WO2018177359A1 - 混合动力汽车及其动力系统 - Google Patents

混合动力汽车及其动力系统 Download PDF

Info

Publication number
WO2018177359A1
WO2018177359A1 PCT/CN2018/081046 CN2018081046W WO2018177359A1 WO 2018177359 A1 WO2018177359 A1 WO 2018177359A1 CN 2018081046 W CN2018081046 W CN 2018081046W WO 2018177359 A1 WO2018177359 A1 WO 2018177359A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
motor
hybrid vehicle
converter
Prior art date
Application number
PCT/CN2018/081046
Other languages
English (en)
French (fr)
Inventor
王春生
李凯琦
张伟
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP18775746.3A priority Critical patent/EP3604023B1/en
Publication of WO2018177359A1 publication Critical patent/WO2018177359A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to the field of hybrid electric vehicles, and in particular to a hybrid electric vehicle power system and a hybrid electric vehicle.
  • the voltage output from the motor is rectified by the inverter to charge the power battery.
  • the output voltage of the inverter is not controlled, but because the output is connected in parallel with the power battery, the power battery is equivalent to a huge one.
  • the capacitive load can stabilize the voltage on the main circuit, so the influence on the DC-DC converter of the latter stage is small.
  • the high voltage can be directly reduced by the DC-DC converter to a low voltage such as 12V to supply power to the low-voltage electrical appliance of the vehicle.
  • the voltage output from the motor will be uncontrollable. Therefore, the voltage output from the motor must be regulated to be used for subsequent loads. Since the voltage at the inverter end fluctuates greatly, the magnitude and frequency of the back electromotive force of the motor output will vary with the change in load (ie, the change in engine speed). For example, at high speeds, the back electromotive force is very high, and the voltage of the rectified regulated output is often high. If the brake rectification mode is adopted, the output voltage will be uncontrollable once the power battery is disconnected; if uncontrolled rectification is used, the loss will be large.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned techniques to some extent.
  • the power system can not only maintain the low-speed electric balance and low-speed smoothness of the whole vehicle, but also stabilize the input voltage of the DC-DC converter and ensure the normal operation of the DC-DC converter.
  • Another object of the present invention is to provide a hybrid vehicle.
  • a first aspect of the present invention provides a power system of a hybrid vehicle, comprising: an engine that outputs power to a wheel of the hybrid vehicle through a clutch; a power motor, the power a motor for outputting a driving force to a wheel of the hybrid vehicle; a power battery for supplying power to the power motor; a DC-DC converter; a secondary motor connected to the engine, the secondary motor Connected to the power motor, the DC-DC converter and the power battery respectively; a voltage stabilizing circuit connected between the sub motor and the DC-DC converter, the voltage stabilizing circuit The direct current output to the DC-DC converter when the sub motor is generated is subjected to a voltage stabilization process.
  • the engine outputs power to the wheels of the hybrid vehicle through the clutch, and the power motor outputs the driving force to the wheels of the hybrid vehicle, and the power battery supplies power to the power motor, and the voltage regulator circuit pairs
  • the direct current output to the DC-DC converter is regulated, so that not only the low-speed electric balance and low-speed smoothness of the whole vehicle can be maintained, the performance of the whole vehicle can be improved, and the input voltage of the DC-DC converter can be stabilized. Ensure that the DC-DC converter is working properly.
  • the present invention proposes a hybrid vehicle comprising the power system of the above-described hybrid vehicle of the present invention.
  • the power system of the hybrid vehicle can stabilize the input voltage of the DC-DC converter in the event of a power battery failure, thereby ensuring normal operation of the DC-DC converter.
  • FIG. 1 is a block diagram showing the structure of a power system of a hybrid vehicle according to an embodiment of the present invention
  • FIG. 2a is a schematic structural view of a power system of a hybrid vehicle according to an embodiment of the present invention
  • FIG. 2b is a schematic structural view of a power system of a hybrid vehicle according to another embodiment of the present invention.
  • 2c is a schematic structural view of a power system of a hybrid vehicle according to still another embodiment of the present invention.
  • FIG. 3 is a block diagram showing the structure of a voltage stabilizing circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of voltage regulation control in accordance with one embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a power system of a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the structure of a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of a power system of a hybrid vehicle according to an embodiment of the present invention.
  • the power system of the hybrid vehicle includes an engine 1, a power motor 2, a power battery 3, a DC-DC converter 4, a sub-motor 5, and a voltage stabilizing circuit 6.
  • the engine 1 outputs power to the wheels 700 of the hybrid vehicle through the clutch 7, and the power motor 2 is used to output the driving force to the wheels 700 of the hybrid vehicle.
  • the power system of the embodiment of the present invention can provide power for the normal running of the hybrid vehicle through the engine 1 and/or the power motor 2, in other words, in some embodiments of the present invention, the power source of the power system may be the engine 1 And the power motor 2, any of the engine 1 and the power motor 2 can separately output power to the wheel 700, or the engine 1 and the power motor 2 can simultaneously output power to the wheel 700.
  • the power battery 3 is used to supply power to the power motor 2; the auxiliary motor 5 is connected to the engine 1.
  • the sub-motor 5 can be connected to the engine 1 through the train wheel end of the engine 1, and the sub-motor 5 and the power motor 2, DC-DC are respectively converted.
  • the device 4 is connected to the power battery 3.
  • the voltage stabilizing circuit 6 is connected between the sub motor 5 and the DC-DC converter 4, and the voltage stabilizing circuit 6 regulates the direct current output to the DC-DC converter 4 when the sub motor 5 generates electric power to stabilize the voltage.
  • the low-voltage electrical appliance of the vehicle is powered by the DC-DC converter 4. In other words, the electric energy output when the sub motor 5 generates electric power passes through the voltage stabilizing circuit 6, and then outputs a stable voltage to the DC-DC converter 4.
  • the power motor 2 and the sub-motor 5 can respectively act as a driving motor and a generator in a one-to-one correspondence, so that the sub-motor 5 can have higher power generation and power generation efficiency at a low speed, thereby satisfying the power demand of the low-speed driving, and maintaining the whole
  • the car's low-speed electric balance maintains low-speed ride and improves vehicle performance.
  • the DC current output to the DC-DC converter 4 during the power generation of the sub-motor 5 can be stabilized by the voltage stabilizing circuit 6, so that the input voltage of the DC-DC converter 4 is kept stable, thereby ensuring the normal operation of the DC-DC converter. .
  • the sub-motor 5 performs power generation by the engine 1, it is possible to realize at least one of charging the power battery 3, supplying power to the power motor 2, and supplying power to the DC-DC converter 4.
  • the engine 1 can drive the secondary motor 5 to generate electricity, and the electric energy generated by the secondary motor 5 can be supplied to at least one of the power battery 3, the power motor 2, and the DC-DC converter 4.
