WO2021235429A1 - 除湿部材、除湿ローター、および、除湿部材の製造方法 - Google Patents

除湿部材、除湿ローター、および、除湿部材の製造方法 Download PDF

Info

Publication number
WO2021235429A1
WO2021235429A1 PCT/JP2021/018770 JP2021018770W WO2021235429A1 WO 2021235429 A1 WO2021235429 A1 WO 2021235429A1 JP 2021018770 W JP2021018770 W JP 2021018770W WO 2021235429 A1 WO2021235429 A1 WO 2021235429A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica gel
adhesive
dehumidifying
honeycomb structure
base material
Prior art date
Application number
PCT/JP2021/018770
Other languages
English (en)
French (fr)
Inventor
和樹 山名
正彰 神原
悠馬 冨塚
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Priority to EP21808126.3A priority Critical patent/EP4155269A4/en
Priority to US17/999,035 priority patent/US20230175713A1/en
Priority to CN202180031305.7A priority patent/CN115485053A/zh
Publication of WO2021235429A1 publication Critical patent/WO2021235429A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3223Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating by means of an adhesive agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/152Preparation of hydrogels
    • C01B33/154Preparation of hydrogels by acidic treatment of aqueous silicate solutions
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/40Multi-ply at least one of the sheets being non-planar, e.g. crêped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • B01D2253/342Monoliths
    • B01D2253/3425Honeycomb shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1048Geometric details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor

Definitions

  • the disclosure of this application relates to a dehumidifying member, a dehumidifying rotor, and a method for manufacturing the dehumidifying member.
  • a dehumidifying device provided with a dehumidifying rotor is divided into a treatment zone and a regeneration zone, for example, as shown in FIG. 6 of Patent Document 1, and the dehumidifying rotor is divided into a treatment zone, a regeneration zone, and a treatment zone at a predetermined speed.
  • Playback zone ... Rotates and moves in this order.
  • the dehumidifying rotor When the dehumidifying rotor is located in the treatment zone, it adsorbs moisture from the high humidity air, and when it is located in the regeneration zone, it releases the moisture adsorbed on the dehumidifying rotor to regenerate the dehumidifying function of the dehumidifying rotor.
  • the dehumidifying device can be continuously operated.
  • Patent Document 1 describes a method including the following steps. (1) A corrugated paper is formed by feeding paper between a pair of forming rollers having a desired tooth pattern. (2) A honeycomb is wound by applying a water glass adhesive to one of the wave crests of the corrugated paper, adhering it to a porous paper, and then applying the water glass adhesive to the other crest of the corrugated paper. A cylindrical molded body having a structure is obtained. (3) Silica gel is adhered to the molded product by immersing the molded product in an aqueous solution of water glass, drying and acid-treating the molded product.
  • Patent Document 2 describes another method for manufacturing a dehumidifying rotor including the following steps. (1) First, a honeycomb structure is produced. (2) The produced honeycomb structure is impregnated into a slurry containing silica gel, dried, and then fired to form a honeycomb structure supporting silica gel.
  • the dehumidifying rotor When the dehumidifying rotor is enlarged, the compressive force due to the weight of the dehumidifying rotor acts on the upper side in the vertical direction when viewed from the center of rotation of the dehumidifying rotor. On the other hand, on the lower side in the vertical direction when viewed from the center of rotation of the dehumidifying rotor, a force acts in the direction in which the bonded portion of the honeycomb structure is peeled off due to the weight of the dehumidifying rotor.
  • the dehumidifying member when incorporating the dehumidifying rotor into the dehumidifying device, the dehumidifying member may be fixed with sheet metal. In that case, when the dehumidifying rotor expands and contracts due to the absorption and desorption of water, tensile stress is generated in the bonded portion of the honeycomb structure, which may cause peeling. Therefore, it is desired to strengthen the bonded portion of the honeycomb structure.
  • the dehumidifying rotor described in Patent Document 2 is manufactured by impregnating a silica gel slurry with a honeycomb structure, drying it, and then heating and firing it.
  • the present inventors have very weak tensile strength of the honeycomb structure in the method for manufacturing the dehumidifying rotor described in Patent Document 2, that is, delamination of the honeycomb structure occurs. I discovered a new problem that it is easy.
  • the disclosure of this application was made in order to solve the above-mentioned problems, and as a result of diligent research, the contact portion between the flat base material and the corrugated base material forming the honeycomb structure was adhered with an adhesive.
  • an adhesive By forming the bonded portion and the silica gel formed on the vent hole side of the bonded portion, it is possible to provide a dehumidifying member having high tensile strength. Was newly found.
  • an object of the disclosure of the present application is to provide a dehumidifying member having high tensile strength, a dehumidifying rotor, and a method for manufacturing the dehumidifying member.
  • the disclosure of this application relates to the following dehumidifying member, dehumidifying rotor, and method for manufacturing the dehumidifying member.
  • a dehumidifying member provided with a honeycomb structure is With flat and corrugated substrates, An abutting portion where the crest of the corrugated base material and the flat base material come into contact with each other, Vents and Including The contact portion is Adhesive parts glued with adhesive and Silica gel formed on the vent hole side from the adhesive portion and Including The component constituting the adhesive is different from the component of silica gel formed on the vent hole side of the adhesive portion.
  • Dehumidifying member. The flat substrate and / or the corrugated substrate is a mixed paper. The dehumidifying member according to (1) above. (3) The mixed paper contains silica gel in the gaps between the fibers.
  • the amount of silica gel voids contained in the mixed paper is larger than the amount of silica gel voids formed on the vent hole side of the adhesive portion.
  • the adhesive contains an organic component.
  • the manufacturing method is A supporting step of supporting a sodium silicate solution on a honeycomb structure, A silica gel synthesis step of synthesizing silica gel by acid-treating sodium silicate supported on the honeycomb structure by the supporting step, and a silica gel synthesis step.
  • the honeycomb structure is With flat and corrugated substrates, An adhesive portion for adhering the crest portion of the corrugated base material and the flat base material, Vents and including, Production method.
  • the flat substrate and / or the corrugated substrate is a mixed paper.
  • the adhesive contains an organic component.
  • FIG. 1 is a perspective view showing an outline of a dehumidifying rotor and a dehumidifying member according to the first embodiment.
  • FIG. 2 is a diagram showing an outline of a honeycomb structure when the dehumidifying member is viewed in the direction of the rotation center axis of the dehumidifying rotor of FIG.
  • FIG. 3 is an enlarged schematic cross-sectional view of the contact portion of the honeycomb structure.
  • FIG. 4 is a perspective view showing an outline of the dehumidifying member according to the third embodiment.
  • FIG. 5 is a schematic view for explaining a method of evaluating the tensile strength of the dehumidifying member.
  • FIG. 6 is a graph showing the measurement results of the tensile strength of the dehumidifying member produced in Example 1 and Comparative Example 1 and the honeycomb structure produced in Comparative Example 2.
  • FIG. 7 is a graph showing the measurement results of the tensile strength of the dehumidifying member produced in Example 2 and Comparative Example 3 and the honeycomb structure produced in Comparative Example 4.
  • FIG. 8 is a drawing substitute photograph, which is an SEM photograph of the surface of the mixed paper.
  • 9A is a drawing substitute photograph
  • FIG. 9A is an SEM photograph of the surface and cross section of the mixed paper forming the honeycomb structure of the dehumidifying member produced in Example 2
  • FIG. 9B is a honeycomb structure of the dehumidifying member produced in Example 1. It is an SEM photograph of the cross section of the glass paper which constitutes.
  • dehumidifying member the dehumidifying rotor, and the method for manufacturing the dehumidifying member disclosed in this application will be described in detail below.
  • FIG. 1 is a perspective view showing an outline of a dehumidifying rotor 10 and a dehumidifying member 1.
  • FIG. 2 is a diagram showing an outline of the honeycomb structure 2 when the dehumidifying member 1 is viewed in the direction Z of the rotation center axis of the dehumidifying rotor 10 of FIG.
  • FIG. 3 is an enlarged schematic cross-sectional view of the contact portion 23 of the honeycomb structure 2.
  • the dehumidifying member 1 according to the first embodiment is a divided body obtained by dividing the dehumidifying rotor 10 into one or more.
  • FIG. 1 an example in which a dehumidifying rotor 10 is formed by combining three dehumidifying members 1 is shown, but the number of dehumidifying members 1 constituting the dehumidifying rotor 10 may be arbitrary. Further, the dehumidifying rotor 10 may be formed by a single dehumidifying member 1.
  • the dehumidifying member 1 includes a honeycomb structure 2.
  • the honeycomb structure 2 includes a flat base material 21, a corrugated base material 22, a contact portion 23 in which the crest portion 22a of the corrugated base material 22 and the flat base material 21 abut, and a ventilation hole portion 24. ,including.
  • the contact portion 23 includes an adhesive portion 23a bonded with an adhesive and silica gel 23b formed on the vent hole side of the adhesive portion 23a.
  • the dehumidifying member 1 first manufactures a honeycomb structure 2 including an adhesive portion 23, then carries a sodium silicate solution on the honeycomb structure 2 and then acid-treats it.
  • silica gel synthesized from sodium silicate may be referred to as "synthetic silica gel"
  • synthetic silica gel silica gel synthesized from sodium silicate
  • the synthetic silica gel 23b is formed around the entire periphery of the flat base material 21 and the corrugated base material 22 constituting the honeycomb structure 2.
  • the silica gel 23b contained in the contact portion 23 is a synthetic silica gel 23b formed around the flat base material 21 and formed around the corrugated base material 22 as shown in FIG. It means the synthetic silica gel 23b on the adhesive portion 23a side from the boundary B with the synthetic silica gel 23b. In other words, it can be said that the portion of the synthetic silica gel 23b that comes into contact with both the flat base material 21 and the corrugated base material 22.
  • fibrous base materials known in the art can be used as the flat base material 21 and the corrugated base material 22 of the dehumidifying member 1 according to the first embodiment.
  • the fibrous base material include inorganic fibers such as silica-alumina fiber, silica fiber, alumina fiber, mulite fiber, glass fiber, rock wool fiber, and carbon fiber; polyethylene fiber, polypropylene fiber, nylon fiber, and polyester.
  • examples thereof include organic fibers such as fibers, polyvinyl alcohol fibers, polyethylene terephthalate fibers, aramid fibers, pulp fibers and rayon fibers. Further, these fibers may be used alone or in combination of two or more. The fibers are merely examples and are not limited to these fibers.
  • the flat base material 21 and the corrugated base material 22 may use the same fibers or different fibers.
  • the fiber density of the fibers of the dehumidifying member 1 according to the first embodiment is too low, the strength of the honeycomb structure becomes weak, and if the density is too high, the amount of silica gel supported between the fibers becomes small. Therefore, the fiber density may be appropriately selected in consideration of the strength, the amount of the honeycomb structure (moisture absorption amount), and the like.
  • the density of the fibers of the dehumidifying member 1 according to the first embodiment is, for example, 0.05 to 0.5 g / cm 3 , preferably 0.08 to 0.3 g / cm 3 , and more preferably 0.1. ⁇ 0.2 g / cm 3 and the like can be mentioned.
  • the adhesive forming the adhesive portion 23 is not particularly limited as long as the flat base material 21 and the corrugated base material 22 can be bonded to the crest portion 22a.
