WO2021241516A1 - マイクロ流路チップ及びその製造方法 - Google Patents

マイクロ流路チップ及びその製造方法 Download PDF

Info

Publication number
WO2021241516A1
WO2021241516A1 PCT/JP2021/019664 JP2021019664W WO2021241516A1 WO 2021241516 A1 WO2021241516 A1 WO 2021241516A1 JP 2021019664 W JP2021019664 W JP 2021019664W WO 2021241516 A1 WO2021241516 A1 WO 2021241516A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
flow path
bonding layer
cyclic olefin
olefin polymer
Prior art date
Application number
PCT/JP2021/019664
Other languages
English (en)
French (fr)
Inventor
寛哉 西岡
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP21813580.4A priority Critical patent/EP4159669A4/en
Priority to US17/998,492 priority patent/US12091308B2/en
Priority to JP2022526539A priority patent/JPWO2021241516A1/ja
Priority to CN202180034465.7A priority patent/CN115605425A/zh
Publication of WO2021241516A1 publication Critical patent/WO2021241516A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • B29C66/02241Cutting, e.g. by using waterjets, or sawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • B29C66/73118Tg, i.e. glass transition temperature of different glass transition temperature, i.e. the glass transition temperature of one of the parts to be joined being different from the glass transition temperature of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91943Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined higher than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91945Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined lower than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/033Thermal bonding
    • B81C2203/036Fusion bonding

