WO2021235209A1 - 車線推定装置および車線推定方法 - Google Patents

車線推定装置および車線推定方法 Download PDF

Info

Publication number
WO2021235209A1
WO2021235209A1 PCT/JP2021/016984 JP2021016984W WO2021235209A1 WO 2021235209 A1 WO2021235209 A1 WO 2021235209A1 JP 2021016984 W JP2021016984 W JP 2021016984W WO 2021235209 A1 WO2021235209 A1 WO 2021235209A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
information
accuracy
acquisition unit
road surface
Prior art date
Application number
PCT/JP2021/016984
Other languages
English (en)
French (fr)
Inventor
明 飯星
篤樹 柿沼
康夫 大石
武雄 徳永
寛之 鬼丸
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2022524360A priority Critical patent/JP7358638B2/ja
Priority to US17/926,618 priority patent/US20230184555A1/en
Publication of WO2021235209A1 publication Critical patent/WO2021235209A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3658Lane guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3815Road data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3815Road data
    • G01C21/3822Road feature data, e.g. slope data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3833Creation or updating of map data characterised by the source of data
    • G01C21/3848Data obtained from both position sensors and additional sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to a lane estimation device and a lane estimation method for estimating a lane when a vehicle is traveling.
  • the lane estimation device has a position information acquisition unit that acquires position information obtained by a positioning sensor that receives a signal transmitted from a positioning satellite and positions the vehicle, and positioning by the positioning sensor.
  • the accuracy information acquisition unit that acquires the accuracy information of the vehicle
  • the travel information acquisition unit that acquires the vehicle travel information including the detection value information of the detector that changes according to the road surface profile of the road surface on which the vehicle travels, and the lane of the road.
  • Road map information acquisition unit that acquires road map information including information and road surface profile information, position information acquired by the position information acquisition unit, accuracy information acquired by the accuracy information acquisition unit, and driving information acquisition unit.
  • a traveling lane specifying unit for specifying a traveling lane in which a vehicle travels is provided based on the traveling information acquired by the vehicle and the road map information acquired by the road map information acquisition unit.
  • the traveling lane identification unit determines whether or not the positioning accuracy is equal to or higher than a predetermined value based on the accuracy information acquired by the accuracy information acquisition unit, and determines that the positioning accuracy is equal to or higher than the predetermined value.
  • the driving lane is specified based on the position information acquired by the position information acquisition unit and the road map information acquired by the road map information acquisition unit.
  • the positioning accuracy is equal to or higher than the predetermined value based on the driving information acquired by the information acquisition unit and the road surface profile information included in the road map information acquired by the road map information acquisition unit. It is determined whether or not there is a lane change from the determined driving lane, and the driving lane is specified according to the determination result.
  • the lane estimation method includes a step of acquiring position information obtained by a positioning sensor that receives a signal transmitted from a positioning satellite and positions the vehicle, and positioning accuracy by the positioning sensor.
  • a step for acquiring information a step for acquiring vehicle driving information including information on a detector detection value that changes according to the road surface profile on which the vehicle travels, and road lane information and road surface profile information.
  • the step of acquiring the road map information including, and the step of specifying the driving lane in which the vehicle travels based on the acquired position information, accuracy information, traveling information, and road map information are executed by a computer. ..
  • the step of specifying the traveling lane is acquired when it is determined whether or not the positioning accuracy is equal to or higher than the predetermined value based on the acquired accuracy information and when it is determined that the positioning accuracy is equal to or higher than the predetermined value.
  • the driving lane is specified based on the position information and the road map information, and then it is determined that the positioning accuracy is less than the predetermined value, the acquired driving information and the road surface profile information included in the road map information are used. Based on this, it is determined whether or not there is a lane change from the specified traveling lane when it is determined that the positioning accuracy is equal to or higher than a predetermined value, and the traveling lane is specified according to the determination result.
  • the figure which shows an example of the road surface profile obtained by the server apparatus of FIG. The block diagram which shows the functional structure of the lane estimation apparatus which concerns on embodiment of this invention.
  • the lane estimation device is configured to estimate the traveling lane in which the vehicle is traveling when the vehicle travels on a road having a plurality of traveling lanes. Once the driving lane is estimated, it is possible to easily predict traffic congestion for each lane, create a road surface profile showing the uneven state of the road surface, estimate the position where the broken vehicle is stopped, and estimate the reverse-way vehicle. Can be done.
