WO2020082964A1 - 一种电机及其装配方法 - Google Patents

一种电机及其装配方法 Download PDF

Info

Publication number
WO2020082964A1
WO2020082964A1 PCT/CN2019/107617 CN2019107617W WO2020082964A1 WO 2020082964 A1 WO2020082964 A1 WO 2020082964A1 CN 2019107617 W CN2019107617 W CN 2019107617W WO 2020082964 A1 WO2020082964 A1 WO 2020082964A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
radial bearing
air cavity
winding
radial
Prior art date
Application number
PCT/CN2019/107617
Other languages
English (en)
French (fr)
Inventor
靳普
刘慕华
王勃
Original Assignee
至玥腾风科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技集团有限公司 filed Critical 至玥腾风科技集团有限公司
Publication of WO2020082964A1 publication Critical patent/WO2020082964A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing

Definitions

  • the invention relates to the technical field of motor manufacturing, in particular to a motor and its assembling method.
  • High-speed motors have high speeds and are much smaller than ordinary power motors, and can be used directly in high-speed applications. Due to the elimination of the traditional speed change mechanism and a small rotational inertia, the high-speed motor has the advantages of high motor power density, high transmission efficiency, low vibration noise and fast dynamic response; and its small size can effectively save materials.
  • high-speed motors Due to the high speed of high-speed motors, the requirements for bearings are also high. At present, high-speed motors mostly use air bearings, which can provide extremely high rotation accuracy. Because the air bearings have no mechanical contact, the degree of wear is reduced to a minimum, thus ensuring that the accuracy is always stable.
  • the stator of the air bearing is a separate part located on the outer side of the motor winding, and it requires a separate bearing seat to support and fix, resulting in a larger outer diameter and a longer length of the air bearing It will obviously increase the axial and radial dimensions of the high-speed motor, which eventually leads to an increase in the volume of the high-speed motor, which is not conducive to the improvement of the power density of the motor. At the same time, the large space required for its installation and use limits the application and development of the high-speed motor.
  • the purpose of the present invention is to provide a motor and its assembly method.
  • the space in the winding package is fully utilized, effectively reducing
  • the axial size of the motor is reduced, which solves that in the prior art, because the air bearing is installed outside the motor winding, and it requires a separate bearing seat to support and fix, the axial size of the high-speed motor is large and the volume is increased, which is not conducive to the motor power Technical issues of increased density.
  • the motor provided by the invention effectively reduces the size of the motor by effectively reducing the axial size of the motor, and improves the power density of the motor.
  • the first aspect of the present invention provides a motor, including: a motor stator, a motor rotor, a radial bearing, and a motor casing; the motor stator is sleeved on the motor rotor and is located on the motor In the motor casing, it includes: a motor stator iron core, a motor winding and a winding package; the motor stator iron core is sleeved on the motor rotor; the motor winding is wound on the motor stator iron core; The winding package is wrapped on the motor winding; the radial bearing is sleeved on the motor rotor, located between the winding package and the motor rotor, and along the diameter between the motor rotor To form a radial gap.
  • the motor is covered with a winding package on the motor winding, and the radial bearing is installed between the winding package and the rotor of the motor, which fully utilizes the space in the winding package, effectively reduces the axial size of the motor, and greatly reduces the motor
  • the volume increases the power density of the motor.
  • the radial bearing includes a first radial bearing and a second radial bearing; a motor rotor mounting hole is formed inside the winding package for being sleeved on the motor rotor; the motor rotor mounting hole is along A first radial bearing seat hole and a second radial bearing seat hole are formed at both ends in the axial direction; the first radial bearing and the second radial bearing are respectively located in the first radial bearing seat hole And inside the second radial bearing seat hole.
  • the axial size of the motor is further reduced, which is conducive to the improvement of the power density of the motor.
  • the radial gap includes a first radial gap formed between the first radial bearing and the motor rotor and a second radial gap formed between the second radial bearing and the motor rotor Clearance; a first radial bearing air cavity groove is formed on the outer wall of the first radial bearing, and the first radial bearing air cavity groove and the hole wall of the first radial bearing housing hole form a first Radial bearing air cavity; the first radial bearing air cavity communicates with the first radial gap and communicates with the external air source; a second radial bearing is formed on the outer wall of the second radial bearing A bearing air cavity groove, the second radial bearing air cavity groove and the hole wall of the second radial bearing seat hole form a second radial bearing air cavity; the second radial bearing air cavity and the The second radial gap communicates with the external air source.
  • an end of the motor stator corresponding to the first radial bearing is provided with a first radial bearing air cavity intake passage, and the first radial bearing air cavity passes through the first radial bearing air cavity
  • the air intake channel communicates with the external air source
  • the end of the motor stator corresponding to the second radial bearing is provided with a second radial bearing air cavity air intake channel, and the first radial bearing air cavity passes through
  • the second radial bearing air cavity intake passage communicates with the external air source.
  • the motor casing includes a motor casing body and a motor end cover, the motor casing body cover is provided outside the motor stator and the second radial bearing, which is away from the second radial bearing An opening is formed at one end, the motor end cover is sleeved outside the first radial bearing, and the cover is buckled on the opening;
  • the first radial bearing air cavity intake channel penetrates the winding package and the motor casing body in a radial direction, and connects the first radial bearing air cavity with the external air source; or the first A radial bearing air cavity intake channel penetrates the winding package, the motor winding and the motor casing body in a radial direction, and connects the first radial bearing air cavity with the external air source; and / or
  • the air inlet channel of the second radial bearing air cavity penetrates the winding package and the motor casing body in a radial direction, and connects the second radial bearing air cavity with the external air source; or the first
  • the two radial bearing air cavity inlet channels penetrate the winding package, the motor winding and the motor casing body in a radial direction, and connect the second radial bearing air cavity and the external air source.
  • the motor further includes: the first protective sleeve is embedded in the winding package, and is sleeved on the first radial bearing, and a middle portion is formed as the first radial bearing seat hole;
  • the second protective sleeve is embedded in the winding package, and is sleeved on the second radial bearing, and a middle portion is formed as the second radial bearing seat hole.
  • first protective sleeve is integrally formed with the motor end cover; the second protective sleeve is integrally formed with the motor casing body.
  • the first radial bearing air cavity intake channel radially penetrates the first protective sleeve, the winding package, and the motor casing body, and connects the first radial bearing air cavity and the The external air source is connected; or the first radial bearing air cavity intake channel penetrates the first protective sleeve, the winding package, the motor winding, and the motor casing body in a radial direction, and the first Two radial bearing air cavities are in communication with the external air source; and / or the second radial bearing air cavity air inlet channel radially penetrates the second protective sleeve, the winding package, and the motor casing
  • the body communicates the second radial bearing air cavity with the external air source; or the second radial bearing air cavity air inlet channel penetrates the second protective sleeve, the winding package, The motor winding and the motor casing body communicate the second radial bearing air cavity with the external air source.
  • the air inlet channel of the second radial bearing air cavity is arranged close to the stator core of the motor in the axial direction.
  • the portion of the first radial bearing air cavity intake channel located in the winding package is a pre-buried air tube; and / or the second radial bearing air cavity intake channel located in the winding package
  • the part is a pre-buried air pipe; and / or the motor stator is preset with at least one vent hole, the vent hole will be located on the side of the radial bearing close to the motor stator iron core
  • the gap between the rotors of the motor is in communication with the outside world.
  • the motor further includes: a first limiter and a second limiter sleeved on the rotor of the motor; the first limiter is embedded in the end cover of the motor, and the second limiter The component is embedded in the motor housing body on the side of the second radial bearing away from the first radial bearing.
  • the motor further includes: a third stopper disposed at one end of the first radial bearing and / or the second radial bearing close to the stator core of the motor.
  • a dynamic pressure generating groove is provided on the inner wall of the first radial bearing; and / or a dynamic pressure generating groove is provided on the inner wall of the second radial bearing; or A dynamic pressure generating groove is provided at a position corresponding to the first radial bearing; and / or a dynamic pressure generating groove is provided at a position corresponding to the second radial bearing on the outer wall of the motor rotor.
  • a motor assembly method including:
  • the first radial bearing and the second radial bearing are sleeved on the motor rotor, respectively, and installed in the first radial bearing seat hole and the second radial bearing seat hole.
  • a motor assembly method including:
  • the first radial bearing and the second radial bearing are sleeved on the motor rotor, respectively, and installed in the first radial bearing seat hole and the second radial bearing seat hole.
  • the method further includes:
  • the method for assembling the motor further includes: a first limiter is sleeved on the rotor of the motor and embedded in the end cover of the motor, for limiting the axial movement of the first radial bearing ;
  • the second limiting member is sleeved on the rotor of the motor and embedded in the body of the motor casing for limiting the axial movement of the second radial bearing.
  • the motor provided by the present invention by covering the motor winding with a winding package, and installing a radial bearing between the winding package and the motor rotor, the space in the winding package is fully utilized, and the axial direction of the motor is effectively reduced
  • the size solves the technical problem in the prior art that because the air bearing is installed outside the motor winding, and it requires a separate bearing seat to support and fix, the axial size of the high-speed motor is large and the volume is increased, which is not conducive to improving the power density of the motor .
  • the motor provided by the invention effectively reduces the size of the motor by effectively reducing the axial size of the motor, and improves the power density of the motor.
  • the motor provided by the present invention is provided with at least one vent hole in the motor stator.
  • the vent hole communicates the gap between the motor stator and the motor rotor on the side of the radial bearing close to the motor stator core with the outside world. In this way, when the motor rotor runs and heats, the expansion gas in the gap between the motor stator and the motor rotor can be discharged to the outside world, and the air can be exchanged with the outside world to prevent suffocation inside the motor stator and affect the service life of the motor.
  • the motor assembly method provided by the present invention is simple to assemble.
