WO2021241490A1 - 酸化セリウムのナノ粒子、酸化セリウムのナノ粒子を含む分散液、酸化剤、抗ウイルス剤および抗菌剤 - Google Patents

酸化セリウムのナノ粒子、酸化セリウムのナノ粒子を含む分散液、酸化剤、抗ウイルス剤および抗菌剤 Download PDF

Info

Publication number
WO2021241490A1
WO2021241490A1 PCT/JP2021/019589 JP2021019589W WO2021241490A1 WO 2021241490 A1 WO2021241490 A1 WO 2021241490A1 JP 2021019589 W JP2021019589 W JP 2021019589W WO 2021241490 A1 WO2021241490 A1 WO 2021241490A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium oxide
nanoparticles
acid
cerium
dispersion
Prior art date
Application number
PCT/JP2021/019589
Other languages
English (en)
French (fr)
Inventor
翔太 関口
崇光 本白水
正照 伊藤
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP21812936.9A priority Critical patent/EP4159680A1/en
Priority to US17/927,550 priority patent/US20230240303A1/en
Priority to JP2021530142A priority patent/JPWO2021241490A1/ja
Priority to CN202180037246.4A priority patent/CN115667149B/zh
Publication of WO2021241490A1 publication Critical patent/WO2021241490A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/22Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing ingredients stabilising the active ingredients
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/244Lanthanides; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents

Definitions

  • the present invention relates to nanoparticles of cerium oxide, a dispersion containing the nanoparticles, and an oxidizing agent, an antiviral agent and an antibacterial agent containing the nanoparticles or the dispersion.
  • titanium oxide has the property of oxidatively decomposing organic substances due to its photocatalytic properties, and its performance is evaluated by the decomposition reaction of organic dyes and the like.
  • oxidative decomposition characteristics are expected to be used not only as antibacterial agents but also for decomposing various harmful substances such as small molecules such as acetaldehyde and ammonia, allergens, and viruses.
  • nanoparticles of cerium oxide (nanoceria) have the same catalytic activity as oxidases such as oxidase and peroxidase, and are expected to be applied as oxidants. Since these catalytic activities do not require a special light source such as ultraviolet rays, they can be expected to be applied to the use of decomposing harmful substances even in situations where it is difficult to use titanium oxide such as indoors and dark places.
  • a method is used in which a compound serving as a stabilizer is allowed to coexist during synthesis and the obtained nanoparticles are stably dispersed.
  • cerium (III) ions are oxidized with hydrogen peroxide using polyacrylic acid as a stabilizer to obtain a particle dispersion, or cerium (cerium in aqueous ammonia using dextran as a stabilizer).
  • III) Alkaline neutralization of ions is performed to obtain a particle dispersion.
  • Non-Patent Document 1 describes a method for synthesizing nanoparticles of cerium oxide whose surface is coated with polyacrylic acid or dextran.
  • Non-Patent Document 1 discloses that, in particular, when polyacrylic acid is used as a stabilizer, the oxidase activity, which is a value indicating oxidation performance, is increased.
  • Patent Document 1 discloses a polishing composition containing colloidal ceria surface-modified with boric acid, and describes that the particles are negatively charged and stably dispersed over a wide pH range. ..
  • Patent Document 2 discloses a reverse micelle composition in which nanoceria or boric acid containing an organic carboxylic acid such as ethylenediaminetetraacetic acid (EDTA) or lactic acid as a stabilizer is dispersed in a hydrocarbon liquid or a diesel fuel. It is described that the efficiency of the diesel engine is enhanced by adding the composition to the fuel.
  • EDTA ethylenediaminetetraacetic acid
  • the present inventors have studied applications that utilize the oxidizing performance of nanoparticles of cerium oxide.
  • the cerium oxide nanoparticles whose surface is coated with the polyacrylic acid described in Non-Patent Document 1 and the commercially available cerium oxide nanoparticles have a low decomposition rate even if the organic dye is oxidatively decomposed. became.
  • the decomposition rate was also low in the production method in which boric acid was post-added to the cerium oxide nanoparticles to modify the surface with reference to Patent Document 1.
  • the decomposition rate was low. From these results, further studies were conducted with the task of finding nanoparticles of cerium oxide with high oxidizing performance.
  • the present inventors have focused on a method for producing nanoparticles of cerium oxide, and have particularly studied a stabilizer.
  • the dispersion containing nanoparticles of cerium oxide produced by adding an oxidizing agent to the solution containing the boron compound represented by the general formula BR n (OR') 3-n and cerium (III) ions . It was found that the decomposition rate of oxidative decomposition of organic dyes is high. Further, they have found that the dispersion liquid thus produced has high antiviral performance, and have completed the present invention.
  • the present invention is as follows. (1) Cerium oxide nanoparticles produced by adding an oxidizing agent to a solution containing a boron compound represented by the following general formula (I) and cerium (III) ions.
  • n is an integer of 0 to 2
  • R indicates any of an alkyl group having 1 to 4 carbon atoms, a phenyl group, and a tolyl group
  • R' is hydrogen and an alkyl having 1 to 4 carbon atoms. Indicates any of a group, a phenyl group, and a tolyl group. When there are a plurality of R or R', they may be the same or different.
  • the cerium oxide nanoparticles according to (1) wherein the pH of the solution when the oxidizing agent is added is 5 or more.
  • the boron compound represented by the general formula (I) is boric acid, boric acid ester, boronic acid, boronic acid ester, borinic acid, boric acid ester or borate, (1) or (2).
  • n is an integer of 0 to 2
  • R represents an alkyl group having 1 to 4 carbon atoms, a phenyl group or a tolyl group
  • R' is hydrogen and an alkyl having 1 to 4 carbon atoms. Indicates either a group, a phenyl group or a tolyl group. When there are a plurality of R or R', they may be the same or different.
  • the nanoparticles of cerium oxide of the present invention or the dispersion liquid containing the nanoparticles By using the nanoparticles of cerium oxide of the present invention or the dispersion liquid containing the nanoparticles, it is possible to oxidatively decompose organic substances and various harmful substances in a higher yield than the conventional nanoparticles of cerium oxide.
  • the nanoparticles of cerium oxide of the present invention or the dispersion containing the nanoparticles can be used as a high-performance antiviral agent and antibacterial agent for inactivating various viruses.
  • FIG. 1 is a diagram showing CeL3 end XANES spectra of nanoparticles of cerium oxide prepared in Examples 1 and 2 measured in Example 18.
  • FIG. 2 is a diagram showing CeL3 end XANES spectra of nanoparticles of cerium oxide prepared in Examples 2 and 5 measured in Example 18.
  • FIG. 3 is a diagram showing CeL3 end XANES spectra of nanoparticles of cerium oxide prepared in Example 12 and Comparative Example 2 measured in Example 18.
  • FIG. 4 is a diagram showing CeL3 end XANES spectra of cerium oxide crystals, cerium carbonate (III), cerium nitrate (III), and ammonium cerium nitrate (IV) measured in Reference Example 1.
  • nanoparticles of cerium oxide of the present invention are simply the nanoparticles of the present invention, and the dispersion containing the nanoparticles of cerium oxide of the present invention is simply the present invention. It may be described as a dispersion.
  • the cerium oxide nanoparticles of the present invention are produced by adding an oxidizing agent to a solution containing a boron compound represented by the following general formula (I) and cerium (III) ions.
  • the synthesis of nanoparticles of cerium oxide of the present invention uses a water-soluble salt of cerium as one of the raw materials, and the synthesis is carried out with water or a solvent compatible with water.
  • the general formula (I) is used as a stabilizer.
  • a boron compound having the structure shown is used.
  • n is an integer of 0 to 2
  • R represents an alkyl group having 1 to 4 carbon atoms, a phenyl group or a tolyl group
  • R' is hydrogen and an alkyl having 1 to 4 carbon atoms. Indicates either a group, a phenyl group or a tolyl group.
  • a plurality of Rs or R's may be the same or different from each other.
  • boric acid ester generally formula (I))
  • borate is a general term including a salt of boric acid or a salt such as metaboric acid or polyboric acid obtained by dehydration condensation of boric acid. Since these borates have an equilibrium state between boric acid and tetrahydroxyboric acid in an aqueous solution, they have the structure of boric acid represented by the general formula (I) in a solution.
  • any ion such as lithium ion, sodium ion, potassium ion and ammonium ion can be used.
  • boron compounds include boric acid; boric acid esters such as trimethyl borate, triethyl borate, tripropyl borate, triisopropyl borate, tributyl borate, and triisobutyl borate; methylboronic acid, ethylboronic acid, and propyl.
  • boric acid such as boric acid, isopropylboronic acid, butylboronic acid, isobutylboronic acid and phenylboronic acid.
  • boric acid examples include boric acid, metaboric acid, diboric acid, metaboric acid, tetraboric acid, pentaboric acid, hexaboric acid and lithium octaboric acid, sodium salt, potassium salt and ammonium salt. Be done.
  • the nanoparticles of cerium oxide according to the present invention preferably contain 0.001 mol or more to 10 mol of boron with respect to 1 mol of cerium element. More preferably, it is in the range of 0.001 mol to 1 mol.
  • cerium oxide nanoparticles is composed of a mixture of Ce 2 O 3 and CeO 2.
  • cerium oxide may also include a form as a hydroxide or an oxyhydroxide.
  • the ratio of ce 2 O 3 and CeO 2 can be calculated by including cerium (III) and X-ray photoelectron spectroscopy as the ratio of the cerium (IV) (XPS).
  • the nanoparticles of cerium oxide of the present invention can further contain Group 3-12 transition metals in the periodic table. These metals have valences of 2+ to 3+ to create lattice defects when doped into cerium oxide nanoparticles and improve performance, and O and 1+, 1+ and 2+, 2+ and 3+ associated with redox potential. It can be expected that the performance will be improved by causing a change in the valence of cerium oxide due to a change in the valence such as.
  • transition metals are easily doped with nanoparticles of cerium oxide, and are preferably transition metals of the 4th to 6th cycles from the viewpoint of further improving antibacterial and antiviral effects, and Ti, Mn, Fe, Co, Ni, Cu, Zn, Zr and Ag are more preferable.
  • These transition metals include organic acid salts such as carboxylates and sulfonates, phosphorus oxo acid salts such as phosphates and phosphonates, inorganic acid salts such as nitrates, sulfates and carbonates, as well as halogens. It can be added at the time of synthesis as a salt such as a product or hydroxide. These may be those that dissolve in a synthetic solvent.
  • the dispersion liquid containing nanoparticles of cerium oxide of the present invention is produced by a production method in which an oxidizing agent is added to a solution containing a boron compound and cerium (III) ion.
  • an oxidizing agent is added to a solution containing a boron compound and cerium (III) ion.
  • a method for producing a dispersion of nanoparticles of cerium oxide of the present invention will be described.
  • the first step is a step of obtaining a solution containing a boron compound and cerium (III) ion.
  • the solution of the boron compound used in this step can be prepared by dissolving the boron compound in any solvent.
  • the solvent is preferably water or a solvent compatible with water. Specific examples of solvents compatible with water include methanol, ethanol, propanol, isopropanol, butanol, tert-butanol, tetrahydrofuran, acetone, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), glycerol, ethylene glycol, oligoethylene. Glycol and the like can be mentioned.
  • the boron compound When the boron compound contains a substituent having 3 or less carbon atoms, the boron compound is preferably soluble in water, and when the boron compound contains a substituent having 4 or more carbon atoms, the boron compound contains 50% ethylene. It is preferably dissolved in an aqueous glycol glycol solution. If the boron compound is difficult to dissolve in the solvent, it may be dissolved by heating or ultrasonic treatment.
  • the amount of the boron compound may be in the range of 0.1 to 1000 molar equivalents with respect to the cerium (III) ion, preferably 1 to 200 molar equivalents, and more preferably 5 to 200 molar equivalents. It is preferably 10-100 molar equivalents, most preferably.
  • a solution containing the boron compound and a solution containing the cerium (III) ion may be prepared and mixed, respectively, or the solvent of the solution of the boron compound is water.
  • a cerium (III) salt may be added to a solution of the boron compound and mixed.
  • the solution containing cerium (III) ion may be prepared by dissolving the cerium (III) salt in an arbitrary solvent.
  • cerium (III) salt for example, cerium nitrate (III) hexahydrate may be used.
  • the amount of the cerium (III) salt can be mixed with the solution of the boron compound so that the final concentration of the reaction solution is in the range of 0.01% by mass to 10% by mass.
  • the mixed solution is preferably mixed for at least 5 minutes until the solution becomes uniform.
  • the solution containing the boron compound and the cerium (III) ion does not contain a trivalent or higher carboxylic acid, for example, the compound shown below. Even if it is contained, the amount thereof is preferably 0.1 equivalent or less, and more preferably 0.01 equivalent or less with respect to the cerium (III) ion.
  • trivalent or higher carboxylic acid examples include nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), ethylenediaminediaminediaminetetraacetic acid (EDDS), glycol etherdiaminetetraacetic acid (EGTA), and diethylenetriaminopentaacetic acid (diethylenetriaminopentaacetic acid (EDTA).
  • NTA nitrilotriacetic acid
  • EDTA ethylenediaminetetraacetic acid
  • EDDS ethylenediaminediaminediaminetetraacetic acid
  • EGTA glycol etherdiaminetetraacetic acid
  • EDTA diethylenetriaminopentaacetic acid
  • DTPA citric acid
  • HEDTA hydroxyethylethylenediaminetetraacetic acid
  • polyacrylic acid and / or salts thereof.
  • a transition metal may be further added in the first step.
  • the transition metal may be added directly to a solution containing a boron compound and a cerium (III) ion or a cerium (III) salt as a metal salt in a solid state, or a solution prepared by dissolving the metal salt in an arbitrary solvent may be added to boron. It may be added to a solution containing the compound and a cerium (III) ion or a cerium (III) salt.
  • the amount of the transition metal is preferably in the range of 0.0001 mol to 0.3 mol with respect to 1 mol of cerium (III) ion. More preferably, it is in the range of 0.001 mol to 0.2 mol.
  • the amount of the transition metal does not include the amount of elements other than the transition metal contained in the salt of the transition metal.
  • the second step is a step of adding an oxidizing agent to the mixed solution obtained in the first step.
  • the oxidizing agents used in the second step are nitrate, potassium nitrate, hypochloric acid, chloric acid, chloric acid, perchloric acid, halogen, hydrogen halide, permanganate, chromic acid, dichromic acid, oxalic acid, Examples thereof include hydrogen sulfide, sulfur dioxide, sodium thiosulfate, sulfuric acid and hydrogen peroxide. Of these, hydrogen peroxide is particularly preferable.
  • the amount of the oxidizing agent added may be 0.1 equivalent or more and 10 equivalent or less, preferably 0.5 equivalent or more and 2 equivalent or less, as a molar equivalent with respect to the cerium (III) ion.
  • cerium (III) ions When an oxidizing agent is added to a solution containing a boron compound and cerium (III) ions, the cerium (III) ions are oxidized to cerium (IV) to form cerium oxide particles composed of a mixture of Ce 2 O 3 and Ce O 2.
  • the reaction is initiated. In the reaction, the solution is colored yellow, orange, red, brown or the like. This is the coloration caused by the conversion of cerium (III) ions to cerium (IV), and the degree of coloring is the ratio of cerium (III) and cerium (IV) present on the surface of the nanoparticles of cerium oxide. decide. The end of the reaction can be judged by the point where the color change disappears.
  • the reaction for forming nanoparticles of cerium oxide can be carried out at any pH, but since the reaction is weakly acidic to basic and the reaction is easy to proceed, the pH of the solution when adding the oxidizing agent should be 5 or more. It is more preferable to adjust the pH to 6 or more, and it is further preferable to adjust the pH to 7 or more. In adjusting the pH, an aqueous solution of sodium hydroxide, an aqueous solution of ammonia, or the like can be used. Further, since the pH of the solution tilts toward the acidic side as this reaction progresses, the pH of the reaction solution may be maintained at 5 or more from the time of adding the oxidizing agent to the end of the reaction.
  • the reaction is usually completed in about 5 minutes to 1 hour, and a dispersion containing the nanoparticles of cerium oxide of the present invention can be obtained.
  • a dispersion containing the nanoparticles of cerium oxide of the present invention can be obtained.
  • 1 ml of a 10 mass% cerium nitrate (III) hexahydrate aqueous solution is added to a 284 mg / 50 ml borate aqueous solution adjusted to pH 8, followed by a 1.2 mass% hydrogen peroxide aqueous solution.
  • 1 ml is added and stirred at room temperature, the solution turns orange and the particle formation reaction is completed in about 10 minutes, and the dispersion of the present invention is obtained.
  • the reaction for forming nanoparticles of cerium oxide can be carried out at any temperature of 4 ° C to 230 ° C.
  • it can be heated to 100 ° C. to 230 ° C. by hydrothermal treatment.
  • a cool bath of BBL101 manufactured by Yamato Kagaku Co., Ltd. can be used, and when performing heating, a hot bath such as OWB-1100S manufactured by Tokyo Rika Kikai Co., Ltd. is used. Can be done.
  • the heating is 100 ° C or lower, the reaction solution may be put in a glass container and heated.
  • the pressure resistant container is a combination of a PTFE inner cylinder and a pressure resistant stainless steel outer cylinder.
  • the reaction solution may be put in and heated.
  • the hydrothermal treatment can also be performed by putting the reaction solution in a medium bottle and using a sterilizer such as LSX-500 manufactured by Tommy Industries Co., Ltd.
  • the pH of the dispersion liquid of the present invention may be adjusted after the reaction is completed.
  • the pH of the dispersion liquid of the present invention may be in the range of pH 1 to 10, preferably pH 2 to 8.
  • the pH may be adjusted by adding a buffer solution, or may be adjusted by adding an acid such as nitric acid, sulfuric acid or hydrochloric acid, or a base such as sodium hydroxide or potassium hydroxide.
  • the pH of the dispersion liquid may be adjusted after purification of the dispersion liquid such as filtration with an ultrafiltration membrane described later or dialysis with a semipermeable membrane.
  • the dispersion of the present invention is filtered with an ultrafiltration membrane or dialyzed with a semipermeable membrane after the reaction is completed, and the unreacted oxidizing agent and cerium (III) remaining in the dispersion after the reaction is completed. ) Ions and excess boron compounds can be removed. After that, nanoparticles of cerium oxide can be isolated from the dispersion liquid of the present invention by the method described later.
  • the dispersion liquid of the present invention may be heat-treated at an arbitrary temperature of 30 ° C to 230 ° C after the above purification.
  • it can be heated to 100 ° C. to 230 ° C. by hydrothermal treatment.
  • a hot bath such as OWB-1100S manufactured by Tokyo Rika Kikai Co., Ltd. can be used.
  • the purified dispersion may be placed in a glass container and heated.
  • a PTFE inner cylinder container and a pressure-resistant stainless steel outer cylinder are combined.
  • the purified dispersion may be placed in a pressure-resistant container and heated.
  • the hydrothermal treatment can also be performed by putting the purified dispersion in a medium bottle and using a sterilizer such as LSX-500 manufactured by Tommy Industries Co., Ltd.
  • the nanoparticles of cerium oxide of the present invention can be isolated by drying the dispersion of the present invention using an evaporator, a freeze dryer, or the like.
  • the nanoparticles of cerium oxide can also be obtained by dropping the dispersion of the present invention onto a substrate such as glass, plastic, or ceramics and air-drying it, drying it in a desiccator, or drying it with a dryer or dryer.
  • nanoparticles of cerium oxide can be isolated on the filtration membrane by filtering the dispersion liquid of the present invention by ultrafiltration or suction filtration and completely removing water.
  • an azeotropic solvent may be added to the dispersion liquid of the present invention, or the solvent of the dispersion liquid may be replaced with a solvent having a lower boiling point.
  • a coprecipitant may be added to the dispersion liquid of the present invention, a solvent may be added to improve the ionic strength, or a solvent may be added to reduce the dispersibility of the nanoparticles. .. Further, before the above operation, the dispersion liquid of the present invention may be fractionated in size of nanoparticles by an ultrafiltration membrane or centrifugation.
  • the dispersion liquid of the present invention may contain an ionic component.
  • an ionic component acetic acid, phthalic acid, succinic acid, carbonic acid, Tris (hydroxymethyl) aminomethane (Tris), 2-Morphorinoethanesulphonic acid, monohydrate (MES), Bis (2-hydroxy) as components imparting buffering performance.
  • ionic components can be added so that the final concentration is in the range of 0.1 mM to 1 M.
  • These ionic components may be added to the dispersion after the reaction is completed, may be added after filtering with an ultrafiltration membrane, may be used as a dialysate, or may be added to the dispersion after dialysis. good. It may be added to dried cerium oxide nanoparticles to form a dispersion.
  • the dispersion of the present invention may be stored as a dispersion after the reaction is completed, or the dispersion after the reaction is stored as a purified product filtered through an ultrafiltration membrane or a purified product dialyzed by a semipermeable membrane. Alternatively, it may be dried using an evaporator, a freeze-dryer, or the like and stored as isolated nanoparticles of cerium oxide. Further, it may be stored as a dispersion liquid containing an added solvent component or ionic component such as the above-mentioned azeotropic solvent, or may be stored as a dispersant having an adjusted pH. When storing, refrigerated storage is preferable.
  • the hydrodynamic diameter indicated by the nanoparticles of cerium oxide of the present invention is calculated as an average particle diameter from a number conversion histogram by measuring dynamic light scattering to derive an autocorrelation function and analyzing it by the Marquart method. ELS-Z manufactured by Otsuka Electronics Co., Ltd. is used for the measurement of dynamic light scattering.
