WO2021238925A1 - 电动汽车的动力电池加热方法、装置以及汽车 - Google Patents

电动汽车的动力电池加热方法、装置以及汽车 Download PDF

Info

Publication number
WO2021238925A1
WO2021238925A1 PCT/CN2021/095831 CN2021095831W WO2021238925A1 WO 2021238925 A1 WO2021238925 A1 WO 2021238925A1 CN 2021095831 W CN2021095831 W CN 2021095831W WO 2021238925 A1 WO2021238925 A1 WO 2021238925A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
current
heating
motor
power battery
Prior art date
Application number
PCT/CN2021/095831
Other languages
English (en)
French (fr)
Inventor
何龙
邓林旺
冯天宇
刘思佳
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to JP2022573421A priority Critical patent/JP7361953B2/ja
Priority to KR1020227045665A priority patent/KR20230016005A/ko
Priority to EP21814346.9A priority patent/EP4155120A4/en
Publication of WO2021238925A1 publication Critical patent/WO2021238925A1/zh
Priority to US17/994,694 priority patent/US20230093620A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/08Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/58Structural details of electrical machines with more than three phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to the field of electric vehicles, and in particular to a method and device for heating a power battery of an electric vehicle, and an automobile.
  • the embodiments of the present disclosure provide a method and device for heating a power battery of an electric vehicle, and an automobile, so as to solve the problem of low energy conversion efficiency when the power battery is heated.
  • a heating method for a power battery of an electric vehicle includes:
  • the drive module is connected to the power battery, and the drive module includes a motor controller and a drive motor ;
  • the motor controller controls the drive motor to drive the electric vehicle to run according to the power demand information
  • the motor controller is made to regulate the control current of the drive motor according to the compensation heating current, so that the The high-frequency oscillating current output by the driving motor is equal to the compensation heating current
  • the power battery is made to self-heat according to the high-frequency oscillating current output by the driving motor.
  • a power battery heating device for an electric vehicle includes: a drive module, a three-phase inverter, and a controller; the drive module includes a motor controller and a drive motor; the motor controller is connected to the three-phase inverter, The controller and the drive motor; the three-phase inverter is connected to the power battery and the drive motor; the controller is connected to the power battery; the controller is used for:
  • the motor controller controls the drive motor to drive the electric vehicle to run according to the power demand information
  • the motor controller is made to regulate the control current of the drive motor according to the compensation heating current, so that the The high-frequency oscillating current output by the driving motor is equal to the compensation heating current
  • the power battery is made to self-heat according to the high-frequency oscillating current output by the driving motor.
  • An automobile includes the power battery heating device of the electric automobile.
  • the above-mentioned power battery heating method and device for electric vehicles, and the vehicle obtain the heating demand power of the power battery; obtain the power demand information of the drive module of the electric vehicle in real time, and determine the current heating power of the power battery according to the power demand information; drive module connection Power battery, the drive module includes a motor controller and a drive motor; when the current heating power is less than the heating demand power, the compensation heating current is obtained according to the heating demand power and the current heating power; the motor controller controls the drive motor to drive the electric vehicle according to the power demand information During operation, the motor controller is made to regulate the control current of the drive motor according to the compensation heating current, so that the high-frequency oscillation current output by the drive motor is equal to the compensation heating current; the power battery is made to self-heat according to the high-frequency oscillation current output by the drive motor.
  • the control current of the driving motor is adjusted by the motor controller to increase the reactive power of the driving motor, so that the output of the driving motor is high.
  • Frequency oscillating current which in turn makes the power battery self-heat according to the high-frequency oscillating current, increasing the heating power of the internal resistance of the power battery, so as to achieve the rapid heating of the power battery while the electric vehicle is driving with the driving force corresponding to the power demand information. The effect is to improve the energy conversion efficiency, and through the internal resistance heating of the power battery, there will be no large amount of heat dissipation.
  • the power battery before the user uses the electric vehicle, the power battery can be heated or insulated by the output high-frequency oscillating current, so that the user can directly use the electric vehicle without preheating the power battery in advance. , Save user time, improve the efficiency of electric vehicles, and also extend the life of the power battery.
  • FIG. 1 is a flowchart of a method for heating a power battery of an electric vehicle in an embodiment of the present disclosure
  • FIG. 3 is a flowchart of S14 of the method for heating a power battery of an electric vehicle in an embodiment of the present disclosure
  • Fig. 5 is a functional block diagram of a power battery heating device of an electric vehicle in an embodiment of the present disclosure
  • Fig. 6 is another principle block diagram of the power battery heating device of an electric vehicle in an embodiment of the present disclosure.
  • 1-drive module 10-controller; 11-power battery; 12 three-phase inverter; 13 motor controller; 14 drive motor.
  • a method for heating a power battery of an electric vehicle which includes the following steps:
  • the power battery 11 is a power battery 11 installed on an electric vehicle, and the power battery 11 may be a lithium ion battery.
  • the heating demand power can be set by the user according to the heating demand of the power battery 11.
  • the user when the user needs to discharge or charge the power battery 11 when using an electric vehicle, he can set a heating demand power; or when the user uses the electric vehicle in a low temperature environment, because the power battery 11 is at a low temperature The performance under the environment will be reduced by 30%-50% or even more than the performance at room temperature. Therefore, the user can set a heating demand power according to actual needs to heat the power battery 11 so that the temperature of the power battery 11 reaches It can be guaranteed that its performance is within the preset normal temperature range in a stable state.
  • S12 Acquire power demand information of the drive module 1 of the electric vehicle in real time, and determine the current heating power of the power battery 11 according to the power demand information; the drive module 1 is connected to the power battery 11, and the drive module 1 includes a motor controller 13 and a drive motor 14.
  • an electric vehicle refers to a vehicle that uses an on-board power supply as power and uses the drive motor 14 in the drive module 1 to drive the wheels.
  • the driving module 1 is used to drive the electric vehicle to travel.
  • the driving module 1 is connected to a power battery 11, and the driving module 1 includes a motor controller 13 and a driving motor 14.
  • the power demand information can be the user's demand for the driving force of the electric vehicle, and the power demand information can be set by the user.
  • the power demand information includes torque demand information and speed demand information.
  • the current heating power is the momentum corresponding to the energy stored or released by the power battery 11 when the electric vehicle is driven under the power demand information.
  • the current heating power essentially belongs to a part of the active power of the driving motor 14 (the active power includes at least The power used to drive the electric vehicle to move and the power used to store or release energy from the power battery, both of which correspond to the power demand information).
  • the motor controller 13 is an integrated circuit that controls the drive motor 14 to work in accordance with the set direction, speed, angle, and response time.
  • the driving motor 14 is an electromagnetic device that realizes the conversion or transmission of electric energy according to the law of electromagnetic induction.
  • the motor controller 13 in the drive module 1 will control the operation of the motor according to the power demand information to drive the electric vehicle in a state that satisfies the power demand information.
  • the power battery 11 When the electric vehicle is driven by the driving motor, the power battery 11 will also generate the current heating power corresponding to the power demand information.
  • the compensation heating current is the compensation heating current corresponding to the difference power between the heating demand power and the current heating power.
  • the drive motor can additionally compensate for the compensation heating current, and the power battery can meet the heating demand and be self-heated to a suitable preset normal temperature range to reach the heating demand power .
  • the current heating power of the power battery 11 is determined according to the power demand information.
  • the current heating power is compared with the heating demand power.
  • the heating power is obtained according to the heating demand power and the current heating power.
  • the difference power between the required power and the current heating power is determined based on the current internal resistance value and the difference power of the power battery 11 to compensate for the heating current.
  • the high-frequency oscillating current is the current output by the oscillating circuit in the driving motor 14, and the essence of the high-frequency oscillating current is the current corresponding to the increased reactive power in the driving motor 14.
  • the motor controller 13 controls the driving motor 14 to drive the electric vehicle according to the power demand information, and after obtaining the compensation heating current according to the heating demand power and the current heating power, the compensation heating current is input to the motor controller 13,
  • the motor controller 13 is made to regulate the control current of the driving motor 14 according to the compensation heating current, so that the driving motor 14 outputs the same high-frequency oscillating current as the compensation heating current.
  • S15 Make the power battery 11 self-heat according to the high-frequency oscillating current output by the driving motor 14.
  • the motor controller 13 regulates the control current of the drive motor 14 according to the compensation heating current, and makes the high-frequency oscillation current output by the drive motor 14 equal to the compensation heating current
  • the drive motor 14 and the power battery 11 are connected in series
  • the power battery 11 also has a high-frequency oscillating current.
  • the power battery 11 uses the heat generated by the internal resistance of the battery to realize self-heating according to the high-frequency oscillating current.
  • the control current of the driving motor is adjusted by the motor controller to increase the reactive power of the driving motor, so that the driving motor Output high-frequency oscillating current, while the power battery is self-heating according to the high-frequency oscillating current, increasing the heating power of the internal resistance of the power battery, so as to realize the effect of quickly heating the power battery while the electric vehicle is running with the driving force corresponding to the power demand information