  • the axial dimension of the motor obtained by the assembly method is greatly reduced, so that the volume of the motor is greatly reduced, thereby increasing the power density of the motor.
  • Embodiment 1 is a schematic cross-sectional view of a motor provided by Embodiment 1 of the present invention.
  • Embodiment 2 is a schematic cross-sectional view of a motor provided by Embodiment 2 of the present invention.
  • FIG. 3 is an exploded perspective view of the motor in FIG. 2;
  • Example 4 is a flowchart of a motor assembly method provided by an implementation manner of Example 3 of the present invention.
  • Example 5 is a flowchart of a motor assembly method provided by another implementation manner of Example 3 of the present invention.
  • FIG. 6 is a flowchart of a motor assembly method provided in Embodiment 4 of the present invention.
  • Motor stator 11, motor stator core, 12, motor winding, 13, winding package, 2, motor rotor, 3, first radial bearing, 4, second radial bearing, 5, motor housing, 51 ⁇ Motor housing body, 511, first air inlet, 512, second air inlet, 52, motor end cover, 6, first limit piece, 7, second limit piece, 8, first protective sleeve , 9, second protective sleeve, 10, seals, P1, first radial bearing air cavity intake channel, P2, second radial bearing air cavity intake channel, T1, first radial bearing air cavity, T2 3. The second radial bearing air cavity.
  • both the axial and radial directions are based on the motor rotor axial and radial directions.
  • FIG. 1 is a schematic cross-sectional view of a motor provided by Embodiment 1 of the present invention.
  • a motor including: a motor stator 1, a motor rotor 2, a radial bearing, and a motor housing 5.
  • the motor stator 1 is sleeved on the motor rotor 2 and is located in the motor casing 5, which includes: a motor stator iron core 11, a motor winding 12 and a winding package 13.
  • the motor stator core 11 is sleeved on the motor rotor 2; the motor winding 12 is wound on the motor stator core 11; the winding package 13 is wrapped on the motor winding 12;
  • the radial bearing is sleeved on the motor rotor 2 and is located between the winding package 13 and the motor rotor 2 and forms a radial gap with the motor rotor 2 in the radial direction.
  • a radial air bearing is formed by setting a radial bearing on the motor rotor 2 between the winding package 13 and the motor rotor 2 and forming a radial gap with the electronic rotor 2 in the radial direction.
  • the radial bearing may be any one of a dynamic pressure air bearing, a static pressure air bearing or a dynamic and static pressure mixed air bearing.
  • an air bearing When it is a dynamic pressure air bearing, an air bearing is installed on the inner wall of the air bearing or the motor rotor 2 A dynamic pressure generating groove is provided at the location; when it is a static pressure air bearing, a radial bearing air cavity groove is formed on the outer wall of the radial bearing to form a radial bearing air cavity, the radial bearing air cavity and the external air source Connected, and communicated with the radial gap; when it is a dynamic and static pressure mixed air bearing, the air bearing has the above two structural features.
  • the winding package 13 is a non-metallic material.
  • non-metallic materials include but are not limited to BMC, resin, and rubber.
  • the motor provided in this embodiment by wrapping the winding package 13 on the motor winding 12, and installing the radial bearing between the winding package 13 and the motor rotor 2, the space in the winding package 13 is fully utilized, and the winding package 13 At the same time, it serves as a mounting seat for radial bearings, effectively reducing the axial size of the motor, solving the problem in the prior art that the air bearing is installed outside the motor winding 12 and it requires a separate bearing seat to support and fix it, resulting in a high-speed motor
  • the large axial size and increased volume are not conducive to the technical problem of improving the power density of the motor.
  • the motor provided by the invention effectively reduces the size of the motor by effectively reducing the axial size of the motor, and improves the power density of the motor.
  • the radial bearing includes a first radial bearing 3 and a second radial bearing 4.
  • a motor rotor mounting hole is formed for being sleeved on the motor rotor 2; the motor rotor mounting hole is formed with a first radial bearing seat hole and a second radial bearing seat hole at both ends in the axial direction; The first radial bearing 3 and the second radial bearing 4 are located in the first radial bearing seat hole and the second radial bearing seat hole, respectively.
  • the two radial bearing seat holes greatly reduce the axial size of the motor, which is conducive to the improvement of the power density of the motor.
  • the position of the motor rotor mounting hole corresponds to the position of the motor stator core 11
  • the positions of the first radial bearing seat hole and the second radial bearing seat hole are respectively the first radial bearing 3 and the second radial bearing
  • the position of 4 corresponds.
  • the radial gap includes a first radial gap formed between the first radial bearing 3 and the motor rotor 2 and a second radial gap formed between the second radial bearing 4 and the motor rotor 2.
  • first radial bearing 3 and the second radial bearing 4 are static pressure air bearings or mixed static and dynamic pressure air bearings:
  • a first radial bearing air cavity groove is formed on the outer wall of the first radial bearing 3, and the first radial bearing air cavity groove and the hole wall of the first radial bearing housing hole form a first radial bearing air cavity T1;
  • the first radial bearing air cavity T1 communicates with the first radial gap and communicates with the external air source.
  • the groove bottom of the first radial bearing air cavity groove is provided with a through air hole along the radial direction, so that the first radial bearing air cavity T1 communicates with the first radial gap.
  • the first radial bearing air cavity T1 is provided with seals 10 on both sides in the axial direction, which is used to seal the gas in the first radial bearing air cavity T1, and can be used during the operation of the motor rotor 2 Play a damping role.
  • the first radial bearing air cavity grooves are respectively provided with sealing grooves on both sides in the axial direction, and the sealing grooves are used to receive the sealing member 10.
  • the sealing groove is provided on the outer wall of the first radial bearing, and is located on both sides of the air cavity groove of the first radial bearing.
  • a second radial bearing air cavity groove is formed on the outer wall of the second radial bearing 4, and the second radial bearing air cavity groove and the hole wall of the second radial bearing seat hole form a second radial bearing air cavity T2;
  • the second radial bearing air cavity T2 communicates with the second radial gap and communicates with the external air source.
  • the groove bottom of the second radial bearing air cavity groove is provided with a through air hole in the radial direction, so that the second radial bearing air cavity T2 communicates with the second radial gap.
  • the second radial bearing air cavity T2 is provided with seals 10 on both sides in the axial direction, for sealing the gas in the second radial bearing air cavity T2, and at the same time, it can be used during the operation of the motor rotor 2 Play a damping role.
  • the second radial bearing air cavity grooves are respectively provided with sealing grooves on both sides in the axial direction, and the sealing grooves are used to receive the sealing member 10.
  • the sealing groove is provided on the outer wall of the second radial bearing and is located on both sides of the air cavity groove of the second radial bearing.
  • the seal 10 is ring-shaped, and the shape of the sealing groove matches the shape of the seal 10.
  • the present invention is not limited to this, and the specific shapes and sizes of the sealing member 10 and the sealing groove can be appropriately adjusted according to actual needs.
  • the end of the motor stator 1 corresponding to the first radial bearing 3 is provided with a first radial bearing air cavity intake passage P1, and the first radial bearing air cavity T1 is fed through the first radial bearing air cavity
  • the channel P1 communicates with the external air source.
  • the end of the motor stator 1 corresponding to the second radial bearing 4 is provided with a second radial bearing air cavity intake passage P2, and the second radial bearing air cavity T2 is fed through the second radial bearing air cavity
  • the channel P2 communicates with the external air source.
  • a portion of the first radial bearing air cavity intake passage P1 located in the winding package 13 is a pre-buried air pipe.
  • the portion of the first radial bearing air cavity intake passage P1 located in the winding package 13 may be an air pipe pre-buried before injection molding or potting, or an air hole processed after injection molding or potting, which is not done here limit.
  • a portion of the second radial bearing air cavity intake passage P2 located in the winding package 13 is a pre-buried air pipe.
  • the portion of the second radial bearing air cavity intake passage P2 located in the winding package 13 may be an air pipe pre-buried before injection molding or potting, or an air hole processed after injection molding or potting, which is not done here limit.
  • At least one vent hole is preset on the motor stator 1, and the vent hole communicates the gap between the motor stator 1 and the motor rotor 2 on the side of the radial bearing close to the motor stator iron core 11 with the outside world.
  • the expansion gas in the gap between the motor stator 1 and the motor rotor 2 can be discharged to the outside world, and the air can be exchanged with the outside world.
  • the motor casing 5 includes: a motor casing body 51 and a motor end cover 52.
  • the motor casing body 51 is covered with the outer part of the motor stator 1 and the second radial bearing 4, and the end away from the second radial bearing 4 forms an opening; the motor end cover 52 is sleeved outside the first radial bearing 3 , And the cover is buckled on the opening of the motor casing body 51.
  • the motor housing body 51 is provided with a first intake hole 511 and a second intake hole 512 at positions corresponding to the first radial bearing air cavity intake channel P1 and the second radial bearing air cavity intake channel P2, respectively .
  • the first radial bearing air cavity intake channel P1 communicates with the external air source through the first air inlet hole 511; the second radial bearing air cavity intake channel P2 communicates with the external air source through the second air inlet hole 512.
  • the first radial bearing seat hole and the second radial bearing seat hole in the winding package 13 are formed by directly processing the winding package 13, and the motor end cover 52 corresponds to the first radial bearing seat hole Is provided with a hole matching the diameter of the first radial bearing seat hole, and a position corresponding to the second radial bearing seat hole on the motor housing body 51 is provided with a hole matching the diameter of the second radial bearing seat hole
  • the hole, the winding package 13 and the motor end cover 52 serve as the bearing seat of the first radial bearing 3
  • the winding package 13 and the motor housing body 51 serve as the bearing seat of the second radial bearing 4
  • the first radial bearing 3 and the first When the second radial bearing 4 is a static pressure air bearing, the winding package 13, the motor end cover 52 and the motor housing body 51 form a stator of the static pressure air bearing.
  • the first radial bearing air cavity intake channel P1 and the second radial bearing air cavity intake channel P2 have the following specific settings:
  • the first radial bearing air cavity intake passage P1 radially penetrates the winding package 13 and the motor casing body 51 to connect the first radial bearing air cavity T1 with the external air source.
  • the first radial bearing air cavity intake passage P1 is only provided in the winding package 13 and does not intersect the motor winding 12, and may be an air hole or an air pipe pre-buried in the winding package 13.
  • the first radial bearing air cavity intake channel P1 radially penetrates the winding package 13, the motor winding 12, and the motor casing body 51, and communicates the second radial bearing air cavity T2 with an external air source.
  • the first radial bearing air cavity intake passage P1 is provided in the winding package 13 and the motor winding 12, and may be an air pipe pre-buried in the motor winding 12 and the winding package 13.
