WO2004001397A1 - 脂環式構造含有重合体樹脂製容器及びそれを用いる光学的分析方法 - Google Patents

脂環式構造含有重合体樹脂製容器及びそれを用いる光学的分析方法 Download PDF

Info

Publication number
WO2004001397A1
WO2004001397A1 PCT/JP2003/007725 JP0307725W WO2004001397A1 WO 2004001397 A1 WO2004001397 A1 WO 2004001397A1 JP 0307725 W JP0307725 W JP 0307725W WO 2004001397 A1 WO2004001397 A1 WO 2004001397A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
measured
substance
side wall
alicyclic structure
Prior art date
Application number
PCT/JP2003/007725
Other languages
English (en)
French (fr)
Inventor
Mitsushi Tada
Ikuhiro Yoneda
Toshihiko Jimbo
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to EP03733487A priority Critical patent/EP1524514A4/en
Priority to US10/518,493 priority patent/US20060096884A1/en
Priority to JP2004515507A priority patent/JPWO2004001397A1/ja
Publication of WO2004001397A1 publication Critical patent/WO2004001397A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0389Windows

Definitions

  • the present invention relates to an alicyclic structure-containing polymer resin container and an optical analysis method using the same, and more particularly, to a method capable of obtaining a higher measurement accuracy than conventional ones, and being used repeatedly.
  • the present invention relates to an alicyclic structure-containing polymer resin container which can be used and an optical analysis method using the same. Background art
  • quartz cells are conventionally used. Quartz cells are expensive, so they are washed and used repeatedly. However, they are very difficult to handle because they have low impact resistance and break when dropped. For this reason, cells that are relatively cheaper than quartz are required. From such a viewpoint, polymer materials such as polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene (PS), and polyethylene terephthalate (PET) have been adopted. Since these polymer materials generally absorb in the ultraviolet region, accurate measurement values can be obtained even when the purity of the target substance is measured using a cell made of these materials by an absorbance analysis method or the like. Was not found.
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • PS polystyrene
  • PET polyethylene terephthalate
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • problems such as high water absorption, high hydrolyzability during injection molding, and large birefringence.
  • PMMA has a low thermal stability such that a decomposition reaction based on depolymerization occurs at a relatively low temperature of 280 ° C, and thus there is a problem that the cell body contains a relatively large amount of monomer.
  • Japanese Patent Application Laid-Open No. H08-136436 proposes an analysis cell formed from a cyclic olefin resin. Further, Japanese Patent Application Laid-Open No. 2000-39420 discloses a homopolymer comprising 1,3-cyclohexadiene (CHD) or a CHD derivative and other homopolymers copolymerizable with these. A polymer obtained by hydrogenating a copolymer with a It has been proposed to obtain a resin microchip by injection molding of the united product.
  • CHD 1,3-cyclohexadiene
  • An object of the present invention is to provide a container capable of obtaining excellent measurement accuracy in the ultraviolet wavelength region even when used repeatedly, and an optical analysis method using the same.
  • the present inventors have studied the decrease in measurement accuracy due to repeated use of the container, and as a result, have determined that the surface roughness of the contact surface with the substance to be measured is a specific value. It has been found that measurement accuracy is significantly improved by using, and that the measurement accuracy does not decrease much even when used repeatedly, and based on such knowledge, the present invention has been completed.
  • a container for optical analysis comprising a bottom portion and a side wall portion, wherein the bottom portion and the side wall portion are made of an alicyclic structure-containing polymer resin, and a contact surface between the bottom portion and the side wall portion and the substance to be measured is:
  • An optical analysis container having a surface roughness Ra of 1 m or less in a portion through which light for optical analysis transmits,
  • a method for optically analyzing a substance to be measured comprising a container having a bottom portion and a side wall portion, wherein the bottom surface and the side wall surface are made of an alicyclic structure-containing polymer resin; Put the substance to be measured in a container with a surface roughness Ra of 1 ⁇ m or less at the contact surface between the side wall and the substance to be measured, and perform optical analysis of the substance to be measured using a light beam with a wavelength of 240 to 400 nm. How to do, and
  • the container of the present invention can be used repeatedly because the absorbance in the ultraviolet wavelength region is small and the absorbance before and after the alkali washing hardly changes. Further, by using the container of the present invention, optical analysis in the ultraviolet wavelength region can be repeatedly performed with high precision.
  • FIG. 1 is a diagram showing a container according to an embodiment of the present invention and a basic configuration of an optical analysis method using the container,
  • FIG. 2 is a perspective view showing a container according to the embodiment of the present invention.
  • FIG. 3 is a sectional view taken along the line III-III in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the optical analysis container 1 of the present invention is an optical analysis container comprising a bottom 11 and a side wall 12, wherein the bottom 11 and the side wall 12 are an alicyclic structure-containing polymer resin.
  • the portion through which the light R for optical analysis transmits 11a surface roughness Ra power S 1 ⁇ m or less, preferably 0.5 // m or less, more preferably 0.m or less is there.
  • the contact surface between the bottom 11 and the side wall 12 and the substance 2 to be measured includes a portion 11 a through which light passes and a portion 12 a through which light does not pass.
  • the surface roughness Ra of the non-transmitting portion 12a is also preferably 1 m or less, more preferably 0.5 ⁇ or less, and particularly preferably 0.2 ⁇ or less.
  • Container 1 of the present invention it is preferable thickness t 2 is less than 3 mm.
  • the lower limit of the wall thickness t l5 t 2 can be appropriately selected in consideration of the strength of the container 1, and is usually about 50 ⁇ .
  • the thick tt 2 is thick and increases Ya birefringence of absorbance increased over the range, the measurement accuracy tends to decrease.
  • the absorbance at a wavelength of 240 to 400 nm is preferably 0.4 or less, more preferably 0.3 or less, particularly preferably at 0.2 or less is there.
  • the measurement accuracy can be improved.
  • the alicyclic structure-containing polymer resin used for producing the container 1 of the present invention contains an alicyclic structure in a repeating unit of the polymer, and the alicyclic structure has a main chain and a side chain. It may be in any of.
  • the alicyclic structure include a cycloalkane structure and a cycloalkene structure. From the viewpoint of thermal stability and the like, a cycloalkane structure is preferred.
  • the number of carbon atoms constituting the alicyclic structure is usually 4 to 30, preferably 5 to 20, and more preferably 5 to 15. When the number of carbon atoms constituting the alicyclic structure is in this range, a container for optical analysis having excellent heat resistance and flexibility can be obtained.
  • the proportion of the alicyclic structure-containing polymer resin of the repeating unit that having a alicyclic structure may be employed to properly selection according to the intended use, but is usually 50 wt ° / 0 or more, preferably 70 wt % Or more, more preferred Or more than 90% by weight. If the proportion of the repeating unit having an alicyclic structure is too small, heat resistance is undesirably reduced.
  • the repeating unit other than the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer resin is appropriately selected according to the purpose of use.
  • the alicyclic structure-containing polymer resin examples include (1) a norbornene-based polymer, (2) a monocyclic cyclic olefin polymer, (3) a cyclic conjugated diene polymer, and (4) vinyl Alicyclic hydrocarbon polymers; and hydrogenated products of (1) to (4).
  • a norbornene-based polymer or a hydrogenated product thereof is preferable from the viewpoints of heat resistance, mechanical strength, and the like.
  • Examples of the norpolene-based polymer for producing the container of the present invention include a ring-opened polymer of a norpol- ene-based monomer, a ring-opened copolymer of a norbornene-based monomer and another monomer capable of being subjected to ring-opening copolymerization, Examples thereof include a hydrogenated product, an addition polymer of a norbornene-based monomer, and an addition copolymer of a norbornene-based monomer and another monomer copolymerizable therewith.
  • a hydrogenated ring-opening polymer of a norbornene-based monomer is most preferable.
  • substituents examples include an alkyl group, an alkylene group, a butyl group, an alkoxycarbonyl group, and the like.
  • the norbornene-based monomer may have two or more of these substituents.
  • 8-methoxycarbonyloxy group Tetorashikuro [4. 4. 0. I 2 '5 1 7.' 10] - Dodeka 3 E down, 8-methyl-8-menu Tokishikarubo - le - tetracyclo [4.4 . 0. I 2 ' 5. 1 7 ' 10 ] It is.
  • norpolene-based monomers can be used alone or in combination of two or more.
  • ring-opening polymers of norpolene-based monomers or ring-opening copolymers of norbornene-based monomers and other monomers capable of ring-opening copolymerization are obtained by polymerizing monomer components in the presence of a known ring-opening polymerization catalyst.