  • an inorganic adhesive or an organic adhesive can be mentioned.
  • the inorganic adhesive include silica-based adhesives and water glass.
  • the organic adhesives include acrylic resin adhesives, acrylic resin emulsion adhesives, ⁇ -olefin adhesives, urethane resin adhesives, urethane resin emulsion adhesives, ether celluloses, and ethylene-vinyl acetate resin emulsions.
  • Adhesives epoxy resin adhesives, epoxy resin emulsion adhesives, vinyl chloride resin solvent adhesives, chloroprene rubber adhesives, vinyl acetate resin emulsion adhesives, cyanoacrylate adhesives, silicone adhesives, water-based polymers -Isocyanate-based adhesive, styrene-butadiene rubber solution-based adhesive, styrene-butadiene rubber-based latex adhesive, nitrile rubber-based adhesive, polyimide-based adhesive, polyvinyl alcohol-based adhesive, starch-based adhesive, natural rubber-based adhesive Examples include agents.
  • the adhesive may be appropriately selected according to the materials of the flat base material 21 and the corrugated base material 22. Further, the adhesive may be used in combination of two or more selected from an inorganic adhesive and an organic adhesive. In addition, the adhesive may be a tackifier, a plasticizer, a curing agent, a cross-linking agent, a diluent, a filler, a thickener, a pigment, an antioxidant, an antioxidant, an antifoaming agent, or a flame retardant, if necessary. , Preservatives, dispersants, wetting agents, hydrophilizing agents and the like may be added.
  • the sodium silicate solution for synthesizing silica gel 23b is a solution of sodium silicate in water and is also called "water glass".
  • the sodium silicate solution can be prepared by dissolving commercially available sodium silicate in water. If the concentration of the sodium silicate solution is too thin, the amount that can be supported on the honeycomb structure 2 in one supporting step will be small. On the other hand, if it is too dark, the ventilation hole portion 24 of the honeycomb structure 2 may be clogged. Therefore, the concentration of sodium silicate may be appropriately set so that a desired amount can be supported and the ventilation holes 24 are not clogged. Examples of the concentration of the sodium silicate solution include 20 to 50% by mass, preferably 25 to 45% by mass, and more preferably 30 to 40% by mass.
  • the dehumidifying member 1 according to the first embodiment first prepares the honeycomb structure 2 by adhering the flat base material 21 and the crest portion 22a of the corrugated base material 22 with an adhesive. Unlike Patent Document 2, the dehumidifying member 1 according to the first embodiment does not need to be fired. Therefore, it is possible to use an adhesive that is relatively heat-sensitive, and there are many choices of the type of adhesive to be used.
  • sodium silicate water glass
  • an adhesive having a high adhesive effect can be selected for the adhesive portion 23a. Therefore, the components of the adhesive portion 23a bonded with the adhesive and the synthetic silica gel 23b formed on the vent hole side of the adhesive portion 23a are different.
  • different components mean that the components of the entire adhesive are different from the components of the synthetic silica gel 23b, and prevent some of the components of the adhesive from being the same as the components of the synthetic silica gel. No.
  • the honeycomb structure is enhanced by the anchor effect of different adhesives.
  • sodium silicate is used as an adhesive, it is conceivable that the adhesive adhered and solidified to the adhesive portion 23a dissolves in the step of supporting the sodium silicate solution, and the molded body as a dehumidifying member cannot be maintained.
  • the adhesive that is resistant to the sodium silicate solution examples include an acrylic resin emulsion adhesive and an ethylene-vinyl acetate resin emulsion adhesive.
  • the distribution and the amount of adhesion of the adhesive can be investigated. Contribution to elucidating the cause of product defects can be mentioned.
  • the dehumidifying member 1 according to the second embodiment is different from the dehumidifying member 1 according to the first embodiment in that the flat base material 21 and / or the corrugated base material 22 is a mixed paper. It is the same as the dehumidifying member 1 according to the first embodiment. Therefore, in the second embodiment, the points different from those in the first embodiment will be mainly described, and the repeated description of the matters explained in the first embodiment will be omitted. Therefore, it is needless to say that the matters explained in the first embodiment can be adopted in the second embodiment even if they are not explicitly explained in the second embodiment.
  • the mixed paper is referred to as silica gel, zeolite, silica alumina amorphous in the gaps between the fibers of the fibrous base material constituting the flat base material 21 and the corrugated base material 22 exemplified in the first embodiment.
  • It means a paper-like substrate on which hygroscopic particles such as a porous body, mesoporous silica, ion exchange resin, polyacrylate resin, and alkylene oxide resin are machined.
  • Mixed papermaking is made by making a paper-like fiber solution in which hygroscopic fine particles are dispersed.
  • the type of silica gel may be appropriately selected according to the purpose. For example, type A having excellent hygroscopicity at low humidity and type B having excellent hygroscopicity at high humidity may be selected according to the purpose. Alternatively, type A and type B silica gel may be mixed.
  • the hygroscopic fine particles contained in the mixed paper are in the form of aggregated fine particles in the gaps between the fibers during the manufacturing process.
  • the synthetic silica gel 23b formed on the vent hole side from the adhesive portion 23a is produced by acid-treating the sodium silicate impregnated in the honeycomb structure 2. Therefore, the amount of voids of the hygroscopic fine particles contained in the mixed paper is larger than the amount of voids of the synthetic silica gel 23b formed on the vent hole side of the adhesive portion 23a.
  • the "amount of voids" means the amount per unit volume of the gaps formed in the gaps between the fine particles, unlike the specific surface area representing the pore surface area inside the hygroscopic fine particles. do.
  • the “amount of voids” may be compared from the roughness of the appearance by imaging the fine particles with an SEM or the like. The more randomly agglomerated the fine particles, the larger the “amount of voids” and the coarser the appearance of the SEM image (fine unevenness is observed). On the other hand, as the “amount of voids" decreases, the fine particles are formed densely, so that the appearance of the SEM image becomes smoother.
  • the "amount of voids” does not mean the amount of gaps between individual fine particles and fine particles, but the amount of voids (appearance roughness or smoothness) in a region where a predetermined amount of fine particles are aggregated.
  • the region where a predetermined amount of fine particles are aggregated means an arbitrary region where the fine particles are aggregated as seen from the SEM image. Therefore, the region does not include cracks and the like formed on the surface. In other words, the region does not mean the entire surface observed in the SEM image, but merely a portion where fine particles are aggregated.
  • the terms "surface smoothness”, “surface texture” or “surface roughness” are used instead of “amount of voids”. May be represented. Further, the difference between the hygroscopic fine particles contained in the mixed paper and the synthetic silica gel 23b as seen from the SEM image may be expressed as follows. -Hygroscopic fine particles with an uneven surface where granules are aggregated, and block-shaped synthetic silica gel with a relatively flat surface. -Hygroscopic fine particles with a rough surface and synthetic silica gel with a smooth surface.
  • a third embodiment of the dehumidifying member 1 will be described with reference to FIG.
  • the honeycomb structure 2 is laminated while adhering the crest portion 22a of the corrugated base material 22 to the flat base material 21, in other words, the flat base material 21 is substantially parallel.
  • the dehumidifying member 1 according to the first and second embodiments it is formed so as to be the same as the dehumidifying member 1 according to the first and second embodiments. Therefore, in the third embodiment, the differences from the first and second embodiments will be mainly described, and the repetitive explanation of the matters explained in the first and second embodiments will be omitted. Therefore, it is needless to say that the matters explained in the first and second embodiments can be adopted in the third embodiment even if they are not explicitly explained in the third embodiment.
  • the crest portion 22a of the corrugated base material 22 is adhered to the flat base material 21, and the flat base material 21 and the corrugated base material 22 are cut to a predetermined length. , It may be laminated sequentially. As the form of lamination, the flat base material 21 ⁇ the corrugated base material 22 ⁇ the flat base material 21 ⁇ the corrugated base material 22 may be alternately laminated. Alternatively, a set of the flat base material 21 ⁇ the corrugated base material 22 ⁇ the flat base material 21 may be prepared and the flat base material 21 of the set may be adhered. Further, FIG.
  • FIG. 4 shows an example of the honeycomb structure 2 in which the honeycomb structures 2 are alternately laminated so that the penetration directions of the ventilation holes 24 are shifted by 90 degrees, but the directions for forming the ventilation holes 24 may be the same. ..
  • the form of lamination is the same as that of the first embodiment and the second embodiment.
  • the dehumidifying rotor 10 can be manufactured by combining the dehumidifying members 1 according to the first and second embodiments. If the dehumidifying member 1 according to the first and second embodiments is used, the procedure for manufacturing the dehumidifying rotor 10 is not particularly limited. For example, in FIG. 1, (1) a rotor is manufactured by winding the corrugated base material 22 into a roll shape while adhering the crest portion 22a of the corrugated base material 22 to the flat base material 21, and (2) the rotor is divided and divided.
  • a dehumidifying member 1 is produced by synthesizing silica gel 23b by carrying a sodium silicate solution on each of the rotors and (3) acid-treating the sodium silicate, and (4) combining the produced dehumidifying member 1.
  • An example of making a dehumidifying rotor 10 is shown.
  • the rotor may be used as it is without being divided.
  • the dehumidifying rotor 10 when the dehumidifying rotor 10 is manufactured by using the dehumidifying member 1 according to the third embodiment shown in FIG. 4, the dehumidifying member 1 may be cut into an appropriate shape and combined.
  • the method of manufacturing the dehumidifying member is -A support process for supporting a sodium silicate solution on the honeycomb structure, and -Silica gel synthesis step that synthesizes silica gel by acid-treating sodium silicate supported on the honeycomb structure by the supporting step, and including.