  • the engine 1 can drive the sub-motor 5 to generate electricity while outputting power to the wheel 8, or can separately drive the sub-motor 5 to generate electricity.
  • the sub motor 5 can be a BSG motor. It should be noted that the sub-motor 5 belongs to a high-voltage motor.
  • the power generation voltage of the sub-motor 5 is equivalent to the voltage of the power battery 3, so that the electric energy generated by the sub-motor 5 can directly charge the power battery 3 without voltage conversion, and can also be supplied to the power motor. 2 and / or DC-DC converter 4 is powered.
  • the sub-motor 5 can also be a high-efficiency generator. For example, when the sub-motor 5 is driven by the engine 1 at an idle speed, the power generation efficiency of 97% or more can be achieved.
  • the voltage stabilizing circuit 6 can be disposed on the output line of the sub-motor 5, and the sub-motor 5 is connected to the power motor 2, the power battery 3, and the DC-DC converter 4 through the voltage stabilizing circuit 6, respectively, as shown in FIG. 2b. 2c, at this time, when the sub-motor 5 generates electricity, the stable voltage can be output through the voltage stabilizing circuit 6, and the power supply battery 3 is regulated and charged, the power supply motor 2 is regulated, and the DC-DC converter 4 is regulated and supplied with power. Thereby, regardless of whether the power battery 3 and the DC-DC converter 4 are connected or not, the DC-DC converter 4 can be normally operated.
  • the voltage stabilizing circuit 6 can also be disposed on the incoming line of the DC-DC converter 4, and the sub-motor 5 can be respectively connected to the DC-DC converter 4 and the power battery 3, and the power battery 3 can be connected to the DC-DC converter 4 As shown in FIG. 1 and FIG. 2a, when the power battery 3 is disconnected from the DC-DC converter 4, the voltage output to the DC-DC converter 4 during the power generation of the sub-motor 5 is still stable. In turn, the DC-DC converter 4 is guaranteed to operate normally.
  • the sub-motor 5 can be used to start the engine 1, that is, the sub-motor 5 can realize the function of starting the engine 1.
  • the sub-motor 5 can drive the crankshaft of the engine 1 to rotate the piston of the engine 1. The position, thereby enabling the starting of the engine 1, whereby the sub-motor 5 can realize the function of the starter in the related art.
  • both the engine 1 and the power motor 2 can be used to drive the wheels 700 of the hybrid vehicle.
  • the engine 1 and the power motor 2 jointly drive the same wheel of the hybrid vehicle, such as a pair of front wheels 71 (including the left front wheel and the right front wheel); as another, as shown in Figure 2c,
  • the engine 1 can drive a first wheel of a hybrid vehicle such as a pair of front wheels 71 (including a left front wheel and a right front wheel), and the power motor 2 can drive a second wheel of the hybrid vehicle, such as a pair of rear wheels 72 (including the left rear Wheel and right rear wheel).
  • the power system of the hybrid vehicle further includes a differential 8, a final drive 9 and a first transmission 91, wherein the engine 1 passes the clutch 7.
  • the first transmission 91, the final drive 9 and the differential 8 output power to a first wheel of the hybrid vehicle such as a pair of front wheels 71, and the power motor 2 outputs a driving force through the final drive 9 and the differential 8.
  • the first wheel to the hybrid vehicle for example, a pair of front wheels 71.
  • the power system of the hybrid vehicle further includes a first transmission 91 and a second transmission 92, wherein the engine 1 outputs power to the mixing through the clutch 7 and the first transmission 91.
  • the first wheel of the power car for example, a pair of front wheels 71
  • the power motor 2 outputs a driving force to the second wheel of the hybrid vehicle, such as a pair of rear wheels 72, through the second transmission 92.
  • the clutch 7 and the first transmission 91 can be integrated.
  • the power generation voltage of the sub-motor 5 is generally connected to both ends of the power battery 3, when the power battery 3 is connected to the DC-DC converter 4, it is input to the DC-DC converter 4 The voltage is stable.
  • the AC power outputted by the sub-motor 5 during power generation needs to be controlled at this time, and can be output to the sub-motor 5 when the power is generated by the voltage stabilizing circuit 6.
  • the DC power of the DC-DC converter 4 is subjected to a voltage stabilization process.
  • the sub motor 5 includes a sub motor controller 51, and the sub motor controller 51 includes an inverter 511 and a regulator 512 for disconnecting the power battery 3
  • the first adjustment signal and the second adjustment signal are output according to the output signal of the voltage stabilization circuit 6 to stabilize the DC bus voltage output by the inverter 511, wherein the first adjustment The signal is used to adjust the d-axis current of the sub-motor 5, and the second adjustment signal is used to adjust the q-axis current of the sub-motor 5.
  • the voltage stabilizing circuit 6 includes a first voltage sampler 61 and a target voltage collector 62.
  • the first voltage sampler 61 samples the DC bus voltage output by the inverter 511 to obtain a first voltage sample value, and outputs the first voltage sample value to the regulator 512, and the target voltage collector 62 acquires the target reference voltage, and The target reference voltage is sent to the regulator 512.
  • the regulator 512 is configured to output the first adjustment signal and the second adjustment signal according to a voltage difference between the target reference voltage and the first voltage sample value.
  • the output signal of the voltage stabilization circuit 6 includes a first voltage sample value and a target reference voltage.
  • the sub motor controller 51 is connected to the DC-DC converter 4 through the voltage stabilizing circuit 6.
  • the sub motor controller 51 outputs a DC bus voltage through the inverter 511, and the first voltage sampler 61 samples the DC bus voltage output from the inverter 511 to obtain a first voltage sample value, and outputs the first voltage sample value to Regulator 512.
  • the target voltage collector 62 obtains the target reference voltage and sends the target reference voltage to the regulator 512.
  • the regulator 512 outputs the first adjustment signal and the second adjustment signal according to the voltage difference between the target reference voltage and the first voltage sample value.
  • the d-axis current of the sub-motor 5 is adjusted by the first adjustment signal, and the q-axis current of the sub-motor 5 is adjusted by the second adjustment signal, so that the sub-motor controller 51 is disconnected and DC-DC converted in the power battery 3
  • the inverter 511 is controlled in accordance with the d-axis current and the q-axis current of the sub-motor 5, and the DC bus voltage output from the inverter 511 is stabilized.
  • the inverter 511 can be controlled using PWM (Pulse Width Modulation) to stabilize the DC bus voltage output by the inverter 511.
  • PWM Pulse Width Modulation
  • the regulator 512 includes an error calculation unit a, a first PID adjustment unit b, and a second PID adjustment unit c.
  • the error calculation unit a is connected to the first voltage sampler 61 and the target voltage collector 62, respectively, and the error calculation unit a is configured to obtain a voltage difference between the target reference voltage and the first voltage sample value.
