WO2017215182A1 - 异步发电系统和列车 - Google Patents

异步发电系统和列车 Download PDF

Info

Publication number
WO2017215182A1
WO2017215182A1 PCT/CN2016/104555 CN2016104555W WO2017215182A1 WO 2017215182 A1 WO2017215182 A1 WO 2017215182A1 CN 2016104555 W CN2016104555 W CN 2016104555W WO 2017215182 A1 WO2017215182 A1 WO 2017215182A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
voltage
asynchronous
converter circuit
asynchronous generator
Prior art date
Application number
PCT/CN2016/104555
Other languages
English (en)
French (fr)
Inventor
姜东杰
刘有锋
王鑫
陈瑞涵
孙树鑫
Original Assignee
中车唐山机车车辆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车唐山机车车辆有限公司 filed Critical 中车唐山机车车辆有限公司
Publication of WO2017215182A1 publication Critical patent/WO2017215182A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/42Asynchronous induction generators
    • H02K17/44Structural association with exciting machines

Definitions

  • the present invention relates to the field of power electronics, and in particular to an asynchronous power generation system and a train.
  • the railway Since the advent of the railway in the last century, the railway has formed a power supply system that uses the engine as the power source to drive the generator to generate electricity for the traction of the locomotive and auxiliary equipment.
  • the engine usually uses a diesel engine
  • the early generator usually uses a DC generator.
  • the DC generator is gradually replaced by an AC synchronous generator.
  • an AC permanent magnet synchronous generator has also been used.
  • the AC synchronous generator is large in size and heavy in weight, which makes the vehicle consume more energy, and the excitation mechanism is complicated, and there are many components, so that the failure rate is high, and the maintenance cost is high when the failure occurs, and the AC permanent magnet synchronous generator The cost is high due to the large consumption of rare earth resources.
  • the existing AC synchronous generators result in higher vehicle costs.
  • the invention provides an asynchronous power generation system and a train, which can reduce the manufacturing and maintenance cost of the power generation system, and is beneficial to the miniaturization design, production and installation of the generator set.
  • the asynchronous power generation system comprises: an asynchronous generator, a converter circuit and a traction control unit;
  • the asynchronous generator is electrically connected to the converter circuit, and the converter circuit is electrically connected to the traction control unit;
  • the asynchronous generator is configured to output an alternating voltage
  • the current conversion circuit is configured to provide excitation to the asynchronous generator, and convert the alternating current voltage output by the asynchronous generator into a direct current voltage output;
  • the traction control unit is configured to control the converter circuit to provide excitation to the asynchronous generator.
  • the train provided by the present invention includes: the asynchronous power generation system provided by any embodiment of the present invention System.
  • the invention provides an asynchronous power generation system and a train
  • the asynchronous power generation system comprises: an asynchronous generator, a converter circuit and a traction control unit, wherein the asynchronous generator is electrically connected with the converter circuit, and the converter circuit is electrically connected with the traction control unit
  • the asynchronous generator is used for outputting an alternating voltage
  • the converter circuit is used for supplying excitation to the asynchronous generator
  • the alternating current output of the asynchronous generator is converted into a direct current voltage output
  • the traction control unit is used for controlling the variable current circuit to the asynchronous generator Provide excitation.
  • the asynchronous power generation system provided by the invention adopts an asynchronous generator to realize power generation, and the converter circuit realizes excitation and rectification of the asynchronous generator under the control of the traction control unit, reduces the manufacturing and maintenance cost of the power generation system, and is beneficial to the generator set. Miniaturized design, production and installation.
  • FIG. 1 is a schematic structural diagram of an asynchronous power generation system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of an asynchronous power generation system according to Embodiment 2 of the present invention.
  • FIG. 3 is a circuit diagram of an asynchronous power generation system according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of a train according to Embodiment 1 of the present invention.
  • FIG. 1 is a schematic structural diagram of an asynchronous power generation system according to Embodiment 1 of the present invention.
  • the asynchronous power generation system provided in this embodiment may include an asynchronous generator 11 , a converter circuit 12 , and a traction control unit 13 .
  • the asynchronous generator 11 is electrically connected to the converter circuit 12, and the converter circuit 12 is electrically connected to the traction control unit 13.
  • the asynchronous generator 11 is for outputting an alternating voltage.
  • the converter circuit 12 is for supplying excitation to the asynchronous generator 11, and converting the AC voltage output from the asynchronous generator 11 into a DC voltage output.
  • the traction control unit 13 is configured to control the converter circuit 12 to provide excitation to the asynchronous generator 11.
  • the converter circuit 12 is electrically connected to the asynchronous generator 11 and the traction control unit 13, respectively.
  • the converter circuit 12 is the asynchronous generator 11 under the control of the traction control unit 13.
  • the excitation is provided, that is, the asynchronous generator 11 is provided with a rotating magnetic field, and then the asynchronous generator 11 is driven by the external force to realize the reverse power transmission, that is, the output AC voltage, and the converter circuit 12 converts the AC voltage output from the asynchronous generator 11 It is a DC voltage and thus a load. It can be seen that the converter circuit 12 realizes the excitation and rectification of the asynchronous generator 11 under the control of the traction control unit 13.
  • the Traction Control Unit is a modular microprocessor control unit for railway locomotives.
  • the TCU is used to control electric drive equipment, and its function is to achieve reasonable and effective traction. Braking, as an important part of locomotive control, the TCU must maintain a safe and stable working condition for a long time.
  • the asynchronous power generation system uses the asynchronous generator 11 to generate power
  • the asynchronous generator 11 is an AC motor
  • the ratio of the rotational speed of the load to the frequency of the connected power grid is not constant, and therefore, compared with the direct current Generator, AC synchronous generator or AC permanent magnet synchronous generator, the asynchronous generator 11 has a simple structure, is convenient to manufacture, use and maintain, and can be operated. Relying on the advantages of small quality and low cost. Therefore, the asynchronous power generation system using the asynchronous generator 11 reduces the manufacturing and maintenance cost of the power generation system compared to the synchronous power generation system using the direct current generator, the alternating current synchronous generator or the alternating current permanent magnet synchronous generator in the prior art. It is conducive to the miniaturization design, production and installation of generator sets.
  • asynchronous generator 11 is not limited in this embodiment, and is selected according to actual needs.
  • the asynchronous generator 11 is a three-phase asynchronous generator.
  • the asynchronous power generation system may further include: an engine connected to the asynchronous generator 11 .
  • the engine is used to provide mechanical energy to the asynchronous generator 11.
  • the embodiment does not limit the type and specific model of the engine, and is selected according to actual needs, for example, the engine may be a diesel engine, and the like.
  • the embodiment provides an asynchronous power generation system, comprising: an asynchronous generator, a converter circuit and a traction control unit, wherein the asynchronous generator is electrically connected to the converter circuit, the converter circuit is electrically connected to the traction control unit, and the asynchronous generator
  • the converter circuit is used to supply excitation to the asynchronous generator, and the AC voltage output from the asynchronous generator is converted into a DC voltage output, and the traction control unit is used to control the converter circuit to provide excitation to the asynchronous generator.
  • the asynchronous power generation system provided by the embodiment adopts an asynchronous generator to realize power generation, and the converter circuit realizes excitation and rectification of the asynchronous generator under the control of the traction control unit, reduces the manufacturing and maintenance cost of the power generation system, and is beneficial to the generator set. Miniaturized design, production and installation.