  • the high-frequency oscillating current is the current energy that is repeatedly used, which improves the utilization rate of the heating energy of the cell of the power battery, and also improves the life of the power battery.
  • the power battery before the user uses the electric vehicle, the power battery can be heated or insulated by the output high-frequency oscillating current, so that the user does not need to preheat the power battery in advance, and can directly use the electric vehicle, saving users time , Improve the efficiency of electric vehicles. Since this method is to increase the reactive power of the driving motor under the premise of satisfying the power demand information, the power demand information and the heating demand power can be continuously and dynamically issued during the user's use of the electric vehicle.
  • the power demand information includes torque demand information and speed demand information.
  • step S12 that is, determining the current heating power of the power battery 11 according to the power demand information includes:
  • S121 Obtain driving information of the driving motor 14 according to the torque demand information and the rotational speed demand information.
  • the torque demand information refers to the user's demand for the rotational force of the drive motor 14 of the electric vehicle.
  • the rotation speed demand information includes the user's demand for the rotation speed of the drive motor 14 of the electric vehicle, and the like.
  • the essence of the driving information is the driving force of the driving motor 14, that is, the active power of the driving motor 14.
  • the drive information of the drive motor 14 is determined according to the torque demand information and the rotational speed demand information in the power demand information.
  • S122 Determine the driving current when the motor controller 13 controls the driving motor 14 to drive the electric vehicle according to the driving information, and determine the current heating power for heating the power battery 11 according to the driving current.
  • the current heating power for heating the power battery 11 is determined according to the driving current and the internal resistance value of the power battery 11.
  • the internal resistance value of the power battery can be determined by obtaining the current SOC (State Of Charge, battery state of charge) value of the power battery.
  • the open circuit voltage of the power battery 11 is related to the SOC of the power battery 11. Therefore, as long as the current SOC of the power battery 11 is determined, the open circuit voltage can be determined accordingly, and while the open circuit voltage is determined, the internal resistance of the power battery is also determined. Available.
  • the open circuit voltage of the power battery 11 is stored in a BMS (Battery Management System, battery management system) or other databases in association with the SOC.
  • step S14 the motor controller 13 is made to adjust the control current of the driving motor 14 according to the compensation heating current, so that the high-frequency oscillating current output by the driving motor 14 is equal to the compensation heating current.
  • the reactive power refers to the electric power required to establish an alternating magnetic field and induced magnetic flux in the drive motor 14. Understandably, each drive motor 14 has a certain amount of reactive power at the initial stage.
  • the reactive power corresponding to each drive motor 14 at the initial stage may be the same or different.
  • the power is not converted into mechanical energy or thermal energy. Therefore, the reactive power does not affect the driving process of the electric vehicle, that is, the change of the reactive power does not affect the above-mentioned power demand information.
  • S142 Obtain the maximum limit power of the motor controller 13, and make the motor controller 13 increase the control current of the driving motor 14 according to the compensation heating current, reactive power and the maximum limit power, so that the high-frequency oscillating current output by the driving motor 14 It is equal to the compensation heating current.
  • the maximum limit power is the maximum limit value of the power that can be controlled by the motor controller 13.
  • the maximum limit power of the motor controller 13 After obtaining the reactive power of the drive motor 14 in real time, obtain the maximum limit power of the motor controller 13, and make the motor controller 13 increase the control current of the drive motor 14 according to the compensation heating current, reactive power and the maximum limit power, In order to increase the reactive power of the drive motor 14, the high-frequency oscillating current output by the drive motor 14 is equal to the compensation heating current, so that the heating power of the power battery 11 reaches the heating demand power, and increasing the control current of the drive motor will not exceed The current value corresponding to the maximum limit power of the motor controller.
  • step S142 the motor controller 13 is caused to increase the control current of the driving motor 14 according to the compensation heating current, reactive power, and maximum limit power, so that the driving motor 14 outputs
  • the high-frequency oscillating current is equal to the compensation heating current, including:
  • the difference power is obtained according to the difference between the heating demand power and the current heating power.
  • the difference power is obtained according to the compensation heating current and the internal resistance of the power battery 11.
  • S1422 Record the sum between the differential power and the reactive power as the superimposed power, and obtain the superimposed current according to the superimposed power and the internal resistance of the power battery 11 to increase the control current of the drive motor 14 to the superimposed current.
  • the superimposed power is obtained after the superposition of the difference power and the reactive power, and the superimposed power is the new reactive power of the driving motor.
  • the superimposed power includes the first reactive power corresponding to the rotation of the driving motor and the generated power.
  • the second reactive power corresponding to the high-frequency oscillating current.
  • the superimposed current is the current corresponding to the superimposed power and the internal resistance of the power battery 11, and the superimposed current is the threshold value of the control current that needs to be increased.
  • the superimposed current is obtained, so that the motor controller 13 increases the control current of the driving motor 14 to the superimposed current, so that the current heating power of the power battery 11 after the increase of the control current of the driving motor 14 reaches the heating demand power (at the same time,
  • the electric vehicle runs under the power demand information, and maintains the drive motor to rotate according to the first reactive power in the superimposed power, and makes the drive motor output a high-frequency oscillating current corresponding to the second reactive power according to the second reactive power in the superimposed power , To supply the power battery for self-heating according to the high-frequency oscillating current).
  • increasing the control current of the drive motor 14 to the differential current includes:
  • the control current of the drive motor 14 is increased to a difference current.
  • the excitation current is the current flowing in the rotor of the synchronous motor when the working magnetic field is provided.
  • the space vector modulation method is the process of generating a space vector that meets the needs of any position and a certain amplitude range based on the combination of a finite number of space vectors at a determined position.
  • the space vector modulation method includes: voltage space vector modulation, flux linkage space vector modulation, and current Space vector modulation.
  • the control current of the drive motor 14 can be increased to the differential current by increasing the excitation current of the drive motor 14. .
  • the space vector modulation method can also be used, that is, the effective vector is used to replace the zero vector to control the drive motor 14
  • the current is increased to the difference current to increase the reactive power of the driving motor 14.
  • the control current of the drive motor 14 is increased to the difference current, that is, under the premise of ensuring that the active power corresponding to the power demand information is met,
  • the reactive power of the driving motor 14 is increased, so that the driving motor 14 outputs the maximum apparent power and high-frequency oscillating current, and the power battery 11 is self-heated according to the high-frequency oscillating current, so as to achieve continuous dynamic internal heating of the power battery 11 Power regulation.
  • the method further includes:
  • the motor controller 13 controls the driving motor 14 to drive the electric vehicle according to the power demand information
  • the motor controller 13 is made to adjust the control current of the driving motor 14 according to the compensation heating current, and then obtain the adjusted high-frequency oscillating current output by the driving motor 14 If the high-frequency oscillating current is less than the compensation heating current, voice prompts, text messages to the user’s mobile terminal, or other effective prompting methods are used to prompt the control failure.
  • the real-time temperature of the power battery 11 is detected, and when the real-time temperature is less than the lower limit of the preset normal temperature range, the temperature of the power battery 11 is abnormal.
  • the real-time temperature is the temperature of the power battery 11 measured in real time at any one of the current time.
  • the preset normal temperature range can be a normal temperature range, that is, 20°C-25°C, and the preset normal temperature range can be slightly adjusted according to user needs.
  • the real-time temperature of the power battery 11 is synchronously detected, and when the real-time temperature is lower than the lower limit of the preset normal temperature range, voice prompts and text messages are sent to the user's mobile terminal Or other effective prompting methods, prompting that the temperature of the power battery 11 is abnormal.
  • the abnormal temperature may be caused when the power battery 11 is self-heating according to the high-frequency oscillating current output by the drive motor 14, due to the small high-frequency oscillating current, the temperature of the power battery 11 does not reach the lower limit of the preset normal temperature range , The user can resend the heating demand power according to the currently detected real-time temperature of the power battery 11 according to the method described in the foregoing embodiment of the present application.
  • a power battery heating device for an electric vehicle including a driving module 1, a three-phase inverter 12, and a controller 10;
  • the driving module 1 includes a motor controller 13 and a driving motor 14;
  • the motor controller 13 is connected to the three-phase inverter 12, the controller 10 and the drive motor 14;
  • the three-phase inverter 12 is connected to the power battery 11 and the drive motor 14;
  • the controller 10 is connected to the power battery 11 and the motor controller 13;
  • the power battery and the three-phase inverter are connected through a power line; the three-phase inverter and the drive motor are connected through a power line; the motor controller and the three-phase inverter are connected through a signal line; the controller It is connected with the motor controller through a signal line; the power battery is connected with the controller through a signal line.
  • the driving module 1 is used to drive the electric vehicle to travel, and the driving module 1 includes a motor controller 13 and a driving motor 14.