  • the air inlet passage P2 of the second radial bearing air cavity is arranged close to the stator core 11 of the motor in the axial direction, so that the end of the second radial gap farthest from the first radial gap generates the largest supporting force.
  • the span of the first radial bearing can be adjusted by adjusting the position of the intake passage P2 of the second radial bearing air cavity or the intake passage P1 of the first radial bearing air cavity, if there is a heavy In the cantilever structure, by moving the second radial bearing air cavity intake channel P2 or the first radial bearing air cavity intake channel P1 toward the middle, the radial bearing span can be increased and the length of the cantilever end can be reduced.
  • the motor further includes: a first limiter 6 and a second limiter 7 sleeved on the rotor of the motor.
  • the first limiting member 6 is embedded in the motor end cover 52, and the second limiting member 7 is embedded in the motor casing body 51 of the second radial bearing 4 on the side away from the first radial bearing 3.
  • the first stopper 6 is located on the side of the first radial bearing 3 away from the second radial bearing 4; the second stopper 7 is located on the side of the second radial bearing 4 away from the first radial bearing 3 .
  • the first limiting member 6 includes but is not limited to a snap spring.
  • the second limiting member 7 includes but is not limited to a circlip.
  • the motor casing body 51 is provided with a first clamping slot matching the shape of the first limiting member 6.
  • the motor end cover 52 is provided with a second clamping slot matching the shape of the second limiting member 7.
  • the first radial bearing 3 and the second radial bearing 4 Axial positioning is performed to prevent the first radial bearing 3 and the second radial bearing 4 from falling off from the motor rotor 2.
  • first radial bearing 3 and the second radial bearing 4 are dynamic pressure air bearings or dynamic and static pressure mixed air bearings:
  • the inner wall of the first radial bearing 3 is provided with a dynamic pressure generating groove; and / or the inner wall of the second radial bearing 4 is provided with a dynamic pressure generating groove.
  • the outer wall of the motor rotor 2 is provided with a dynamic pressure generating groove at a position corresponding to the first radial bearing 3; and / or the outer wall of the motor rotor 2 is provided at a position corresponding to the second radial bearing 4
  • the dynamic pressure generating groove forms a dynamic pressure air bearing.
  • the size of the pressure generated by the dynamic pressure generating groove varies with the angle, width, length, depth, number of grooves, and flatness of the dynamic pressure generating groove.
  • the magnitude of the pressure generated by the dynamic pressure generating groove is also related to the rotation speed of the motor rotor 2 and the radial clearance.
  • the parameters of the dynamic pressure generating groove can be designed according to the actual working conditions.
  • the dynamic pressure generating groove can be formed by forging, rolling, etching, or stamping.
  • the dynamic pressure generating groove is a herringbone groove.
  • the gas in the first radial gap and the second radial gap can be better guided into and out of.
  • the installation position and form of the dynamic pressure generating groove of the present invention include but are not limited to the above manners, and the specific installation position and form of the dynamic pressure generating groove may be appropriately adjusted according to actual needs.
  • the motor provided in this embodiment by wrapping the winding package 13 on the motor winding 12 and installing the radial bearing between the winding package 13 and the motor rotor, the space in the winding package 13 is fully utilized, and the winding package 13 is simultaneously Serves as a mounting seat for radial bearings, effectively reducing the axial size of the motor, solving the problem in the prior art that the air bearing is installed outside the motor winding 12, and it requires a separate bearing seat to support and fix, resulting in high-speed motor
  • the large axial direction and increased volume are not conducive to the technical problems of increasing the power density of the motor.
  • the motor provided by the invention effectively reduces the size of the motor by effectively reducing the axial size of the motor, and improves the power density of the motor.
  • This embodiment is a further improvement based on Embodiment 1.
  • the difference between this embodiment and Embodiment 1 is that the first radial bearing seat hole and the second radial bearing seat hole in this embodiment are The structure in the first embodiment is different.
  • Embodiment 2 is a schematic cross-sectional view of a motor provided by Embodiment 2 of the present invention.
  • FIG. 3 is an exploded perspective view of the motor in FIG. 2.
  • the motor further includes: a first Protective sleeve 8 and second protective sleeve 9.
  • the first protective sleeve 8 is embedded in the winding package 13, and is sleeved on the first radial bearing 3, the middle of which is formed as a first radial bearing seat hole; the second protective sleeve 9 is embedded in the winding package 13, And the sleeve is sleeved on the second radial bearing 4, and the middle part is formed as a second radial bearing seat hole.
  • the first protective sleeve 8 serves as a part of the bearing housing of the first radial bearing 3
  • the second protective sleeve 9 serves as a part of the bearing housing of the second radial bearing 4.
  • the first protective sleeve 8 is integrally formed with the motor end cover 52; the second protective sleeve 9 is integrally formed with the motor casing body 51.
  • the present invention is not limited to this.
  • the first protective sleeve 8 and the second protective sleeve 9 may also be provided in other ways to form the first radial bearing seat hole and the second radial bearing seat hole.
  • the material of the first protective sleeve 8 is the same as that of the motor end cover 52, and the material of the second protective sleeve 9 is the same as that of the motor casing body 51.
  • the first protective cover 8 and the second protective cover 9 are metal materials.
  • the first protective sleeve 8 and the second protective sleeve 9 in the winding package 13 are improved The strength of the seat hole.
  • the first radial bearing seat hole and the second radial bearing seat hole in the winding package 13 are formed by embedding the first protective sleeve 8 and the second protective sleeve 9 in the winding package 13, so that the first protection The sleeve 8 and the second protective sleeve 9 serve as bearing seats for the first radial bearing 3 and the second radial bearing 4, respectively.
  • the first radial bearing 3 and the second radial bearing 4 are static pressure air bearings
  • the first The protective sleeve 8 and the second protective sleeve 9 respectively form a stator of a static pressure air bearing.
  • the first radial bearing air cavity intake channel P1 and the second radial bearing air cavity intake channel P2 specifically have the following ways of setting:
  • the first radial bearing air cavity intake channel P1 radially penetrates the first protective sleeve 8, the winding package 13 and the motor casing body 51, and connects the first radial bearing air cavity T1 with an external air source.
  • the first radial bearing air cavity intake passage P1 radially penetrates the first protective sleeve 8, the winding package 13, the motor winding 12, and the motor casing body 51, and connects the second radial bearing air cavity T2 to the outside The gas source is connected.
  • the air inlet channel P2 of the second radial bearing air cavity penetrates the second protective sleeve 9, the winding package 13 and the motor casing body 51 in the radial direction, and connects the second radial bearing air cavity T2 with the external air source.
  • the second radial bearing air cavity intake passage P2 radially penetrates the second protective sleeve 9, the winding package 13, the motor winding 12, and the motor casing body 51, and connects the second radial bearing air cavity T2 with the outside The gas source is connected.
  • the motor further includes: a third limiter 14 disposed at one end of the first radial bearing 3 and / or the second radial bearing 4 close to the stator core 11 of the motor.
  • the third limiter 14 of the first radial bearing 3 near the end of the motor stator core 11 can be integrally formed with the motor end cover 52; the second radial bearing 4 is near the third limit of the motor stator core 11 end
  • the bit 14 can be integrally formed with the motor casing body 51.
  • Example 4 is a method flowchart of a motor assembly method provided by an implementation manner of Example 3 of the present invention.
  • a motor assembly method is provided, which is applicable to the motor assembly in Embodiment 1, including:
  • the first radial bearing 3 and the second radial bearing 4 are sleeved on the motor rotor 2 and installed in the first radial bearing seat hole and the second radial bearing seat hole.
  • S5 the first radial bearing 3 and the second radial bearing 4 are sleeved on the motor rotor 2 and installed in the first radial bearing seat hole and the second radial bearing seat hole;
  • the steps of assembling the motor rotor 2 and the first radial bearing 3 and the second radial bearing 4 are not divided before and after, as long as it is convenient for installation.
  • the winding package 13 obtained by injection molding or potting the motor winding 12 in step S3 may be a structure having a mounting hole of the motor rotor. By finishing the two ends of the mounting hole of the motor rotor in step S4, the first diameter Toward the bearing housing hole and the second radial bearing housing hole.
  • Example 5 is a method flowchart of a motor assembly method provided by another implementation manner of Example 3 of the present invention.
  • the motor assembly method further includes:
  • the first limiting member 6 is sleeved on the motor rotor 2 and embedded in the motor end cover 52, for limiting the axial movement of the first radial bearing 3;
  • the second limiting member 7 is sleeved on the motor rotor 2 and embedded in the motor casing body 51 to limit the axial movement of the second radial bearing 4.
  • the generator assembly method further includes:
  • the motor assembly method provided in Embodiment 3 of the present invention is applicable to the motor assembly in Embodiment 1.
  • FIG. 6 is a method flowchart of a motor assembly method provided in Embodiment 4 of the present invention.
  • Embodiment 4 of the present invention differs from Embodiment 3 in that the motor assembly method provided in Embodiment 4 of the present invention is applicable to the assembly of the motor in Embodiment 2.
  • the motor assembly method includes:
  • the motor stator core 11 is installed into the motor casing body 51 integrally formed with the second protective sleeve 9, and a second radial bearing seat hole is formed in the second protective sleeve 9;
  • the first radial bearing 3 and the second radial bearing 4 are sleeved on the motor rotor 2 and installed in the first radial bearing seat hole and the second radial bearing seat hole.
  • step S5 and step S6 are also indistinguishable, as long as it is convenient for installation.
  • the motor of the present invention when applied to a specific rotor system or equipment, it can be used in conjunction with a thrust bearing, which is used to withstand the axial force received by the machine.
  • the invention aims to protect a motor and its assembly method, and has the following beneficial technical effects:
  • the motor provided by the present invention wraps the motor winding on the winding package, and installs the radial bearing in the winding package, and uses the winding package as the stator of the air bearing, which effectively reduces the axial size of the motor and solves the current problem.
  • the air bearing is installed outside the motor winding, and it needs a separate bearing seat to support and fix it, the high-speed motor has a large axial size and an increased volume, which is not conducive to the technical problem of improving the power density of the motor.
  • the motor provided by the invention effectively reduces the size of the motor by effectively reducing the axial size of the motor, and improves the power density of the motor.
  • the motor assembly method provided by the present invention is simple to assemble.
  • the axial dimension of the motor obtained by the assembly method is greatly reduced, so that the volume of the motor is greatly reduced, thereby increasing the power density of the motor.
  • the motor in the present invention can be either a generator, an electric motor, or a heuristic integrated motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