Definitions

  • the present invention relates to a microchannel chip and a method for manufacturing the same.
  • microchannel chips that form micrometer-order microchannels and reaction vessels using microfabrication technology have been used for analysis / inspection of biological substances such as DNA, RNA, and proteins, and drug discovery / pharmaceutical development. , Organic synthesis, water quality analysis, etc.
  • microchannel chip As a microchannel chip, a resin microchannel chip that can be manufactured at low cost is attracting attention.
  • the resin microchannel chip is heated by interposing a bonding layer between a resin substrate having a fine channel formed on at least one surface and a resin lid substrate as a lid material.
  • Manufactured by joining see, for example, Patent Documents 1 to 4).
  • Patent No. 5948248 Japanese Unexamined Patent Publication No. 2008-304352 Patent No. 5948248 International Publication No. 2014/178439
  • microchannel chip When the microchannel chip is subjected to high temperature and high pressure sterilization treatment such as steam sterilization treatment, if the bonding layer is thick, there arises a problem that the flow path is deformed during the sterilization treatment. Further, in the microchannel chip produced by using a transparent and low autofluorescent cyclic olefin polymer as a substrate material, conventionally, in order to enhance the bondability between the substrates, other than the cyclic olefin polymer is used. Adhesive materials are used, and such microchannel chips pose the problem of noise during autofluorescent light signal detection by the adhesive materials. Until now, no microchannel chip has been known in which all the members are composed of a cyclic olefin polymer and strong bondability between substrates is maintained without using an adhesive material such as an autofluorescent material. ..
  • the flow path is not deformed even if the high temperature and high pressure sterilization treatment is performed, and even if the cyclic olefin polymer is used as the material of the entire micro flow path chip, the strong bondability between the substrates is maintained. It is an object of the present invention to provide a flow path chip and a method for manufacturing the same.
  • the present inventor can suppress the deformation of the flow path due to the high temperature and high pressure sterilization treatment by making the bonding layer a thin film, and is predetermined as a material for the substrate and the bonding layer.
  • the bonding layer a thin film, and is predetermined as a material for the substrate and the bonding layer.
  • strong bondability between substrates can be maintained by using each of the cyclic olefin polymers having a glass transition temperature relationship, and have completed the present invention.
  • the microchannel chip shown below and a method for manufacturing the same are provided.
  • a microchannel chip comprising a channel substrate having fine channels formed on at least one surface, a lid substrate, and a bonding layer for joining them.
  • the flow path substrate, the lid substrate, and the bonding layer are made of a cyclic olefin polymer. Relationship between the glass transition temperature Tg s1 of the cyclic olefin polymer constituting the flow path substrate, the glass transition temperature Tg s2 of the cyclic olefin polymer constituting the lid substrate, and the glass transition temperature Tg 2 of the cyclic olefin polymer constituting the bonding layer. teeth, Tg s1 > Tg 2 and Tg s2 > Tg 2 The thickness of the bonding layer is less than 50 ⁇ m.
  • Tg s1 and Tg s2 are above 125 ° C. and have a temperature of 125 ° C. or higher.
  • the flow path substrate and the lid substrate are joined by heat fusion via a joining layer.
  • a flow path in which a flow path is formed on a flow path forming substrate on which a bonding layer is formed or a flow path forming substrate on which a bonding layer is not formed, and a flow path substrate on which the bonding layer is formed or a flow path in which the bonding layer is not formed is formed.
  • the process of forming the road substrate, The combination of the flow path substrate on which the bonding layer is formed and the lid substrate on which the bonding layer is not formed, the combination of the flow path substrate on which the bonding layer is not formed and the lid substrate on which the bonding layer is formed, and the bonding layer The production method according to the above [3], which comprises a step of joining at least one combination of a formed flow path substrate and a lid substrate on which a bonding layer is formed by heat fusion via a bonding layer. [5] A step of forming a flow path substrate having a flow path formed on at least one surface. A step of forming a bonding layer on a portion of at least one of the flow path substrate and the lid substrate other than the portion corresponding to the flow path.
  • the combination of the flow path substrate on which the bonding layer is formed and the lid substrate on which the bonding layer is not formed, the combination of the flow path substrate on which the bonding layer is not formed and the lid substrate on which the bonding layer is formed, and the bonding layer The production method according to the above [3], which comprises a step of joining at least one combination of a formed flow path substrate and a lid substrate on which a bonding layer is formed by heat fusion via a bonding layer.
  • the present invention it is possible to provide a microchannel chip and a method for manufacturing the same, in which the flow path is not deformed even when high temperature and high pressure sterilization treatment is performed, and strong bondability between substrates is maintained.
  • FIG. 1 is a conceptual diagram of a method for manufacturing a microchannel chip of the present invention, which forms a channel after forming a bonding layer.
  • FIG. 2 is a conceptual diagram of a method for manufacturing a microchannel chip of the present invention, which forms a bonding layer after forming a channel substrate on which a channel is formed.
  • FIG. 3A is a plan view showing an example of a flow path substrate of the microchannel chip, and FIG. 3B is a plan view showing an example of the lid substrate of the microchannel chip.
  • the microchannel chip of the present invention includes a channel substrate s1 having a fine channel formed on at least one surface, a lid substrate s2, and a bonding layer for joining them. Further, in the microchannel chip of the present invention, the flow path substrate s1, the lid substrate s2, and the bonding layer are made of a cyclic olefin polymer. Relationship between the glass transition temperature Tg s1 of the cyclic olefin polymer constituting the flow path substrate, the glass transition temperature Tg s2 of the cyclic olefin polymer constituting the lid substrate, and the glass transition temperature Tg 2 of the cyclic olefin polymer constituting the bonding layer. teeth, Tg s1 > Tg 2 and Tg s2 > Tg 2 The thickness of the bonding layer is less than 50 ⁇ .
  • a substrate made of a cyclic olefin polymer having a fine flow path formed on at least one surface can be used. Then, the flow path substrate is joined to the lid substrate with the surface on which the fine flow path is formed as the joining surface.
  • the width, depth and shape of the fine flow path can be appropriately changed depending on the application of the micro flow path chip, but are usually on the order of millimeters or less and may be on the order of nanometers. However, it is preferably on the order of micrometers.
  • the width of the fine flow path is not particularly limited, and can be, for example, 10 ⁇ m or more and 800 ⁇ m or less.
  • the formation of a fine flow path on the substrate made of the cyclic olefin polymer can be performed by using, for example, microfabrication techniques such as photolithography and thermal imprinting, cutting, injection molding and the like.
  • the flow path may be formed on the flow path forming substrate on which the bonding layer is not formed, or on the flow path forming substrate after the bonding layer is formed.
  • the flow path can be formed on the flow path forming substrate on which the bonding layer is not formed, for example, by using microfabrication techniques such as photolithography and thermal imprint, cutting, injection molding, and the like.
  • the flow path is formed on the flow path forming substrate by, for example, photolithography, microfabrication techniques such as thermal imprinting, cutting, etc., and the bonding layer of the flow path forming substrate is formed. It can be done by applying it to a surface.
  • the lid substrate a substrate made of any cyclic olefin polymer that can cover a fine flow path formed in the flow path substrate can be used.
  • the lid substrate has a smooth surface that can cover the flow path substrate, and optionally, when a microchannel chip is formed together with the flow path substrate, it enters the fine flow path of the flow path substrate.
  • a substrate having a through hole serving as an injection port for a sample or the like can be used. Then, the lid substrate is joined to the flow path substrate with the smooth surface side as the joining surface.
  • a substrate having a fine flow path formed on a surface opposite to the smooth surface side joined to the flow path substrate may be used.
  • the formation of through holes in the substrate made of the cyclic olefin polymer can be performed by using, for example, microfabrication techniques such as photolithography and thermal imprinting, cutting, injection molding and the like. Further, the through hole may be formed on the flow path forming substrate on which the bonding layer is not formed, or on the flow path forming substrate after the bonding layer is formed. The formation of through holes in the flow path forming substrate on which the bonding layer is not formed can be performed by using, for example, microfabrication techniques such as photolithography and thermal imprinting, cutting, injection molding, and the like.
  • microfabrication techniques such as photolithography and thermal imprinting, cutting, etc. are performed, and the bonding layer of the flow path forming substrate is formed. It can be done by applying it to a surface.
  • the joining layer is formed on the flow path substrate or the lid substrate, and is a member for joining the flow path substrate and the lid substrate.
  • the thickness of the bonding layer is less than 50 ⁇ m, preferably 40 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 5 ⁇ m or less. The thinner the bonding layer, the thinner the bonding layer, so that the channel deformation during the steam sterilization process of the microchannel chip is suppressed.
  • the thickness of the bonding layer may be the minimum thickness that can ensure the adhesiveness between the flow path substrate and the lid substrate, for example, 0.1 ⁇ m or more, preferably 0.12 ⁇ m or more, and more preferably 0.
  • the ratio of the thickness of the bonding layer to the depth of the flow path is, for example, 0.1 / 100 or more, preferably 0.12 / 100 or more, more preferably 0.15 / 100 or more, still more preferably 0.2 / 100. It may be the above. Further, the ratio of the thickness of the bonding layer to the depth of the flow path may be, for example, 50/100 or less, preferably 30/100 or less, more preferably 20/100 or less, and further preferably 10/100 or less. ..
  • a cyclic olefin polymer is used as a material for the flow path substrate, the lid substrate, and the bonding layer.
  • the cyclic olefin polymer is suitable for a microchannel chip having excellent durability because the bond strength does not decrease with time and the optical stability does not decrease due to moisture absorption. Further, since the cyclic olefin polymer is a transparent and low autofluorescent material, it is suitable for detecting an optical signal from a fine channel of a microchannel chip.
  • a cyclic olefin polymer As all the materials of the microchannel chip and not using an adhesive material such as an autofluorescent material, it is possible to suppress noise when detecting an optical signal due to autofluorescence by the adhesive material. can.
  • the cyclic olefin polymer used as a material for the flow path substrate, the lid substrate, and the bonding layer satisfies the relationship of the glass transition temperature described later. By satisfying such a relationship of glass transition temperature, even if all the materials of the microchannel chip are cyclic olefin polymers, strong bondability between the substrates can be maintained.
  • the type of the cyclic olefin polymer used as the material of the flow path substrate, the lid substrate, and the bonding layer for example, one that satisfies the relationship of the glass transition temperature may be appropriately selected from the specific examples described later.
  • the cyclic olefin polymer used as a material for the flow path substrate, the lid substrate, and the bonding layer is preferably a cyclic olefin polymer having a water absorption rate of 0.01% by mass or less.
  • the types of the cyclic olefin polymer used as the material of the flow path substrate and the lid substrate may be the same or different.