  • the first PID adjustment unit b is connected to the error calculation unit a, and the first PID adjustment unit b adjusts the voltage difference between the target reference voltage and the first voltage sample value to output a first adjustment signal.
  • the second PID adjustment unit c is connected to the error calculation unit a, and the second PID adjustment unit c adjusts the voltage difference between the target reference voltage and the first voltage sample value to output a second adjustment signal.
  • the first voltage sampler 61 samples the DC bus voltage outputted by the inverter 511 in real time to obtain a first voltage sample value, and outputs the first voltage sample value to the error calculator a
  • the target voltage collector 62 acquires the target reference voltage and outputs the target reference voltage to the error calculation unit a.
  • the error calculation unit a acquires a voltage difference between the target reference voltage and the first voltage sample value, and inputs the difference to the first PID adjustment unit b and the second PID adjustment unit c, respectively, through the first PID adjustment unit b
  • the first adjustment signal i.e., Id * in Fig. 4
  • the second adjustment signal i.e., Iq * in Fig.
  • the DC voltage output from the inverter 511 in the sub motor controller 51 and the back electromotive force output from the sub motor 5 have a certain correlation.
  • the voltage output from the inverter 511 can be set to 3 The phase voltage of /2 (ie the maximum phase voltage in the drive state is 2/3 of the DC bus voltage). Therefore, the DC voltage outputted by the inverter 511 has a certain relationship with the rotation speed of the sub-motor 5.
  • the rotation speed of the sub-motor 5 is higher, the DC voltage output from the inverter 511 is higher, and the rotation speed of the sub-motor 5 is lower, the inverter The lower the DC voltage of the 511 output.
  • the voltage stabilization circuit 6 may further include a voltage regulator 63, a second Voltage sampler 64 and voltage regulator controller 65.
  • the voltage regulator 63 is connected to the DC output end of the inverter 511, the voltage regulator 63 regulates the DC bus voltage outputted by the inverter 511, and the output end of the voltage regulator 63 is connected to the DC-DC converter 4 Input.
  • the second voltage sampler 64 samples the output voltage of the voltage regulator 63 to obtain a second voltage sample value.
  • the voltage regulator controller 65 is respectively connected to the voltage regulator 63 and the second voltage sampler 64.
  • the voltage regulator controller 65 is configured to control the output voltage of the voltage regulator 63 according to the preset reference voltage and the second voltage sample value.
  • the output voltage of the regulator 63 is in a preset voltage range.
  • the regulator 63 may employ a switching regulator circuit, such as a BOOST boost circuit, which is not only capable of boosting, but also has high control accuracy.
  • the BOOST boost circuit switching device can use silicon carbide MOSFET, such as Infineon's IMW120R45M1, withstand voltage of 1200V, internal resistance of 45m ⁇ , with high withstand voltage, small internal resistance, good thermal conductivity, than the same specifications The high-speed IGBT losses are several times smaller.
  • the driver chip of the regulator 63 can be used with Infineon's 1EDI60N12AF, which uses magnetic coreless transformer isolation for safe and reliable control. It can be understood that the driving chip can generate a driving signal.
  • the regulator 63 may employ a buck-boost type BUCK-BOOST circuit capable of stepping down when the motor speed is high, boosting when the motor speed is low, and having high control accuracy.
  • the regulator 63 may also employ a linear regulator circuit or a three-terminal regulator circuit (such as the LM317 and 7805).
  • first voltage sampler 61 and the second voltage sampler 64 may be the same for ease of circuit design.
  • both the first voltage sampler 61 and the second voltage sampler 64 may include a differential voltage circuit having high precision and convenient adjustment of the amplification factor.
  • the voltage regulator controller 65 can adopt a PWM dedicated modulation chip SG3525, which has the characteristics of small volume, simple control, and capable of outputting a stable PWM wave.
  • the workflow of the power system of the hybrid vehicle described above is that the second voltage sampler 64 samples the output voltage of the voltage regulator 63 to obtain a second voltage sample value, and outputs the second voltage sample value to the chip.
  • chip SG3525 can set the reference voltage, compare the reference voltage and the second voltage sample value, and then combine the triangular wave generated by the chip SG3525 to generate two PWM waves, and control the voltage regulator 63 through two PWM waves.
  • the voltage output from the regulator 63 to the DC-DC converter 4 is in a preset voltage range, such as 11-13 V, whereby the normal operation of the low voltage load in the hybrid vehicle can be ensured.
  • the SG3525 can issue a PWM wave with a large duty cycle to boost.
  • the sub-motor 5 and the DC-DC converter 4 have a separate regulated power supply path.
  • the connection to the DC-DC converter 4 is disconnected, and the sub-motor 5 and the DC-DC can be passed.
  • the separate regulated power supply channel of the converter 4 can ensure the low-voltage power consumption of the whole vehicle, ensuring that the whole vehicle can realize the pure fuel mode driving and improve the mileage of the whole vehicle.
  • the power battery 3 is damaged, and when the connection with the DC-DC converter 4 is disconnected, the voltage stabilizing circuit 6 is connected to the incoming end of the DC-DC converter 4. .
  • the power motor 2 further includes a second controller 21 connected to the second controller 21 and connected to the DC-DC converter 4 via the voltage stabilizing circuit 6.
  • the secondary motor 5 generates alternating current when generating electricity, and the inverter 511 can convert the alternating current generated by the secondary motor 5 into high-voltage direct current, for example, 600V high-voltage direct current, to supply power to at least one of the power motor 2 and the DC-DC converter 4.
  • the second controller 21 can have a DC-AC conversion unit that can convert the high-voltage direct current output from the inverter 511 into alternating current to supply power to the power motor 2.
  • the inverter 511 of the sub motor controller 51 has a first DC terminal DC1
  • the second controller 21 has a second DC terminal DC2
  • the DC-DC converter 4 has a third DC terminal. DC3.
  • the first DC terminal DC1 of the sub motor controller 51 is connected to the third DC terminal DC3 of the DC-DC converter 4 through the voltage stabilizing circuit 6 to supply a stable voltage to the DC-DC converter 4, and the DC-DC converter 4 DC-DC conversion can be performed on the stabilized DC power.
  • the inverter 511 of the sub motor controller 51 can also output high voltage direct current to the second controller 21 through the first DC terminal DC1 to supply power to the power motor 2.
  • the DC-DC converter 4 is also respectively connected to the electric device 10 and the low-voltage battery 20 in the hybrid vehicle to supply power to the electric device 10 and the low-voltage battery 20, and the low-voltage battery 20 is also connected to the electric device. 10 connected.
  • the DC-DC converter 4 further has a fourth DC terminal DC4, and the DC-DC converter 4 converts the high-voltage DC power output by the sub-motor 5 through the sub-motor controller 51 into a low-voltage DC power, and The low voltage direct current is output through the fourth DC terminal DC4.