一种电机,包括:电机定子(1)、电机转子(2)、径向轴承和电机机壳(5);电机定子(1)套设在电机转子(2)上,并位于电机机壳(5)内,其包括电机定子铁芯(11)、电机绕组(12)和绕组封装(13);电机定子铁芯(11)套设在电机转子(2)上;电机绕组(12)绕制在电机定子铁芯(11)上;绕组封装(13)包覆在电机绕组(12)上;径向轴承套设在电机转子(2)上,位于绕组封装(13)与电机转子(2)之间,且与电机转子(2)之间沿径向形成径向间隙。该电机通过在电机绕组(12)上包覆绕组封装(13),将径向轴承安装在绕组封装(13)与电机转子(2)之间,充分利用了绕组封装(13)内的空间,有效减小了电机的轴向尺寸,大大缩小了电机的体积,提高了电机的功率密度。

Description

一种电机及其装配方法 技术领域
本发明涉及电机制造技术领域,尤其涉及一种电机及其装配方法。
背景技术
高速电机的转速高,体积远小于普通功率的电机,可以直接用于高速场合。由于取消了传统的变速机构,同时具有较小的转动惯量,所以高速电机具有电机功率密度高,传动效率高,振动噪音小,动态响应快等优点;且其体积小,可以有效的节约材料。
由于高速电机的转速较高,因此对轴承的要求也较高,目前高速电机多使用空气轴承,空气轴承可提供极高的旋转精度。因为空气轴承没有机械接触,磨损程度降到了最低,从而确保精度始终保持稳定。
但根据现有空气轴承的结构特点,空气轴承的静子作为一个单独的零件,位于电机绕组的外侧,且其需要单独的轴承座支撑和固定,从而导致空气轴承的外径较大,长度较长,会明显增大高速电机的轴向和径向尺寸,最终导致高速电机的体积增加,不利于电机功率密度的提高,同时其安装使用所需要的空间大,限制了高速电机的应用和发展。
发明内容
(一)发明目的
本发明的目的是提供一种电机及其装配方法,通过在电机绕组上包覆绕组封装,并将径向轴承安装在绕组封装与电机转子之间,充分利用了绕组封装内的空间,有效减小了电机的轴向尺寸,解决了现有技术中由于空气轴承安装在电机绕组外侧,且其需要单独的轴承座支撑和固定,导致高速电机的 轴向尺寸大、体积增加,不利于电机功率密度的提高的技术问题。本发明提供的电机,通过有效减小电机的轴向尺寸,大大缩小了电机的体积,提高了电机的功率密度。
(二)技术方案
为解决上述问题,本发明的第一个方面提供了一种电机,包括:电机定子、电机转子、径向轴承和电机机壳;所述电机定子套设在所述电机转子上,并位于所述电机机壳内,其包括:电机定子铁芯、电机绕组和绕组封装;所述电机定子铁芯套设在所述电机转子上;所述电机绕组绕制在所述电机定子铁芯上;所述绕组封装包覆在所述电机绕组上;所述径向轴承套设在所述电机转子上,位于所述绕组封装与所述电机转子之间,且与所述电机转子之间沿径向形成径向间隙。该电机通过在电机绕组上包覆绕组封装,并将径向轴承安装在绕组封装与电机转子之间,充分利用了绕组封装内的空间,有效减小了电机的轴向尺寸,大大缩小了电机的体积,提高了电机的功率密度。
进一步,所述径向轴承包括第一径向轴承和第二径向轴承;所述绕组封装内部形成有电机转子安装孔,用于套设在所述电机转子上;所述电机转子安装孔沿轴向的两端分别形成有第一径向轴承座孔和第二径向轴承座孔;所述第一径向轴承和所述第二径向轴承分别位于所述第一径向轴承座孔和所述第二径向轴承座孔内。通过在绕组封装内形成第一径向轴承座孔和第二径向轴承座孔,并将第一径向轴承和第二径向轴承分别安装在第一径向轴承座孔和第二径向轴承座孔内,进一步减小了电机的轴向尺寸,有利于电机功率密度的提高。
进一步,所述径向间隙包括所述第一径向轴承与所述电机转子之间形成的第一径向间隙和所述第二径向轴承与所述电机转子之间形成的第二径向间隙;所述第一径向轴承的外壁上形成有第一径向轴承气腔槽,所述第一径向轴承气腔槽与所述第一径向轴承座孔的孔壁围成第一径向轴承气腔;所述第一径向轴承气腔与所述第一径向间隙连通,且与所述外部气源连通;所述第二径向轴承的外壁上形成有第二径向轴承气腔槽,所述第二径向轴承气腔 槽与所述第二径向轴承座孔的孔壁围成第二径向轴承气腔;所述第二径向轴承气腔与所述第二径向间隙连通,且与所述外部气源连通。
进一步,所述电机定子的对应安装所述第一径向轴承的一端设置有第一径向轴承气腔进气通道,所述第一径向轴承气腔通过所述第一径向轴承气腔进气通道与所述外部气源连通;所述电机定子的对应安装所述第二径向轴承的一端设置有第二径向轴承气腔进气通道,所述第一径向轴承气腔通过所述第二径向轴承气腔进气通道与所述外部气源连通。
进一步,所述电机机壳包括电机机壳本体和电机端盖,所述电机机壳本体罩设在所述电机定子和所述第二径向轴承的外部,其远离所述第二径向轴承的一端形成开口,所述电机端盖套设在所述第一径向轴承的外部,且盖扣在所述开口上;
所述第一径向轴承气腔进气通道沿径向贯穿所述绕组封装和所述电机机壳本体,将所述第一径向轴承气腔与所述外部气源连通;或者所述第一径向轴承气腔进气通道沿径向贯穿所述绕组封装、所述电机绕组和所述电机机壳本体,将所述第一径向轴承气腔与所述外部气源连通;和/或
所述第二径向轴承气腔进气通道沿径向贯穿所述绕组封装和所述电机机壳本体,将所述第二径向轴承气腔与所述外部气源连通;或者所述第二径向轴承气腔进气通道沿径向贯穿所述绕组封装、所述电机绕组和所述电机机壳本体,将所述第二径向轴承气腔和所述外部气源连通。
进一步,所述电机还包括:所述第一保护套嵌设在所述绕组封装内,且套设在所述第一径向轴承上,其中部形成为所述第一径向轴承座孔;所述第二保护套嵌设在所述绕组封装内,且套设在所述第二径向轴承上,其中部形成为所述第二径向轴承座孔。通过设置第一保护套和第二保护套,增加了第一径向轴承座孔和第二径向轴承座孔的强度。
进一步,所述第一保护套与所述电机端盖一体成型;所述第二保护套与所述电机机壳本体一体成型。
进一步,所述第一径向轴承气腔进气通道沿径向贯穿所述第一保护套、 所述绕组封装和所述电机机壳本体,将所述第一径向轴承气腔与所述外部气源连通;或者所述第一径向轴承气腔进气通道沿径向贯穿所述第一保护套、所述绕组封装、所述电机绕组和所述电机机壳本体,将所述第二径向轴承气腔与所述外部气源连通;和/或所述第二径向轴承气腔进气通道沿径向贯穿所述第二保护套、所述绕组封装和所述电机机壳本体,将所述第二径向轴承气腔与所述外部气源连通;或者所述第二径向轴承气腔进气通道沿径向贯穿所述第二保护套、所述绕组封装、所述电机绕组和电机机壳本体,将所述第二径向轴承气腔与所述外部气源连通。
进一步,所述第二径向轴承气腔进气通道在轴向上靠近所述电机定子铁芯设置。
进一步,所述第一径向轴承气腔进气通道位于所述绕组封装内的部分为预埋的气管;和/或所述第二径向轴承气腔进气通道位于所述绕组封装内的部分为预埋的气管;和/或所述电机定子上预设有至少一个通气孔,所述通气孔将位于所述径向轴承靠近所述电机定子铁芯一侧的所述电机定子与所述电机转子之间的间隙与外界连通。
进一步,所述电机还包括:套设在电机转子上的第一限位件和第二限位件;所述第一限位件嵌设在所述电机端盖内,所述第二限位件嵌设在所述第二径向轴承的远离所述第一径向轴承的一侧的所述电机机壳本体内。
进一步,所述电机还包括:设置于所述第一径向轴承和/或所述第二径向轴承靠近所述电机定子铁芯一端的第三限位件。
进一步,所述第一径向轴承的内壁上设置有动压发生槽;和/或所述第二径向轴承的内壁上设置有动压发生槽;或者所述电机转子的外壁上与所述第一径向轴承相对应的位置设置有动压发生槽;和/或所述电机转子的外壁上与所述第二径向轴承相对应的位置设置有动压发生槽。
根据本发明的另一个方面,提供一种电机装配方法,包括:
将电机绕组绕制在电机定子铁芯上;
将所述电机定子铁芯安装到电机机壳本体内;
对所述电机绕组进行注塑或灌封,形成绕组封装,所述绕组封装内形成有电机转子安装孔;
在所述电机转子安装孔沿轴向的两端分别加工第一径向轴承座孔和第二径向轴承座孔;
将电机转子插入所述电机转子安装孔内;
将第一径向轴承和第二径向轴承分别套设到所述电机转子上,并安装到所述第一径向轴承座孔和所述第二径向轴承座孔内。
根据本发明的另一个方面,提供一种电机装配方法,包括:
将电机绕组绕制在电机定子铁芯上;
将所述电机定子铁芯安装到与第二保护套一体成型的电机机壳本体内,所述第二保护套内形成第二径向轴承座孔;
对所述电机绕组进行注塑或灌封,形成绕组封装,所述绕组封装内形成有电机转子安装孔;
将与第一保护套一体成型的电机端盖盖扣到所述电机机壳本体的开口上,所述第一保护套内形成第一径向轴承座孔;
将电机转子插入所述电机转子安装孔内;
将第一径向轴承和第二径向轴承分别套设到所述电机转子上,并安装到第一径向轴承座孔和所述第二径向轴承座孔内。
进一步,在对所述电机绕组进行注塑或灌封前,还包括:
将形成第一径向轴承气腔进气通道的气管插入所述电机机壳本体内;或者将形成所述第一径向轴承气腔进气通道的气管插入所述电机机壳本体并贯穿所述电机绕组;
将形成第二径向轴承气腔进气通道的气管插入所述电机机壳本体内;或者将形成所述第二径向轴承气腔进气通道的气管插入所述电机机壳本体并贯穿所述电机绕组。
进一步,所述电机装配方法,还包括:将第一限位件套设在所述电机转子上并嵌设在所述电机端盖内,用于限制所述第一径向轴承的轴向运动;将 第二限位件套设在所述电机转子上并嵌设在所述电机机壳本体内,用于限制所述第二径向轴承的轴向运动。
(三)有益效果
本发明的上述技术方案具有如下有益的技术效果:
1、本发明提供的电机,通过在电机绕组上包覆绕组封装,并将径向轴承安装在绕组封装与电机转子之间,充分利用了绕组封装内的空间,有效减小了电机的轴向尺寸,解决了现有技术中由于空气轴承安装在电机绕组外侧,且其需要单独的轴承座支撑和固定,导致高速电机的轴向尺寸大、体积增加,不利于电机功率密度的提高的技术问题。本发明提供的电机,通过有效减小电机的轴向尺寸,大大缩小了电机的体积,提高了电机的功率密度。