  • the hydrodynamic diameter indicated by the nanoparticles of cerium oxide may be 1 nm or more and 1000 nm or less, and preferably 1 nm or more and 200 nm or less.
  • the hydrodynamic diameter indicated by the nanoparticles of cerium oxide of the present invention can be controlled by the reaction temperature.
  • the reaction temperature can be arbitrarily set between about 4 and 90 ° C., and if the reaction temperature is low, particles having a small particle size can be obtained, and if the reaction temperature is high, particles having a large particle size can be obtained.
  • the cerium oxide nanoparticles of the present invention or a dispersion thereof may be sterilized before use.
  • the sterilization method include a method of passing through a sterilization filter, a method of autoclaving (for example, 120 ° C., 20 minutes) method, and a method of 254 nm ultraviolet irradiation.
  • the energy state of cerium in Ce 2 O 3 and CeO 2 (III) and cerium (IV) is, X-rays absorption fine structure spectroscopy; observed by (X-ray Absorption Fine Structure XAFS ) can do.
  • XAFS X-ray Absorption Fine Structure
  • the structure of about 20 eV from the absorption edge is XANES (X-ray Absorption Near Edge Structure), and the wide-area X-ray absorption fine structure that appears on the high energy side of about 100 eV or more from the absorption edge is EXAFS (Exted X-ray Absorb). ).
  • Information on the valence and structure of the atom of interest is obtained from XANES, and in EXAFS analysis, the local structure of the sample and the atomic species around the atom of interest are obtained by Fourier transform of the real spectrum (corresponding to FT-EXAFS / radial distribution function). Information on valence and distance can be obtained.
  • the energy states of cerium (III) and cerium (IV) related to the redox reaction of cerium oxide are reflected in the peak position and peak intensity ratio of the maximum absorption in the XANES spectrum.
  • the cerium oxide nanoparticles of the present invention have a maximum absorption between 5726-5729 eV and 5735-5739 eV in the Ce L3-end XANES spectrum obtained by X-ray absorption fine structure spectrum measurement. That is, the nanoparticles of cerium oxide of the present invention contain the boron compound represented by the general formula (I) and have a maximum absorption between 5726-5729 eV and 5735-5739 eV in the XANES spectrum.
  • the cerium oxide nanoparticles of the present invention are produced by adding an oxidizing agent to a solution containing the boron compound represented by the general formula (I) and cerium (III) ions. It has a maximum absorption between 5726-5729 eV and 5735-5739 eV in the XANES spectrum.
  • the cerium oxide nanoparticles of the present invention or a dispersion thereof can be used as an oxidizing agent.
  • it can be used as a uniform catalyst in an organic synthesis reaction or polymer polymerization or as a wet etching solution for a semiconductor by utilizing an oxidizing action.
  • it can be used as a solution in place of the oxidase solution by utilizing the oxidative action.
  • it can be used for antibody-antibody reactions, detection reactions using nucleic acid hybridization, and tissue staining instead of oxidase and peroxidase solutions, or it can be coated on electrodes to immobilize cerium oxide nanoparticles. It can be used for chemical detection reactions.
  • a bleaching agent / disinfectant utilizing an oxidizing action for decomposing / removing stains, odors, allergens, bacteria, fungi, and molds.
  • it can be used as a bleaching agent for cleaning clothes, tableware, kitchens, toilets, washrooms, bathrooms, medical appliances and the like. Cleaning methods include soaking and washing, spraying, and spraying using a humidifier or nebulizer.
  • a disinfectant it can be added to pools, bathtubs, hot springs, body soap, hand wash detergent, disinfectant, mouthwash, mouthwash, hand gel, disinfectant spray, disinfectant spray, deodorant spray, wet tissue, disinfectant. It can be used as a sheet or the like.
  • the nanoparticles of cerium oxide of the present invention may remain on the object so that the deodorizing, antiviral, antibacterial and antifungal effects are maintained.
  • the performance as such an oxidizing agent can be evaluated by a fading reaction of an organic dye, which will be described later.
  • the nanoparticles of cerium oxide of the present invention or a dispersion thereof are used as an oxidizing agent, they can be used in combination with alcohols, surfactants, bactericides, and natural organic substances.
  • the alcohol include ethanol and isopronol
  • examples of the surfactant include benzalkonium chloride, benzethonium chloride and alkylpolyaminoethylglycine
  • examples of the bactericide include chlorhexidine and acrinol.
  • melbromin, crystal violet, and natural organic substances examples include polyphenols, catechins, tannins, chitins, chitosans, isothiocyanates, hinokithiols, limonene, polylysines, terpenoids, saponins, flavonoids, and carotene. In use, a plurality of these may be combined.
  • the nanoparticles of cerium oxide of the present invention or a dispersion thereof are used as an oxidizing agent, they can be used in combination with another known oxidizing agent.
  • oxidizing agent for example, hypochlorous acid, sodium hypochlorite, povidone iodine, oxidol, ozone water, peracetic acid can be mentioned, and a plurality of these may be combined.
  • the fading reaction of organic dyes is also used to evaluate the photocatalytic performance of titanium oxide, and the decomposition rate of the obtained dyes is used as an index of the characteristics of oxidative decomposition of organic substances. Since small molecules such as acetaldehyde and ammonia and harmful substances such as allergens are organic substances, titanium oxide is expected to be used not only as an antibacterial agent but also for decomposing various harmful substances due to these characteristics. There is. Similarly, if the cerium oxide nanoparticles of the present invention or a dispersion thereof have a high dye decomposition rate, it is considered that they can be used not only as an antibacterial agent but also for decomposing various harmful substances.
  • the decomposition rate of the dye is calculated as follows. First, the dispersion liquid of the present invention is mixed with an organic dye such as Acid Red 94 (AR94) and allowed to stand for a predetermined time. As a control, the same treatment is performed on a solution of AR94 containing no nanoparticles of cerium oxide. After the reaction, the absorption spectra of all the solutions are measured. For the analysis, the absorbance at 552 nm, which is the maximum absorption wavelength of AR94, is used.
  • an organic dye such as Acid Red 94 (AR94)
  • AR94 Acid Red 94
  • a preferred embodiment of the dispersion of the present invention is a cerium oxide containing a boron compound and nanoparticles of cerium oxide and having a decomposition rate of 25% or more in the decomposition reaction of acid red 94 at 40 ° C. for 1 hour.
  • a dispersion containing nanoparticles Since the decomposition rate of Acid Red 94 in the decomposition reaction of Acid Red 94 at 40 ° C. for 1 hour is 25% or more, it can be used as an oxidizing agent.
  • the decomposition rate in the decomposition reaction of Acid Red 94 at 40 ° C. for 1 hour is preferably 50% or more, and particularly preferably 70% or more.
  • the cerium oxide nanoparticles of the present invention or a dispersion thereof are added at the time of molding of fibers, tubes, beads, rubber, films, plastics, etc. as additives for imparting oxidation performance, or are applied to the surfaces thereof. Therefore, it can be used for processing such as deodorization, antiallergic, antibacterial, and antifungal.
  • the cerium oxide nanoparticles of the present invention or those processed with the dispersion liquid thereof include, for example, a drainage port chrysanthemum crack cover for a kitchen sink, a drainage port plug, a packing for fixing a window glass, a packing for fixing a mirror, a bathroom, and the like.
  • the product processed with the cerium oxide nanoparticles of the present invention or the dispersion liquid thereof can be used in various fields as a sanitary material.
  • the cerium oxide nanoparticles of the present invention or a dispersion thereof can be used as an antiviral agent.
  • the amount of virus is quantified after contacting or mixing the nanoparticles of cerium oxide of the present invention or a dispersion thereof with the virus.
  • a method for quantifying a virus a method for measuring the amount of virus antigen by the ELISA method, a method for quantifying the viral nucleic acid by PCR, a method for measuring the infectious titer by the plaque method, and a method for measuring the infectious titer by the 50% infectious dose measuring method. The method etc. can be mentioned.
  • the antiviral performance a method of measuring the infectious titer by a plaque method or a 50% infection amount measuring method is preferably used.
  • the unit of virus infectious titer is TCID 50 (Tissue culture infectious dose 50) when tested on cultured cells, EID 50 (Egg infectious dose 50) when using hatched chicken eggs, and animals. Then, it is expressed by LD 50 (Lethal dose 50).
  • LD 50 Lethal dose 50
  • the 50% infection amount measurement method there are Reed-Muench method, Behrens-Kaeber method, Spearman-Karber method and the like as a method of calculating the infection titer from the obtained data, but in the present invention, the Reed-Muench method is used.
  • the criteria for determining the antiviral performance are generally that the logarithmic reduction value of the infectious titer is 2.0 or more with respect to the infectious titer before the nanoparticle of cerium oxide of the present invention is allowed to act or the control containing no nanoparticles of the present invention. If so, the antiviral performance is determined to be effective.
  • a preferred embodiment of the dispersion liquid containing nanoparticles of cerium oxide of the present invention contains nanoparticles of boron compound and cerium oxide, and measures 50% infection amount in a virus inactivation test for cell culture.
  • the logarithmic reduction value of the virus infectious titer TCID 50 in the method is 2.0 or more with respect to the infectious titer before the nanoparticles of the cerium oxide of the present invention are allowed to act and the control containing no nanoparticles of the present invention.
  • the logarithmic reduction value of the virus infectivity titer TCID 50 in the virus inactivation test is 2.0 or more, it can be used as an antiviral agent.
  • the logarithmic reduction value of the virus infection titer is preferably 2.5 or more, and particularly preferably 3.0 or more.
  • the virus that can be inactivated by the nanoparticles of cerium oxide of the present invention or a dispersion thereof is, for example, rhinovirus, poliovirus, mouth-foot disease virus, rotavirus, norovirus, enterovirus, hepatvirus, astrovirus, sapovirus, hepatitis E virus.
  • the nanoparticles of cerium oxide of the present invention or a dispersion thereof are kneaded into materials such as fibers, tubes, beads, rubber, films, and plastics as additives, or applied to the surface of these materials. It can be used as a rubber.
  • materials such as fibers, tubes, beads, rubber, films, and plastics as additives, or applied to the surface of these materials. It can be used as a rubber.
  • Various fields as interior materials for buildings such as hospitals, interior materials for trains and automobiles, seats for vehicles, blinds, chairs, sofas, equipment for handling viruses, doors, ceiling boards, floor boards, windows, etc. Can be used for.
  • the nanoparticles of cerium oxide or its dispersion of the present invention can be used as an antibacterial agent.
  • EN 1040: 2005 which is an European standard test method (EN)
  • EN 1040: 2005 which is an European standard test method (EN)
  • the bacterial solution is added to the test solution containing the active ingredient of the antibacterial agent, and the number of bacterial cells is measured after a certain period of time.
  • the bacterial solution contains 0.85% NaCl and 0.1% tryptone as medium components, and is mixed so that the volume ratio of the test solution: bacterial solution is 9: 1.
  • the criteria for determining the antibacterial activity are generally such that the logarithmic reduction value of the number of cells is 2.0 or more with respect to the number of cells before the nanoparticle of cerium oxide of the present invention is allowed to act or the control containing no nanoparticles of the present invention. If so, it is determined that there is antibacterial activity.
  • Examples of the method for quantifying the number of cells include a method for measuring the amount of cells by turbidity (OD600) measurement, a method for measuring the amount of cells by a colonization method, and a method for quantifying the nucleic acid of cells by PCR. Be done.
  • a method of measuring the infectious titer by turbidity measurement or a colonization method is preferably used for the antibacterial performance.
  • a preferred embodiment of the dispersion liquid containing the nanoparticles of cerium oxide of the present invention contains nanoparticles of a boron compound and cerium oxide, and the logarithmic reduction value of the cell amount is the nanoparticles of cerium oxide of the present invention. It is 2.0 or more with respect to the infectious titer before the action and the control containing no nanoparticles of the present invention.
  • the logarithmic reduction value of the number of cells in the antibacterial test is 2.0 or more, it can be used as an antibacterial agent.
  • the logarithmic reduction value of the number of cells is preferably 2.5 or more, and 3.0 or more is particularly preferable.
  • Examples of the target microorganism in which the nanoparticles of cerium oxide or the dispersion thereof of the present invention exhibit antibacterial activity include the following.
  • Examples of the bacterium include Gram-positive bacteria and Gram-negative bacteria.
  • Examples of gram-negative bacteria include Escherichia bacteria such as Escherichia coli, Salmonella bacteria such as Salmonella, Pseudomonas bacteria such as Shigella, Shigella bacteria such as Shigella, and Klebsiella such as Klebsiella pneumoniae.
  • Bacteria of the genus Regionella such as Regionella pneumophylla can be mentioned.
  • Examples of gram-positive bacteria include bacteria of the genus Staphylococcus such as Staphylococcus, bacteria of the genus Bacillus such as Bacillus subtilis, and bacteria of the genus Mycobacterium such as tuberculosis.
  • Examples of fungi include fungi and yeast.
  • Examples of fungi include filamentous fungi of the genus Aspergillus such as black stag beetle, filamentous fungi of the genus Penicillium such as blue mold, filamentous fungi of the genus Cladosporium such as black mold, filamentous fungi of the genus Alternaria such as suscabi, and trichoderma such as tucia okabi.
  • Examples include filamentous fungi of the genus, filamentous fungi of the genus Ketomium such as Ketama mold.
  • yeasts include yeasts of the genus Saccharomyces such as baker's yeast and beer yeast, and yeasts of the genus Candida such as Candida albicans.
  • the disinfectant By adding the nanoparticles of cerium oxide of the present invention or a dispersion thereof to the disinfectant, the disinfectant can be imparted with an antiviral or antibacterial effect.
  • disinfectants as active ingredients, chlorine-based, iodine-based, peroxide-based, aldehyde-based, phenol-based, biguanide-based, mercury-based, alcohol-based, anionic surfactant-based, cationic surfactant-based, amphoteric It can be applied to those containing disinfectant components such as surfactants, nonionic surfactants, and naturally derived substances.
  • the concentration of the nanoparticles of cerium oxide of the present invention can be arbitrarily set between 0.0001% by mass and 10% by mass.
  • chlorine-based disinfectant components examples include sodium hypochlorite, chlorine, chlorinated isocyanuric acid, and the like.
  • iodine-based disinfectant components examples include iodine, povidone iodine, nonoxynoluyode, phenoxyyode and the like.
  • peroxide-based disinfectant components include hydrogen peroxide, potassium permanganate, peracetic acid, organic peracid, sodium percarbonate, sodium perborate, and ozone.
  • aldehyde-based disinfectant components examples include glutaraldehyde, phthalal, formaldehyde, and the like.
  • phenolic disinfectants include isopropylmethylphenol, thymol, eugenol, triclosan, cresol, phenol, chlorocresol, parachloromethacresol, parachloromethaxylenol, orthophenylphenol, paraoxybenzoic acid alkyl ester, resorcin, hexachloro.
  • examples thereof include phenol, salicylic acid or salts thereof.
  • biguanide-based disinfectant components examples include chlorhexidine, chlorhexidine gluconate, chlorhexidine hydrochloride, and the like.
  • mercury-based disinfectant components include mercurochrome, mercuric chloride, thimerosal, and the like.
  • alcohol-based disinfectant components examples include ethanol, isopropanol, and the like. In this case, the concentration of the alcohol-based disinfectant component may be 30 to 80% by mass.
  • disinfectant components for anionic surfactants include alkylbenzene sulfonates, fatty acid salts, higher alcohol sulfates, polyoxyethylene alkyl ether sulfates, ⁇ -sulfosites, ⁇ -olefin sulfonates, monoalkyls.
  • examples thereof include phosphoric acid SL salt and alcan sulfonate.
  • Examples of the disinfecting component of the cationic surfactant system include alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkyldimethylbenzylammonium salt, polyhexamethylene biguanide, benzethonium chloride and the like.
  • Examples of the disinfectant component of the amphoteric tenside are alkylamino fatty acid salts, alkyl betaines, alkyl amine oxides and the like.
  • disinfectant components for nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene / polyoxypropylene alkyl ether, polyoxyethylene / polyoxybutylene alkyl ether, alkylamine ethoxylate, alkylamine alkoxylate, and poly.
  • examples thereof include oxyethylene-polyoxypropylene block copolymer, polyoxyethylene-polyoxypropylene block copolymer (reverse type), ethylene oxide / propylene oxide adduct of polyhydric alcohol, alkyl glucoside, fatty acid alkanolamide and the like.
  • Examples of naturally derived disinfectant ingredients include hinokithiol, annetol, anise oil, borneol, camphor, carboxylic, cassia oil, akaza oil, cineol, citrar, citronellal, eugenol, pinene, geraniol, lemon oil, riolol, menthol, Burning plant-based chemicals such as orange oil, camphor, thymol, and polyphenols (flavanols, galotannins, ellagitannins, fluorotannins), and chitin, chitosan, scallops, and oyster shells made from shell shells.
  • Antibacterial peptides produced by organisms to protect themselves against external microorganisms can also be used, for example, histatin, defensin, lactoferrin, lactoferrin, a degradation product of lactoferrin. There are lactoferrrin, magainin, cecropin, peptidetin and the like.
  • a plant extract as a disinfectant component of a naturally derived product.
  • Specific examples include grapefruit seed extract, red-spotted sardines, sardines, sardines, sardines, sardines, sardines, sardines, sardines, sardines, sardines, sardines, and sardines.
  • Kihada of the family Mikan, Unshuumikan, etc. Comfrey of the family Murasaki, Barberry of the family Megi, Nanten, etc. Examples include plant extracts from balun, kanzo, etc., Jingyo of the family Lindou, Moso bamboo of the family Rice, Ascophyllum nodosam of the family Hibamata, etc.
  • the ultrafine bubbles include, inside, one or more gases selected from air, oxygen, hydrogen, nitrogen, carbon dioxide, argon, neon, xenone, fluorinated gas, ozone and deactivated gas. Bubbles having a particle diameter of 500 nm or less can be mentioned. Hyperfine bubbles are also called nanobubbles. The concentration may be 100,000 pieces / ml or more.
  • the disinfectant containing the nanoparticles of cerium oxide or the dispersion liquid thereof of the present invention may contain an appropriate optional component according to the dosage form in addition to the disinfectant component described above. Specifically, solvents, wetting agents, thickeners, antioxidants, pH regulators, amino acids, preservatives, sweeteners, fragrances, surfactants, coloring agents, bactericidal aids, chelating agents, ultraviolet rays. It can contain absorbents, antifoaming agents, enzymes, pharmaceutical stabilizers and the like.
  • the disinfectant to which the nanoparticles of cerium oxide of the present invention or a dispersion thereof are added can be provided in various forms such as liquid, gel and powder.
  • the liquid disinfectant can be provided as a lotion, a spray, etc., and is filled in a bottle with a measuring cap, a trigger type spray container, a squeeze type or a dispenser type pump spray container, etc., and sprayed or sprayed.
  • the liquid disinfectant can be impregnated into a sheet of paper, cloth or the like, filled in a container such as a bottle or a bucket, and provided as a wet sheet.
  • the nanoparticles of cerium oxide of the present invention can be used for antibacterial processing by adding them at the time of molding fibers, tubes, beads, rubber, films, plastics, etc., or by applying them as a dispersion liquid on their surfaces.
  • examples of the cerium oxide nanoparticles or dispersions of the present invention that can be antibacterial processed include a drainage chrysanthemum crack cover for a kitchen sink, a drainage plug, a packing for fixing a window glass, a packing for fixing a mirror, and a bathroom.
  • the product processed with the dispersion liquid of the nanoparticles of cerium oxide of the present invention can be used in various fields as a sanitary material.
  • the resin emulsion composition may be contained in the coating film for the purpose of immobilizing the nanoparticles of cerium oxide of the present invention in the coating film.
  • the resin emulsion composition may be, for example, from resin components such as vinyl acetate resin emulsion, vinyl chloride resin emulsion, epoxy resin emulsion, acrylic resin emulsion, urethane resin emulsion, acrylic silicon resin emulsion, fluororesin emulsion, or a composite system thereof. Synthetic resin emulsions such as.
  • the mass ratio of the nanoparticles of the cerium oxide of the present invention to be added to the paint and the solid content in the resin emulsion can be arbitrarily set between 0.01: 99.99 and 99.99: 0.01.