  • the fourth DC terminal DC4 of the DC-DC converter 4 is connected to the electrical device 10 to supply power to the electrical device 10.
  • the electrical device 10 can be a low-voltage electrical device including, but not limited to, a vehicle lamp, a radio, and the like.
  • the fourth DC terminal DC4 of the DC-DC converter 4 can also be coupled to the low voltage battery 20 to charge the low voltage battery 20.
  • the low-voltage battery 20 is connected to the electrical device 10 to supply power to the electrical device 10.
  • the low-voltage battery 20 can supply power to the electrical device 10, thereby ensuring low-voltage power consumption of the entire vehicle, and ensuring that the entire vehicle can be used. Realize the pure fuel mode driving and increase the mileage of the whole vehicle.
  • the low voltage may refer to a voltage of 12V (volts) or 24V
  • the high voltage may refer to a voltage of 600V
  • the preset voltage interval may refer to 11-13V or 23-25V, but is not limited thereto.
  • the power system of the hybrid vehicle can not only maintain the low-speed electric balance and low-speed smoothness of the whole vehicle, but also ensure DC when the power battery fails or is damaged and disconnects from the DC-DC converter.
  • the DC converter operates normally with high control accuracy and low loss.
  • the present invention also proposes a hybrid vehicle.
  • the hybrid vehicle 200 includes the powertrain 100 of the above-described hybrid vehicle.
  • the hybrid vehicle of the invention not only can maintain the low-speed electric balance and low-speed smoothness of the whole vehicle, fully utilizes the mechanical energy of the motor, and can stabilize the input voltage of the DC-DC converter, thereby ensuring the normal operation of the DC-DC converter. And the loss is low and the efficiency is high.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种混合动力汽车及其动力系统,其中,动力系统包括:通过离合器(7)将动力输出到混合动力汽车的车轮(700)的发动机(1);输出驱动力至混合动力汽车的车轮(700)的动力电机(2);给动力电机(2)供电的动力电池(3);DC-DC变换器(4);分别与发动机(1)、动力电机(2)、DC-DC变换器(4)和动力电池(3)相连的副电机(5);连接在副电机(5)与DC-DC变换器(4)之间的稳压电路(6),用于对副电机(5)发电时输出至DC-DC变换器(4)的直流电进行稳压处理,从而不仅能够维持整车低速电平衡及低速平顺性,还能够使DC-DC变换器(4)的输入电压保持稳定,保证DC-DC变换器(4)正常工作。

Description

混合动力汽车及其动力系统
本申请要求于2017年03月31日提交中国专利局、申请号为201710210204.1、发明名称为“混合动力汽车及其动力系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及混合动力汽车技术领域,具体涉及一种混合动力汽车的动力系统和一种混合动力汽车。
背景技术
在混合动力汽车中,电机发电输出的电压经逆变器整流给动力电池充电,此时逆变器的输出端电压不受控制,但是因为输出端与动力电池并联,动力电池相当于一个巨大的容性负载,能够稳定主电路上电压,这样对后级的DC-DC变换器影响就很小。而且,高压直接可以通过DC-DC变换器降压至低压如12V给整车低压电器供电。
但动力电池一旦断开,电机发电输出的电压将是不可控的,故需对电机发电输出的电压进行稳压,才能给后续负载使用。由于逆变器端的电压波动很大,电机输出的反电动势的幅值和频率会随负载的变化(即发动机的转速变化)而变化。例如高转速时,反电动势很高,整流稳压输出的电压往往很高。如果采用制动整流方式,那么一旦动力电池断开,输出的电压将不可控制;如果采用不可控整流,损耗就会很大。
发明内容
本发明旨在至少在一定程度上解决上述技术中的技术问题之一。
为此,本发明的一个目的在于提出一种混合动力汽车的动力系统。该动力系统不仅能够维持整车低速电平衡及低速平顺性,还能够使DC-DC变换器的输入电压保持稳定,保证DC-DC变换器正常工作。
本发明的另一个目的在于提出一种混合动力汽车。
为达到上述目的,本发明第一方面实施例提出了一种混合动力汽车的动力系统,包括:发动机,所述发动机通过离合器将动力输出到所述混合动力汽车的车轮;动力电机,所述动力电机用于输出驱动力至所述混合动力汽车的车轮;动力电池,所述动力电池用于给所述动力电机供电;DC-DC变换器;与所述发动机相连的副电机,所述副电机分别与所述动力电机、所述DC-DC变换器和动力电池相连;稳压电路,所述稳压电路连接在所述副电机与所述DC-DC变换器之间,所述稳压电路对所述副电机发电时输出至所述DC-DC变换器的直流电进行稳压处理。
根据本发明实施例的混合动力汽车的动力系统,发动机通过离合器将动力输出到混合动力汽车的车轮,动力电机输出驱动力至混合动力汽车的车轮,动力电池给动力电机供电,稳压电路对副电机发电时输出至DC-DC变换器的直流电进行稳压处理,从而不仅可维持整车低速电平衡及低速平顺性,提升整车性能,还能够使DC-DC变换器的输入电压保持稳定,保证DC-DC变换器正常工作。
进一步地,本发明提出了一种混合动力汽车,其包括本发明上述的混合动力汽车的动力系统。
本发明实施例的混合动力汽车,通过上述混合动力汽车的动力系统能够在动力电池失效的情况下使DC-DC变换器的输入电压保持稳定,保证DC-DC变换器正常工作。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的混合动力汽车的动力系统的结构框图;