  • the motor controller 13 is an integrated circuit that controls the drive motor 14 to work in accordance with the set direction, speed, angle, and response time through active work.
  • the driving motor 14 is an electromagnetic device that realizes the conversion or transmission of electric energy according to the law of electromagnetic induction.
  • the three-phase inverter 12 is a device that converts direct current into alternating current.
  • the three-phase inverter 12 uses an IGBT (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor) as H-bridge inverter composed of switching elements.
  • the controller 10 is used to receive user requirements and control various modules to participate in operation.
  • the motor controller 13 is an integrated circuit that controls the drive motor 14 to work in accordance with the set direction, speed, angle, and response time through active work.
  • the driving motor 14 is an electromagnetic device that realizes the conversion or transmission of electric energy according to the law of electromagnetic induction.
  • the controller 10 is used for:
  • the heating demand power of the power battery 11 is obtained.
  • the power battery 11 is a power battery 11 installed on an electric vehicle, and the power battery 11 is a lithium ion battery.
  • the heating demand power is set by the user according to the heating demand of the power battery 11.
  • the user when the user needs to discharge or charge the power battery 11 when using an electric vehicle, he can set a heating demand power; or when the user uses the electric vehicle in a low temperature environment, because the power battery 11 is at a low temperature The performance under the environment will be reduced by 30%-50% or even more than the performance under normal temperature. Therefore, the user can set a heating demand power to heat the power battery 11 so that the performance of the power battery 11 reaches a stable state.
  • the power demand information of the drive module 1 of the electric vehicle is acquired in real time, and the current heating power of the power battery 11 is determined according to the power demand information.
  • an electric vehicle refers to a vehicle that uses an on-board power supply as power and uses the drive motor 14 in the drive module 1 to drive the wheels.
  • the power demand information is the user's demand for the driving force of the electric vehicle, the power demand information is set by the user, and the power demand information includes torque demand information and speed demand information.
  • the current heating power is the momentum corresponding to the energy stored or released by the power battery 11 under the power demand information, and the current heating power is essentially the active power of the driving motor 14.
  • the power demand information of the drive module 1 of the electric vehicle acquired in real time is sent to the motor controller 13 through the controller 10, and the motor controller 13 in the drive module 1 will, according to the power demand information,
  • the operation of the motor is controlled to drive the electric vehicle to drive in a state that satisfies the power demand information, and the current heating power of the power battery 11 corresponding to the power demand information during the operation of the motor is controlled.
  • the compensation heating current is obtained according to the heating demand power and the current heating power.
  • the compensation heating current is the compensation heating current corresponding to the difference power between the heating demand power and the current heating power.
  • the current heating power of the power battery 11 is determined according to the power demand information.
  • the current heating power is compared with the heating demand power.
  • the heating power is obtained according to the heating demand power and the current heating power.
  • the difference power between the required power and the current heating power is determined based on the current internal resistance value and the difference power of the power battery 11 to compensate for the heating current.
  • the motor controller 13 controls the driving motor 14 to drive the electric vehicle according to the power demand information
  • the motor controller 13 is made to regulate the control current of the driving motor 14 according to the compensation heating current, so that the high-frequency oscillation current output by the driving motor 14 is equal to the compensation heating Current.
  • the high-frequency oscillating current is the current output by the oscillating circuit in the driving motor 14, and the essence of the high-frequency oscillating current is the current corresponding to the increased reactive power in the driving motor 14.
  • the motor controller 13 controls the driving motor 14 to drive the electric vehicle according to the power demand information, and after obtaining the compensation heating current according to the heating demand power and the current heating power, the compensation heating current is input to the motor controller 13,
  • the motor controller 13 is made to regulate the control current of the driving motor 14 according to the compensation heating current, so that the driving motor 14 outputs the same high-frequency oscillating current as the compensation heating current.
  • the regulated control current of the drive motor 14 is output to the three-phase inverter 12, and the three-phase inverter 12 outputs three
  • the frequency is the same, the amplitude is the same, and the phases are sequentially different from each other by 120 degrees AC potentials, and these three AC potentials are input to the drive motor 14, so that the drive motor 14 meets the power demand information while the output high-frequency oscillating current is equal to Compensate for heating current.
  • the power battery 11 is allowed to self-heat according to the high-frequency oscillating current output by the driving motor 14.
  • the motor controller 13 regulates the control current of the drive motor 14 according to the compensation heating current, and makes the high-frequency oscillation current output by the drive motor 14 equal to the compensation heating current
  • the drive motor 14 and the power battery 11 are connected in series
  • the power battery 11 also has a high-frequency oscillating current.
  • the power battery 11 uses the heat generated by the internal resistance of the battery to realize self-heating according to the high-frequency oscillating current.
  • the power demand information includes torque demand information and rotational speed demand information
  • the controller 10 is further configured to:
  • the driving information of the driving motor 14 is obtained according to the torque demand information and the rotational speed demand information.
  • the torque demand information refers to the user's demand for the rotational force of the drive motor 14 of the electric vehicle.
  • the rotation speed demand information refers to the user's demand for the rotation speed of the drive motor 14 of the electric vehicle.
  • the essence of the driving information is the driving force of the driving motor 14, that is, the active power of the driving motor 14.
  • the drive information of the drive motor 14 is determined according to the torque demand information and the rotational speed demand information in the power demand information.
  • the driving current when the motor controller 13 controls the driving motor 14 to drive the electric vehicle is determined, and the current heating power for heating the power battery 11 is determined according to the driving current.
  • the current heating power for heating the power battery 11 is determined according to the driving current and the internal resistance value of the power battery 11.
  • controller 10 is also used to:
  • the reactive power of the driving motor 14 is obtained in real time.
  • the reactive power refers to the electric power required to establish an alternating magnetic field and induced magnetic flux in the drive motor 14. Understandably, each drive motor 14 has a certain amount of reactive power at the initial stage.
  • the reactive power corresponding to each drive motor 14 at the initial stage may be the same or different. The power is not converted into mechanical energy or thermal energy, etc.
  • the maximum limit power is the maximum limit value of the power that can be controlled by the motor controller 13.
  • the maximum limit power of the motor controller 13 is obtained, and the motor controller 13 is made to increase the control current of the driving motor 14 according to the compensation heating current, reactive power and the maximum limit power,
  • the high-frequency oscillating current output by the driving motor 14 is equal to the compensation heating current, so that the heating power of the power battery 11 reaches the heating demand power.
  • the power battery heating device of an electric vehicle includes: FEM-Parameterized PMSM (permanent-magnet synchronous motor) is a three-phase permanent magnet synchronous motor, that is, the above-mentioned implementation
  • PMSM permanent-magnet synchronous motor
  • OC is the ground wire of the motor
  • PQ is the power display, used to display the active power and reactive power of the driving motor
  • P is the active power
  • Q is the reactive power
  • Torque Source is the torque source
  • trq is A special physical signal
  • the torque demand is torque0
  • the speed demand is rpm0
  • the voltage source V Src of the power battery is 500V
  • R is the internal resistance of the power battery
  • v is the voltmeter connected to the power battery
  • i is the ammeter connected to the power battery.
  • Three-Phase Inverter is a three-phase inverter
  • the three-phase inverter is an H-bridge inverter composed of IGBTs
  • the PMSM Controller is a permanent magnet synchronous motor controller, that is, the motor controller in the above embodiment
  • Computational Delay is a delay calculation device
  • ZOH rpm is a zero-order holder
  • ZOH rpm is used to update the signal input to the permanent magnet synchronous motor controller every time a sampling time passes, and keep it until the next sampling.
  • the heating device for the power battery of an electric vehicle further includes a three-phase current and voltmeter, which is connected to the three-phase inverter 12, the motor controller 13, and the drive motor 14; the three-phase current and voltmeter is used to detect
  • the three phase inverters 12 output the same frequency, the same amplitude, and the phases are 120 degrees of alternating current potential, and the current value corresponding to the absolute value of the alternating current potential (that is, I in Figure 6) is fed back to the motor control In the device 13 to determine whether the current current satisfies and corresponds to the compensation heating current.
  • a torque measurer (that is, the measurer corresponding to m in FIG. 6) can also be connected between the drive motor 14 and the motor controller 13, and the torque measurer is used to measure the rotation output from the drive motor 14. The moment value or the torque demand information in the power demand information sent by the user is detected.
  • the power battery heating device of the electric vehicle further includes a power display connected to a three-phase current and voltmeter for displaying the active power and reactive power of the driving motor 14, so that the user can intuitively view the current status of the driving motor 14.
  • the power value corresponding to active power and reactive power.
  • an automobile including the power battery heating device of the electric automobile in the above-mentioned embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种电动汽车的动力电池加热方法、装置以及汽车。通过获取动力电池的发热需求功率(S11);实时获取电动汽车驱动模块的动力需求信息,并根据动力需求信息确定动力电池的当前加热功率(S12);在当前加热功率小于发热需求功率时,根据发热需求功率和当前加热功率获取补偿发热电流(S13);在电机控制器控制驱动电机根据动力需求信息驱动电动汽车运行时,令电机控制器根据补偿发热电流调控驱动电机的控制电流,进而使得驱动电机输出的高频振荡电流等于补偿发热电流(S14);令动力电池根据驱动电机输出的高频振荡电流进行自加热(S15)。在保证满足动力需求信息的前提下,能增大驱动电机输出的高频振荡电流满足动力电池的自加热需求,提升了加热速率和效率。