  • the honeycomb structure and sodium silicate solution have already been explained, so detailed description will be omitted.
  • the acid used in the silica gel synthesis step is not particularly limited as long as silica gel can be synthesized from the sodium silicate solution.
  • the acid include sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, and metal salts of those acids, for example, aluminum salts such as aluminum sulfate and aluminum nitrate, calcium salts such as calcium nitrate and calcium chloride, magnesium sulfate, and chloride.
  • magnesium salts such as magnesium and iron salts such as iron sulfate and iron nitrate.
  • the acid and the metal salt of the acid may be used alone or in combination.
  • the synthetic silica gel 23b may be A-type or B-type. It may be synthesized so as to have a desired type according to the purpose by a method such as changing the concentration of the acid treatment.
  • a silica alumina gel can be obtained.
  • synthetic silica gel also includes silica gel containing a metal salt derived from an acid.
  • silica gel As silica gel, Syricia 740 (type A silica gel, manufactured by Fuji Silysia Chemical Ltd.) was used.
  • the basis weight (g / m 2 ) of the produced base material was 20 for glass paper and 83 for mixed paper, and the thickness ( ⁇ m) was 101 for glass paper and 197 for mixed paper.
  • a dehumidifying member was produced by the following procedure.
  • the glass paper is corrugated with an adhesive, and the corrugated paper is spirally wound with an adhesive to form a rotor with a diameter of 450 mm, a flute length of 210 mm, and a flute crest height of 1.9 mm.
  • a honeycomb structure was manufactured.
  • the flute length is the length of the crest portion 22a of the corrugated substrate 22 (thickness of the dehumidifying rotor) (see L in FIGS. 1 and 2), and the height of the flute crest is the crest portion 22a and the flat substrate 21.
  • the tensile strength was evaluated by the following procedure. (1) The prepared dehumidifying member was cut into a cube of 5 cm 3 so as to be parallel to the stacking direction, and used as a test piece for measuring tensile strength. (2) The test piece was dried at 110 ° C. for 1 hour, and the weight was measured with an electronic balance and the length of three sides was measured with a caliper. (3) A jig for a tensile test was adhered to the top and bottom of the honeycomb structure of the test piece in the stacking direction using an epoxy adhesive.
  • the test piece is attached to a tensile tester (Shimadzu, Shimadzu, small tabletop tester Ez-LX), and a tensile load is continuously applied to the test piece at 1 mm / min, and the load at break is up to 1N unit. I asked.
  • the tensile strength was evaluated using 3 test pieces. The evaluation results are shown in FIG. The average value of the tensile strength was 24.3 kPa.
  • Example 1 A silica gel slurry solution was used instead of the sodium silicate solution of Example 1.
  • the prepared dehumidifying member was immersed in a silica gel slurry solution having an adjusted solid content concentration so that the density was almost the same as that of Example 1, dried at 150 ° C., and then calcined at 500 ° C. for 1 hour. , The dehumidifying member of Comparative Example 1 was produced.
  • the tensile strength of the prepared dehumidifying member was evaluated by the same procedure as in Example 1. The evaluation results are shown in FIG. The average value of the tensile strength was 9.6 kPa.
  • Comparative Example 2 The honeycomb structure (non-immersed in the sodium silicate solution) produced in Example 1 was designated as Comparative Example 2.
  • the tensile strength of Comparative Example 2 was evaluated by the same procedure as in Example 1. The evaluation results are shown in FIG. The average value of the tensile strength was 18.6 kPa.
  • the tensile strength was improved by covering the periphery of the adhesive of the honeycomb structure with synthetic silica gel. It is considered that the reason is that the synthetic silica gel formed on the vent hole side of the adhesive portion of the honeycomb structure increases the adhesive area of the abutting portion and exerts an adhesive effect.
  • the dehumidifying member produced by the manufacturing method of immersing the honeycomb structure in the silica gel slurry described in Patent Document 2 has a tensile strength lower than that of the honeycomb structure. With the production method described in Patent Document 2, it is difficult to increase the amount of silica gel supported.
  • the dehumidifying performance of the produced dehumidifying member is improved by carrying out the firing step.
  • the tensile strength of the honeycomb structure is remarkably lowered by the firing step from the viewpoint of the tensile strength. It is considered that the reason why the tensile strength decreases is that the organic component such as the adhesive is burned down in the firing step.
  • Example 2 A dehumidifying member was prepared in the same procedure as in Example 1 except that mixed paper was used instead of glass paper, and the tensile strength was evaluated. The evaluation results are shown in FIG. The average value of the tensile strength was 46.8 kPa.
  • Comparative Example 4 The honeycomb structure (non-immersed in the sodium silicate solution) using the mixed paper produced in Example 2 was designated as Comparative Example 4.
  • the tensile strength of Comparative Example 4 was evaluated by the same procedure as in Example 1. The evaluation results are shown in FIG. The average value of the tensile strength was 8.7 kPa.
  • the tensile strength was improved by covering the periphery of the adhesive of the honeycomb structure with synthetic silica gel.
  • the tensile strength was increased by about 1.3 times by covering the periphery of the adhesive with silica gel.
  • Example 2 and Comparative Example 4 were compared, the tensile strength was increased by about 5.4 times by covering the periphery of the adhesive with silica gel. That is, the tensile strength of the mixed paper was significantly increased by using the mixed paper rather than by using the glass paper as the base material, as compared with the honeycomb structure prepared by using the adhesive.
  • FIG. 8 shows an SEM photograph of the surface of the mixed paper. As shown in FIG. 8, it was confirmed that silica gel was porously supported in the gaps between the fibers of the mixed paper.
  • FIG. 9A An SEM photograph (FIG. 9A) of the surface and cross section of the mixed paper that constitutes the honeycomb structure of the dehumidifying member produced in Example 2, and a cross section of the glass paper constituting the honeycomb structure of the dehumidifying member produced in Example 1.
  • FIG. 9B The SEM photograph (FIG. 9B) of the above is shown.
  • the synthetic silica gel had a very smooth surface (with few voids). Then, as shown in the SEM photograph of the cross section of FIG. 9A, the dehumidifying member produced in Example 2 was formed on the surface of the porous silica gel (the portion circled in the photograph of FIG. 9B) contained in the mixed paper. It was confirmed that the synthetic silica gel was laminated (the arrow portion in the photograph of FIG. 9B).
  • the dehumidifying member produced in Example 1 is integrally composed of silica gel synthesized by acid-treating a sodium silicate solution from the surface to the inside of the glass paper. I confirmed that it was synthesized.
  • the reason why the tensile strength of the dehumidifying member produced in Example 2 is significantly higher than that of the dehumidifying member of Example 1 is considered to be as follows. (1) First, the vicinity of the contact portion of the honeycomb structure will be examined. As described above, the synthetic silica gel formed on the vent hole side of the adhesive portion increases the adhesive area of the abutting portion. By the way, the silica gel inside the mixed paper is porous (many irregularities). Therefore, the sodium silicate solution invades the gaps of the porous silica gel, and a part of the synthetic silica gel gets into the porous silica gel by the synthesis process, so that the porous silica gel inside the mixed paper and the outside are mixed.
  • the integrity of the synthesized silica gel in other words, the adhesion between the porous silica gel and the outer synthesized silica gel is enhanced. Therefore, the synthetic silica gel in the gap S portion of FIG. 3 cooperates with the porous silica gel contained inside the flat base material 21 and the corrugated base material 22 in addition to the increase in the adhesive area of the contact portion. It is considered that it has an effect of enhancing the adhesive force.
  • the flat substrate and the entire corrugated substrate will be examined. In the honeycomb structure of Example 2, only the surface of the mixed paper is covered with dense synthetic silica gel while the porous portion inside the mixed paper is maintained.
  • the rigidity is different between the outside and the inside of the mixed paper, which is the base material constituting the honeycomb structure, the force is easily dispersed when the tensile force is applied.
  • the flat base material and the corrugated base material of the honeycomb structure tend to disperse the tensile force, and as a result, the strain is concentrated on the contact portion 23. It becomes difficult.
  • Example 1 as shown in FIG. 9B, since the glass paper is integrally formed of synthetic silica gel from the surface to the inside, it is difficult for the force to be dispersed when a tensile force is applied. Become. Therefore, since the applied tensile force is concentrated on the contact portion 23, it is considered that the tensile strength is weaker than that of the mixed papermaking.
  • the dehumidifying member is manufactured by the method for manufacturing the dehumidifying member disclosed in the present application, the honeycomb structure is first produced, and then silica gel is synthesized. Is improved.
  • the dehumidifying member described in Patent Document 2 is aimed at improving the dehumidifying performance by a firing step at about 500 ° C., an adhesive having a combustion temperature lower than 500 ° C. cannot be used.
  • the dehumidifying member disclosed in this application can be used even with an adhesive having a low combustion temperature.
  • synthetic silica gel has the effect of significantly improving the adhesive function of the contact portion of the honeycomb structure. In other words, it was confirmed that two different effects were achieved.
  • the tensile strength of the honeycomb structure formed from mixed paper is lower than the tensile strength of the honeycomb structure formed from glass paper (see Comparative Examples 2 and 4).
  • synthetic silica gel exhibits an adhesive effect on both the porous silica gel and fibers contained in the mixed paper, when the mixed paper is used as the base material for forming the honeycomb structure, the synthetic silica gel is used. It was also confirmed that the adhesive function of silica gel is very excellent.
  • the tensile strength of the dehumidifying member is improved. Therefore, it is useful for manufacturers of dehumidifying devices and manufacturing industries that require dehumidified air.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)
  • Paper (AREA)