  • a known ring-opening polymerization catalyst include a catalyst comprising a metal halide such as ruthenium and osmium, a nitrate or an acetylacetonate compound, and a reducing agent, or a metal such as titanium, zirconium, tungsten, and molybdenum.
  • a catalyst composed of a halide or acetylaceton compound and an organic aluminum compound can be used.
  • Examples of other monomers capable of ring-opening copolymerization with norbornene monomers include, for example, monocyclic cyclic olefin monomers such as cyclohexene, cycloheptene, and cyclootaten.
  • the hydrogenated ring-opening polymer of a norbornene-based monomer is usually prepared by adding a known hydrogenation catalyst containing a transition metal such as nickel or palladium to a polymerization solution of the above-mentioned ring-opening polymer to obtain carbon-carbon unsaturated. It can be obtained by hydrogenating the bond.
  • An addition polymer of a norbornene-based monomer or an addition (co) polymer of a norbornene-based monomer and another monomer copolymerizable therewith is used to convert these monomers into a known addition polymerization catalyst, for example, titanium. It can be obtained by (co) polymerization using a catalyst comprising a zirconium or vanadium compound and an organic aluminum compound.
  • monomers that can be copolymerized with norpoleneene-based monomers include, for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1 ⁇ -olefins having 2 to 20 carbon atoms, such as 1-hexadecene, 1-year-old kuta-decene, 1-eicosene, and derivatives thereof; cyclobutene, cyclopentene, cyclohexene, cyclooctene, 3a, 5,6,7 Cycloolefins such as a-tetrahydro-1,4,7-methano 1H-indene and derivatives thereof; 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4,1 Non-conjugated diene such as xadiene and 1,7-octa
  • these other monomers copolymerizable with the norbornene-based monomer can be used alone or in combination of two or more.
  • the structural unit derived from the norbornene-based monomer and the structural unit derived from another copolymerizable monomer in the addition copolymer may be used.
  • the ratio is appropriately selected so that the weight ratio is usually in the range of 30:70 to 99: 1, preferably 50:50 to 97: 3, more preferably 70:30 to 95: 5.
  • the monocyclic cyclic olefin polymer for example, an addition polymer of a monocyclic cyclic olefin monomer such as cyclohexene, cycloheptene and cyclooctene can be used.
  • cyclic conjugated polymer examples include, for example, polymers obtained by 1,2- or 1,4-addition polymerization of cyclic conjugated monomers such as cyclopentadiene and cyclohexadiene, and hydrides thereof. Can be used.
  • the molecular weight of the norbornene-based polymer, the monocyclic cyclic olefin-based polymer or the cyclic conjugated gen-based polymer for producing the container of the present invention is appropriately selected according to the purpose of use. Gel permeation of toluene solution if the coalesced resin does not dissolve). Weight average molecular weight in terms of polyisoprene or polystyrene measured by chromatography, usually 5,000 to 500,000, preferably 8,000 to 200,000. When the molecular weight is in the range of 000, more preferably 10,000 to 100,000, the mechanical strength of the container and the moldability are preferably highly balanced.
  • vinyl alicyclic hydrocarbon polymers include polymers of vul cycloaliphatic hydrocarbon monomers such as vulcyclohexene and bier cyclohexane and hydrogenation thereof. Hydrides of the aromatic ring portion of polymers of butyl aromatic monomers such as styrene and ⁇ -methylstyrene; and butyl alicyclic hydrocarbon polymers and vinyl aromatic monomers. Any of random copolymers of these monomers with other copolymerizable monomers, copolymers such as block copolymers, and hydrogenated products thereof may be used. Examples of the block copolymer include diblocks, triblocks or higher multiblocks and gradient block copolymers, and are not particularly limited.
  • the molecular weight of the bullet alicyclic hydrocarbon polymer used to manufacture the container of the present invention is appropriately selected according to the purpose of use, but a cyclohexane solution (a toluene solution when the polymer resin is not dissolved)
  • the gel permeation is a weight average molecular weight in terms of polysoprene or polystyrene measured by a chromatographic method, usually 10,000 to 300,000, preferably 15,000 to 250,000, more preferably 20,000. When it is in the range of from 200,000 to 200, the mechanical strength and moldability of the container are well balanced and suitable.
  • the glass transition temperature (T g) of the alicyclic structure-containing polymer resin used for producing the container of the present invention may be appropriately selected depending on the purpose of use, but is preferably 50 ° C. or higher. It is more preferably in the range of 60 ° C to 170 ° C. If the glass transition temperature is low, it tends to be deformed at high temperatures, and if it is high, workability tends to decrease and impact resistance tends to decrease.
  • the residual metal content in the alicyclic structure-containing polymer resin used for producing the container of the present invention is preferably 100 ppm or less, more preferably 20 ppm or less. When there are many residual metal content, absorbance or increased, there tends force s deterioration during processing or accelerated.
  • an adsorbent of 2 g / g or more for example, an adsorbent such as alumina, to adsorb metal atoms, or washing the resin solution alternately and repeatedly with acidic water and pure water, etc. Metal content in the metal can be reduced.
  • the polymer is hydrogenated using a heterogeneous catalyst in which a hydrogenation catalyst metal such as nickel is supported on the above adsorbent. JP2003 / 007725 Then, while adsorbing the metal atom residue derived from the polymerization catalyst metal, the hydrogenation catalyst metal can be easily removed together with the adsorbent by filtration.
  • the container of the present invention comprises a resin composition containing the alicyclic structure-containing polymer resin or, if desired, an additive, which is blended into a pellet, and the pellet is supplied to a molding machine. It can be obtained by molding into a shape. Examples of the molding method include, but are not particularly limited to, extrusion molding, injection molding, injection compression molding, injection blow molding, direct opening molding, compression molding, press molding, and vacuum melting. Further, when molding the container of the present invention, integral molding or two-color molding may be used.
  • a known antioxidant for example, a phenolic antioxidant, a phosphoric acid antioxidant, or a zeolite antioxidant
  • phenolic acid inhibitors particularly alkyl-substituted phenolic antioxidants
  • Each of these antioxidants can be used alone or in combination of two or more.
  • the compounding amount is appropriately selected within a range not to impair the object of the present invention. It is usually at most 3 parts by weight, preferably at most 1 part by weight, based on 100 parts by weight of the polymer resin.
  • the alicyclic structure-containing polymer resin is put into a hopper in a molding machine, and then the resin is heated and melted in a cylinder. It is filled into the cavity of the injection mold and / or blow mold and molded.
  • the maximum value of the processing temperature in the cylinder such that (the maximum value of the processing temperature-the temperature at which the resin starts to be oxidized) is 120 ° C or less.
  • the present invention in order to reduce the surface roughness Ra of the container to 1 ⁇ or less, there is a method of reducing the surface roughness of the mold itself by performing mirror polishing of a mold used for molding the container. No. First, after roughing the mold to obtain a shape, polishing is performed for a predetermined time by an automatic polishing machine, and then measuring the surface roughness is repeated, until the desired accuracy is obtained. . While the surface is rough, the abrasive grain size is :! Use particles with a relatively large particle size of about ⁇ ⁇ ⁇ ⁇ . When 725 abrasive grains are used, the desired surface roughness can be easily obtained in a shorter time. In addition, in order to transfer the mold surface accurately, it is preferable that the mold temperature is equal to or higher than the glass transition temperature of the resin to be used (30 ° C.) ° C.
  • the wavelength of the obtained container is 240 to 400. This is preferable because the absorbance at nm can be improved.
  • the shape of the container 1 of the present invention is not particularly limited as long as it satisfies the above requirements.
  • a cell, a multi-well plate, a narrow-mouthed bottle, a wide-mouthed bottle, or a combination thereof may be used. Above all, senor and multiwell plates are preferred.
  • the shape of the cell or the multi-well plate includes, but is not limited to, a columnar shape or a prismatic shape.
  • Fig. 2 and Fig. 3 show an example of a multi-plate.
  • the multi-layer plate 100 of the present example has a rectangular frame 120, in which a well 101 having a bottom surface 111 and a side wall surface 112 is arranged vertically and horizontally. I have.
  • the multi-well plate 100 is integrated by connecting each of the wells 101 and the frame 120 with cross-shaped ribs 121. Then, the substance 2 to be measured is put into each well 101.
  • Such a multiwell plate 100 is also included in the container of the present invention.
  • the 96-well described later is a multi-well plate 100 in which the wells 101 are arranged in, for example, 8 columns ⁇ 12 rows to form 96 pieces.
  • the container of the present invention is particularly suitable as a container for measuring the concentration and purity of nucleic acids such as DNA ⁇ RNA having absorption at a wavelength of 240 to 400 n ⁇ l.