Description

电动汽车的动力电池加热方法、装置以及汽车
相关申请的交叉引用
本公开要求于2020年05月29日提交的申请号为202010476466.4,名称为“电动汽车的动力电池加热方法、装置以及汽车”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电动汽车领域,尤其涉及一种电动汽车的动力电池加热方法、装置以及汽车。
背景技术
随着科学技术的发展,电动汽车逐渐得到广泛使用,电动汽车市场占有率越来越高,动力电池作为电动汽车中的核心动力源,被应用于不同环境中,但在不同环境下,动力电池的性能容易受到环境温度的影响。例如,动力电池处于如零下20℃的低温环境时,动力电池内阻大幅上升,降低了动力电池的功率输出和可用容量,影响电动汽车的性能。
目前,普遍采用在动力电池外部放置加热管,从动力电池外部对动力电池进行加热。然而这种依靠动力电池外部加热管对动力电池进行加热的方法,从加热管传至动力电池的能量转换效率较低,加热时间长,并且容易将热量耗散到外界,造成能源的浪费。
公开内容
本公开实施例提供一种电动汽车的动力电池加热方法、装置以及汽车,以解决动力电池加热时的能量转换效率较低的问题。
一种电动汽车的动力电池加热方法,包括:
获取动力电池的发热需求功率;
实时获取电动汽车的驱动模块的动力需求信息,并根据所述动力需求信息确定所述动力电池的当前加热功率;所述驱动模块连接所述动力电池,所述驱动模块包括电机控制器和驱动电机;
在所述当前加热功率小于所述发热需求功率时,根据所述发热需求功率以及所述当前加热功率获取补偿发热电流;
在所述电机控制器控制所述驱动电机根据所述动力需求信息驱动所述电动汽车运行时,令所述电机控制器根据所述补偿发热电流调控所述驱动电机的控制电流,以令所 述驱动电机输出的高频振荡电流等于所述补偿发热电流;
令所述动力电池根据所述驱动电机输出的高频振荡电流进行自加热。
一种电动汽车的动力电池加热装置,包括:驱动模块、三相逆变器以及控制器;所述驱动模块包括电机控制器和驱动电机;所述电机控制器连接所述三相逆变器、所述控制器以及所述驱动电机;所述三相逆变器连接所述动力电池和所述驱动电机;所述控制器连接所述动力电池;所述控制器用于:
获取所述动力电池的发热需求功率;
实时获取电动汽车的驱动模块的动力需求信息,并根据所述动力需求信息确定所述动力电池的当前加热功率;
在所述当前加热功率小于所述发热需求功率时,根据所述发热需求功率以及所述当前加热功率获取补偿发热电流;
在所述电机控制器控制所述驱动电机根据所述动力需求信息驱动所述电动汽车运行时,令所述电机控制器根据所述补偿发热电流调控所述驱动电机的控制电流,以令所述驱动电机输出的高频振荡电流等于所述补偿发热电流;
令所述动力电池根据所述驱动电机输出的高频振荡电流进行自加热。
一种汽车,包括上述电动汽车的动力电池加热装置。
上述电动汽车的动力电池加热方法、装置以及汽车,通过获取动力电池的发热需求功率;实时获取电动汽车的驱动模块的动力需求信息,并根据动力需求信息确定动力电池的当前加热功率;驱动模块连接动力电池,驱动模块包括电机控制器和驱动电机;在当前加热功率小于发热需求功率时,根据发热需求功率以及当前加热功率获取补偿发热电流;在电机控制器控制驱动电机根据动力需求信息驱动电动汽车运行时,令电机控制器根据补偿发热电流调控驱动电机的控制电流,进而使得驱动电机输出的高频振荡电流等于补偿发热电流;令动力电池根据驱动电机输出的高频振荡电流进行自加热。在本公开中,若当前加热功率小于发热需求功率,在保证满足动力需求信息的前提下,通过电机控制器调控驱动电机的控制电流,以增大驱动电机的无功功率,使得驱动电机输出高频振荡电流,进而使得动力电池根据高频振荡电流进行自加热,增大了动力电池内阻发热功率,从而达到了在电动汽车以动力需求信息对应的驱动力行驶的同时,快速加热动力电池的效果,提高能量转换效率,且通过动力电池内阻加热的方式,不会出现大量散热的现象。并且通过本公开的上述方式,在用户使用电动汽车前,即可通过已输出的高频振荡电流对动力电池进行加热或者保温,使得用户不用提前对动力电池进行预热,即可以直接使用电动汽车,节省用户时间,提高电动汽车使用效率,也提升了动力电池的 寿命。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一实施例中电动汽车的动力电池加热方法的一流程图;
图2是本公开一实施例中电动汽车的动力电池加热方法的S12的一流程图;
图3是本公开一实施例中电动汽车的动力电池加热方法的S14的一流程图;
图4是本公开一实施例中电动汽车的动力电池加热方法的S142的一流程图;
图5是本公开一实施例中电动汽车的动力电池加热装置的一原理框图;
图6是本公开一实施例中电动汽车的动力电池加热装置的另一原理框图。
其中,图中各附图标记:
1-驱动模块;10-控制器;11-动力电池;12三相逆变器;13电机控制器;14驱动电机。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在一实施例中,如图1所示,提供一种电动汽车的动力电池加热方法,包括如下步骤:
S11:获取动力电池11的发热需求功率。
其中,动力电池11为安装在电动汽车上的动力电池11,该动力电池11可以为锂离子电池。发热需求功率可以为用户根据对动力电池11发热需求进行设定的。示例性地,用户在使用电动汽车时,需使动力电池11放电或者充电的速度加快时,可以设定一个发热需求功率;或者,用户在低温环境下使用电动汽车时,由于动力电池11在低温环境下的性能,比在常温下的性能会降低30%-50%甚至更多,故用户可以根据实际需求设定一个发热需求功率,以对动力电池11进行加热,使得动力电池11的温度达到可以保 证其性能处于稳定状态的预设正常温度范围内。
S12:实时获取电动汽车的驱动模块1的动力需求信息,并根据动力需求信息确定动力电池11的当前加热功率;驱动模块1连接动力电池11,驱动模块1包括电机控制器13和驱动电机14。
其中,电动汽车是指以车载电源为动力,用驱动模块1中的驱动电机14驱动车轮行驶的车辆。驱动模块1用于驱动电动汽车行驶,该驱动模块1与动力电池11连接,且驱动模块1包括电机控制器13和驱动电机14。动力需求信息可以为用户对电动汽车的驱动力的需求,动力需求信息可以由用户设定,该动力需求信息包括转矩需求信息和转速需求信息等。当前加热功率为电动汽车在动力需求信息下被驱动运动时,动力电池11存储或者释放的能量对应的动率,该当前加热功率的实质属于驱动电机14的有功功率的一部分(该有功功率至少包括用于驱动电动汽车运动的功率以及用于令动力电池存储或释放能量的功率两部分,两部分功率均与所述动力需求信息对应)。电机控制器13为控制驱动电机14按照设定的方向、速度、角度、响应时间进行工作的集成电路。驱动电机14为依据电磁感应定律实现电能的转换或传递的一种电磁装置。
具体地,根据实时获取到的电动汽车的驱动模块1的动力需求信息,驱动模块1中的电机控制器13会根据动力需求信息,控制电机的运转,以驱动电动汽车在满足动力需求信息的状态下行驶,在电动汽车在驱动电机的驱动下行驶的过程中,动力电池11也会产生与动力需求信息对应的当前加热功率。
S13:在当前加热功率小于发热需求功率时,根据发热需求功率以及当前加热功率获取补偿发热电流。
其中,补偿发热电流为发热需求功率与当前加热功率之间的差值功率对应的补偿发热电流。只要驱动电机在该动力需求信息下带动电动汽车行驶时,驱动电机可以额外补偿该补偿发热电流,动力电池就可以满足发热需求而被自加热到适合的预设正常温度范围内,达到发热需求功率。
具体地,在根据动力需求信息确定动力电池11的当前加热功率之后,将当前加热功率与发热需求功率进行比较,在当前加热功率小于发热需求功率时,根据发热需求功率以及当前加热功率,得到发热需求功率与当前加热功率之间的差值功率,根据动力电池11的当前内阻值与差值功率确定补偿发热电流。
S14:在电机控制器13控制驱动电机14根据动力需求信息驱动电动汽车运行时,令电机控制器13根据补偿发热电流调控驱动电机14的控制电流,以令驱动电机14输出的高频振荡电流等于补偿发热电流。
其中,高频振荡电流为驱动电机14中的振荡电路输出的电流,该高频振荡电流的实质为驱动电机14中增加的无功功率对应的电流。
具体地,在电机控制器13控制驱动电机14根据动力需求信息驱动电动汽车运行时,且在根据发热需求功率以及当前加热功率获取补偿发热电流之后,将该补偿发热电流输入至电机控制器13,令电机控制器13根据补偿发热电流调控驱动电机14的控制电流,以令驱动电机14输出与补偿发热电流相同的高频振荡电流。
S15:令动力电池11根据驱动电机14输出的高频振荡电流进行自加热。