图2a是本发明一个实施例的混合动力汽车的动力系统的结构示意图;
图2b是本发明另一个实施例的混合动力汽车的动力系统的结构示意图;
图2c是本发明又一个实施例的混合动力汽车的动力系统的结构示意图;
图3是根据本发明一个实施例的稳压电路的结构框图;
图4是根据本发明一个实施例的稳压控制的原理图;
图5是根据本发明一个具体实施例的混合动力汽车的动力系统的结构框图;以及
图6是根据本发明实施例的混合动力汽车的结构框图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述根据本发明实施例提出的混合动力汽车的动力系统和混合动力汽车。
图1是本发明一个实施例的混合动力汽车的动力系统的结构框图。如图1所示,该混合动力汽车的动力系统包括:发动机1、动力电机2、动力电池3、DC-DC变换器4、副电机5和稳压电路6。
结合图1-3所示,发动机1通过离合器7将动力输出到混合动力汽车的车轮700;动力 电机2用于输出驱动力至混合动力汽车的车轮700。也就是说,本发明实施例的动力系统可通过发动机1和/或动力电机2为混合动力汽车正常行驶提供动力,换言之,在本发明的一些实施例中,动力系统的动力源可以是发动机1和动力电机2,发动机1和动力电机2中的任一个可单独输出动力至车轮700,或者,发动机1和动力电机2可同时输出动力至车轮700。
动力电池3用于给动力电机2供电;副电机5与发动机1相连,例如,副电机5可通过发动机1的轮系端与发动机1相连,副电机5分别与动力电机2、DC-DC变换器4和动力电池3相连。稳压电路6连接在副电机5与DC-DC变换器4之间,稳压电路6对副电机5发电时输出至DC-DC变换器4的直流电进行稳压处理,以使稳定后的电压通过DC-DC变换器4给整车低压电器供电。换言之,副电机5发电时输出的电能通过稳压电路6后,输出稳定电压供给DC-DC变换器4。
由此,动力电机2和副电机5可分别一一对应充当驱动电机和发电机,从而低速时副电机5可具有较高的发电功率和发电效率,从而满足低速行驶的用电需求,维持整车低速电平衡,维持低速平顺性,提升整车性能。且可通过稳压电路6对副电机5发电时输出至DC-DC变换器4的直流电进行稳压处理,使DC-DC变换器4的输入电压保持稳定,从而保证DC-DC变换器正常工作。
进一步地,副电机5在发动机1的带动下进行发电时,可实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。换言之,发动机1可带动副电机5发电,副电机5产生的电能可提供至动力电池3、动力电机2和DC-DC变换器4中的至少一个。应当理解的是,发动机1可在输出动力到车轮8的同时带动副电机5发电,也可单独带动副电机5发电。
其中,副电机5可为BSG电机。需要说明的是,副电机5属于高压电机,例如副电机5的发电电压与动力电池3的电压相当,从而副电机5产生的电能可不经过电压变换直接给动力电池3充电,还可给动力电机2和/或DC-DC变换器4供电。并且副电机5也可属于高效发电机,例如在发动机1怠速转速下带动副电机5发电即可实现97%以上的发电效率。
需要说明的是,稳压电路6可以设置在副电机5的输出线上,副电机5通过稳压电路6分别与动力电机2、动力电池3和DC-DC变换器4相连,如图2b、2c所示,此时,副电机5发电时可通过稳压电路6输出稳定电压,实现给动力电池3稳压充电、给动力电机2稳压供电、给DC-DC变换器4稳压供电,由此,无论动力电池3和DC-DC变换器4连接与否,均能保证DC-DC变换器4正常工作。稳压电路6也可以设置在DC-DC变换器4的进线上,且副电机5可分别与DC-DC变换器4、动力电池3连接,同时动力电池3可与 DC-DC变换器4连接,如图1、图2a所示,由此,在动力电池3与DC-DC变换器4断开连接时,副电机5发电时输出至DC-DC变换器4的电压仍是稳定的,进而保证了DC-DC变换器4正常工作。
进一步地,副电机5可用于启动发动机1,即副电机5可实现启动发动机1的功能,例如当启动发动机1时,副电机5可带动发动机1的曲轴转动,以使发动机1的活塞达到点火位置,从而实现发动机1的启动,由此副电机5可实现相关技术中的启动机的功能。
如上所述,发动机1和动力电机2均可用于驱动混合动力汽车的车轮700。例如,如图2a、2b所示,发动机1和动力电机2共同驱动混合动力汽车的同一车轮例如一对前轮71(包括左前轮和右前轮);又如,如图2c所示,发动机1可驱动混合动力汽车的第一车轮例如一对前轮71(包括左前轮和右前轮),动力电机2可驱动混合动力汽车的第二车轮例如一对后轮72(包括左后轮和右后轮)。
换言之,当发动机1和动力电机2共同驱动一对前轮71时,动力系统的驱动力将均输出至一对前轮71,整车采用两驱的驱动方式;当发动机1驱动一对前轮71且动力电机2驱动一对后轮72时,动力系统的驱动力将分别输出至一对前轮71和一对后轮72,整车采用四驱的驱动方式。
进一步地,在两驱的驱动方式下,结合图2a、图2b所示,混合动力汽车的动力系统,还包括差速器8、主减速器9和第一变速器91,其中,发动机1通过离合器7、第一变速器91、主减速器9和差速器8将动力输出到混合动力汽车的第一车轮例如一对前轮71,动力电机2通过主减速器9和差速器8输出驱动力至混合动力汽车的第一车轮例如一对前轮71。
在四驱的驱动方式下,结合图2c所示,混合动力汽车的动力系统,还包括第一变速器91和第二变速器92,其中,发动机1通过离合器7和第一变速器91将动力输出到混合动力汽车的第一车轮例如一对前轮71,动力电机2通过第二变速器92输出驱动力至混合动力汽车的第二车轮例如一对后轮72。
其中,离合器7与第一变速器91可集成设置。
在本发明的实施例中,由于副电机5的发电电压一般是连接在动力电池3的两端,因此在动力电池3与DC-DC变换器4连接时,输入至DC-DC变换器4的电压是稳定的。当动力电池3失效或损坏而与DC-DC变换器4断开连接时,此时需要对副电机5发电时输出的交流电进行控制,即可通过稳压电路6对副电机5发电时输出至DC-DC变换器4的直流电进行稳压处理。
在本发明的一些实施例中,如图3所示,副电机5包括副电机控制器51,副电机控制器51包括逆变器511和调节器512,调节器512用于当动力电池3断开与DC-DC变换器4 的连接时,根据稳压电路6的输出信号输出第一调节信号和第二调节信号,以使逆变器511输出的直流母线电压保持稳定,其中,第一调节信号用于对副电机5的d轴电流进行调节,第二调节信号用于对副电机5的q轴电流进行调节。
进一步地,在一些实施例中,如图3所示,稳压电路6包括第一电压采样器61和目标电压采集器62。第一电压采样器61对逆变器511输出的直流母线电压进行采样以获得第一电压采样值,并将第一电压采样值输出至调节器512,目标电压采集器62获取目标参考电压,并将目标参考电压发送至调节器512。调节器512用于根据目标参考电压与第一电压采样值之间的电压差值输出第一调节信号和第二调节信号。其中,稳压电路6的输出信号包括第一电压采样值和目标参考电压。
具体地,副电机控制器51通过稳压电路6与DC-DC变换器4相连。副电机控制器51通过逆变器511输出直流母线电压,第一电压采样器61对逆变器511输出的直流母线电压进行采样以获得第一电压采样值,并将第一电压采样值输出至调节器512。目标电压采集器62获取目标参考电压,并将目标参考电压发送至调节器512,调节器512根据目标参考电压与第一电压采样值之间的电压差值输出第一调节信号和第二调节信号,通过第一调节信号对副电机5的d轴电流进行调节,通过第二调节信号对副电机5的q轴电流进行调节,以便副电机控制器51在动力电池3断开与DC-DC变换器4连接时根据副电机5的d轴电流和q轴电流对逆变器511进行控制,使逆变器511输出的直流母线电压保持稳定。
在一些示例中,可以采用PWM(Pulse Width Modulation,脉宽调制技术)对逆变器511进行控制,以使逆变器511输出的直流母线电压保持稳定。如图4所示,调节器512包括误差计算单元a、第一PID调节单元b和第二PID调节单元c。