Abstract

引張強度が高い除湿部材を提供することを課題とする。 ハニカム構造体を具備する除湿部材であって、 前記ハニカム構造体は、 平坦状基材およびコルゲート状基材と、 前記コルゲート状基材の波頂部と前記平坦状基材とが当接する当接部と、 通気孔部と、 を含み、 前記当接部は、 接着剤で接着された接着部と、 前記接着部より前記通気孔部側に形成されたシリカゲルと、 を含み、 前記接着剤を構成する成分が、前記接着部より前記通気孔部側に形成されたシリカゲルの成分と異なる、 除湿部材により、課題を解決できる。

Description

除湿部材、除湿ローター、および、除湿部材の製造方法
 本出願の開示は、除湿部材、除湿ローター、および、除湿部材の製造方法に関する。
 工場等の製造現場においては、水分を排除したドライエアが必要な場合がある。例えば、半導体製造工場では、酸化の要因になる水分を極力除去したドライエアの需要が高まっている。ドライエアを供給するための装置としては、ハニカム構造体にシリカゲルやゼオライトを担持した除湿ローターを具備した除湿装置が知られている(特許文献1参照)。
 除湿ローターを具備した除湿装置は、例えば、特許文献1の図6に示されているように、処理ゾーンと再生ゾーンに分かれており、除湿ローターは所定のスピードで処理ゾーン、再生ゾーン、処理ゾーン、再生ゾーン・・・の順に回転移動する。そして、除湿ローターが処理ゾーンに位置する時には高湿度空気から水分を吸着し、再生ゾーンに位置する時には除湿ローターに吸着した水分を放出することで除湿ローターの除湿機能を再生する。除湿ローターへの吸湿および除湿ローターからの脱湿を繰り返すことで、除湿装置の連続稼働が可能となる。
 除湿ローターの製造方法としては、例えば、特許文献1には、以下の工程を含む方法が記載されている。
(1)所望の歯型を有する一対の形成ローラの間に送紙することで、波型紙を形成する。
(2)波型紙の一方の波頂部に水ガラス接着剤を塗布した後に多孔質の紙に接着し、次いで、波型紙の他方の波頂部に水ガラス接着剤を塗布しながら巻き取ることでハニカム構造を有した円筒状の成形体を得る。
(3)成形体を水ガラスの水溶液に浸漬し、乾燥および酸処理することで、成形体にシリカゲルを付着させる。
 また、特許文献2には、以下の工程を含む、除湿ローターのその他の製造方法が記載されている。
(1)ハニカム構造体を先ず作製する。
(2)作製したハニカム構造体を、シリカゲルを含むスラリーに含浸し、乾燥後、焼成することで、シリカゲルを担持したハニカム構造体を形成する。
特開昭61-252497号公報 特許第4958459号公報
 ところで、工場の規模が大きくなる、あるいは、求められる除湿能力が高くなると、除湿ローターの大型化が必要な場合がある。除湿ローターを大型化した場合には、除湿ローターの回転中心からみて、鉛直方向上側では除湿ローターの重量による圧縮力が働く。一方、除湿ローターの回転中心からみて鉛直方向下側では、除湿ローターの重量により、ハニカム構造体の接着部分が剥離する方向の力が働く。
 また、除湿ローターを除湿装置に組み込む際に、板金で除湿部材を固定することがある。その場合、除湿ローターが水分の吸脱着により膨張収縮すると、ハニカム構造体の接着部分に引張応力が発生し、剥離するおそれがある。そのため、ハニカム構造体の接着部分をより強固にすることが望まれる。
 しかしながら、特許文献1に記載の除湿ローターは、シリカゲルの付着量を多くするため、(1)ハニカム構造体を構成する無機繊維の密度が非常に小さい紙を使用し、水ガラスを紙の奥まで含浸し、(2)ハニカム構造体を形成するための接着剤として水ガラスを用い、(3)酸処理により水ガラスをシリカゲル化する、との工程により製造している。したがって、除湿ローターのシリカゲルの付着量を多くするためには、接着剤を水ガラス以外に変更できないという問題がある。
 一方、特許文献2に記載の除湿ローターは、ハニカム構造体をシリカゲルスラリーに含浸し、乾燥後に加熱焼成することで製造している。しかしながら、本発明者らは、後述する比較例に示すとおり、特許文献2に記載の除湿ローターの製造方法では、ハニカム構造体の引張強度が非常に弱い、つまり、ハニカム構造の層間剥離が発生しやすいという問題を新たに発見した。
 本出願の開示は、上記問題を解決する為になされてものであり、鋭意研究を行ったところ、ハニカム構造体を形成する平坦状基材およびコルゲート状基材の当接部を、接着剤で接着された接着部と、接着部より通気孔部側に形成されたシリカゲルと、で形成することで、引張強度が高い除湿部材を提供できること、
を新たに見出した。
 すなわち、本出願の開示の目的は、引張強度が高い除湿部材、除湿ローター、および、除湿部材の製造方法を提供することである。
 本出願の開示は、以下に示す、除湿部材、除湿ローター、および、除湿部材の製造方法に関する。
(1)ハニカム構造体を具備する除湿部材であって、
 前記ハニカム構造体は、
  平坦状基材およびコルゲート状基材と、
  前記コルゲート状基材の波頂部と前記平坦状基材とが当接する当接部と、
  通気孔部と、
を含み、
 前記当接部は、
  接着剤で接着された接着部と、
  前記接着部より前記通気孔部側に形成されたシリカゲルと、
を含み、
 前記接着剤を構成する成分が、前記接着部より前記通気孔部側に形成されたシリカゲルの成分と異なる、
除湿部材。
(2)前記平坦状基材および/または前記コルゲート状基材が、混抄紙である、
上記(1)に記載の除湿部材。
(3)前記混抄紙が、繊維の隙間にシリカゲルを含み、
 前記混抄紙に含まれるシリカゲルの空隙の量が、前記接着部より前記通気孔部側に形成されたシリカゲルの空隙の量より多い、
上記(2)に記載の除湿部材。
(4)前記接着剤が、有機成分を含む、
上記(1)~(3)の何れか一つに記載の除湿部材。
(5)上記(1)~(4)の何れか一つに記載の除湿部材を含む、除湿ローター。
(6)除湿部材の製造方法であって、該製造方法は、
  ハニカム構造体に珪酸ナトリウム溶液を担持させる担持工程と、
  担持工程によりハニカム構造体に担持された珪酸ナトリウムを酸処理することでシリカゲルを合成するシリカゲル合成工程と、
を含み、
 前記ハニカム構造体は、
  平坦状基材およびコルゲート状基材と、
  前記コルゲート状基材の波頂部と前記平坦状基材とを接着する接着部と、
  通気孔部と、
を含む、
製造方法。
(7)前記平坦状基材および/または前記コルゲート状基材が、混抄紙である、
上記(6)に記載の製造方法。
(8)前記接着剤が、有機成分を含む、
上記(6)または(7)に記載の製造方法。
 本出願の開示により、従来の除湿部材と比較して、引張強度が高い除湿部材を提供できる。
図1は、除湿ローターおよび第1の実施形態に係る除湿部材の概略を示す斜視図である。 図2は、除湿部材を図1の除湿ローターの回転中心軸方向に見た時のハニカム構造体の概略を示す図である。 図3は、ハニカム構造体の当接部を拡大した概略断面図である。 図4は、第3の実施形態に係る除湿部材の概略を示す斜視図である。 図5は、除湿部材の引張強度の評価方法を説明するための概略図である。 図6は、実施例1および比較例1で作製した除湿部材、並びに、比較例2で作製したハニカム構造体の引張強度の測定結果を示すグラフである。 図7は、実施例2および比較例3で作製した除湿部材、並びに、比較例4で作製したハニカム構造体の引張強度の測定結果を示すグラフである。 図8は図面代用写真で、混抄紙の表面のSEM写真である。 図9は図面代用写真で、図9Aは実施例2で作製した除湿部材のハニカム構造体を構成する混抄紙表面および断面のSEM写真、図9Bは実施例1で作製した除湿部材のハニカム構造体を構成するガラス紙の断面のSEM写真である。
 以下に、本出願で開示する、除湿部材、除湿ローター、および、除湿部材の製造方法について詳しく説明する。
(除湿部材の第1の実施形態)
 図1乃至図3を参照して、第1の実施形態に係る除湿部材について説明する。図1は、除湿ローター10および除湿部材1の概略を示す斜視図である。図2は、除湿部材1を図1の除湿ローター10の回転中心軸Z方向に見た時のハニカム構造体2の概略を示す図である。図3は、ハニカム構造体2の当接部23を拡大した概略断面図である。
 第1の実施形態に係る除湿部材1は、除湿ローター10を1以上に分割した分割体である。図1に示す例では、除湿部材1を3つ組み合わせることで除湿ローター10を形成する例が示されているが、除湿ローター10を構成する除湿部材1の数は任意でよい。また、単一の除湿部材1で除湿ローター10を形成してもよい。
 除湿部材1は、ハニカム構造体2を具備する。ハニカム構造体2は、平坦状基材21と、コルゲート状基材22と、コルゲート状基材22の波頂部22aと平坦状基材21とが当接する当接部23と、通気孔部24と、を含む。当接部23は、接着剤で接着された接着部23aと、接着部23aより通気孔部側に形成されたシリカゲル23bとを含む。
 後述する製造方法で詳しく記載するが、除湿部材1は、先ず接着部23を含むハニカム構造体2を製造し、次に、ハニカム構造体2に珪酸ナトリウム溶液を担持し、そして、酸処理することで珪酸ナトリウムからシリカゲル23bを合成する(以下、珪酸ナトリウムから合成したシリカゲルを「合成シリカゲル」と記載することがある)。ハニカム構造体2を珪酸ナトリウム溶液に浸漬すると、接着部23a、平坦状基材21およびコルゲート状基材22で形成される隙間Sに珪酸ナトリウム溶液が充填される。したがって、接着部23aは合成シリカゲル23bで覆われることになる。なお、本明細書で開示する製造方法では、合成シリカゲル23bは、ハニカム構造体2を構成する平坦状基材21およびコルゲート状基材22の周囲全体に形成される。本明細書において、当接部23に含まれるシリカゲル23bとは、図3に示すとおり、平坦状基材21の周囲に形成された合成シリカゲル23bと、コルゲート状基材22の周囲に形成された合成シリカゲル23bとの境界Bより、接着部23a側の合成シリカゲル23bを意味する。換言すると、合成シリカゲル23bの内、平坦状基材21とコルゲート状基材22の両方に当接する部分と言うこともできる。
 第1の実施形態に係る除湿部材1の平坦状基材21およびコルゲート状基材22は、当該技術分野で公知の繊維状基材を用いることができる。繊維状基材の具体例としては、例えば、シリカ・アルミナ繊維、シリカ繊維、アルミナ繊維、ムライト繊維、ガラス繊維、ロックウール繊維、炭素繊維等の無機繊維;ポリエチレン繊維、ポリプロピレン繊維、ナイロン繊維、ポリエステル繊維、ポリビニルアルコール繊維、ポリエチレンテレフタレート繊維、アラミド繊維、パルプ繊維、レーヨン繊維等の有機繊維が挙げられる。また、これらの繊維は、1種単独又は2種以上の組み合わせであっても良い。なお、上記繊維は単なる例示であって、これら繊維に限定されるものではない。また、平坦状基材21およびコルゲート状基材22は、同じ繊維を用いてもよいし、異なる繊維を用いてもよい。
 第1の実施形態に係る除湿部材1の繊維は、密度が低すぎるとハニカム構造体の強度が弱くなり、密度が高すぎると、繊維の間に担持するシリカゲルの量が少なくなる。したがって、繊維の密度は、強度とハニカム構造体の量(吸湿量)等を考慮し、適宜選択すればよい。第1の実施形態に係る除湿部材1の繊維の密度としては、例えば、0.05~0.5g/cm3、好ましくは0.08~0.3g/cm3は、より好ましくは0.1~0.2g/cm3等が挙げられる。