具体地,在电机控制器13根据补偿发热电流调控驱动电机14的控制电流,并使得驱动电机14输出的高频振荡电流等于补偿发热电流之后,由于驱动电机14与动力电池11为串联连接模式,在驱动电机14输出高频振荡电流时,动力电池11也存在高频振荡电流,动力电池11根据高频振荡电流,利用电池内阻产生的热量实现自加热。
在本实施例中,在当前加热功率小于发热需求功率时,在保证满足动力需求信息的前提下,通过电机控制器调控驱动电机的控制电流,以增大驱动电机的无功功率,使得驱动电机输出高频振荡电流,同时动力电池根据高频振荡电流进行自加热,增大动力电池内阻发热功率,从而实现在电动汽车以动力需求信息对应的驱动力行驶的同时,快速加热动力电池的效果,且高频振荡电流为反复利用的电流能,提高了动力电池的电芯加热能量的利用率,也提升了动力电池的寿命。并且通过上述方式,在用户使用电动汽车前,即可通过已输出的高频振荡电流对动力电池进行加热或者保温,使得用户不用提前对动力电池进行预热,可以直接使用电动汽车,节省用户时间,提高电动汽车使用效率。由于该方法是以满足动力需求信息为前提下,增大驱动电机的无功功率,因此在用户使用电动汽车过程中,可以连续动态发出动力需求信息和发热需求功率。
在一实施例中,如图2所示,动力需求信息包括转矩需求信息和转速需求信息,步骤S12中,也即根据动力需求信息确定动力电池11的当前加热功率,包括:
S121:根据转矩需求信息和转速需求信息得到与驱动电机14的驱动信息。
其中,转矩需求信息指的是用户对电动汽车的驱动电机14的转动力的需求。转速需求信息包括用户对电动汽车的驱动电机14的转动速度的需求等。驱动信息的实质为驱动电机14的驱动力,也即驱动电机14的有功功率。
在实时获取电动汽车的驱动模块1的动力需求信息之后,根据动力需求信息中的转矩需求信息和转速需求信息,确定驱动电机14的驱动信息。
S122:根据驱动信息确定电机控制器13控制驱动电机14驱动电动汽车运行时的驱动电流,根据驱动电流确定用于对动力电池11进行加热的当前加热功率。
具体地,在根据转矩需求信息和转速需求信息得到与驱动电机14的驱动信息之后,根据驱动电流和动力电池11的内阻值,确定用于对动力电池11进行加热的当前加热功率。
其中,动力电池的内阻值可以通过获取动力电池当前的SOC(State Of Charge,电池荷电状态)值来确定。具体地,动力电池11的开路电压与动力电池11的SOC相关,因此,只要确定动力电池11的当前SOC,则开路电压可以随之确定,且开路电压确定的同时,动力电池的内阻值亦可获取。在本公开中,动力电池11的开路电压与SOC关联存储在BMS(Battery Management System,电池管理系统)中或者其他数据库中,因此,在获取动力电池11的当前SOC之后,根据获取的当前SOC(在动力电池11的实际运行过程中,其在当前时刻的当前SOC可以实时测得)自BMS中或者其他数据库中,根据获取的当前SOC获取动力电池11当前内阻值。
在一实施例中,如图3所示,步骤S14中,也即令电机控制器13根据补偿发热电流调控驱动电机14的控制电流,以令驱动电机14输出的高频振荡电流等于补偿发热电流,包括:
S141:实时获取驱动电机14的无功功率。
其中,无功功率指的是驱动电机14中为建立交变磁场和感应磁通而需要的电功率。可以理解地,每一驱动电机14在起始阶段都会相应存在一定的无功功率,每一驱动电机14在起始阶段对应的无功功率可能是相同的,也可能是不同的,该无功功率不转化为机械能或者热能等,因此,该无功功率不会影响电动汽车的行驶过程,也即,无功功率的变化,对于上述动力需求信息并不产生影响。
S142:获取电机控制器13的最大极限功率,令电机控制器13根据补偿发热电流、无功功率以及最大极限功率,增大驱动电机14的控制电流,以令驱动电机14输出的高频振荡电流等于补偿发热电流。
其中,最大极限功率为电机控制器13可调控的功率的最大极限值。
在实时获取驱动电机14的无功功率之后,获取电机控制器13的最大极限功率,并令电机控制器13根据补偿发热电流、无功功率以及最大极限功率,增大驱动电机14的控制电流,以增大驱动电机14的无功功率,令驱动电机14输出的高频振荡电流等于补偿发热电流,使得动力电池11的发热功率达到发热需求功率,且增大驱动电机的控制电流不会超过与电机控制器的最大极限功率对应的电流值。
在一实施例中,如图4所示,步骤S142中,也即令电机控制器13根据补偿发热电流、无功功率以及最大极限功率,增大驱动电机14的控制电流,以令驱动电机14输出 的高频振荡电流等于补偿发热电流,包括:
S1421:根据补偿发热电流和动力电池11的内阻值获取差值功率。
其中,差值功率根据发热需求功率以及当前加热功率之间的差值得到。
在根据发热需求功率以及当前加热功率获取补偿发热电流之后,根据补偿发热电流和动力电池11的内阻值获取差值功率。
S1422:将差值功率与无功功率之间和记录为叠加功率,并根据叠加功率和动力电池11的内阻值,得到叠加电流,以将驱动电机14的控制电流增大至叠加电流。
其中,叠加功率为差值功率和无功功率叠加之后得到的,该叠加功率为驱动电机的新的无功功率,该叠加功率中包括用于维持驱动电机转动对应的第一无功功率和产生高频振荡电流对应的第二无功功率。叠加电流为与叠加功率和动力电池11的内阻值对应的电流,该叠加电流为需增大控制电流的阈值。
具体地,在根据补偿发热电流和动力电池11的内阻值获取差值功率之后,将差值功率与无功功率之间的和记录为叠加功率,并根据叠加功率和动力电池11的内阻值,得到叠加电流,以令电机控制器13将驱动电机14的控制电流增大至叠加电流,使得驱动电机14的控制电流增大后的动力电池11的当前加热功率达到发热需求功率(同时,电动汽车在动力需求信息下行驶,且根据叠加功率中第一无功功率维持驱动电机转动,并根据叠加功率中第二无功功率使驱动电机输出与第二无功功率对应的高频振荡电流,以供动力电池根据高频振荡电流进行自加热)。
在一实施例中,将驱动电机14的控制电流增大至差值电流,包括:
通过增大驱动电机14的励磁电流或通过空间矢量调制方式,将驱动电机14的控制电流增大至差值电流。
其中,励磁电流为在提供工作磁场时,同步电机转子中流过的电流。空间矢量调制方式为根据确定位置的有限个空间矢量组合作用来产生满足任意位置和一定幅值范围需要的空间矢量的过程,空间矢量调制方式包括:电压空间矢量调制、磁链空间矢量调制以及电流空间矢量调制。
具体地,在根据第二差值功率和动力电池11的内阻值得到差值电流之后,可以通过增大驱动电机14的励磁电流的方式,将驱动电机14的控制电流增大至差值电流。
进一步地,在忽略与电机控制器13连接的三相逆变器12的损耗的前提下,可根据瞬时功率理论得到驱动电机14的有功功率和无功功率的表达式如下:
p=u di d+u qi q
q=u qi d-u di q
其中,p为驱动电机14的有功功率;q为驱动电机14的无功功率;u d为驱动电机14中旋转坐标系定在d轴时的电压;i d为驱动电机14中旋转坐标系定在d轴上的电流,也即励磁电流;u q为驱动电机14中旋转坐标系定在q轴时的电压;i q为驱动电机14中旋转坐标系定在q轴上的电流。
而在常规FOC(Field-Oriented Control,磁场定向控制)控制下,驱动电机14的旋转坐标系定在q轴上,因此u d=0,故上述的瞬时功率的表达式最终为:
p=u qi q
q=u qi d
通过增大驱动电机14的励磁电流的方式,也即增大上述表达式中的i d,故在保证满足动力需求信息中的转矩信息和转速信息,也即满足有功功率的同时,增大驱动电机14的无功功率,使得动力电池11根据驱动电机14输出的高频振荡电流进行自加热,动力电池11的内阻产生热量。
进一步地,在根据第二差值功率和动力电池11的内阻值得到差值电流之后,还可以通过空间矢量调制方式,也即采用有效矢量替代零矢量的方法,以将驱动电机14的控制电流增大至差值电流,以增大驱动电机14的无功功率。
进一步地,驱动电机14的视在功率的表达式如下:
s 2=p 2+q 2
其中,s为驱动电机14的视在功率;p为驱动电机14的有功功率;q为驱动电机14的无功功率。
因此,经过上述通过增大驱动电机14的励磁电流或通过空间矢量调制方式,将驱动电机14的控制电流增大至差值电流,也即在保证满足动力需求信息对应的有功功率的前提下,增大了驱动电机14的无功功率,使得驱动电机14输出最大的视在功率和高频振荡电流,并令动力电池11根据高频振荡电流进行自加热,实现连续动态的动力电池11内部发热功率调控。
在一实施例中,在电机控制器13控制驱动电机14根据动力需求信息驱动电动汽车运行时,令电机控制器13根据补偿发热电流调控驱动电机14的控制电流之后,还包括:
获取调控后的驱动电机14输出的高频振荡电流,若高频振荡电流小于补偿发热电 流,提示调控失败。
在电机控制器13控制驱动电机14根据动力需求信息驱动电动汽车运行时,令电机控制器13根据补偿发热电流调控驱动电机14的控制电流之后,获取调控后的驱动电机14输出的高频振荡电流,若高频振荡电流小于补偿发热电流,则通过语音提示、发送短信至用户的移动终端或者其它有效提示方式,提示调控失败。
检测动力电池11的实时温度,在实时温度小于预设正常温度范围的下限值时,提示动力电池11的温度异常。
其中,实时温度任意一个当前时间下实时测得的动力电池11的温度。预设正常温度范围可以为常温温度范围,也即20℃-25℃,该预设正常温度范围可以根据用户的需求进行小幅调整。
在高频振荡电流小于补偿发热电流时,提示调控失败时,同步检测动力电池11的实时温度,在实时温度小于预设正常温度范围的下限制时,通过语音提示、发送短信至用户的移动终端或者其它有效提示方式,提示动力电池11的温度异常。该温度异常可能是在动力电池11根据驱动电机14输出的高频振荡电流进行自加热时,由于高频振荡电流较小,导致动力电池11的温度达不到预设正常温度范围的下限值,用户可以根据当前检测到的动力电池11的实时温度,按照本申请的上述实施例中所述的方法,重新发送发热需求功率。
在一实施例中,如图5所示,提供一种电动汽车的动力电池加热装置,包括驱动模块1、三相逆变器12以及控制器10;驱动模块1包括电机控制器13和驱动电机14;电机控制器13连接三相逆变器12、控制器10以及驱动电机14;三相逆变器12连接动力电池11和驱动电机14;控制器10连接动力电池11和电机控制器13;
其中,动力电池与三相逆变器之间通过动力线连接;三相逆变器与驱动电机之间通过动力线连接;电机控制器与三相逆变器之间通过信号线连接;控制器与电机控制器之间通过信号线连接;动力电池与控制器之间通过信号线连接。
其中,驱动模块1用于驱动电动汽车行驶,驱动模块1包括电机控制器13和驱动电机14。电机控制器13为通过主动工作来控制驱动电机14按照设定的方向、速度、角度、响应时间进行工作的集成电路。驱动电机14为依据电磁感应定律实现电能的转换或传递的一种电磁装置。三相逆变器12是将直流电转换为交流电的设备,优选地,在本实施例中,该三相逆变器12采用的是由IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)作为开关元件组成的H桥逆变器。控制器10用于接收用户需求以及控制各个模块参与运行。电机控制器13为通过主动工作来控制驱动 电机14按照设定的方向、速度、角度、响应时间进行工作的集成电路。驱动电机14为依据电磁感应定律实现电能的转换或传递的一种电磁装置。
控制器10用于:
获取动力电池11的发热需求功率。
其中,动力电池11为安装在电动汽车上的动力电池11,该动力电池11为锂离子电池。发热需求功率为用户根据对动力电池11发热需求进行设定的。示例性地,用户在使用电动汽车时,需使动力电池11放电或者充电的速度加快时,可以设定一个发热需求功率;或者,用户在低温环境下使用电动汽车时,由于动力电池11在低温环境下的性能,比在常温下的性能会降低30%-50%甚至更多,故用户可以设定一个发热需求功率,以对动力电池11进行加热,使得动力电池11的性能达到稳定状态。
实时获取电动汽车的驱动模块1的动力需求信息,并根据动力需求信息确定动力电池11的当前加热功率。
其中,电动汽车是指以车载电源为动力,用驱动模块1中的驱动电机14驱动车轮行驶的车辆。动力需求信息为用户对电动汽车的驱动力的需求,动力需求信息通过用户设定的,该动力需求信息包括转矩需求信息和转速需求信息。当前加热功率为动力电池11在动力需求信息下,存储或者释放的能量对应的动率,该当前加热功率的实质为驱动电机14的有功功率。
具体地,根据实时获取到的电动汽车的驱动模块1的动力需求信息,通过控制器10将动力需求信息发送至电机控制器13中,驱动模块1中的电机控制器13会根据动力需求信息,控制电机的运转,以驱动电动汽车在满足动力需求信息的状态下行驶,并根据电机运转过程中,与动力需求信息对应的动力电池11的当前加热功率。
在当前加热功率小于发热需求功率时,根据发热需求功率以及当前加热功率获取补偿发热电流。
其中,补偿发热电流为发热需求功率与当前加热功率之间的差值功率对应的补偿发热电流。
具体地,在根据动力需求信息确定动力电池11的当前加热功率之后,将当前加热功率与发热需求功率进行比较,在当前加热功率小于发热需求功率时,根据发热需求功率以及当前加热功率,得到发热需求功率与当前加热功率之间的差值功率,根据动力电池11的当前内阻值与差值功率确定补偿发热电流。
在电机控制器13控制驱动电机14根据动力需求信息驱动电动汽车运行时,令电机控制器13根据补偿发热电流调控驱动电机14的控制电流,以令驱动电机14输出的高 频振荡电流等于补偿发热电流。
其中,高频振荡电流为驱动电机14中的振荡电路输出的电流,该高频振荡电流的实质为驱动电机14中增加的无功功率对应的电流。
具体地,在电机控制器13控制驱动电机14根据动力需求信息驱动电动汽车运行时,且在根据发热需求功率以及当前加热功率获取补偿发热电流之后,将该补偿发热电流输入至电机控制器13,令电机控制器13根据补偿发热电流调控驱动电机14的控制电流,以令驱动电机14输出与补偿发热电流相同的高频振荡电流。
其中,令电机控制器13根据补偿发热电流调控驱动电机14的控制电流后,将调控后的驱动电机14的控制电流输出至三相逆变器12中,经三相逆变器12输出三个频率相同,振幅相等,相位依次互差120度的交流电势,并将这三个交流电势输入至驱动电机14中,以令驱动电机14在满足动力需求信息的同时,输出的高频振荡电流等于补偿发热电流。
令动力电池11根据驱动电机14输出的高频振荡电流进行自加热。
具体地,在电机控制器13根据补偿发热电流调控驱动电机14的控制电流,并使得驱动电机14输出的高频振荡电流等于补偿发热电流之后,由于驱动电机14与动力电池11为串联连接模式,在驱动电机14输出高频振荡电流时,动力电池11也存在高频振荡电流,动力电池11根据高频振荡电流,利用电池内阻产生的热量实现自加热。
在一实施例中,动力需求信息包括转矩需求信息和转速需求信息,控制器10还用于:
根据转矩需求信息和转速需求信息得到与驱动电机14的驱动信息。
其中,转矩需求信息指的是用户对电动汽车的驱动电机14的转动力的的需求。转速需求信息指的是用户对电动汽车的驱动电机14的转动速度的需求。驱动信息的实质为驱动电机14的驱动力,也即驱动电机14的有功功率。
在实时获取电动汽车的驱动模块1的动力需求信息之后,根据动力需求信息中的转矩需求信息和转速需求信息,确定驱动电机14的驱动信息。
根据驱动信息确定电机控制器13控制驱动电机14驱动电动汽车运行时的驱动电流,根据驱动电流确定用于对动力电池11进行加热的当前加热功率。
具体地,在根据转矩需求信息和转速需求信息得到与驱动电机14的驱动信息之后,根据驱动电流和动力电池11的内阻值,确定用于对动力电池11进行加热的当前加热功率。
在一实施例中,控制器10还用于:
实时获取驱动电机14的无功功率。
其中,无功功率指的是驱动电机14中为建立交变磁场和感应磁通而需要的电功率。可以理解地,每一驱动电机14在起始阶段都会相应存在一定的无功功率,每一驱动电机14在起始阶段对应的无功功率可能是相同的,也可能是不同的,该无功功率不转化为机械能或者热能等。
获取电机控制器13的最大极限功率,令电机控制器13根据补偿发热电流、无功功率以及最大极限功率,增大驱动电机14的控制电流,以令驱动电机14输出的高频振荡电流等于补偿发热电流。
其中,最大极限功率为电机控制器13可调控的功率的最大极限值。
在实时获取驱动电机14的无功功率之后,获取电机控制器13的最大极限功率,并令电机控制器13根据补偿发热电流、无功功率以及最大极限功率,增大驱动电机14的控制电流,以增大驱动电机14的无功功率,令驱动电机14输出的高频振荡电流等于补偿发热电流,使得动力电池11的发热功率达到发热需求功率。
在一具体实施方式中,如图6所示,电动汽车的动力电池加热装置包括:FEM-Parameterized PMSM(永磁同步马达:permanent-magnet synchronous motor)为三相永磁同步电机,也即上述实施例中的驱动电机,OC为电机接地线,PQ为功率显示器,用于显示驱动电机的有功功率和无功功率,P为有功功率,Q为无功功率,Torque Source为转矩源,trq为特殊的物理信号,转矩需求为torque0,转速需求为rpm0,动力电池的电压源V Src为500V,R为动力电池内阻,v为动力电池连接的电压表,i为动力电池连接的电流表,Three-Phase Inverter为三相逆变器,该三相逆变器是由IGBT组成的H桥逆变器,PMSM Controller为永磁同步电机控制器,也即上述实施例中的电机控制器,Computational Delay为延迟计算装置,ZOH rpm为零阶保持器,ZOH rpm用于每过一个采样时间,更新一次输入至永磁同步电机控制器的信号,并保持到下一次采样。