  • the analysis method of the present invention is a method for performing an optical analysis of a substance to be measured, and as shown in FIG. 1, a container 1 having a bottom 11 and a side wall 12, wherein the bottom 11 is The side wall surface 1 2 is made of an alicyclic structure-containing polymer resin, and the contact surfaces 11 a and 12 a (at least the contact surface 11 a) between the bottom 11 and the side wall 12 and the substance 2 to be measured.
  • a substance 2 to be measured is placed in a container 1 having a surface roughness Ra of 1 ⁇ or less, and an optical analysis of the substance to be measured is performed using a light ray R having a wavelength of 240 to 400 nm.
  • the optical analysis means that a substance 2 to be measured is placed in a container 1 of the present invention, and a light beam 1 having a wavelength of 240 to 40011111 is used.
  • a light beam 1 having a wavelength of 240 to 40011111 is used.
  • the optical properties eg, absorbance and transmittance
  • the analysis method is not particularly limited.For example, when measuring the absorbance, put the substance to be measured in the container, set the container on an ultraviolet-visible spectrophotometer, and set the container on one of the portions through which light is transmitted. Light with a wavelength of 240 to 400 nm is incident. Then, the intensity of light transmitted from the other surface of the container is measured, and the absorbance of the substance to be measured is calculated from the intensity of the light. As shown in FIG. 1, the light beam R usually enters from the bottom 11 or the top of the container 1, and the incident direction is vertical.
  • the substance to be measured applicable to the analysis method of the present invention is not particularly limited as long as it has an absorption in a light region of a wavelength of 240 to 400 nm, and a substance containing a nucleic acid such as DNA-RNA is particularly preferable. .
  • DNA ⁇ RNA has an absorption maximum at 260 nm.
  • the substance to be measured is usually in a solution state such as an aqueous solution.
  • the analysis method of the present invention will be described using a method for measuring the purity and concentration of DNA as an example. First, a diluted solution containing DNA as a substance to be measured is placed in the container of the present invention. The dilution ratio at this time is not particularly limited.
  • the container containing the diluted solution containing DNA is set on an ultraviolet-visible spectrophotometer, and light beams having wavelengths of 260 nm and 280 are vertically incident on one of the light transmitting portions of the container. Then, the intensity of the light transmitted and detected therefrom is measured, and the absorbance at wavelengths 260 nm and 280 nm is measured from the intensity (the absorbance at this time; ⁇ (260), ⁇ ⁇ (280) And). In addition, measure the absorbance at the above-mentioned wavelength in a state where the diluted solution containing D ⁇ ⁇ is not put in the container.
  • Mw weight average molecular weight
  • DSC differential scanning calorimetry
  • the hydrogenation rate of the main ring and the aromatic ring of the polymer is calculated by measuring NMR.
  • UV-visible spectrophotometer (trade name: "V-570"; manufactured by JASCO Corporation) the absorbances of the containers at 400 nm, 340 nm, 300 nmm, 280 nm, 260 nm, and 240 nm are measured.
  • the amount of protein adsorbed on the container is determined as follows.
  • Test solution Albumin bovine serum (manufactured by Wako Pure Chemical Industries) lmg / m1 aqueous solution.
  • Staining solution phenol reagent.
  • the absorbance before and after washing the container is as follows.
  • the obtained film 1 was colorless and transparent, had no defects such as voids and fish-eyes, no external defects such as curl, twist, and wavy, and had a good appearance.
  • the surface roughness Ra of this film was 0.06 ⁇ .
  • the film 1 obtained above was attached to the mold fixed side, A two-color molding multi-well plate with a thickness of 100 / im with a 96-well (the shape of the well is a square pillar) was obtained.
  • the mold temperature was 60 ° C
  • the processing temperature was 230 ° C.
  • nitrogen was introduced into the hopper from below the hopper.
  • Money used In order to reduce the surface roughness of the mold, preliminary polishing was performed after polishing with a grain size of 1 ⁇ or more at the time of polishing, then the grain size was changed to 1 or less, and final polishing was performed.
  • the surface roughness Ra at that time was 0.02 ⁇ .
  • the surface roughness Ra of the contact surface of the obtained multi-wall plate with the substance to be measured is 0.06 m at a portion where light is transmitted (the bottom in this example), and a portion where light is not transmitted (this example). It was 0.03 ⁇ at the side wall in the example.
  • the absorbance, protein adsorption amount, and absorbance of this multiwell plate were measured. Table 3 shows the results.
  • a 100-micron thick film was prepared (obtained here).
  • the resulting film is referred to as film 2). It was reduced to 5 X 10- 2 P a a rotary first pump from the vent.
  • nitrogen was introduced into the hopper from the lower part of the hopper.
  • the molten resin was passed through 40/80/120 mesh before passing through the T die.
  • an air knife was used.
  • the obtained film was colorless and transparent, had no defects such as voids and fish eyes, no external defects such as curling, twisting, and waving, and had a good appearance.
  • the surface roughness Ra of this film was 0.12 / xm.
  • an addition copolymer consisting of 65% by weight of norbornene-derived repeating structural units and 35% by weight of ethylene-derived repeating structural units (weight average molecular weight: 82,000 (in terms of polystyrene), glass transition temperature: 80, (Start temperature: 190 ° C)
  • glass transition temperature 80
  • Start temperature 190 ° C
  • the mold temperature at this time was 70 ° C and the molding temperature was 220 ° C.
  • nitrogen is supplied from the lower part of the hopper. Introduced inside the hopper.
  • the surface roughness Ra of the contact surface of the obtained multi-well plate with the substance to be measured is 0.12 ⁇ m in a portion where light is transmitted (the bottom portion in this example), and a portion where light is not transmitted. (The side wall portion in the present embodiment) was 0.08 ⁇ .
  • the absorbance, protein adsorption amount, and absorbance of this multiplate were measured. Tables 1 to 3 show the results.
  • Using a molding machine set the die lip to 0.5 mm and produce a 100-micron thick film under the conditions of resin temperature of 240 ° C, T-die temperature of 260 ° C, Canono Retrol 145 ° C, and cooling roll of 80 ° C. (The film obtained here is referred to as Film 3.)
  • the molten resin was passed through 40/80/120 mesh before passing through the T-die.
  • the resulting film 3 was colorless and transparent, had no defects such as voids and fish eyes, no external defects such as curl, twist, and wavy, and had a good appearance.
  • the surface roughness Ra of this film was 0.07 / ⁇ ⁇ .
  • the film 3 obtained above is attached to the fixed side of the mold, and subjected to two-color molding.
  • a multi-well plate with a thickness of 100 ⁇ having a 96-well was obtained.
  • the mold temperature was 110 ° C and the processing temperature was 280 ° C.
  • the surface roughness Ra of the contact surface of the obtained multi-well plate with the substance to be measured is 0.07 ⁇ at a portion where light is transmitted (the bottom in this example), and a portion where light is not transmitted (this example). In the side wall part), it was 0.05 ⁇ .
  • the absorbance, the amount of adsorbed protein, and the absorbance of the multiwell plate were measured. Tables 1 to 3 show the results.
  • Comparative Example 1 except that the polishing grain size of the mold was 1 ⁇ m or more and the surface roughness was changed by shortening the polishing time, and the surface roughness Ra of the mold was 1.05 m. Similarly, a multi-well plate was obtained. The target substance of the obtained multi-well plate The surface roughness Ra of the contact surface was 0. Q 7 ⁇ m at the light transmitting portion (the bottom in this example) and 1.53 jum at the light non-transmitting portion. The absorbance, the amount of protein adsorbed, and the absorbance of the multiwell plate were measured. Tables 1 to 3 show the results.
  • DNA concentration and purity were measured.
  • 2 ⁇ l of an aqueous DNA solution extracted and purified from rat liver was diluted with 8 (containing 1 mM EDTA in 1 OmM Tris-HC1) 98/1, and the UV-visible spectrophotometer was used at 260 nm and 28 ⁇ m.
  • the absorbance at 0 nm was measured.
  • the absorbance at 260 nm was 0.572 and the absorbance at 280 nm was 0.325. Since the measured value without the DNA solution was 0.072 at 260 nm and 0.051 at 28 011111, respectively,
  • Example 1 0.06 0.03 0.04 0.04 0.05 0.05 0.07 0.08
  • Example 2 0.12 0.08 0.04 0.04 0.05 0.06 0.08 0.10 Comparative Example 1 0.07 0.05 0.07 0.17 0.5 0.52 1.06 1.54 Comparative Example 2 0.07 1.53 0.07 0.17 0.45 0.72 1.06 1.55 Table 2
  • the wavelength 2400 ⁇ ! As described above, based on the evaluation results shown in Tables 1 to 3, the wavelength 2400 ⁇ !
  • a measurement inhibitor eg, protein
  • the container of the present invention having a small absorbance of up to 400 nm and a small surface roughness Ra of the contact surface with the substance to be measured is used, a measurement inhibitor (eg, protein) after alkali washing is used. There is little adsorption, and there is almost no change in absorbance before and after washing with alkali.
  • the wavelength 2 4 ⁇ ⁇ ⁇ ! In a comparative example using a container having a large absorbance of ⁇ 400 nm and a large surface roughness Ra on the contact surface with the substance to be measured, adsorption of the measurement inhibitor (eg, protein) after alkali washing was not observed. Many, and the absorbance has increased after alkali washing.
  • the measurement inhibitor eg, protein