  • the glass transition temperature Tg s1 material of the cyclic olefin polymer is a channel substrate s1
  • the glass transition of the cyclic olefin polymer is a material of the cover substrate s2 temperature Tg s2
  • the glass transition of the cyclic olefin polymer is a material of the bonding layer
  • Tg 2 satisfies the following. Tg s1 > Tg 2 and Tg s2 > Tg 2 .
  • the channel substrate and the lid substrate are joined at a temperature higher than Tg 2 and lower than Tg s1 and Tg s2 , the channel substrate and the lid are formed. Only the bonding layer can be softened without softening, deforming, or deteriorating the substrate, and bonding by heat fusion is possible.
  • Tg s1 is preferably 125 ° C. or higher, more preferably 130 ° C. or higher. When Tg s1 is in such a range, it is possible to suppress softening, deformation, and alteration of the flow path substrate due to heating (eg, autoclave) during manufacturing and sterilization of the micro flow path chip. Further, Tg s1 is preferably 180 ° C. or lower, more preferably 160 ° C. or lower. Further, in this case, the difference between Tg s1 and Tg 2 is preferably 10 ° C. or higher (that is, Tg s1 ⁇ Tg 2 + 10 ° C.), more preferably 15 ° C.
  • Difference tg s1 and Tg 2 is larger, in the production of micro-channel chip, soften the channel substrate, deformation, thereby facilitating the heating temperature setting to soften the only bonding layer without alteration.
  • the difference between Tg s1 and Tg 2 is preferably 100 ° C. or lower, more preferably 90 ° C. or lower, and even more preferably 80 ° C. or lower. As the difference between the Tg s1 and Tg 2 is reduced, the temperature stability of the bonding layer is improved.
  • Tg s2 is preferably 125 ° C. or higher, more preferably 130 ° C. or higher. When Tg s2 is in such a range, it is possible to suppress softening, deformation, and deterioration of the lid substrate due to heating (eg, autoclave) during manufacturing and sterilization of the microchannel chip. Further, Tg s2 is preferably 180 ° C. or lower, more preferably 160 ° C. or lower. Further, in this case, the difference between Tg s2 and Tg 2 is preferably 10 ° C. or higher (that is, Tg s2 ⁇ Tg 2 + 10 ° C.), more preferably 15 ° C.
  • Difference tg s2 and Tg 2 is larger, in the production of micro-channel chip, softening the cover substrate, deformation, thereby facilitating the heating temperature setting to soften the only bonding layer without alteration.
  • the difference between Tg s2 and Tg 2 is preferably 100 ° C. or less, more preferably 90 ° C. or less, more preferably 80 ° C. or less. As the difference between the Tg s2 and Tg 2 is reduced, the temperature stability of the bonding layer is improved.
  • Tg 2 is preferably 50 ° C. or higher, more preferably 65 ° C. or higher. When Tg 2 is in such a range, the temperature stability of the bonding layer is good. Further, Tg 2 is preferably 130 ° C. or lower, more preferably 110 ° C. or lower, and even more preferably 100 ° C. or lower. When Tg 2 is in such a range, it becomes easy to set the heating temperature for softening only the bonding layer in the production of the microchannel chip.
  • the glass transition temperature can be measured by differential scanning calorimetry (DSC) based on JIS-K7121.
  • the cyclic olefin polymer is, for example, a polymer or a copolymer obtained by polymerizing a monomer as described later (hereinafter, may be collectively referred to as a “polymer”), or a hydride thereof. be.
  • the cyclic olefin polymer may be crystalline or amorphous, but is preferably amorphous.
  • a norbornene-based monomer is preferable.
  • the norbornene-based monomer is a monomer containing a norbornene ring.
  • norbornene-based monomer examples include bicyclo [2.2.1] hept-2-ene (conventional name: norbornene) and 5-ethylidene-bicyclo [2.2.1] hept-2-ene (conventional name: norbornene). : Ethylidene norbornene) and bicyclic monomers such as derivatives thereof (those having a substituent on the ring); tricyclo [5.2.1.0 2,6 ] deca-3,8-diene (conventional) Name: dicyclopentadiene) and tricyclic monomers such as derivatives thereof; tetracyclo [7.4.0.0 2,7 .
  • tetradeca -2,4,6,11- tetraene (common name: methanolate tetrahydrofluorene), tetracyclo [6.2.1.1 3, 6. 0 2,7 ]
  • Dodeca-4-ene (trivial name: tetracyclododecene), 9-ethylidenetetracyclo [6.2.1.1 3,6 . 0 2,7 ]
  • Dodeca-4-ene and tetracyclic monomers such as derivatives thereof; and the like. These monomers may have a substituent at any position.
  • substituents examples include an alkyl group, an alkylene group, a vinyl group, an alkoxycarbonyl group, an alkylidene group and the like, and the above-mentioned norbornene-based monomer may have two or more of these.
  • Specific examples of the derivative include 8-methoxycarbonyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] Dodeca-3-ene, 8-methyl-8-methoxycarbonyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] Dodeca-3-en, 8-ethylidene-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] Dodeca-3-en and the like.
  • the cyclic olefin polymer may be an addition polymer, a ring-opening polymer, or a hydride thereof, but may be a ring-opening polymer or a ring-opening polymer hydrogen. It is preferably a polymer.
  • the cyclic olefin polymer used as a material for the substrate contains a monomer having a methanotetrahydrofluorene (MTF) content of 25 parts by weight or more with respect to a total of 100 parts by weight of the monomer. A polymer obtained by polymerization is preferable.
  • MTF methanotetrahydrofluorene
  • the cyclic olefin polymer used as a material for the bonding layer is a polymer obtained by polymerizing a monomer having a dicyclopentadiene (DCPD) content of 30 parts by weight or more with respect to 100 parts by weight of the total amount of the monomers. Is preferable.
  • DCPD dicyclopentadiene
  • the ring-opening polymer described above can be produced by a method using a ring-opening polymerization catalyst.
  • the ring-opening polymerization catalyst include a catalyst composed of a metal halide such as ruthenium and osmium, a nitrate or an acetylacetone compound, and a reducing agent, or a metal halide or acetylacetone such as titanium, zirconium, tungsten and molybdenum.
  • a catalyst composed of a compound and an organoaluminum compound can be used.
  • ring-opening polymer for example, a method using a metathesis reaction catalyst (ring-opening polymerization catalyst) such as the ruthenium carben complex catalyst described in International Publication No. 2010/11323, and tungsten described in JP-A-2015-54885. (Phenylimide) It can be produced by a method using a ring-opening polymerization catalyst such as a tetrachloride / tetrahydrofuran complex or tungsten hexachloride.
  • ring-opening polymerization catalyst such as the ruthenium carben complex catalyst described in International Publication No. 2010/11323, and tungsten described in JP-A-2015-54885.
  • a ring-opening polymerization catalyst such as a tetrachloride / tetrahydrofuran complex or tungsten hexachloride.
  • the above-mentioned addition polymer can be obtained by polymerizing a monomer using a known addition polymerization catalyst, for example, a catalyst composed of a titanium, zirconium or vanadium compound and an organoaluminum compound.
  • the addition polymer may be, for example, a monomer of a cyclic olefin polymer and, if necessary, a monomer capable of addition copolymerization (other simple monomers) in the presence of the metallocene catalyst described in International Publication No. 2017/199980. It can be produced by addition-copolymerizing (quantity).
  • Examples of other monomers ring-opening copolymerizable with the norbornene-based monomer include monocyclic cyclic olefin-based monomers such as cyclohexene, cycloheptene, and cyclooctene. These norbornene-based monomers and other ring-opening copolymerizable monomers can be used alone or in combination of two or more. In the case of ring-opening copolymerization of the norbornene-based monomer and other monomers capable of ring-opening copolymerization thereof, ring-opening copolymerization is possible with the structural unit derived from the norbornene-based monomer in the ring-opening polymer. The ratio to the structural unit derived from other monomers is usually in the range of 70:30 to 99: 1, preferably 80:20 to 99: 1, and more preferably 90:10 to 99: 1 in terms of weight ratio. It is appropriately selected so as to be.
  • Examples of other monomers that can be additionally copolymerized with the norbornene-based monomer include ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, 1-butene, 1-pentene, and 1-hexene, and these.
  • cycloolefins such as cyclobutene, cyclopentene, cyclohexene, cyclooctene, 3a, 5,6,7a-tetrahydro-4,7-methano-1H-indene, and derivatives thereof; 1,4-hexadiene, 4-methyl Non-conjugated diene such as -1,4-hexadiene, 5-methyl-1,4-hexadiene, 1,7-octadene; and the like.
  • ⁇ -olefins are preferable, and ethylene is particularly preferable.
  • norbornene-based monomers and other monomers that can be additionally copolymerized can be used alone or in combination of two or more.
  • a structural unit derived from the norbornene-based monomer in the addition copolymer and other simple copolymerizable components can be added and copolymerized.
  • the ratio with the structural unit derived from the weight is usually in the range of 30:70 to 99: 1, preferably 50:50 to 97: 3, and more preferably 70:30 to 95: 5 in terms of weight ratio. Be selected.
  • a method for producing a ring-opening polymer hydride containing an alicyclic structure by hydrogenating a ring-opening polymer for example, a method using a hydrogenation catalyst described in International Publication No. 2010/10123 can be mentioned. .. Further, for example, after producing the alicyclic structure-containing polymer by using the above-mentioned ruthenium carben complex catalyst as the ring-opening polymerization catalyst, the ruthenium carben catalyst can be used as it is as a hydrogenation catalyst to contain the alicyclic structure. It is also possible to hydrogenate the ring-opening polymer to produce a ring-opening polymer hydride containing an alicyclic structure.
  • the glass transition temperature (Tg) of the cyclic olefin polymer can be appropriately adjusted according to the type and compounding ratio of the monomers used for the polymerization, the average molecular weight and the molecular weight distribution of the polymer, and the like.
  • At least one of the channel substrate, the lid substrate, and the bonding layer may be composed of two or more layers having different Tg.
  • the microchannel chip of the present invention can be manufactured, for example, by the manufacturing method described below (hereinafter, referred to as “the manufacturing method of the present invention”).
  • the manufacturing method of the present invention includes joining the flow path substrate and the lid substrate by heat fusion via a bonding layer.
  • the manufacturing method of the present invention may be carried out in the order of forming a bonding layer on the entire surface of the substrate and then forming a flow path on the substrate. That is, the production method of the present invention may be carried out through the following steps. (1) A step of forming a bonding layer on at least one of a flow path forming substrate and a lid substrate. (2) A flow path is formed on a flow path forming substrate on which a bonding layer is formed or a flow path forming substrate on which a bonding layer is not formed by, for example, cutting, photolithography, or thermal imprinting, and the bonding layer is formed.
  • a step of forming a flow path substrate in which a flow path substrate or a flow path substrate in which a bonding layer is not formed is formed.
  • FIG. 1 shows an example of a conceptual diagram of the manufacturing method according to this embodiment.
  • the bonding layer may be formed by applying a thin film of a solution of the cyclic olefin polymer as a material of the bonding layer to the entire surface of the substrate and evaporating the solvent.
  • the solvent include organic solvents such as cyclohexane, tetrahydrofuran, toluene, xylene, decalin, methylcyclohexane and ethylcyclohexane, which may be used as a mixed solvent.
  • Evaporation of the solvent is carried out, for example, by drying at a temperature lower than the glass transition temperature of the cyclic olefin polymer used as the material of the bonding layer (eg, heating drying, room temperature drying), heating vacuum (decompression) drying, or a combination thereof. You may go.
  • the flow path is formed on the flow path forming substrate on which the bonding layer is formed, for example, cutting, photolithography, or heat is applied to the surface of the flow path forming substrate on which the bonding layer is formed. It is performed by performing processing such as imprinting to remove the flow path forming portion of the flow path forming substrate together with the bonding layer.
  • a portion other than a portion corresponding to the flow path on the surface of the substrate (flow path substrate, lid substrate) is used. It may be carried out in the order of forming a bonding layer on the portion. That is, the production method of the present invention may be carried out through the following steps. (1) A step of forming a flow path substrate having a flow path formed on at least one surface. (2) A step of forming a bonding layer on a portion of at least one of the flow path substrate and the lid substrate other than the portion corresponding to the flow path.