优选地,电动汽车的动力电池加热装置还包括三相电流电压表,三相电流电压表连接三相逆变器12、电机控制器13以及驱动电机14;三相电流电压表用于检测自三相逆变器12输出的三个频率相同,振幅相等,相位依次互差120度的交流电势,并将该交流电势的绝对值对应的电流值(也即图6中的I)反馈至电机控制器13中,以确定当前电流是否满足与补偿发热电流相对应。
优选地,在驱动电机14和电机控制器13之间还可以连接一个转矩测量器(也即图6中的m对应的测量器),该转矩测量器用于测量自驱动电机14输出的转矩值或者是 检测用户发送的动力需求信息中的转矩需求信息。
优选地,电动汽车的动力电池加热装置还包括功率显示器,该功率显示器与三相电流电压表连接,用于显示驱动电机14的有功功率和无功功率,方便用户直观的查看驱动电机14的当前有功功率和无功功率对应的功率值。
在一实施例中,提供一种汽车,包括上述实施例中的电动汽车的动力电池加热装置。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。
以上所述实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种电动汽车的动力电池加热方法,其特征在于,包括:
    获取动力电池的发热需求功率;
    实时获取电动汽车的驱动模块的动力需求信息,并根据所述动力需求信息确定所述动力电池的当前加热功率;所述驱动模块连接所述动力电池,所述驱动模块包括电机控制器和驱动电机;
    在所述当前加热功率小于所述发热需求功率时,根据所述发热需求功率以及所述当前加热功率获取补偿发热电流;
    在所述电机控制器控制所述驱动电机根据所述动力需求信息驱动所述电动汽车运行时,令所述电机控制器根据所述补偿发热电流调控所述驱动电机的控制电流,以令所述驱动电机输出的高频振荡电流等于所述补偿发热电流;
    令所述动力电池根据所述驱动电机输出的高频振荡电流进行自加热。
  2. 如权利要求1所述的电动汽车的动力电池加热方法,其特征在于,所述动力需求信息包括转矩需求信息和转速需求信息;
    所述根据所述动力需求信息确定所述动力电池的当前加热功率,包括:
    根据所述转矩需求信息和所述转速需求信息得到与所述驱动电机的驱动信息;
    根据所述驱动信息确定所述电机控制器控制所述驱动电机驱动所述电动汽车运行时的驱动电流,根据所述驱动电流确定用于对所述动力电池进行加热的当前加热功率。
  3. 如权利要求1所述的电动汽车的动力电池加热方法,其特征在于,所述令所述电机控制器根据所述补偿发热电流调控所述驱动电机的控制电流,以令所述驱动电机输出的高频振荡电流等于所述补偿发热电流,包括:
    实时获取所述驱动电机的无功功率;
    获取所述电机控制器的最大极限功率,令所述电机控制器根据所述补偿发热电流、所述无功功率以及所述最大极限功率,增大所述驱动电机的控制电流,以令所述驱动电机输出的高频振荡电流等于所述补偿发热电流。
  4. 如权利要求3所述的电动汽车的动力电池加热方法,其特征在于,所述令所述电机控制器根据所述补偿发热电流、所述无功功率以及所述最大极限功率,增大所述驱动电机的控制电流,以令所述驱动电机输出的高频振荡电流等于所述补偿发热电流,包括:
    根据所述补偿发热电流和所述动力电池的内阻值获取差值功率;
    将所述差值功率与所述无功功率之和记录为叠加功率,并根据所述叠加功率和所述 动力电池的内阻值,得到叠加电流,以将所述驱动电机的控制电流增大至所述叠加电流。
  5. 如权利要求4所述的电动汽车的动力电池加热方法,其特征在于,所述将所述驱动电机的控制电流增大至差值电流,包括:
    通过增大所述驱动电机的励磁电流或通过空间矢量调制方式,将所述驱动电机的控制电流增大至所述差值电流。
  6. 如权利要求1所述的电动汽车的动力电池加热方法,其特征在于,所述在所述电机控制器控制所述驱动电机根据所述动力需求信息驱动所述电动汽车运行时,令所述电机控制器根据所述补偿发热电流调控所述驱动电机的控制电流之后,还包括:
    获取调控后的所述驱动电机输出的高频振荡电流,若所述高频振荡电流小于所述补偿发热电流,提示调控失败;
    检测所述动力电池的实时温度,在所述实时温度小于预设正常温度范围的下限值时,提示所述动力电池的温度异常。
  7. 一种电动汽车的动力电池加热装置,其特征在于,包括驱动模块、三相逆变器以及控制器;所述驱动模块包括电机控制器和驱动电机;所述电机控制器连接所述三相逆变器、所述控制器以及所述驱动电机;所述三相逆变器连接所述动力电池和所述驱动电机;所述控制器连接所述动力电池;所述控制器用于:获取所述动力电池的发热需求功率;实时获取电动汽车的驱动模块的动力需求信息,并根据所述动力需求信息确定所述动力电池的当前加热功率;在所述当前加热功率小于所述发热需求功率时,根据所述发热需求功率以及所述当前加热功率获取补偿发热电流;在所述电机控制器控制所述驱动电机根据所述动力需求信息驱动所述电动汽车运行时,令所述电机控制器根据所述补偿发热电流调控所述驱动电机的控制电流,以令所述驱动电机输出的高频振荡电流等于所述补偿发热电流;令所述动力电池根据所述驱动电机输出的高频振荡电流进行自加热。
  8. 如权利要求7所述的电动汽车的动力电池加热装置,其特征在于,所述动力需求信息包括转矩需求信息和转速需求信息;所述控制器还用于
    根据所述转矩需求信息和所述转速需求信息得到与所述驱动电机的驱动信息;根据所述驱动信息确定所述电机控制器控制所述驱动电机驱动所述电动汽车运行时的驱动电流,根据所述驱动电流确定用于对所述动力电池进行加热的当前加热功率。
  9. 如权利要求7所述的电动汽车的动力电池加热装置,其特征在于,所述控制器还用于
    实时获取所述驱动电机的无功功率;获取所述电机控制器的最大极限功率,令所述电机控制器根据所述补偿发热电流、所述无功功率以及所述最大极限功率,增大所述驱 动电机的控制电流,以令所述驱动电机输出的高频振荡电流等于所述补偿发热电流。
  10. 一种汽车,其特征在于,包括如权利要求7至9任一项所述电动汽车的动力电池加热装置。
PCT/CN2021/095831 2020-05-29 2021-05-25 电动汽车的动力电池加热方法、装置以及汽车 WO2021238925A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022573421A JP7361953B2 (ja) 2020-05-29 2021-05-25 電気自動車の動力電池の加熱方法、装置及び自動車
KR1020227045665A KR20230016005A (ko) 2020-05-29 2021-05-25 전기 차량 및 차량을 위한 파워 배터리 가열 방법 및 디바이스
EP21814346.9A EP4155120A4 (en) 2020-05-29 2021-05-25 METHOD FOR HEATING A POWER BATTERY FOR AN ELECTRIC AUTOMOBILE, APPARATUS AND AUTOMOBILE
US17/994,694 US20230093620A1 (en) 2020-05-29 2022-11-28 Power battery heating method and device for electric vehicle and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010476466.4A CN113733988B (zh) 2020-05-29 2020-05-29 电动汽车的动力电池加热方法、装置以及汽车
CN202010476466.4 2020-05-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/994,694 Continuation US20230093620A1 (en) 2020-05-29 2022-11-28 Power battery heating method and device for electric vehicle and vehicle