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

底部及び側壁部からなる光学分析用容器であって、前記底部及び側壁部は脂環式構造含有重合体樹脂からなり、前記底部及び側壁部と測定対象物質との接触する部分の内、光学分析のための光が透過する部分の表面粗さRaが1μm以下である光学分析用容器。

Description

明細書 脂環式構造含有重合体樹脂製容器及びそれを用レ、る光学的分析方法 技術分野
本発明は、 脂環式構造含有重合体樹脂製容器及びそれを用レ、る光学的分析方法に 関し、 さらに詳しくは、 従来のものよりも優れた測定精度を得ることができ、 かつ 繰り返し使用の可能な脂環式構造含有重合体樹脂製の容器及ぴそれを用レ、る光学 的分析方法に関する。 背景技術
D NAや R NAの分析においては、 従来石英製のセルが使用されている。 石英製 のセルは、 高価であるため、 洗浄して繰り返し使用されるが、 耐衝撃性が低く落下 により壊れるため取り扱いが非常に難しい。 そのため、 石英よりも価格が比較的安 価なセルが求められている。 このような観点から、 ポリメタクリル酸メチル (P M MA) 、 ポリカーボネート (P C) 、 ポリスチレン (P S ) 、 ポリエチレンテレフ タレート (P E T) などの高分子材料が採用されている。 これらの高分子材料は、 一般に、 紫外線領域において吸収があるため、 これらで作成されたセルを用いて、 吸光度分析法等で、 対象物質の純度などを測定しても、 正確な測定値が得られなか つた。 加えて、 ポリメタクリル酸メチル (P MMA) やポリカーボネート (P C) は、 吸水性、 射出成形時の加水分解性が高く、 複屈折が大きい等の問題があった。 さらに、 例えば PMMAは 2 8 0 °Cという比較的低い温度で解重合に基づく分解反 応が起こるように熱安定性が低いので、 セル本体がモノマーを比較的多く含有する 問題がある。
特開平 8 - 1 3 6 4 4 6号公報には、 環状ォレフィン系樹脂から形成された分析 セルが提案されている。 さらに、 特開 2 0 0 0— 3 9 4 2 0号公報には、 1, 3— シクロへキサジェン (C HD) または C HD誘導体からなる単独重合体及ぴこれら と共重合可能な他の単量体との共重合体を水素添加した重合体が開示され、 その重 合体を射出成形して樹脂製マイクロチップを得ることが提案されている。
また、 光学分析分野では、 紫外線の波長領域 (240〜400 nm) で、 繰り返 し使用しても高い測定精度の分析を維持することができる分析用容器が求められ ている。 特に、 DNAや RNAの分析においては、 繰り返し使用する場合には、 D NAや RNA内に含まれている蛋白質などをアルカリで洗浄して除去している。 し かしながら、 上記公報で得られる容器を使用しても、 繰り返し使用に耐えることが できず、 かっこれを用いて分析を行つても測定精度が低レ、という問題がある。 発明の開示
本発明の目的は、 繰り返し使用しても紫外線の波長領域において優れた測定精度 を得ることができる容器及ぴそれを用いた光学的分析方法を提供することにある。 本発明者らは、 容器の繰り返し使用による測定精度の低下について検討をした結 果、 測定対象物質との接触面の表面粗さを特定の値にした脂環式構造含有重合体樹 脂製容器を用いることにより、 測定精度が格段に高くなり、 繰り返し使用しても測 定精度の低下が小さいことを見出し、 かかる知見に基づき、 本発明を完成するに至 つた。
かくして本発明によれば、
(1) 底部及び側壁部からなる光学分析用容器であって、前記底部及び側壁部は脂 環式構造含有重合体樹脂からなり、前記底部及び側壁部と測定対象物質との 接触面の内、光学分析のための光が透過する部分の表面粗さ R aが 1 m以 下である光学分析用容器、 ,
(2) 前記底部及ぴ側壁部の肉厚が 3 nun以下である前記 (1) 記載の容器、
(3) 前記底部及ぴ側壁部の内、光学分析のための光が透過しない部分の表面粗さ Raが 1 tm以下である前記 (1) 記載の容器、
(4) 前記肉厚の時の、 波長 240〜400 nmにおける吸光度が 0. 4以下であ る前記 (2) 記載の容器、
( 5 ) 前記脂環式構造含有重合体が、 ノルポルネン系重合体又はその水素添加物で ある前記 (1) 記載の容器、 ( 6 ) 前記脂環式構造含有重合体樹脂が、 ノルボルネン系モノマーの開環重合体水 素添加物である前記 (1) 記載の容器、
(7) 前記脂環式構造含有重合体樹脂中の残留金属含有量が 100 p pm以下で ある前記 (1) 記載の容器、
(8) 測定対象物質が DNA又は RNAを含むものである前記 (1) 記載の容器、
(9) マルチウ;ルプレートである前記 (1) 記載の容器、
(10) 測定対象物質の光学的分析を行う方法であって、 底部及ぴ側壁部からなる 容器であって、 前記底面及び側壁面は脂環式構造含有重合体樹脂からなり、 前記底 部及び側壁部と測定対象物質との接触面の表面粗さ R aが 1 μ m以下である容器 に測定対象物質を入れ、 波長 240〜 400 nmの光線を用いて測定対象物質の光 学的分析を行う方法、 及び
(11) 測定対象物質が DNA又は RNAを含むものである前記 (10) 記載の分 析方法がそれぞれ提供される。
本発明の容器は、 紫外線の波長領域の吸光度が小さく、 かつアルカリ洗浄前後に おける吸光度の変化がほとんどないので、 繰り返し使用することができる。 また、 本発明の容器を用いれば、 紫外線の波長領域での光学的分析を精度よく力ゝっ繰り返 し行うことができる。 図面の簡単な説明
図 1は、 本発明の実施形態に係る容器およびこれを用いた光学的分析方法の基本 構成を示す図、
図 2は、 本発明の実施形態に係る容器を示す斜視図、
図 3は、 図 2の III- III線に沿う断面図である。 発明を実施するための最良の形態
図 1に示すように、 本発明の光学分析用容器 1は、 底部 1 1及び側壁部 12から なる光学分析用容器であって、 前記底部 11と側壁部 12は脂環式構造含有重合体 樹脂からなり、 前記底部 1 1及ぴ側壁部 12と測定対象物質 2との接触面 1 1 a, 1 2 aの内、 光学分析のための光 Rが透過する部分 1 1 aの表面粗さ R a力 S 1 μ m 以下、 好ましくは 0. 5 //m以下、 さらに好ましくは 0. 以下である。 本発明においては、 前記底部 1 1及び側壁部 1 2と測定対象物質 2との接触面に は、 光が透過する部分 1 1 aと光が透過しない部分 1 2 aとがあるが、 光が透過し ない部分 1 2 aの表面粗さ R aも 1 m以下にすることが好ましく、 さらに好まし くは 0. 5 μπι以下、 特に好ましくは 0. 2 μπι以下である。 容器 1の測定対象物 質 2との接触面 1 1 a, 1 2 aの表面粗さ R aを前記範囲とすることにより、 アル カリ洗浄後の測定阻害物質 (例えば、 蛋白質) の吸着及び接触面 1 1 a, 1 2 aの 変質を防ぐことができ、 繰り返し用いても精度の良い測定が可能となる。 なお、 容 器 1の測定対象物質 2との接触面 1 1 a, 1 2 aの表面粗さ R aは、 レーザー干渉 型表面粗さ測定器で測定する。
本発明の容器 1は、 肉厚 t 2が 3 mm以下であることが好ましい。.またこの 肉厚 t l5 t 2の下限は、 容器 1の強度を考慮して適宜選定でき、 通常 50 πιくら いである。 前記肉厚 t t 2が前記範囲よりも厚いと吸光度の増大ゃ複屈折が増加 し、 測定精度が低下する傾向がある。
本発明の容器 1は、 前記肉厚 tい t 2の時の、 波長 240〜 400 nmにおける 吸光度が、 好ましくは 0. 4以下、 さらに好ましくは 0. 3以下、 特に好ましくは 0. 2以下である。 吸光度を前記範囲とすることにより、 測定精度を向上させるこ とができる。
本発明の容器 1を製造するために使用する脂環式構造含有重合体樹脂は、 重合体 の繰り返し単位中に脂環式構造を含有するものであり、 脂環式構造は主鎖及び側鎖 のいずれにあってもよい。 脂環式構造としては、 シクロアルカン構造、 シクロアル ケン構造などが挙げられる力 熱安定性等の観点からシク口アル力ン構造が好まし レ、。脂環式構造を構成する炭素原子数は、通常 4〜 30個、好ましくは 5〜 20個、 より好ましくは 5〜1 5個である。 脂環式構造を構成する炭素原子数がこの範囲に あると、 耐熱性及び柔軟性に優れた光学分析用容器が得られる。 脂環式構造を有す る繰り返し単位の脂環式構造含有重合体樹脂中の割合は、 使用目的に応じて適宜選 択されればよいが、 通常 50重量 °/0以上、 好ましくは 70重量%以上、 より好まし くは 90重量%以上である。 脂環式構造を有する繰り返し単位の割合が過度に少な いと耐熱性が低下し好ましくない。 なお、 脂環式構造含有重合体樹脂における脂環 式構造を有する繰り返し単位以外の繰り返し単位は使用目的に応じて適宜選択さ れる。
脂環式構造含有重合体樹脂の具体例としては、 ( 1 ) ノルボルネン系重合体、 (2) 単環の環状ォレフィンの重合体、 (3) 環状共役ジェンの重合体、 (4) ビ 二ル脂環式炭化水素重合体、 及び (1) 〜 (4) の水素添加物などが挙げられる。 これらの中でも、 耐熱性、 機械的強度等の観点から、 ノルボルネン系重合体又はそ の水素添加物が好ましい。