2、本发明提供的电机,通过在电机定子上预设有至少一个通气孔,通气孔将位于径向轴承靠近电机定子铁芯一侧的电机定子与电机转子之间的间隙与外界连通。这样在电机转子运转发热时,可以将电机定子与电机转子之间的间隙的膨胀气体排到外界,并与外界进行换气,防止电机定子内部憋气,影响电机的使用寿命。
3、本发明提供的电机装配方法,装配简单,通过该装配方法得到的电机,其轴向尺寸大大减小,使得该电机的体积大大缩小,从而提高了电机的功率密度。
附图说明
图1是本发明实施例一提供的电机的剖面示意图;
图2是本发明实施例二提供的电机的剖面示意图;
图3是图2中的电机的分解立体图;
图4是本发明实施例三的一个实施方式提供的电机装配方法的流程图;
图5是本发明实施例三的另一个实施方式提供的电机装配方法的流程图;
图6是本发明实施例四提供的电机装配方法的流程图。
附图标记:
1、电机定子,11、电机定子铁芯,12、电机绕组,13、绕组封装,2、电机转子,3、第一径向轴承,4、第二径向轴承,5、电机机壳,51、电机机壳本体,511、第一进气孔,512、第二进气孔,52、电机端盖,6、第一限位件,7、第二限位件,8、第一保护套,9、第二保护套,10、密封件,P1、第一径向轴承气腔进气通道,P2、第二径向轴承气腔进气通道,T1、第一径向轴承气腔,T2、第二径向轴承气腔。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
在以下实施例中,轴向、径向均以电机转子的轴向、径向为标准。
实施例一
图1是本发明实施例一提供的电机的剖面示意图。
请参照图1,在本发明实施例一中,提供一种电机,包括:电机定子1、电机转子2、径向轴承和电机机壳5。
其中,电机定子1套设在电机转子2上,并位于电机机壳5内,其包括:电机定子铁芯11、电机绕组12和绕组封装13。
电机定子铁芯11套设在电机转子2上;电机绕组12绕制在电机定子铁芯11上;绕组封装13包覆在电机绕组12上;
径向轴承套设在电机转子2上,位于绕组封装13与电机转子2之间,且与电机转子2之间沿径向形成径向间隙。
通过将径向轴承套设在电机转子2上,位于绕组封装13与电机转子2之间,并与电子转子2之间沿径向形成径向间隙,从而形成径向空气轴承。该径向轴承可以是动压空气轴承、静压空气轴承或者动静压混合空气轴承中 的任意一种,当其为动压空气轴承时,在空气轴承的内壁或者电机转子2对应安装空气轴承的位置设置有动压发生槽;当其为静压空气轴承时,径向轴承的外壁上形成有径向轴承气腔槽,用于形成径向轴承气腔,径向轴承气腔与外部气源连通,且与径向间隙连通;当其为动静压混合空气轴承时,该空气轴承则具有上述的两种结构特征。
可选的,绕组封装13为非金属材料。
可选的,非金属材料包括但不限于团状模塑料(BMC)、树脂和橡胶。
本实施例提供的电机,通过在电机绕组12上包覆绕组封装13,并将径向轴承安装在绕组封装13与电机转子2之间,充分利用了绕组封装13内的空间,且绕组封装13同时充当了径向轴承的安装座,有效减小了电机的轴向尺寸,解决了现有技术中由于空气轴承安装在电机绕组12外侧,且其需要单独的轴承座支撑和固定,导致高速电机的轴向尺寸大、体积增加,不利于电机功率密度的提高的技术问题。本发明提供的电机,通过有效减小电机的轴向尺寸,大大缩小了电机的体积,提高了电机的功率密度。
在本实施例中,径向轴承包括第一径向轴承3和第二径向轴承4。
绕组封装13内部形成有电机转子安装孔,用于套设在电机转子2上;电机转子安装孔沿轴向的两端分别形成有第一径向轴承座孔和第二径向轴承座孔;第一径向轴承3和第二径向轴承4分别位于第一径向轴承座孔和第二径向轴承座孔内。通过在绕组封装13内形成第一径向轴承座孔和第二径向轴承座孔,并将第一径向轴承3和第二径向轴承4分别安装在第一径向轴承座孔和第二径向轴承座孔内,大大减小了电机的轴向尺寸,有利于电机功率密度的提高。
其中,电机转子安装孔的位置与电机定子铁芯11的位置相对应,第一径向轴承座孔和第二径向轴承座孔的位置分别与第一径向轴承3和第二径向轴承4的位置相对应。
在本实施例中,径向间隙包括第一径向轴承3与电机转子2之间形成的第一径向间隙和第二径向轴承4与电机转子2之间形成的第二径向间隙。
下面介绍第一径向轴承3和第二径向轴承4为静压空气轴承或者动静压混合空气轴承时的具体结构:
第一径向轴承3的外壁上形成有第一径向轴承气腔槽,第一径向轴承气腔槽与第一径向轴承座孔的孔壁围成第一径向轴承气腔T1;第一径向轴承气腔T1与第一径向间隙连通,且与外部气源连通。
可选的,第一径向轴承气腔槽的槽底沿径向设置有贯通的气孔,使得第一径向轴承气腔T1与第一径向间隙连通。
可选的,第一径向轴承气腔T1沿轴向的两侧分别设置有密封件10,用于对第一径向轴承气腔T1内的气体密封,同时能够在电机转子2工作过程中起到减振作用。
可选的,第一径向轴承气腔槽沿轴向的两侧分别设置有密封槽,该密封槽用于容纳密封件10。具体地,密封槽设置在第一径向轴承的外壁上,且位于第一径向轴承气腔槽的两侧。
第二径向轴承4的外壁上形成有第二径向轴承气腔槽,第二径向轴承气腔槽与第二径向轴承座孔的孔壁围成第二径向轴承气腔T2;第二径向轴承气腔T2与第二径向间隙连通,且与外部气源连通。
可选的,第二径向轴承气腔槽的槽底沿径向设置有贯通的气孔,使得第二径向轴承气腔T2与第二径向间隙连通。
可选的,第二径向轴承气腔T2沿轴向的两侧分别设置有密封件10,用于对第二径向轴承气腔T2内的气体密封,同时能够在电机转子2工作过程中起到减振作用。
可选的,第二径向轴承气腔槽沿轴向的两侧分别设置有密封槽,该密封槽用于容纳密封件10。具体地,密封槽设置在第二径向轴承的外壁上,且位于第二径向轴承气腔槽的两侧。
可选的,密封件10为环形,密封槽的形状与密封件10的形状相匹配。但本发明不以此为限制,密封件10和密封槽的具体形状和尺寸可根据实际需要适当调整。
可选的,电机定子1的对应安装第一径向轴承3的一端设置有第一径向轴承气腔进气通道P1,第一径向轴承气腔T1通过第一径向轴承气腔进气通道P1与外部气源连通。
可选的,电机定子1的对应安装第二径向轴承4的一端设置有第二径向轴承气腔进气通道P2,第二径向轴承气腔T2通过第二径向轴承气腔进气通道P2与外部气源连通。
可选的,第一径向轴承气腔进气通道P1位于绕组封装13内的部分为预埋的气管。具体地,第一径向轴承气腔进气通道P1位于绕组封装13内的部分可以为在注塑或者灌封之前预先埋设的气管,也可以为注塑或者灌封之后加工的气孔,在此不做限制。
可选的,第二径向轴承气腔进气通道P2位于绕组封装13内的部分为预埋的气管。具体地,第二径向轴承气腔进气通道P2位于绕组封装13内的部分可以为在注塑或者灌封之前预先埋设的气管,也可以为注塑或者灌封之后加工的气孔,在此不做限制。
可选的,电机定子1上预设有至少一个通气孔,通气孔将位于径向轴承靠近电机定子铁芯11一侧的电机定子1与电机转子2之间的间隙与外界连通。这样在电机转子2运转发热时,可以将电机定子1与电机转子2之间的间隙的膨胀气体排到外界,并与外界进行换气,防止电机定子1内部憋气,影响电机的使用寿命。
在本实施例中,电机机壳5包括:电机机壳本体51和电机端盖52。
电机机壳本体51,罩设在电机定子1和第二径向轴承4的外部,其远离第二径向轴承4的一端形成开口;电机端盖52套设在第一径向轴承3的外部,且盖扣在电机机壳本体51的开口上。
电机机壳本体51上与第一径向轴承气腔进气通道P1和第二径向轴承气腔进气通道P2相对应的位置分别设置有第一进气孔511和第二进气孔512。
第一径向轴承气腔进气通道P1通过第一进气孔511与外部气源连通;第二径向轴承气腔进气通道P2通过第二进气孔512与外部气源连通。
在本实施例中,绕组封装13内的第一径向轴承座孔和第二径向轴承座孔通过对绕组封装13直接加工形成,电机端盖52上与第一径向轴承座孔相对应的位置设置有与第一径向轴承座孔直径相匹配的孔,电机机壳本体51上与第二径向轴承座孔相对应的位置设置有与第二径向轴承座孔直径相匹配的孔,绕组封装13和电机端盖52作为第一径向轴承3的轴承座,绕组封装13和电机机壳本体51作为第二径向轴承4的轴承座,在第一径向轴承3和第二径向轴承4为静压空气轴承时,绕组封装13和电机端盖52以及电机机壳本体51形成静压空气轴承的静子。在这种情况下,第一径向轴承气腔进气通道P1和第二径向轴承气腔进气通道P2具体有以下几种设置方式:
可选的,第一径向轴承气腔进气通道P1沿径向贯穿绕组封装13和电机机壳本体51,将第一径向轴承气腔T1与所述外部气源连通。此时,第一径向轴承气腔进气通道P1只设置在绕组封装13内,与电机绕组12并不相交,可以是气孔或预埋在绕组封装13内的气管。
可选的,第一径向轴承气腔进气通道P1沿径向贯穿绕组封装13、电机绕组12和电机机壳本体51,将第二径向轴承气腔T2与外部气源连通。此时,第一径向轴承气腔进气通道P1设置在绕组封装13和电机绕组12内,可以是预埋在电机绕组12和绕组封装13内的气管。
可选的,第二径向轴承气腔进气通道P2在轴向上靠近电机定子铁芯11设置,使得第二径向间隙远离第一径向间隙的一端所产生的支撑力最大。
通过第二径向轴承气腔进气通道P2或者第一径向轴承气腔进气通道P1的位置的调整可以调整第一径向轴承的跨距,如果径向轴承某一侧有较重的悬臂结构,通过将第二径向轴承气腔进气通道P2或者第一径向轴承气腔进气通道P1向中间移动,可以增大径向轴承跨距,减小悬臂端的长度。在本实施例中,该电机还包括:套设在电机转子上的第一限位件6和第二限位件7。