 接着部23を形成する接着剤は、平坦状基材21とコルゲート状基材22の波頂部22aを接着できれば特に制限はない。例えば、無機系接着剤または有機系接着剤があげられる。無機接着剤の例としては、シリカ系接着剤、水ガラス等があげられる。また、有機系接着剤としては、アクリル樹脂系接着剤、アクリル樹脂エマルジョン接着剤、α-オレフィン系接着剤、ウレタン樹脂系接着剤、ウレタン樹脂エマルジョン接着剤、エーテル系セルロース、エチレン-酢酸ビニル樹脂エマルジョン接着剤、エポキシ樹脂系接着剤、エポキシ樹脂エマルジョン接着剤、塩化ビニル樹脂溶剤系接着剤、クロロプレンゴム系接着剤、酢酸ビニル樹脂エマルジョン接着剤、シアノアクリレート系接着剤、シリコーン系接着剤、水性高分子-イソシアネート系接着剤、スチレン-ブタジエンゴム溶液系接着剤、スチレン-ブタジエンゴム系ラテックス接着剤、ニトリルゴム系接着剤、ポリイミド系接着剤、ポリビニルアルコール系接着剤、デンプン系接着剤、天然ゴム系接着剤等が挙げられる。
 接着剤は、平坦状基材21とコルゲート状基材22の材質に応じて適宜選択すればよい。また、接着剤は、無機系接着剤および有機系接着剤から選択した2種以上を組み合わせて用いてもよい。また、接着剤は、必要に応じて、粘着付与剤、可塑剤、硬化剤、架橋剤、希釈剤、充填剤、増粘剤、顔料、老化防止剤、酸化防止剤、消泡剤、難燃剤、防腐剤、分散剤、湿潤剤、親水化剤等を添加してもよい。
 シリカゲル23bを合成するための珪酸ナトリウム溶液は、珪酸ナトリウムを水に溶かしたもので、「水ガラス」とも呼ばれている。珪酸ナトリウム溶液は、市販の珪酸ナトリウムを水に溶解することで作製することができる。珪酸ナトリウム溶液の濃度は、薄すぎると一度の担持工程でハニカム構造体2に担持できる量が少なくなる。一方、濃すぎると、ハニカム構造体2の通気孔部24が目詰まりするおそれがある。したがって、所望の量が担持でき且つ通気孔部24が目詰まりしないように、珪酸ナトリウムの濃度は適宜設定すればよい。珪酸ナトリウム溶液の濃度としては、例えば、20~50質量%、好ましくは25~45質量%、より好ましくは30~40質量%が挙げられる。
 第1の実施形態に係る除湿部材1は、先ず、平坦状基材21とコルゲート状基材22の波頂部22aを接着剤で接着してハニカム構造体2を作製する。特許文献2と異なり、第1の実施形態に係る除湿部材1は、焼成する必要はない。したがって、比較的熱に弱い接着剤を使用することもでき、使用する接着剤の種類の選択肢が多くなる。
 また、特許文献1に記載のとおり、珪酸ナトリウム(水ガラス)は接着剤として用いることもできる。しかしながら、第1の実施形態に係る除湿部材1は、接着部23aに、接着効果が高い接着剤を選択できる。したがって、接着剤で接着された接着部23aと、接着部23aより通気孔部側に形成された合成シリカゲル23bの成分は異なる。なお、本明細書において、成分が異なるとは、接着剤全体の成分が合成シリカゲル23bの成分と異なることを意味し、接着剤の成分の一部が合成シリカゲルの成分と同じになることを妨げない。
 接着剤で接着された接着部23aと、接着部23aより通気孔部側に形成された合成シリカゲル23bの成分が異なる効果として、異種の接着剤によるアンカー効果により接着強度を高めることでハニカム構造体の強度を向上させている点、異種の接着剤を用いることによる設計自由度の向上に伴うコスト削減や機能性付与効果などがある。一方で、例えば、珪酸ナトリウムを接着剤として使用した場合、接着部23aに付着固化した接着剤が珪酸ナトリウム溶液の担持工程で溶け出し、除湿部材としての成形体を保てないことが考えられる。この場合には、接着剤にこの珪酸ナトリウム溶液に強い異なる接着剤を用いればこのような現象が防げる効果が考えられる。珪酸ナトリウム溶液に強い接着剤としては、例えば、アクリル樹脂エマルジョン接着剤、エチレン-酢酸ビニル樹脂エマルジョン接着剤等が挙げられる。
 また、接着剤で接着された接着部23aと、接着部23aより通気孔部側に形成された合成シリカゲル23bの成分が異なるその他の効果として、接着剤の分布や付着量等を調べることで、製品不良が発生した原因解明の寄与が挙げられる。
(除湿部材の第2の実施形態)
 除湿部材1の第2の実施形態について説明する。第2の実施形態に係る除湿部材1は、平坦状基材21および/またはコルゲート状基材22が、混抄紙である点で第1の実施形態に係る除湿部材1と異なり、その他の点は第1の実施形態に係る除湿部材1と同じである。したがって、第2の実施形態では、第1の実施形態と異なる点を中心に説明し、第1の実施形態において説明済みの事項についての繰り返しとなる説明は省略する。よって、第2の実施形態において明示的に説明されなかったとしても、第2の実施形態において、第1の実施形態で説明済みの事項を採用可能であることは言うまでもない。
 本明細書において、混抄紙とは、第1の実施形態で例示した平坦状基材21およびコルゲート状基材22を構成する繊維状基材の繊維の隙間に、シリカゲル、ゼオライト、シリカアルミナ非晶質多孔体、メソポーラスシリカ、イオン交換樹脂、ポリアクリル酸塩樹脂、アルキレンオキサイド樹脂等の吸湿性の粒子を抄き込んだ紙状の基材を意味する。混抄紙は、吸湿性の微粒子を分散した繊維溶液を紙状に抄くことで作製する。シリカゲルの種類は目的に応じて適宜選択すればよい。例えば、低湿度時の吸湿力に優れるA型、高湿度時の吸湿力に優れるB型を、目的に応じて選択すればよい。あるいは、A型およびB型のシリカゲルを混合してもよい。
 なお、混抄紙に含まれる吸湿性の微粒子は、製造過程で微粒子が繊維の隙間で凝集した形態となる。一方、接着部23aより通気孔部側に形成された合成シリカゲル23bは、ハニカム構造体2に含浸させた珪酸ナトリウムを酸処理することで作製される。したがって、混抄紙に含まれる吸湿性の微粒子の空隙の量は、接着部23aより通気孔部側に形成された合成シリカゲル23bの空隙の量より多くなる。なお、本明細書において、「空隙の量」とは、吸湿性の微粒子内部の細孔表面積を表す比表面積とは異なり、微粒子と微粒子の隙間に形成される隙間の単位体積当たりの量を意味する。「空隙の量」は、微粒子をSEM等により撮像し、見た目の粗さから比較すればよい。微粒子がランダムに凝集するほど、「空隙の量」は多くなり、SEM画像の見た目が粗くなる(微細な凹凸状が観察される)。一方、「空隙の量」が少なくなるほど、微粒子が密に形成されることから、SEM画像の見た目が滑らかになる。
 また、「空隙の量」は、個々の微粒子と微粒子の隙間の量ではなく、所定量の微粒子が凝集した領域における空隙の量(見た目の粗さ又は滑らかさ)を意味する。所定量の微粒子が凝集した領域とは、SEM画像から見た微粒子が凝集している任意の領域を意味する。したがって、領域には表面に形成されたクラック等は含まれない。換言すると、領域とは、SEM画像で観察される表面全体を意味するのではなく、あくまでも微粒子が凝集している部分を意味する。
 なお、混抄紙に含まれる吸湿性の微粒子と合成シリカゲル23bの違いについて、「空隙の量」に代え、「表面平滑性」、「表面性状」又は「表面粗さ」との用語を用いて違いを表してもよい。また、SEM画像から見た混抄紙に含まれる吸湿性の微粒子と合成シリカゲル23bの違いを、以下のように表してもよい。
・顆粒体が凝集した凹凸の表面を持つ吸湿性の微粒子と、表面が相対的に平らなブロック形状の合成シリカゲル。
・ざらざらした表面を持つ吸湿性の微粒子と、滑らかな表面を持つ合成シリカゲル。
(除湿部材の第3の実施形態)
 図4を参照して除湿部材1の第3の実施形態について説明する。第3の実施形態に係る除湿部材1は、ハニカム構造体2が平坦状基材21にコルゲート状基材22の波頂部22aを接着しながら積層、換言すると、平坦状基材21が略並行となるように形成されている点で、第1および第2の実施形態に係る除湿部材1と異なり、その他の点は第1および第2の実施形態に係る除湿部材1と同じである。したがって、第3の実施形態では、第1および第2の実施形態と異なる点を中心に説明し、第1および第2の実施形態において説明済みの事項についての繰り返しとなる説明は省略する。よって、第3の実施形態において明示的に説明されなかったとしても、第3の実施形態において、第1および第2の実施形態で説明済みの事項を採用可能であることは言うまでもない。
 第3の実施形態に係る除湿部材1は、平坦状基材21にコルゲート状基材22の波頂部22aを接着し、所定の長さで平坦状基材21およびコルゲート状基材22を切断し、順次積層すればよい。積層の形態としては、平坦状基材21→コルゲート状基材22→平坦状基材21→コルゲート状基材22のように、交互に積層すればよい。あるいは、平坦状基材21→コルゲート状基材22→平坦状基材21のセットを作製し、当該セットの平坦状基材21を接着してもよい。また、図4では、通気孔部24の貫通方向が90度ずれるように交互に積層したハニカム構造体2の例が示されているが、通気孔部24を形成する方向は同じであってよい。なお、積層の形態は、第1の実施形態及び第2の実施形態も同様である。
(除湿ローターの実施形態)
 図1および図4を参照して、除湿ローター10の実施形態について説明する。除湿ローター10は、第1および第2の実施形態に係る除湿部材1を組み合わせることで作製できる。第1および第2の実施形態に係る除湿部材1を用いれば、除湿ローター10の作製手順は特に制限はない。例えば、図1には、(1)平坦状基材21にコルゲート状基材22の波頂部22aを接着しながらロール状に巻き取ることでローターを製造し、(2)ローターを分割し、分割したローターの各々に珪酸ナトリウム溶液を担持し、(3)珪酸ナトリウムを酸処理することでシリカゲル23bを合成することで除湿部材1を作製し、(4)作製した除湿部材1を組み合わせることで、除湿ローター10を作製する、例が示されている。代替的に、上記(2)の工程において、ローターを分割せず、そのまま用いてもよい。
 また、図4に示す第3の実施形態に係る除湿部材1を用いて除湿ローター10を作製する場合は、除湿部材1を適当な形状となるようにカットし、組み合わせればよい。
(除湿部材の製造方法の実施形態)
 除湿部材の製造方法は、
・ハニカム構造体に珪酸ナトリウム溶液を担持させる担持工程と、
・担持工程によりハニカム構造体に担持された珪酸ナトリウムを酸処理することでシリカゲルを合成するシリカゲル合成工程と、
を含む。
 ハニカム構造体および珪酸ナトリウム溶液は、既に説明済みのため、詳しい記載は省略する。シリカゲル合成工程に用いる酸は、珪酸ナトリウム溶液からシリカゲルを合成できれば特に制限はない。酸としては、例えば、硫酸、リン酸、硝酸、塩酸、および、それら酸の金属塩等、例えば、硫酸アルミニウム、硝酸アルミニウム等のアルミニウム塩、硝酸カルシウム、塩化カルシウム等のカルシウム塩、硫酸マグネシウム、塩化マグネシウム等のマグネシウム塩、硫酸鉄、硝酸鉄等の鉄塩が挙げられる。前記の酸および酸の金属塩は、単独で用いてもよいし、組み合わせて用いてもよい。また、合成シリカゲル23bは、A型であってもB型であってもよい。酸処理の濃度を変える等の方法により、目的に応じて所望の型となるように合成すればよい。なお、珪酸ナトリウム溶液からシリカゲルを合成する際に、酸としてアルミニウム塩を用いた場合には、シリカアルミナゲルが得られる。本明細書において「合成シリカゲル」と記載した場合、「合成シリカゲル」には、酸に由来する金属塩を含んだシリカゲルも包含される。
 以下に実施例を掲げ、本出願で開示する実施形態を具体的に説明するが、この実施例は単に実施形態の説明のためのものである。本出願で開示する発明の範囲を限定したり、あるいは制限することを表すものではない。
〔除湿部材の製造〕
<原料>
 原料には、以下の製品を用いた。なお、割合は、質量%である。
<基材>
Figure JPOXMLDOC01-appb-T000001
 なお、シリカゲルは、サイリシア740(A型シリカゲル、富士シリシア化学社製)を用いた。また、作製した基材の坪量(g/m2)は、ガラス紙が20、混抄紙が83で、厚み(μm)はガラス紙101、混抄紙が197であった。
<接着剤>
Figure JPOXMLDOC01-appb-T000002
<珪酸ナトリウム溶液>
Figure JPOXMLDOC01-appb-T000003
 
