 having the same structure; the first disc 510 is provided with a first positioning hole 520 and at least one air intake hole 530; The first positioning hole 520 is located in the center of the first disk 510, and its aperture matches the diameter of the rotating shaft 100; the rotating shaft 100 passes through the first positioning holes 520 of the plurality of first disks 510 and is fixed to the first disk 510 connection.
  • the air inlet hole 530 is disposed on the first disc 510 near the first positioning hole 520.
  • a first spacer 540 for adjusting a gap is provided between two adjacent first discs 510, and the first spacer 540 separates the two adjacent first discs 510 by a predetermined distance.
  • a plurality of disks 510 are mounted on the rotating shaft 100 through a key 550 and fixed with spring washers 560.
  • the first disc 510 is a static flow type, and both surfaces thereof are smooth and flat, as shown in FIG. 4.
  • FIG. 5 is a schematic structural view of a centrifugal first disk pressurizing tank provided by an embodiment of the present invention.
  • FIG. 6 is a schematic view of the structure of a centrifugal first disk pressurization protrusion provided by an embodiment of the present invention.
  • the first disc 510 is of a centrifugal type, that is, a supercharging element is provided on both surfaces of the disc 510, and the supercharging element is provided on Pressurizing grooves or pressurizing protrusions 570 on both surfaces of the disc 510 to improve the pressurizing ability of the Tesla compressor 500.
  • the structure of the pressurizing groove or pressurizing protrusion is shown in FIGS. 5 and 6.
  • FIG. 7 is a schematic structural view of a centrifugal first disc pressurized metal foil provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a centrifugal first disc equipped with a pressurized metal foil provided by an embodiment of the present invention.
  • pressurizing metal foils 580 having the same shape as the pressurizing grooves are provided.
  • the adjacent two first discs 510 are connected by the pressurizing grooves, which further improves the pressurizing ability of the Tesla compressor 500.
  • the material of the first disc 510 is ordinary steel, and the temperature of the gas around the first disc 510 is relatively low, and the ordinary steel can meet the use requirements of the first disc 510, saving the production cost.
  • FIG. 9 is a schematic diagram of the air flow direction in the Tesla compressor 500.
  • the Tesla compressor 500 When the Tesla compressor 500 is in operation, air enters the gap between the first discs 510 from the air inlet 530. With the high-speed rotation of the first disc 510, the gas in the gap between the first discs 510 is Accelerate and pressurize. The accelerated and pressurized gas enters the combustion chamber 600 from the exhaust outlet of the Slag compressor 500 or enters the regenerator 610 before entering the combustion chamber 600 and the fuel in the combustion chamber 600 is mixed and burned.
  • FIG. 10 is a perspective cross-sectional view of a Tesla turbine provided by an embodiment of the present invention.
  • the Tesla turbine 700 includes: a turbine casing 720 and a plurality of second disks 710 having the same structure disposed in the turbine casing 720; the turbine casing 720 is provided with a combustion chamber 600 At least one intake port 721 communicating with the exhaust outlet.
  • the second disk 710 is provided with a second positioning hole 730 and an exhaust hole 740; the rotating shaft passes through the turbine housing 720, and passes through the second positioning holes 730 of the second disk 710 having the same structure and a plurality of second
  • the disc 710 is fixedly connected.
  • the number and diameter of the second disc 710 are specifically designed according to the power of the motor 300 and the design rotation speed, and are not limited herein.
  • a second spacer 750 for adjusting a gap is provided between two adjacent second discs 710.
  • the gap between two adjacent second disks 710 is 2-12 microns; preferably, the gap between two adjacent second disks 710 is 3-9 microns.
  • the exhaust hole 740 is provided near the second positioning hole 730.
  • the number of exhaust holes 740 is three.
  • the second disc 710 is a static flow type, and its two surfaces are smooth planes.
  • the material of the second disc 710 is a lightweight high temperature resistant material; preferably, the material of the second disc 710 is a carbon fiber toughened ceramic.
  • Carbon fiber toughened ceramics have extremely high hardness and compressive strength, good heat resistance, can maintain the same shape and size at high temperatures, and can resist the erosion of high temperature gas jets.
  • the carbon fiber toughened ceramic can be selected as a metal-based carbon fiber composite ceramic material, and the ceramic material is prepared according to the following steps, as shown in FIG. 11:
  • Anodizing is performed on the surface of the metal-based carbon fiber composite material.
  • the role of anodizing can make the interface between the metal (specifically, nickel) and the high-temperature ceramics merge better, forming a transition surface.
  • Nickel forms an oxide layer on the surface;
  • the metal-based carbon fiber composite ceramic material is a nickel-based carbon fiber composite ceramic material, and the ceramic is yttria stabilized zirconia YSZ.
  • step 150 includes spraying yttria-stabilized zirconia powder onto the surface of the metal-based carbon fiber composite material, and performing hot isostatic sintering.
  • the specific process is: under 1-3Mpa, the temperature is raised from room temperature 25 ° C to 1400-1800 ° C (preferably 1600 ° C) at a rate of 1-5 ° C / min (preferably 3 ° C / min); The holding time is 0.5-3 hours (preferably 1 hour), the holding pressure is 3-6Mpa; after holding pressure, the temperature is reduced at a rate of 3-7 °C / min (preferably 5 °C / min) under the pressure of 1-3Mpa To room temperature 25 °C.
  • heating or cooling rate If the heating or cooling rate is too fast, it will cause the components to shrink and the phase change is uneven, resulting in a large amount of internal stress, resulting in ceramic cracking; if the insulation pressure and duration are insufficient, it will also cause the components to shrink and the phase change is uneven, resulting in A large amount of internal stress causes the ceramic to crack.
  • Tesla turbine discs made of carbon fiber toughened ceramic materials By using Tesla turbine discs made of carbon fiber toughened ceramic materials, the strength of the discs and the erosion resistance of high temperature gas jets are improved; at the same time, it can be easily deformed when meeting the requirements of larger size discs.
  • the rotation speed of the gas turbine generator of the present invention is 50,000-200,000 rpm, preferably 100,000 rpm.
  • the fuel of the gas turbine generator of the present invention can be selected from gasoline, diesel, methanol and other clean energy sources, preferably methanol.
  • methanol has no oil pollution in the combustion gas, which is conducive to improving the characteristics.
  • the cleanliness between the discs of the Sela turbine 700 facilitates the maintenance and repair of gas turbine generators.
  • Tesla turbine 700 uses the viscosity of the fluid to convert the kinetic energy of the fluid into the mechanical energy of the turbine, under normal circumstances, the turbine does not produce a large axial force on the rotating shaft during work, but during the work of the turbine Under the influence of fluid air flow, a certain degree of axial vibration will be generated.
  • the combustion chamber 600 is provided with a ceramic bushing inside or a metal shell structure with ceramic coating on the inner wall or ceramic treatment on the inner wall, because the ceramic material can greatly improve the high temperature resistance of the combustion chamber 600 and has a strong Pressure resistance.
  • the Tesla compressor 500 and the Tesla turbine 700 are rigidly connected by a rotating shaft 100, and only one intake inlet 721 of the Tesla turbine 700 is provided
  • the gas turbine generator of the present invention may also be configured as a dual-shaft structure, that is, the motor 300 and the Tesla compressor 500 share a rotating shaft, and the Tesla turbine 700 is provided with another The rotating shaft is connected by a coupling between the two rotating shafts. This arrangement can also play a certain role in heat insulation and reduce the influence of the high-temperature gas in the Tesla turbine 700 on the Tesla compressor 500.
  • the intake inlet 721 of the Tesla turbine 700 may also be provided in plural along the axial direction of the rotating shaft 100.
  • the gas turbine generator of the present invention is preferably made as a small-power, small-volume generator, and the power generated by the generator is 0.1 kW-10 kW, preferably 0.5 kW-3 kW.
  • the second aspect of the present invention provides an application field of a gas turbine generator.
  • gas turbine generators can be used in extended-range electric vehicles, extended-range electric motorcycles, household portable power supplies, etc.
  • the gas turbine generator of the present invention can be set to a 24-hour operation mode due to its small size, light weight, and low power generation power, so as to reduce energy loss when the gas turbine generator is frequently turned on and off.