  • the ethylene vinyl acetate copolymer resin emulsion is a copolymer of ethylene and a vinyl acetate monomer, and has an amino group, a secondary amino group, a tertiary amino group, a quaternary amino group, a carboxyl group, and an epoxy group.
  • a vinyl monomer having a functional group such as a sulfonic acid group, a hydroxyl group, a methylol group and an alkoxyic acid group may be further copolymerized.
  • the vinyl chloride copolymer resin emulsion is obtained by polymerizing vinyl chloride, and is an amino group, a secondary amino group, a tertiary amino group, a quaternary amino group, a carboxyl group, an epoxy group, a sulfonic acid group, and a hydroxyl group.
  • a vinyl monomer having a functional group such as a methylol group or an alkoxyacid group may be further copolymerized.
  • Monomers that can be used to prepare acrylic resin emulsions include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and hexyl (meth) acrylate.
  • Acrylic acid methacrylic acid, ⁇ -carboxyethyl (meth) acrylate, 2- (meth) acryloylpropionic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, itaconic acid half ester, maleic acid half ester, maleic anhydride , Unsaturated bond-containing monomer having a carboxyl group such as itaconic anhydride; glycidyl group-containing polymerizable monomer such as glycidyl (meth) acrylate and allyl glycidyl ether; 2-hydroxyethyl (meth) acrylate, 2-hydroxy Hydroxyl-containing polymerizable monomers such as propyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, and glycerol mono (meth) acrylate; ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate
  • Examples of the monomer that can be used for preparing the urethane resin emulsion include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylenedi isocyanate, p-fuphenylenedi isocyanate, 4,4 as polyisocyanate components.
  • silicon-containing acrylic monomers that can be used in the preparation of acrylic silicon resin emulsions, ⁇ - (meth) acryloxypropyltrimethoxysilane, ⁇ - (meth) acryloxypropyltriethoxysilane, ⁇ - (meth) acryloxy Examples thereof include propylmethyldimethoxysilane and ⁇ - (meth) acryloxypropylmethyldiethoxysilane.
  • Monomers that can be used to prepare fluororesin emulsions include fluoroolefins (vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, pentafluoroethylene, hexafluoropropylene, etc.) and fluorine-containing (meth).
  • fluoroolefins vinylene fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, pentafluoroethylene, hexafluoropropylene, etc.
  • fluorine-containing (meth) examples thereof include acrylates (trifluoroethyl (meth) acrylate, pentafluoroprovyl (meth) acrylate, perfluorocyclohexyl (meth) acrylate, etc.).
  • the paint containing the cerium oxide nanoparticles or the dispersion liquid thereof of the present invention can be used as a pigment, a matting material, an aggregate, a fiber, a cross-linking agent, a plasticizer, an antiseptic, an antifungal agent, an antibacterial agent, and an antifoaming agent, if necessary.
  • Agents, viscosity modifiers, leveling agents, pigment dispersants, antisettling agents, antiseptics, UV absorbers, light stabilizers, antioxidants, adsorbents and the like can be included. These components can be blended into the coating composition alone or in combination.
  • the paint to which the nanoparticles of cerium oxide of the present invention or a dispersion thereof are added can be used, for example, for painting the interior surface of a building.
  • Interior surfaces include, for example, mortar, concrete, gypsum board, siding board, extruded board, slate board, asbestos cement board, fiber-mixed cement board, calcium silicate board, ALC board, metal, wood, glass, rubber, and ceramics. , Baked tiles, porcelain tiles, plastics, base materials such as synthetic resins, cloths, wallpaper, or coatings formed on these base materials. It can also be applied to exterior surfaces of buildings and structures other than buildings.
  • the commercially available cerium oxide dispersion (796077) used in the comparative example was obtained from Merck & Co., Ltd.
  • the Amicon Ultra 15 (30 kD) used for purification was purchased from Merck Millipore.
  • Other reagents were purchased from Fujifilm Wako Pure Chemical Industries, Ltd., Tokyo Kasei Co., Ltd., and Sigma-Aldrich Japan GK, and used as they were without any particular purification.
  • the zeta potential / particle measurement system ELS-Z manufactured by Otsuka Electronics Co., Ltd. was used for measuring the hydrodynamic diameter of the nanoparticles of cerium oxide, and the SpectraMax iD3 manufactured by MOLECULAR DEVICE was used as the plate reader for measuring the absorbance.
  • Example 1 Preparation of dispersion of nanoparticles of cerium oxide using boric acid as a stabilizer
  • Add 50 ml of water to an eggplant flask dissolve 284 mg of boric acid, and adjust the pH to 8.0 with sodium hydroxide. It was adjusted. 1 ml of a 10 mass% cerium (III) nitrate hexahydrate aqueous solution was added, and the mixture was stirred at room temperature for 10 minutes. Then, 1 ml of a 1.2 mass% hydrogen peroxide aqueous solution was added dropwise and the mixture was reacted at room temperature for 1 hour. After the reaction, nitric acid was added and the mixture was stirred at room temperature for 2 hours. The reaction solution was purified by an ultrafiltration membrane having a molecular weight cut off of 10 kD to obtain an orange dispersion containing nanoparticles of cerium oxide.
  • Example 2 Preparation of dispersion of nanoparticles of cerium oxide using trimethyl borate as a stabilizer
  • 388 mg of trimethyl borate was used instead of 284 mg of boric acid.
  • the reaction was carried out under the same conditions as in Example 1 to obtain an orange dispersion containing nanoparticles of cerium oxide.
  • Example 3 Preparation of dispersion of nanoparticles of cerium oxide using triethyl borate as a stabilizer
  • 545 mg of triethyl borate was used instead of 284 mg of boric acid.
  • the reaction was carried out under the same conditions as in Example 1 to obtain an orange dispersion containing nanoparticles of cerium oxide.
  • Example 4 Preparation of dispersion of nanoparticles of cerium oxide using triisopropyl borate as a stabilizer
  • 702 mg of triisopropyl borate was used instead of 284 mg of boric acid, and 50 ml of water was used.
  • the reaction was carried out under the same conditions as in Example 1 except that 50 ml of 50% by volume ethylene glycol water was used to obtain an orange dispersion containing nanoparticles of cerium oxide.
  • Example 5 Preparation of dispersion of nanoparticles of cerium oxide using sodium tetraborate as a stabilizer
  • Example 1 1.42 g of sodium tetraborate decahydrate instead of 284 mg of boric acid.
  • the reaction was carried out under the same conditions as in Example 1 except that (borax) was used to obtain an orange dispersion containing nanoparticles of cerium oxide.
  • Example 6 Preparation of dispersion of nanoparticles of cerium oxide using methylboronic acid as a stabilizer
  • 223 mg of methylboronic acid was used instead of 284 mg of boric acid.
  • the reaction was carried out under the same conditions as in the above to obtain a light brown dispersion containing nanoparticles of cerium oxide.
  • Example 7 Preparation of dispersion of nanoparticles of cerium oxide using ethylboronic acid as a stabilizer
  • 276 mg of ethylboronic acid was used instead of 284 mg of boric acid.
  • the reaction was carried out under the same conditions as in the above to obtain a light brown dispersion containing nanoparticles of cerium oxide.
  • Example 8 Preparation of dispersion of nanoparticles of cerium oxide using phenylboronic acid as a stabilizer
  • phenylboronic acid 455 mg was used instead of 284 mg of boric acid, and 50 ml of water was used instead.
  • the reaction was carried out under the same conditions as in Example 1 except that 50 ml of 50% by volume ethylene glycol water was used to obtain a brown dispersion containing nanoparticles of cerium oxide.
  • Example 9 Preparation of dispersion of nanoparticles of cerium oxide using boric acid (pH of boric acid solution is 4.0) as a stabilizer
  • pH of boric acid solution was set to 4.0. Except for this, the reaction was carried out under the same conditions as in Example 1 to obtain a yellow dispersion containing nanoparticles of cerium oxide.
  • Example 10 Preparation of dispersion of nanoparticles of cerium oxide using boric acid (pH of boric acid solution is 5.0) as a stabilizer
  • pH of boric acid solution was set to 5.0. Except for this, the reaction was carried out under the same conditions as in Example 1 to obtain an orange dispersion containing nanoparticles of cerium oxide.
  • Example 11 Preparation of dispersion of cerium oxide nanoparticles using boric acid (heating boric acid solution to 70 ° C) as a stabilizer Except that stirring after addition of nitric acid was performed at 70 ° C in Example 1. The reaction was carried out under the same conditions as in Example 1 to obtain an orange dispersion containing nanoparticles of cerium oxide.
  • Example 12 Preparation of dispersion of cerium oxide nanoparticles using boric acid (heating boric acid solution to 90 ° C) as a stabilizer Except that stirring after addition of nitric acid was performed at 90 ° C in Example 1. The reaction was carried out under the same conditions as in Example 1 to obtain an orange dispersion containing nanoparticles of cerium oxide.
  • Example 13 Measurement of hydrodynamic diameter of cerium oxide nanoparticles
  • the hydrodynamic diameter of the cerium oxide nanoparticles prepared in Examples 1 to 12 was measured by dynamic light scattering (DLS). Water was used as the solvent at the time of measurement, and the average particle size of the hydrodynamic diameter was obtained by number conversion. The obtained values are shown in Table 1. The average particle size was 3.4 to 71.0 nm, and it was confirmed that all of them were nanoparticles.
  • Example 14 Measurement of oxidation performance by dye decomposition test
  • 60 ⁇ l of dispersion of nanoparticles of cerium oxide of Examples 1 to 12 prepared to be 2 mg / ml, 0.5 mg / ml as a sample containing an organic substance.
  • 60 ⁇ l of Acid Red 94 (AR94) and 1.38 ml of distilled water were added, respectively, and the mixture was allowed to stand at 40 ° C. for 1 hour using a heat block to carry out a dye decomposition reaction.
  • AR94 Acid Red 94
  • the same treatment was performed on the solution of AR94 containing no nanoparticles of cerium oxide.
  • Example 15 Virus inactivation test This test was conducted at the Kitasato Research Center for Environmental Science. A virus solution (feline calicivirus, F-9, ATCC, VR-782) was added to 0.9 ml of a dispersion of nanoparticles of cerium oxide prepared in Examples 1, 11 and 12 so as to be 5 mg / ml. , Norovirus substitute) 0.1 ml was mixed and allowed to act for 1 hour. Then, PBS was added as an action-stopping solution to stop the action on the virus. The infectious titer was measured by the TCID 50 method using this solution as a stock solution of a sample for virus titer measurement.
  • a virus solution feline calicivirus, F-9, ATCC, VR-782
  • PBS was added as an action-stopping solution to stop the action on the virus.
  • the infectious titer was measured by the TCID 50 method using this solution as a stock solution of a sample for virus titer measurement.
  • Table 3 shows the logarithmic reduction value of the infectious titer with respect to the infectious titer before the nanoparticle of cerium oxide was allowed to act. From this result, since the logarithmic reduction value of the nanoparticles of cerium oxide of Examples 1, 11 and 12 is 3.7 to 4.7, the nanoparticles of cerium oxide of the present invention have 99.9% or more. It was confirmed that there was a virus inactivation rate and a very high antiviral activity. Further, the dispersion of cerium oxide nanoparticles obtained in Example 1 was sterilized through a 0.2 ⁇ m sterilization filter, and sterilized by an autoclave (water heat treatment at 120 ° C. for 20 minutes).
  • Virus inactivation test for new coronavirus This test was conducted at the Japan Textile Product Quality Technology Center.
  • Virus solution new coronavirus, Severe acute respiratory syndrome 2 (SARS-CoV-2), NIID separation
  • Virus solution new coronavirus, Severe acute respiratory syndrome 2 (SARS-CoV-2), NIID separation
  • Strain; JPN / TY / WK-521 distributed by the National Institute of Infectious Diseases
  • PBS was added as an action-stopping solution to stop the action on the virus.
  • the infectious titer was measured by a plaque measurement method using this solution as a stock solution of a sample for virus titer measurement.
  • Table 4 shows the logarithmic reduction value of the infectious titer with respect to the infectious titer before the nanoparticle of cerium oxide was allowed to act. From this result, the logarithmic reduction value of the nanoparticles of cerium oxide of Example 12 is 3.03 or more, and the virus inactivation rate of the nanoparticles of cerium oxide of the present invention against the new coronavirus is 99.9% or more. I was able to confirm that.
  • Example 17 ICP emission analysis and quantification of Ce and B using ICP-MS Weigh the dispersion of nanoparticles of cerium oxide of Examples 1, 2 and 12 into a container made of Teflon (registered trademark), and carry out sulfuric acid. After heat-decomposing with nitric acid and hydrochloric acid, it was concentrated until white sulfuric acid smoke was generated, dissolved in rare aqua regia, and the volume was settled. Ce in the obtained constant volume solution was quantified by ICP emission spectrometry, and B was quantified by ICP mass spectrometry.
  • Example 18 XAFS analysis of cerium oxide nanoparticles
  • the dispersion liquid of the nanoparticles of cerium oxide of the present invention prepared in Example 1 so as to be 10 mg / ml is irradiated with X-rays and the absorption amount thereof is measured.
  • the X-ray Absorption Fine Structure (X-ray Absorption Fine Structure) spectrum was measured.
  • the measurement conditions are as follows: the experimental facility is the Photon Factory BL12C, the high energy accelerator research organization, the spectroscope is the Si (111) 2 crystal spectroscope, the absorption end is the Ce L3 absorption end, and the detection method is the transmission method.
  • the vessel was an ion chamber.
  • the CeL3 end XANES spectrum is shown in FIG.
  • the absorption end (E0) is defined as 5712.4 eV of the spectrum, the average value of absorption in the range of E0 to ⁇ 150 to -30 eV is 0, and the average value of absorption in the range of E0 to +150 to +400 eV is 1.
  • the dispersion liquid of the nanoparticles of cerium oxide prepared in Comparative Example 2 was also subjected to XAFS observation under the same operation and conditions, and the obtained CeL3 end XANES spectrum is shown in FIG.
  • the nanoparticles of Example 1 had a maximum absorption at 5727.974 eV and 5736.694 eV
  • the nanoparticles of Example 2 had a maximum absorption at 5727.705 eV and 5736.964 eV. It was revealed that the twelve nanoparticles had a maximum absorption at 5728.078 eV and 5736.568 eV, and a maximum absorption at 5726-5729 eV and 5735-5739 eV.
  • the cerium oxide nanoparticles of Comparative Example 2 had a maximum absorption at 5729.732 eV and 5736.694 eV
  • the cerium oxide nanoparticles of Comparative Example 5 had a maximum absorption at 5729.810 eV and 5736.568 eV. It was found that the maximum absorption was between 5735 and 5739 eV, but the maximum absorption was not between 5726 and 5729 eV.
  • ammonium cerium nitrate (IV) had a maximum absorption at 5725.796 eV and 5736.105 eV, and that any known cerium salt or cerium compound had no maximum absorption between 5726-5729 eV and 5735-5739 eV.
  • Example 19 Dispersion solution containing cerium oxide nanoparticles doped with 0.1 mol of Cu (II) compound using boric acid as a stabilizer
  • 1 M copper sulfate (1M) II After adding cerium nitrate, 1 M copper sulfate (1M) II
  • the reaction was carried out under the same conditions as in Example 1 except that 23 ⁇ L (0.1 mol per 1 mol of cerium nitrate hexahydrate) was added to the pentahydrate aqueous solution to obtain cerium oxide nanoparticles.
  • a yellowish white dispersion containing the mixture was obtained.
  • Example 20 Dispersion solution containing cerium oxide nanoparticles doped with 0.05 mol of Cu (II) compound using boric acid as a stabilizer
  • 1 M copper (II) sulfate pentahydrate to be added was carried out under the same conditions as in Example 19 except that the aqueous solution was 11.5 ⁇ L (0.05 mol with respect to 1 mol of cerium nitrate hexahydrate), and a yellowish white dispersion containing nanoparticles of cerium oxide was carried out. Obtained liquid.
  • Example 21 Dispersion solution containing cerium oxide nanoparticles 0.01 mol-doped with Cu (II) compound using boric acid as a stabilizer
  • Example 19 1 M copper (II) sulfate pentahydrate to be added.
  • the reaction was carried out under the same conditions as in Example 19 except that the aqueous solution was 2.3 ⁇ L (0.01 mol per 1 mol of cerium nitrate hexahydrate), and an orange dispersion containing nanoparticles of cerium oxide was carried out.
  • Example 22 Dispersion solution containing cerium oxide nanoparticles doped with 0.1 mol of Fe (II) compound using boric acid as a stabilizer
  • 1 M iron sulfate (1 M) was added.
  • the reaction was carried out under the same conditions as in Example 1 except that 23 ⁇ L (0.1 mol per 1 mol of cerium nitrate hexahydrate) was added to the cerium oxide nanoparticles. A yellowish white dispersion containing the mixture was obtained.
  • Example 23 Dispersion solution containing cerium oxide nanoparticles doped with 0.05 mol of Fe (II) compound using boric acid as a stabilizer
  • 1 M iron (II) sulfate heptahydrate to be added.
  • the reaction was carried out under the same conditions as in Example 22 except that the aqueous solution was 11.5 ⁇ L (0.05 mol with respect to 1 mol of cerium nitrate hexahydrate), and a yellowish white dispersion containing nanoparticles of cerium oxide was carried out. Obtained liquid.
  • Example 24 Dispersion solution containing cerium oxide nanoparticles 0.01 mol-doped with Fe (II) compound using boric acid as a stabilizer
  • 1 M iron (II) sulfate heptahydrate to be added.
  • the reaction was carried out under the same conditions as in Example 22 except that the aqueous solution was 2.3 ⁇ L (0.01 mol per 1 mol of cerium nitrate hexahydrate), and an orange dispersion containing nanoparticles of cerium oxide was carried out.
  • Example 25 Dispersion solution containing cerium oxide nanoparticles doped with 0.05 mol-doped Fe (III) compound using boric acid as a stabilizer
  • 1M aqueous solution of copper (II) sulfate pentahydrate was added.
  • the reaction was carried out under the same conditions as in Example 20 except that 1M aqueous solution of iron (III) chloride was used to obtain an orange dispersion containing nanoparticles of cerium oxide.
  • Example 26 Dispersion solution containing 0.05 mol-doped Co compound-doped cerium oxide nanoparticles using boric acid as a stabilizer
  • the 1M aqueous solution of copper (II) sulfate pentahydrate to be added is 1M chloride.
  • the reaction was carried out under the same conditions as in Example 20 except that the aqueous solution of cobalt (II) was prepared, to obtain an orange dispersion containing nanoparticles of cerium oxide.
  • Example 27 Dispersion solution containing cerium oxide nanoparticles doped with a Zn compound 0.05 mol-doped using boric acid as a stabilizer
  • the 1M aqueous solution of copper (II) sulfate pentahydrate to be added is 1M nitrate.
  • the reaction was carried out under the same conditions as in Example 20 except that the zinc (II) aqueous solution was used to obtain an orange dispersion containing nanoparticles of cerium oxide.
  • Example 28 Measurement of hydrodynamic diameter of metal-doped nanoparticles of cerium oxide
  • the hydrodynamic diameter of nanoparticles of cerium oxide prepared in Examples 19 to 27 was measured by dynamic light scattering (DLS). Water was used as the solvent at the time of measurement, and the average particle size of the hydrodynamic diameter was obtained by number conversion. The obtained values are shown in Table 6. The average particle size was 3.1 to 45.2 nm, and it was confirmed that all of them were nanoparticles.
  • Example 29 ICP emission analysis and quantification of Ce, Cu, Fe, Co, Zn using ICP-MS Weigh the samples of Examples 19 to 27 into a container made of Teflon (registered trademark), and weigh sulfuric acid, nitric acid, and hydrochloric acid. After heat-decomposing with, it was concentrated until white sulfuric acid smoke was generated, dissolved in rare aqua regia, and the volume was settled. Ce in the obtained constant volume liquid was quantified by ICP emission spectrometry, and Cu, Fe, Co, Zn were quantified by ICP mass spectrometry.
  • bacteria solution preparation E. coli was precultured in antibacterial test LB medium against E. coli (0.1% tryptone, 0.85% NaCl) was suspended in, to prepare a bacterial solution of 10 8 CFU / ml. 0.1 ml of this bacterial solution and 0.9 ml of a dispersion of nanoparticles of cerium oxide prepared in Examples 1, 12, 20, 23, 25 to 27 were mixed and allowed to stand at room temperature for 1 hour. .. Then, a diluted series was prepared using this mixed solution as a stock solution, seeded on LB agar medium, and the number of colonies was measured.
  • the logarithmic decrease value of the number of colonies with respect to the number of colonies before the action of the nanoparticles of cerium oxide is shown in Table 7 as the antibacterial activity value. From this result, the antibacterial activity value of the nanoparticles of cerium oxide of Examples 1 and 12 was 2.2 to 2.3, and the antibacterial performance was confirmed. Further, the antibacterial activity values of the nanoparticles of cerium oxide of Examples 20, 23 and 25 to 27 were 3.0 to 5.6, and the antibacterial performance was improved by doping with the metal species. On the other hand, the cerium oxide nanoparticles prepared in Comparative Example 1 had a logarithmic reduction value of 0.64, resulting in low antibacterial activity.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Geology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、高い酸化性能、抗ウイルス性能、抗菌性能を有する酸化セリウムのナノ粒子、酸化セリウムのナノ粒子を含む分散液を提供することを課題とする。本発明は、下記一般式(I)で示されるホウ素化合物およびセリウム(III)イオンを含む溶液に、酸化剤を添加することにより製造される酸化セリウムのナノ粒子である。 BR(OR')3-n (I) 式(I)中、nは0~2の整数であり、Rは炭素数1~4のアルキル基、フェニル基またはトリル基のいずれかを示し、R'は水素、炭素数1~4のアルキル基、フェニル基またはトリル基のいずれかを示す。RまたはR'が複数存在する場合、それぞれ同一であっても異なっていてもよい。