其中,误差计算单元a分别与第一电压采样器61和目标电压采集器62相连,误差计算单元a用以获取目标参考电压与第一电压采样值之间的电压差值。第一PID调节单元b与误差计算单元a相连,第一PID调节单元b对目标参考电压与第一电压采样值之间的电压差值进行调节以输出第一调节信号。第二PID调节单元c与误差计算单元a相连,第二PID调节单元c对目标参考电压与第一电压采样值之间的电压差值进行调节以输出第二调节信号。
具体地,如图4所示,第一电压采样器61实时对逆变器511输出的直流母线电压进行采样以获得第一电压采样值,并将第一电压采样值输出至误差计算器a,目标电压采集器62获取目标参考电压,并将目标参考电压输出至误差计算单元a。误差计算单元a获取目标参考电压与第一电压采样值之间的电压差值,并将该差值分别输入至第一PID调节单元b和第二PID调节单元c,通过第一PID调节单元b输出第一调节信号(即图4中的Id *)和通过第二PID调节单元c输出第二调节信号(即图4中的Iq *)。此时,副电机5输出的 三相电流经3S/2R变换后变为dq坐标系下的d轴电流Id和q轴电流Iq,分别获取Id *和Id、Iq *和Iq之间差值,并分别通过相应的PID调节器对差值进行控制以得到副电机5的α轴电压Uα和副电机5的β轴电压Uβ;将Uα和Uβ输入给SVPWM模块,输出三相占空比,通过该占空比对逆变器511进行控制,通过逆变器511调整副电机5输出的d轴电流Id和q轴电流Iq,进而通过第一控制信号再次对调整后的副电机的d轴电流进行调节,通过第二调节信号再次对副电机的q轴电流进行调节。由此,形成对副电机d轴电流和q轴电流的闭环控制,通过该闭环控制能够使逆变器511输出的直流母线电压保持稳定,即副电机5发电时输出至DC-DC变换器4的直流电压保持稳定。
需要说明的是,副电机控制器51中逆变器511输出的直流电压和副电机5输出的反电动势有一定的相关性,为保证控制效率,可以将逆变器511输出的电压设为3/2的相电压(即驱动状态时最大相电压为直流母线电压的2/3)。由此,逆变器511输出的直流电压与副电机5转速呈一定的关系,当副电机5转速越高,逆变器511输出的直流电压越高,副电机5转速越低,逆变器511输出的直流电压越低。
进一步地,为了保证输入DC-DC变换器4的直流电压在预设电压区间,在本发明的一些实施例中,如图3所示,稳压电路6还可以包括稳压器63、第二电压采样器64和稳压控制器65。
其中,稳压器63连接到逆变器511的直流输出端,稳压器63对逆变器511输出的直流母线电压进行稳压处理,稳压器63的输出端连接DC-DC变换器4的输入端。第二电压采样器64对稳压器63的输出电压进行采样以获得第二电压采样值。稳压控制器65分别与稳压器63和第二电压采样器64相连,稳压控制器65用于根据预设参考电压和第二电压采样值对稳压器63的输出电压进行控制以使稳压器63的输出电压处于预设电压区间。
在一些示例中,稳压器63可以采用开关型稳压电路,如BOOST升压电路,其不仅能够升压,且控制精度高。其中,BOOST升压电路中开关器件可以采用碳化硅MOSFET,如英飞凌的IMW120R45M1,可耐压1200V,内阻为45mΩ,具有耐压高,内阻小,导热性能良好的特点,比同样规格的高速IGBT损耗要小好几十倍。稳压器63的驱动芯片可以采用英飞凌的1EDI60N12AF,其采用无磁芯变压隔离,控制安全可靠。可以理解,该驱动芯片可产生驱动信号。
在另一些示例中,稳压器63可以采用升降压型的BUCK-BOOST电路,其能够在电机的转速为高速时降压,在电机的转速为低速时升压,且控制精度高。
在又一些示例中,稳压器63还可以采用线性稳压电路或者三端稳压电路(如LM317和7805等)。
可以理解,为便于电路设计,第一电压采样器61和第二电压采样器64的电路结构可 以是相同的。例如,第一电压采样器61和第二电压采样器64均可以包括差分电压电路,其具有精度高,且方便调整放大倍数的特点。
可选地,稳压控制器65可以采用PWM专用调制芯片SG3525,其具有体积小,控制简单,能够输出稳定的PWM波的特点。
举例而言,上述混合动力汽车的动力系统的工作流程为:第二电压采样器64对稳压器63的输出电压进行采样以获得第二电压采样值,并将第二电压采样值输出至芯片SG3525,芯片SG3525可以设置参考电压,并对参考电压和第二电压采样值进行比较,再结合芯片SG3525产生的三角波可以生成两路的PWM波,通过两路PWM波对稳压器63进行控制以使稳压器63输出至DC-DC变换器4的电压处于预设电压区间,如11-13V,由此,能够保证混合动力汽车中低压负载的正常工作。
需要说明的是,如果输出的直流母线电压过低,第二电压采样值就很小,则SG3525可发出占空比较大的PWM波,来进行升压。
由此,副电机5和DC-DC变换器4有一路单独稳压供电通道,当动力电池3发生故障,断开与DC-DC变换器4的连接时,可通过副电机5和DC-DC变换器4的单独稳压供电通道,可以保证整车的低压用电,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
在本发明的一个具体实施例中,如图5所示,动力电池3损坏,断开与DC-DC变换器4的连接时,稳压电路6连接在DC-DC变换器4的进线端。
其中,动力电机2还包括第二控制器21,副电机控制器51与第二控制器21相连,并通过稳压电路6与DC-DC变换器4相连。副电机5发电时产生交流电,逆变器511可将副电机5发电产生的交流电变换为高压直流电例如600V高压直流电,以实现给动力电机2、DC-DC变换器4中的至少一个供电。
可以理解,第二控制器21可具有DC-AC变换单元,DC-AC变换单元可将逆变器511输出的高压直流电变换为交流电,以给动力电机2供电。
具体地,如图5所示,副电机控制器51的逆变器511具有第一直流端DC1,第二控制器21具有第二直流端DC2,DC-DC变换器4具有第三直流端DC3。副电机控制器51的第一直流端DC1通过稳压电路6与DC-DC变换器4的第三直流端DC3相连,以给DC-DC变换器4提供稳定电压,且DC-DC变换器4可对稳压后的直流电进行DC-DC变换。并且,副电机控制器51的逆变器511还可通过第一直流端DC1输出高压直流电至第二控制器21以给动力电机2供电。
进一步地,如图5所示,DC-DC变换器4还分别与混合动力汽车中的电器设备10和低压蓄电池20相连以给电器设备10和低压蓄电池20供电,且低压蓄电池20还与电器设备10相连。
具体地,如图5所示,DC-DC变换器4还具有第四直流端DC4,DC-DC变换器4可将副电机5通过副电机控制器51输出的高压直流电转换为低压直流电,并通过第四直流端DC4输出该低压直流电。DC-DC变换器4的第四直流端DC4与电器设备10相连,以为电器设备10供电,其中,电器设备10可为低压用电设备,其包括但不限于车灯、收音机等。DC-DC变换器4的第四直流端DC4还可与低压蓄电池20相连,以为低压蓄电池20充电。低压蓄电池20与电器设备10相连,以给电器设备10供电,特别地,在副电机5停止发电时,低压蓄电池20可为电器设备10供电,从而保证整车的低压用电,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
需要说明的是,在本发明实施例中,低压可指12V(伏)或24V的电压,高压可指600V的电压,预设电压区间可指11~13V或23~25V,但不限于此。
综上,本发明实施例的混合动力汽车的动力系统,不仅能够维持整车低速电平衡及低速平顺性,还能够在动力电池失效或损坏而断开与DC-DC变换器的连接时保证DC-DC变换器正常工作,且控制精度高,损耗小。
进一步地,本发明还提出了一种混合动力汽车。
图6是根据本发明实施例的混合动力汽车的结构框图。如图6所示,混合动力汽车200包括上述的混合动力汽车的动力系统100。