  • FIG. 2 is a schematic structural diagram of an asynchronous power generation system according to Embodiment 2 of the present invention.
  • This embodiment provides another implementation manner of an asynchronous power generation system based on the first embodiment, and particularly provides a variable current circuit. Concrete implementation of the circuit.
  • the asynchronous power generation system provided in this embodiment may include: an asynchronous generator 11, a converter circuit 12, and a traction control unit 13, wherein the converter circuit 12 may include: a converter circuit 121 and an excitation power supply. Circuit 122.
  • the converter circuit 121 is electrically connected to the asynchronous generator 11 and the traction control unit 13, respectively, and the excitation power supply circuit 122 is electrically connected to the traction control unit 13.
  • the excitation power supply circuit 122 is configured to supply a DC excitation voltage to the asynchronous generator 11.
  • the converter circuit 121 is configured to convert the DC excitation voltage into an AC excitation voltage to be supplied to the asynchronous generator 11, and to convert the AC voltage output from the asynchronous generator 11 into a DC voltage output.
  • the traction control unit 13 is further configured to control the excitation power supply circuit 122 to be electrically connected to the converter circuit 121 if the DC voltage outputted by the converter circuit 121 is lower than the first threshold, or if the DC voltage output by the converter circuit 121 is output. Above the first threshold, the excitation power supply circuit 122 is controlled to be disconnected from the converter circuit 121.
  • the converter circuit 12 includes a converter circuit 121 and an excitation power supply circuit 122.
  • the traction control unit 13 is used to control the connection and disconnection of the converter circuit 121 and the excitation power supply circuit 122.
  • the asynchronous generator 11 needs residual magnetism to gradually establish the power generation voltage. Therefore, if the DC voltage outputted by the converter circuit 121 is lower than the first threshold, the traction control unit 13 controls the excitation power supply circuit 122 and the converter circuit 121 to implement electricity.
  • a DC excitation voltage is supplied to the asynchronous generator 11, and the converter circuit 121 converts the DC excitation voltage into an AC excitation voltage to supply excitation to the asynchronous generator 11, and the asynchronous generator 11 establishes a power generation voltage to start power generation.
  • the traction control unit 13 controls the excitation power supply circuit 122 to be disconnected from the converter circuit 121, the AC voltage outputted by the asynchronous generator 11 continues to rise, and the converter circuit 121 continuously converts the AC voltage into a DC voltage output. Until a stable voltage is output. It can be seen that the excitation power supply circuit 122 and the converter circuit 121 realize the excitation and rectification of the asynchronous generator 11 by the above process.
  • the value of the first threshold is not limited, and is set as needed.
  • the excitation power supply circuit 122 can include: a first DC power supply and a first direct current-direct current (DC/DC) converter.
  • the output voltage of the first DC power source is greater than a second threshold, and the first DC/DC converter uses a non-boost circuit.
  • the excitation power circuit 122 can include: a second DC power source and a second DC/DC converter.
  • the output voltage of the second DC power source is less than a second threshold, and the second DC/DC converter adopts a boost circuit.
  • the DC/DC converter refers to a voltage converter that converts an input voltage into an effective fixed output voltage.
  • DC/DC converters are generally classified into three types: step-up DC/DC converters, step-down DC/DC converters, and buck-boost DC/DC converters.
  • the value of the second threshold is not limited, and is set as needed.
  • the embodiment provides an asynchronous power generation system, including: an asynchronous generator, a converter circuit, and a traction control unit, wherein the converter circuit includes a converter circuit and a field power circuit.
  • the asynchronous power generation system provided by the embodiment adopts an asynchronous generator to realize power generation, and the converter circuit realizes excitation and rectification of the asynchronous generator under the control of the traction control unit, reduces the manufacturing and maintenance cost of the power generation system, and is beneficial to the generator set. Miniaturized design, production and installation.
  • the asynchronous power generation system provided in this embodiment may include: an asynchronous generator 11, a converter circuit, and a traction control unit 13.
  • the converter circuit may include: a converter circuit 121 and an excitation power circuit, and a excitation power supply.
  • the circuit can include a second DC power source 123 and a second DC/DC converter 124.
  • the second DC/DC converter 124 may include: an input contactor KM1, an output contactor KM2, a DC input current transformer TA21, a DC input voltage transformer TV21, a DC output current transformer TA22, and a DC output voltage transformer TV22.
  • the first terminal 1 of the input contactor KM1 is connected to the anode of the second DC power source 123, and the second terminal 2 of the input contactor KM1 is connected to the cathode of the second DC power source 123.
  • the first end of the DC input current transformer TA21 is connected to the third terminal 3 of the input contactor KM1, the second end of the DC input current transformer TA21, the first end of the first capacitor C21, the first end of the inductor L21, and The first end of the DC input voltage transformer TV21 is connected.
  • the second end of the inductor L21 is connected between the first IGBT Q21 and the second IGBT Q22.
  • the first end of the DC output current transformer TA22, the first end of the second capacitor C22, and the first end of the first IGBT Q21 are connected, and the second end of the DC output current transformer TA22, DC
  • the first terminal of the output voltage transformer TV22 and the first terminal 1 of the output contactor KM2 are connected.
  • the second end of the output voltage transformer TV22 and the second terminal 2 of the output contactor KM2 are connected.
  • the third terminal 3 and the fourth terminal 4 of the output contactor KM2 are connected to the output of the converter circuit.
  • the converter circuit 121 may include: a first fuse RU1, a second fuse RU2, a third fuse RU3, a first current transformer CTU1, a second current transformer CTW1, and a third current transformer TA1.
  • a voltage transformer TV1 an IGBT module, a third IGBT Q7, a first diode D21, a second diode Q8, a third capacitor C1, a first resistor R1 and a second resistor R2.
  • the IGBT module includes three parallel IGBT groups formed by six fourth IGBTs (Q1 to Q6), and each IGBT group includes two fourth IGBTs connected in series.
  • the first end of the first fuse RU1 is connected to the U-phase output end of the asynchronous generator
  • the first end of the second fuse RU2 is connected to the V-phase output end of the asynchronous generator
  • the first end of the third fuse RU3 is The W-phase output of the asynchronous generator is connected.
  • the second end of the first fuse RU1 is connected to the first end of the first current transformer CTU1
  • the second end of the third fuse RU3 is connected to the first end of the second current transformer CTW1.
  • the second end of the first current transformer CTU1, the second end of the second fuse RU2, and the second end of the second current transformer CTW1 are respectively connected between two fourth IGBTs in one IGBT group.
  • the first end of the IGBT module, the first end of the third IGBT Q7, the first end of the third capacitor C1, and the first end of the third current transformer TA1 are connected.
  • the second end of the third current transformer TA1, the first end of the first voltage transformer TV1, the first end of the first resistor R1, the cathode of the first diode D21, and the positive output of the converter circuit are connected.
  • the second resistor R2 is connected to the second end of the third IGBT Q7 and the anode of the second diode Q8 between.
  • the positive output terminal and the negative output terminal of the converter circuit 121 are respectively connected to the excitation power supply circuit.
  • the converter circuit includes a converter circuit 121 and an excitation power supply circuit.
  • the excitation power supply circuit includes a second DC power source 123 and a second DC/DC converter 124.
  • the traction control unit 13 is for controlling the connection and disconnection of the converter circuit 121 and the second DC/DC converter 124.
  • the asynchronous generator 11 needs residual magnetism to gradually establish the power generation voltage. Therefore, if the DC voltage U1 outputted by the converter circuit 121 is lower than the first threshold, the traction control unit 13 controls the input of the second DC/DC converter 124. The contactor KM1 and the output contactor KM2 are closed, so that the second DC/DC converter 124 is electrically connected to the converter circuit 121, and the second DC/DC converter 124 boosts the DC voltage outputted by the second DC power source 123.