  • FIG. 2 shows an example of a conceptual diagram of the manufacturing method according to this embodiment.
  • the flow path substrate having the flow path formed on at least one surface may be formed by, for example, injection molding of a cyclic olefin polymer as a material of the substrate, or a flow path forming substrate.
  • it may be formed by performing microfabrication techniques such as photolithography and thermal imprinting, or cutting.
  • the formation of the bonding layer is performed by screen-printing the solution of the cyclic olefin polymer used as the material of the bonding layer on a portion other than the channel corresponding portion on the substrate, or by screen-printing the solution, which corresponds to the channel on the substrate.
  • the pattern may be applied by masking the portion and spray-applied, and the solvent may be evaporated.
  • the manufacturing method of the present invention is carried out in an embodiment after forming a bonding layer on the entire surface of the substrate.
  • the flow path substrate and the lid substrate are superposed via the bonding layer to form a temporary fixing joint, and the temporary fixing joint is heated at a temperature higher than Tg 2 and lower than Tg s1 and Tg s2. It is done by doing.
  • the means for performing heat fusion include an autoclave, a heat press, a roll press and the like.
  • the temperature for heat fusion is preferably Tg 2 + 5 ° C. or higher, more preferably Tg 2 + 10 ° C. or higher.
  • the temperature for heat fusion is preferably Tg 2 + 50 ° C. or lower, more preferably Tg 2 + 40 ° C. or lower.
  • At least one of the flow path substrate, the lid substrate, and the bonding layer may be composed of two or more layers having different Tg.
  • the weight average molecular weight Mw was measured by gel permeation chromatography (GPC) using cyclohexane as an eluent, and was determined as a standard polyisoprene equivalent value.
  • GPC gel permeation chromatography
  • standard polyisoprene standard polyisoprene manufactured by Tosoh Corporation was used.
  • THF tetrahydrofuran
  • standard polystyrene standard polystyrene manufactured by Tosoh Corporation was used.
  • Glass transition temperature measurement method The glass transition temperature (Tg) was measured using a differential scanning calorimeter (manufactured by Nanotechnology, product name: DSC6220SII) under the condition of a heating rate of 10 ° C./min based on JIS-K7121.
  • the amounts represented by the unit "mol%” are all values in which the total amount of the monomers is 100 mol%.
  • the weight average molecular weight of the resulting ring-opened norbornene polymer Mw is 2.8 ⁇ 10 4
  • molecular weight distribution (Mw / Mn) was 2.1.
  • the conversion rate of the monomer to the polymer was 100%.
  • the obtained solution is pressure-filtered at a pressure of 0.25 MPa (“Fundaback filter” manufactured by Ishikawajima Harima Heavy Industries, Ltd.) using Radiolite # 500 as a filtration bed to remove the hydrogenation catalyst. And a colorless and transparent solution was obtained.
  • the obtained solution was poured into a large amount of isopropanol to precipitate a norbornene-based cyclic olefin polymer (COP-1) as a hydride of the ring-opening polymer.
  • COP-1 norbornene-based cyclic olefin polymer
  • the precipitated norbornene-based cyclic olefin polymer (COP-1) was collected by filtration and then dried in a vacuum dryer (220 ° C., 1 Torr) for 6 hours to obtain a norbornene-based cyclic olefin polymer (COP-1).
  • Norbornene based cyclic olefin polymer (COP-1) weight-average molecular weight is 3.5 ⁇ 10 4 of molecular weight distribution Mw / Mn was 2.3.
  • the glass transition temperature Tg of the obtained norbornene-based cyclic olefin polymer (COP-1) was 134 ° C.
  • thermoplastic norbornene-based resin The norbornene-based cyclic olefin polymer (COP-1) obtained in the above step (1-1-2) was put into a twin-screw extruder and molded into a strand-shaped molded body by hot melt extrusion molding. This molded product was shredded using a strand cutter to obtain pellets of a thermoplastic norbornene-based resin containing a norbornene-based cyclic olefin polymer (COP-1).
  • COP-1 thermoplastic norbornene-based cyclic olefin polymer
  • COP-2 ⁇ Manufacturing of COP-2>
  • Norbornene was produced in the same manner as in COP-1, except that 33 parts by weight of tetracyclododecene (TCD), 33 parts by weight of dicyclopentadiene (DCPD), and 34 parts by weight of norbornene (NB) were used as monomers.
  • TCD tetracyclododecene
  • DCPD dicyclopentadiene
  • NB norbornene
  • Pellets of a thermoplastic norbornene-based resin containing a system cyclic olefin polymer (COP-2) and COP-2 were obtained.
  • the glass transition temperature Tg of COP-2 was 70 ° C.
  • COP-3 ⁇ Manufacturing of COP-3>
  • Norbornene was produced in the same manner as in COP-1, except that 22 parts by weight of tetracyclododecene (TCD), 73 parts by weight of dicyclopentadiene (DCPD), and 5 parts by weight of norbornene (NB) were used as monomers.
  • TCD tetracyclododecene
  • DCPD dicyclopentadiene
  • NB norbornene
  • Pellets of a thermoplastic norbornene-based resin containing a system cyclic olefin polymer (COP-3) and COP-3 were obtained.
  • the glass transition temperature Tg of COP-3 was 104 ° C.
  • COP-4 Similar to the production of COP-1, except that 8 parts by weight of methanotetrahydrofluorene (MTF), 36 parts by weight of tetracyclododecene (TCD), and 56 parts by weight of dicyclopentadiene (DCPD) were used as monomers. , Norbornene-based cyclic olefin polymer (COP-4) and thermoplastic norbornene-based resin pellets containing COP-4 were obtained. The glass transition temperature Tg of COP-4 was 124 ° C.
  • COP-5 Similar to the production of COP-1, except that 40 parts by weight of methanotetrahydrofluorene (MTF), 56 parts by weight of tetracyclododecene (TCD), and 4 parts by weight of dicyclopentadiene (DCPD) were used as monomers. , Norbornene-based cyclic olefin polymer (COP-5) and thermoplastic norbornene-based resin pellets containing COP-5 were obtained. The glass transition temperature Tg of COP-5 was 156 ° C.
  • a copolymerization reaction of ethylene and NB was carried out by adding 0.4 liters of a toluene solution containing isopropyridene (cyclopentadienyl) (indenyl) zirconium dichloride and methylarmoxane prepared in advance into the system.
  • the catalyst concentration at this time was 0.018 mmol / liter for isopropyridene (cyclopentadienyl) (indenyl) zirconium dichloride and 8.0 mmol / liter for methylarmoxane for the entire system.
  • ethylene was continuously supplied into the system to maintain the temperature at 70 ° C. and the internal pressure at a gauge pressure of 6 kg / cm 2 .
  • the polymerization reaction was stopped by adding isopropyl alcohol.
  • the polymer solution was taken out and then contacted with an aqueous solution containing 5 liters of concentrated hydrochloric acid to 1 m 3 of water under strong stirring at a ratio of 1: 1 to transfer the catalyst residue to the aqueous phase.
  • the aqueous phase was separated and removed, and further washed with water twice to purify and separate the polymerized liquid phase.
  • the purified and separated polymer solution was brought into contact with 3 times the amount of acetone under strong stirring to precipitate the copolymer, and then the solid part (copolymer) was collected by filtration and sufficiently washed with acetone. Further, in order to extract the unreacted monomer present in the polymer, the solid portion was put into acetone so as to be 40 kg / m 3, and then the extraction operation was carried out at 60 ° C. for 2 hours. After the extraction treatment, the solid part was collected by filtration and dried at 130 ° C. and 350 mmHg for 12 hours under nitrogen flow to obtain an ethylene / NB copolymer (cyclic olefin copolymer: COC).
  • ethylene / NB copolymer (COC) and 0.1 part by weight of the antioxidant (Irganox (registered trademark) 1010) are kneaded with a twin-screw kneader to obtain an ethylene / NB copolymer (ethylene / NB copolymer (registered trademark) 1010).
  • a pellet of a thermoplastic norbornene-based resin containing COC) was obtained.
  • the Tg of the obtained ethylene / NB copolymer (COC) was 137 ° C., and the NB unit content was 51 mol%.
  • the pellets are injection-molded by an injection molding machine (FANUC ROBOSHOT (registered trademark) ⁇ 100B, manufactured by FANUC) at a resin temperature Tg + 150 ° C., a mold temperature Tg-10 ° C., and a holding pressure of 80 MPa by a conventional method, and a flat plate 100 mm ⁇ A substrate (flow path forming substrate and lid substrate) was obtained as a molded product having a size of 100 mm ⁇ 2 mm.
  • FANUC ROBOSHOT registered trademark
  • the obtained solution for the bonding layer is cast on the above-mentioned flat plate 100 mm ⁇ 100 mm ⁇ 2 mm molded product (flow path forming substrate: COP-1 or COC), and a small automatic film applicator (manufactured by Allgood) is used. Wet coating was performed using. The coated flat plate molded product is dried at room temperature for about 10 minutes, then heated and dried in an oven at 80 ° C. for 1 hour, and the molded product coated with the bonding layer (the substrate for forming the flow path on which the bonding layer is formed).
  • the obtained solution for the bonding layer was cast onto the obtained flat plate 100 mm ⁇ 100 mm ⁇ 2 mm molded product (flow path forming substrate: COP-1), and a small automatic film applicator (manufactured by Allgood) was used. Wet coating was performed. The coated flat plate molded product is dried at room temperature for about 10 minutes, then heated and dried in an oven at 120 ° C. for 5 minutes, and the molded product coated with the bonding layer (the substrate for forming the flow path on which the bonding layer is formed).
  • the obtained solution for the bonding layer was cast on the flat plate 100 mm ⁇ 100 mm ⁇ 2 mm molded product (flow path forming substrate: COP-5) obtained above, and a small automatic film applicator (manufactured by Allgood) was used. Wet coating was performed. The coated flat plate molded product is dried at room temperature for about 10 minutes, then heated and dried in an oven at 80 ° C. for 5 minutes, and the molded product coated with the bonding layer (the substrate for forming the flow path on which the bonding layer is formed).
  • a molded product coated with a joint layer (a substrate for forming a flow path on which a joint layer is formed) is subjected to flow path cutting and outer shape processing with an ultra-high precision high-speed microfabrication machine Android II (manufactured by Ibaraki Sangyo Co., Ltd.), and one side is shown in FIG.
  • a flow path substrate 10 (thickness: 2.0 mm, outer shape: 76.0 mm) on which a bonding layer is formed, which has four flow paths 11 (width: 100 ⁇ m, depth 100 ⁇ m) having a pattern as shown in (a). ⁇ 26.0 mm) was obtained.
  • Eight through holes 21 (injection ports) having a diameter of 2.0 mm are formed on the lid substrate obtained in [Manufacturing the substrate], and the outer shape is processed to form the lid substrate 20 (thickness). S: 2.0 mm, outer shape: 76.0 mm ⁇ 26.0 mm). The position of the through hole 21 was set to a position corresponding to the end portion 12 of the flow path 11 of the flow path substrate 10.
  • This degassed package is placed in an autoclave container (Tanderion DL-2010; manufactured by Hanyuda Iron Works) and autoclaved at the temperature shown in Table 1 at 0.8 MPa and a heating and pressurizing time of 90 minutes to join and defoam.
  • the treatment was carried out to obtain a microchannel chip as a bonded body.
  • Adhesive strength was measured according to JIS K 6854-2 (180 ° peeling). As shown in FIG. 3, a notch having a width of 10 mm was made on the sheet (cover substrate) side through the sheet and the adhesive layer. The 10 mm wide part with a notch from the end is exposed so that it can be fixed to the chuck, and the molding plate (flow path substrate) side is attached to the lower chuck of the universal testing machine with oven (Autograph AGS-X10kN; manufactured by Shimadzu Corporation), and the upper chuck. The sheet side was fixed to the oven and held at room temperature for 5 minutes. After holding, peeling was performed by 180 ° at a peeling width of 10 mm and a peeling speed of 100 mm / min, and the peeling strength was obtained, which was used as the adhesive strength.
  • Table 1 shows the types of cyclic olefin polymers used for the substrate (flow path substrate and lid substrate) and the bonding layer, the glass transition temperature Tg, the thickness of the bonding layer, and the evaluation results.
  • the sign of the evaluation has the following meanings.
  • the present invention it is possible to provide a microchannel chip and a method for manufacturing the same, in which the flow path is not deformed even when high temperature and high pressure sterilization treatment is performed, and strong bondability between substrates is maintained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Micromachines (AREA)