本发明的混合动力汽车,不仅能够维持整车低速电平衡及低速平顺性,充分利用电机的机械能,而且能够使DC-DC变换器的输入电压保持稳定,保证了DC-DC变换器正常工作,且损耗低,效率高。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术 人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种混合动力汽车的动力系统,其特征在于,包括:
    发动机,所述发动机通过离合器将动力输出到所述混合动力汽车的车轮;
    动力电机,所述动力电机用于输出驱动力至所述混合动力汽车的车轮;
    动力电池,所述动力电池用于给所述动力电机供电;
    DC-DC变换器;
    与所述发动机相连的副电机,所述副电机分别与所述动力电机、所述DC-DC变换器和动力电池相连;
    稳压电路,所述稳压电路连接在所述副电机与所述DC-DC变换器之间,所述稳压电路对所述副电机发电时输出至所述DC-DC变换器的直流电进行稳压处理。
  2. 如权利要求1所述的混合动力汽车的动力系统,其特征在于,所述副电机包括副电机控制器,所述副电机控制器包括逆变器和调节器,所述调节器用于当所述动力电池断开与所述DC-DC变换器的连接时,根据所述稳压电路的输出信号输出第一调节信号和第二调节信号,以使所述逆变器输出的直流母线电压保持稳定,其中,所述第一调节信号用于对所述副电机的d轴电流进行调节,所述第二调节信号用于对所述副电机的q轴电流进行调节。
  3. 如权利要求2所述的混合动力汽车的动力系统,其特征在于,所述稳压电路包括第一电压采样器和目标电压采集器,所述第一电压采样器对所述逆变器输出的直流母线电压进行采样以获得第一电压采样值,并将所述第一电压采样值输出至所述调节器,所述目标电压采集器获取目标参考电压,并将所述目标参考电压发送至所述调节器;
    所述调节器用于根据所述目标参考电压与所述第一电压采样值之间的电压差值输出所述第一调节信号和第二调节信号;
    其中,所述稳压电路的输出信号包括所述第一电压采样值和目标参考电压。
  4. 如权利要求3所述的混合动力汽车的动力系统,其特征在于,所述稳压电路还包括:
    稳压器,所述稳压器连接所述逆变器的直流输出端,所述稳压器对所述逆变器输出的直流母线电压进行稳压处理,所述稳压器的输出端连接所述DC-DC变换器的输入端;
    第二电压采样器,所述第二电压采样器对所述稳压器的输出电压进行采样以获得第二电压采样值;
    稳压控制器,所述稳压控制器分别与所述稳压器和所述第二电压采样器相连,所述稳压控制器用于根据预设参考电压和所述第二电压采样值对所述稳压器的输出电压进行控制以使所述稳压器的输出电压处于预设电压区间。
  5. 如权利要求4所述的混合动力汽车的动力系统,其特征在于,所述稳压器包括BOOST 升压电路。
  6. 如权利要求4所述的混合动力汽车的动力系统,其特征在于,所述第一电压采样器和所述第二电压采样器的电路结构相同。
  7. 如权利要求6所述的混合动力汽车的动力系统,其特征在于,所述第一电压采样器和所述第二电压采样器均包括差分电压电路。
  8. 如权利要求3所述的混合动力汽车的动力系统,其特征在于,所述调节器包括:
    误差计算单元,所述误差计算单元分别与所述第一电压采样器和所述目标电压采集器相连,所述误差计算单元用以获取所述目标参考电压与所述第一电压采样值之间的电压差值;
    第一PID调节单元,所述第一PID调节单元与所述误差计算单元相连,所述第一PID调节单元对所述目标参考电压与所述第一电压采样值之间的电压差值进行调节以输出第一调节信号;
    第二PID调节单元,所述第二PID调节单元与所述误差计算单元相连,所述第二PID调节单元对所述目标参考电压与所述第一电压采样值之间的电压差值进行调节以输出第二调节信号。
  9. 如权利要求1所述的混合动力汽车的动力系统,其特征在于,所述副电机为BSG电机。
  10. 如权利要求1所述的混合动力汽车的动力系统,其特征在于,所述副电机在所述发动机的带动下进行发电时,实现以下中的至少一种:给所述动力电池充电、给所述动力电机供电和给所述DC-DC变换器供电。
  11. 如权利要求1所述的混合动力汽车的动力系统,其特征在于,所述稳压电路设置在所述副电机的输出线上,其中,所述副电机通过所述稳压电路分别与所述动力电机、所述动力电池和所述DC-DC变换器相连。
  12. 如权利要求1所述的混合动力汽车的动力系统,其特征在于,所述稳压电路设置在所述DC-DC变换器的进线上,且所述副电机分别与所述DC-DC变换器和所述动力电池连接。
  13. 如权利要求1-12任意一项所述的混合动力汽车的动力系统,其特征在于,所述发动机和所述动力电机共同驱动所述混合动力汽车的同一车轮。
  14. 如权利要求1-13任意一项所述的混合动力汽车的动力系统,其特征在于,所述混合动力汽车的车轮包括第一车轮和第二车轮;
    发动机通过离合器将动力输出到所述混合动力汽车的第一车轮;
    所述动力电机用于输出驱动力至所述混合动力汽车的第二车轮。
  15. 一种混合动力汽车,其特征在于,包括如权利要求1-14中任一项所述的混合动力汽车的动力系统。
PCT/CN2018/081046 2017-03-31 2018-03-29 混合动力汽车及其动力系统 WO2018177359A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18775746.3A EP3604023B1 (en) 2017-03-31 2018-03-29 Hybrid electric vehicle and power system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710210204.1A CN108656966B (zh) 2017-03-31 2017-03-31 混合动力汽车及其动力系统
CN201710210204.1 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018177359A1 true WO2018177359A1 (zh) 2018-10-04

Family

ID=63674277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081046 WO2018177359A1 (zh) 2017-03-31 2018-03-29 混合动力汽车及其动力系统

Country Status (3)

Country Link
EP (1) EP3604023B1 (zh)
CN (1) CN108656966B (zh)
WO (1) WO2018177359A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110329076B (zh) * 2019-08-08 2024-02-27 河南职业技术学院 一种混合动力工程机械车辆电能控制系统的控制方法
CN113043972B (zh) * 2021-03-23 2023-03-28 联合汽车电子有限公司 直流-直流转换器、车辆及混合动力系统的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032438A1 (fr) * 1998-11-27 2000-06-08 Hair S.A. Bloc generateur d'energie intelligent pour maintenir chargees les batteries d'un vehicule electrique
JP2000253507A (ja) * 1999-02-26 2000-09-14 Nissan Motor Co Ltd ハイブリッド車両の制御装置
US20090237019A1 (en) * 2008-03-18 2009-09-24 Toshifumi Yamakawa Motor drive control apparatus, vehicle equipped with motor drive control apparatus, and motor drive control method