(1) ノルボルネン系重合体
本発明の容器を製造するためのノルポルネン系重合体としては、 ノルポルネン系 モノマーの開環重合体、 ノルボルネン系モノマーとこれと開環共重合可能なその他 のモノマーとの開環共重合体、 これらの水素添加物、 ノルボルネン系モノマーの付 加重合体、 ノルボルネン系モノマーとこれと共重合可能なその他のモノマーとの付 加共重合体などが挙げられる。これらの中でも、耐熱性、機械的強度等の観点から、 ノルボルネン系モノマ一の開環重合体水素添加物が最も好ましい。
ノルボルネン系モノマーとしては、 ビシクロ 〔2. 2. 1〕 —ヘプトー 2—ェン
(慣用名: ノルボルネン) 及びその誘導体 (環に置換基を有するもの) 、 トリシク 口 〔4. 3. 01' 6. 12' 5〕 ーデカー 3, 7—ジェン (慣用名ジシクロペンタジ ェン) 及ぴその誘導体、 7, 8—ベンゾトリシクロ 〔4. 3. 0. 12' 5〕 デカー 3—ェン (慣用名メタノテトラヒドロフルオレン) 及ぴその誘導体、 テトラシクロ
〔4. 4. 0. 12> 5. 17' 10〕 ードデ力一 3—ェン (慣用名:テトラシクロドデ セン) 及びその誘導体、 などが挙げられる。
置換基としては、 アルキル基、 アルキレン基、 ビュル基、 アルコキシカルボ二ノレ 基などが例示でき、 上記ノルボルネン系モノマーは、 これら置換基を 2種以上有し ていてもよい。 具体的には、 8—メトキシカルボニル基ーテトラシクロ 〔4. 4. 0. I2' 5. 17' 10] —ドデカー 3—ェン、 8—メチルー 8—メ トキシカルボ-ル —テトラシクロ 〔4. 4. 0. I 2' 5. 17' 10〕 ードデ力一 3—ェンなどが挙げら れる。
これらのノルポルネン系モノマ一は、 それぞれ単独であるいは 2種以上を組み合 わせて用いられる。
これらノルポルネン系モノマーの開環重合体、 またはノルボルネン系モノマーと これと開環共重合可能なその他のモノマーとの開環共重合体は、 モノマー成分を、 公知の開環重合触媒の存在下で重合して得ることができる。 開環重合触媒としては、 例えば、 ルテニウム、 オスミウムなどの金属のハロゲン化物と、 硝酸塩またはァセ チルァセトン化合物、 及ぴ還元剤とからなる触媒、 あるいは、 チタン、 ジルコユウ ム、 タングステン、 モリブデンなどの金属のハロゲン化物またはァセチルァセトン 化合物と、 有機アルミニゥム化合物とからなる触媒を用いることができる。
ノルボルネン系モノマーと開環共重合可能なその他のモノマーとしては、 例えば、 シクロへキセン、 シクロヘプテン、 シクロオタテンなどの単環の環状ォレフィン系 単量体などを挙げることができる。
ノルボルネン系モノマ一の開環重合体水素添加物は、 通常、 上記開環重合体の重 合溶液に、 ニッケル、 パラジウムなどの遷移金属を含む公知の水素添加触媒を添加 し、 炭素一炭素不飽和結合を水素添加することにより得ることができる。
ノルボルネン系モノマーの付加重合体、 またはノルボルネン系モノマ一とこれと 共重合可能なその他のモノマ一との付加 (共) 重合体は、 これらのモノマ一を、 公 知の付加重合触媒、 例えば、 チタン、 ジルコニウム又はバナジウム化合物と有機ァ ルミニゥム化合物とからなる触媒を用いて (共) 重合させて得ることができる。 ノルポルネン系モノマーと共重合可能なその他のモノマーとしては、 例えば、 ェ チレン、 プロピレン、 1—ブテン、 1—ペンテン、 1一へキセン、 1ーォクテン、 1—デセン、 1一ドデセン、 1—テトラデセン、 1一へキサデセン、 1一才クタデ セン、 1—エイコセンなどの炭素数 2〜2 0の α—ォレフイン、 及びこれらの誘導 体;シクロブテン、 シクロペンテン、 シクロへキセン、 シクロォクテン、 3 a , 5 , 6 , 7 a—テトラヒドロ一 4 , 7—メタノー 1 H—インデンなどのシクロォレフィ ン、 及びこれらの誘導体; 1 , 4 _へキサジェン、 4—メチルー 1, 4—へキサジ ェン、 5—メチルー 1 , 4一へキサジェン、 1, 7—ォクタジェンなどの非共役ジ ェン;などが用いられる。 これらの中でも、 α—ォレフイン、 特にエチレンが好ま しい。
これらの、 ノルボルネン系モノマーと共重合可能なその他のモノマーは、 それぞ れ単独で、 あるいは 2種以上を組み合わせて使用することができる。 ノルボルネン 系モノマーとこれと共重合可能なその他のモノマーとを付加共重合する場合は、 付 加共重合体中のノルポルネン系モノマー由来の構造単位と共重合可能なその他の モノマー由来の構造単位との割合が、 重量比で通常 30 : 70〜99 : 1、 好まし くは 50 : 50〜97 : 3、 より好ましくは 70 : 30〜95 : 5の範囲となるよ うに適宜選択される。
(2) 単環の環状ォレフィン系重合体
単環の環状ォレフィン系重合体としては、 例えば、 シクロへキセン、 シクロヘプ テン、 シク口ォクテンなどの単環の環状ォレフィン系単量体の付加重合体を用いる ことができる。
(3) 環状共役ジェン系重合体
環状共役ジェン系重合体としては、 例えば、 シクロペンタジェン、 シクロへキサ ジェンなどの環状共役ジェン系単量体を 1, 2—または 1, 4—付加重合した重合 体及ぴその水素化物などを用いることができる。
本発明の容器を製造するためのノルボルネン系重合体、 単環の環状ォレフィン系 重合体又は環状共役ジェン系重合体の分子量は、 使用目的に応じて適宜選択される が、 シクロへキサン溶液 (重合体樹脂が溶解しない場合はトルエン溶液) のゲル' パーミエーション .クロマトグラフィーで測定したポリイソプレンまたはポリスチ レン換算の重量平均分子量で、 通常 5, 000〜 500, 000、 好ましくは 8, 000〜200, 000、 より好ましくは 10, 000〜: 100, 000の範囲で あるときに、 容器の機械的強度、 及ぴ成形加工性とが高度にパランスされて好適で ある。
(4) ビニル脂環式炭化水素重合体
ビニル脂環式炭化水素重合体としては、 例えば、 ビュルシクロへキセン、 ビエル シクロへキサンなどのビュル脂環式炭化水素系単量体の重合体及ぴその水素化 物;スチレン、 α—メチルスチレンなどのビュル芳香族系単量体の重合体の芳香環 部分の水素化物;などが挙げられ、 ビュル脂環式炭化水素重合体やビニル芳香族系 単量体と、 これらの単量体と共重合可能な他の単量体とのランダム共重合体、 ブ口 ック共重合体などの共重合体及ぴその水素添加物など、 いずれでもよい。 ブロック 共重合体としては、 ジブロック、トリブロック、 またはそれ以上のマルチブロック や傾斜プロック共重合体などが挙げられ、 特に制限はない。
本発明の容器を製造するために使用するビュル脂環式炭化水素重合体の分子量 は、 使用目的に応じて適宜選択されるが、 シクロへキサン溶液 (重合体樹脂が溶解 しない場合はトルエン溶液) のゲル ·パーミエーシヨン 'クロマトグラフ法で測定 したポリィソプレンまたはポリスチレン換算の重量平均分子量で、 通常 10, 00 0〜300, 000、 好ましくは 1 5, 000— 250, 000、 より好ましくは 20, 000〜 200, 000の範囲であるときに、 容器の機械的強度及び成形加 ェ性とが高度にパランスされて好適である。
本発明の容器を製造するために使用する脂環式構造含有重合体樹脂のガラス転 移温度 (T g) は、 使用目的に応じて適宜選択されればよいが、 好ましくは 50°C 以上、 より好ましくは 60°C〜1 70°Cの範囲である。 ガラス転移温度が低いと高 温下で変形しやすく、高いと加工性が低下したり、耐衝撃性が低下する傾向がある。 本発明の容器を製造するために使用する脂環式構造含有重合体樹脂中の残留金 属含有量は、 1 00 p pm以下が好ましく、 20 p pm以下がさらに好ましレ、。 残 留金属含有量が多いと、 吸光度が増大したり、 加工時の劣化が促進したりする傾向 力 sある。
脂環式構造含有重合体樹脂中の残留金属含有量を上記範囲にするためには、 細孔 容積 0. 5 cm3Zg以上、 好ましくは 0. 7 cm3Zg以上、 好ましくは比表面積 250 cm2/g以上の吸着剤、例えばアルミナ等の吸着剤で樹脂溶液を処理して金 属原子を吸着させたり、 樹脂溶液を酸性水と純水で交互に繰り返し洗浄したりする こと等により、 樹脂中の金属含有量を低下させることができる。 特に残留しやすい 重合触媒や水素添加触媒に由来する金属原子を除去するには、 上記の吸着材にニッ ケル等の水素添加触媒金属を担持させた不均一系触媒を用いて重合体を水素添加 JP2003/007725 すると、 重合触媒金属由来の金属原子残渣を吸着するとともに、 水素添加触媒金属 が濾過により吸着材と共に容易に除去できる。
本発明の容器は、 前記脂環構造含有重合体樹脂又は、 所望により添加剤を配合し た樹脂組成物を配合してペレッ ト状にし、 そのペレッ トを成形機に供給した後、 所 望の形状に成形して得ることができる。 成形方法としては、 押出成形、 射出成形、 射出圧縮成形、 射出ブロー成形、 ダイレクトブ口一成形、 圧縮成形、 プレス成形、 真空成形などの加熱溶融成形が挙げられるが、 特に限定されない。 また、 本発明の 容器を成形するときは、 一体成形でもよいし、 二色成形でもよい。