Publications (1)

Publication Number Publication Date
WO2021238925A1 true WO2021238925A1 (zh) 2021-12-02

Family

ID=78722997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095831 WO2021238925A1 (zh) 2020-05-29 2021-05-25 电动汽车的动力电池加热方法、装置以及汽车

Country Status (6)

Country Link
US (1) US20230093620A1 (zh)
EP (1) EP4155120A4 (zh)
JP (1) JP7361953B2 (zh)
KR (1) KR20230016005A (zh)
CN (1) CN113733988B (zh)
WO (1) WO2021238925A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212001A (zh) * 2021-12-08 2022-03-22 安徽江淮汽车集团股份有限公司 纯电动车全生命周期的放电功率管理方法
WO2023245578A1 (zh) * 2022-06-23 2023-12-28 宁德时代新能源科技股份有限公司 一种动力电池自加热方法、系统、存储介质及电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114194073B (zh) * 2021-12-17 2023-05-23 重庆长安新能源汽车科技有限公司 一种电机脉冲电流控制方法、装置及电动汽车
CN117621865A (zh) * 2022-08-18 2024-03-01 比亚迪股份有限公司 一种抑制电池自加热过程中车辆震动的方法、装置及汽车
CN115649012B (zh) * 2022-10-31 2024-06-04 重庆长安汽车股份有限公司 电机主动降效加热控制方法、装置、设备、车辆及存储介质
CN116722780B (zh) * 2023-06-07 2024-02-13 江苏威进智控科技有限公司 基于电机电流和pwm配置的动力电池主动加热方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103392258A (zh) * 2011-02-24 2013-11-13 Zf腓德烈斯哈芬股份公司 用于加热交通工具的牵引用电池的方法和设备
WO2016113880A1 (ja) * 2015-01-15 2016-07-21 三菱電機株式会社 充放電制御装置
CN107293821A (zh) * 2017-05-23 2017-10-24 北京新能源汽车股份有限公司 动力电池热处理方法、装置及电动汽车
CN108847513A (zh) * 2018-05-08 2018-11-20 北京航空航天大学 一种锂离子电池低温加热控制方法
CN109599632A (zh) * 2017-09-30 2019-04-09 比亚迪股份有限公司 车载电池的温度调节方法和温度调节系统
CN110116653A (zh) * 2019-04-19 2019-08-13 清华大学 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
CN110126678A (zh) * 2019-05-15 2019-08-16 北京长城华冠汽车科技股份有限公司 一种电动汽车的动力电池加热方法和装置
CN110534820A (zh) * 2018-05-26 2019-12-03 罗伯特·博世有限公司 用于加热电池组模块的方法
CN111181208A (zh) * 2020-01-10 2020-05-19 武汉理工大学 一种集成交流加热功能的充电器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797476B2 (ja) * 2005-07-12 2011-10-19 トヨタ自動車株式会社 二次電池の制御装置
CN101247680A (zh) * 2008-03-24 2008-08-20 俞正国 感应加热电源电路
JP5003602B2 (ja) * 2008-06-16 2012-08-15 パナソニック株式会社 誘導加熱装置
CN101710631A (zh) * 2009-12-16 2010-05-19 奇瑞汽车股份有限公司 一种锂离子动力电池加热装置
CN201608535U (zh) * 2010-01-20 2010-10-13 上海华通企业集团有限公司 智能无功功率自动补偿控制器
JP5259752B2 (ja) * 2011-02-04 2013-08-07 株式会社日立製作所 車両走行用モータの制御装置及びそれを搭載した車両
CN102593398A (zh) * 2012-03-05 2012-07-18 苏州奥杰汽车工业有限公司 一种动力电池热管理系统
WO2014024490A1 (ja) * 2012-08-09 2014-02-13 パナソニック株式会社 昇温制御回路、及び電動装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103392258A (zh) * 2011-02-24 2013-11-13 Zf腓德烈斯哈芬股份公司 用于加热交通工具的牵引用电池的方法和设备
WO2016113880A1 (ja) * 2015-01-15 2016-07-21 三菱電機株式会社 充放電制御装置
CN107293821A (zh) * 2017-05-23 2017-10-24 北京新能源汽车股份有限公司 动力电池热处理方法、装置及电动汽车
CN109599632A (zh) * 2017-09-30 2019-04-09 比亚迪股份有限公司 车载电池的温度调节方法和温度调节系统
CN108847513A (zh) * 2018-05-08 2018-11-20 北京航空航天大学 一种锂离子电池低温加热控制方法
CN110534820A (zh) * 2018-05-26 2019-12-03 罗伯特·博世有限公司 用于加热电池组模块的方法
CN110116653A (zh) * 2019-04-19 2019-08-13 清华大学 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
CN110126678A (zh) * 2019-05-15 2019-08-16 北京长城华冠汽车科技股份有限公司 一种电动汽车的动力电池加热方法和装置
CN111181208A (zh) * 2020-01-10 2020-05-19 武汉理工大学 一种集成交流加热功能的充电器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4155120A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212001A (zh) * 2021-12-08 2022-03-22 安徽江淮汽车集团股份有限公司 纯电动车全生命周期的放电功率管理方法
CN114212001B (zh) * 2021-12-08 2024-03-29 安徽江淮汽车集团股份有限公司 纯电动车全生命周期的放电功率管理方法
WO2023245578A1 (zh) * 2022-06-23 2023-12-28 宁德时代新能源科技股份有限公司 一种动力电池自加热方法、系统、存储介质及电子设备

Also Published As

Publication number Publication date
US20230093620A1 (en) 2023-03-23
KR20230016005A (ko) 2023-01-31
JP7361953B2 (ja) 2023-10-16
CN113733988B (zh) 2023-10-17
CN113733988A (zh) 2021-12-03
JP2023527450A (ja) 2023-06-28
EP4155120A4 (en) 2023-11-22
EP4155120A1 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
WO2021238925A1 (zh) 电动汽车的动力电池加热方法、装置以及汽车
JP5715777B2 (ja) 永久磁石同期モータの制御方法
CN112977173B (zh) 一种电动汽车及其动力电池脉冲加热系统和加热方法
JP7488288B2 (ja) 電池パック加熱方法、電池加熱システム及び電力消費装置
CN112693327B (zh) 一种降低非工作损耗的新能源永磁整车控制子系统、方法及车辆
KR20130142416A (ko) 전력 변환 장치 및 이의 제어 방법
Xu et al. System-level efficiency optimization of a linear induction motor drive system
CN107181439B (zh) 一种永磁同步电机控制方法及系统
Park et al. Variable switching frequency control-based six-step operation method of a traction inverter for driving an interior permanent magnet synchronous motor for a railroad car
EP4321375A1 (en) Controller for drive motor and related device thereof
Fan et al. Bipolar modulation of brushless DC motor with integrated control of motoring and regenerative braking
US11916504B2 (en) Energy conversion device and vehicle
JP2009254101A (ja) 充電制御装置およびそれを備えた車両
WO2018177359A1 (zh) 混合动力汽车及其动力系统
CN113162385B (zh) 一种基于电机绕组最大铜耗的电动汽车母线电容放电方法
JP7501297B2 (ja) モータ制御装置
CN115447445A (zh) 一种电池加热电路、控制方法及电动车辆
JP2021132464A (ja) 車両の駆動装置及び車両の制御方法
WO2024001728A1 (zh) 电机驱动系统、车辆及驱动系统控制方法
CN109039206A (zh) 牵引电机控制系统、控制方法及计算机可读存储介质
CN117124932A (zh) 一种锂离子电池的低温预热电路拓扑系统
US11418143B2 (en) Control method and apparatus, power system, and electric vehicle
CN117533200A (zh) 一种用于脉冲加热电动汽车的动力电池的方法及电动汽车
CN117799500A (zh) 一种用于脉冲加热电动汽车的动力电池的方法及电动汽车
JP6832795B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573421

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227045665

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021814346

Country of ref document: EP

Effective date: 20221221