Description

酸化セリウムのナノ粒子、酸化セリウムのナノ粒子を含む分散液、酸化剤、抗ウイルス剤および抗菌剤
 本発明は、酸化セリウムのナノ粒子、当該ナノ粒子を含む分散液、ならびに当該ナノ粒子または当該分散液を含む酸化剤、抗ウイルス剤および抗菌剤に関する。
 近年、安全や衛生管理に対する意識が高まる中で、有害物質や微生物を分解する抗菌技術が注目されている。例えば、酸化チタンは光触媒特性によって有機物を酸化分解する特性を有しており、有機色素の分解反応などで性能が評価されている。このような酸化分解特性は、抗菌剤としての利用の他、アセトアルデヒドやアンモニアなどの低分子、アレルゲン、ウイルスなどの各種有害物質を分解する用途への利用が期待されている。
 一方、酸化セリウムのナノ粒子(ナノセリア)は、オキシダーゼやペルオキシダーゼ等の酸化酵素と同様の触媒活性を有しており、酸化剤としての応用が期待されている。これらの触媒活性には紫外線等の特別な光源を必要としないことから、室内や暗所など酸化チタンでは使用が難しい場面でも有害物質を分解する用途への展開が期待できる。
 凝集しやすい金属ナノ粒子を酸化剤等として使用する場合、合成の際に安定化剤となる化合物を共存させておき、得られたナノ粒子を安定分散させる手法が用いられる。酸化セリウムのナノ粒子の場合、例えば、ポリアクリル酸を安定化剤として過酸化水素によりセリウム(III)イオンを酸化して粒子分散液を取得したり、デキストランを安定化剤としてアンモニア水中でセリウム(III)イオンのアルカリ中和を行って粒子分散液を取得する。
 ここで、非特許文献1には、表面がポリアクリル酸やデキストランで被覆された酸化セリウムのナノ粒子の合成方法が記載されている。非特許文献1では、特に、ポリアクリル酸を安定化剤とした場合、酸化性能を示す値であるオキシダーゼ活性が高くなることが開示されている。
 また、特許文献1には、ホウ酸で表面改質したコロイダルセリアを含む研磨組成物について開示されており、該粒子は負に帯電することで広いpH範囲にわたり安定分散することが記載されている。
 さらに、特許文献2には、エチレンジアミン四酢酸(EDTA)や乳酸等の有機カルボン酸を安定化剤としたナノセリアやホウ酸を、炭化水素液体またはディーゼル燃料に分散した逆ミセル組成物について開示されており、該組成物を燃料に添加することでディーゼルエンジンの効率を高めることが記載されている。
A.Asati,Angew. Chem. Int. Ed. 2009, 48, 2308-2312.
特開2003-183631号公報 特表2010-502821号公報
 本発明者らは、酸化セリウムのナノ粒子の酸化性能を利用する用途の検討を行った。しかしながら、非特許文献1に記載のポリアクリル酸で表面が被覆された酸化セリウムのナノ粒子や、市販される酸化セリウムのナノ粒子では、有機色素の酸化分解を行っても分解率が低い結果となった。また、特許文献1を参考にしたホウ酸を酸化セリウムナノ粒子へ後添加して表面改質させる製造方法においても、分解率が低い結果となった。さらに、特許文献2を参考にしたEDTA/乳酸を安定化剤とした酸化セリウムナノ粒子へホウ酸を後添加した分散液においても、分解率が低い結果となった。これらの結果から、高い酸化性能を有する酸化セリウムのナノ粒子を見出すことを課題としてさらに検討を行った。
 本発明者らは、上記課題を解決するために、酸化セリウムのナノ粒子の製造方法に着目し、特に安定化剤について検討した。その結果、一般式BR(OR’)3-nで示されるホウ素化合物およびセリウム(III)イオンを含む溶液に、酸化剤を添加することにより製造される酸化セリウムのナノ粒子を含む分散液は、有機色素の酸化分解の分解率が高くなることを見出した。また、このようにして製造された分散液は、抗ウイルス性能も高いことを見出し、本発明を完成させた。
 本発明は以下のとおりである。
(1)下記一般式(I)で示されるホウ素化合物およびセリウム(III)イオンを含む溶液に、酸化剤を添加することにより製造される酸化セリウムのナノ粒子。
 BR(OR’)3-n (I)
 式(I)中、nは0~2の整数であり、Rが炭素数1~4のアルキル基、フェニル基、トリル基のいずれかを示し、R’が水素、炭素数1~4のアルキル基、フェニル基、トリル基のいずれかを示す。RまたはR’が複数存在する場合、それぞれ同一であっても異なっていてもよい。
(2)前記酸化剤を添加する際の前記溶液のpHが5以上である、(1)に記載の酸化セリウムのナノ粒子。
(3)前記一般式(I)で示されるホウ素化合物が、ホウ酸、ホウ酸エステル、ボロン酸、ボロン酸エステル、ボリン酸、ボリン酸エステルまたはホウ酸塩である、(1)または(2)に記載の酸化セリウムのナノ粒子。
(4)ホウ素をセリウム元素1モルに対して0.001モル以上含む、(1)~(3)のいずれか一つに記載の酸化セリウムのナノ粒子。
(5)前記一般式(I)で示されるホウ素化合物を含む酸化セリウムのナノ粒子であって、XANESスペクトルで5726~5729eVおよび5735~5739eVの間に極大吸収を有する、(1)~(4)のいずれか一つに記載の酸化セリウムのナノ粒子。
(6)遷移金属をセリウム元素1モルに対して0.0001モル以上含む(1)~(5)のいずれか一つに記載の酸化セリウムのナノ粒子。
(7)下記一般式(I)で示されるホウ素化合物を含む酸化セリウムのナノ粒子であって、XANESスペクトルで5726~5729eVおよび5735~5739eVの間に極大吸収を有する酸化セリウムのナノ粒子。
 BR(OR’)3-n (I)
 式(I)中、nは0~2の整数であり、Rは炭素数1~4のアルキル基、フェニル基またはトリル基のいずれかを示し、R’は水素、炭素数1~4のアルキル基、フェニル基またはトリル基のいずれかを示す。RまたはR’が複数存在する場合、それぞれ同一であっても異なっていてもよい。
(8)前記一般式(I)で示されるホウ素化合物が、ホウ酸、ホウ酸エステル、ボロン酸、ボロン酸エステル、ボリン酸、ボリン酸エステルまたはホウ酸塩である(7)に記載の酸化セリウムのナノ粒子。
(9)(1)~(8)のいずれか一つに記載の酸化セリウムのナノ粒子を含む分散液。
(10)(1)~(8)のいずれか一つに記載の酸化セリウムのナノ粒子または(9)に記載の分散液を含む酸化剤。
(11)(1)~(8)のいずれか一つに記載の酸化セリウムのナノ粒子または(9)に記載の分散液を含む抗ウイルス剤。
(12)(1)~(8)のいずれか一つに記載の酸化セリウムのナノ粒子または(9)に記載の分散液を含む抗菌剤。
 本発明の酸化セリウムのナノ粒子または当該ナノ粒子を含む分散液を用いれば、従来の酸化セリウムのナノ粒子より高い収率で有機物や各種有害物質を酸化分解することが可能となる。また、本発明の酸化セリウムのナノ粒子または当該ナノ粒子を含む分散液は、各種ウイルスを不活性化する高性能な抗ウイルス剤および抗菌剤として使用することができる。
図1は、実施例18において測定した、実施例1および比較例2で調製した酸化セリウムのナノ粒子のCeL3端XANESスペクトルを示す図である。 図2は、実施例18において測定した、実施例2および比較例5で調製した酸化セリウムのナノ粒子のCeL3端XANESスペクトルを示す図である。 図3は、実施例18において測定した、実施例12および比較例2で調製した酸化セリウムのナノ粒子のCeL3端XANESスペクトルを示す図である。 図4は、参考例1において測定した、酸化セリウムの結晶、炭酸セリウム(III)、硝酸セリウム(III)、硝酸アンモニウムセリウム(IV)のCeL3端XANESスペクトルを示す図である。
 本発明の酸化セリウムのナノ粒子は、本明細書中で、単に本発明のナノ粒子と、また、本発明の酸化セリウムのナノ粒子を含む分散液は、本明細書中で、単に本発明の分散液と、それぞれ記載する場合がある。
 本発明の酸化セリウムのナノ粒子は、下記一般式(I)で示されるホウ素化合物およびセリウム(III)イオンを含む溶液に、酸化剤を添加することにより製造される。本発明の酸化セリウムのナノ粒子の合成は、原料の一つとして水溶性のセリウムの塩を使用し、合成は水または水と相溶性のある溶媒で行われる。適度な親水性を持ち、金属酸化物の水酸基に対して錯形成することでナノ粒子を安定分散させるような性質を保有する観点から、実施形態としては、安定化剤として一般式(I)に示される構造を有するホウ素化合物を使用する。
 BR(OR’)3-n (I)
 式(I)中、nは0~2の整数であり、Rは炭素数1~4のアルキル基、フェニル基またはトリル基のいずれかを示し、R’は水素、炭素数1~4のアルキル基、フェニル基またはトリル基のいずれかを示す。複数存在するRまたはR’は、それぞれ同一であっても異なっていてもよい。
 本発明で用いるホウ素化合物のより好ましい実施形態としては、ホウ酸(一般式(I)において、n=0、R=H、R’=H)、ホウ酸エステル(一般式(I)において、n=0、R=H、R’=アルキル等)、ボロン酸(一般式(I)において、n=1、R=アルキル等、R’=H)、ボロン酸エステル(一般式(I)において、n=1、R=アルキル等、R’=アルキル等)、ボリン酸(一般式(I)において、n=2、R=アルキル等、R’=H)、ボリン酸エステル(一般式(I)において、n=2、R=アルキル等、R’=アルキル等)、ホウ酸塩が挙げられる。本発明においてホウ酸塩とは、ホウ酸の塩、もしくはホウ酸が脱水縮合したメタホウ酸やポリホウ酸などの塩を含む総称を指す。これらのホウ酸塩は水溶液中ではホウ酸とテトラヒドロキシホウ酸の平衡状態を取ることから、溶液中では一般式(I)に示されるホウ酸の構造を取る。ホウ酸塩におけるホウ酸の対イオンは、リチウムイオン、ナトリウムイオン、カリウムイオン、アンモニウムイオンなどの任意のイオンを用いることができる。
 このようなホウ素化合物としては、ホウ酸;ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリプロピル、ホウ酸トリイソプロピル、ホウ酸トリブチル、ホウ酸トリイソブチルなどのホウ酸エステル;メチルボロン酸、エチルボロン酸、プロピルボロン酸、イソプロピルボロン酸、ブチルボロン酸、イソブチルボロン酸、フェニルボロン酸などのボロン酸が挙げられる。また、ホウ酸塩としては、ホウ酸、メタホウ酸、二ホウ酸、メタホウ酸、四ホウ酸、五ホウ酸、六ホウ酸及び八ホウ酸のリチウム塩、ナトリウム塩、カリウム塩及びアンモニウム塩が挙げられる。
 本発明にかかる酸化セリウムのナノ粒子は、セリウム元素1モルに対して、ホウ素を0.001モル以上~10モル含むことが好ましい。より好ましくは、0.001モル~1モルの範囲である。
 本発明において、酸化セリウムのナノ粒子は、CeとCeOの混合物で構成される。酸化セリウムは、上記酸化物の形態に加え、水酸化物やオキシ水酸化物としての形態も含み得る。CeとCeOの比率は、セリウム(III)とセリウム(IV)の比としてX線光電子分光法(XPS)などにより算出することができる。
 本発明の酸化セリウムのナノ粒子は、さらに周期表で第3~12族の遷移金属を含むことができる。これらの金属は、2+~3+の価数を取ることで酸化セリウムナノ粒子にドープされた際に格子欠陥を作り性能を向上したり、酸化還元電位に伴うOと1+、1+と2+、2+と3+などの価数変化により酸化セリウムの価数変化を引き起こすことで性能を向上したりすることが期待できる。
 これらの遷移金属は、酸化セリウムのナノ粒子にドープされやすく、抗菌、抗ウイルス効果をより向上させる観点から、第4~6周期の遷移金属であることが好ましく、Ti、Mn、Fe、Co、Ni、Cu、Zn、Zr、Agがより好ましい。
 これらの遷移金属は、カルボン酸塩、スルホン酸塩などの有機酸塩、リン酸塩、ホスホン酸塩などのリンのオキソ酸塩、硝酸塩、硫酸塩、炭酸塩などの無機酸塩のほか、ハロゲン化物、水酸化物などの塩として合成時に添加することができる。これらは、合成溶媒に溶解するものであればよい。
 本発明の酸化セリウムのナノ粒子を含む分散液は、ホウ素化合物およびセリウム(III)イオンを含む溶液に、酸化剤を添加する製造方法により製造される。以下、本発明の酸化セリウムのナノ粒子の分散液の製造方法を説明する。
 第一の工程は、ホウ素化合物およびセリウム(III)イオンを含む溶液を得る工程である。この工程で用いるホウ素化合物の溶液は、ホウ素化合物を任意の溶媒に溶解して調製することができる。溶媒は、水または水と相溶性のある溶媒が好ましい。水と相溶性のある溶媒の具体例としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tert-ブタノール、テトラヒドロフラン、アセトン、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、グリセロール、エチレングリコール、オリゴエチレングリコールなどが挙げられる。ホウ素化合物に炭素数が3以下の置換基が含まれている場合、ホウ素化合物は水に溶解することが好ましく、炭素数4以上の置換基が含まれている場合、ホウ素化合物は50%のエチレングリコール水溶液に溶解することが好ましい。ホウ素化合物が溶媒に溶解しにくい場合、加温や超音波処理をして溶解してもよい。
 ホウ素化合物の量は、セリウム(III)イオンに対して、0.1~1000モル当量の範囲であればよく、1~200モル当量であることが好ましく、5~200モル当量であることが更に好ましく、10~100モル当量であることが最も好ましい。
 ホウ素化合物およびセリウム(III)イオンを含む溶液を得るには、ホウ素化合物の溶液と、セリウム(III)イオンを含む溶液をそれぞれ調製して混合してもよいし、ホウ素化合物の溶液の溶媒が水または水と相溶性のある溶媒である場合には、ホウ素化合物の溶液にセリウム(III)塩を添加して混合してもよい。
 セリウム(III)イオンを含む溶液は、セリウム(III)塩を任意の溶媒に溶解して調製すればよい。セリウム(III)塩には、例えば硝酸セリウム(III)・六水和物を用いればよい。
 セリウム(III)塩の量は、反応液の終濃度が0.01質量%~10質量%の範囲となるようにホウ素化合物の溶液と混合することができる。混合溶液は、溶液が均一になるまで5分以上混合することが好ましい。
 第一の工程において、ホウ素化合物およびセリウム(III)イオンを含む溶液は、3価以上のカルボン酸、例えば、下記に示す化合物を含まないことが好ましい。含まれている場合でも、その量はセリウム(III)イオンに対して、0.1当量以下であることが好ましく、0.01当量以下であることがより好ましい。3価以上のカルボン酸とは、具体的には、ニトリロ三酢酸(NTA)、エチレンジアミン四酢酸(EDTA)、エチレンジアミン二コハク酸(EDDS)、グリコールエーテルジアミン四酢酸(EGTA)、ジエチレントリアミノ五酢酸(DTPA)、クエン酸、ヒドロキシエチルエチレンジアミン四酢酸(HEDTA)、ポリアクリル酸および/またはそれらの塩が挙げられる。
 本発明の酸化セリウムのナノ粒子に金属をドープする場合、第一の工程において遷移金属をさらに添加してもよい。遷移金属は金属塩として固体のままホウ素化合物とセリウム(III)イオンまたはセリウム(III)塩を含む溶液に直接加えてもよいし、金属塩を任意の溶媒に溶解して調製した溶液を、ホウ素化合物とセリウム(III)イオンまたはセリウム(III)塩を含む溶液に添加してもよい。
 遷移金属の量は、セリウム(III)イオン1モルに対して、0.0001モル~0.3モルとなる範囲であることが好ましい。より好ましくは、0.001モル~0.2モルの範囲である。なお、遷移金属の量には、遷移金属の塩に含まれる遷移金属以外の元素量は含まない。
 第二の工程は、第一の工程で得られた混合溶液に酸化剤を添加する工程である。第二の工程で用いる酸化剤は、硝酸、硝酸カリウム、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、ハロゲン、ハロゲン化水素、過マンガン酸塩、クロム酸、ニクロム酸、シュウ酸、硫化水素、二酸化硫黄、チオ硫酸ナトリウム、硫酸、過酸化水素などが挙げられる。これらの中でも特に過酸化水素が好ましい。酸化剤の添加量は、セリウム(III)イオンに対してモル当量として、0.1当量以上10当量以下であればよく、好ましくは0.5当量以上2当量以下である。
 ホウ素化合物およびセリウム(III)イオンを含む溶液に酸化剤を添加すると、セリウム(III)イオンがセリウム(IV)に酸化され、Ce3とCeOの混合物で構成される酸化セリウム粒子の形成反応が開始される。また、その反応の際には、溶液が黄色、橙色、赤色、褐色などに着色する。これは、セリウム(III)イオンが、セリウム(IV)に変化することによる呈色であり、着色度合いは、酸化セリウムのナノ粒子の表面に存在するセリウム(III)とセリウム(IV)の比で決定する。反応終了は色の変化がなくなった点で判断することができる。
 酸化セリウムのナノ粒子の形成反応は任意のpHで行うことができるが、弱酸性~塩基性で反応が進行しやすいことから、酸化剤を添加する際の溶液のpHは5以上にしておくことが好ましく、pH6以上に調整しておくことがより好ましく、pH7以上に調整しておくことが更に好ましい。pHを調整するにあたり、水酸化ナトリウム水溶液やアンモニア水溶液などを用いることができる。また、本反応が進行するにしたがって溶液のpHが酸性側に傾くので、酸化剤添加時から反応終了までの間、反応溶液のpHを5以上に維持してもよい。通常5分~1時間程度で反応は終了し、本発明の酸化セリウムのナノ粒子を含む分散液が得られる。例えば、1mlの10質量%の硝酸セリウム(III)六水和物水溶液を、pH8に調整した284mg/50mlのホウ酸水溶液に対して添加し、その後、1.2質量%の過酸化水素水溶液を1ml添加して室温で攪拌すると、溶液が橙色に変化して10分程度で粒子形成反応が終了し、本発明の分散液が得られる。
 酸化セリウムのナノ粒子の形成反応は、4℃~230℃の任意の温度で行うことができる。100℃以上の加熱を行う場合は、水熱処理により100℃~230℃に加熱して行うことができる。冷却して行う場合には、例えばヤマト科学株式会社のBBL101のクールバスを用いることができ、加熱して行う場合には、例えば東京理化機器株式会社製のOHB-1100Sなどのホットバスを用いることができる。100℃以下の加熱であればガラス容器に反応液を入れて加熱すればよく、100℃以上の水熱処理を行う場合は、PTFE製の内筒容器と耐圧ステンレス製外筒とを組み合わせた耐圧容器に反応液を入れて加熱すればよい。水熱処理は、メディウム瓶に反応液を入れ、トミー工業株式会社のLSX-500などの滅菌装置を使用して行うこともできる。
 本発明の分散液は、反応終了後にpHを調整してもよい。本発明の分散液のpHは、pH1~10の範囲であればよく、好ましくはpH2~8である。pHは緩衝液を加えて調整してもよく、硝酸、硫酸、塩酸などの酸、水酸化ナトリウム、水酸化カリウムなどの塩基を加えて調整してもよい。また、分散液のpH調整は、後述する限外ろ過膜での濾過や、半透膜での透析等の分散液の精製後に行ってもよい。
 本発明の分散液は、反応終了後に限外ろ過膜で濾過したり、半透膜で透析したりして、反応終了後の分散液中に残存している未反応の酸化剤およびセリウム(III)イオン並びに余分なホウ素化合物を除去することができる。その後、後述する方法で本発明の分散液から酸化セリウムのナノ粒子を単離することもできる。
 本発明の分散液は、上記精製後に、30℃~230℃の任意の温度で加熱処理を行ってもよい。100℃以上の加熱を行う場合は、水熱処理により100℃~230℃に加熱して行うことができる。加熱には、例えば東京理化機器株式会社製のOHB-1100Sなどのホットバスを用いることができる。100℃以下の加熱であればガラス容器に精製後の分散液を入れて加熱すればよく、100℃以上の水熱処理を行う場合は、PTFE製の内筒容器と耐圧ステンレス製外筒とを組み合わせた耐圧容器に精製後の分散液を入れて加熱すればよい。水熱処理は、メディウム瓶に精製後の分散液を入れ、トミー工業株式会社のLSX-500などの滅菌装置を使用して行うこともできる。
 本発明の酸化セリウムのナノ粒子は、本発明の分散液をエバポレーターや凍結乾燥機などを用いて乾燥することにより単離することができる。また、本発明の分散液をガラス、プラスチック、セラミックスなどの基板に滴下して風乾したり、デシケーター内で乾燥したり、ドライヤーや乾燥機で乾燥したりすることによっても、酸化セリウムのナノ粒子を単離することができる。また、本発明の分散液をヒートブロック上に滴下して加熱し、溶媒を揮発させることによっても単離することができる。また、本発明の分散液をスプレードライヤー等で乾燥させ、溶媒を揮発させることによっても単離することができる。また、本発明の分散液を遠心分離機にかけて酸化セリウムのナノ粒子を沈殿させ、上清を除くことによっても単離することができる。また、本発明の分散液を限外ろ過や吸引ろ過でろ過し、水を完全に除くことにより、ろ過膜上に酸化セリウムのナノ粒子を単離することもできる。上記の操作における乾燥工程を効率化するため、本発明の分散液に対して共沸溶媒を添加したり、分散液の溶媒をより沸点の低い溶媒へ置換してもよい。また、遠心操作を効率化するため、本発明の分散液に対して共沈剤を添加したり、イオン強度を向上したり、ナノ粒子の分散性を低下させる溶媒を添加したりしてもよい。また、上記の操作の前に、本発明の分散液を限外ろ過膜や遠心分離などでナノ粒子のサイズを分画してもよい。
 本発明の分散液は、イオン成分を含んでもよい。イオン成分としては、緩衝性能を付与する成分として、酢酸、フタル酸、コハク酸、炭酸、Tris(hydroxymethyl)aminomethane(Tris)、2-Morpholinoethanesulfonic acid、 monohydrate(MES)、Bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane(Bis-Tris)、N-(2-Acetamido)iminodiacetic acid(ADA)、Piperazine-1,4-bis(2-ethanesulfonic acid)(PIPES)、N-(2-Acetamido)-2-aminoethanesulfonic acid(ACES)、2-Hydroxy-3-morpholinopropanesulfonic acid(MOPSO)、N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid(BES)、3-Morpholinopropanesulfonic acid(MOPS)、N-Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid(TES)、2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid(HEPES)、2-Hydroxy-N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic(TAPSO)、Piperazine-1,4-bis(2-hydroxy-3-propanesulfonic acid)(POPSO)、2-Hydroxy-3-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulfonic acid(HEPSO)、3-[4-(2-Hydroxyethyl)-1-piperazinyl]propanesulfonic acid(HEPPS)、(Tricine)、N,N-Bis(2-hydroxyethyl)glycine(Bicine)、N-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid(TAPS)が挙げられ、緩衝性能を付与しない成分として塩化ナトリウム、塩化カリウムが挙げられる。これらのイオン成分は終濃度で0.1mM~1Mの範囲となるように添加することができる。これらのイオン成分は、反応終了後の分散液に加えてもよく、限外ろ過膜で濾過した後に加えてもよく、透析液として使用してもよく、透析後の分散液に添加してもよい。乾燥した酸化セリウムのナノ粒子に添加して分散液にしてもよい。
 本発明の分散液は、反応終了後の分散液として保存してもよいし、反応終了後の分散液を限外ろ過膜で濾過した精製物や半透膜で透析した精製物として保存してもよいし、エバポレーターや凍結乾燥機などを用いて乾燥し、単離された酸化セリウムのナノ粒子として保存してもよい。また、上記した共沸溶媒等の追加した溶媒成分やイオン成分を含んだ分散液として保存してもよいし、pHを調整した分散剤として保存してもよい。保存する場合は冷蔵保存が好ましい。
 本発明の酸化セリウムのナノ粒子の示す流体力学直径は、動的光散乱を測定して自己相関関数を導き、マルカート法(Marquadt法)によって解析し、個数変換ヒストグラムから平均粒子径として算出する。動的光散乱の測定には、大塚電子株式会社のELS-Zを用いる。酸化セリウムのナノ粒子の示す流体力学直径は、1nm以上1000nm以下であればよく、1nm以上200nm以下であることが好ましい。
 本発明の酸化セリウムのナノ粒子の示す流体力学直径は、反応温度によって制御することができる。反応温度は4~90℃程度の間で任意に設定でき、反応温度が低ければ小さな粒径の粒子が得られ、反応温度が高ければ大きな粒径の粒子が得られる。
 本発明の酸化セリウムのナノ粒子またはその分散液は使用前に滅菌してもよい。滅菌の方法としては滅菌フィルターを通過させる方法、オートクレーブ(例えば、120℃、20分の条件)による方法、254nmの紫外線照射による方法が挙げられる。