  • the gas turbine generator of the present invention can also be used for the main power source of an unmanned aerial vehicle or the auxiliary power source (APU) of other aircraft.
  • the radial bearing can be a gas-magnetic hybrid radial bearing or a gas dynamic-static hybrid radial bearing.
  • a bearing that can perform lubrication without rotating the shaft 100 is defined as a hydrostatic bearing, and a bearing that works only when the shaft 100 rotates to a certain speed is defined as a dynamic pressure bearing.
  • the radial bearing in the gas turbine generator can use a gas-magnetic hybrid radial bearing or a gas dynamic static pressure hybrid radial bearing; a radial magnetic bearing in a gas magnetic hybrid radial bearing and a gas static pressure bearing in a gas dynamic hydrostatic hybrid radial bearing It can be called static pressure bearing; the gas dynamic pressure bearing in the gas dynamic static pressure hybrid radial bearing can be called dynamic pressure bearing.
  • FIG. 12 is a flowchart of a first control method of a gas turbine generator provided by an embodiment of the present invention.
  • a third aspect of the embodiment of the present invention provides a control method for a gas turbine generator, which is used to control the aforementioned gas turbine generator.
  • the control method includes:
  • opening the static pressure bearing includes: opening the magnetic bearing in the bearing, and / or delivering gas to the static pressure intake orifice in the bearing.
  • the gas turbine generator is started, and the rotating shaft 100 is started.
  • the air enters the gap between the plurality of discs 510 from the intake hole 530 of the Tesla compressor 500.
  • the compressed, accelerated and pressurized gas enters the combustion chamber 600 from the exhaust outlet of the Sila compressor 500 and the fuel in the combustion chamber 600 is combusted; the high-temperature and high-pressure gas discharged from the combustion chamber 600 enters through the exhaust outlet of the combustion chamber 600
  • the inlet of the Tesla turbine 700 performs work.
  • the high-temperature and high-pressure gas drives the disk 710 of the Tesla turbine 700 to rotate to perform work.
  • the disk 710 drives the rotating shaft 100 to generate electricity.
  • the following uses a motor as an example of an enlightened integrated motor to specifically describe the startup process of the gas turbine generator.
  • the gas turbine controller Electronic Control Unit, ECU for short
  • ECU Electronic Control Unit
  • DPC Data Processing Center
  • the DPC switches to the motor drive mode
  • the DPC switches the DC power of the gas turbine's built-in battery Frequency conversion is performed to drive the motor to work, and the motor drives the gas turbine to increase the speed.
  • the air enters the Tesla compressor 500 through the air inlet 910, is compressed, enters the regenerator 610, and is preheated by the high-temperature gas discharged from the Tesla turbine 700.
  • the preheated compressed air enters the combustion chamber 600 and is mixed with fuel.
  • the high-temperature and high-pressure gas after the combustion chamber 600 is fully burned enters the Tesla turbine 700 to do work on the second disk 710, the second disk 710 drives the rotating shaft 100 to rotate, and the exhaust gas of the Tesla turbine 700 is discharged from the exhaust hole 740 After entering the regenerator 610, the cold compressed air before entering the combustion chamber 600 is preheated and then discharged from the high temperature gas outlet of the regenerator 610. Because the Tesla compressor 500, Tesla turbine 700 and motor 300 are connected through the rotating shaft 100 The rotation of the Tesla turbine 700 drives the Tesla compressor 500 to rotate together to a self-sustaining speed.
  • the DPC hangs, the motor idling continues to increase the throttle, and the Tesla turbine 700 continues to increase the power to increase the speed to the working speed.
  • the ECU sends a generator mode command to the DPC; the DPC switches to the generator mode, and the AC output by the motor is rectified and transformed to output the voltage and current required by the user.
  • closing the static pressure bearing includes: closing the magnetic bearing in the bearing, and / or stopping the delivery of gas to the static pressure intake orifice in the bearing.
  • the bearings in the rotor system are controlled so that the static pressure bearings in the radial bearings are opened until the rotation speed of the rotating shaft 100 reaches the working rotation speed.
  • the bearings in the rotor system are controlled so that the static pressure bearings in the radial bearings are opened until the rotation speed of the rotating shaft is zero.
  • FIG. 13 is a flowchart of a second control method of a gas turbine generator provided by an embodiment of the present invention.
  • the fourth aspect of the present invention provides another method of controlling a gas turbine generator set, as shown in FIG. 13, including:
  • opening the static pressure bearing includes: opening the magnetic bearing in the bearing, and / or delivering gas to the static pressure intake orifice in the bearing.
  • the gas turbine generator is started, the rotating shaft 100 is started, and air enters the gap between the plurality of disks 510 from the intake hole 530 of the Tesla compressor 500.
  • the Tesla compressor 500 rotates at a high speed
  • the disk 510 The gas in the gap between them is accelerated and pressurized.
  • the accelerated and pressurized gas enters the combustion chamber 600 from the exhaust outlet of the Sela compressor 500 and the fuel in the combustion chamber 600 is mixed for combustion; the high temperature discharged from the combustion chamber 600
  • the high-pressure gas enters the inlet of the Tesla turbine 700 through the exhaust outlet of the combustion chamber 600 to perform work.
  • the high-temperature high-pressure gas drives the disk 710 of the Tesla turbine 700 to rotate to perform work, and the disk 710 drives the rotating shaft 100 to rotate to generate electricity.
  • the first preset value may be 5% to 30% of the rated speed.
  • closing the static pressure bearing includes: closing the magnetic bearing in the bearing, and / or, stopping the delivery of gas to the static pressure intake orifice in the bearing.
  • the second preset value may be equal to the first preset value, or may not be equal to the first preset value, and the second preset value may be 5% to 30% of the rated speed.
  • the bearings in the rotor system are controlled so that the static pressure bearings of the radial bearings are opened. In this way, the rotating shaft 100 is lifted to a preset radial position by the static bearing of the radial bearing.
  • the rotating speed of the rotating shaft 100 gradually increases.
  • the bearings in the rotor system are controlled so that the radial bearings Of the hydrostatic bearings stopped working.
  • the bearings in the rotor system are controlled to reopen the static pressure bearings of the radial bearings.
  • the bearings in the rotor system are controlled so that the static pressure bearings in the radial bearings stop working again.
  • the rotating speed of the rotating shaft 100 gradually decreases.
  • the bearings in the rotor system are controlled so that the static pressure bearings of the radial bearings are opened again.
  • the bearings in the rotor system are controlled so that the hydrostatic bearings in the radial bearings stop working again.
  • the bearings in the rotor system are controlled so that the hydrostatic bearing of the radial bearing is opened again until after the rotation speed drops to zero, the rotor system is controlled Bearing, the static pressure bearing in the radial bearing stops working again.
  • the present invention aims to protect a gas turbine generator and a control method.
  • the gas turbine includes a rotating shaft, a first radial bearing, a motor, a second radial bearing, a Tesla compressor, a combustion chamber, and a Tes Pull the turbine and the third radial bearing; the rotating shaft passes through the first radial bearing, the motor, the second radial bearing, the Tesla compressor, the Tesla turbine, and the third radial bearing in sequence; the Tesla compressor
  • the intake inlet communicates with the outside, the exhaust outlet communicates with the intake inlet of the combustion chamber, the exhaust outlet of the combustion chamber communicates with the inlet of the Tesla turbine, and the exhaust outlet of the Tesla turbine communicates with the outside, first
  • the radial bearing, the second radial bearing and the third radial bearing are non-contact bearings.