  • the third capacitor C1 is charged by the converter circuit 121 for supplying a DC excitation voltage to the asynchronous generator 11, and the converter circuit 121 converts the DC excitation voltage into an AC excitation voltage to provide excitation to the asynchronous generator, and the asynchronous generator 11
  • the power generation voltage is established to start power generation, and through the above process, the second DC/DC converter 124 and the second DC power source 123 realize the excitation of the asynchronous generator.
  • the first resistor R1 is used to limit the charging current of the third capacitor C1.
  • the traction control unit 13 detects that the DC voltage U1 outputted by the converter circuit 121 is higher than the first threshold through the DC output voltage transformer TV22, the traction control unit 13 controls the input contactor KM1 of the second DC/DC converter 124. Disconnected from the output contactor KM2, causing the second DC/DC converter 124 to be disconnected from the converter circuit 121. Thereafter, as the AC voltage output from the asynchronous generator 11 continues to rise, the converter circuit 121 continues to communicate. The voltage is converted to a DC voltage U1 output until a stable voltage is output. It can be seen that through the above process, the excitation power supply circuit and the converter circuit realize the excitation and rectification of the asynchronous generator.
  • the third IGBT Q7 and the second diode Q8 constitute an overvoltage absorbing circuit for absorbing the excess energy during the starting process of the asynchronous generator 11 or during the braking process of the railway locomotive, and maintaining the bus voltage stable.
  • the asynchronous power generation system provided by the embodiment is in the startup process of the asynchronous generator 11
  • the converter circuit 121 and the second DC/DC converter 124 convert the DC power into a three-phase AC electromotive force to provide excitation for the asynchronous generator 11.
  • the converter circuit 121 will be asynchronous.
  • the AC power output from the generator 11 is converted into DC power to provide power supply to the rolling stock.
  • the asynchronous power generation system provided by this embodiment uses an asynchronous generator to reduce the manufacturing and maintenance costs of the power generation system.
  • the specific implementation manner of the second DC power source 123 in this embodiment is not particularly limited, and may be a battery or other DC power supply.
  • the embodiment provides an asynchronous power generation system, including: an asynchronous generator, a converter circuit, and a traction control unit, wherein the converter circuit includes a converter circuit and an excitation power circuit, and the excitation power circuit includes a second DC power supply and a Two DC/DC converters.
  • the asynchronous power generation system provided by the embodiment adopts an asynchronous generator to realize power generation, and the converter circuit realizes excitation and rectification of the asynchronous generator under the control of the traction control unit, reduces the manufacturing and maintenance cost of the power generation system, and is beneficial to the generator set. Miniaturized design, production and installation.
  • FIG. 4 is a schematic structural diagram of a train according to Embodiment 1 of the present invention.
  • the train 200 provided in this embodiment may include the asynchronous power generation system 201 provided by any of the embodiments shown in FIG.
  • the asynchronous power generation system 201 may include: an asynchronous generator, a converter circuit, and a traction control unit.
  • the asynchronous generator is electrically connected to the converter circuit, and the converter circuit is electrically connected to the traction control unit.
  • Asynchronous generator for outputting AC voltage.
  • a converter circuit for supplying excitation to an asynchronous generator and converting an AC voltage output by the asynchronous generator to a DC voltage output.
  • a traction control unit for controlling the converter circuit to provide excitation to the asynchronous generator.
  • the current conversion circuit may include: a converter circuit and an excitation power circuit.
  • the converter circuit is electrically connected to the asynchronous generator and the traction control unit, respectively, and the excitation power supply circuit is electrically connected to the traction control unit.
  • An excitation power circuit for supplying a DC excitation voltage to an asynchronous generator.
  • a converter circuit for converting a DC excitation voltage to an AC excitation voltage to an asynchronous generator and converting an AC voltage output by the asynchronous generator to a DC voltage output.
  • the traction control unit is further configured to: if the DC voltage outputted by the converter circuit is lower than the first threshold The value is controlled to electrically connect the excitation power supply circuit to the converter circuit, or to control the excitation power supply circuit to open the electrical connection with the converter circuit if the DC voltage outputted by the converter circuit is higher than the first threshold.
  • the excitation power supply circuit may include: a first DC power supply and a first DC/DC converter.
  • the output voltage of the first DC power source is greater than a second threshold, and the first DC/DC converter uses a non-boost circuit.
  • the excitation power supply circuit may include: a second DC power supply and a second DC/DC converter.
  • the output voltage of the second DC power source is less than a second threshold, and the second DC/DC converter adopts a boost circuit.
  • the second DC/DC converter may include: an input contactor, an output contactor, a DC input current transformer, a DC input voltage transformer, a DC output current transformer, a DC output voltage transformer, a first capacitor, a second capacitor, an inductor, a first IGBT, and a second IGBT.
  • the first terminal of the input contactor is connected to the anode of the second DC power source, and the second terminal of the input contactor is connected to the cathode of the second DC power source.
  • the first end of the DC input current transformer is connected to the third terminal of the input contactor, the second end of the DC input current transformer, the first end of the first capacitor, the first end of the inductor, and the DC input voltage transformer The first end is connected.
  • the second end of the inductor is connected between the first IGBT and the second IGBT.
  • a fourth terminal of the input contactor a second end of the first capacitor, a second end of the DC input voltage transformer, a second end of the second IGBT, a second end of the second capacitor, and a DC output voltage transformer
  • the two terminals are connected to the second terminal of the output contactor.
  • the third terminal and the fourth terminal of the output contactor are connected to the output of the converter circuit.
  • the converter circuit may include: a first fuse, a second fuse, and a third fuse a breaker, a first current transformer, a second current transformer, a third current transformer, a first voltage transformer, an IGBT module, a third IGBT, a first diode, a second diode, a third capacitor, a first resistor and a second resistor.
  • the IGBT module includes three parallel IGBT groups formed by six fourth IGBTs, each IGBT group including two fourth IGBTs connected in series.
  • the first end of the first fuse is connected to the U-phase output of the asynchronous generator, the first end of the second fuse is connected to the V-phase output of the asynchronous generator, and the first end of the third fuse and the asynchronous generator
  • the W phase output is connected.
  • the second end of the first fuse is connected to the first end of the first current transformer, and the second end of the third fuse is connected to the first end of the second current transformer.
  • the second end of the first current transformer, the second end of the second fuse, and the second end of the second current transformer are respectively connected between two fourth IGBTs in one IGBT group.
  • the first end of the IGBT module, the first end of the third IGBT, the first end of the third capacitor, and the first end of the third current transformer are connected.
  • a second end of the third current transformer, a first end of the first voltage transformer, a first end of the first resistor, a cathode of the first diode, and a positive output of the converter circuit are coupled.
  • the second resistor is connected between the second end of the third IGBT and the anode of the second diode.
  • the positive output terminal and the negative output terminal of the converter circuit are respectively connected to the excitation power supply circuit.
  • the asynchronous generator is a three-phase asynchronous generator.
  • the asynchronous power generation system may further include: an engine connected to the asynchronous generator.
  • the engine is used to provide mechanical energy to an asynchronous generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种异步发电系统和列车,其中,异步发电系统包括:异步发电机(11)、变流电路(12)和牵引控制单元(13);异步发电机(11)与变流电路(12)电连接,变流电路(12)与牵引控制单元(13)电连接;异步发电机(11),用于输出交流电压;变流电路(12),用于向异步发电机(11)提供励磁,以及将异步发电机(11)输出的交流电压转换为直流电压输出;牵引控制单元(13),用于控制变流电路(12)向异步发电机(11)提供励磁。该异步发电系统降低了发电系统的制造和维护成本,有利于发电机组的小型化设计、生产和安装。