添加剤としては、 容器の特性を達成させる上で支障のない限り、 公知の酸化防止 剤、 例えば、 フエノール系酸化防止剤、 リン系酸ィヒ防止剤、 ィォゥ系酸化防止剤な どを添加しても良い。 これらの中でもフエノール系酸ィヒ防止剤、 特にアルキル置換 フエノール系酸化防止剤が好ましい。 これらの酸化防止剤は、 それぞれ単独で、 あ るいは 2種以上を組み合わせて用いることができ、 その配合量は、 本発明の目的を 損なわない範囲で適宜選択されるが、 脂環式構造含有重合体樹脂 1 0 0重量部に対 して通常 3重量部以下、 好ましくは 1重量部以下である。
上記成形方法で本発明の容器を成形する際、 例えば、 射出成形やブロー成形する 場合、 脂環式構造含有重合体樹脂を成形機内のホッパーに入れ、 その後、 該樹脂を シリンダー内で加熱溶融し、 それを、 射出金型及び/又はブロー金型のキヤビティ 内に充填して成形する。 このときのシリンダー内の加工温度の最高値を、 (加工温 度の最高値一樹脂の酸ィ匕開始温度) が 1 2 0 °C以下になるように設定することが好 ましい。 前記加工温度の最高値を前記範囲となるように設定することにより、 樹脂 加工時の変色などの劣化を防ぐことができる。
本発明において、 容器の表面粗さ R aを 1〃ιη以下にするためには、 容器を成形 する際に使用する金型の鏡面磨きを行って金型自体の表面粗さを小さくする方法 が挙げられる。 まず金型を粗加工して形状を得た後, 自動研磨機により, 所定時間 研磨を行った後, 表面粗さを測定するという作業を繰り返しながら, 所望の精度が 得られるまでこの作業を繰り返す。 面粗さの粗いうちは, 砥粒径は:!〜 Ι Ο μ πι程 度の比較的大きな粒径のものを使用し、 面粗さが小さくなつてからは 1 ni以下の 725 砥粒を使用すると, より早い時間で所望の面粗さが得られやすい。 また, 金型面を 正確に転写させるために,金型温度を、 (使用する樹脂のガラス転移温度一 3 0 ) °C 以上とするのが好ましい。
また、 本発明の容器を成形する際に、 樹脂を加工するための成形機のホッパー内 に窒素などの不活性なガスを流通させておくと、 得られる容器の波長 2 4 0〜4 0 0 n mにおける吸光度を向上することができるので好ましい。
本発明の容器 1の形状は、 上記要件を満たすものであれば特に限定されなレ、。 例 えば、 セル、 マルチウエルプレート、 細口瓶、 広口瓶、 又はこれらを組み合わせた ものなどが挙げられる。 中でも、 セノレやマルチウエルプレートが好ましレ、。 セルや マルチウヱルプレートの形状は、 円柱状や角柱状のものなど挙げられるがこれに限 定されない。
図 2および図 3にマルチゥエルプレ一トの一例を示す。 本例のマルチゥ mルプレ ート 1 0 0は、 矩形状の枠体 1 2 0の内部に、 底面 1 1 1と側壁面 1 1 2とを有す るゥエル 1 0 1が縦横に配置されている。 各ウエノレ 1 0 1およぴ枠体 1 2 0が十字 状のリブ 1 2 1で接続されることで、 マルチウエルプレート 1 0 0が一体化されて いる。 そして、 測定対象物質 2は各ゥエル 1 0 1内に投入される。 このようなマル チウエルプレート 1 0 0も本発明の容器に含まれる。 なお、 後述する 9 6ゥェルと は、 ゥエル 1 0 1を例えば 8列 X 1 2行に配置して 9 6個としたマルチウエルプレ ート 1 0 0である。
本発明の容器は、 特に波長 2 4 0〜4 0 0 n πlに吸収を持っD NAゃR NAなど の核酸の濃度や純度などを測定するための容器として好適である。
本発明の分析方法は、 測定対象物質の光学的分析を行う方法であって、 図 1に示 すように底部 1 1及ぴ側壁部 1 2からなる容器 1であって、 前記底面 1 1と側壁面 1 2は脂環式構造含有重合体樹脂からなり、 前記底部 1 1及び側壁部 1 2と測定対 象物質 2との接触面 1 1 a , 1 2 a (少なくとも接触面 1 1 a ) の表面粗さ R aカ 1 πι以下である容器 1に測定対象物質 2を入れ、 波長 2 4 0〜4 0 0 n mの光線 Rを用いて測定対象物質の光学的分析を行うものである。 ここで、光学的分析とは、 本発明の容器 1に測定対象物質 2を入れて、 波長 2 4 0〜 4 0 0 11 111の光線1 を用 いて得られる光学的特性 (例えば吸光度や透過率など) を用いて、 測定対象物質 2 の濃度や純度などの測定対象物質の特性を求めることをいう。
分析方法は、 特に制限されないが、 例えば吸光度を測定する場合は、 前記容器に 測定対象物質を入れ、 その容器を紫外可視分光光度計にセットして、 容器の光が透 過する部分の一方に波長 240〜400 nmの光線を入射する。 そして、 容器の他 の面より透過される光の強度を測定して、 その光の強度から測定対象物質の吸光度 を算出する。 図 1に示すように、 光線 Rは、 通常、 容器 1の底部 11又は上部から 入射し、 入射方向は垂直方向である。
本発明の分析方法に適用できる測定対象物質としては、 波長 240〜400 nm の光線領域に吸収をもつものであれば、 特に限定されないが、 DNAゃRNAなど の核酸を含むものが特に好適である。 DNAゃRNAは260 nmに吸収極大が存 在する。 ここで測定対象物質は、 通常は水溶液などの溶液状態のものである。 本発明の分析方法について、 DN Aの純度及び濃度測定方法を例にとって説明す る。 まず、 本発明の容器に測定対象物質として、 DN Aを含む希釈溶液を入れる。 このときの希釈倍率は特に限定されない。 そして、 DN Aを含む希釈溶液を入れた 容器を紫外可視分光光度計にセットし、 波長 260 nm及び 280 の光線を該 容器の光透過部分の一方に垂直方向に入射する。 そしてそこから透過して検出され る光の強度を測定し、 その強度から波長 260 nm及ぴ 280 nmでの吸光度を測 定する (このときの吸光度を; ^ (260) , λχ (280) とする) 。 また、 容器 の D Ν Αを含む希釈溶液を入れない状態での前記波長での吸光度を測定しておく
(このときの吸光度を λ。 (260) 、 λ0 (280) とする) 。 そして以下の式か ら DN Αの純度及ぴ濃度を算出する。
DNAの純度 =
1 (260) -λ0 (260) }/{λ! (280) — 。 (280) } DNAの濃度 g/m 1 ) =
1 (260) -λ 0 (260) }Χサンプル量 (μ g/m 1 ) X希釈倍率 (倍) 実施例
以下に、 実施例及ぴ比較例を挙げて、 本発明についてより具体的に説明する。 こ れらの例中の部及ぴ%は、特に断わりのない限り重量基準である。ただし本発明は、 これらの実施例のみに限定されるものではない。
各種の物性の測定は、 下記の方法に従って行う。
(1) 分子量
シクロへキサンを溶媒にしてゲルパーミエーションクロマトグラフィー (GP C) で測定し、 標準ポリイソプレン換算の重量平均分子量 (Mw) を求める。
(2) ガラス転移温度 (Tg)
J I S K7121に基づいて示差走査熱量分析法(D S C)を用いて測定する。
(3) 水素添加率
重合体の主鎮及ぴ芳香環の水素添加率は、 — NMRを測定し算出する。
(4) 容器 (光が透過する部分及び光が透過しない部分) の表面粗さ R a
J I S B 0601に準拠して、 レーザー干渉型表面粗さ測定機 (製品名:サ一 フコム 3000A、 東京精密社製) を用いて測定する。
(5) 容器の吸光度
紫外可視分光光度計 (商品名 「V—570」 ; 日本分光社製) を用いて、 400 nm、 340nm、 300 nmm、 280 nm、 260 n m、 及ぴ 240 n mの容 器の吸光度を測定する。
(6) 容器の蛋白質の吸着量
容器の蛋白質の吸着量は、 以下の要領で行う。
洗浄液:ハイアルカリ (日立計測器社製) を 7倍に希釈したもの。
試験液:アルブミン牛血清 (和光純薬社製) lmg/m 1水溶液。
染色液: フ ノール試薬。
①容器に洗浄液を満たし、 室温で 30日間放置する。 放置後、 洗浄液を排出し、 蒸留水で 3回洗浄する。
②洗浄した容器に試験液 0. 4mlを入れ、 室温で 24時間放置する。 放置後、 試験液を排出し、 蒸留水で 1回洗浄する。 そして、 風乾後、 染色液 0. 5mlを容 器にいれて染色させ、 該容器の吸光度 (波長 595 nm) を測定して、 蛋白質の吸 着量を算出する。 ( 7 ) 容器のアル力リ洗浄前後における吸光度の測定
容器のアル力リ洗浄前後における吸光度は、 以下の要領で行う。
洗浄液:ハイアルカリ (日立計測器社製) を 7倍に希釈したもの。
①容器の波長 260 nmにおける吸光度を測定する。
②吸光度測定後、 容器に洗浄液を満たし、 室温で 30日間放置する。 放置後、 洗 浄液を排出し、 蒸留水で 3回洗浄する。
③洗浄した容器を風乾後、 波長 260 nmにおける吸光度を測定する。
(実施例 1 )