<酸処理液>
Figure JPOXMLDOC01-appb-T000004
<シリカゲルスラリー溶液>
Figure JPOXMLDOC01-appb-T000005
<実施例1>
[除湿部材の作製]
 以下の手順により、除湿部材を作製した。
(1)平坦状基材およびコルゲート状基材として、ガラス紙を用いた。ガラス紙を、接着剤を用いてコルゲート加工し、コルゲート加工紙を、接着剤を用いて渦巻状に巻き取り、直径450mm、フルート長さ210mm、フルートの山の高さ1.9mmの、ローター型ハニカム構造体を製作した。なお、フルート長さとはコルゲート状基材22の波頂部22aの長さ(除湿ローターの厚み)(図1および図2のL参照)、フルート山の高さとは波頂部22aと平坦状基板21との距離(図2のH参照)を意味する。
(2)作製したハニカム構造体を珪酸ナトリウム溶液に浸漬した後(その他、珪酸ナトリウムを担持させる担持手段として、スプレー、スプリンクラー等の噴霧、散布による手段でも良い。)、ハニカム構造体を珪酸ナトリウム溶液から引き上げた。
(3)珪酸ナトリウム溶液を担持したハニカム構造体をエアブローした後、酸処理液に浸漬し、ハニカム構造体中の珪酸ナトリウムと硫酸アルミニウムの化学反応により、珪酸アルミニウムのヒドロゲルを生成した。
(4)ハニカム構造体を加熱乾燥し、シリカゲルによって強化された除湿部材を得た。
[除湿部材の引張強度の評価方法]
 図5を参照しながら、除湿部材の引張強度の評価方法を説明する。引張強度は、以下の手順で評価した。
(1)作製した除湿部材を積層方向に並行となるように5cm3の立方体状に切断し、引張強度測定用の試験体とした。
(2)試験体を110℃×1時間乾燥し、重量を電子天秤および3辺の長さをノギスで測定した。
(3)試験体のハニカム構造体の積層方向の上下に、エポキシ接着剤を用いて引張試験用の冶具を接着した。
(4)試験体を引張試験機(島津製作所、島津製作所・小型卓上試験機Ez-LX)に取り付け、試験体に1mm/minで連続的に引張加重を加え、破断時の荷重を1N単位まで求めた。
(5)積層方向の引張強度は、次式によって求めた。
  σ=F/(A×B)
(ただし、σ:引張強度[N/cm2]、F:試験体破断時の荷重[N]、試験体のA寸[cm]、試験体のB寸[cm]
 引張強度の評価は、3個の試験体で行った。評価結果を図6に示す。引張強度の平均値は、24.3kPaであった。
<比較例1>
 実施例1の珪酸ナトリウム溶液に代え、シリカゲルスラリー溶液を用いた。作製した除湿部材の密度が、実施例1とほぼ同じとなるように固形分濃度を調整したシリカゲルスラリー溶液に浸漬した後、150℃で乾燥を行い、次いで、500℃で1時間焼成することで、比較例1の除湿部材を作製した。作製した除湿部材の引張強度は、実施例1と同様の手順で評価した。評価結果を図6に示す。引張強度の平均値は、9.6kPaであった。
<比較例2>
 実施例1で作製したハニカム構造体(珪酸ナトリウム溶液に非浸漬)を比較例2とした。比較例2の引張強度は、実施例1と同様の手順で評価した。評価結果を図6に示す。引張強度の平均値は、18.6kPaであった。
 図6に示すとおり、ハニカム構造体の接着剤の周囲を合成シリカゲルで覆うことで、引張強度が向上することを確認した。その理由としては、ハニカム構造体の接着部より通気孔部側に形成した合成シリカゲルが、当接部の接着面積を増大し、接着効果を奏しているためと考えられる。一方、特許文献2に記載の、ハニカム構造体をシリカゲルスラリーに浸漬する製造方法で作製した除湿部材は、ハニカム構造体の引張強度より低くなった。特許文献2に記載の製造方法では、シリカゲルの担持量を多くすることが難しい。そのため、焼成工程を実施することで、作製した除湿部材の除湿性能を向上している。しかしながら、本出願の開示により、特許文献2の製造方法では、引張強度との観点では、焼成工程によりハニカム構造体の引張強度が著しく低下することを新たに発見した。引張強度が低下する理由としては、接着剤等の有機成分が焼成工程により焼失したためと考えられる。
 また、特許文献2に記載の製造方法は、シリカゲルをハニカム構造体に担持するため、除湿機能を有しないコロイダルシリカを、シリカゲルスラリー中に添加する必要がある。したがって、ハニカム構造体に担持した微粒子の全てに除湿機能を持たせることができなかった。一方、本出願で開示する除湿部材は、珪酸ナトリウム溶液からシリカゲルを合成するため、ハニカム構造体に担持した微粒子(合成シリカゲル)の全てが除湿機能を奏する。したがって、単位重量当たりの除湿能力を向上できる。
<実施例2>
 ガラス紙に代え、混抄紙を用いた以外は、実施例1と同様の手順で除湿部材を作製し、引張強度の評価を行った。評価結果を図7に示す。引張強度の平均値は、46.8kPaであった。
<比較例3>
 ガラス紙に代え、混抄紙を用いた以外は、比較例1と同様の手順で除湿部材を作製し、引張強度の評価を行った。評価結果を図7に示す。引張強度の平均値は、2.1kPaであった。
<比較例4>
 実施例2で作製した、混抄紙を用いたハニカム構造体(珪酸ナトリウム溶液に非浸漬)を比較例4とした。比較例4の引張強度は、実施例1と同様の手順で評価した。評価結果を図7に示す。引張強度の平均値は、8.7kPaであった。
 図7に示すとおり、ハニカム構造体の接着剤の周囲を合成シリカゲルで覆うことで、引張強度が向上することを確認した。なお、実施例1と比較例2とを対比した場合、接着剤の周囲をシリカゲルで覆うことで、引張強度は約1.3倍になった。一方、実施例2と比較例4とを対比した場合、接着剤の周囲をシリカゲルで覆うことで、引張強度は約5.4倍になった。つまり、基材としてガラス紙を用いるより、混抄紙を用いた方が、接着剤を用いて作製したハニカム構造体より引張強度が大幅に増加した。
 基材として混抄紙を用いた場合に、引張強度がハニカム構造体と比較して大幅に増加した理由を解明するため、SEMを用いて基材表面と基材の断面を撮影した。まず、図8に混抄紙の表面のSEM写真を示す。図8に示すとおり、混抄紙は、繊維の隙間にシリカゲルが多孔質状に担持されていることを確認した。
 次に、実施例2で作製した除湿部材のハニカム構造体を構成する混抄紙表面および断面のSEM写真(図9A)、実施例1で作製した除湿部材のハニカム構造体を構成するガラス紙の断面のSEM写真(図9B)を示す。
 図9Aの表面のSEM写真に示すように、合成シリカゲルは、非常に滑らかな表面(空隙が少ない)となることを確認した。そして、図9Aの断面のSEM写真に示すように、実施例2で作製した除湿部材は、混抄紙に含まれる多孔質状のシリカゲル(図9Bの写真の円で囲った部分)の表面に、合成シリカゲルが積層(図9Bの写真の矢印部分)していることを確認した。
 一方、図9Bの断面のSEM写真に示すように、実施例1で作製した除湿部材は、ガラス紙の表面から内部に至るまで、珪酸ナトリウム溶液を酸処理することで合成したシリカゲルが一体的に合成されていることを確認した。
 実施例2で作製した除湿部材の引張強度が実施例1の除湿部材と比較して、著しく高くなった原因は、以下の理由が考えられる。
(1)先ず、ハニカム構造体の当接部付近について検討する。上記のとおり、接着部より通気孔部側に形成した合成シリカゲルは、当接部の接着面積を増大する。ところで、混抄紙内部のシリカゲルは多孔質状(凹凸が多い)である。そのため、珪酸ナトリウム溶液が多孔質状のシリカゲルの隙間に侵入し、合成工程により、合成シリカゲルの一部が多孔質状のシリカゲルに入り組むことで、混抄紙内部の多孔質状のシリカゲルと外側の合成したシリカゲルの一体性、換言すると、多孔質状のシリカゲルと外側の合成したシリカゲルの接着性が高くなる。したがって、図3の隙間S部分の合成シリカゲルは、当接部の接着面積の増大に加え、平坦状基材21およびコルゲート状基材22の内部に含まれる多孔質状のシリカゲルと協同して、接着力の増強作用を奏していると考えられる。
(2)次に、平坦状基材およびコルゲート状基材全体について検討する。実施例2のハニカム構造体は、混抄紙内部の多孔質状の部分は維持された状態で、混抄紙表面のみが緻密な合成シリカゲルで覆われる。そのため、ハニカム構造体を構成する基材である混抄紙の外側と内側で剛性が異なることから、引張力が付加した際に、力が分散されやすくなる。換言すると、ハニカム構造体に引張力が付加された際に、ハニカム構造体の平坦状基材およびコルゲート状基材が引張力を分散しやすくなり、その結果、当接部23に歪が集中し難くなる。一方、実施例1では、図9Bに示すように、ガラス紙の表面から内部に至るまで、合成シリカゲルで一体的に形成されていることから、引張力が付加した際に、力が分散され難くなる。そのため、付加された引張力が、当接部23に集中することから、混抄紙と比較して、引張強度が弱くなったと考えられる。
 以上の結果より、本出願で開示する除湿部材の製造方法で除湿部材を製造する場合、先ずハニカム構造体を作製し、次いで、シリカゲルを合成することから、ハニカム構造体を形成する接着剤の選択肢が向上する。特に、特許文献2に記載の除湿部材は、約500℃の焼成工程により除湿性能の向上を図っていることから、燃焼温度が500℃より低い接着剤は使用できなかった。一方、本出願で開示する除湿部材は、燃焼温度が低い接着剤でも使用できる。
 また、合成シリカゲルは、シリカゲルが有する除湿機能に加え、ハニカム構造体の当接部分の接着機能を顕著に向上するとの効果を奏する。つまり、異なる2つの効果を奏することを確認した。混抄紙から形成したハニカム構造体の引張強度は、ガラス紙から形成したハニカム構造体の引張強度より低い(比較例2および4参照)。しかしながら、合成シリカゲルは、混抄紙に含まれる多孔質状のシリカゲルおよび繊維の両方に対して接着効果を示すことから、ハニカム構造体を形成する基材として混抄紙を用いた場合には、合成シリカゲルの接着機能が非常に優れることも確認した。
 本出願の開示によれば、除湿部材の引張強度が向上する。したがって、除湿装置の製造メーカー、除湿した空気が必要な製造業にとって有用である。
1…除湿部材、2…ハニカム構造体、21…平坦状基材、22…コルゲート状基材、22a…波頂部、23…当接部、23a…接着部、23b…合成シリカゲル、24…通気孔部、10…除湿ローター、B…境界、H…フルート山の高さ、L…フルート長さ、S…隙間、Z…除湿ローターの回転中心軸