Description

异步发电系统和列车 技术领域
本发明涉及电力电子技术领域,尤其涉及一种异步发电系统和列车。
背景技术
轨道车辆自上世纪问世以来,已经形成了以发动机为动力源驱动发电机发电的动力提供系统,用于机车车辆牵引和辅助设备供电。
其中,发动机通常使用柴油发动机,早期的发电机通常采用直流发电机,随着晶体管技术的发展,直流发电机逐步被交流同步发电机取代,近年来也使用交流永磁同步发电机。
但是,交流同步发电机的体积大、重量重,使得车辆能耗较大,且励磁机构复杂,部件较多,使得故障率高,且出现故障时维护成本较高,而交流永磁同步发电机由于大量消耗稀土资源,使得成本较高。综上,现有的交流同步发电机导致了车辆成本较高。
发明内容
本发明提供一种异步发电系统和列车,可以降低发电系统的制造和维护成本,有利于发电机组的小型化设计、生产和安装。
本发明提供的异步发电系统,包括:异步发电机、变流电路和牵引控制单元;
所述异步发电机与所述变流电路电连接,所述变流电路与所述牵引控制单元电连接;
所述异步发电机,用于输出交流电压;
所述变流电路,用于向所述异步发电机提供励磁,以及将所述异步发电机输出的所述交流电压转换为直流电压输出;
所述牵引控制单元,用于控制所述变流电路向所述异步发电机提供励磁。
本发明提供的列车,包括:本发明任一实施例提供的异步发电系 统。
本发明提供了一种异步发电系统和列车,异步发电系统包括:异步发电机、变流电路和牵引控制单元,其中,异步发电机与变流电路电连接,变流电路与牵引控制单元电连接,异步发电机用于输出交流电压,变流电路用于向异步发电机提供励磁,以及将异步发电机输出的交流电压转换为直流电压输出,牵引控制单元用于控制变流电路向异步发电机提供励磁。本发明提供的异步发电系统,采用异步发电机实现发电,变流电路在牵引控制单元的控制下实现了异步发电机的励磁和整流,降低了发电系统的制造和维护成本,有利于发电机组的小型化设计、生产和安装。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的异步发电系统的结构示意图;
图2为本发明实施例二提供的异步发电系统的结构示意图;
图3为本发明实施例三提供的异步发电系统的电路图;
图4为本发明实施例一提供的列车的结构示意图。
附图标记说明:
11:异步发电机;
12:变流电路;
13:牵引控制单元;
121:变流器电路;
122:励磁电源电路;
123:第二直流电源;
124:第二DC/DC变换器;
200:列车;
201:异步发电系统。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例一提供的异步发电系统的结构示意图。如图1所示,本实施例提供的异步发电系统,可以包括:异步发电机11、变流电路12和牵引控制单元13。
异步发电机11与变流电路12电连接,变流电路12与牵引控制单元13电连接。
异步发电机11,用于输出交流电压。
变流电路12,用于向异步发电机11提供励磁,以及将异步发电机11输出的交流电压转换为直流电压输出。
牵引控制单元13,用于控制变流电路12向异步发电机11提供励磁。
在本实施例中,变流电路12分别与异步发电机11电和牵引控制单元13电连接,异步发电机11在发电之前,变流电路12在牵引控制单元13的控制下为异步发电机11提供励磁,即为异步发电机11提供旋转磁场,然后异步发电机11再由外力带动转子运转从而实现反向送电,即输出交流电压,变流电路12将异步发电机11输出的交流电压转换为直流电压,进而为负载供电。可见,变流电路12在牵引控制单元13的控制下实现了异步发电机11的励磁和整流。
其中,牵引控制单元13(Traction Control Unit,简称TCU),是一种用于铁路机车的模块化微处理器控制单元,TCU被用来控制电力驱动设备,其作用是实现合理的有效的牵引和制动,作为机车控制的重要组成部分,TCU必须长期保持安全平稳的工作状态。
在本实施例中,异步发电系统采用异步发电机11实现发电,异步发电机11是一种交流电机,其负载时的转速与所接电网的频率之比不是恒定关系,因此,相比于直流发电机、交流同步发电机或者交流永磁同步发电机,异步发电机11具有结构简单,制造、使用和维护方便,运行可 靠以及质量较小,成本较低等优点。因此,采用异步发电机11的异步发电系统,相比于现有技术中采用直流发电机、交流同步发电机或者是交流永磁同步发电机的同步发电系统,使得发电系统的制造和维护成本降低,有利于发电机组的小型化设计、生产和安装。
需要说明的是,本实施例对于异步发电机11的具体型号不加以限制,根据实际需要选择。
可选的,异步发电机11为三相异步发电机。
可选的,异步发电系统还可以包括:发动机,发动机与异步发电机11连接。发动机用于向异步发电机11提供机械能。
需要说明的是,本实施例对于发动机的类型和具体型号不加以限制,根据实际需要选择,例如:发动机可以为柴油发动机,等等。
本实施例提供了一种异步发电系统,包括:异步发电机、变流电路和牵引控制单元,其中,异步发电机与变流电路电连接,变流电路与牵引控制单元电连接,异步发电机用于输出交流电压,变流电路用于向异步发电机提供励磁,以及将异步发电机输出的交流电压转换为直流电压输出,牵引控制单元用于控制变流电路向异步发电机提供励磁。本实施例提供的异步发电系统,采用异步发电机实现发电,变流电路在牵引控制单元的控制下实现了异步发电机的励磁和整流,降低了发电系统的制造和维护成本,有利于发电机组的小型化设计、生产和安装。
图2为本发明实施例二提供的异步发电系统的结构示意图,本实施例在实施例一的基础上,提供了异步发电系统的另一种实现方式,尤其是提供了变流电路的一种具体实现电路。如图2所示,本实施例提供的异步发电系统,可以包括:异步发电机11、变流电路12和牵引控制单元13,其中,变流电路12可以包括:变流器电路121和励磁电源电路122。
变流器电路121分别与异步发电机11和牵引控制单元13电连接,励磁电源电路122与牵引控制单元13电连接。
励磁电源电路122,用于向异步发电机11提供直流励磁电压。
变流器电路121,用于将直流励磁电压转换为交流励磁电压提供给异步发电机11,以及将异步发电机11输出的交流电压转换为直流电压输出。