Abstract

本発明は、高温高圧滅菌処理を行っても流路は変形せず、基板同士の強力な接合性が維持された、マイクロ流路チップ及びその製造方法を提供することを目的とする。本発明のマイクロ流路チップは、少なくとも一方の表面に微細な流路を形成した流路基板と、蓋基板と、それらを接合する接合層とを含み、流路基板と、蓋基板と、接合層は、環状オレフィン重合体からなり、流路基板を構成する環状オレフィン重合体のガラス転移温度Tgs1、蓋基板を構成する環状オレフィン重合体のガラス転移温度Tgs2、接合層を構成する環状オレフィン重合体のガラス転移温度Tg2の関係は、Tgs1>Tg2、かつTgs2>Tg2であり、接合層の厚さが、所定の範囲である。

Description

マイクロ流路チップ及びその製造方法
 本発明は、マイクロ流路チップ及びその製造方法に関するものである。
 近年、微細加工技術を利用してマイクロメートルオーダーの微小流路や反応容器を形成したチップ(マイクロ流路チップ)が、DNA、RNA、タンパク質等の生体物質の分析・検査、創薬・製薬開発、有機合成、水質分析などの様々な分野で利用されている。
 また、マイクロ流路チップとしては、低コストで製造可能な樹脂製のマイクロ流路チップが注目されている。
 そして、樹脂製のマイクロ流路チップは、少なくとも一方の表面に微細な流路を形成した樹脂製の基板と、蓋材としての樹脂製の蓋基板との間に接合層を介在させて加熱により接合させることにより製造されている(例えば、特許文献1~4参照)。
特許第5948248号 特開2008-304352号公報 特許第5948248号 国際公開第2014/178439号
 マイクロ流路チップに、例えば蒸気滅菌処理のような高温高圧滅菌処理を施した場合、接合層が厚いと滅菌処理時に流路が変形する問題が生じる。また、基板の材料として、透明かつ低自家蛍光性である環状オレフィン重合体を用いて作製されたマイクロ流路チップでは、従来、基板同士の接合性を強力にするために環状オレフィン重合体以外の接着性材料が用いられており、このようなマイクロ流路チップでは、接着性材料による自家蛍光による光シグナル検出の際のノイズの問題が生じる。全ての部材が環状オレフィン重合体から構成され、自家蛍光性材料のような接着性材料を用いずに基板同士の強力な接合性が維持されたマイクロ流路チップは、これまで知られていなかった。
 そこで、本発明は、高温高圧滅菌処理を行っても流路は変形せず、マイクロ流路チップ全体の材料として環状オレフィン重合体を用いても基板同士の強力な接合性が維持された、マイクロ流路チップ及びその製造方法を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意研究した結果、接合層を薄膜とすることにより、高温高圧滅菌処理による流路変形を抑制することができ、基板及び接合層の材料として、所定のガラス転移温度の関係にある環状オレフィン重合体をそれぞれ用いることにより、基板同士の強力な接合性を維持することができることを見出し、本発明を完成するに至った。
 かくして本発明によれば、下記に示すマイクロ流路チップ及びその製造方法が提供される。
〔1〕少なくとも一方の表面に微細な流路を形成した流路基板と、蓋基板と、それらを接合する接合層とを含む、マイクロ流路チップであって、
 流路基板と、蓋基板と、接合層は、環状オレフィン重合体からなり、
 流路基板を構成する環状オレフィン重合体のガラス転移温度Tgs1、蓋基板を構成する環状オレフィン重合体のガラス転移温度Tgs2、接合層を構成する環状オレフィン重合体のガラス転移温度Tg2の関係は、
 Tgs1>Tg2、かつ
 Tgs2>Tg2であり、
 接合層の厚さが、50μm未満である、
 マイクロ流路チップ。
〔2〕Tgs1及びTgs2は、125℃以上であり、且つ、
 Tgs1≧Tg2+10℃、
 Tgs2≧Tg2+10℃
 である、前記〔1〕記載のマイクロ流路チップ。
〔3〕流路基板と蓋基板を接合層を介して熱融着によって接合することを含む、
 前記〔1〕又は〔2〕記載のマイクロ流路チップの製造方法。
〔4〕流路形成用基板及び蓋基板の少なくとも一方上に接合層を形成する工程、
 接合層が形成された流路形成用基板又は接合層が形成されていない流路形成用基板に流路を形成して、接合層が形成された流路基板又は接合層が形成されていない流路基板を形成する工程、
 接合層が形成された流路基板と接合層が形成されていない蓋基板との組合せ、接合層が形成されていない流路基板と接合層が形成された蓋基板との組合せ、及び接合層が形成された流路基板と接合層が形成された蓋基板との組合せの少なくとも一つの組合せを、接合層を介して熱融着によって接合する工程
 を含む、前記〔3〕記載の製造方法。
〔5〕少なくとも一方の面に流路が形成された流路基板を形成する工程、
 流路基板及び蓋基板の少なくとも一方の、少なくとも一方の面における流路に相当する部分以外の部分上に接合層を形成する工程、
 接合層が形成された流路基板と接合層が形成されていない蓋基板との組合せ、接合層が形成されていない流路基板と接合層が形成された蓋基板との組合せ、及び接合層が形成された流路基板と接合層が形成された蓋基板との組合せの少なくとも一つの組合せを、接合層を介して熱融着によって接合する工程
 を含む、前記〔3〕記載の製造方法。
 本発明によれば、高温高圧滅菌処理を行っても流路は変形せず、基板同士の強力な接合性が維持された、マイクロ流路チップ及びその製造方法を提供することができる。
図1は、接合層形成後に流路を形成する、本発明のマイクロ流路チップの製造方法の概念図である。 図2は、流路が形成された流路基板の形成後に接合層を形成する、本発明のマイクロ流路チップの製造方法の概念図である。 図3(a)は、マイクロ流路チップの流路基板の一例を示す平面図であり、図3(b)は、マイクロ流路チップの蓋基板の一例を示す平面図である。
 以下、本発明の実施形態について詳細に説明する。
(マイクロ流路チップ)
 本発明のマイクロ流路チップは、少なくとも一方の表面に微細な流路を形成した流路基板s1と、蓋基板s2と、それらを接合する接合層とを含む。また、本発明のマイクロ流路チップにおいて、
 流路基板s1と、蓋基板s2と、接合層は、環状オレフィン重合体からなり、
 流路基板を構成する環状オレフィン重合体のガラス転移温度Tgs1、蓋基板を構成する環状オレフィン重合体のガラス転移温度Tgs2、接合層を構成する環状オレフィン重合体のガラス転移温度Tg2の関係は、
 Tgs1>Tg2、かつ
 Tgs2>Tg2であり、
 接合層の厚さが、50μ未満である。
<流路基板>
 流路基板としては、少なくとも一方の表面に微細な流路を形成した環状オレフィン重合体製の基板を用いることができる。そして、流路基板は、微細な流路が形成されている面を接合面として、蓋基板と接合される。
 ここで、微細な流路の幅、深さおよび形状は、マイクロ流路チップの用途に応じて適宜に変更することができるが、通常、ミリメートルオーダー以下であり、ナノメートルオーダーであってもよいが、マイクロメートルオーダーであることが好ましい。具体的には、微細な流路の幅は、特に限定されることなく、例えば10μm以上800μm以下とすることができる。
 そして、環状オレフィン重合体製の基板への微細な流路の形成は、例えば、フォトリソグラフィ、熱インプリント等の微細加工技術、切削、射出成形などを用いて行うことができる。また、流路の形成は、接合層が形成されていない流路形成用基板に対して行ってもよく、接合層が形成された後の流路形成用基板に対して行ってもよい。接合層が形成されていない流路形成用基板に対する流路の形成は、例えば、フォトリソグラフィ、熱インプリント等の微細加工技術、切削、射出成形などを用いて行うことができる。接合層が形成された後の流路形成用基板に対する流路の形成は、例えば、フォトリソグラフィ、熱インプリント等の微細加工技術、切削などを、流路形成用基板の接合層が形成された面に対して適用することにより、行うことができる。
<蓋基板>
 蓋基板としては、流路基板に形成された微細な流路に蓋をし得る任意の環状オレフィン重合体製の基板を用いることができる。具体的には、蓋基板としては、流路基板に蓋をし得る平滑面を有し、任意に、流路基板と共にマイクロ流路チップを形成した際に流路基板の微細な流路内へのサンプル等の注入口となる貫通孔を有する基板を用いることができる。そして、蓋基板は、平滑面側を接合面として、流路基板と接合される。なお、蓋基板としては、流路基板に接合される平滑面側とは反対側の面に微細な流路が形成された基板を用いてもよい。
 なお、環状オレフィン重合体製の基板への貫通孔の形成は、例えば、フォトリソグラフィ、熱インプリント等の微細加工技術、切削、射出成形などを用いて行うことができる。また、貫通孔の形成は、接合層が形成されていない流路形成用基板に対して行ってもよく、接合層が形成された後の流路形成用基板に対して行ってもよい。接合層が形成されていない流路形成用基板に対する貫通孔の形成は、例えば、フォトリソグラフィ、熱インプリント等の微細加工技術、切削、射出成形などを用いて行うことができる。接合層が形成された後の流路形成用基板に対する貫通孔の形成は、例えば、フォトリソグラフィ、熱インプリント等の微細加工技術、切削などを、流路形成用基板の接合層が形成された面に対して適用することにより、行うことができる。
<接合層>
 接合層は、流路基板上又は蓋基板上に形成され、流路基板と蓋基板を接合するための部材である。
 接合層の厚さは、50μm未満であり、40μm以下が好ましく、10μm以下がより好ましく、5μm以下が更に好ましい。接合層の厚さが薄いほど、接合層が薄膜となるため、マイクロ流路チップの蒸気滅菌処理を行った際の流路変形が抑制される。また、接合層の厚さは、流路基板と蓋基板との接着性を確保可能な最低限の厚さであればよく、例えば0.1μm以上、好ましくは0.12μm以上、より好ましくは0.15μmm以上、更に好ましくは0.2μm以上であってもよい。
 接合層の厚さの流路の深さに対する比は、例えば0.1/100以上、好ましくは0.12/100以上、より好ましくは0.15/100以上、更に好ましくは0.2/100以上であってもよい。また、接合層の厚さの流路の深さに対する比は、例えば50/100以下、好ましくは30/100以下、より好ましくは20/100以下、更に好ましくは10/100以下であってもよい。
<流路基板、蓋基板、接合層の材料>
 流路基板、蓋基板、接合層の材料としては、環状オレフィン重合体が用いられる。環状オレフィン重合体は、吸湿による接合強度の経時的な低下および光学的安定性の低下が少ないため、耐久性に優れるマイクロ流路チップに適している。また、環状オレフィン重合体は、透明かつ低自家蛍光性の材料であるため、マイクロ流路チップの微細な流路からの光シグナル検出に適している。マイクロ流路チップの全ての材料を環状オレフィン重合体とし、自家蛍光性材料のような接着性材料を用いないことにより、接着性材料による自家蛍光による光シグナル検出の際のノイズを抑制することができる。流路基板、蓋基板、接合層の材料として用いられる環状オレフィン重合体は、後述するガラス転移温度の関係を満たす。このようなガラス転移温度の関係を満たすことにより、マイクロ流路チップの全ての材料を環状オレフィン重合体としても、基板同士の強力な接合性を維持することができる。流路基板、蓋基板、接合層の材料として用いられる環状オレフィン重合体の種類は、例えば、後述する具体例の中から、当該ガラス転移温度の関係を満たすものを適宜選択してもよい。流路基板、蓋基板、接合層の材料として用いられる環状オレフィン重合体は、吸水率が0.01質量%以下の環状オレフィン重合体が好ましい。流路基板、蓋基板の材料として用いられる環状オレフィン重合体の種類は、同じであっても異なっていてもよい。
<<環状オレフィン重合体のガラス転移温度>>
 流路基板s1の材料である環状オレフィン重合体のガラス転移温度Tgs1、蓋基板s2の材料である環状オレフィン重合体のガラス転移温度Tgs2、接合層の材料である環状オレフィン重合体のガラス転移温度Tg2の関係は、以下を満たす。
 Tgs1>Tg2、かつ
 Tgs2>Tg2である。
 上記の関係を満たすことにより、マイクロ流路チップの製造において、流路基板と蓋基板との接合を、Tg2より高く、かつTgs1及びTgs2より低い温度で行えば、流路基板と蓋基板を軟化、変形、変質させずに接合層のみを軟化させることができ、熱融着による接合が可能となる。
 Tgs1は、125℃以上が好ましく、130℃以上がより好ましい。Tgs1がこのような範囲にあることにより、マイクロ流路チップの製造及び滅菌時の加熱(例、オートクレーブ)による流路基板の軟化、変形、変質を抑制することができる。また、Tgs1は、180℃以下が好ましく、160℃以下がより好ましい。更に、この場合において、Tgs1とTg2の差は、10℃以上(即ち、Tgs1≧Tg2+10℃)が好ましく、15℃以上(即ち、Tgs1≧Tg2+15℃)がより好ましく、20℃以上(即ち、Tgs1≧Tg2+20℃)が更に好ましい。Tgs1とTg2の差が大きくなるほど、マイクロ流路チップの製造において、流路基板を軟化、変形、変質させずに接合層のみを軟化させるための加熱温度設定が容易となる。また、Tgs1とTg2の差は、100℃以下が好ましく、90℃以下がより好ましく、80℃以下が更に好ましい。Tgs1とTg2の差が小さくなるほど、接合層の温度安定性が良好となる。
 Tgs2は、125℃以上が好ましく、130℃以上がより好ましい。Tgs2がこのような範囲にあることにより、マイクロ流路チップの製造及び滅菌時の加熱(例、オートクレーブ)による蓋基板の軟化、変形、変質を抑制することができる。また、Tgs2は、180℃以下が好ましく、160℃以下がより好ましい。更に、この場合において、Tgs2とTg2の差は、10℃以上(即ち、Tgs2≧Tg2+10℃)が好ましく、15℃以上(即ち、Tgs2≧Tg2+15℃)がより好ましく、20℃以上(即ち、Tgs2≧Tg2+20℃)が更に好ましい。Tgs2とTg2の差が大きくなるほど、マイクロ流路チップの製造において、蓋基板を軟化、変形、変質させずに接合層のみを軟化させるための加熱温度設定が容易となる。また、Tgs2とTg2の差は、100℃以下が好ましく、90℃以下がより好ましく、80℃以下が更に好ましい。Tgs2とTg2の差が小さくなるほど、接合層の温度安定性が良好となる。