第一限位件6嵌设在电机端盖52内,第二限位件7嵌设在第二径向轴 承4的远离第一径向轴承3的一侧的电机机壳本体51内。
具体地,第一限位件6位于第一径向轴承3远离第二径向轴承4的一侧;第二限位件7位于第二径向轴承4远离第一径向轴承3的一侧。
可选的,第一限位件6包括但不限于卡簧。
可选的,第二限位件7包括但不限于卡簧。
可选的,电机机壳本体51上设置有与第一限位件6形状相匹配的第一卡槽。
可选的,电机端盖52上设置有与第二限位件7形状相匹配的第二卡槽。
通过在第一径向轴承3的外侧设置第一限位件6,在第二径向轴承4的外侧设置第二限位件7,分别对第一径向轴承3和第二径向轴承4进行轴向定位,防止第一径向轴承3和第二径向轴承4从电机转子2上脱落。
下面介绍第一径向轴承3和第二径向轴承4为动压空气轴承或者动静压混合空气轴承时的具体结构:
可选的,第一径向轴承3的内壁上设置有动压发生槽;和/或第二径向轴承4的内壁上设置有动压发生槽。
可选的,电机转子2的外壁上与第一径向轴承3相对应的位置设置有动压发生槽;和/或电机转子2的外壁上与第二径向轴承4相对应的位置设置有动压发生槽,从而形成动压空气轴承。
当电机转子2旋转时,存在于径向间隙的流动气体被压入动压发生槽内,从而产生压力,使电机转子2上浮,以电机转子2沿径向方向被非接触地保持。其中,动压发生槽产生压力的大小随动压发生槽的角度、槽宽、槽长、槽深、槽数以及平面度的不同而变化。此外,动压发生槽产生压力的大小也和电机转子2的旋转速度以及径向间隙有关。可以根据实际工况对动压发生槽的参数进行设计。动压发生槽可以通过锻造、滚轧、刻蚀或冲压等方式形成。
可选的,动压发生槽为人字形槽。通过将动压发生槽设置为人字形,能够更好地引导第一径向间隙和第二径向间隙内的气体泵入和甩出。
本发明的动压发生槽的设置位置和形式包括但不限于以上方式,具体的动压发生槽的设置位置和形式可根据实际需要适当调整。
本实施例提供的电机,通过在电机绕组12上包覆绕组封装13,并将径向轴承安装在绕组封装13与电机转子之间,充分利用了绕组封装13内的空间,且绕组封装13同时充当了径向轴承的安装座,有效减小了电机的轴向尺寸,解决了现有技术中由于空气轴承安装在电机绕组12外侧,且其需要单独的轴承座支撑和固定,导致高速电机的轴向大、体积增加,不利于电机功率密度的提高的技术问题。本发明提供的电机,通过有效减小电机的轴向尺寸,大大缩小了电机的体积,提高了电机的功率密度。
实施例二
本实施例是在实施例一的基础上进行的进一步改进,本实施例与实施例一的不同之处在于,本实施例中的第一径向轴承座孔和第二径向轴承座孔与实施例一中的结构不同。
图2是本发明实施例二提供的电机的剖面示意图。
图3是图2中的电机的分解立体图。
请参照图2和图3,其中,图3中省略了绕组封装13、第一限位件6、第二限位件7和密封件10,在本实施例中,该电机还包括:第一保护套8和第二保护套9。
第一保护套8嵌设在绕组封装13内,且套设在第一径向轴承3上,其中部形成为第一径向轴承座孔;第二保护套9嵌设在绕组封装13内,且套设在第二径向轴承4上,其中部形成为第二径向轴承座孔。此时,第一保护套8作为第一径向轴承3的轴承座的一部分,第二保护套9作为第二径向轴承4的轴承座的一部分。
可选的,第一保护套8与电机端盖52一体成型;第二保护套9与电机机壳本体51一体成型。但本发明不以此为限制,第一保护套8和第二保护套9也可以以其他方式设置,以形成第一径向轴承座孔和第二径向轴承座孔。
可选的,第一保护套8与电机端盖52的材料相同,第二保护套9与电机机壳本体51的材料相同。
可选的,第一保护套8和第二保护套9为金属材料。
通过在绕组封装13内设置第一保护套8和第二保护套9形成第一径向轴承座孔和第二径向轴承座孔,提高了第一径向轴承座孔和第二径向轴承座孔的强度。
在本实施例中,绕组封装13内的第一径向轴承座孔和第二径向轴承座孔利用在绕组封装13内嵌入第一保护套8和第二保护套9形成,使得第一保护套8和第二保护套9分别作为第一径向轴承3和第二径向轴承4的轴承座,在第一径向轴承3和第二径向轴承4为静压空气轴承时,第一保护套8和第二保护套9分别形成静压空气轴承的静子。在该情况下,第一径向轴承气腔进气通道P1和第二径向轴承气腔进气通道P2具体有以下几种设置方式:
可选的,第一径向轴承气腔进气通道P1沿径向贯穿第一保护套8、绕组封装13和电机机壳本体51,将第一径向轴承气腔T1与外部气源连通。
可选的,第一径向轴承气腔进气通道P1沿径向贯穿第一保护套8、绕组封装13、电机绕组12和电机机壳本体51,将第二径向轴承气腔T2与外部气源连通。
可选的,第二径向轴承气腔进气通道P2沿径向贯穿第二保护套9、绕组封装13和电机机壳本体51,将第二径向轴承气腔T2与外部气源连通。
可选的,第二径向轴承气腔进气通道P2沿径向贯穿第二保护套9、绕组封装13、电机绕组12和电机机壳本体51,将第二径向轴承气腔T2与外部气源连通。
在本实施例中,该电机还包括:设置于第一径向轴承3和/或第二径向轴承4靠近电机定子铁芯11一端的第三限位件14。
可选的,第一径向轴承3靠近电机定子铁芯11一端的第三限位件14可以与电机端盖52一体成型;第二径向轴承4靠近电机定子铁芯11一端的 第三限位件14可以与电机机壳本体51一体成型。
本实施例中的电机的其他部分的结构、位置和连接关系与实施例一相同,在此不再赘述。
实施例三
图4是本发明实施例三的一个实施方式提供的电机装配方法的方法流程图。
请参照图4,在本发明实施例三的一个实施方式中,提供一种电机装配方法,适用于实施例一中的电机的装配,包括:
S1,将电机绕组12绕制在电机定子铁芯11上;
S2,将电机定子铁芯11安装到电机机壳本体51内;
S3,对电机绕组12进行注塑或灌封,形成绕组封装13,绕组封装13内形成有电机转子安装孔;
S4,在电机转子安装孔沿轴向的两端分别加工第一径向轴承座孔和第二径向轴承座孔;
S5,将电机转子2插入电机转子安装孔内;
S6,将第一径向轴承3和第二径向轴承4分别套设到电机转子2上,并安装到第一径向轴承座孔和第二径向轴承座孔内。
或者,S5,将第一径向轴承3和第二径向轴承4分别套设到电机转子2上,并安装到第一径向轴承座孔和第二径向轴承座孔内;
S6,将电机转子2插入电机转子安装孔内。
即:电机转子2和第一径向轴承3和第二径向轴承4的装配步骤不分前后,只要便于安装就行。
具体地,步骤S3对电机绕组12进行注塑或灌封后得到的绕组封装13可以是具有电机转子安装孔的结构,通过步骤S4对电机转子安装孔的两端进行精加工,可得到第一径向轴承座孔和第二径向轴承座孔。
图5是本发明实施例三的另一个实施方式提供的电机装配方法的方法流程图。
请参照图5,可选的,在本发明实施例三的另一个实施方式中,在步骤S2和S3之间,还包括步骤:
S21,将形成第一径向轴承气腔进气通道P1的气管插入电机机壳本体51内;或者将形成第一径向轴承气腔进气通道P1的气管插入电机机壳本体51并贯穿电机绕组12;
S22,将形成径向轴承气腔第二进气通道P2的气管插入电机机壳本体51内;或者将形成径向轴承气腔第二进气通道P2的气管插入电机机壳本体51并贯穿电机绕组12。
在上述实施例中,该电机装配方法,还包括:
S7,将第一限位件6套设在电机转子2上并嵌设在电机端盖52内,用于限制第一径向轴承3的轴向运动;
S8,将第二限位件7套设在电机转子2上并嵌设在电机机壳本体51内,用于限制第二径向轴承4的轴向运动。
在上述实施例中,该发电机装配方法,还包括:
S9,将电机端盖52盖扣到电机机壳本体51的开口上。
本发明实施例三提供的电机装配方法适用于实施例一中的电机的装配。
实施例四
图6是本发明实施例四提供的电机装配方法的方法流程图。
请参照图6,本发明实施例四与实施例三的不同之处在于,本发明实施例四提供的电机装配方法适用于实施例二中的电机的装配。
在本实施例中,该电机装配方法包括:
S1,将电机绕组12绕制在电机定子铁芯11上;
S2,将电机定子铁芯11安装到与第二保护套9一体成型的电机机壳本体51内,第二保护套9内形成第二径向轴承座孔;
S3,对电机绕组12进行注塑或灌封,形成绕组封装13,绕组封装13内形成有电机转子安装孔;
S4,将与第一保护套8一体成型的电机端盖52盖扣到电机机壳本体51 的开口上,第一保护套8内形成第一径向轴承座孔;
S5,将电机转子2插入电机转子安装孔内;
S6,将第一径向轴承3和第二径向轴承4分别套设到电机转子2上,并安装到第一径向轴承座孔和第二径向轴承座孔内。
该实施方式中步骤S5和步骤S6也不分前后,只要便于安装即可。
本实施例中的电机装配方法的其他步骤与实施例三相同,在此不再赘述。
应当理解,本发明的电机在应用于具体的转子系统或者设备时,可配合推力轴承使用,推力轴承用于承受整机受到的轴向力。
本发明旨在保护一种电机及其装配方法,具有如下有益的技术效果:
1、本发明提供的电机通过在电机绕组上包覆绕组封装,并将径向轴承安装在绕组封装内,将绕组封装作为空气轴承的静子,有效减小了电机的轴向尺寸,解决了现有技术中由于空气轴承安装在电机绕组外侧,且其需要单独的轴承座支撑和固定,导致高速电机的轴向尺寸大、体积增加,不利于电机功率密度的提高的技术问题。本发明提供的电机,通过有效减小电机的轴向尺寸,大大缩小了电机的体积,提高了电机的功率密度。
2、本发明提供的电机装配方法,装配简单,通过该装配方法得到的电机,其轴向尺寸大大减小,使得该电机的体积大大缩小,从而提高了电机的功率密度。
本发明中的电机既可以是发电机也可以是电动机或者启发一体式电机。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (17)