  • This equipment adopts Tesla compressor and Tesla turbine, and its rotor system is supported by non-contact bearings, which improves the overall efficiency of the gas turbine generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种燃气轮机发电机,包括:转轴(100)、第一径向轴承(200)、电机(300)、第二径向轴承(400)、特斯拉压气机(500)、燃烧室(600)、特斯拉涡轮机(700)和第三径向轴承(800);转轴依次穿过第一径向轴承、电机、第二径向轴承、特斯拉压气机、特斯拉涡轮机和第三径向轴承;特斯拉压气机的进气入口与外界连通,排气出口与燃烧室的进气入口连通,燃烧室的排气出口与特斯拉涡轮机的进气入口连通,特斯拉涡轮机的排气出口与外界连通,第一径向轴承、第二径向轴承和第三径向轴承为非接触性轴承。该发电机通过采用特斯拉压气机和特斯拉涡轮机,且其转子系统采用非接触性轴承支撑,提高了燃气轮机发电机的整体效率。

Description

一种燃气轮机发电机及控制方法 技术领域
本发明涉及发电技术领域,特别涉及一种燃气轮机发电机及其控制方法。
背景技术
特斯拉涡轮机是一种无叶片的,由流体剪切力驱动的涡轮机,它被称为无叶片涡轮。特斯拉涡轮机应用了边界层效应,流体受黏滞力影响,会在管壁或者其它物体边缘形成一层很薄的边界层,在边界层内,固定表面的流速为零,离表面越远速度越大。利用这个效应就可以让高速运动的流体带动一组圆盘转动。特斯拉涡轮机的效率可达95%,比普通的叶片涡轮机高得多。虽然特斯拉涡轮机具有效率高的优点,但由于特斯拉涡轮机的扭矩低,对机械摩擦敏感度极高,现有的特斯拉涡轮机在轴承上的功率损耗较大,从而导致现有特斯拉涡轮机效率较低的问题,限制了特拉斯涡轮机的推广应用。
现有技术已有利用特斯拉涡轮机的特点设计涡轮使用,如:设置两个特斯拉涡轮机,在两个特斯拉涡轮机中间设置发电机,利用两个特斯拉涡轮机的循环做功,带动发电机连续发电。但这样的结构并非真正意义上的燃气轮机,相对于传统燃气轮机,效率仍然较低。同时,如果在现有技术上直接改进,增加燃烧室,燃烧室内的高温将会对发电机造成伤害,因此,尚无真正意义上的使用特斯拉涡轮机作为压气机和涡轮的燃气轮机。
发明内容
本发明实施例的目的是提供一种燃气轮机发电机,通过采用特斯拉压气机和特斯拉涡轮机,简化了结构,减小了体积,提高了燃气轮机发电机 的整体效率高。
为解决上述技术问题,本发明实施例的第一方面提供了一种燃气轮机发电机,包括:转轴、第一径向轴承、电机、第二径向轴承、特斯拉压气机、燃烧室、特斯拉涡轮机和第三径向轴承;
所述转轴依次穿过所述第一径向轴承、电机、第二径向轴承、特斯拉压气机、特斯拉涡轮机和第三径向轴承;所述转轴在所述第一径向轴承、电机的定子、第二径向轴承和第三径向轴承内旋转;
所述转轴与所述特斯拉压气机的特斯拉涡轮盘和所述特斯拉涡轮机的特斯拉涡轮盘固定连接;
所述特斯拉压气机的进气入口与外界连通,排气出口与燃烧室的进气入口连通,所述燃烧室的排气出口与特斯拉涡轮机的进气入口连通,所述特斯拉涡轮机的排气出口与外界连通;所述第一径向轴承、第二径向轴承和第三径向轴承均为非接触性轴承。
进一步的,所述燃气轮机发电机还包括:
扩压器,设置在所述特斯拉压气机的排气出口与燃烧室的进气入口之间,用于对所述特斯拉压气机的排气出口排出的气体增压。
进一步的,所述燃气轮机发电机还包括:
喷嘴,所述喷嘴设置于所述燃烧室排气出口和特斯拉涡轮机之间,用于对所述燃烧室排气出口排出的气体增速。
进一步的,所述燃气轮机发电机还包括:
回热器,所述回热器的压缩空气进口与特斯拉压气机的排气出口连通,回热器的压缩空气出口与燃烧室的进气入口连通;所述回热器的高温气体入口与特斯拉涡轮机的排气口连通,所述回热器的高温气体出口与外界连通。
进一步的,所述燃气轮机发电机还包括:
壳体,所述转轴、第一径向轴承、电机、第二径向轴承、特斯拉压气机、燃烧室、特斯拉涡轮机和第三径向轴承均设置在所述壳体内,所述转轴靠 近第一径向轴承一端设置在所述壳体的进气口处;
所述壳体的进气口两端分别与特斯拉压气机的进气入口和外界连通;
所述壳体的出气口两端分别与所述回热器的高温气体出口和外界连通。
进一步的,所述特斯拉压气机包括多个结构相同的第一圆盘;
所述第一圆盘上设置有第一定位孔和至少一个进气孔;
所述转轴穿过多个所述第一圆盘的第一定位孔,并与所述第一圆盘固定连接,优选地,相邻第一圆盘之间设置有调整间隙的垫片。
进一步的,所述特斯拉涡轮机包括:涡轮壳体和设置于所述涡轮壳体内的多个结构相同的第二圆盘;
所述涡轮壳体上设置有与所述燃烧室的排气出口连通的特斯拉涡轮机的进气入口;
所述第二圆盘设置有第二定位孔和至少一个排气孔;
所述转轴穿过所述涡轮壳体,并穿过所述第二圆盘的第二定位孔与所述多个第二圆盘固定连接,优选地,相邻第二圆盘之间设置有调整间隙的垫片。
进一步的,所述多个第一圆盘通过键安装在转轴上并用弹簧垫圈固定。
进一步的,所述进气孔为多个,均匀分布于所述第一圆盘表面,优选地,所述进气孔为3个;
和/或
所述排气孔为多个,均匀分布于所述第二圆盘表面,优选地,所述排气孔为3个。
进一步的,所述第一圆盘为静流式或离心式,静流式第一圆盘的两个表面均为光滑平面,离心式第一圆盘,其两个表面均设置增压元件,所述增压元件为设置于所述第一圆盘两个表面的增压槽或增压凸起;
优选的,在第一圆盘的两个表面设置增压槽时,设置与所述增压槽形 状相匹配的增压金属箔片,其两端分别与相邻的两个所述第一圆盘的增压槽连接;
和/或所述第二圆盘为静流式,静流式第二圆盘的两个表面均为光滑平面。
进一步的,所述第一圆盘由普通钢材制成,
和/或
所述第二圆盘的材料为碳纤维增韧陶瓷,优选为金属基碳纤维复合陶瓷材料。
进一步的,相邻的所述第二圆盘间的间隙为2-12微米,优选为3-9微米。
进一步的,所述金属基碳纤维复合陶瓷材料由下述步骤制作而成:
将碳纤维放入电解液中电镀;
对电镀后的碳纤维造型,得到预定形状的碳纤维;
将造型后的碳纤维加热至金属熔点,待金属熔化混合后冷却至室温,出料,得到所述金属基碳纤维复合材料;
在所述金属基碳纤维复合材料表面进行阳极氧化;
在经过阳极氧化的所述金属基碳纤维复合材料表面烧结陶瓷,得到所述金属基碳纤维复合陶瓷材料。
进一步的,所述燃气轮机发电机的转速为5-20万转/分钟,优选10万转/分钟。
进一步的,所述燃气轮机发电机的燃料选自汽油、柴油、甲醇中的任一种。
进一步的,所述电机为动压轴承电机或启发一体式电机,优选的,所述电机为启发一体式动压轴承电机;
和/或,
所述燃烧室为内部设置有陶瓷衬套或者内壁具有陶瓷镀层或者内壁 陶瓷化处理的金属壳体结构。
进一步的,所述特斯拉涡轮机的进气入口为多个,且沿所述转轴的轴向设置。
进一步的,所述转轴包括:通过联轴器连接的第一转轴和第二转轴;
所述第一转轴与所述电机和特斯拉压气机连接;
所述第二转轴与所述特斯拉涡轮机连接。
进一步的,所述燃气轮机发电机的发电功率为0.1kW-10kW,优选为0.5kW-3kW。
本发明的第二方面提供了一种根据前述技术方案任一项所述的燃气轮机发电机的应用,所述燃气轮机发电机用于增程式电动汽车、增程式电动摩托车、家用便携式电源、无人机或除无人机外的飞行器。
本发明的第三方面提供了一种根据前述技术方案任一项所述的燃气轮机发电机的控制方法,包括:
S11,开启径向轴承的静压轴承,以使转轴移动至预设径向位置;
S12,启动所述燃气轮机发电机,使所述转轴启动;
S13,提高所述转轴的转速加速至预设工作转速,关闭所述径向轴承中的静压轴承;
S14,降低所述转轴的转速,开启所述径向轴承中的静压轴承;
S15,降低所述转轴的转速至零后,关闭所述径向轴承中的静压轴承。
本发明的第四方面提供了一种根据前述技术方案任一项所述的燃气轮机发电机的控制方法,包括:
S21,开启径向轴承中的静压轴承,以使转轴移动至预设径向位置;
S22,启动所述燃气轮机发电机,使所述转轴启动;
S23,所述转轴的转速加速至第一预设值后,关闭所述径向轴承的静压轴承;
S24,转子系统加速至一阶临界速度或二阶临界速度,开启所述径向轴承中的静压轴承;