  • a signal from a positioning artificial satellite such as GPS (Global Positioning System) is received by a positioning sensor such as a GPS receiver (GPS sensor) mounted on the vehicle to obtain the vehicle.
  • a positioning sensor such as a GPS receiver (GPS sensor) mounted on the vehicle to obtain the vehicle.
  • GPS Global Positioning System
  • This can be done by measuring the position of the vehicle and comparing the measured position of the vehicle with the position of the lane included in the map information. That is, if the positioning accuracy when measuring the position of the vehicle using the positioning sensor is such that the position of the lane can be specified, the position of the lane can be estimated accurately using the positioning sensor.
  • FIG. 1 is a diagram schematically showing an example of a road having a plurality of lanes (for example, the first lane R1 and the second lane R2) as a three-dimensional map.
  • the arrow A in the figure is a traveling locus of the vehicle 1.
  • the area AR in FIG. 1 is a building area where high-rise buildings stand, and the positioning accuracy is low when traveling on the road in the building area (area AR) surrounded by the high-rise buildings. Therefore, when the vehicle 1 changes lanes from the first lane R1 to the second lane R2 in the area AR as shown in the figure, the positioning sensor accurately estimates the point where the lane change was made and the lane after the lane change. It may not be possible. In consideration of this point, the present embodiment configures the lane estimation device as follows.
  • FIG. 2 is a diagram showing an overall configuration of a lane estimation system including a lane estimation device according to an embodiment of the present invention.
  • the lane estimation system includes an in-vehicle device 100 mounted on the vehicle 1 and a server device 3 capable of communicating with the in-vehicle device 100 via the network 200.
  • the vehicle 1 is, for example, a manually driven vehicle manually driven by a driver.
  • the in-vehicle device 100 has a positioning sensor 10 that receives a positioning signal transmitted from the positioning satellite 2, and a communication unit 11 that communicates with the server device 3 via the network 200.
  • the positioning satellite 2 is an artificial satellite such as a GPS satellite or a quasi-zenith satellite, and calculates the current position (latitude, longitude, altitude) of the vehicle 1 by using the positioning information from the positioning satellite 2 received by the positioning sensor 10. can do.
  • the network 200 includes not only public wireless communication networks represented by Internet networks and mobile phone networks, but also closed communication networks provided for each predetermined management area, such as wireless LAN and Wi-Fi (registered trademark). , Bluetooth®, etc. are also included.
  • the server device 3 is configured as, for example, a single server or a distributed server composed of separate servers for each function.
  • the server device 3 can also be configured as a distributed virtual server created in a cloud environment called a cloud server.
  • the server device 3 includes a CPU, a ROM, a RAM, and an arithmetic processing device having other peripheral circuits, and has a communication unit 31, a road surface profile generation unit 32, and a storage unit 33 as functional configurations. ..
  • the communication unit 31 is configured to be capable of wireless communication with the in-vehicle device 100 via the network 200, and acquires the position information of the vehicle 1 and the traveling information of the vehicle 1 via the communication unit 11 of the vehicle 1, respectively.
  • the position information is information indicating the current position of the vehicle 1 calculated by the signal received by the positioning sensor 10 of the vehicle 1.
  • the traveling information is information indicating the traveling state of the vehicle 1 acquired by various sensors mounted on the vehicle 1.
  • the traveling information includes information on the value detected by the acceleration sensor (lateral acceleration sensor) that detects the left-right acceleration (lateral acceleration) of the vehicle 1.
  • the communication unit 31 constantly acquires not only the vehicle (target vehicle) 1 that is the target of estimation of the traveling lane, but also the position information and traveling information of a plurality of vehicles 1 other than the target vehicle.
  • the road surface profile generation unit 32 generates a road surface profile showing road surface properties based on the position information and traveling information of a plurality of vehicles 1 other than the target vehicle acquired via the communication unit 31.
  • FIG. 3 is a diagram showing an example of a road surface profile.
  • the horizontal axis in the figure is the position in the traveling direction of the vehicle 1 along the traveling lane, that is, the distance, and the vertical axis is the amount of unevenness (depth or height) of the road surface, that is, the road surface roughness.