牵引控制单元13还用于,若变流器电路121输出的直流电压低于第一阈值,则控制励磁电源电路122与变流器电路121电连接,或者,若变流器电路121输出的直流电压高于第一阈值时,则控制励磁电源电路122断开与变流器电路121的电连接。
本实施例提供的异步发电系统,变流电路12包括变流器电路121和励磁电源电路122,牵引控制单元13用于控制变流器电路121与励磁电源电路122的连接与断开。具体的,异步发电机11需要剩磁才能逐渐建立发电电压,因此,若变流器电路121输出的直流电压低于第一阈值,牵引控制单元13控制励磁电源电路122与变流器电路121实现电连接,向异步发电机11提供直流励磁电压,变流器电路121将直流励磁电压转换为交流励磁电压向异步发电机11提供励磁,异步发电机11建立发电电压开始发电。在异步发电机11开始发电之后,输出的交流电压逐渐升高,变流器电路121将异步发电机11输出的交流电压转换为直流电压输出,当变流器电路121输出的直流电压高于第一阈值时,则牵引控制单元13控制励磁电源电路122与变流器电路121断开,异步发电机11输出的交流电压继续升高,变流器电路121持续将交流电压转换为直流电压输出,直至输出稳定的电压为止。可见,通过上述过程,励磁电源电路122和变流器电路121实现了异步发电机11的励磁和整流。
需要说明的是,本实施例对于第一阈值的取值不加以限制,根据需要进行设置。
可选的,在一种具体的实现方式中,励磁电源电路122可以包括:第一直流电源和第一直流-直流(direct current-direct current,简称DC/DC)变换器。
其中,第一直流电源的输出电压大于第二阈值,第一DC/DC变换器采用非升压电路。
可选的,在另一种具体的实现方式中,励磁电源电路122可以包括:第二直流电源和第二DC/DC变换器。
其中,第二直流电源的输出电压小于第二阈值,第二DC/DC变换器采用升压电路。
需要说明的是,本实施例对于DC/DC变换器的具体型号不加以限 制,只要实现升压功能或者非升压功能即可。其中,DC/DC变换器是指将输入电压转换为有效固定的输出电压的电压转换器。DC/DC变换器通常分为三类:升压型DC/DC变换器、降压型DC/DC变换器以及升降压型DC/DC变换器。
需要说明的是,本实施例对于第二阈值的取值不加以限制,根据需要进行设置。
本实施例提供了一种异步发电系统,包括:异步发电机、变流电路和牵引控制单元,其中,变流电路包括变流器电路和励磁电源电路。本实施例提供的异步发电系统,采用异步发电机实现发电,变流电路在牵引控制单元的控制下实现了异步发电机的励磁和整流,降低了发电系统的制造和维护成本,有利于发电机组的小型化设计、生产和安装。
图3为本发明实施例三提供的异步发电系统的电路图,本实施例在实施例一和实施例二的基础上,提供了异步发电系统的又一种实现方式,尤其是提供了变流电路的一种具体实现电路。如图3所示,本实施例提供的异步发电系统,可以包括:异步发电机11、变流电路和牵引控制单元13,变流电路可以包括:变流器电路121和励磁电源电路,励磁电源电路可以包括:第二直流电源123和第二DC/DC变换器124。
其中,第二DC/DC变换器124可以包括:输入接触器KM1、输出接触器KM2、直流输入电流互感器TA21、直流输入电压互感器TV21、直流输出电流互感器TA22、直流输出电压互感器TV22、第一电容C21、第二电容C22、电感L21、第一绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,简称IGBT)Q21和第二IGBT Q22。
输入接触器KM1的第一接线端子1与第二直流电源123的正极连接,输入接触器KM1的第二接线端子2与第二直流电源123的负极连接。
直流输入电流互感器TA21的第一端与输入接触器KM1的第三接线端子3连接,直流输入电流互感器TA21的第二端、第一电容C21的第一端、电感L21的第一端以及直流输入电压互感器TV21的第一端连接。电感L21的第二端连接于第一IGBT Q21与第二IGBT Q22之间。
直流输出电流互感器TA22的第一端、第二电容C22的第一端以及第一IGBT Q21的第一端连接,直流输出电流互感器TA22的第二端、直流 输出电压互感器TV22的第一端、输出接触器KM2的第一接线端子1连接。
输入接触器KM1的第四接线端子4、第一电容C21的第二端、直流输入电压互感器TV21的第二端、第二IGBT Q22的第二端、第二电容C22的第二端、直流输出电压互感器TV22的第二端以及输出接触器KM2的第二接线端子2连接。
输出接触器KM2的第三接线端子3和第四接线端子4与变流器电路的输出端连接。
其中,变流器电路121可以包括:第一熔断器RU1、第二熔断器RU2、第三熔断器RU3、第一电流互感器CTU1、第二电流互感器CTW1、第三电流互感器TA1、第一电压互感器TV1、IGBT模块、第三IGBT Q7、第一二极管D21、第二二极管Q8、第三电容C1、第一电阻R1和第二电阻R2。
IGBT模块包括六个第四IGBT(Q1~Q6)形成的三个并联的IGBT组,每个IGBT组包括两个串联的第四IGBT。
第一熔断器RU1的第一端与异步发电机的U相输出端连接,第二熔断器RU2的第一端与异步发电机的V相输出端连接,第三熔断器RU3的第一端与异步发电机的W相输出端连接。第一熔断器RU1的第二端与第一电流互感器CTU1的第一端连接,第三熔断器RU3的第二端与第二电流互感器CTW1的第一端连接。第一电流互感器CTU1的第二端、第二熔断器RU2的第二端和第二电流互感器CTW1的第二端分别连接于一个IGBT组中的两个第四IGBT之间。
IGBT模块的第一端、第三IGBT Q7的第一端、第三电容C1的第一端以及第三电流互感器TA1的第一端连接。第三电流互感器TA1的第二端、第一电压互感器TV1的第一端、第一电阻R1的第一端、第一二极管D21的负极以及变流器电路的正极输出端连接。
IGBT模块的第二端、第二二极管的正极Q8、第三电容C1的第二端、第一电压互感器TV1的第二端、第一电阻R1的第二端以及变流器电路的负极输出端连接。
第二电阻R2连接于第三IGBT Q7的第二端与第二二极管Q8的正极 之间。
变流器电路121的正极输出端和负极输出端分别与励磁电源电路连接。