S25,所述转子系统平稳度过所述一阶临界速度或二阶临界速度之后,关闭所述径向轴承中的静压轴承;
S26,在燃气轮机发电机停机过程中,当所述转子系统减速至所述一阶临界速度或二阶临界速度时,开启所述径向轴承中的静压轴承;
S27,所述转子系统平稳度过所述一阶临界速度或二阶临界速度之后,关闭所述径向轴承的静压轴承;
S28,所述转轴的转速减速至第二预设值,开启所述径向轴承中的静压轴承;
S29,所述转轴的转速减速至零之后,关闭所述径向轴承中的静压轴承。
进一步的,所述第一预设值和/或第二预设值为电机额定转速的5%-30%。
进一步的,开启所述静压轴承,包括:开启轴承中的磁轴承,和/或,向所述轴承中的静压进气节流孔输送气体;
和/或,
关闭所述静压轴承,包括:关闭所述轴承中的磁轴承,和/或,停止向所述轴承中的静压进气节流孔输送气体。
启动所述燃气轮机发电机包括,使所述转轴启动包括以下步骤:
燃气轮机发电机控制器接收到启动信号后控制内置电池向电机供电,电机进入驱动电机模式,电机带动特斯拉压气机和特斯拉涡轮机工作并提升转速;
特斯拉压气机和特斯拉涡轮机转速提升到点火速度后,打开燃料阀,进入点火程序;
燃烧室内产生压力气体并推动特斯拉涡轮机(700)旋转,特斯拉涡轮机带动特斯拉压气机一起旋转至自持速度;
燃气轮机发电机控制器控制电机切换到发电模式。
本发明实施例的上述技术方案具有如下有益的技术效果:
1.通过采用特斯拉压气机和特斯拉涡轮机组成的燃气轮机发电机,且转子系统使用非接触轴承进行支撑,燃气轮机发电机的整体效率高;
2.通过采用回热器,对特斯拉涡轮机的高温尾气进行余热回收,进一步提高了能源的利用率和燃气轮机发电机的效率;
3.通过采用特斯拉压气机和特斯拉涡轮机,取消了对传统压气机和传统涡轮机中结构复杂的叶片加工这一工序,简化了压气机和涡轮机的结构,使其结构简单紧凑并减小了体积;
4.通过采用增压结构的特斯拉压气机,进一步提高了压气机压缩气体的工作效率;
5.通过采用由碳纤维增韧陶瓷材料制作的特斯拉涡轮机圆盘,提高了圆盘的强度和抵御高温气体射流的抗侵蚀能力;同时,可以满足对更大尺寸圆盘的要求时也不易变形;
6.特斯拉燃气轮机发电机的应用广泛,且可优选用于需要小体积、小功率发电机的场合。
附图说明
图1是本发明实施例提供的燃气轮机发电机的立体图;
图2是本发明实施例提供的特斯拉压气机立体原理图;
图3是本发明实施例提供的特斯拉压气机的平面剖视图;
图4是本发明实施例提供的第一圆盘结构示意图;
图5是本发明实施例提供的离心式第一圆盘增压槽结构示意图;
图6是本发明实施例提供的离心式第一圆盘增压凸起结构示意图;
图7是本发明实施例提供的离心式第一圆盘增压金属箔片结构示意图;
图8是本发明实施例提供的安装增压金属箔片的离心式第一圆盘示意图;
图9是本发明实施例提供的特斯拉压气机的空气流动方向示意图;
图10是本发明实施例提供的特斯拉涡轮机的立体剖视图;
图11是本发明特斯拉涡轮盘的金属基碳纤维复合陶瓷材料的制备方法流程图;
图12是本发明实施例提供的燃气轮机发电机的第一种控制方法流程图;
图13是本发明实施例提供的燃气轮机发电机的第二种控制方法流程图。
附图标记:
100、转轴,200、第一径向轴承,300、电机,400、第二径向轴承,500、特斯拉压气机,510、第一圆盘,520、第一定位孔,530、进气孔,540、第一垫片,550、键,560、弹簧垫圈,570、增压凸起,580、增压金属箔片,600、燃烧室,610、回热器,700、特斯拉涡轮机,710、第二圆盘,720、涡轮壳体,721、涡轮机进气口,730、第二定位孔,740、排气孔,750、第二垫片,800、第三径向轴承,900、壳体,910、壳体进气口,920、壳体出气口。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
图1是本发明实施例提供的燃气轮机发电机的立体图。
请参照图1,本发明实施例的第一方面提供了一种燃气轮机发电机,包括:转轴100、第一径向轴承200、电机300、第二径向轴承400、特斯拉压气机500、燃烧室600、特斯拉涡轮机700和第三径向轴承800。转轴100依次穿过第一径向轴承200、电机300、第二径向轴承400、特斯拉压气机500、特斯拉涡轮机700和第三径向轴承800。转轴100与第一径向 轴承200、电机300的定子、第二径向轴承400和第三径向轴承800内旋转;转轴100与特斯拉压气机500的特斯拉涡轮盘和特斯拉涡轮机700的特斯拉涡轮盘固定连接。特斯拉压气机500的进气入口与外界连通,排气出口与燃烧室600的进气入口连通,燃烧室600的排气出口与特斯拉涡轮机700的进气入口连通,特斯拉涡轮机700的排气出口与外界连通。第一径向轴承200、第二径向轴承400和第三径向轴承800均为非接触性轴承,由于燃气轮机的转子系统的转速非常高,普通机械轴承已不能满足工作转速的需求,非接触性轴承由于不存在机械接触,转子系统转速只受材料强度限制,功耗和噪声极低,能适用于多种复杂的应用环境。
优选的,燃气轮机发电机还包括扩压器,扩压器设置于特斯拉压气机500的排气出口与燃烧室600的进气入口之间(图中未示出),扩压器将从特斯拉压气机500的排气出口排出的气体的速度转化为压力,高压气体进入燃烧室600燃烧。
优选的,在燃烧室600排气出口与特斯拉涡轮机700之间设置有喷嘴(图中未示出),喷嘴将从燃烧室600的排气口排出的高温高压燃气的压力再转化成燃气的流速,高流速的燃气进入特斯拉涡轮机700做功。
优选的,燃气轮机发电机还包括回热器610,回热器610的压缩空气进口与特斯拉压气机500的排气出口连通,回热器610的压缩空气出口与燃烧室600的进气入口连通,回热器610的压缩空气进口和压缩空气出口相连通;回热器610的高温气体入口与特斯拉涡轮机700的排气口连通,回热器610的高温气体出口与外界连通,回热器610的高温气体入口与高温气体出口相连通。回热器610利用特斯拉涡轮机700的高温尾气实现对燃烧室600进气入口的进气预热,进一步提高了燃烧效率。
优选的,燃气轮机发电机还包括壳体900,转轴100、第一径向轴承200、电机300、第二径向轴承400、特斯拉压气机500、燃烧室600、特斯拉涡轮机700和第三径向轴承800均设置在所述壳体900内。转轴100靠近第一径向轴承200一端设置在所述壳体900的进气口910处,进气口 910两端分别与特斯拉涡轮机700的进气入口和外界连通;壳体900的出气口920两端分别与回热器610的的高温气体出口和外界连通。
图2是本发明实施例提供的特斯拉压气机立体原理图。
图3是本发明实施例提供的特斯拉压气机的平面剖视图。
图4是本发明实施例提供的第一圆盘结构示意图。
请参照图2、图3和图4,特斯拉压气机500包括多个结构相同的第一圆盘510;第一圆盘510上设置有第一定位孔520和至少一个进气孔530;第一定位孔520位于第一圆盘510的中心,其孔径与转轴100的直径相匹配;转轴100穿过多个第一圆盘510的第一定位孔520,并与第一圆盘510固定连接。
可选的,进气孔530设置于第一圆盘510上靠近第一定位孔520处。
可选的,进气孔530为多个,且环绕第一定位孔520均匀分布。优选的,进气孔530为3个,且环绕第一定位520均匀分布。
相邻的两个第一圆盘510之间设置有用于调整间隙的第一垫片540,第一垫片540将相邻的两个第一圆盘510间隔预设距离。
优选的,多个圆盘510通过键550安装在转轴100上并用弹簧垫圈560固定。
优选的,第一圆盘510为静流式,其两个表面均为光滑平面,如图4所示。
图5是本发明实施例提供的离心式第一圆盘增压槽结构示意图。
图6是本发明实施例提供的离心式第一圆盘增压凸起结构示意图。
请参照图5和图6,在本发明实施例的一个实施方式中,第一圆盘510为离心式,即在圆盘510的两个表面设置增压元件,增压元件为设置于第一圆盘510两个表面的增压槽或增压凸起570,以提高特斯拉压气机500的增压能力。增压槽或增压凸起的结构如图5和图6所示。
图7是本发明实施例提供的离心式第一圆盘增压金属箔片结构示意图。
图8是本发明实施例提供的安装增压金属箔片的离心式第一圆盘示意图。
请参照图7和图8,在圆盘510的两个表面设置增压槽时,设置与所述增压槽形状相同的增压金属箔片580,,增压金属箔片580两端分别与相邻的两个第一圆盘510的增压槽连接,进一步提高了特斯拉压气机500的增压能力。