  1. 一种电机,其特征在于,包括:电机定子(1)、电机转子(2)、径向轴承和电机机壳(5);
    所述电机定子(1)套设在所述电机转子(2)上,并位于所述电机机壳(5)内,其包括:电机定子铁芯(11)、电机绕组(12)和绕组封装(13);
    所述电机定子铁芯(11)套设在所述电机转子(2)上;所述电机绕组(12)绕制在所述电机定子铁芯(11)上;所述绕组封装(13)包覆在所述电机绕组(12)上;
    所述径向轴承套设在所述电机转子(2)上,位于所述绕组封装(13)与所述电机转子(2)之间,且与所述电机转子(2)之间沿径向形成径向间隙。
  2. 根据权利要求1所述的电机,其特征在于,
    所述径向轴承包括第一径向轴承(3)和第二径向轴承(4);
    所述绕组封装(13)内部形成有电机转子安装孔,用于套设在所述电机转子(2)上;
    所述电机转子安装孔沿轴向的两端分别形成有第一径向轴承座孔和第二径向轴承座孔;
    所述第一径向轴承(3)和所述第二径向轴承(4)分别位于所述第一径向轴承座孔和所述第二径向轴承座孔内。
  3. 根据权利要求2所述的电机,其特征在于,
    所述径向间隙包括所述第一径向轴承(3)与电机转子(2)之间形成的第一径向间隙和所述第二径向轴承(4)与所述电机转子(2)之间形成的第二径向间隙;
    所述第一径向轴承(3)的外壁上形成有第一径向轴承气腔槽,所述第一径向轴承气腔槽与所述第一径向轴承座孔的孔壁围成第一径向轴承气腔(T1);所述第一径向轴承气腔(T1)与所述第一径向间隙连通,且与所述 外部气源连通;
    所述第二径向轴承(4)的外壁上形成有第二径向轴承气腔槽,所述第二径向轴承气腔槽与所述第二径向轴承座孔的孔壁围成第二径向轴承气腔(T2);所述第二径向轴承气腔(T2)与所述第二径向间隙连通,且与所述外部气源连通。
  4. 根据权利要求3所述的电机,其特征在于,
    所述电机定子(1)的对应安装所述第一径向轴承(3)的一端设置有第一径向轴承气腔进气通道(P1),所述第一径向轴承气腔(T1)通过所述第一径向轴承气腔进气通道(P1)与所述外部气源连通;
    所述电机定子(1)的对应安装所述第二径向轴承(4)的一端设置有第二径向轴承气腔进气通道(P2),所述第二径向轴承气腔(T2)通过所述第二径向轴承气腔进气通道(P2)与所述外部气源连通。
  5. 根据权利要求4所述的电机,其特征在于,
    所述电机机壳(5)包括电机机壳本体(51)和电机端盖(52),所述电机机壳本体(51)罩设在所述电机定子(1)和所述第二径向轴承(4)的外部,其远离所述第二径向轴承(4)的一端形成开口,所述电机端盖(52)套设在所述第一径向轴承(3)的外部,且盖扣在所述开口上;
    所述第一径向轴承气腔进气通道(P1)沿径向贯穿所述绕组封装(13)和所述电机机壳本体(51),将所述第一径向轴承气腔(T1)与所述外部气源连通;或者所述第一径向轴承气腔进气通道(P1)沿径向贯穿所述绕组封装(13)、所述电机绕组(12)和所述电机机壳本体(51),将所述第二径向轴承气腔(T2)与所述外部气源连通;和/或
    所述第二径向轴承气腔进气通道(P2)沿径向贯穿所述绕组封装(13)和所述电机机壳本体(51),将所述第二径向轴承气腔(T2)与所述外部气源连通;或者所述第二径向轴承气腔进气通道(P2)沿径向贯穿所述绕组封装(13)、所述电机绕组(12)和电机机壳本体(51),将所述第二径向轴承气腔(T2)与所述外部气源连通。
  6. 根据权利要求5所述的电机,其特征在于,还包括第一保护套(8)和第二保护套(9);
    所述第一保护套(8)嵌设在所述绕组封装(13)内,且套设在所述第一径向轴承(3)上,其中部形成为所述第一径向轴承座孔;
    所述第二保护套(9)嵌设在所述绕组封装(13)内,且套设在所述第二径向轴承(4)上,其中部形成为所述第二径向轴承座孔。
  7. 根据权利要求6所述的电机,其特征在于
    所述第一保护套(8)与所述电机端盖(52)一体成型;
    所述第二保护套(9)与所述电机机壳本体(51)一体成型。
  8. 根据权利要求7所述的电机,其特征在于,
    所述第一径向轴承气腔进气通道(P1)沿径向贯穿所述第一保护套(8)、所述绕组封装(13)和所述电机机壳本体(51),将所述第一径向轴承气腔(T1)与所述外部气源连通;或者所述第一径向轴承气腔进气通道(P1)沿径向贯穿所述第一保护套(8)、所述绕组封装(13)、所述电机绕组(12)和所述电机机壳本体(51),将所述第二径向轴承气腔(T2)与所述外部气源连通;和/或
    所述第二径向轴承气腔进气通道(P2)沿径向贯穿所述第二保护套(9)、所述绕组封装(13)和所述电机机壳本体(51),将所述第二径向轴承气腔(T2)与所述外部气源连通;或者所述第二径向轴承气腔进气通道(P2)沿径向贯穿所述第二保护套(9)、所述绕组封装(13)、所述电机绕组(12)和所述电机机壳本体(51),将所述第二径向轴承气腔(T2)与所述外部气源连通。
  9. 根据权利要求4-8中任意一项所述的电机,其特征在于,
    所述第二径向轴承气腔进气通道(P2)在轴向上靠近所述电机定子铁芯(11)设置。
  10. 根据权利要求4-8中任意一项所述的电机,其特征在于,
    所述第一径向轴承气腔进气通道(P1)位于所述绕组封装(13)内的部 分为预埋的气管;和/或
    所述第二径向轴承气腔进气通道(P2)位于所述绕组封装(13)内的部分为预埋的气管;和/或
    所述电机定子(1)上预设有至少一个通气孔,所述通气孔将位于所述径向轴承靠近所述电机定子铁芯(11)一侧的所述电机定子(1)与所述电机转子(2)之间的间隙与外界连通。
  11. 根据权利要求5-8中任意一项所述的电机,其特征在于,还包括:套设在所述电机转子(2)上的第一限位件(6)和第二限位件(7);
    所述第一限位件(6)嵌设在所述电机端盖(52)内,所述第二限位件(7)嵌设在所述第二径向轴承(4)的远离所述第一径向轴承(3)的一侧的所述电机机壳本体(51)内。
  12. 根据权利要求5-8中任意一项所述的电机,其特征在于,还包括:设置于所述第一径向轴承(3)和/或所述第二径向轴承(4)靠近所述电机定子铁芯(11)一端的第三限位件(14)。
  13. 根据权利要求3-8中任意一项所述的电机,其特征在于,
    所述第一径向轴承(3)的内壁上设置有动压发生槽;和/或所述第二径向轴承(4)的内壁上设置有动压发生槽;或者
    所述电机转子(2)的外壁上与所述第一径向轴承(3)相对应的位置设置有动压发生槽;和/或所述电机转子(2)的外壁上与所述第二径向轴承(4)相对应的位置设置有动压发生槽。
  14. 一种电机装配方法,其特征在于,用于权利要求1-13中任意一项所述的电机的装配,包括:
    将电机绕组(12)绕制在电机定子铁芯(11)上;
    将所述电机定子铁芯(11)安装到电机机壳本体(51)内;
    对所述电机绕组(12)进行注塑或灌封,形成绕组封装(13),所述绕组封装(13)内形成有电机转子安装孔;
    在所述电机转子安装孔沿轴向的两端分别加工第一径向轴承座孔和第 二径向轴承座孔;
    将电机转子(2)插入所述电机转子安装孔内;
    将第一径向轴承(3)和第二径向轴承(4)分别套设到所述电机转子(2)上,并安装到所述第一径向轴承座孔和所述第二径向轴承座孔内。
  15. 一种电机装配方法,其特征在于,用于权利要求1-13中任意一项所述的电机的装配,包括:
    将电机绕组(12)绕制在电机定子铁芯(11)上;
    将所述电机定子铁芯(11)安装到与第二保护套(9)一体成型的电机机壳本体(51)内,所述第二保护套(9)内形成第二径向轴承座孔;
    对所述电机绕组(12)进行注塑或灌封,形成绕组封装(13),所述绕组封装(13)内形成有电机转子安装孔;
    将与第一保护套(8)一体成型的电机端盖(52)盖扣到所述电机机壳本体(51)的开口上,所述第一保护套(8)内形成第一径向轴承座孔;
    将电机转子(2)插入所述电机转子安装孔内;
    将第一径向轴承(3)和第二径向轴承(4)分别套设到所述电机转子(2)上,并安装到所述第一径向轴承座孔和所述第二径向轴承座孔内。
  16. 根据权利要求14或15所述的电机装配方法,其特征在于,在对所述电机绕组(12)进行注塑或灌封前,还包括:
    将形成第一径向轴承气腔进气通道(P1)的气管插入所述电机机壳本体(51)内;或者将形成所述第一径向轴承气腔进气通道(P1)的气管插入所述电机机壳本体(51)并贯穿所述电机绕组(12);
    将形成第二径向轴承气腔进气通道(P2)的气管插入所述电机机壳本体(51)内;或者将形成所述第二径向轴承气腔进气通道(P2)的气管插入所述电机机壳本体(51)并贯穿所述电机绕组(12)。
  17. 根据权利要求14或15所述的电机装配方法,其特征在于,还包括:
    将第一限位件(6)套设在所述电机转子(2)上并嵌设在所述电机端盖(52)内,用于限制所述第一径向轴承(3)的轴向运动;
    将第二限位件(7)套设在所述电机转子(2)上并嵌设在所述电机机壳本体(51)内,用于限制所述第二径向轴承(4)的轴向运动。
PCT/CN2019/107617 2018-10-21 2019-09-25 一种电机及其装配方法 WO2020082964A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811226330.7A CN109193990A (zh) 2018-10-21 2018-10-21 一种电机及其装配方法
CN201811226330.7 2018-10-21