 Tg2は、50℃以上が好ましく、65℃以上がより好ましい。Tg2がこのような範囲にあることにより、接合層の温度安定性が良好となる。また、Tg2は、130℃以下が好ましく、110℃以下がより好ましく、100℃以下がさらに好ましい。Tg2がこのような範囲にあることにより、マイクロ流路チップの製造において、接合層のみを軟化させるための加熱温度設定が容易となる。
 本発明においてガラス転移温度は、JIS-K7121に基づいて示差走査熱量分析法(DSC)で測定することができる。
<<環状オレフィン重合体の種類>>
 環状オレフィン重合体は、例えば、後述するような単量体を重合して得られる重合体又は共重合体(以下、まとめて「重合体」と呼ぶこともある。)、あるいはそれらの水素化物である。環状オレフィン重合体は、結晶性でも非晶性でも良いが、非晶性であることが好ましい。環状オレフィン重合体の単量体としては、好ましくはノルボルネン系単量体が挙げられる。ノルボルネン系単量体は、ノルボルネン環を含む単量体である。ノルボルネン系単量体としては、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、5-エチリデン-ビシクロ[2.2.1]ヘプト-2-エン(慣用名:エチリデンノルボルネン)、および、それらの誘導体(環に置換基を有するもの)等の2環式単量体;トリシクロ[5.2.1.02,6]デカ-3,8-ジエン(慣用名:ジシクロペンタジエン)、および、その誘導体等の3環式単量体;テトラシクロ[7.4.0.02,7.110,13]テトラデカ-2,4,6,11-テトラエン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン(慣用名:テトラシクロドデセン)、9-エチリデンテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、および、それらの誘導体等の4環式単量体;等が挙げられる。これらの単量体は、任意の位置に置換基を有していてもよい。置換基としては、アルキル基、アルキレン基、ビニル基、アルコキシカルボニル基、アルキリデン基などが例示でき、上記ノルボルネン系単量体は、これらを2種以上有していてもよい。誘導体としては、具体的には、8-メトキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メチル-8-メトキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチリデン-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンなどが挙げられる。これらのノルボルネン系単量体は、それぞれ単独で又は2種以上を組み合わせて用いられてもよい。また、環状オレフィン重合体は、付加重合体であってもよいし、開環重合体であってもよいし、それらの水素化物であってもよいが、開環重合体または開環重合体水素化物であることが好ましい。基板(流路基板、蓋基板)の材料として用いられる環状オレフィン重合体は、単量体の合計100重量部に対してメタノテトラヒドロフルオレン(MTF)の含有量が25重量部以上の単量体を重合して得られる重合体が好ましい。接合層の材料として用いられる環状オレフィン重合体は、単量体の合計100重量部に対してジシクロペンタジエン(DCPD)の含有量が30重量部以上の単量体を重合して得られる重合体が好ましい。
 上述した開環重合体は、開環重合触媒を用いる方法により製造することができる。開環重合触媒としては、例えば、ルテニウム、オスミウムなどの金属のハロゲン化物と、硝酸塩又はアセチルアセトン化合物、及び還元剤とからなる触媒、又は、チタン、ジルコニウム、タングステン、モリブデンなどの金属のハロゲン化物又はアセチルアセトン化合物と、有機アルミニウム化合物とからなる触媒を用いることができる。開環重合体は、例えば、国際公開第2010/110323号に記載のルテニウムカルベン錯体触媒などのメタセシス反応触媒(開環重合触媒)を用いる方法、および、特開2015-54885号公報に記載のタングステン(フェニルイミド)テトラクロリド・テトラヒドロフラン錯体、六塩化タングステン等の開環重合触媒を用いる方法、などにより製造することができる。
 上述した付加重合体は、単量体を、公知の付加重合触媒、例えば、チタン、ジルコニウム又はバナジウム化合物と有機アルミニウム化合物とからなる触媒を用いて重合させて得ることができる。付加重合体は、例えば、国際公開第2017/199980号に記載のメタロセン触媒の存在下に、環状オレフィン重合体の単量体及び必要に応じて、付加共重合可能な単量体(他の単量体)を付加共重合することにより製造することができる。
 ノルボルネン系単量体と開環共重合可能な他の単量体としては、シクロヘキセン、シクロヘプテン、シクロオクテンなどの単環の環状オレフィン系単量体などを挙げることができる。
 これらの、ノルボルネン系単量体と開環共重合可能なその他の単量体は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。ノルボルネン系単量体とこれと開環共重合可能なその他の単量体とを開環共重合する場合は、開環重合体中のノルボルネン系単量体由来の構造単位と開環共重合可能なその他の単量体由来の構造単位との割合が、重量比で通常70:30~99:1、好ましくは80:20~99:1、より好ましくは90:10~99:1の範囲となるように適宜選択される。
 ノルボルネン系単量体と付加共重合可能なその他の単量体としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセンなどの炭素数2~20のα-オレフィン、及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセン、シクロオクテン、3a,5,6,7a-テトラヒドロ-4,7-メタノ-1H-インデンなどのシクロオレフィン、及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエンなどの非共役ジエン;などが挙げられる。これらの中でも、α-オレフィンが好ましく、エチレンが特に好ましい。
 これらの、ノルボルネン系単量体と付加共重合可能なその他の単量体は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。ノルボルネン系単量体とこれと付加共重合可能なその他の単量体とを付加共重合する場合は、付加重合体中のノルボルネン系単量体由来の構造単位と付加共重合可能なその他の単量体由来の構造単位との割合が、重量比で通常30:70~99:1、好ましくは50:50~97:3、より好ましくは70:30~95:5の範囲となるように適宜選択される。
 さらに、開環重合体を水素化して脂環式構造含有開環重合体水素化物を製造する方法としては、例えば、国際公開第2010/110323号に記載の水素化触媒を用いる方法などが挙げられる。また、例えば、開環重合触媒として上述したルテニウムカルベン錯体触媒を用いて、脂環式構造含有重合体を製造した後、当該ルテニウムカルベン触媒をそのまま水素化触媒としても使用し、脂環式構造含有開環重合体を水素化して脂環式構造含有開環重合体水素化物を製造することもできる。
 環状オレフィン重合体のガラス転移温度(Tg)は、重合に用いる単量体の種類及び配合率、重合体の平均分子量及び分子量分布等に応じて適宜調整することができる。
 本発明のマイクロ流路チップにおいて、流路基板、蓋基板、及び接合層の少なくとも1つは、Tgの異なる2層以上から構成されていてもよい。
(マイクロ流路チップの製造方法)
 本発明のマイクロ流路チップは、例えば、下記に説明する製造方法(以下、「本発明の製造方法」と呼ぶ。)により製造することができる。
 本発明の製造方法は、流路基板と蓋基板を接合層を介して熱融着によって接合することを含む。
 一実施形態では、本発明の製造方法は、基板の全面に接合層を形成した後に、基板上に流路を形成する順序を経て行われてもよい。即ち、本発明の製造方法は、以下の工程を経て行われてもよい。
(1)流路形成用基板及び蓋基板の少なくとも一方上に接合層を形成する工程、
(2)接合層が形成された流路形成用基板又は接合層が形成されていない流路形成用基板に、例えば、切削、フォトリソグラフィ、又は熱インプリントにより流路を形成して、接合層が形成された流路基板又は接合層が形成されていない流路基板を形成する工程、
(3)接合層が形成された流路基板と接合層が形成されていない蓋基板との組合せ、接合層が形成されていない流路基板と接合層が形成された蓋基板との組合せ、及び接合層が形成された流路基板と接合層が形成された蓋基板との組合せの少なくとも一つの組合せを、接合層を介して熱融着によって接合する工程。
 この実施形態による製造方法の概念図の例を図1に示す。
 この実施形態において、接合層の形成は、接合層の材料となる環状オレフィン重合体の溶液を基板の全面に薄膜塗布し、溶媒を蒸発させることによって行ってもよい。溶媒としては、例えば、シクロヘキサン、テトラヒドロフラン、トルエン、キシレン、デカリン、メチルシクロヘキサン、エチルシクロヘキサン等の有機溶媒が挙げられ、混合溶媒として用いても良い。溶媒の蒸発は、例えば、接合層の材料となる環状オレフィン重合体のガラス転移温度よりも低い温度での乾燥(例、加熱乾燥、室温乾燥)、加熱真空(減圧)乾燥、またはこれらの組合せにより行ってもよい。
 また、この実施形態では、接合層が形成された流路形成用基板に流路を形成する場合、流路形成用基板の接合層が形成された面に、例えば、切削、フォトリソグラフィ、又は熱インプリント等の加工を行って、流路形成用基板の流路形成部分を接合層ごと除去することによって行われる。
 別の実施形態では、本発明の製造方法は、流路が形成された基板(流路基板)を作成した後に、基板(流路基板、蓋基板)の面における流路に相当する部分以外の部分上に接合層を形成する順序を経て行われてもよい。即ち、本発明の製造方法は、以下の工程を経て行われてもよい。
(1)少なくとも一方の面に流路が形成された流路基板を形成する工程、
(2)流路基板及び蓋基板の少なくとも一方の、少なくとも一方の面における流路に相当する部分以外の部分上に接合層を形成する工程、
(3)接合層が形成された流路基板と接合層が形成されていない蓋基板との組合せ、接合層が形成されていない流路基板と接合層が形成された蓋基板との組合せ、及び接合層が形成された流路基板と接合層が形成された蓋基板との組合せの少なくとも一つの組合せを、接合層を介して熱融着によって接合する工程。
 この実施形態による製造方法の概念図の例を図2に示す。
 この実施形態において、少なくとも一方の面に流路が形成された流路基板は、例えば、基板の材料となる環状オレフィン重合体の射出成形を行うことにより形成してもよく、流路形成用基板に、例えば、フォトリソグラフィ、熱インプリント等の微細加工技術、又は切削を行うことにより形成してもよい。
 また、この実施形態において、接合層の形成は、接合層の材料となる環状オレフィン重合体の溶液を、基板上の流路相当部分以外の部分にスクリーン印刷するか、又は基板上の流路相当部分をマスキングしてスプレー塗布することにより、パターン塗布し、溶媒を蒸発させることによって行ってもよい。
 製造容易性の観点から、本発明の製造方法は、基板の全面に接合層を形成することを経てた実施形態で行われることが好ましい。
 熱融着は、流路基板と蓋基板を接合層を介して重ね合わせて、仮止め接合体を形成し、仮止め接合体をTg2より高く、かつTgs1及びTgs2より低い温度で加熱することにより行われる。熱融着を行う手段としては、例えば、オートクレーブ、熱プレス、ロールプレス等が挙げられる。熱融着を行う温度は、Tg2+5℃以上が好ましく、Tg2+10℃以上がより好ましい。また、熱融着を行う温度は、Tg2+50℃以下が好ましく、Tg2+40℃以下がより好ましい。熱融着を行う前に、仮止め接合体から噛みこんだ空気を抜き、圧着を行うことが好ましいが、少量の気泡はオートクレーブ加工時に拡散する為、大きな空気が噛みこんでいなければ問題は無い。
 本発明の製造方法において、流路基板、蓋基板、及び接合層の少なくとも1つは、Tgの異なる2層以上から構成されていてもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
<物性の測定および評価方法>
 各種の物性の測定および評価は、下記の方法に従って行った。
(重量平均分子量Mwの測定方法)
 重量平均分子量Mwは、シクロヘキサンを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)により測定し、標準ポリイソプレン換算値として求めた。標準ポリイソプレンとしては、東ソー株式会社製標準ポリイソプレンを用いた。サンプルがシクロヘキサンに溶解しない場合は、テトラヒドロフラン(THF)を溶離液としてGPCにより測定し、標準ポリスチレン換算値として求めた。標準ポリスチレンとしては、東ソー株式会社製標準ポリスチレンを用いた。
(ガラス転移温度測定方法)
 ガラス転移温度(Tg)は、示差走査熱量分析計(ナノテクノロジー社製、製品名:DSC6220SII)を用いて、JIS-K7121に基づき、昇温速度10℃/分の条件で測定した。
[1-1.環状オレフィン重合体(COP)の製造]
<COP-1の製造>
(1-1-1)開環重合体の製造:
 内部を窒素置換したガラス製反応容器に、後述する単量体の合計100重量部に対して200重量部の脱水したシクロヘキサン、1-ヘキセン0.75mol%、ジイソプロピルエーテル0.15mol%、及びトリイソブチルアルミニウム0.44mol%を、室温で反応器に入れ、混合した。その後、45℃に保ちながら、反応器に、単量体としてのメタノテトラヒドロフルオレン(MTF)28重量部、テトラシクロドデセン(TCD)35重量部、及びジシクロペンタジエン(DCPD)37重量部と、六塩化タングステン(0.65重量%トルエン溶液)0.02mol%とを、並行して2時間かけて連続的に添加し、重合した。次いで、重合溶液に、イソプロピルアルコール0.2mol%を加えて重合触媒を不活性化し、重合反応を停止させた。前記の説明において、単位「mol%」で示される量は、いずれも、単量体の合計量を100mol%とした値である。得られたノルボルネン系開環重合体の重量平均分子量Mwは2.8×104、分子量分布(Mw/Mn)は2.1であった。また、単量体の重合体への転化率は、100%であった。
(1-1-2)水素化によるノルボルネン系環状オレフィン重合体(COP-1)の製造:
 次いで、前記の工程(1-1-1)で得られた開環重合体を含む反応溶液300重量部を攪拌器付きオートクレーブに移し、ケイソウ土担持ニッケル触媒(日揮化学社製「T8400RL」、ニッケル担持率57%)3重量部を添加し、水素圧4.5MPa、160℃で4時間オートクレーブして、水素化反応を行なった。
 水素化反応の終了後、得られた溶液を、ラヂオライト#500を濾過床として、圧力0.25MPaで加圧濾過(石川島播磨重工社製「フンダバックフィルター」)して、水素化触媒を除去し、無色透明な溶液を得た。得られた溶液を、大量のイソプロパノール中に注ぎ、開環重合体の水素化物としてのノルボルネン系環状オレフィン重合体(COP-1)を沈殿させた。沈殿したノルボルネン系環状オレフィン重合体(COP-1)を濾取した後に、真空乾燥機(220℃、1Torr)で6時間乾燥させて、ノルボルネン系環状オレフィン重合体(COP-1)を得た。ノルボルネン系環状オレフィン重合体(COP-1)の重量平均分子量は3.5×104、分子量分布Mw/Mnは2.3であった。
 得られたノルボルネン系環状オレフィン重合体(COP-1)のガラス転移温度Tgは、134℃であった。
(1-1-3)熱可塑性ノルボルネン系樹脂の製造:
 前記の工程(1-1-2)で得られたノルボルネン系環状オレフィン重合体(COP-1)を二軸押出機に投入し、熱溶融押出成形によりストランド状の成形体に成形した。この成形体をストランドカッターを用いて細断して、ノルボルネン系環状オレフィン重合体(COP-1)を含む熱可塑性ノルボルネン系樹脂のペレットを得た。
<COP-2の製造>
 単量体として、テトラシクロドデセン(TCD)33重量部、ジシクロペンタジエン(DCPD)33重量部、及びノルボルネン(NB)34重量部を用いた以外はCOP-1の製造と同様にして、ノルボルネン系環状オレフィン重合体(COP-2)及びCOP-2を含む熱可塑性ノルボルネン系樹脂のペレットを得た。COP-2のガラス転移温度Tgは、70℃であった。
<COP-3の製造>
 単量体として、テトラシクロドデセン(TCD)22重量部、ジシクロペンタジエン(DCPD)73重量部、及びノルボルネン(NB)5重量部を用いた以外はCOP-1の製造と同様にして、ノルボルネン系環状オレフィン重合体(COP-3)及びCOP-3を含む熱可塑性ノルボルネン系樹脂のペレットを得た。COP-3のガラス転移温度Tgは、104℃であった。
<COP-4の製造>
 単量体として、メタノテトラヒドロフルオレン(MTF)8重量部、テトラシクロドデセン(TCD)36重量部、及びジシクロペンタジエン(DCPD)56重量部を用いた以外はCOP-1の製造と同様にして、ノルボルネン系環状オレフィン重合体(COP-4)及びCOP-4を含む熱可塑性ノルボルネン系樹脂のペレットを得た。COP-4のガラス転移温度Tgは、124℃であった。
<COP-5の製造>
 単量体として、メタノテトラヒドロフルオレン(MTF)40重量部、テトラシクロドデセン(TCD)56重量部、及びジシクロペンタジエン(DCPD)4重量部を用いた以外はCOP-1の製造と同様にして、ノルボルネン系環状オレフィン重合体(COP-5)及びCOP-5を含む熱可塑性ノルボルネン系樹脂のペレットを得た。COP-5のガラス転移温度Tgは、156℃であった。
[1-2.環状オレフィン共重合体(COC)の製造]
 シクロヘキサン258リットルを装入した反応容器に、常温、窒素気流下でビシクロ[2.2.1]ヘプト-2-エン(以下、「NB」という)(120kg)を加え、5分間撹拌を行った。さらにトリイソブチルアルミニウムを系内の濃度が1.0mL/リットルとなるように添加した。続いて、撹拌しながら常圧でエチレンを流通させ系内をエチレン雰囲気とした。オートクレーブの内温を70℃に保ち、エチレンにて内圧がゲージ圧で6kg/cm2となるように加圧した。10分間撹拌した後、予め用意したイソプロピリデン(シクロペンタジエニル)(インデニル)ジルコニウムジクロリド及びメチルアルモキサンを含むトルエン溶液0.4リットルを系内に添加することによって、エチレン、NBの共重合反応を開始させた。このときの触媒濃度は、全系に対してイソプロピリデン(シクロペンタジエニル)(インデニル)ジルコニウムジクロリドが0.018mmol/リットルであり、メチルアルモキサンが8.0mmol/リットルであった。
 重合中、系内にエチレンを連続的に供給することにより、温度を70℃、内圧をゲージ圧で6kg/cm2に保持した。60分後、イソプロピルアルコールを添加することにより、重合反応を停止した。脱圧後、ポリマー溶液を取り出し、その後、水1m3に対し濃塩酸5リットルを添加した水溶液と1:1の割合で強撹拌下に接触させ、触媒残渣を水相へ移行させた。この接触混合液を静置したのち、水相を分離除去し、さらに水洗を2回行い、重合液相を精製分離した。
 次いで、精製分離された重合液を3倍量のアセトンと強撹拌下で接触させ、共重合体を析出させた後、固体部(共重合体)を濾過により採取し、アセトンで十分洗浄した。さらに、ポリマー中に存在する未反応のモノマーを抽出するため、この固体部を40kg/m3となるようにアセトン中に投入した後、60℃で2時間の条件で抽出操作を行った。抽出処理後、固体部を濾過により採取し、窒素流通下、130℃、350mmHgで12時間乾燥し、エチレン・NB共重合体(環状オレフィン共重合体:COC)を得た。得られたエチレン・NB共重合体(COC)100重量部、酸化防止剤(イルガノックス(登録商標)1010)0.1重量部を2軸混練機で混練して、エチレン・NB共重合体(COC)を含む熱可塑性ノルボルネン系樹脂のペレットを得た。
 以上のようにして、得られたエチレン・NB共重合体(COC)のTgは137℃であり、NB単位含量は51モル%であった。
[2.基板の製造]
 実施例1~10、比較例1、2において、表1に示す基板用環状オレフィン重合体または環状オレフィン共重合体(熱可塑性ノルボルネン系樹脂のペレット:COP-1、COP-5、またはCOC)をTg-20℃で5時間乾燥した。その後、常法によって該ペレットを射出成形機(FANUC ROBOSHOT(登録商標)α100B、ファナック社製)を用いて樹脂温度Tg+150℃、型温Tg-10℃、保圧80MPaで射出成形し、平板100mm×100mm×2mmの成形品として基板(流路形成用基板及び蓋基板)を得た。
[3.基板上での接合層の形成]
(3-1.実施例1~8、比較例1、2での接合層の形成)
 表1に示す接合層用熱可塑性ノルボルネン系樹脂(COP-2、COP-3、COP-4、またはCOP-1)のペレット20重量部に対して、シクロヘキサン(特級:和光純薬製)を80重量部をそれぞれガラス製密閉容器(パイレックス(登録商標)メディウム瓶:コーニング製)に密閉し、室温で振とう溶解させて、固形分濃度が20重量%のシクロヘキサン溶液(接合層用溶液)を作成した。
 得られた接合層用溶液を、上で得られた平板100mm×100mm×2mm成形品(流路形成用基板:COP-1またはCOC)上にキャストし、小型自動フィルムアプリケーター(オールグッド社製)を用いてウェットコーティングを行った。コーティングされた平板成形品を室温にて10分ほど乾燥させ、次に80℃オーブンにて1時間加熱乾燥を行い、接合層をコーティングした成形品(接合層が形成された流路形成用基板)を得た。
(3-2.実施例9での接合層の形成)
 表1に示す接合層用熱可塑性ノルボルネン系樹脂(COP-2)のペレット20重量部に対して、キシレン(特級:和光純薬製)を80重量部をそれぞれガラス製密閉容器(パイレックス(登録商標)メディウム瓶:コーニング製)に密閉し、室温で振とう溶解させて、固形分濃度が20重量%のキシレン溶液(接合層用溶液)を作成した。
 得られた接合層用溶液を、上で得られた平板100mm×100mm×2mm成形品(流路形成用基板:COP-1)上にキャストし、小型自動フィルムアプリケーター(オールグッド社製)を用いてウェットコーティングを行った。コーティングされた平板成形品を室温にて10分ほど乾燥させ、次に120℃オーブンにて5分加熱乾燥を行い、接合層をコーティングした成形品(接合層が形成された流路形成用基板)を得た。
(3-3.実施例10での接合層の形成)
 表1に示す接合層用熱可塑性ノルボルネン系樹脂(COP-3)のペレット20重量部に対して、シクロヘキサン(特級:和光純薬製)を80重量部をそれぞれガラス製密閉容器(パイレックス(登録商標)メディウム瓶:コーニング製)に密閉し、室温で振とう溶解させて、固形分濃度が20重量%のシクロヘキサン溶液(接合層用溶液)を作成した。
 得られた接合層用溶液を、上で得られた平板100mm×100mm×2mm成形品(流路形成用基板:COP-5)上にキャストし、小型自動フィルムアプリケーター(オールグッド社製)を用いてウェットコーティングを行った。コーティングされた平板成形品を室温にて10分ほど乾燥させ、次に80℃オーブンにて5分加熱乾燥を行い、接合層をコーティングした成形品(接合層が形成された流路形成用基板)を得た。
[4.基板の流路切削]
 接合層がコーティングされた成形品(接合層が形成された流路形成用基板)を超高精度高速微細加工機AndroidII(碌々産業社製)で流路切削と外形加工を行い、片面に図3(a)に示すようなパターンの4本の流路11(幅:100μm、深さ100μm)を有する、接合層が形成された流路基板10(厚さ:2.0mm、外形:76.0mm×26.0mm)を得た。
 また、上記[2.基板の製造]で得られた蓋基板に対し、図3(b)に示すように直径2.0mmの貫通孔21(注入口)を8個形成し、外形加工を行い、蓋基板20(厚さ:2.0mm、外形:76.0mm×26.0mm)とした。なお、貫通孔21の位置は、流路基板10の流路11の端部12に対応する位置とした。
[5.基板同士の貼り合わせ]
 接合層が形成された流路基板と蓋基板を重ね合わせた後、ゴムロールで数回押し当てて、噛みこんだ空気を抜き、圧着を行い、仮止め接合体Aを作成した。なお、少量の気泡はオートクレーブ加工時に拡散する為、大きな空気が噛みこんでいなければ問題は無い。仮止め接合体Aをレトルトパウチ用袋(メイワパックス製)に挿入し、真空包装機(TECHNOVAC T1000;日本包装機械製)にて脱気包装した。この脱気包装体をオートクレーブ容器(タンデライオンDL-2010;羽生田鐵工所製)に入れ、表1に示す温度で、0.8MPa、加熱加圧時間90分でオートクレーブすることにより接合と消泡処理を行い、マイクロ流路チップを接合体として得た。
[6.評価]
<接着強度>
 接着強度は、JIS K 6854-2(180°剥離)に準拠して測定した。接合体を図3のようにシート(蓋基板)側に幅10mmの切り込みをシートと粘着層を貫通して入れた。端部から切り込みを入れた10mm幅部分をチャック固定できるように剥き出し、オーブン付き万能試験機(オートグラフAGS-X10kN;島津製作所製)の下部チャックに成形板(流路基板)側を、上部チャックにシート側を固定し、室温で5分保持した。保持後に、剥離幅10mm、剥離速度100mm/minにて180°剥離を行い、剥離強度を求め、これを接着強度とした。
<送液試験>
 5個のサンプルについて、作製したマイクロ流路チップの各流路に、圧力制御型無脈流ポンプP-Pump(高砂電気工業社製)を用いて、インク水溶液を注入口より注入した。出口側は、シリコンゴムで封止して、送液の圧力を650kPaまで上げ3分間保持した。そして、流路から接合部へのインク水溶液のにじみの有無を目視により確認した。
<接合断面の観察、接合層の厚み測定>
 得られた接合体(マイクロ流路チップ)をイオンミリング装置IM4000PLUS(日立ハイテク社製)を用いてクライオミリングモードで断面出しを行った。その断面を電界放出形走査電子顕微鏡FE-SEM8220(日立ハイテク社製)で観察し、接合層の厚みを測定した。
<蒸気滅菌前後の流路断面評価>
(蒸気滅菌)
 得られた接合体(マイクロ流路チップ)を小型高圧蒸気滅菌器を用いて、121℃、0.12MPa、30minの条件下で蒸気滅菌を行った。
(流路断面評価)
 蒸気滅菌前の断面積S1、蒸気滅菌後の面積S2を電界放出形走査電子顕微鏡FE-SEM8220(日立ハイテク社製)で測定した。
 流路形状保持率をS2/S1×100(%)とした。
[7.結果]
 基板(流路基板及び蓋基板)及び接合層に用いた環状オレフィン重合体の種類、ガラス転移温度Tg、接合層の厚さ、各評価結果を表1に示す。評価の符号は、以下の意味を表す。
<送液試験>
〇:液漏れなし
×:液漏れあり
<蒸気滅菌後の流路断面評価>
 流路形状保持率
◎:95%以上
〇:90%以上95%未満
△:80%以上90%未満
×:80%未満
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、高温高圧滅菌処理を行っても流路は変形せず、基板同士の強力な接合性が維持された、マイクロ流路チップ及びその製造方法を提供することができる。
10 流路基板
11 流路
12 両端部
20 蓋基板
21 貫通孔