第一圆盘510材料为普通钢材,第一圆盘510周围的气体温度较低,普通钢材即可满足第一圆盘510的使用要求,节省了生产成本。
优选的,参见图9,图9为特斯拉压气机500中空气的流动方向示意图。特斯拉压气机500工作时,空气从进气孔530进入第一圆盘510之间的间隙,随着第一圆盘510的高速旋转,第一圆盘510之间的间隙中的气体被加速、加压,加速、加压后的气体从斯拉压气机500的排气出口进入燃烧室600或者先进入回热器610后再进入燃烧室600和燃烧室600内的燃料混合燃烧。
图10是本发明实施例提供的特斯拉涡轮机的立体剖视图。
优选的,请参照图10,特斯拉涡轮机700包括:涡轮壳体720和设置于涡轮壳体720内的多个结构相同的第二圆盘710;涡轮壳体720上设置有与燃烧室600的排气出口连通的至少一个进气口721。第二圆盘710设置有第二定位孔730和排气孔740;转轴穿过涡轮壳体720,并穿过多个结构相同的第二圆盘710的第二定位孔730与多个第二圆盘710固定连接。第二圆盘710的个数和直径依据电机300的功率以及设计转速具体进行设计,在此不做限定。
优选的,相邻的两个第二圆盘710之间设置有用于调整间隙的第二垫片750。
可选的,相邻的两个第二圆盘710间的间隙为2-12微米;优选的,相邻的两个第二圆盘710间的间隙为3-9微米。
优选的,排气孔740设置在靠近第二定位孔730处。可选的,排气孔 740为多个,且均匀分布于第二圆盘710表面。优选的,排气孔740的数量为3个。
在本发明实施例的一个实施方式中,第二圆盘710为静流式,其两个表面为光滑平面。
可选的,第二圆盘710的材料为轻质耐高温材料;优选的,第二圆盘710的材料为碳纤维增韧陶瓷。碳纤维增韧陶瓷具有极高的硬度和抗压强度,耐热性好,在高温下可以保持形状尺寸不变,能够抵御高温气体射流的侵蚀。具体的,碳纤维增韧陶瓷可选择为金属基碳纤维复合陶瓷材料,该陶瓷材料按照如下步骤制备,如图11所示:
S110、将碳纤维放入电解液中电镀;
S120、对电镀后的碳纤维造型,得到预定形状的碳纤维;
S130、将造型后的碳纤维加热至金属熔点,待金属熔化混合后冷却至室温,出料,得到所述金属基碳纤维复合材料;
S140、在所述金属基碳纤维复合材料表面进行阳极氧化,阳极氧化所起的作用可以让金属(具体可以选择为镍)和高温陶瓷的相接面融合更好,形成一个过渡面,在金属(镍)的表面形成氧化层;
S150、在经过阳极氧化的金属基碳纤维复合材料表面烧结耐高温陶瓷,得到金属基碳纤维复合陶瓷材料。
具体的,金属基碳纤维复合陶瓷材料为镍基碳纤维复合陶瓷材料,陶瓷为氧化钇稳定氧化锆YSZ。
具体的,步骤150包括:将氧化钇稳定氧化锆粉末喷洒至所述金属基碳纤维复合材料表面后进行热等静压烧结。具体过程为:在1-3Mpa下,将温度从室温25℃开始以1-5℃/分钟(优选3℃/分钟)的速度上升至1400-1800℃(优选1600℃);然后保温保压,保温时间为0.5-3小时(优选1小时)、保温压力为3-6Mpa;保温保压后,在1-3Mpa的压力下,以3-7℃/分钟(优选5℃/分钟)的速度降温到室温25℃。如果升温或降温速度过快,会导致各组分收缩及相变不均匀,产生大量内应力,导致陶瓷 开裂;如果保温压力和时长不足,同样会导致各组分收缩及相变不均匀,产生大量内应力,导致陶瓷开裂。
通过采用由碳纤维增韧陶瓷材料制作的特斯拉涡轮机圆盘,提高了圆盘的强度和抵御高温气体射流的抗侵蚀能力;同时,可以满足对更大尺寸圆盘的要求时也不易变形。
进一步的,本发明的燃气轮机发电机的转速为5-20万转/分钟,优选10万转/分钟。
进一步的,本发明的燃气轮机发电机的燃料可选用汽油、柴油、甲醇以及其他清洁能源等,优选甲醇,甲醇与汽油、柴油等燃油相比,其燃烧产生的燃气中没有油污,有利于提高特斯拉涡轮机700各圆盘之间的清洁度,便于燃气轮机发电机的维护和保养。
进一步的,由于特斯拉涡轮机700是利用流体的粘性将流体的动能转化为涡轮的机械能,因此正常情况下,涡轮做功过程中不会对转轴产生较大的轴向力,但是在涡轮做功过程中,受到流体气流的影响,会产生一定程度的轴向的抖动。
可选的,燃烧室600为内部设置有陶瓷衬套或者内壁具有陶瓷镀层或者内壁陶瓷化处理的金属壳体结构,因为陶瓷材料可以极大地提高燃烧室600的耐高温性能,同时具有很强的抗压能力。
另外,在上述附图及实施方式中,尽管特斯拉压气机500和特斯拉涡轮机700之间是通过一根转轴100刚性连接,且特斯拉涡轮机700的进气入口721只设置有一个,但是应当理解,本发明的具体实施方式不限于此。例如为了拆装和维护保养的方便,本发明的燃气轮机发电机也可以设置为双轴结构,即电机300和特斯拉压气机500共用一根转轴,特斯拉涡轮机700则设置有另一根转轴,两个转轴之间通过联轴器连接,这种设置也能够起到一定的隔热作用,及减少特斯拉涡轮机700中高温气体对特斯拉压气机500的影响。
优选的,为了提高特斯拉涡轮机700中各圆盘710之间的间隙中气流 的均匀性,特斯拉涡轮机700的进气入口721也可以沿着转轴100的轴向设置为多个。
进一步地,本发明的燃气轮机发电机优选制作成小功率、小体积的发电机,发电机的发电功率为0.1kW-10kW,优选0.5kW-3kW。
本发明的第二方面提供了一种燃气轮机发电机的应用领域。具体的,燃气轮机发电机可用于增程式电动汽车、增程式电动摩托车、家用便携式电源等。当本发明的燃气轮机发电机用于增程式电动汽车时,由于其小巧轻便且发电功率较小,因此可以设置为24小时运行模式,以减少燃气轮机发电机频繁开启和关闭时的能量损失。
本发明的燃气轮机发电机还可以用于无人机的主动力电源或者其他飞行器的辅助动力源(APU)等。
下面就本发明的燃气轮机发电机的工作过程中的控制方法进行具体说明。
如前所示,径向轴承可以采用气磁混合径向轴承或气体动静压混合径向轴承。为了便于描述,将不需要转轴100转动就能起到润滑作用的轴承定义为静压轴承,转轴100转动到一定速度时才能工作的轴承定义为动压轴承。燃气轮机发电机中径向轴承可以采用气磁混合径向轴承或气体动静压混合径向轴承;气磁混合径向轴承中的径向磁轴承以及气体动静压混合径向轴承中的气体静压轴承可以称为静压轴承;气体动静压混合径向轴承中的气体动压轴承可以称为动压轴承。
图12是本发明实施例提供的燃气轮机发电机的第一种控制方法流程图。
请参照图12,本发明实施例的第三方面提供了一种燃气轮机发电机的控制方法,用于控制前述的燃气轮机发电机。该控制方法包括:
S11,开启径向轴承中的静压轴承,以使转轴100移动至预设径向位置。
其中,开启静压轴承包括:开启轴承中的磁轴承,和/或,向轴承中 的静压进气节流孔输送气体。
S12,启动燃气轮机发电机,使转轴100启动。空气从特斯拉压气机500的进气孔530进入多个圆盘510之间的间隙,随着特斯拉压气机500的高速旋转,圆盘510之间的间隙中的气体被加速、加压,加速、加压后的气体从斯拉压气机500的排气出口进入燃烧室600和燃烧室600内的燃料混合燃烧;燃烧室600排出的高温高压气体通过燃烧室600的排气出口进入特斯拉涡轮机700的进气入口做功,高温高压气体带动特斯拉涡轮机700的圆盘710转动做功,圆盘710带动转轴100旋转发电。
以下以电机为启发一体式电机为例,对燃气轮机发电机的启动过程进行具体描述。
燃气轮机控制器(Electronic Control Unit,简称ECU)接收到启动信号后,对电机功率控制器(Data Processing Center,简称DPC)发送电机驱动模式指令;DPC切换到电机驱动模式,DPC将燃气轮机内置电池的直流电进行变频,驱动电机工作,电机带动燃气轮机提升转速。
待燃气轮机的转速提升至点火转速后,打开燃料阀,进入点火程序。空气由进气口910进入特斯拉压气机500进行压缩后进入回热器610并被来自特斯拉涡轮机700排出的高温气体预热,预热后的压缩空气进入燃烧室600与燃料混合并燃烧,燃烧室600充分燃烧后的高温高压气体进入特斯拉涡轮机700对第二圆盘710做功,第二圆盘710带动转轴100旋转,特斯拉涡轮机700的排气从排气孔740排出后进入回热器610对进入燃烧室600前的冷压缩空气预加热后由回热器610的高温气体出口排出,由于特斯拉压气机500、特斯拉涡轮机700和电机300通过转轴100连接,特斯拉涡轮机700旋转带动特斯拉压气机500一起旋转至自持速度。