Publications (1)

Publication Number Publication Date
WO2020082964A1 true WO2020082964A1 (zh) 2020-04-30

Family

ID=64945924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107617 WO2020082964A1 (zh) 2018-10-21 2019-09-25 一种电机及其装配方法

Country Status (2)

Country Link
CN (1) CN109193990A (zh)
WO (1) WO2020082964A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109193990A (zh) * 2018-10-21 2019-01-11 至玥腾风科技投资集团有限公司 一种电机及其装配方法
CN113193687A (zh) * 2021-04-27 2021-07-30 南昌康富新能源技术有限公司 一种便于拆装整流模块的紧凑发电机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327141A (ja) * 2000-05-17 2001-11-22 Ckd Corp 電磁シリンダ
CN106026492A (zh) * 2015-05-19 2016-10-12 罗立峰 一种超高速电机
CN109193990A (zh) * 2018-10-21 2019-01-11 至玥腾风科技投资集团有限公司 一种电机及其装配方法
CN109184914A (zh) * 2018-10-21 2019-01-11 至玥腾风科技投资集团有限公司 一种转子系统及燃气轮机发电机组
CN109252960A (zh) * 2018-10-21 2019-01-22 至玥腾风科技投资集团有限公司 一种燃气轮机发电机组
CN208835870U (zh) * 2018-10-21 2019-05-07 至玥腾风科技投资集团有限公司 一种电机
CN209324516U (zh) * 2018-10-21 2019-08-30 至玥腾风科技投资集团有限公司 一种转子系统及燃气轮机发电机组
CN209324520U (zh) * 2018-10-21 2019-08-30 至玥腾风科技投资集团有限公司 一种燃气轮机发电机组

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1467164A (en) * 1973-06-29 1977-03-16 Siemens Ag Method of manufacturing an electric rotating machine having a sealed stator winding
JP4000746B2 (ja) * 2000-03-29 2007-10-31 株式会社デンソー 車両用回転電機
JP4023475B2 (ja) * 2004-07-07 2007-12-19 松下電器産業株式会社 動圧空気軸受モータ
CN101976895B (zh) * 2010-07-26 2012-09-05 深圳华任兴科技有限公司 拥有无槽非晶铁合金径向磁路的电机及其制造方法
CN103887945A (zh) * 2014-03-21 2014-06-25 深圳先进技术研究院 轮毂电机及其制造方法
CN204761172U (zh) * 2015-06-23 2015-11-11 中山大洋电机股份有限公司 一种塑封定子及其应用的外转子电机
US11193385B2 (en) * 2016-04-18 2021-12-07 General Electric Company Gas bearing seal
EP3301794A1 (de) * 2016-09-30 2018-04-04 Siemens Aktiengesellschaft Herstellen eines läufers einer rotierenden elektrischen maschine
CN207053276U (zh) * 2017-07-28 2018-02-27 郑州建通机械制造有限公司 一种大功率双绕组双速电机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327141A (ja) * 2000-05-17 2001-11-22 Ckd Corp 電磁シリンダ
CN106026492A (zh) * 2015-05-19 2016-10-12 罗立峰 一种超高速电机
CN109193990A (zh) * 2018-10-21 2019-01-11 至玥腾风科技投资集团有限公司 一种电机及其装配方法
CN109184914A (zh) * 2018-10-21 2019-01-11 至玥腾风科技投资集团有限公司 一种转子系统及燃气轮机发电机组
CN109252960A (zh) * 2018-10-21 2019-01-22 至玥腾风科技投资集团有限公司 一种燃气轮机发电机组
CN208835870U (zh) * 2018-10-21 2019-05-07 至玥腾风科技投资集团有限公司 一种电机
CN209324516U (zh) * 2018-10-21 2019-08-30 至玥腾风科技投资集团有限公司 一种转子系统及燃气轮机发电机组
CN209324520U (zh) * 2018-10-21 2019-08-30 至玥腾风科技投资集团有限公司 一种燃气轮机发电机组

Also Published As

Publication number Publication date
CN109193990A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2020082964A1 (zh) 一种电机及其装配方法
US8568110B2 (en) Blower fan and method of manufacturing the same
EP2863516B1 (en) Motor
CN103248163B (zh) 外转子电机
WO2020082960A1 (zh) 一种燃气轮机发电机组
CN108138649B (zh) 电动增压器
WO2018173827A1 (ja) ポンプ装置
JP2013204784A (ja) 軸受装置および送風ファン
WO2015109864A1 (zh) 一种外转子电机
US20070014677A1 (en) Pump
KR101257949B1 (ko) 응답 특성이 향상되는 로우터 조립체 및 이를 구비한 터보압축기
KR20190108825A (ko) 모터용 로터 조립체
WO2020082963A1 (zh) 一种转子系统及燃气轮机发电机组
CN106533008B (zh) 转子、电机和压缩机
CN205489858U (zh) 一种内置永磁体电机的转子结构
CN107676307B (zh) 电子水泵水循环结构以及电子水泵
JP5532673B2 (ja) 回転電機及び回転電機の製造方法
CN208835870U (zh) 一种电机
JP4621065B2 (ja) 流体ポンプ
CN207459948U (zh) 一种轴向磁场盘式电机
US20210178893A1 (en) In-wheel motor
CN204706995U (zh) 一种永磁复合电机
CN105186760A (zh) 电机轴承安装结构及电机
KR101745867B1 (ko) 스포크 타입 회전자
CN207353960U (zh) 一种分体式精密电机盖

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19875892

Country of ref document: EP

Kind code of ref document: A1