 本発明にかかる酸化セリウムノナノ粒子において、CeとCeOにおけるセリウム(III)とセリウム(IV)のエネルギー状態は、X線吸収微細構造スペクトル測定(X-ray Absorption Fine Structure;XAFS)により観察することができる。XAFSスペクトル中、吸収端より約20eVの構造がXANES(X-ray Absorption Near Edge Structure)、吸収端より約100eV以上高エネルギー側に現れる広域X線吸収微細構造がEXAFS(Extended X-ray Absorption Fine Structure)と呼ばれる。XANESから着目原子の価数や構造に関する情報が得られ、EXAFS解析では、実スペクトルのフーリエ変換(FT-EXAFS/動径分布関数に相当)により、試料の局所構造、着目原子周囲の原子種、価数、距離に関する情報が得られる。酸化セリウムの酸化還元反応に関するセリウム(III)とセリウム(IV)のエネルギー状態は、XANESスペクトルの極大吸収のピーク位置やピーク強度比に反映される。
 本発明の酸化セリウムのナノ粒子は、X線吸収微細構造スペクトル測定によって得られるCe L3端XANESスペクトルにおいて、5726~5729eVおよび5735~5739eVの間に極大吸収を有する。すなわち、本発明の酸化セリウムのナノ粒子は、前記一般式(I)で示されるホウ素化合物を含み、XANESスペクトルにおいて5726~5729eVおよび5735~5739eVの間に極大吸収を有するものである。また、別の態様において、本発明の酸化セリウムのナノ粒子は、前記一般式(I)で示されるホウ素化合物およびセリウム(III)イオンを含む溶液に、酸化剤を添加することにより製造されるものであって、XANESスペクトルにおいて5726~5729eVおよび5735~5739eVの間に極大吸収を有するものである。
 本発明の酸化セリウムのナノ粒子またはその分散液は、酸化剤として用いることができる。例えば、酸化作用を利用して、有機合成反応や高分子重合における均一触媒や半導体のウェットエッチング液に用いることができる。また、酸化作用を利用して、酸化酵素溶液に代わる溶液として用いることができる。具体的には、オキシダーゼやペルオキシダーゼ溶液の代わりとして抗体-抗原反応や核酸のハイブリダイゼーションを使った検出反応や組織染色に用いたり、電極へコーティングして酸化セリウムのナノ粒子を固定化することで電気化学的な検出反応に用いることができる。他には、酸化作用を利用した漂白剤・消毒剤として汚れ、ニオイ、アレルゲン、細菌、真菌、カビの分解・除去に用いることができる。具体的には、漂白剤として衣類、食器、台所、トイレ、洗面所、風呂場、医療器具などの洗浄に使用することができる。洗浄方法としては、浸け置き洗い、スプレー、加湿器やネブライザーを使用した噴霧が挙げられる。また、消毒剤としてプール、浴槽、温泉に添加したり、ボディーソープ、手洗い洗剤、消毒薬、うがい薬、洗口液、ハンドジェル、除菌スプレー、殺菌スプレー、消臭スプレー、ウエットティッシュ、除菌シートなどとして用いることができる。また、上記洗浄や消毒後に本発明の酸化セリウムのナノ粒子が物体上へ残留させ、消臭、抗ウイルス、抗菌、抗カビ効果が持続するようにしても良い。このような酸化剤としての性能は後述する有機色素の退色反応などで評価することができる。
 本発明の酸化セリウムのナノ粒子またはその分散液は、酸化剤として用いる場合、アルコール、界面活性剤、殺菌剤、天然有機物と組み合わせて使用することができる。アルコールとしては、例えばエタノールやイソプロノールを挙げることができ、界面活性剤としては、例えば塩化ベンザルコニウム、塩化ベンゼトニウム、アルキルポリアミノエチルグリシンを挙げることができ、殺菌剤としては、例えばクロルヘキシジン、アクリノール、メルブロミン、クリスタルバイオレット、天然有機物としては、例えばポリフェノール、カテキン、タンニン酸、キチン、キトサン、イソチオシアネート、ヒノキチオール、リモネン、ポリリジン、テルペノイド、サポニン、フラボノイド、カロテンを挙げることができる。使用に際し、これらを複数組み合わせてもよい。
 本発明の酸化セリウムのナノ粒子またはその分散液は、酸化剤として用いる場合、別の公知の酸化剤と組み合わせて使用することができる。例えば、次亜塩素酸、次亜塩素酸ナトリウム、ポビドンヨード、オキシドール、オゾン水、過酢酸を挙げることができ、これらを複数組み合わせてもよい。
 有機色素の退色反応は、酸化チタンにおける光触媒性能の評価にも使用され、得られた色素の分解率は、有機物を酸化分解する特性の指標として用いられる。アセトアルデヒドやアンモニアなどの低分子、アレルゲンなどの有害物は有機物であることから、このような特性により酸化チタンは抗菌剤としての利用の他、各種有害物質を分解する用途への利用が期待されている。本発明の酸化セリウムのナノ粒子またはその分散液も、同様に、色素分解率が高ければ、抗菌剤としての利用の他、各種有害物質を分解する用途への利用が可能となると考えられる。
 色素の分解率は、具体的には以下のように算出する。まず本発明の分散液と、アシッドレッド94(AR94)などの有機色素を混合、所定の時間静置する。コントロールとして、酸化セリウムのナノ粒子を含まないAR94の溶液に対しても同様の処理を行う。反応後、全ての溶液の吸収スペクトルを測定する。解析にはAR94の極大吸収波長である552nmの吸光度を用いる。コントロールの吸光度(I)と本発明の酸化セリウムのナノ粒子を含む溶液の吸光度(I)の差(I-I)を取り、コントロールの吸光度に対する割合[((I-I)/I)×100]を分解率として算出する。
 また、本発明の分散液の好適な一態様は、ホウ素化合物と、酸化セリウムのナノ粒子を含み、40℃、1時間でのアシッドレッド94の分解反応における分解率が25%以上の酸化セリウムのナノ粒子を含む分散液である。40℃、1時間でのアシッドレッド94の分解反応における分解率が25%以上であることにより、酸化剤として使用することができる。40℃、1時間でのアシッドレッド94の分解反応における分解率は、好ましくは50%以上であり、70%以上が特に好ましい。
 本発明の酸化セリウムのナノ粒子またはその分散液は、酸化性能を付与するための添加剤として、繊維、チューブ、ビーズ、ゴム、フイルム、プラスチック等の成型時に添加したり、これらの表面に塗布することで、防臭、抗アレルギー、抗菌、抗カビなどの加工に用いることができる。本発明の酸化セリウムのナノ粒子またはその分散液で加工したものには、例えば、台所流し台用の排水口菊割れカバー、排水口栓、窓ガラス固定用パッキン、鏡固定用のパッキン、風呂場、洗面台や台所の防水パッキン、冷蔵庫のドア内張りパッキン、バスマット、洗面器やいすのすべり止めゴム、ホース、シャワーヘッド、浄水器に使用されるパッキン、浄水器のプラスチック製品、洗濯機に使用されるパッキン、洗濯機のプラスチック製品、マスク、医療用キャップ、医療用シューズカバー、エアコン用フィルター、空気清浄機用フィルター、掃除機用フィルター、換気扇用フィルター、車両用フィルター、空調用フィルター、エアコンのフィン、エアコン吹き出し口のルーバー等のプラスチック部品ならびに送風ファン等、カーエアコンのフィン、カーエアコン吹き出し口のルーバー等のプラスチック部品ならびに送風ファン、衣類、寝具、網戸用ネット、鶏舎用ネット、蚊屋などのネット類、壁紙や窓、ブラインド、病院内などのビル用内装材、電車や自動車などの内装材、車両用シート、ブラインド、椅子、ソファー、ウイルスを扱う設備、ドア、天井板、床板、窓などの建装材などが挙げられる。このように、本発明の酸化セリウムのナノ粒子またはその分散液で加工した製品は衛生材料として様々な分野に利用することができる。
 本発明の酸化セリウムのナノ粒子またはその分散液は、抗ウイルス剤として用いることができる。抗ウイルス剤としての性能を評価する方法としては、本発明の酸化セリウムのナノ粒子またはその分散液をウイルスと接触または混合させた後、ウイルス量を定量する。ウイルスを定量する方法としては、ELISA法によりウイルス抗原量を測定する方法、PCRによりウイルス核酸を定量する方法、プラーク法により感染価を測定する方法、50%感染量測定法により感染価を測定する方法などが挙げられる。本発明において抗ウイルス性能は、プラーク法や50%感染量測定法により感染価を測定する方法が好ましく用いられる。ウイルス感染価の単位は、50%感染量測定法においては、培養細胞を対象に試験した場合TCID50(Tissue culture infectious dose 50)、孵化鶏卵を用いた場合EID50(Egg infectious dose 50)、動物ではLD50(Lethal dose 50)で表記する。また、50%感染量測定法においては得られたデータから感染価を算出する方法としてReed-Muench法やBehrens-Kaeber法、Spearman―Karber法などがあるが、本発明ではReed-Muench法を用いることが好ましい。抗ウイルス性能の判定基準は、一般に、本発明の酸化セリウムのナノ粒子を作用させる前の感染価や本発明のナノ粒子を含まない対照に対し、感染価の対数減少値が2.0以上となれば、抗ウイルス性能は有効と判定される。
 また、本発明の酸化セリウムのナノ粒子を含む分散液の好適な一態様は、ホウ素化合物と、酸化セリウムのナノ粒子を含み、細胞培養を対象としたウイルス不活化試験での50%感染量測定法におけるウイルス感染価TCID50の対数減少値が、本発明の酸化セリウムのナノ粒子を作用させる前の感染価や本発明のナノ粒子を含まない対照に対し2.0以上である。ウイルス不活化試験におけるウイルス感染価TCID50の対数減少値が2.0以上であることにより、抗ウイルス剤として使用することができる。ウイルス感染価の対数減少値は、好ましくは2.5以上であり、3.0以上が特に好ましい。
 本発明の酸化セリウムのナノ粒子またはその分散液で不活性化できるウイルスは、例えば、ライノウイルス、ポリオウイルス、口蹄疫ウイルス、ロタウイルス、ノロウイルス、エンテロウイルス、ヘパトウイルス、アストロウイルス、サポウイルス、E型肝炎ウイルス、A型、B型、C型インフルエンザウイルス、パラインフルエンザウイルス、ムンプスウイルス(おたふくかぜ)、麻疹ウイルス、ヒトメタニューモウイルス、RSウイルス、ニパウイルス、ヘンドラウイルス、黄熱ウイルス、デングウイルス、日本脳炎ウイルス、ウエストナイルウイルス、B型、C型肝炎ウイルス、東部および西部馬脳炎ウイルス、オニョンニョンウイルス、風疹ウイルス、ラッサウイルス、フニンウイルス、マチュポウイルス、グアナリトウイルス、サビアウイルス、クリミアコンゴ出血熱ウイルス、スナバエ熱、ハンタウイルス、シンノンブレウイルス、狂犬病ウイルス、エボラウイルス、マーブルグウイルス、コウモリリッサウイルス、ヒトT細胞白血病ウイルス、ヒト免疫不全ウイルス、ヒトコロナウイルス、SARSコロナウイルス、SARSコロナウイルス2、ヒトポルボウイルス、ポリオーマウイルス、ヒトパピローマウイルス、アデノウイルス、ヘルペスウイルス、水痘帯状発疹ウイルス、EBウイルス、サイトメガロウイルス、天然痘ウイルス、サル痘ウイルス、牛痘ウイルス、モラシポックスウイルス、パラポックスウイルスなどが挙げられる。
 抗ウイルス剤として用いる場合、本発明の酸化セリウムのナノ粒子またはその分散液を、繊維、チューブ、ビーズ、ゴム、フィルム、プラスチック等の材料に添加剤として練り込んだり、これらの材料の表面に塗布したりして用いることができる。例えば、マスク、医療用キャップ、医療用シューズカバー、エアコン用フィルター、空気清浄機用フィルター、掃除機用フィルター、換気扇用フィルター、車両用フィルター、空調用フィルター、エアコンのフィン、エアコン吹き出し口のルーバー等のプラスチック部品ならびに送風ファン等、カーエアコンのフィン、カーエアコン吹き出し口のルーバー等のプラスチック部品ならびに送風ファン、衣類、寝具、網戸用ネット、鶏舎用ネット、蚊屋などのネット類、壁紙や窓、ブラインド、病院内などのビル用内装材、電車や自動車などの内装材、車両用シート、ブラインド、椅子、ソファー、ウイルスを扱う設備、ドア、天井板、床板、窓などの建装材として様々な分野に利用することができる。
 本発明の酸化セリウムのナノ粒子またのその分散体は、抗菌剤として用いることができる。
 抗菌剤としての性能を評価する方法としては、例えばEuropean Norm(EN)欧州標準試験法であるEN1040:2005を挙げることができる。本試験法においては、抗菌剤の有効成分を含む試験液に対して菌液を添加し、一定時間後に菌体数を測定する。菌液は培地成分として0.85%NaClと0.1%トリプトンを含み、試験液:菌液の体積比が9:1となるよう混合する。抗菌活性の判定基準は、一般に、本発明の酸化セリウムのナノ粒子を作用させる前の菌体数や本発明のナノ粒子を含まない対照に対し、菌体数の対数減少値が2.0以上となれば、抗菌活性はありと判定される。菌体数を定量する方法としては、濁度(OD600)測定により菌体量を測定する方法、コロニー形成法により菌体量を測定する方法、PCRにより菌体の核酸を定量する方法などが挙げられる。本発明において抗菌性能は、濁度測定やコロニー形成法により感染価を測定する方法が好ましく用いられる。
 また、本発明の酸化セリウムのナノ粒子を含む分散液の好適な一態様は、ホウ素化合物と、酸化セリウムのナノ粒子を含み、菌体量の対数減少値が、本発明の酸化セリウムのナノ粒子を作用させる前の感染価や本発明のナノ粒子を含まない対照に対し2.0以上である。抗菌試験における菌体数の対数減少値が2.0以上であることにより、抗菌剤として使用することができる。菌体数の対数減少値は、好ましくは2.5以上であり、3.0以上が特に好ましい。
 本発明の酸化セリウムのナノ粒子またはその分散体が抗菌活性を示す対象となる微生物としては、以下のようなものを挙げることができる。細菌としては、グラム陽性菌やグラム陰性菌を挙げることができる。グラム陰性細菌としては、例えば、大腸菌などのエシェリキア属の細菌、サルモネラ菌などのサルモネラ属の細菌、緑膿菌などのシュードモナス属の細菌、赤痢菌などのシゲラ属の細菌、クレブシエラ・ニューモニエなどのクレブシエラ属の細菌、レジオネラ・ニューモフィラなどのレジオネラ属の細菌などを挙げることができる。グラム陽性細菌としては、例えば、ブドウ球菌などのスタフィロコッカス属の細菌、枯草菌などのバシラス属の細菌、結核菌などのマイコバクテリウム属の細菌などを挙げることができる。真菌としては、菌類や酵母を挙げることができる。菌類としては、例えば、黒コウジカビなどのアスペルギルス属の糸状菌、アオカビなどのペニシリウム属の糸状菌、クロカビなどのクラドスポリウム属の糸状菌、ススカビなどのアルテルナリア属の糸状菌、ツチアオカビなどのトリコデルマ属の糸状菌、ケタマカビなどのケトミウム属の糸状菌などを挙げることができる。酵母類としては、例えば、パン酵母及びビール酵母などのサッカロミセス属の酵母及びカンジダ・アルビカンスなどのカンジダ属の酵母などを挙げることができる。
 本発明の酸化セリウムのナノ粒子またはその分散液を消毒剤に添加することで、当該消毒液に抗ウイルス作用または抗菌作用を付与することができる。消毒剤としては、有効成分として、塩素系、ヨウ素系、過酸化物系、アルデヒド系、フェノール系、ビグアナイド系、水銀系、アルコール系、アニオン性界面活性剤系、カチオン性界面活性剤系、両性界面活性剤系、非イオン性界面活性剤系、天然由来物系等の消毒成分が含まれているものに適用することができる。
 液状の消毒剤の場合、本発明の酸化セリウムのナノ粒子の濃度は、0.0001質量%~10質量%の間で任意に設定することができる。
 塩素系の消毒成分の例としては、次亜塩素酸ナトリウム、塩素、塩素化イソシアヌール酸等が挙げられる。
 ヨウ素系の消毒成分の例としてはヨウ素、ポビドンヨ-ド、ノノキシノ-ルヨ-ド、フェノキシヨ-ド等が挙げられる。
 過酸化物系の消毒成分の例としては、過酸化水素、過マンガン酸カリウム、過酢酸、有機過酸、過炭酸ナトリウム、過ほう酸ナトリウム、オゾンが挙げられる。
 アルデヒド系の消毒成分の例としては、グルタルアルデヒド、フタラール、ホルムアルデヒド等が挙げられる。
 フェノール系の消毒成分の例としては、イソプロピルメチルフェノール、チモール、オイゲノール、トリクロサン、クレゾール、フェノール、クロロクレゾール、パラクロロメタクレゾール、パラクロロメタキシレノール、オルソフェニルフェノール、パラオキシ安息香酸アルキルエステル、レゾルシン、ヘキサクロロフェン、サリチル酸又はその塩類等が挙げられる。
 ビグアナイド系の消毒成分の例としては、クロルヘキシジン、グルコン酸クロルヘキシジン、塩酸クロルヘキシジン等が挙げられる。
 水銀系の消毒成分の例としては、マーキュロクロム、塩化第二水銀、チメロサール等が挙げられる。
 アルコール系の消毒成分の例としては、エタノール、イソプロパノール等が挙げられる。この場合のアルコール系の消毒成分の濃度は30~80質量%であればよい。
 アニオン界面活性剤系の消毒成分の例としては、アルキルベンゼンスルホン酸塩、脂肪酸塩、高級アルコール硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸塩、α-スルホ脂肪酸エステル、α-オレフィンスルホン酸塩、モノアルキルリン酸エスエル塩、アルカンスルホン酸塩等が挙げられる。
 カチオン性界面活性剤系の消毒成分の例としては、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、ポリヘキサメチレンビグアナイド、塩化ベンゼトニウム等が挙げられる。
 両性界面活性剤系の消毒成分の例としては、アルキルアミノ脂肪酸塩、アルキルベタイン、アルキルアミンオキシド等が挙げられる。
 非イオン界面活性剤の消毒成分の例としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン・ポリオキシプロピレンアルキルエーテル、ポリオキシエチレン・ポリオキシブチレンアルキルエーテル、アルキルアミンエトキシレート、アルキルアミンアルコキシレート、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー、ポリオキシエチレン-ポリオキシプロピレンブロックコポリマー(リバース型)、多価アルコールのエチレンオキサイド・プロピレンオキサイド付加物、アルキルグルコシド、脂肪酸アルカノールアミド等が挙げられる。
 天然由来物系の消毒成分の例としては、ヒノキチオール、アネトール、アニスオイル、ボルネオール、樟脳、カルボン、カッシアオイル、アカザオイル、シネオール、シトラール、シトロネラール、オイゲノール、ピネン、ゲラニオール、レモンオイル、リオロール、メントール、オレンジオイル、サフロール、チモール、ポリフェノール(フラバノール類、ガロタンニン類、エラジタンニン類、フロロタンニン類)等の植物系薬剤や、甲殻類の殻を原料としたキチン、キトサン、ホタテやカキの貝殻を焼成処理することによって得られる焼成貝殻粉末などの動物系薬剤や、ポリリジンなどの微生物系薬剤、リゾチームなどの酵素系薬剤が挙げられる。また、生物が外界の微生物に対して自らを防御するために産生する抗菌性ペプチドも使用でき、例えば、ヒスタチン(Histatin)、ディフェンシン(Defensin)、ラクトフェリン(Lactoferrin)、ラクトフェリンの分解産物であるラクトフェリシン(Lactoferrcin)、マガイニン(Magainin)、セクロピン(Cecropin)、メリチチン(Melititin)などがある。
 また天然由来物の消毒成分として植物抽出物を使用することもできる。具体例としては、グレープフルーツ種子エキス、アカザ科のハハキギ等、アヤメ科のヒオウギ等、オトギリソウ科のセイヨウオトギリソウ等、カンラン科のニュウコウ、ギレアドバルサムノキ等、キキョウ科のツリガネニンジン等、キク科のエキナセア、カミツレ、ゴボウ、セイタカアワダチソウ、ホソバオケラ等、キンポウゲ科のオウレン等、スイカズラ科のスイカズラ等、クスノキ科のゲッケイジュ等、クワ科のホップ等、シソ科のコガネバナ、オレガノ、ケイガイ、セージ、タイム、セイヨウヤマハッカ、ヤマジソ、ラベンダー、ローズマリー等、ショウガ科のシュクシャ、ショウガ等、スイカズラ科のセイヨウニワトコ等、スギ科のスギ等、セリ科のヨロイグサ、ボウフウ等、タデ科のミチヤナギ等、ツツジ科のウワウルシ等、ドクダミ科のドクダミ等、ハマビシ科のハマビシ等、ブドウ科のヤブガラシ等、フトモモ科のオールスパイス、ティーツリー、ユーカリ、チョウジ等、マメ科のイヌエンジュ、エンジュ、クララ、ホンシタン、ムラサキタガヤサン等、マンサク科のフウ等、ミカン科のキハダ、ウンシュウミカン等、ムラサキ科のコンフリー等、メギ科のバーベリー、ナンテン等、モクレン科のホオノキ等、バラ科のワレモコウ、バラ等、ヤドリギ科のヤドリギ等、ユリ科のハナスゲ、バラン、カンゾウ等、リンドウ科のジンギョウ等、イネ科の孟宗竹等、ヒバマタ科のアスコフィラム・ノドサム等からの植物抽出物が挙げられる。
 超微細気泡としては、内部に空気、酸素、水素、窒素、炭酸ガス、アルゴン、ネオン、キセノン、フッ素化気体、オゾンおよび不活性化ガスから選択される1種または2種以上の気体を含む、粒子径500nm以下の気泡を挙げることができる。超微細気泡はナノバブルとも呼ばれる。濃度は10万個/ml以上であればよい。
 本発明の酸化セリウムのナノ粒子またはその分散液を含む消毒剤は、上記記載の消毒成分に加え、その剤型に応じて適宜な任意成分を配合することができる。具体的には、溶剤、湿潤剤、増粘剤、酸化防止剤、pH調整剤、アミノ酸、防腐剤、甘味剤、香料、界面活性剤、着色料、殺菌効果を高める助剤、キレート剤、紫外線吸収剤、消泡剤、酵素、製剤安定化剤等を含有できる。
 本発明の酸化セリウムのナノ粒子またはその分散液を添加した消毒剤は、液状、ゲル状、粉末状等の種々の形態で提供することができる。液状の消毒剤は、ローション剤、スプレー剤等として提供することができ、計量キャップ付きボトル、トリガータイプのスプレー容器、スクイズタイプもしくはディスペンサータイプのポンプスプレー容器等に充填し、散布または噴霧等して用いることができる。液状の消毒剤は、シート状の紙や布等に含浸させ、ボトルやバケツ等の容器に充填し、ウェットシートとして提供することができる。
 本発明の酸化セリウムのナノ粒子は、繊維、チューブ、ビーズ、ゴム、フイルム、プラスチック等の成型時に添加したり、分散液としてこれらの表面に塗布したりすることで抗菌加工に用いることができる。本発明の酸化セリウムのナノ粒子または分散液で抗菌加工可能なものとしては、例えば、台所流し台用の排水口菊割れカバー、排水口栓、窓ガラス固定用パッキン、鏡固定用のパッキン、風呂場、洗面台や台所の防水パッキン、冷蔵庫のドア内張りパッキン、バスマット、洗面器やいすのすべり止めゴム、ホース、シャワーヘッド、浄水器に使用されるパッキン、浄水器のプラスチック製品、洗濯機に使用されるパッキン、洗濯機のプラスチック製品、マスク、医療用キャップ、医療用シューズカバー、エアコン用フィルター、空気清浄機用フィルター、掃除機用フィルター、換気扇用フィルター、車両用フィルター、空調用フィルター、エアコンのフィン、エアコン吹き出し口のルーバー等のプラスチック部品ならびに送風ファン等、カーエアコンのフィン、カーエアコン吹き出し口のルーバー等のプラスチック部品ならびに送風ファン、衣類、寝具、網戸用ネット、鶏舎用ネット、蚊屋などのネット類、壁紙や窓、ブラインド、病院内などのビル用内装材、電車や自動車などの内装材、車両用シート、ブラインド、椅子、ソファー、ウイルスを扱う設備、ドア、天井板、床板、窓などの建装材などが挙げられる。このように、本発明の酸化セリウムのナノ粒子の分散液で加工した製品は、衛生材料として様々な分野に利用することができる。
 本発明の酸化セリウムのナノ粒子またはその分散液を塗料に添加することで、当該塗料に抗ウイルス作用を付与することができる。このとき、本発明の酸化セリウムのナノ粒子を塗膜中に固定化する目的で、塗料中に樹脂エマルジョン組成物を含んでもよい。
 樹脂エマルジョン組成物としては、例えば、酢酸ビニル樹脂エマルジョン、塩化ビニル樹脂エマルジョン、エポキシ樹脂エマルジョン、アクリル樹脂エマルジョン、ウレタン樹脂エマルジョン、アクリルシリコン樹脂エマルジョン、フッ素樹脂エマルジョン、またはこれらの複合系等の樹脂成分からなる合成樹脂エマルジョンが挙げられる。塗料に添加する本発明の酸化セリウムのナノ粒子と樹脂エマルジョン中の固形分の質量比は、0.01:99.99~99.99:0.01の間で任意に設定することができる。
 エチレン酢酸ビニル共重合体樹脂エマルジョンは、エチレンと酢酸ビニルモノマーとを共重合したものであり、アミノ基、第二級アミノ基、第三級アミノ基、第四級アミノ基、カルボキシル基、エポキシ基、スルフォン酸基、水酸基、メチロール基、アルコキシ酸基等の官能基を有するビニルモノマーが更に共重合されたものであってもよい。
 塩化ビニル共重合体樹脂エマルジョンは、塩化ビニルを重合したものであり、アミノ基、第二級アミノ基、第三級アミノ基、第四級アミノ基、カルボキシル基、エポキシ基、スルフォン酸基、水酸基、メチロール基、アルコキシ酸基等の官能基を有するビニルモノマーが更に共重合されたものであってもよい。
 アクリル樹脂エマルジョンの調製に使用することができるモノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アルリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸エステル系単量体;アクリル酸、メタクリル酸、β-カルボキシエチル(メタ)アクリレート、2-(メタ)アクリロイルプロピオン酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、イタコン酸ハーフエステル、マレイン酸ハーフエステル、無水マレイン酸、無水イタコン酸等のカルボキシル基を有する不飽和結合含有単量体;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有重合性単量体;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、グリセロールモノ(メタ)アクリレート等の水酸基含有重合性単量体;エチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ジアリルフタレート、ジビニルベンゼン、アリル(メタ)アクリレート等が挙げられる。