燃气轮机到达自持转速后,DPC挂起,电机空转继续增加油门,特斯拉涡轮机700继续提升功率,使转速提升至工作转速。ECU对DPC发送发电机模式指令;DPC切换到发电机模式,并将电机输出的交流电通过整流变压后输出用户所需电压电流。
S13、转轴100的转速加速至工作转速之后,关闭径向轴承静压轴承。
其中,关闭静压轴承包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
S14、燃气轮机发电机停机时,开启径向轴承中的静压轴承。
S15、转轴100的转速减速至零之后,关闭径向轴承中的静压轴承。
在上述过程中,控制转子系统中的轴承,使径向轴承中的静压轴承一直开启至转轴100的转速达到工作转速。
燃气轮机发电机停机时,控制转子系统中的轴承,使径向轴承中的静压轴承一直开启至转轴的转速为零。
图13是本发明实施例提供的燃气轮机发电机的第二种控制方法流程图。
本发明的第四方面提供了另一种燃气轮机发电机组的控制方法,如图13所示,包括:
S21、开启径向轴承中的静压轴承,以使转轴100移动至预设径向位置。
其中,开启静压轴承包括:开启轴承中的磁轴承,和/或,向轴承中的静压进气节流孔输送气体。
S22、启动燃气轮机发电机,转轴100启动,空气从特斯拉压气机500的进气孔530进入多个圆盘510之间的间隙,随着特斯拉压气机500的高速旋转,圆盘510之间的间隙中的气体被加速、加压,加速、加压后的气体从斯拉压气机500的排气出口进入燃烧室600和燃烧室600内的燃料混合燃烧;燃烧室600排出的高温高压气体通过燃烧室600的排气出口进入特斯拉涡轮机700的进气入口做功,高温高压气体带动特斯拉涡轮机700的圆盘710转动做功,圆盘710带动转轴100旋转发电。
S23、转轴的转速加速至第一预设值之后,关闭径向轴承中的静压轴承。
其中,第一预设值可以是额定转速的5%至30%。
其中,关闭静压轴承,包括:关闭轴承中的磁轴承,和/或,停止向轴承中的静压进气节流孔输送气体。
S24、转子系统加速至一阶临界速度或二阶临界速度时,开启径向轴承中的静压轴承。
S25、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭径向轴承中的静压轴承。
S26、燃气轮机发电机停机过程中,当转子系统减速至一阶临界速度或二阶临界速度时,开启径向轴承中的静压轴承。
S27、转子系统平稳度过一阶临界速度或二阶临界速度之后,关闭径向轴承中的静压轴承。
S28、转轴的转速减速至第二预设值时,开启径向轴承中的静压轴承。
其中,第二预设值可以等于第一预设值,也可以不等于第一预设值,第二预设值可以是额定转速的5%至30%。
S29、转轴100的转速减速至零之后,关闭径向轴承中的静压轴承。
在上述过程中,燃气轮机发电机启动之前,控制转子系统中的轴承,使径向轴承的静压轴承开启。这样,转轴100在径向轴承的静压轴承的作用下,被托起至预设径向位置。
燃气轮机发电机启动之后,转轴100的转速逐渐增大,当转轴100的转速达到第一预设值时,例如额定转速的5%至30%时,控制转子系统中的轴承,使径向轴承中的静压轴承停止工作。当转轴100的转速达到一阶临界速度或二阶临界速度时,控制转子系统中的轴承,使径向轴承的静压轴承重新开启。在转轴100的转速平稳度过一阶临界速度或二阶临界速度之后,控制转子系统中的轴承,使径向轴承中的静压轴承再次停止工作。
燃气轮机发电机停机过程中,转轴100的转速逐渐下降,当转轴100的转速达到二阶临界速度或一阶临界速度时,控制转子系统中的轴承,使径向轴承的静压轴承再次开启。在转轴100的转速平稳度过二阶临界速度或一阶临界速度之后,控制转子系统中的轴承,使径向轴承中的静压轴承 再次停止工作。当转轴100的转速下降至预定值时,例如额定转速的5%至30%时,控制转子系统中的轴承,使径向轴承的静压轴承再次开启直至转速降为零之后,控制转子系统中的轴承,使径向轴承中的静压轴承再次停止工作。
综上所述,本发明旨在保护一种燃气轮机发电机及控制方法,该燃气轮机包括:转轴、第一径向轴承、电机、第二径向轴承、特斯拉压气机、燃烧室、特斯拉涡轮机和第三径向轴承;转轴依次穿过第一径向轴承、电机、第二径向轴承、特斯拉压气机、特斯拉涡轮机和第三径向轴承;特斯拉压气机的进气入口与外界连通,排气出口与燃烧室的进气入口连通,燃烧室的排气出口与特斯拉涡轮机的进气入口连通,特斯拉涡轮机的排气出口与外界连通,第一径向轴承、第二径向轴承和第三径向轴承为非接触性轴承。本设备通过采用特斯拉压气机和特斯拉涡轮机,且其转子系统采用非接触性轴承支撑,提高了燃气轮机发电机的整体效率。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (25)

  1. 一种燃气轮机发电机,其特征在于,包括:转轴(100)、第一径向轴承(200)、电机(300)、第二径向轴承(400)、特斯拉压气机(500)、燃烧室(600)、特斯拉涡轮机(700)和第三径向轴承(800);
    所述转轴(100)依次穿过所述第一径向轴承(200)、电机(300)、第二径向轴承(400)、特斯拉压气机(500)、特斯拉涡轮机(700)和第三径向轴承(800);所述转轴(100)在所述第一径向轴承(200)、电机(300)的定子、第二径向轴承(400)和第三径向轴承(800)内旋转;
    所述转轴(100)与所述特斯拉压气机(500)的特斯拉涡轮盘和所述特斯拉涡轮机(700)的特斯拉涡轮盘固定连接;
    所述特斯拉压气机(500)的进气入口与外界连通,排气出口与燃烧室(600)的进气入口连通,所述燃烧室(600)的排气出口与特斯拉涡轮机(700)的进气入口连通,所述特斯拉涡轮机(700)的排气出口与外界连通;
    所述第一径向轴承(200)、第二径向轴承(400)和第三径向轴承(800)均为非接触性轴承。
  2. 根据权利要求1所述的燃气轮机发电机,其特征在于,还包括:
    扩压器,设置在所述特斯拉压气机(500)的排气出口与燃烧室(600)的进气入口之间,用于对所述特斯拉压气机(500)的排气出口排出的气体增压。
  3. 根据权利要求2所述的燃气轮机发电机,其特征在于,还包括:
    喷嘴,所述喷嘴设置于所述燃烧室(600)排气出口和特斯拉涡轮机(700)之间,用于对所述燃烧室(600)排气出口排出的气体增速。
  4. 根据权利要求1所述的燃气轮机发电机,其特征在于,还包括:
    回热器(610),所述回热器(610)的压缩空气进口与特斯拉压气机(500)的排气出口连通,回热器(610)的压缩空气出口与燃烧室(600) 的进气入口连通;所述回热器(610)的高温气体入口与特斯拉涡轮机(700)的排气口连通,所述回热器(610)的高温气体出口与外界连通。
  5. 根据权利要求4所述的燃气轮机发电机,其特征在于,还包括:壳体(900),所述转轴(100)、第一径向轴承(200)、电机(300)、第二径向轴承(400)、特斯拉压气机(500)、燃烧室(600)、特斯拉涡轮机(700)和第三径向轴承(800)均设置在所述壳体(900)内,所述转轴(100)靠近第一径向轴承(200)一端设置在所述壳体(900)的进气口(910)处;
    所述壳体(900)的进气口(910)两端分别与特斯拉压气机(500)的进气入口和外界连通;
    所述壳体(900)的出气口(920)两端分别与所述回热器(610)的高温气体出口和外界连通。
  6. 根据权利要求1-5任一项所述的燃气轮机发电机,其特征在于,
    所述特斯拉压气机(500)包括多个结构相同的第一圆盘(510);
    所述第一圆盘(510)上设置有第一定位孔(520)和至少一个进气孔(530);
    所述转轴(100)穿过多个所述第一圆盘(510)的第一定位孔(520),并与所述第一圆盘(510)固定连接;
    优选地,相邻第一圆盘(510)之间设置有调整间隙的垫片(540)。
  7. 根据权利要求1-5任一项所述的燃气轮机发电机,其特征在于,
    所述特斯拉涡轮机(700)包括:涡轮壳体(720)和设置于所述涡轮壳体(720)内的多个结构相同的第二圆盘(710);