本实施例提供的异步发电系统,变流电路包括变流器电路121和励磁电源电路,励磁电源电路包括:第二直流电源123和第二DC/DC变换器124。牵引控制单元13用于控制变流器电路121与第二DC/DC变换器124的连接与断开。
具体的,异步发电机11需要剩磁才能逐渐建立发电电压,因此,若变流器电路121输出的直流电压U1低于第一阈值,牵引控制单元13控制第二DC/DC变换器124的输入接触器KM1和输出接触器KM2闭合,使得第二DC/DC变换器124与变流器电路121实现电连接,第二DC/DC变换器124将第二直流电源123输出的直流电压升压后通过变流器电路121给第三电容C1充电,用于向异步发电机11提供直流励磁电压,变流器电路121将直流励磁电压转换为交流励磁电压向异步发电机提供励磁,异步发电机11建立发电电压开始发电,通过上述过程,第二DC/DC变换器124和第二直流电源123实现了异步发电机的励磁。其中,第一电阻R1用于限制第三电容C1的充电电流。
在异步发电机11开始发电之后,输出的交流电压逐渐升高,励磁不断加大,变流器电路121将异步发电机11输出的交流电压转换为直流电压U1输出。牵引控制单元13通过直流输出电压互感器TV22,检测到变流器电路121输出的直流电压U1高于第一阈值时,则牵引控制单元13控制第二DC/DC变换器124的输入接触器KM1和输出接触器KM2断开,使得第二DC/DC变换器124与变流器电路121断开,此后,随着异步发电机11输出的交流电压继续升高,变流器电路121持续将交流电压转换为直流电压U1输出,直至输出稳定的电压为止。可见,通过上述过程,励磁电源电路和变流器电路实现了异步发电机的励磁和整流。
其中,第三IGBT Q7和第二二极管Q8组成了过压吸收电路,用于吸收异步发电机11启动过程中或者铁路机车制动过程中的多余能量,维持母线电压平稳。
综上,本实施例提供的异步发电系统,在异步发电机11启动过程 中,变流器电路121和第二DC/DC变换器124将直流电能变换为三相交流电动势为异步发电机11提供励磁,在异步发电机11正常启动之后,变流器电路121又将异步发电机11输出的交流电能变换为直流电能为机车车辆提供电力供应。本实施例提供的异步发电系统由于采用了异步发电机,使得发电系统的制造和维护成本降低。
需要说明的是,本实施例对于第二直流电源123的具体实现方式不特别限定,可以为蓄电池,也可以为其他直流供电形式。
本实施例提供了一种异步发电系统,包括:异步发电机、变流电路和牵引控制单元,其中,变流电路包括变流器电路和励磁电源电路,励磁电源电路包括第二直流电源和第二DC/DC变换器。本实施例提供的异步发电系统,采用异步发电机实现发电,变流电路在牵引控制单元的控制下实现了异步发电机的励磁和整流,降低了发电系统的制造和维护成本,有利于发电机组的小型化设计、生产和安装。
图4为本发明实施例一提供的列车的结构示意图。如图4所示,本实施例提供的列车200,可以包括:图1-图3所示的任一实施例提供的异步发电系统201。
其中,异步发电系统201,可以包括:异步发电机、变流电路和牵引控制单元。
异步发电机与变流电路电连接,变流电路与牵引控制单元电连接。
异步发电机,用于输出交流电压。
变流电路,用于向异步发电机提供励磁,以及将异步发电机输出的交流电压转换为直流电压输出。
牵引控制单元,用于控制变流电路向异步发电机提供励磁。
可选的,变流电路可以包括:变流器电路和励磁电源电路。
变流器电路分别与异步发电机和牵引控制单元电连接,励磁电源电路与牵引控制单元电连接。
励磁电源电路,用于向异步发电机提供直流励磁电压。
变流器电路,用于将直流励磁电压转换为交流励磁电压提供给异步发电机,以及将异步发电机输出的交流电压转换为直流电压输出。
牵引控制单元还用于,若变流器电路输出的直流电压低于第一阈 值,则控制励磁电源电路与变流器电路电连接,或者,若变流器电路输出的直流电压高于第一阈值时,则控制励磁电源电路断开与变流器电路的电连接。
可选的,励磁电源电路可以包括:第一直流电源和第一DC/DC变换器。
其中,第一直流电源的输出电压大于第二阈值,第一DC/DC变换器采用非升压电路。
可选的,励磁电源电路可以包括:第二直流电源和第二DC/DC变换器。
其中,第二直流电源的输出电压小于第二阈值,第二DC/DC变换器采用升压电路。
可选的,第二DC/DC变换器可以包括:输入接触器、输出接触器、直流输入电流互感器、直流输入电压互感器、直流输出电流互感器、直流输出电压互感器、第一电容、第二电容、电感、第一IGBT和第二IGBT。
输入接触器的第一接线端子与第二直流电源的正极连接,输入接触器的第二接线端子与第二直流电源的负极连接。
直流输入电流互感器的第一端与输入接触器的第三接线端子连接,直流输入电流互感器的第二端、第一电容的第一端、电感的第一端以及直流输入电压互感器的第一端连接。电感的第二端连接于第一IGBT与第二IGBT之间。
直流输出电流互感器的第一端、第二电容的第一端以及第一IGBT的第一端连接,直流输出电流互感器的第二端、直流输出电压互感器的第一端、输出接触器的第一接线端子连接。
输入接触器的第四接线端子、第一电容的第二端、直流输入电压互感器的第二端、第二IGBT的第二端、第二电容的第二端、直流输出电压互感器的第二端以及输出接触器的第二接线端子连接。
输出接触器的第三接线端子和第四接线端子与变流器电路的输出端连接。
可选的,变流器电路可以包括:第一熔断器、第二熔断器、第三熔 断器、第一电流互感器、第二电流互感器、第三电流互感器、第一电压互感器、IGBT模块、第三IGBT、第一二极管、第二二极管、第三电容、第一电阻和第二电阻。
IGBT模块包括六个第四IGBT形成的三个并联的IGBT组,每个IGBT组包括两个串联的第四IGBT。
第一熔断器的第一端与异步发电机的U相输出端连接,第二熔断器的第一端与异步发电机的V相输出端连接,第三熔断器的第一端与异步发电机的W相输出端连接。第一熔断器的第二端与第一电流互感器的第一端连接,第三熔断器的第二端与第二电流互感器的第一端连接。第一电流互感器的第二端、第二熔断器的第二端和第二电流互感器的第二端分别连接于一个IGBT组中的两个第四IGBT之间。
IGBT模块的第一端、第三IGBT的第一端、第三电容的第一端以及第三电流互感器的第一端连接。第三电流互感器的第二端、第一电压互感器的第一端、第一电阻的第一端、第一二极管的负极以及变流器电路的正极输出端连接。