ジシクロぺタジェン由来の開環繰り返し構造単位 70重量%とノルポルネンの 開環繰り返し構造単位 30重量%からなるノルポルネン系開環共重合体水素添加 物(重量平均分子量 44, 000、ガラス転移温度 70 °C、水素添加率 99. 8 %、 酸化開始温度 183°C、 残留金属含有量 2 p pm) を、 55 °Cで 4時間乾燥した後 に、 スクリユー径 50ミリ ψ、 圧縮比 2. 5、 L/D=30、 ハンガーマ二ホール ドタイプの Tダイを有する押出成形機を用い、 ダイリップを 0. 5 mm、 樹脂温度 200°C、 Tダイ温度 220°C、キャストローノレ温度 80°C、冷却ロール温度 50°C の条件で、 100ミクロン厚のフィルムを作製した (ここで得たフィルムをフィル ム 1とする)。なお、成形時には窒素をホッパー下部よりホッパ一内部へ導入した。 フィルムを作製する際には、 Tダイに通す前に、 溶融樹脂を 40/80/120メ ッシュに通した。 フィルムをキャストロールに密着させる際には、 エアーナイフを 用いた。
得られたフィルム 1は無色透明で、ボイドゃフィッシュアィなどの欠陥、カール、 ねじれ、 波うちなどの外形不良は無く、 外観は良好であった。 このフィルムの表面 粗さ Raは 0. 06μπιであった。
次に、 フィルム 1を作製するときに用いたノルボルネン系開環共重合体水素添加 物を、 55 °Cで 4時間乾燥した後に、 金型固定側に上記で得たフィルム 1を取り付 け、 二色成形で 96ゥエル (ゥエルの形状は四角柱) を持つ肉厚 100 /imのマル チゥエルプレートを得た。このとき金型温度を 60 °C、加工温度を 230 °Cとした。 なお、 成形時には窒素を、 ホッパー下部よりホッパー内部へ導入した。 使用した金 型の表面粗さを小さくするため, 研磨時の砥粒サイズを 1 μιη以上のもので予備研 磨した後、 砥粒サイズを 1 以下に変更し、 仕上げ研磨を実施した。 そのときの表 面粗さ Raは 0. 02μπιであった。
得られたマルチウヱルプレートの、 測定対象物質との接触面の表面粗さ R aは、 光が透過する部分 (本実施例では底部) で 0. 06 m、 光が透過しない部分 (本 実施例では側壁部)で 0. 03 μιηであった。このマルチウエルプレートの吸光度、 蛋白質吸着量の測定、及ぴ吸光度の測定を行った。その結果を表 1力 ら表 3に示す。
(実施例 2)
ノルボルネン由来の繰り返し構造単位 65重量%とエチレン由来の繰り返し構 造単位 35重量%からなるノルボルネン系ランダム付加共重合体 (重量平均分子量 82, 000) 、 ガラス転移温度 80°C、 酸化開始温度 190°C、 残留金属含有量 10 p pm) を、 乾燥せずに、 スクリュー径 50ミリ φ、 圧縮比 2, 5、 L/D = 30、 ハンガーマ-ホールドタイプの Tダイを有するベント型押出成形機を用い、 ダイリップを 0. 5 mm、 樹脂温度 200 °C、 Tダイ温度 220 °C、 キヤルスト口 ール 80°C、 冷却ロール 50°Cの条件で 100ミクロン厚のフィルムを作製した (ここで得たフィルムをフィルム 2とする) 。 ベントからはロータリ一ポンプで 5 X 10— 2P aに減圧した。 なお、 成形時には窒素を、 ホッパー下部よりホッパー内 へ導入した。 フィルムを作製する際には、 Tダイに通す前に、 溶融樹脂を 40/8 0/120メッシュに通した。 フィルムをキャストロールに密着させる際には、 ェ ァーナイフを用いた。 得られたフィルムは無色透明で、 ボイドゃフィッシュアイな どの欠陥、 カール、 ねじれ、 波うちなどの外形不良は無く、 外観は良好であった。 このフィルムの表面粗さ R aは 0. 12/xmであった。
次にノルボルネン由来の繰り返し構造単位 65重量%とェチレン由来の繰り返 し構造単位 35重量%からなる付加共重合体 (重量平均分子量 82, 000 (ポリ スチレン換算) 、 ガラス転移温度 80 、 酸ィ匕開始温度 190°C) を、 65°Cで 4 時間乾燥後に、 金型固定側に上記で得たフィルム 2を取り付け、 二色成形で 96ゥ エルを持つ肉厚 100 / mのマルチウエルプレートを得た。 このときの金型温度を 70°C、 成形温度を 220°Cとした。 なお、 成形時には窒素を、 ホッパー下部より ホッパー内部へ導入した。 得られたマルチウエルプレートの、 測定対象物質との接 触面の表面粗さ R aは、光が透過する部分(本実施例では底 ¾部)で 0. 12 μ m、 光が透過しない部分 (本実施例では側壁部) で 0. 08 πιであった。 このマルチ プレートの吸光度、 蛋白質吸着量の測定、 及び吸光度の測定を行った。 その結果を 表 1から表 3に示す。
(比較例 1 )
ポリカーボネート樹脂 (帝人化成製 パンライト AD 5503) を、 110°Cで 4時間乾燥した後に、 スクリュー径 50ミリ φ、 圧縮比 2. 5、 LZD=30、 ハ ンガーマ二ホールドタイプの Tダイを有する押出成形機を用い、 'ダイリップを 0. 5mmに設定し、樹脂温度 240°C、 Tダイ温度 260°C、キヤノレトロール 145°C、 冷却ロール 80 °Cの条件で 100ミクロン厚のフィルムを作製した (ここで得られ たフィルムをフィルム 3とする)。フィルムを作製する際には、 Tダイに通す前に、 溶融樹脂を 40/80/120メッシュに通した。 フィルムをキャストロールに密 着させる際には、 エアーナイフを用いた。 得られたフィルム 3は無色透明で、 ボイ ドゃフィッシュアイなどの欠陥、 カール、 ねじれ、 波うちなどの外形不良は無く、 外観は良好であった。 このフィルムの表面粗さ R aは 0. 07/^πιであった。
次に、ポリカーボネート樹脂(帝人化成社製 製品名「パンライト AD 5503」) を、 110でで 4時間乾燥した後に、 金型固定側に上記で得たフィルム 3を取り付 け、 二色成形で 96ゥエルを持つ肉厚 100 πιのマルチウエルプレートを得た。 金型温度は 110°C、 加工温度は 280°Cとした。 得られたマルチウエルプレート の測定対象物質との接触面の表面粗さ R aは、 光が透過する部分 (本実施例では底 部) で 0. 07ί πι、 光が透過しない部分 (本実施例では側壁部) で 0. 05μπι であった。 このマルチウエルプレートの吸光度、 蛋白質吸着量の測定、 及ぴ吸光度 の測定を行った。 その結果を表 1から表 3に示す。
(比較例 2)
金型の研磨砥粒サイズを 1 μ m以上とし, 研磨時間を短縮することによつて表面 粗さを変え金型の表面粗さ R aを 1. 05 mとした他は、 比較例 1と同様にして マルチウエルプレートを得た。 得られたマルチウヱルプレートの、 測定対象物質と の接触面の表面粗さ R aは、 光が透過する部分 (本実施例では底部) で 0. Q 7 μ m、 光が透過しない部分で 1. 5 3 jumであった。 このマルチウエルプレートの吸 光度、 蛋白質吸着量の測定、 及ぴ吸光度の測定を行った。 その結果を表 1から表 3 に示す。
(実施例 3)
実施例 1で作製した 9 6ゥエルのマルチウエルプレートを用いて DNAの濃度 と純度測定を行った。 ラット肝臓から抽出し精製した DNA水溶液 2 μ 1を ΤΕ (1 OmM T r i s -HC 1中に 1 mMの EDTAを含む) 9 8 / 1で希釈し、 紫外可視分光光度計で 26 0 nm及び 28 0 nmにおける吸光度を測定した。 2 6 0 nmにおける吸光度は 0. 5 7 2、 28 0 nmにおける吸光度は 0. 325であ つた。 DN A水溶液を入れない状態での測定値はそれぞれ 2 6 0 nmにおいて 0. 0 7 2、 28 011111にぉぃて0. 05 1であることから、
DNA純度 = (0. 5 7 2-0. 0 72) / (0. 3 25— 0. 0 5 1) = 1. 8
24
DNA濃度 ( gZml) = 2 6 0 nm吸光度 (0. 50) X 50 (μ g/m 1 ) X希釈倍率 (50倍) = 1 2 50 (μ g/m 1 )
となった。
表 1
表面粗さ R a
吸光度 [一] 光が透 光が透
過する 過しな 400nm 340nm 300nm 280nm 260nm 240nm 部分 い部分
実施例 1 0.06 0.03 0.04 0.04 0.05 0.05 0.07 0.08 実施例 2 0.12 0.08 0.04 0.04 0.05 0.06 0.08 0.10 比較例 1 0.07 0.05 0.07 0.17 0. 5 0.72 1.06 1.54 比較例 2 0.07 1.53 0.07 0.17 0.45 0.72 1.06 1.55 表 2
Figure imgf000019_0001
表 3
Figure imgf000019_0002
以上、 表 1から表 3に記載の評価結果より、 波長 2 4 0 η π!〜 4 0 0 n mの吸光 度が小さく、 さらに測定対象物質との接触面の表面粗さ R aも小さい本発明の容器 を用いた場合には、 アルカリ洗浄後の測定阻害物質 (例えば、 蛋白質) の吸着が少 なく、 さらにアルカリ洗浄前後で吸光度の変化がほとんどない。
一方、 波長 2 4 Ο ιι π!〜 4 0 0 n mの吸光度が大きく、 さらに測定対象物質との 接触面の表面粗さ R aも大きい容器を用いた比較例においては、 アルカリ洗浄後の 測定阻害物質 (例えば、 蛋白質) の吸着が多く、 さらにアルカリ洗浄後で吸光度が 大きくなつている。