 ウレタン樹脂エマルジョンの調製に使用することができるモノマーとしては、ポリイソシアネート成分として、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、m-フェニレンジイソシアネート、p-フフェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート、3,3’-ジメトキシ-4,4’-ビフェニレンジイソシアネート、3,3’-ジクロロ-4,4’-ビフェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、1,5-テトラヒドロナフタレンジイソシアネート、テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,3-シクロヘキシレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、水素添加キシリレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジイソシアネート等を挙げることができ、ジオール成分としては、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリアセタールポリオール、ポリアクリレートポリオール、ポリエステルアミドポリオール、ポリチオエーテルポリオール、ポリブタジエン系等のポリオレフィンポリオール等を挙げることができる。
 アクリルシリコン樹脂エマルジョンの調製に使用することができるケイ素含有アクリル系モノマーとして、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリエトキシシラン、γ-(メタ)アクリロキシプロピルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルメチルジエトキシシラン等を挙げることができる。
 フッ素樹脂エマルジョンの調製に使用することができるモノマーとしては、フルオロオレフィン(フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ペンタフルオロエチレン、ヘキサフルオロプロピレン等)、含フッ素(メタ)アクリレート(トリフルオロエチル(メタ)アクリレート、ペンタフルオロプロビル(メタ)アクリレート、ペルフルオロシクロヘキシル(メタ)アクリレート等)等を挙げることができる。
 本発明の酸化セリウムのナノ粒子またはその分散液を含む塗料は、必要に応じて顔料、艶消し材、骨材、繊維、架橋剤、可塑剤、防腐剤、防黴剤、抗菌剤、消泡剤、粘性調整剤、レベリング剤、顔料分散剤、沈降防止剤、たれ防止剤、紫外線吸収剤、光安定剤、酸化防止剤、吸着剤等を含むことができる。これらの成分を、単独で、又は併用して塗料組成物に配合することができる。
 本発明の酸化セリウムのナノ粒子またはその分散液を添加した塗料は、例えば、建築物の内装面の塗装に用いることができる。内装面としては、例えば、モルタル、コンクリート、石膏ボード、サイディングボード、押出成形板、スレート板、石綿セメント板、繊維混入セメント板、ケイ酸カルシウム板、ALC板、金属、木材、ガラス、ゴム、陶磁器、焼成タイル、磁器タイル、プラスチック、合成樹脂等の基材、クロス、壁紙、あるいはこれらの基材上に形成された塗膜等が挙げられる。また、建築物の外装面や建築物以外の構造物にも適用することが可能である。
 本発明を以下の実施例によってさらに具体的に説明する。
 <材料と方法>
 硝酸セリウム(III)六水和物、ホウ酸、四ホウ酸ナトリウム10水和物(ホウ砂)、エチレングリコール、30質量%過酸化水素水は富士フイルム和光純薬株式会社より、アシッドレッド94、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸イソプロピル、メチルボロン酸、エチルボロン酸、フェニルボロン酸、EDTA・2Na、DL-乳酸は東京化成株式会社より入手した。比較例で用いた市販の酸化セリウム分散液(796077)は、メルク社より入手した。精製に用いたアミコンウルトラ15(30kD)はメルクミリポア社から購入した。
 その他の試薬については、富士フイルム和光純薬株式会社、東京化成株式会社、シグマーアルドリッチジャパン合同会社から購入し、特に精製することなくそのまま用いた。
 酸化セリウムのナノ粒子の流体力学直径の測定には、大塚電子株式会社のゼータ電位・粒子測定システムELS-Zを用い、吸光度測定のプレートリーダーにはMOLECULAR DEVICE社のSpectraMax iD3を用いた。
(実施例1)ホウ酸を安定化剤とする酸化セリウムのナノ粒子の分散液の調製
 ナスフラスコに水50mlを加え、284mgのホウ酸を溶解して、水酸化ナトリウムでpHを8.0に調整した。10質量%の硝酸セリウム(III)六水和物水溶液を1ml添加し、室温で10分間攪拌した。その後、1.2質量%の過酸化水素水溶液を1ml滴下して室温で1時間反応させた。反応後、硝酸を加え室温で2時間撹拌した。反応溶液を分画分子量10kDの限外ろ過膜で精製し、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(実施例2)ホウ酸トリメチルを安定化剤とする酸化セリウムのナノ粒子の分散液の調製
 実施例1において、284mgのホウ酸の代わりに、388mgのホウ酸トリメチルを用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(実施例3)ホウ酸トリエチルを安定化剤とする酸化セリウムのナノ粒子の分散液の調製
 実施例1において、284mgのホウ酸の代わりに、545mgのホウ酸トリエチルを用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(実施例4)ホウ酸トリイソプロピルを安定化剤とする酸化セリウムのナノ粒子の分散液の調製
 実施例1において、284mgのホウ酸の代わりに、702mgのホウ酸トリイソプロピルを用い、水50mlの代わりに、50容量%エチレングリコール水50mlを用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(実施例5)四ホウ酸ナトリウムを安定化剤とする酸化セリウムのナノ粒子の分散液の調製
 実施例1において、284mgのホウ酸の代わりに、1.42gの四ホウ酸ナトリウム10水和物(ホウ砂)を用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(実施例6)メチルボロン酸を安定化剤とする酸化セリウムのナノ粒子の分散液の調製
 実施例1において、284mgのホウ酸の代わりに、223mgのメチルボロン酸を用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む薄褐色分散液を得た。
(実施例7)エチルボロン酸を安定化剤とする酸化セリウムのナノ粒子の分散液の調製
 実施例1において、284mgのホウ酸の代わりに、276mgのエチルボロン酸を用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む薄褐色分散液を得た。
(実施例8)フェニルボロン酸を安定化剤とする酸化セリウムのナノ粒子の分散液の調製
 実施例1において、284mgのホウ酸の代わりに、455mgのフェニルボロン酸を用い、水50mlの代わりに、50容量%エチレングリコール水50mlを用いたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む褐色分散液を得た。
(実施例9)ホウ酸(ホウ酸溶液のpHが4.0)を安定化剤とする酸化セリウムのナノ粒子の分散液の調製
 実施例1において、ホウ酸溶液のpHを4.0にしたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む黄色分散液を得た。
(実施例10)ホウ酸(ホウ酸溶液のpHが5.0)を安定化剤とする酸化セリウムのナノ粒子の分散液の調製
 実施例1において、ホウ酸溶液のpHを5.0にしたこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(実施例11)ホウ酸(ホウ酸溶液を70℃に加熱)を安定化剤とする酸化セリウムナノ粒子の分散液の調製
 実施例1において、硝酸添加後の撹拌を70℃で行ったこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(実施例12)ホウ酸(ホウ酸溶液を90℃に加熱)を安定化剤とする酸化セリウムナノ粒子の分散液の調製
 実施例1において、硝酸添加後の撹拌を90℃で行ったこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(比較例1)ポリアクリル酸を安定化剤とする酸化セリウムのナノ粒子の分散液の調製
 非特許文献1を参考に、酸化活性の比較のため、ポリアクリル酸を安定化剤とする酸化セリウムのナノ粒子を作製した。1質量%のポリアクリル酸ナトリウム水溶液50mlに対し、10質量%の硝酸セリウム(III)六水和物水溶液を1ml添加し、室温で5分間攪拌した。その後、1.2質量%の過酸化水素水溶液を1ml添加し、40℃に加温して1時間反応させた。反応溶液を分画分子量30kDの限外ろ過膜で精製し、酸化セリウムのナノ粒子を含む黄色分散液を得た。
(比較例2)ホウ酸を後添加する酸化セリウムのナノ粒子の分散液の調製
 特許文献1(特開2003-183631号公報)を参考に、実施例1と酸化性能を比較するため、ホウ酸を酸化セリウムナノ粒子の分散液に後添加して吸着させる製造方法で分散液を調製した。市販の酸化セリウムのナノ粒子(IV)の分散液(メルク、796077)を0.2mg/mlに希釈し、希釈液50mlに対して284mgのホウ酸を添加し、2時間60℃で攪拌した。その後、反応溶液を分画分子量10kDの限外ろ過膜で精製し、酸化セリウムのナノ粒子を含む褐色分散液を得た。
(比較例3)EDTA/乳酸を安定化剤とする酸化セリウムのナノ粒子の分散液の調製
 特許文献2(特表2010-502821号公報)を参考に、実施例1と酸化性能を比較するため、EDTA/乳酸を安定化剤とする酸化セリウムナノ粒子の分散液を調製した。
 硝酸セリウム(III)六水和物0.8g、0.25gのEDTA・2Na、0.25gのDL-乳酸を50mlの水へ溶解し、30%アンモニア水でpH9.5に調整した。そこへ、640μlの30%過酸化水素を滴下しながら加え、1時間撹拌して褐色の水溶液を得た。その後、反応溶液を分画分子量3kDの限外ろ過膜で精製し、EDTA/乳酸を安定化剤とする酸化セリウムのナノ粒子を含む褐色分散液を得た。
(比較例4)ホウ酸を後添加するEDTA/乳酸を安定化剤とする酸化セリウムのナノ粒子の分散液の調製
 比較例3で得られたEDTA/乳酸を安定化剤とする酸化セリウムのナノ粒子を含む分散液を0.2mg/mlに希釈し、希釈液50mlに対して284mgのホウ酸を添加した。その後、反応溶液を分画分子量3kDの限外ろ過膜で精製し、酸化セリウムのナノ粒子を含む褐色水溶を得た。
(比較例5)ホウ酸トリエチルを後添加する酸化セリウムのナノ粒子の分散液の調製
 比較例2において、284mgのホウ酸の代わりに、545mgのホウ酸トリエチルを用いたこと以外は、比較例2と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む褐色分散液を得た。
(実施例13)酸化セリウムのナノ粒子の流体力学直径の測定
 実施例1~12で調製した酸化セリウムのナノ粒子の流体力学直径を動的光散乱(DLS)によって測定した。測定時の溶媒は水とし、個数換算により流体力学直径の平均粒子径を得た。得られた値を表1に示す。
 平均粒子径は3.4~71.0nmであり、いずれもナノ粒子であることが確認された。
Figure JPOXMLDOC01-appb-T000001
(実施例14)色素の分解試験による酸化性能の測定
 2mg/mlになるように調製した実施例1~12の酸化セリウムのナノ粒子の分散液60μlに、有機物を含む試料として0.5mg/mlのアシッドレッド94(AR94)60μl、および蒸留水1.38mlをそれぞれ加え、ヒートブロックを使って40℃で1時間静置し、色素の分解反応を行った。コントロールとして、酸化セリウムのナノ粒子を含まないAR94の溶液に対しても同様の処理を行った。反応後、それぞれの溶液を100μl取って1.9mlの蒸留水で希釈し、吸収スペクトルを測定した。コントロールのサンプルは加熱前後で吸収スペクトルに変化は見られなかった。
 解析にはAR94の極大吸収波長である552nmの吸光度を用いた。各分散液の吸光度(I)とコントロールの吸光度(I)との差を取り、コントロールの吸光度(I)に対する割合を分解率として算出した。結果を表2に示した。
 本結果から、実施例1~12の酸化セリウムのナノ粒子を含む分散液は、高い分解率で色素を分解できる酸化性能を有することが確認できた。
 一方、市販の酸化セリウムのナノ粒子の分散液および比較例1~5で調製した酸化セリウムのナノ粒子の分散液について、同様にして酸化性能の測定を行ったが、色素の分解はほとんど確認できなかった。
Figure JPOXMLDOC01-appb-T000002
(実施例15)ウイルス不活化試験
 本試験は一般財団法人北里環境科学センターにて実施した。5mg/mlになるように調製した実施例1、11および12で調製した酸化セリウムのナノ粒子の分散液0.9mlにウイルス液(ネコカリシウイルス, Feline calicivirus, F-9, ATCC, VR-782, ノロウイルス代替)0.1mlを混合し、1時間作用させた。その後、PBSを作用停止液として加え、ウイルスに対する作用を停止させた。この溶液をウイルス価測定用試料の原液としてTCID50法で感染価を測定した。
 酸化セリウムのナノ粒子を作用させる前の感染価に対する感染価の対数減少値を表3に示した。本結果から、実施例1、11および12の酸化セリウムのナノ粒子の対数減少値が3.7~4.7であることから、本発明の酸化セリウムのナノ粒子には99.9%以上のウイルス不活化率があり、非常に高い抗ウイルス活性があることが確認できた。
 また、実施例1で得られた酸化セリウムのナノ粒子の分散液に対して、0.2μmの滅菌フィルターを通して滅菌処理を行ったもの、オートクレーブ(120℃、20分の水熱処理)により滅菌処理を行ったもの、254nmの紫外線照射により滅菌処理を行ったものについて、それぞれ同様に評価を行った結果、いずれの滅菌処理を行った場合もウイルス不活化率に変わりはなく、非常に高い抗ウイルス活性があることが確認できた。
 一方、比較例1で調製した酸化セリウムのナノ粒子の分散液では、対数減少値が-0.5であり、ウイルス不活化性能が確認されなかった。
Figure JPOXMLDOC01-appb-T000003
(実施例16)新型コロナウイルスに対するウイルス不活化試験
 本試験は一般財団法人日本繊維製品品質技術センターにて実施した。5mg/mlになるように調製した実施例12で調製した酸化セリウムのナノ粒子の分散液0.9mlにウイルス液(新型コロナウイルス,Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), NIID分離株; JPN/TY/WK-521(国立感染症研究所より分与))0.1mlを混合し、1時間作用させた。その後、PBSを作用停止液として加え、ウイルスに対する作用を停止させた。この溶液をウイルス価測定用試料の原液としてプラーク測定法で感染価を測定した。
 酸化セリウムのナノ粒子を作用させる前の感染価に対する感染価の対数減少値を表4に示した。本結果から、実施例12の酸化セリウムのナノ粒子の対数減少値は3.03以上であり、本発明の酸化セリウムのナノ粒子の新型コロナウイルスに対するウイルス不活化率は99.9%以上であることが確認できた。
Figure JPOXMLDOC01-appb-T000004
(実施例17)ICP発光分析およびICP-MSを用いたCe、Bの定量
 実施例1、2、12の酸化セリウムのナノ粒子の分散液をテフロン(登録商標)製容器に量り取り、硫酸、硝酸および塩酸で加熱分解した後、硫酸白煙が生じるまで濃縮し、希王水に溶かし定容した。得られた定容液中のCeをICP発光分析法で、BをICP質量分析法により定量した。ICP発光分析装置はPS3520VDDII(日立ハイテクサイエンス製)を、ICP質量分析装置はAgilent8800(Agilent Technologies製)を用いた。得られた値を表5に示す。
 ホウ酸の量はCe1モルに対して0.016~0.0541モルであることが確認された。
Figure JPOXMLDOC01-appb-T000005
(実施例18)酸化セリウムのナノセリアのXAFS分析
 10mg/mlになるように実施例1で調製した本発明の酸化セリウムのナノ粒子の分散液にX線を照射し、その吸収量を計測することにより、X線吸収微細構造(X-ray Absorption Fine Structure)スペクトルを測定した。測定条件は、実験施設が高エネルギー加速器研究機構 放射光科学研究施設(Photon Factory)BL12C、分光器がSi(111)2結晶分光器、吸収端がCe L3吸収端、検出法が透過法、検出器がイオンチャンバーとした。
 CeL3端XANESスペクトルを図1に示した。縦軸は、スペクトルの5724.4eVを吸収端(E0)とし、E0から-150~-30eVの範囲の吸収の平均値を0、E0から+150~+400eVの範囲の吸収の平均値を1として比を取ることで設定した。
 また、比較例2で調製した酸化セリウムのナノ粒子の分散液についても、同様の操作および条件でXAFS観察を行い、得られたCeL3端XANESスペクトルを図1に示した。
 実施例2と比較例5で調製した酸化セリウムのナノ粒子の分散液についても、同様の操作および条件でXAFS観察を行い、得られたCeL3端XANESスペクトルを図2に示した。
 実施例12と比較例2で調製した酸化セリウムのナノ粒子の分散液についても、同様の操作および条件でXAFS観察を行い、得られたCeL3端XANESスペクトルを図3に示した。
 本結果から、実施例1のナノ粒子は、5727.974eVと5736.694eVに極大吸収を有し、実施例2のナノ粒子は、5727.705eVと5736.964eVに極大吸収を有し、実施例12のナノ粒子は、5728.078eVと5736.568eVに極大吸収を有しており、5726~5729eVおよび5735~5739eVに極大吸収を有することが明らかとなった。
 一方、比較例2の酸化セリウムのナノ粒子は、5729.732eVと5736.694eVに極大吸収を有し、比較例5の酸化セリウムのナノ粒子は、5729.810eVと5736.568eVに極大吸収を有しており、5735~5739eVの間には極大吸収を有するものの、5726~5729eVの間には極大吸収を有さないことが分かった。
(参考例1)XAFS観察
 ナノ粒子ではない酸化セリウムの結晶、セリウム塩である炭酸セリウム(III)、硝酸セリウム(III)、硝酸アンモニウムセリウム(IV)を用いた以外は、上記の実施例1、2と12、比較例2と5で行ったXAFS観察と同様の操作および条件でXAFS観察を行い、得られたCeL3端XANESスペクトルを図4に示した。酸化セリウムの結晶は5729.810eV、5736.568eVに極大吸収を有し、炭酸セリウム(III)は5725.161eVに極大吸収を有し、硝酸セリウム(III)は5725.316eVに極大吸収を有し、硝酸アンモニウムセリウム(IV)は5725.796eV、5736.105eVに極大吸収を有し、いずれの公知のセリウム塩やセリウム化合物では5726~5729eV及び5735~5739eVの間に極大吸収がないことが分かった。
(実施例19)ホウ酸を安定化剤とする、Cu(II)化合物を0.1モルドープした酸化セリウムナノ粒子を含む分散液
 実施例1において、硝酸セリウムを添加した後、次いで1Mの硫酸銅(II)五水和物水溶液を23μL(硝酸セリウム六水和物1モルに対して0.1モル)添加したこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む黄白色分散液を得た。
(実施例20)ホウ酸を安定化剤とする、Cu(II)化合物を0.05モルドープした酸化セリウムナノ粒子を含む分散液
 実施例19において、添加する1Mの硫酸銅(II)五水和物水溶液を11.5μL(硝酸セリウム六水和物1モルに対して0.05モル)としたこと以外は、実施例19と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む黄白色分散液を得た。
(実施例21)ホウ酸を安定化剤とする、Cu(II)化合物を0.01モルドープした酸化セリウムナノ粒子を含む分散液
 実施例19において、添加する1Mの硫酸銅(II)五水和物水溶液を2.3μL(硝酸セリウム六水和物1モルに対して0.01モル)としたこと以外は、実施例19と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(実施例22)ホウ酸を安定化剤とする、Fe(II)化合物を0.1モルドープした酸化セリウムナノ粒子を含む分散液
 実施例1において、硝酸セリウムを添加した後、次いで1Mの硫酸鉄(II)七水和物水溶液を23μL(硝酸セリウム六水和物1モルに対して0.1モル)添加したこと以外は、実施例1と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む黄白色分散液を得た。
(実施例23)ホウ酸を安定化剤とする、Fe(II)化合物を0.05モルドープした酸化セリウムナノ粒子を含む分散液
 実施例22において、添加する1Mの硫酸鉄(II)七水和物水溶液を11.5μL(硝酸セリウム六水和物1モルに対して0.05モル)としたこと以外は、実施例22と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む黄白色分散液を得た。
(実施例24)ホウ酸を安定化剤とする、Fe(II)化合物を0.01モルドープした酸化セリウムナノ粒子を含む分散液
 実施例22において、添加する1Mの硫酸鉄(II)七水和物水溶液を2.3μL(硝酸セリウム六水和物1モルに対して0.01モル)としたこと以外は、実施例22と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(実施例25)ホウ酸を安定化剤とする、Fe(III)化合物を0.05モルドープした酸化セリウムナノ粒子を含む分散液
 実施例20において、添加する1M硫酸銅(II)五水和物水溶液を1M塩化鉄(III)水溶液としたこと以外は実施例20と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(実施例26)ホウ酸を安定化剤とする、Co化合物を0.05モルドープした酸化セリウムナノ粒子を含む分散液
 実施例20において、添加する1M硫酸銅(II)五水和物水溶液を1M塩化コバルト(II)水溶液としたこと以外は実施例20と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(実施例27)ホウ酸を安定化剤とする、Zn化合物を0.05モルドープした酸化セリウムナノ粒子を含む分散液
 実施例20において、添加する1M硫酸銅(II)五水和物水溶液を1M硝酸亜鉛(II)水溶液としたこと以外は実施例20と同様の条件で反応を行い、酸化セリウムのナノ粒子を含む橙色分散液を得た。
(実施例28)金属をドープした酸化セリウムのナノ粒子の流体力学直径の測定
 実施例19~27で調製した酸化セリウムのナノ粒子の流体力学直径を動的光散乱(DLS)によって測定した。測定時の溶媒は水とし、個数換算により流体力学直径の平均粒子径を得た。得られた値を表6に示す。
 平均粒子径は3.1~45.2nmであり、いずれもナノ粒子であることが確認された。
Figure JPOXMLDOC01-appb-T000006
(実施例29)ICP発光分析およびICP-MSを用いたCe、Cu、Fe、Co、Znの定量
 実施例19~27の試料をテフロン(登録商標)製容器に量り取り、硫酸、硝酸および塩酸で加熱分解した後、硫酸白煙が生じるまで濃縮し、希王水に溶かし定容した。得られた定容液中のCeをICP発光分析法で、Cu、Fe、Co、ZnをICP質量分析法により定量した。ICP発光分析装置はPS3520VDDII(日立ハイテクサイエンス製)を、ICP質量分析装置はAgilent8800(Agilent Technologies製)を用いた。得られた値を表6に示す。
 実際の遷移金属の添加量はCe1モルに対して0.00027~0.036であり、いずれもナノ粒子であることが確認された。
(実施例30)大腸菌に対する抗菌試験
 LB培地で前培養した大腸菌を菌液調製液(0.1%トリプトン、0.85%NaCl)に懸濁し、10CFU/mlの菌液を調製した。この菌液0.1mlと1mg/mlの実施例1、12、20、23、25~27で調製した酸化セリウムのナノ粒子の分散液0.9mlとを混合し、室温で一時間静置した。その後、この混合液を原液として希釈系列を作製し、LB寒天培地に播種してコロニー数を測定した。酸化セリウムのナノ粒子を作用させる前のコロニー数に対するコロニー数の対数減少値を抗菌活性値として表7に示した。
 本結果から、実施例1および12の酸化セリウムのナノ粒子の抗菌活性値は2.2~2.3であり、抗菌性能が確認された。また、実施例20、23、25~27の酸化セリウムのナノ粒子の抗菌活性値は3.0~5.6であり、金属種をドープすることで抗菌性能が向上した。
 一方、比較例1で調製した酸化セリウムのナノ粒子では、対数減少値が0.64であり、抗菌活性が低い結果となった。
Figure JPOXMLDOC01-appb-T000007