CN101774379A (zh) * 2010-03-19 2010-07-14 无锡新大力电机有限公司 一种车用混合动力四轮式电驱动系统
CN104627171A (zh) * 2014-12-12 2015-05-20 山东理工大学 混合动力汽车电控方法
CN204432353U (zh) * 2015-03-02 2015-07-01 湖南机电职业技术学院 一种车用混合动力装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245009A (ja) * 1999-02-24 2000-09-08 Honda Motor Co Ltd ハイブリッド車両
EP1612085A4 (en) * 2003-04-04 2012-03-28 Hitachi Ltd ELECTRIC DRIVING DEVICE FOR VEHICLE AND HYBRID ENGINE FOUR-WHEEL DRIVE DEVICE
CN201388079Y (zh) * 2009-03-30 2010-01-20 深圳市金威源科技有限公司 一种混合动力汽车充电器
EP2439098A4 (en) * 2009-06-05 2017-05-17 Toyota Jidosha Kabushiki Kaisha Electric car, and wholly allowable discharge electric energy setting method in the electric car
CN102118113B (zh) * 2009-12-31 2013-12-25 西门子公司 一种整流器
CN201769767U (zh) * 2010-08-24 2011-03-23 浙江吉利汽车研究院有限公司 串联混合动力系统电路
CN103935226B (zh) * 2014-04-22 2016-09-28 联合汽车电子有限公司 增程式混合动力汽车的动力系统及其控制方法
CN106143476B (zh) * 2015-03-25 2019-11-08 比亚迪股份有限公司 混合动力汽车及其驱动控制方法和装置
JP6436433B2 (ja) * 2015-07-21 2018-12-12 パナソニックIpマネジメント株式会社 車両用電源装置および車両用電源装置の制御方法
CN105490601A (zh) * 2015-12-18 2016-04-13 江西清华泰豪三波电机有限公司 基于轴带发电机宽转速范围电压调节的混合动力汽车
CN207523446U (zh) * 2017-03-31 2018-06-22 比亚迪股份有限公司 混合动力汽车及其动力系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032438A1 (fr) * 1998-11-27 2000-06-08 Hair S.A. Bloc generateur d'energie intelligent pour maintenir chargees les batteries d'un vehicule electrique
JP2000253507A (ja) * 1999-02-26 2000-09-14 Nissan Motor Co Ltd ハイブリッド車両の制御装置
US20090237019A1 (en) * 2008-03-18 2009-09-24 Toshifumi Yamakawa Motor drive control apparatus, vehicle equipped with motor drive control apparatus, and motor drive control method
CN101774379A (zh) * 2010-03-19 2010-07-14 无锡新大力电机有限公司 一种车用混合动力四轮式电驱动系统
CN104627171A (zh) * 2014-12-12 2015-05-20 山东理工大学 混合动力汽车电控方法
CN204432353U (zh) * 2015-03-02 2015-07-01 湖南机电职业技术学院 一种车用混合动力装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604023A4 *

Also Published As

Publication number Publication date
CN108656966B (zh) 2024-03-05
EP3604023A4 (en) 2020-04-15
CN108656966A (zh) 2018-10-16
EP3604023B1 (en) 2024-05-29
EP3604023A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
CN106357164B (zh) 一种双凸极高压直流起动发电系统及控制方法
JP5104723B2 (ja) 電動機制御装置,駆動装置およびハイブリッド駆動装置
US8164282B2 (en) Motive power output apparatus and vehicle with the same
EP2380769B1 (en) Output control apparatus for hybrid engine generator
WO2007041948A2 (fr) Systeme de commande multiplicateur de demarrage et de generation et procede d'utilisation de ce systeme et vehicule dynamique hybride a deplacement electrique utilisant ce systeme et ce procede
JP2013121313A (ja) 電気自動車のdc−dcコンバータシステムおよび制御方法
US20070108936A1 (en) Motor drive apparatus
CN103872971A (zh) 一种方波复合励磁起动/发电机控制方法
TWI688501B (zh) 混合動力汽車及其動力系統
CN207523430U (zh) 混合动力汽车及其动力系统
WO2017215450A1 (zh) 一种电机控制器、电机控制系统和电动汽车
WO2018177359A1 (zh) 混合动力汽车及其动力系统
WO2017215182A1 (zh) 异步发电系统和列车
WO2022083220A1 (zh) 一种电驱动系统、动力总成以及电动汽车
CN104467589A (zh) 内燃机车交直电传动系统及其励磁控制方法
WO2020037840A1 (zh) 混合动力车辆传动系统
CN207523446U (zh) 混合动力汽车及其动力系统
CN207523453U (zh) 混合动力汽车及其动力系统
US10951041B2 (en) Motor system
KR101461918B1 (ko) 연료 전지 차량의 전원 장치
JP2012044765A (ja) バッテリ制御装置及び車両
KR101878036B1 (ko) 차량 컨버터 제어방법 및 그 시스템
CN111555421A (zh) 基于自励原理的直流电动机发动机的发电系统
CN203957902U (zh) 一种内燃机车牵引系统
CN112671282B (zh) 三级式同步电机起动过程交直流励磁自然切换方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018775746

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018775746

Country of ref document: EP

Effective date: 20191031