IGBT模块的第二端、第二二极管的正极、第三电容的第二端、第一电压互感器的第二端、第一电阻的第二端以及变流器电路的负极输出端连接。
第二电阻连接于第三IGBT的第二端与第二二极管的正极之间。
变流器电路的正极输出端和负极输出端分别与励磁电源电路连接。
可选的,异步发电机为三相异步发电机。
可选的,异步发电系统还可以包括:发动机,发动机与异步发电机连接。
发动机用于向异步发电机提供机械能。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种异步发电系统,其特征在于,包括:异步发电机、变流电路和牵引控制单元;
    所述异步发电机与所述变流电路电连接,所述变流电路与所述牵引控制单元电连接;
    所述异步发电机,用于输出交流电压;
    所述变流电路,用于向所述异步发电机提供励磁,以及将所述异步发电机输出的所述交流电压转换为直流电压输出;
    所述牵引控制单元,用于控制所述变流电路向所述异步发电机提供励磁。
  2. 根据权利要求1所述的异步发电系统,其特征在于,所述变流电路包括:变流器电路和励磁电源电路;
    所述变流器电路分别与所述异步发电机和所述牵引控制单元电连接,所述励磁电源电路与所述牵引控制单元电连接;
    所述励磁电源电路,用于向所述异步发电机提供直流励磁电压;
    所述变流器电路,用于将所述直流励磁电压转换为交流励磁电压提供给所述异步发电机,以及将所述异步发电机输出的所述交流电压转换为所述直流电压输出;
    所述牵引控制单元还用于,若所述变流器电路输出的所述直流电压低于第一阈值,则控制所述励磁电源电路与所述变流器电路电连接,或者,若所述变流器电路输出的所述直流电压高于所述第一阈值时,则控制所述励磁电源电路断开与所述变流器电路的电连接。
  3. 根据权利要求2所述的异步发电系统,其特征在于,所述励磁电源电路包括:第一直流电源和第一直流-直流DC/DC变换器;
    其中,所述第一直流电源的输出电压大于第二阈值,所述第一DC/DC变换器采用非升压电路。
  4. 根据权利要求2所述的异步发电系统,其特征在于,所述励磁电源电路包括:第二直流电源和第二直流-直流DC/DC变换器;
    其中,所述第二直流电源的输出电压小于第二阈值,所述第二DC/DC变换器采用升压电路。
  5. 根据权利要求4所述的异步发电系统,其特征在于,所述第二DC/DC变换器包括:输入接触器、输出接触器、直流输入电流互感器、直流输入电压互感器、直流输出电流互感器、直流输出电压互感器、第一电容、第二电容、电感、第一绝缘栅双极型晶体管IGBT和第二IGBT;
    所述输入接触器的第一接线端子与所述第二直流电源的正极连接,所述输入接触器的第二接线端子与所述第二直流电源的负极连接;
    所述直流输入电流互感器的第一端与所述输入接触器的第三接线端子连接,所述直流输入电流互感器的第二端、所述第一电容的第一端、所述电感的第一端以及所述直流输入电压互感器的第一端连接;所述电感的第二端连接于所述第一IGBT与所述第二IGBT之间;
    所述直流输出电流互感器的第一端、所述第二电容的第一端以及所述第一IGBT的第一端连接,所述直流输出电流互感器的第二端、所述直流输出电压互感器的第一端、所述输出接触器的第一接线端子连接;
    所述输入接触器的第四接线端子、所述第一电容的第二端、所述直流输入电压互感器的第二端、所述第二IGBT的第二端、所述第二电容的第二端、所述直流输出电压互感器的第二端以及所述输出接触器的第二接线端子连接;
    所述输出接触器的第三接线端子和第四接线端子与所述变流器电路的输出端连接。
  6. 根据权利要求2至5任一所述的异步发电系统,其特征在于,所述变流器电路包括:第一熔断器、第二熔断器、第三熔断器、第一电流互感器、第二电流互感器、第三电流互感器、第一电压互感器、绝缘栅双极型晶体管IGBT模块、第三IGBT、第一二极管、第二二极管、第三电容、第一电阻和第二电阻;
    所述IGBT模块包括六个第四IGBT形成的三个并联的IGBT组,每个所述IGBT组包括两个串联的所述第四IGBT;
    所述第一熔断器的第一端与所述异步发电机的U相输出端连接,所述第二熔断器的第一端与所述异步发电机的V相输出端连接,所述第三熔断器的第一端与所述异步发电机的W相输出端连接;所述第一熔断器 的第二端与所述第一电流互感器的第一端连接,所述第三熔断器的第二端与所述第二电流互感器的第一端连接;所述第一电流互感器的第二端、所述第二熔断器的第二端和所述第二电流互感器的第二端分别连接于一个所述IGBT组中的两个所述第四IGBT之间;
    所述IGBT模块的第一端、所述第三IGBT的第一端、所述第三电容的第一端以及所述第三电流互感器的第一端连接;所述第三电流互感器的第二端、所述第一电压互感器的第一端、所述第一电阻的第一端、所述第一二极管的负极以及所述变流器电路的正极输出端连接;
    所述IGBT模块的第二端、所述第二二极管的正极、所述第三电容的第二端、所述第一电压互感器的第二端、所述第一电阻的第二端以及所述变流器电路的负极输出端连接;
    所述第二电阻连接于所述第三IGBT的第二端与所述第二二极管的正极之间;
    所述变流器电路的所述正极输出端和所述负极输出端分别与所述励磁电源电路连接。
  7. 根据权利要求1至5任一项所述的异步发电系统,其特征在于,所述异步发电机为三相异步发电机。
  8. 根据权利要求1至5任一项所述的异步发电系统,其特征在于,还包括:发动机,所述发动机与所述异步发电机连接;
    所述发动机用于向所述异步发电机提供机械能。
  9. 一种列车,其特征在于,包括如权利要求1-8任一项所述的异步发电系统。
PCT/CN2016/104555 2016-06-16 2016-11-04 异步发电系统和列车 WO2017215182A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610427035.2A CN106059229B (zh) 2016-06-16 2016-06-16 异步发电系统和列车
CN201610427035.2 2016-06-16