Claims (12)

  1.  下記一般式(I)で示されるホウ素化合物およびセリウム(III)イオンを含む溶液に、酸化剤を添加することにより製造される、酸化セリウムのナノ粒子。
     BR(OR’)3-n (I)
    (式(I)中、nは0~2の整数であり、Rは炭素数1~4のアルキル基、フェニル基またはトリル基のいずれかを示し、R’は水素、炭素数1~4のアルキル基、フェニル基またはトリル基のいずれかを示す。RまたはR’が複数存在する場合、それぞれ同一であっても異なっていてもよい。)
  2.  前記酸化剤を添加する際の前記溶液のpHが5以上である、請求項1に記載の酸化セリウムのナノ粒子。
  3.  前記一般式(I)で示されるホウ素化合物が、ホウ酸、ホウ酸エステル、ボロン酸、ボロン酸エステル、ボリン酸、ボリン酸エステルまたはホウ酸塩である、請求項1または2に記載の酸化セリウムのナノ粒子。
  4.  ホウ素をセリウム元素1モルに対して0.001モル以上含む、請求項1~3のいずれか一つに記載の酸化セリウムのナノ粒子。
  5.  前記一般式(I)で示されるホウ素化合物を含む酸化セリウムのナノ粒子であって、XANESスペクトルで5726~5729eVおよび5735~5739eVの間に極大吸収を有する、請求項1~4のいずれか一つに記載の酸化セリウムのナノ粒子。
  6.  遷移金属をセリウム元素1モルに対して0.0001モル以上含む請求項1~5のいずれか一つに記載の酸化セリウムのナノ粒子。
  7.  下記一般式(I)で示されるホウ素化合物を含む酸化セリウムのナノ粒子であって、XANESスペクトルで5726~5729eVおよび5735~5739eVの間に極大吸収を有する酸化セリウムのナノ粒子。
     BR(OR’)3-n (I)
    (式(I)中、nは0~2の整数であり、Rは炭素数1~4のアルキル基、フェニル基またはトリル基のいずれかを示し、R’は水素、炭素数1~4のアルキル基、フェニル基またはトリル基のいずれかを示す。RまたはR’が複数存在する場合、それぞれ同一であっても異なっていてもよい。)
  8.  前記一般式(I)で示されるホウ素化合物が、ホウ酸、ホウ酸エステル、ボロン酸、ボロン酸エステル、ボリン酸、ボリン酸エステルまたはホウ酸塩である、請求項7に記載の酸化セリウムのナノ粒子。 
  9.  請求項1~8のいずれか一つに記載の酸化セリウムのナノ粒子を含む分散液。
  10.  請求項1~8のいずれか一つに記載の酸化セリウムのナノ粒子または請求項9に記載の分散液を含む酸化剤。
  11.  請求項1~8のいずれか一つに記載の酸化セリウムのナノ粒子または請求項9に記載の分散液を含む抗ウイルス剤。
  12.  請求項1~8のいずれか一つに記載の酸化セリウムのナノ粒子または請求項9に記載の分散液を含む抗菌剤。
PCT/JP2021/019589 2020-05-25 2021-05-24 酸化セリウムのナノ粒子、酸化セリウムのナノ粒子を含む分散液、酸化剤、抗ウイルス剤および抗菌剤 WO2021241490A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21812936.9A EP4159680A1 (en) 2020-05-25 2021-05-24 Nanoparticles of cerium oxide, dispersion including nanoparticles of cerium oxide, oxidizing agent, antiviral agent, and antibacterial agent
US17/927,550 US20230240303A1 (en) 2020-05-25 2021-05-24 Cerium oxide nanoparticle, dispersion solution containing cerium oxide nanoparticle, oxidant, antivirus agent, and antibacterial agent
JP2021530142A JPWO2021241490A1 (ja) 2020-05-25 2021-05-24
CN202180037246.4A CN115667149B (zh) 2020-05-25 2021-05-24 氧化铈的纳米粒子、包含氧化铈的纳米粒子的分散液、氧化剂、抗病毒剂及抗菌剂

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-090720 2020-05-25
JP2020090720 2020-05-25
JP2021025089 2021-02-19
JP2021-025089 2021-02-19

Publications (1)

Publication Number Publication Date
WO2021241490A1 true WO2021241490A1 (ja) 2021-12-02

Family

ID=78744389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019589 WO2021241490A1 (ja) 2020-05-25 2021-05-24 酸化セリウムのナノ粒子、酸化セリウムのナノ粒子を含む分散液、酸化剤、抗ウイルス剤および抗菌剤

Country Status (5)

Country Link
US (1) US20230240303A1 (ja)
EP (1) EP4159680A1 (ja)
JP (1) JPWO2021241490A1 (ja)
CN (1) CN115667149B (ja)
WO (1) WO2021241490A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139925A (ja) * 1999-02-26 2001-05-22 Kinya Adachi 紫外線遮断剤とその製造方法
JP2002177764A (ja) * 2000-12-08 2002-06-25 Kinya Adachi 無機粒子の窒化ホウ素による被覆または担持方法、およびそれにより得られる材料
JP2003183631A (ja) 2001-10-15 2003-07-03 Dupont Air Products Nanomaterials Inc ゲルを含まないコロイド状研磨組成物及び関連の方法
JP2005270835A (ja) * 2004-03-25 2005-10-06 Hitachi Chem Co Ltd 微粒子構造体、その前駆体組成物、その製造方法、およびその用途
WO2006049197A1 (ja) * 2004-11-08 2006-05-11 Asahi Glass Company, Limited CeO2微粒子の製造方法及び該微粒子を含む研磨用スラリー
JP2010502559A (ja) * 2006-09-05 2010-01-28 セリオン テクノロジー, インコーポレーテッド 二酸化セリウムナノ粒子を製造する方法
JP2017048064A (ja) * 2015-08-31 2017-03-09 日立化成株式会社 エアロゲル複合体
JP2017202967A (ja) * 2016-05-13 2017-11-16 日立化成株式会社 セリア粒子の製造方法
JP2018123046A (ja) * 2016-11-14 2018-08-09 日揮触媒化成株式会社 セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
JP2019147710A (ja) * 2018-02-27 2019-09-05 日立化成株式会社 酸化セリウム(iv)の製造方法、酸化セリウム(iv)、吸着剤、二酸化炭素の除去方法及び二酸化炭素除去装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840677A (en) * 1993-07-09 1998-11-24 Novo Nordisk A/S Boronic acid or borinic acid derivatives as enzyme stabilizers
US7513920B2 (en) * 2002-02-11 2009-04-07 Dupont Air Products Nanomaterials Llc Free radical-forming activator attached to solid and used to enhance CMP formulations
CN102101691B (zh) * 2009-12-18 2012-07-18 中国石油天然气股份有限公司 一种氧化铈纳米粒子制备方法
WO2011112244A2 (en) * 2010-03-08 2011-09-15 Cerion Technology, Inc. Structured catalytic nanoparticles and method of preparation
JP7020865B2 (ja) * 2017-10-30 2022-02-16 日揮触媒化成株式会社 セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139925A (ja) * 1999-02-26 2001-05-22 Kinya Adachi 紫外線遮断剤とその製造方法
JP2002177764A (ja) * 2000-12-08 2002-06-25 Kinya Adachi 無機粒子の窒化ホウ素による被覆または担持方法、およびそれにより得られる材料
JP2003183631A (ja) 2001-10-15 2003-07-03 Dupont Air Products Nanomaterials Inc ゲルを含まないコロイド状研磨組成物及び関連の方法
JP2005270835A (ja) * 2004-03-25 2005-10-06 Hitachi Chem Co Ltd 微粒子構造体、その前駆体組成物、その製造方法、およびその用途
WO2006049197A1 (ja) * 2004-11-08 2006-05-11 Asahi Glass Company, Limited CeO2微粒子の製造方法及び該微粒子を含む研磨用スラリー
JP2010502559A (ja) * 2006-09-05 2010-01-28 セリオン テクノロジー, インコーポレーテッド 二酸化セリウムナノ粒子を製造する方法
JP2017048064A (ja) * 2015-08-31 2017-03-09 日立化成株式会社 エアロゲル複合体
JP2017202967A (ja) * 2016-05-13 2017-11-16 日立化成株式会社 セリア粒子の製造方法
JP2018123046A (ja) * 2016-11-14 2018-08-09 日揮触媒化成株式会社 セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
JP2019147710A (ja) * 2018-02-27 2019-09-05 日立化成株式会社 酸化セリウム(iv)の製造方法、酸化セリウム(iv)、吸着剤、二酸化炭素の除去方法及び二酸化炭素除去装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. ASATI, ANGEW. CHEM., vol. 48, 2009, pages 2308 - 2312

Also Published As

Publication number Publication date
JPWO2021241490A1 (ja) 2021-12-02
EP4159680A1 (en) 2023-04-05
US20230240303A1 (en) 2023-08-03
CN115667149B (zh) 2024-03-08
CN115667149A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
TWI569818B (zh) 表面長期消毒之抗微生物塗層
La Russa et al. Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of cultural heritage building materials
EP2945653B1 (en) Regeneration of antimicrobial coatings containing metal derivatives upon exposure to aqueous hydrogen peroxide
EP2371221B1 (en) Antibacterial polymer emulsion and coating composition
EP3335557B1 (en) Cleaning liquid
CA3181177A1 (en) Dispensable nanoparticle based composition for disinfection
CN107641416A (zh) 一种抗菌粉末涂料
WO2021241490A1 (ja) 酸化セリウムのナノ粒子、酸化セリウムのナノ粒子を含む分散液、酸化剤、抗ウイルス剤および抗菌剤
JP2007320977A (ja) キトサンパウダーおよび水性コーティング剤
JP2004262941A (ja) 防臭・抗菌・防カビ被覆用組成物
CN111683692A (zh) 内墙面消毒的光催化方法和具有光催化性能的可清洗杀菌涂料的组合物
WO2020129963A1 (ja) 酸化セリウムのナノ粒子、核酸の分解方法、ポリペプチドの分解方法、酸化セリウムのナノ粒子の製造方法、酸化剤、抗酸化剤、抗カビ剤および抗ウイルス剤
WO2023054456A1 (ja) 酸化セリウムのナノ粒子、分散液、抗ウイルス剤、抗菌剤、樹脂組成物、樹脂製品、繊維材料、繊維製品および酸化セリウムのナノ粒子を製造する方法
WO2018023112A1 (en) Contaminant-activated photocatalysis
EP2852630A1 (en) Antibacterial layer active against pathogenic bacteria, particularly against the mrsa bacterial strain, and the method of its production
JP2017081956A (ja) 少なくとも1種の銅塩及び少なくとも1種の亜鉛塩を含む活性パウダー体殺菌剤及びその製造方法
JP6368926B2 (ja) 光触媒コーティング組成物
JPH10251565A (ja) 室内汚染対策用水性ポリッシュ、水性クリヤ−被覆材、及びこれらを用いた室内汚染低減化方法
Lifen et al. Non-UV germicidal activity of fresh TiO2 and Ag/TiO2
KR20240067898A (ko) 산화세륨의 나노 입자, 분산액, 항바이러스제, 항균제, 수지 조성물, 수지 제품, 섬유 재료, 섬유 제품 및 산화세륨의 나노 입자를 제조하는 방법
WO2021246507A1 (ja) 酸化セリウムナノ粒子、分散液、抗酸化剤、酸化剤および酸化セリウムナノ粒子の製造方法
US9808548B2 (en) Regeneration of antimicrobial coatings containing metal derivatives upon exposure to vapor-phase hydrogen peroxide
Gong et al. For the inactivation of mold spores by UVC irradiation, with ozone acting as a promoter, TiO 2 nanoparticles may act better as a “sun block” than as a photocatalytic disinfectant
CN118019715A (zh) 氧化铈的纳米粒子、分散液、抗病毒剂、抗菌剂、树脂组合物、树脂制品、纤维材料、纤维制品和制造氧化铈的纳米粒子的方法
WO2021132628A1 (ja) 酸化セリウムのナノ粒子、分散体、酸化剤、抗酸化剤および酸化セリウムのナノ粒子の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021530142

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021812936

Country of ref document: EP

Effective date: 20230102