Claims (9)

  1.  ハニカム構造体を具備する除湿部材であって、
     前記ハニカム構造体は、
      平坦状基材およびコルゲート状基材と、
      前記コルゲート状基材の波頂部と前記平坦状基材とが当接する当接部と、
      通気孔部と、
    を含み、
     前記当接部は、
      接着剤で接着された接着部と、
      前記接着部より前記通気孔部側に形成されたシリカゲルと、
    を含み、
     前記接着剤を構成する成分が、前記接着部より前記通気孔部側に形成されたシリカゲルの成分と異なる、
    除湿部材。
  2.  前記平坦状基材および/または前記コルゲート状基材が、混抄紙である、
    請求項1に記載の除湿部材。
  3.  前記混抄紙が、繊維の隙間にシリカゲルを含み、
     前記混抄紙に含まれるシリカゲルの空隙の量が、前記接着部より前記通気孔部側に形成されたシリカゲルの空隙の量より多い、
    請求項2に記載の除湿部材。
  4.  前記接着剤が、有機成分を含む、
    請求項1~3の何れか一項に記載の除湿部材。
  5.  請求項1~3の何れか一項に記載の除湿部材を含む、除湿ローター。
  6.  請求項4に記載の除湿部材を含む、除湿ローター。
  7.  除湿部材の製造方法であって、該製造方法は、
      ハニカム構造体に珪酸ナトリウム溶液を担持させる担持工程と、
      担持工程によりハニカム構造体に担持された珪酸ナトリウムを酸処理することでシリカゲルを合成するシリカゲル合成工程と、
    を含み、
     前記ハニカム構造体は、
      平坦状基材およびコルゲート状基材と、
      前記コルゲート状基材の波頂部と前記平坦状基材とを接着する接着部と、
      通気孔部と、
    を含む、
    製造方法。
  8.  前記平坦状基材および/または前記コルゲート状基材が、混抄紙である、
    請求項7に記載の製造方法。
  9.  前記接着剤が、有機成分を含む、
    請求項7または8に記載の製造方法。
     
     
PCT/JP2021/018770 2020-05-20 2021-05-18 除湿部材、除湿ローター、および、除湿部材の製造方法 WO2021235429A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21808126.3A EP4155269A4 (en) 2020-05-20 2021-05-18 DEHUMIDIFICATION ELEMENT, DEHUMIDIFICATION ROTOR AND METHOD FOR PRODUCING A DEHUMIDIFICATION ELEMENT
US17/999,035 US20230175713A1 (en) 2020-05-20 2021-05-18 Dehumidification member, dehumidification rotor and method for producing dehumidification member
CN202180031305.7A CN115485053A (zh) 2020-05-20 2021-05-18 除湿构件、除湿转子、以及除湿构件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020088096A JP6918183B1 (ja) 2020-05-20 2020-05-20 除湿部材、除湿ローター、および、除湿部材の製造方法
JP2020-088096 2020-05-20

Publications (1)

Publication Number Publication Date
WO2021235429A1 true WO2021235429A1 (ja) 2021-11-25

Family

ID=77172717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018770 WO2021235429A1 (ja) 2020-05-20 2021-05-18 除湿部材、除湿ローター、および、除湿部材の製造方法

Country Status (5)

Country Link
US (1) US20230175713A1 (ja)
EP (1) EP4155269A4 (ja)
JP (1) JP6918183B1 (ja)
CN (1) CN115485053A (ja)
WO (1) WO2021235429A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252497A (ja) 1985-04-22 1986-11-10 Seibu Giken:Kk 湿気交換用または全熱交換用の吸着型素子の製造法
JP2001149735A (ja) * 1999-11-25 2001-06-05 Ebara Corp 除湿又は熱交換用機能素子とその製造方法
JP2004209420A (ja) * 2003-01-07 2004-07-29 Toyobo Co Ltd 除湿エレメントおよび除湿装置
JP2007260582A (ja) * 2006-03-29 2007-10-11 Nichias Corp 除湿ロータ及びその製造方法並びに除湿機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2579767B2 (ja) * 1987-06-10 1997-02-12 株式会社 西部技研 超低濃度ガス吸着素子およびガス吸着除去装置
US5435958A (en) * 1993-08-02 1995-07-25 Munters Corporation Method for making a humidity exchanger medium
JP2002046198A (ja) * 2000-08-03 2002-02-12 Nichias Corp ハニカム構造体及びその製造方法
JP2005046791A (ja) * 2003-07-31 2005-02-24 Nichias Corp ケミカルフィルタ及びその製造方法
JP2006205122A (ja) * 2005-01-31 2006-08-10 Nippon Zeon Co Ltd 除湿用成形体および除湿用複合成形体
CN109891015B (zh) * 2016-10-24 2022-04-26 王子控股株式会社 无机纤维片材、蜂巢式成形体及蜂巢式过滤器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252497A (ja) 1985-04-22 1986-11-10 Seibu Giken:Kk 湿気交換用または全熱交換用の吸着型素子の製造法
JP2001149735A (ja) * 1999-11-25 2001-06-05 Ebara Corp 除湿又は熱交換用機能素子とその製造方法
JP2004209420A (ja) * 2003-01-07 2004-07-29 Toyobo Co Ltd 除湿エレメントおよび除湿装置
JP2007260582A (ja) * 2006-03-29 2007-10-11 Nichias Corp 除湿ロータ及びその製造方法並びに除湿機
JP4958459B2 (ja) 2006-03-29 2012-06-20 ニチアス株式会社 除湿ロータの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4155269A4

Also Published As

Publication number Publication date
EP4155269A1 (en) 2023-03-29
JP2021181072A (ja) 2021-11-25
EP4155269A4 (en) 2024-06-12
US20230175713A1 (en) 2023-06-08
JP6918183B1 (ja) 2021-08-11
CN115485053A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
JP4916888B2 (ja) 石膏ボード用不織布及びその製造方法
US20160111076A1 (en) Particulate Sound Absorption Board and Preparation Method Thereof
EP3530791B1 (en) Inorganic fiber sheet, honeycomb molded body and honeycomb filter
WO2021235429A1 (ja) 除湿部材、除湿ローター、および、除湿部材の製造方法
JP2014018722A (ja) 除湿用フィルター素子
KR20050096845A (ko) 케미컬 필터의 제조 방법
JP4932320B2 (ja) 吸着・脱着性能に優れた吸着部材およびその製造方法
EP1130161B1 (en) Method for the production of a dehumidifying element
JP6228571B2 (ja) 吸音建材及びその製造方法
JPH01198336A (ja) 樹脂発泡断熱材用無機質シート
JP2012200644A (ja) 除湿用シート
JP4143486B2 (ja) 内装用化粧板及びその製造方法
JP4611094B2 (ja) アルデヒド類吸着壁紙
JP6376167B2 (ja) 吸音材
JP2024057201A (ja) 吸着部材、吸着ローター及びそれらの製造方法
KR101208869B1 (ko) 고효율 무기질 제습 로터 및 그 제조 방법
JP2010184184A (ja) 調湿用シート及び除湿素子
JP2005349810A (ja) 調湿内装下地材
CN113320230A (zh) 夹芯层蜂窝壁面开孔的蜂窝纸板
JPH05229042A (ja) 不燃性ハニカム構造材及び不燃性ボード
JPH0417099B2 (ja)
JPH05147134A (ja) 不燃性ハニカム構造材及び不燃性ボード
JPH10250025A (ja) 内装用調湿化粧シート及びその製造方法
JPH0160117B2 (ja)
JPH042149B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021808126

Country of ref document: EP

Effective date: 20221220