Publications (1)

Publication Number Publication Date
WO2017215182A1 true WO2017215182A1 (zh) 2017-12-21

Family

ID=57169187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104555 WO2017215182A1 (zh) 2016-06-16 2016-11-04 异步发电系统和列车

Country Status (2)

Country Link
CN (1) CN106059229B (zh)
WO (1) WO2017215182A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108075680A (zh) * 2018-01-11 2018-05-25 江阴鼎天科技有限公司 单相异步发电机新型并联式逆变器电路及其控制方法
CN108075681A (zh) * 2018-01-11 2018-05-25 江阴鼎天科技有限公司 三相异步发电机新型并联式逆变器电路及其控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059229B (zh) * 2016-06-16 2018-10-02 中车唐山机车车辆有限公司 异步发电系统和列车
CN112339619B (zh) * 2021-01-11 2021-08-03 西南交通大学 一种同相牵引供电与异地发电并网系统及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166220A (zh) * 2013-03-30 2013-06-19 大连宏海新能源发展有限公司 一种离网式斯特林供电系统结构及控制方法
CN203151093U (zh) * 2013-03-30 2013-08-21 大连宏海新能源发展有限公司 一种离网式斯特林供电系统结构
CN104712485A (zh) * 2013-12-17 2015-06-17 北车大连电力牵引研发中心有限公司 柴油机启动装置及柴油发电机组
CN106059229A (zh) * 2016-06-16 2016-10-26 中车唐山机车车辆有限公司 异步发电系统和列车

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166220A (zh) * 2013-03-30 2013-06-19 大连宏海新能源发展有限公司 一种离网式斯特林供电系统结构及控制方法
CN203151093U (zh) * 2013-03-30 2013-08-21 大连宏海新能源发展有限公司 一种离网式斯特林供电系统结构
CN104712485A (zh) * 2013-12-17 2015-06-17 北车大连电力牵引研发中心有限公司 柴油机启动装置及柴油发电机组
CN106059229A (zh) * 2016-06-16 2016-10-26 中车唐山机车车辆有限公司 异步发电系统和列车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAN, WEICHENG: "Research on Off-Grid Stirling Engine Power System Based on Squirrel-Cage Induction Generator", ENGINEERING SCIENCE & TECHNOLOGY II, CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 June 2014 (2014-06-15), pages 25 - 38, ISSN: 1674-0246 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108075680A (zh) * 2018-01-11 2018-05-25 江阴鼎天科技有限公司 单相异步发电机新型并联式逆变器电路及其控制方法
CN108075681A (zh) * 2018-01-11 2018-05-25 江阴鼎天科技有限公司 三相异步发电机新型并联式逆变器电路及其控制方法

Also Published As

Publication number Publication date
CN106059229B (zh) 2018-10-02
CN106059229A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
US11846277B2 (en) Solar drive control system for oil pump jacks
WO2017215182A1 (zh) 异步发电系统和列车
CN110014854B (zh) 一种变流器及电传动系统
CN101599710A (zh) 单级可升压逆变器
WO2014026460A1 (zh) 一种集成开关磁阻电机驱动与低压电池充电的变换装置
CN203708154U (zh) 一种集成开关磁阻电机驱动和电池充电的功率变换装置
WO2016011656A1 (zh) 电动汽车驱动与充电集成控制方法及其应用的电动汽车
CN104358650A (zh) 柴油机启动与蓄电池充电一体化装置及内燃机车
WO2017215450A1 (zh) 一种电机控制器、电机控制系统和电动汽车
CN102104341B (zh) 一种单级升压逆变器
CN104578253A (zh) 一种具有高频三角变技术的电动汽车电机驱动dc/dc变换装置
WO2017080000A1 (zh) 机车牵引系统
CN104201927B (zh) 一种单级耦合电感zeta电抗源逆变器
CN204733105U (zh) 一种直流发电机组
CN104716680A (zh) 具有可再生能源的离线式不间断电源及其控制方法
CN103066906A (zh) 一种永磁无刷直流起/发电机的控制发电系统及控制方法
CN103904639B (zh) 用于柔性直流输电系统的双馈型风电机组变流器控制方法
TW201914865A (zh) 混合動力汽車及其動力系統
CN104836496A (zh) 一种直流发电机组
CN101662253B (zh) 一种汽车用双电压输出交流发电机控制器
CN203278664U (zh) 三电平防爆变频器
CN216851764U (zh) 一种储能型变频传动装置
CN105763116A (zh) 一种双绕组异步电机交直流起动发电系统的拓扑结构
WO2018177359A1 (zh) 混合动力汽车及其动力系统
CN205500478U (zh) 一种风光节能电梯控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905294

Country of ref document: EP

Kind code of ref document: A1