Claims (5)

  1.  少なくとも一方の表面に微細な流路を形成した流路基板と、蓋基板と、それらを接合する接合層とを含む、マイクロ流路チップであって、
     流路基板と、蓋基板と、接合層は、環状オレフィン重合体からなり、
     流路基板を構成する環状オレフィン重合体のガラス転移温度Tgs1、蓋基板を構成する環状オレフィン重合体のガラス転移温度Tgs2、接合層を構成する環状オレフィン重合体のガラス転移温度Tg2の関係は、
     Tgs1>Tg2、かつ
     Tgs2>Tg2であり、
     接合層の厚さが、50μm未満である、
     マイクロ流路チップ。
  2.  Tgs1及びTgs2は、125℃以上であり、且つ、
     Tgs1≧Tg2+10℃、
     Tgs2≧Tg2+10℃
     である、請求項1記載のマイクロ流路チップ。
  3.  流路基板と蓋基板を接合層を介して熱融着によって接合することを含む、
     請求項1又は2記載のマイクロ流路チップの製造方法。
  4.  流路形成用基板及び蓋基板の少なくとも一方上に接合層を形成する工程、
     接合層が形成された流路形成用基板又は接合層が形成されていない流路形成用基板に流路を形成して、接合層が形成された流路基板又は接合層が形成されていない流路基板を形成する工程、
     接合層が形成された流路基板と接合層が形成されていない蓋基板との組合せ、接合層が形成されていない流路基板と接合層が形成された蓋基板との組合せ、及び接合層が形成された流路基板と接合層が形成された蓋基板との組合せの少なくとも一つの組合せを、接合層を介して熱融着によって接合する工程
     を含む、請求項3記載の製造方法。
  5.  少なくとも一方の面に流路が形成された流路基板を形成する工程、
     流路基板及び蓋基板の少なくとも一方の、少なくとも一方の面における流路に相当する部分以外の部分上に接合層を形成する工程、
     接合層が形成された流路基板と接合層が形成されていない蓋基板との組合せ、接合層が形成されていない流路基板と接合層が形成された蓋基板との組合せ、及び接合層が形成された流路基板と接合層が形成された蓋基板との組合せの少なくとも一つの組合せを、接合層を介して熱融着によって接合する工程
     を含む、請求項3記載の製造方法。
PCT/JP2021/019664 2020-05-29 2021-05-24 マイクロ流路チップ及びその製造方法 WO2021241516A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21813580.4A EP4159669A4 (en) 2020-05-29 2021-05-24 MICROCHANNEL CHIP AND METHOD FOR PRODUCING THEREOF
US17/998,492 US12091308B2 (en) 2020-05-29 2021-05-24 Microchannel chip and method for manufacturing same
JP2022526539A JPWO2021241516A1 (ja) 2020-05-29 2021-05-24
CN202180034465.7A CN115605425A (zh) 2020-05-29 2021-05-24 微通道芯片及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020094889 2020-05-29
JP2020-094889 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021241516A1 true WO2021241516A1 (ja) 2021-12-02

Family

ID=78744408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019664 WO2021241516A1 (ja) 2020-05-29 2021-05-24 マイクロ流路チップ及びその製造方法

Country Status (5)

Country Link
US (1) US12091308B2 (ja)
EP (1) EP4159669A4 (ja)
JP (1) JPWO2021241516A1 (ja)
CN (1) CN115605425A (ja)
WO (1) WO2021241516A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110323A1 (ja) 2009-03-26 2010-09-30 日本ゼオン株式会社 重合体、水素添加物、樹脂組成物、樹脂膜及び電子部品
JP2012066518A (ja) * 2010-09-24 2012-04-05 Nippon Zeon Co Ltd マイクロチップ基板の接合方法
JP2015054885A (ja) 2013-09-11 2015-03-23 日本ゼオン株式会社 結晶性樹脂組成物
WO2017199980A1 (ja) 2016-05-16 2017-11-23 日本ゼオン株式会社 水素化重合体、成形材料および樹脂成形体
WO2018180508A1 (ja) * 2017-03-30 2018-10-04 日本ゼオン株式会社 マイクロ流路チップの製造方法
JP2018161687A (ja) * 2017-03-24 2018-10-18 住友ベークライト株式会社 構造体
JP2019129748A (ja) * 2018-01-30 2019-08-08 日本ゼオン株式会社 培養容器
JP2020011403A (ja) * 2018-07-13 2020-01-23 サムコ株式会社 シクロオレフィンポリマーの接合方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304352A (ja) 2007-06-08 2008-12-18 Sumitomo Bakelite Co Ltd 流路デバイス用基板の接合方法および流路デバイス
WO2012060186A1 (ja) 2010-11-01 2012-05-10 コニカミノルタオプト株式会社 マイクロチップ、及び、マイクロチップの製造方法
WO2014178439A1 (ja) 2013-05-02 2014-11-06 アルプス電気株式会社 接合部材及びその製造方法
JP2016107251A (ja) * 2014-12-10 2016-06-20 株式会社エンプラス 流体取扱装置および流体取扱装置の製造方法
DE102018217907B3 (de) * 2018-10-19 2019-12-19 SpinDiag GmbH Probenbehälter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110323A1 (ja) 2009-03-26 2010-09-30 日本ゼオン株式会社 重合体、水素添加物、樹脂組成物、樹脂膜及び電子部品
JP2012066518A (ja) * 2010-09-24 2012-04-05 Nippon Zeon Co Ltd マイクロチップ基板の接合方法
JP2015054885A (ja) 2013-09-11 2015-03-23 日本ゼオン株式会社 結晶性樹脂組成物
WO2017199980A1 (ja) 2016-05-16 2017-11-23 日本ゼオン株式会社 水素化重合体、成形材料および樹脂成形体
JP2018161687A (ja) * 2017-03-24 2018-10-18 住友ベークライト株式会社 構造体
WO2018180508A1 (ja) * 2017-03-30 2018-10-04 日本ゼオン株式会社 マイクロ流路チップの製造方法
JP2019129748A (ja) * 2018-01-30 2019-08-08 日本ゼオン株式会社 培養容器
JP2020011403A (ja) * 2018-07-13 2020-01-23 サムコ株式会社 シクロオレフィンポリマーの接合方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4159669A4

Also Published As

Publication number Publication date
JPWO2021241516A1 (ja) 2021-12-02
EP4159669A1 (en) 2023-04-05
EP4159669A4 (en) 2024-01-17
US20230212000A1 (en) 2023-07-06
US12091308B2 (en) 2024-09-17
CN115605425A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
EP2305729B1 (en) Hydrogenated norbornene-based ring-opening polymerization polymer, resin composition, and molded object
JP2002308323A (ja) 容 器
WO2021241516A1 (ja) マイクロ流路チップ及びその製造方法
WO2004001397A1 (ja) 脂環式構造含有重合体樹脂製容器及びそれを用いる光学的分析方法
WO2023053952A1 (ja) 積層体及びその製造方法
WO2023189188A1 (ja) 接合体及びその製造方法
JP2012066518A (ja) マイクロチップ基板の接合方法
WO2024154617A1 (ja) 環状オレフィン樹脂製流路デバイスの製造方法
US20220259567A1 (en) Culture method and culture vessel
US20240075694A1 (en) Method of joining resin members
US20230182440A1 (en) Assembly and method for manufacturing same
JP2001316455A (ja) 脂環構造含有重合体の製造方法および成形体
JP4292405B2 (ja) 検査素子用のチップ基板およびその製造方法
JP2003181989A (ja) 積層体及びその製造方法
WO2022044870A1 (ja) 減光フィルム及びその製造方法、並びに積層体
JP2003062943A (ja) 樹脂積層体
JP2010082849A (ja) 樹脂組成物、樹脂型及び当該樹脂型を使用する成形体の製造方法
JP2003082021A (ja) 環構造含有重合体水素添加物の製造方法
JP2022025841A (ja) フィルターおよびその製造方法
WO2024185490A1 (ja) 脂環式構造含有重合体再生物の製造方法
JP5768403B2 (ja) バイオチップ用樹脂組成物及びその利用
JP2006282696A (ja) ノルボルネン系開環重合体水素添加物の製造方法及び得られるノルボルネン系開環重合体水素添加物
JP2003246807A (ja) 脂環構造含有重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526539

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021813580

Country of ref document: EP

Effective date: 20230102