Claims

言青求の範匪
1 . 底部及ぴ側壁部からなる光学分析用容器であって、 前記底部及び側壁部は 脂環式構造含有重合体樹脂からなり、 前記底部及び側壁部と測定対象物質との接触 する部分の内、 光学分析のための光が透過する部分の表面粗さ R aが 1 μ m以下で ある光学分析用容器。
2 . 前記底部及び側壁部の肉厚が 3 mm以下である請求項 1記載の容器。
3 . 前記底部及ぴ側壁部の内、 光学分析のための光が透過しない部分の表面粗 さ R aが 1 / m以下である請求項 1記載の容器。
4 . 前記肉厚の時の、 波長 2 4 0〜 4 0 0 n mにおける吸光度が 0 . 4以下で ある請求項 2記載の容器。
5 . 前記脂環式構造含有重合体が、 ノルポルネン系重合体又はその水素添加物 である請求項 1記載の容器。
6 . 前記脂環式構造含有重合体樹脂が、 ノルボルネン系モノマーの開環重合体 水素添加物である請求項 1記載の容器。
7 . 前記脂環式構造含有重合体樹脂中の残留金属含有量が 1 0 0 p p m以下で ある請求項 1記載の容器。
8 . 測定対象物質が D NA又は RNAを含むものである請求項 1記載の容器。
9 . マルチゥエルプレ—トである請求項 1記載の容器。
1 0 . 測定対象物質の光学的分析を行う方法であって、底部及び側壁部からなる容器 であって、前記底面と側壁面は脂環^ « 有重合体樹脂からなり、前記底部及び側壁 部と測定対象物質との接触面の表面粗さ R a力 S 1 m以下である容器に測定対象物質 を入れ、波長 2 4 0〜 4 0 0 n mの光線を用いて測定対象物質の光学的分析を行う方法。
1 1 . 測定対象物質が D NA又は R N Aを含むものである請求項 1 0記載の分析方
PCT/JP2003/007725 2002-06-20 2003-06-18 脂環式構造含有重合体樹脂製容器及びそれを用いる光学的分析方法 WO2004001397A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03733487A EP1524514A4 (en) 2002-06-20 2003-06-18 CONTAINER OF A POLYMER RESIN WITH AN ALICCLICAL STRUCTURE AND OPTICAL MEASURING PROCESS USING THIS CONTAINER
US10/518,493 US20060096884A1 (en) 2002-06-20 2003-06-18 Alicyclic structure-containing polymer resin container and optical analysis method using the container
JP2004515507A JPWO2004001397A1 (ja) 2002-06-20 2003-06-18 脂環式構造含有重合体樹脂製容器及びそれを用いる光学的分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-180584 2002-06-20
JP2002180584 2002-06-20

Publications (1)

Publication Number Publication Date
WO2004001397A1 true WO2004001397A1 (ja) 2003-12-31

Family

ID=29996610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007725 WO2004001397A1 (ja) 2002-06-20 2003-06-18 脂環式構造含有重合体樹脂製容器及びそれを用いる光学的分析方法

Country Status (5)

Country Link
US (1) US20060096884A1 (ja)
EP (1) EP1524514A4 (ja)
JP (1) JPWO2004001397A1 (ja)
CN (1) CN1662807A (ja)
WO (1) WO2004001397A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530566A (ja) * 2005-06-23 2008-08-07 エス アール ユー バイオシステムズ,インコーポレイテッド 最適化格子に基づくバイオセンサーと基体との組合せ
JP2009511704A (ja) * 2005-10-14 2009-03-19 エルジー ライフサイエンス リミテッド プラズマ処理を用いるプラスチック基質の製造方法および同方法を用いて製造されるプラスチック基質
JP2019181427A (ja) * 2018-04-17 2019-10-24 フコク物産株式会社 アダプタ
JP2022550017A (ja) * 2019-10-01 2022-11-30 レプリゲン・コーポレーション 流体におけるタンパク質濃度の決定

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0906986D0 (en) 2009-04-23 2009-06-03 Avacta Ltd Apparatus and method
PL2681532T3 (pl) * 2011-03-01 2015-10-30 Trinean Nv Wyznaczanie DNA i/lub RNA na podstawie danych ze spektrofotometru UV-VIS
CN102608034B (zh) * 2012-02-28 2014-07-23 何毅 一种试剂预封装比色杯结构
JPWO2021153417A1 (ja) * 2020-01-31 2021-08-05
CN113029964B (zh) * 2021-05-25 2021-08-27 上海奥普生物医药股份有限公司 样本反应容器、光阑和光学检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136446A (ja) * 1994-11-14 1996-05-31 Mitsui Petrochem Ind Ltd 環状オレフィン系樹脂からなる分析セル
WO1997021089A1 (en) * 1995-12-05 1997-06-12 The Perkin-Elmer Corporation Optical cuvette
JP2000039420A (ja) * 1998-07-21 2000-02-08 Asahi Chem Ind Co Ltd 樹脂製マイクロチップ
WO2000030752A1 (de) * 1998-11-20 2000-06-02 Molecular Machines & Industries Gmbh Mehrgefässanordnungen mit verbesserter empfindlichkeit für die optische analytik
WO2001059432A2 (en) * 2000-02-10 2001-08-16 Illumina, Inc. Array of individual arrays as substrate for bead-based simultaneous processing of samples and manufacturing method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487872A (en) * 1994-04-15 1996-01-30 Molecular Device Corporation Ultraviolet radiation transparent multi-assay plates
US5858309A (en) * 1996-03-22 1999-01-12 Corning Incorporated Microplates with UV permeable bottom wells
EP1158322A4 (en) * 1998-12-07 2005-06-15 Nippon Zeon Co LIGHT TRANSMISSION PLATE
EP1322949A2 (en) * 2000-10-05 2003-07-02 E.I. Du Pont De Nemours And Company Polymeric microfabricated fluidic device suitable for ultraviolet detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136446A (ja) * 1994-11-14 1996-05-31 Mitsui Petrochem Ind Ltd 環状オレフィン系樹脂からなる分析セル
WO1997021089A1 (en) * 1995-12-05 1997-06-12 The Perkin-Elmer Corporation Optical cuvette
JP2000039420A (ja) * 1998-07-21 2000-02-08 Asahi Chem Ind Co Ltd 樹脂製マイクロチップ
WO2000030752A1 (de) * 1998-11-20 2000-06-02 Molecular Machines & Industries Gmbh Mehrgefässanordnungen mit verbesserter empfindlichkeit für die optische analytik
WO2001059432A2 (en) * 2000-02-10 2001-08-16 Illumina, Inc. Array of individual arrays as substrate for bead-based simultaneous processing of samples and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1524514A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530566A (ja) * 2005-06-23 2008-08-07 エス アール ユー バイオシステムズ,インコーポレイテッド 最適化格子に基づくバイオセンサーと基体との組合せ
JP4759002B2 (ja) * 2005-06-23 2011-08-31 エス アール ユー バイオシステムズ,インコーポレイテッド 最適化格子に基づくバイオセンサーと基体との組合せ
JP2009511704A (ja) * 2005-10-14 2009-03-19 エルジー ライフサイエンス リミテッド プラズマ処理を用いるプラスチック基質の製造方法および同方法を用いて製造されるプラスチック基質
JP2019181427A (ja) * 2018-04-17 2019-10-24 フコク物産株式会社 アダプタ
JP2022550017A (ja) * 2019-10-01 2022-11-30 レプリゲン・コーポレーション 流体におけるタンパク質濃度の決定

Also Published As

Publication number Publication date
US20060096884A1 (en) 2006-05-11
CN1662807A (zh) 2005-08-31
EP1524514A1 (en) 2005-04-20
JPWO2004001397A1 (ja) 2005-11-10
EP1524514A4 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
WO2008026733A1 (fr) Polymères de polymérisation par ouverture de cycle à base de norbornène hydrogéné, composition de résine et objets moulés
US7695668B2 (en) Process for producing molded object of curable resin and molded cured resin
WO2004001397A1 (ja) 脂環式構造含有重合体樹脂製容器及びそれを用いる光学的分析方法
JP4761021B2 (ja) 硬化性樹脂用樹脂型及び硬化樹脂成形体の製造方法
JPH11291247A (ja) 脂環式構造含有重合体樹脂成形体の再利用方法
JP2000219725A (ja) ノルボルネン系重合体水素添加物及びその組成物
JP5803322B2 (ja) 樹脂組成物及び成形体
JP3916359B2 (ja) Dnaチップ用基材及びdnaチップ
JP5381827B2 (ja) 硬化性組成物用複合樹脂型
JP6935477B2 (ja) 熱成形容器及びその製造方法
JP2013124310A (ja) 脂環構造含有重合体組成物及びその利用
JP2011215193A (ja) 光学素子
WO2021241516A1 (ja) マイクロ流路チップ及びその製造方法
JP4292405B2 (ja) 検査素子用のチップ基板およびその製造方法
JP5430858B2 (ja) 重合体組成物及びそれを用いて得られる成形体
JPH11293029A (ja) 脂環式構造含有重合体樹脂成形体の再利用方法
WO2023189188A1 (ja) 接合体及びその製造方法
JP2009197200A (ja) 樹脂組成物及びそれからなる車両用灯具のリフレクタ
WO2023053952A1 (ja) 積層体及びその製造方法
JPH11293030A (ja) 脂環式構造含有重合体樹脂成形体の再利用方法
JP7312580B2 (ja) 環状オレフィン系共重合体ペレット、成形体、及び、環状オレフィン系共重合体ペレットの製造方法
JP2007206363A (ja) 精密光学レンズ
JP5768403B2 (ja) バイオチップ用樹脂組成物及びその利用
JP4457729B2 (ja) 溶着複合体
JP2007240245A (ja) 生体分子検査素子用基材及び生体分子検査素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2004110231

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 20038140756

Country of ref document: CN

Ref document number: 2004515507

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003733487

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003733487

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006096884

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10518493

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10518493

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003733487

Country of ref document: EP