    所述涡轮壳体(720)上设置有与所述燃烧室(600)的排气出口连通的特斯拉涡轮机(700)的进气入口(721);
    所述第二圆盘(710)设置有第二定位孔(730)和至少一个排气孔(740);
    所述转轴(100)穿过所述涡轮壳体(720),并穿过所述第二圆盘的 第二定位孔(730)与所述多个第二圆盘(710)固定连接;
    优选地,相邻第二圆盘(710)之间设置有调整间隙的垫片(750)。
  8. 根据权利要求6所述的燃气轮机发电机,其特征在于,
    所述多个第一圆盘(510)通过键(550)安装在转轴(100)上并用弹簧垫圈(560)固定。
  9. 根据权利要求6或7所述的燃气轮机发电机,其特征在于,
    所述进气孔(530)为多个,均匀分布于所述第一圆盘(510)表面,优选地,所述进气孔(530)为3个;
    和/或
    所述排气孔(740)为多个,均匀分布于所述第二圆盘(710)表面,优选地,所述排气孔(740)为3个。
  10. 根据权利要求6或7所述的燃气轮机发电机,其特征在于,
    所述第一圆盘(510)为静流式或离心式,静流式第一圆盘(510)的两个表面均为光滑平面,离心式第一圆盘(510),其两个表面均设置增压元件,所述增压元件为设置于所述第一圆盘(510)两个表面的增压槽或增压凸起(570);
    优选的,在第一圆盘(510)的两个表面设置增压槽时,设置与所述增压槽形状相匹配的增压金属箔片(580),其两端分别与相邻的两个所述第一圆盘(510)的增压槽连接;
    和/或
    所述第二圆盘(710)为静流式,静流式第二圆盘(710)的两个表面均为光滑平面。
  11. 根据权利要求6或7所述的燃气轮机发电机,其特征在于,
    所述第一圆盘(510)由普通钢材制成;
    和/或
    所述第二圆盘(710)的材料为碳纤维增韧陶瓷,优选为金属基碳纤维复合陶瓷材料。
  12. 根据权利要求7所述的燃气轮机发电机,其特征在于,相邻的所述第二圆盘(710)间的间隙为2-12微米,优选为3-9微米。
  13. 根据权利要求11所述的燃气轮机发电机,其特征在于,所述金属基碳纤维复合陶瓷材料由下述步骤制作而成:
    将碳纤维放入电解液中电镀;
    对电镀后的碳纤维造型,得到预定形状的碳纤维;
    将造型后的碳纤维加热至金属熔点,待金属熔化混合后冷却至室温,出料,得到所述金属基碳纤维复合材料;
    在所述金属基碳纤维复合材料表面进行阳极氧化;
    在经过阳极氧化的所述金属基碳纤维复合材料表面烧结陶瓷,得到所述金属基碳纤维复合陶瓷材料。
  14. 根据权利要求1所述的燃气轮机发电机,其特征在于,所述燃气轮机发电机的转速为5-20万转/分钟,优选10万转/分钟。
  15. 根据权利要求1所述的燃气轮机发电机,其特征在于,所述燃气轮机发电机的燃料选自汽油、柴油、甲醇中的任一种。
  16. 根据权利要求1所述的燃气轮机发电机,其特征在于,
    所述电机(300)为动压轴承电机或启发一体式电机,优选的,所述电机(300)为启发一体式动压轴承电机;
    和/或
    所述燃烧室(600)为内部设置有陶瓷衬套或者内壁具有陶瓷镀层或者内壁陶瓷化处理的金属壳体结构。
  17. 根据权利要求1所述的燃气轮机发电机,其特征在于,
    所述特斯拉涡轮机(700)的进气入口(721)为多个,且沿所述转轴(100)的轴向设置。
  18. 根据权利要求1所述的燃气轮机发电机,其特征在于,
    所述转轴(100)包括:通过联轴器连接的第一转轴和第二转轴;
    所述第一转轴与所述电机(300)和特斯拉压气机(500)连接;
    所述第二转轴与所述特斯拉涡轮机(700)连接。
  19. 根据权利要求1所述的燃气轮机发电机,其特征在于,
    所述燃气轮机发电机的发电功率为0.1kW-10kW,优选为0.5kW-3kW。
  20. 根据权利要求1-19任一项所述的燃气轮机发电机的应用,所述燃气轮机发电机用于增程式电动汽车、增程式电动摩托车、家用便携式电源、无人机或除无人机外的飞行器。
  21. 一种如权利要求1-19任一项所述的燃气轮机发电机的控制方法,其特征在于,
    S11,开启径向轴承中的静压轴承,以使转轴(100)移动至预设径向位置;
    S12,启动所述燃气轮机发电机,使所述转轴(100)启动;
    S13,所述转轴(100)的转速加速至工作转速之后,关闭所述径向轴承中的静压轴承;
    S14,燃气轮机发电机停机时,开启所述径向轴承中的静压轴承;
    S15,所述转轴(100)的转速减速至零之后,关闭所述径向轴承中的静压轴承。
  22. 一种如权利要求1-19任一项所述的燃气轮机发电机的控制方法,其特征在于,
    S21,开启径向轴承中的静压轴承,以使转轴(100)移动至预设径向位置;
    S22,启动所述燃气轮机发电机,使所述转轴(100)启动;
    S23,所述转轴(100)的转速加速至第一预设值后,关闭所述径向轴承中的静压轴承;
    S24,转子系统加速至一阶临界速度或二阶临界速度时,开启所述径向轴承中的静压轴承;
    S25,所述转子系统平稳度过所述一阶临界速度或二阶临界速度之后,关闭所述径向轴承中的静压轴承;
    S26,燃气轮机发电机停机过程中,当所述转子系统减速至所述一阶临界速度或二阶临界速度时,开启所述径向轴承中的静压轴承;
    S27,所述转子系统平稳度过所述一阶临界速度或二阶临界速度之后,关闭所述径向轴承中的静压轴承;
    S28,所述转轴(100)的转速减速至第二预设值时,开启所述径向轴承中的静压轴承;
    S29,所述转轴(100)的转速减速至零之后,关闭所述径向轴承中的静压轴承。
  23. 根据权利要求21所述的控制方法,其特征在于,
    所述第一预设值和/或第二预设值为电机(300)额定转速的5%-30%。
  24. 根据权利要求21或22所述的控制方法,其特征在于,
    开启所述静压轴承,包括:开启轴承中的磁轴承,和/或,向所述轴承中的静压进气节流孔输送气体;
    和/或,
    关闭所述静压轴承,包括:关闭所述轴承中的磁轴承,和/或,停止向所述轴承中的静压进气节流孔输送气体。
  25. 根据权利要求21或22所述的控制方法,其特征在于,
    启动所述燃气轮机发电机包括,使所述转轴(100)启动包括以下步骤:
    燃气轮机发电机控制器接收到启动信号后控制内置电池向电机(300)供电,电机(300)进入驱动电机模式,电机(300)带动特斯拉压气机(500)和特斯拉涡轮机(700)工作并提升转速;
    特斯拉压气机(500)和特斯拉涡轮机(700)转速提升到点火速度后,打开燃料阀,进入点火程序;
    燃烧室(600)内产生压力气体并推动特斯拉涡轮机(700)旋转,特斯拉涡轮机(700)带动特斯拉压气机(500)一起旋转至自持速度;
    燃气轮机发电机控制器控制电机(300)切换到发电模式。
PCT/CN2019/107618 2018-10-25 2019-09-25 一种燃气轮机发电机及控制方法 WO2020082965A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811251523.8A CN109162811A (zh) 2018-10-25 2018-10-25 一种燃气轮机发电机及控制方法
CN201811251523.8 2018-10-25

Publications (1)

Publication Number Publication Date
WO2020082965A1 true WO2020082965A1 (zh) 2020-04-30

Family

ID=64876088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107618 WO2020082965A1 (zh) 2018-10-25 2019-09-25 一种燃气轮机发电机及控制方法

Country Status (2)

Country Link
CN (1) CN109162811A (zh)
WO (1) WO2020082965A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109162811A (zh) * 2018-10-25 2019-01-08 至玥腾风科技投资集团有限公司 一种燃气轮机发电机及控制方法
CN109595073B (zh) * 2019-02-01 2023-10-20 天津市远大实创科技有限公司 一种超临界流体动力装置
CN111577459B (zh) * 2020-06-03 2023-04-07 西安热工研究院有限公司 一种利用脉冲爆震燃气黏性力做功的燃气轮机发电装置
CN112629842B (zh) * 2020-11-27 2022-06-28 中国航发四川燃气涡轮研究院 一种航空发动机轮盘强度试验用加温冷却一体装置
CN113389603A (zh) * 2021-06-08 2021-09-14 东南大学 特斯拉涡轮膨胀装置及回收压力能的发电装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094712A (zh) * 2009-12-09 2011-06-15 北京融润耦合动力技术研究院 气浮轴承-转子结构的微型燃气轮机系统
CN102900533A (zh) * 2012-10-24 2013-01-30 哈尔滨东安发动机(集团)有限公司 微型燃气轮机发电装置
US20130294890A1 (en) * 2012-05-01 2013-11-07 California Institute Of Technology Reverse brayton cycle with bladeless turbo compressor for automotive environmental cooling
CN104963775A (zh) * 2015-07-06 2015-10-07 北京理工大学 一种微型无叶片式燃气轮机
CN104975947A (zh) * 2015-07-06 2015-10-14 北京理工大学 无叶片式燃气轮机发电装置
CN207999283U (zh) * 2018-01-12 2018-10-23 至玥腾风科技投资集团有限公司 一种转子系统和燃气轮机发电机组
CN109162811A (zh) * 2018-10-25 2019-01-08 至玥腾风科技投资集团有限公司 一种燃气轮机发电机及控制方法
CN209324522U (zh) * 2018-10-25 2019-08-30 至玥腾风科技投资集团有限公司 一种燃气轮机发电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009109020A1 (en) * 2008-03-06 2009-09-11 Heraldo Da Silva Couto Hybrid tesla-pelton wheel disc turbine
DE102010017733B4 (de) * 2010-07-05 2013-08-08 Robert Stöcklinger Tesla-Turbine und Verfahren zur Wandlung von Strömungsenergie eines Fluids in kinetische Energie einer Welle einer Tesla-Turbine
EP2522808A1 (en) * 2011-05-10 2012-11-14 Aella SA Turbo-engine, particularly internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094712A (zh) * 2009-12-09 2011-06-15 北京融润耦合动力技术研究院 气浮轴承-转子结构的微型燃气轮机系统
US20130294890A1 (en) * 2012-05-01 2013-11-07 California Institute Of Technology Reverse brayton cycle with bladeless turbo compressor for automotive environmental cooling
CN102900533A (zh) * 2012-10-24 2013-01-30 哈尔滨东安发动机(集团)有限公司 微型燃气轮机发电装置
CN104963775A (zh) * 2015-07-06 2015-10-07 北京理工大学 一种微型无叶片式燃气轮机
CN104975947A (zh) * 2015-07-06 2015-10-14 北京理工大学 无叶片式燃气轮机发电装置
CN207999283U (zh) * 2018-01-12 2018-10-23 至玥腾风科技投资集团有限公司 一种转子系统和燃气轮机发电机组
CN109162811A (zh) * 2018-10-25 2019-01-08 至玥腾风科技投资集团有限公司 一种燃气轮机发电机及控制方法
CN209324522U (zh) * 2018-10-25 2019-08-30 至玥腾风科技投资集团有限公司 一种燃气轮机发电机

Also Published As

Publication number Publication date
CN109162811A (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
WO2020082965A1 (zh) 一种燃气轮机发电机及控制方法
US20240067348A1 (en) Hybrid Electric Hydrogen Fuel Cell Engine
CA2255904C (en) Improved method and apparatus for power generation
US5799484A (en) Dual turbogenerator auxiliary power system
US7065954B2 (en) Turbine, particularly useful for small aircraft
WO2022105214A1 (zh) 双轴发电燃气轮机
WO2019137022A1 (zh) 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
CN101871441A (zh) 电动喷气式发动机
CN208605232U (zh) 一种转子系统和燃气轮机发电机组
WO2020063517A1 (zh) 一种转子系统及其控制方法和燃气轮机发电机组及其控制方法
CN209324522U (zh) 一种燃气轮机发电机
CN104963775A (zh) 一种微型无叶片式燃气轮机
CN208236900U (zh) 一种推力轴承和转子系统
CN106948864A (zh) 一种燃气螺管转子发动机动力装置
CN202328366U (zh) 可再生电能的涡轮燃烧器
US6751940B1 (en) High efficiency gas turbine power generator
CN110725748B (zh) 一种微型涡轮电混合分布式动力装置
CN211343126U (zh) 一种微型燃气轮机
WO2023216278A1 (zh) 电能源涡轮发动机
CN110552790B (zh) 一种动力系统及其控制方法
CN101929406A (zh) 涡旋冷真空航空发动机
CN208281065U (zh) 一种动力系统
CN208918699U (zh) 一种转子系统和燃气轮机发电机组
CN114030622A (zh) 一种航空辅助动力装置及航空器
CN113104220A (zh) 多电混合动力系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 16.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19877163

Country of ref document: EP

Kind code of ref document: A1