  • the road surface property and the lateral acceleration have a predetermined correlation.
  • the road surface profile generation unit 32 calculates the amount of unevenness of the road surface corresponding to the vehicle position on the road from the lateral acceleration by using this predetermined correlation, and obtains the road surface profile in the traveling direction of the vehicle 1 as shown in FIG. Generate.
  • the road surface profile detected by the lateral acceleration sensor of each vehicle 1 may differ due to the different positions of the tires on the road surface.
  • the road surface profile generation unit 32 averages each road surface profile detected by the lateral acceleration sensor of each vehicle 1, for example, and generates a representative road surface profile of each road surface.
  • the road surface profile generation unit 32 can also generate a road surface profile from the data obtained by driving a dedicated vehicle for measuring the road surface properties. For example, by running a dedicated vehicle equipped with a laser profiler and acquiring the measurement data at that time together with the position data of the dedicated vehicle, it is possible to generate a road surface profile without using a lateral acceleration sensor.
  • the storage unit 33 stores a predetermined correlation between the road surface properties and the lateral acceleration used when the road surface profile is generated by the road surface profile generation unit 32, and also stores the road map information.
  • Road map information includes road position information, road shape (curvature, etc.) information, road slope information, intersection and branch store position information, lane number information, lane width and lane-by-lane position information. Is done.
  • the position information for each lane is information such as the center position of the lane and the boundary of the lane position.
  • the road map information includes information on the road surface profile (FIG. 3) at each position of the road generated by the road surface profile generation unit 32.
  • the road surface profile information is updated every time the road surface profile generation unit 32 generates the road surface profile.
  • Other road map information is updated at a predetermined cycle or at an arbitrary timing.
  • FIG. 4 is a block diagram showing a functional configuration of the lane estimation device 101 according to the present embodiment.
  • the lane estimation device 101 constitutes a part of the vehicle-mounted device 100 of FIG.
  • the lane estimation device 101 includes a positioning sensor 10, a communication unit 11, a sensor group 13, a switch group 14, and a controller 20.
  • the positioning sensor 10, the communication unit 11, the sensor group 13, and the switch group 14 are connected to the controller 20 so as to be communicable.
  • the sensor group 13 is a general term for a plurality of sensors that detect the running state of the vehicle 1.
  • the sensor group 13 includes a lateral acceleration sensor 131 that detects the left-right acceleration of the vehicle 1.
  • the switch group 14 is a general term for a plurality of switches that detect the traveling state of the vehicle 1.
  • the switch group 14 includes a winker switch 141 for detecting the operation of the turn signal by the driver.
  • the direction indicator is a device for indicating the direction to the surroundings when the vehicle 1 turns left or right or changes its course, and is composed of a turn signal lever or the like.
  • the controller 20 is an electronic control unit including a computer having a calculation unit such as a CPU, a storage unit such as a ROM and RAM, and other peripheral circuits.
  • the calculation unit of the controller 20 has an information acquisition unit 21 and a traveling lane specifying unit 25 as a functional configuration.
  • the information acquisition unit 21 includes a position information acquisition unit 211, an accuracy information acquisition unit 212, a traveling information acquisition unit 213, and a road map information acquisition unit 214. Similar to the storage unit 33 of the server device 3, the storage unit of the controller 20 has a predetermined correlation between the road surface properties used when the road surface profile is generated and the lateral acceleration, and a threshold value for making various determinations. Etc. are memorized.
  • the position information acquisition unit 211 acquires the current position information of the vehicle 1 detected by the positioning sensor 10.
  • the accuracy information acquisition unit 212 acquires the accuracy information of the positioning by the positioning sensor 10.
  • the accuracy of positioning is affected by the placement of the positioning satellite 2 in the sky, and can be expressed mainly by the accuracy reduction rate DOP (Dilution of Precision). That is, the larger the accuracy reduction rate, the lower the positioning accuracy.
  • Information on the accuracy reduction rate can be acquired by, for example, the positioning sensor 10.
  • the accuracy information acquisition unit 212 acquires accuracy information (information on the accuracy reduction rate) via the positioning sensor 10.
  • the driving information acquisition unit 213 acquires driving information of the vehicle 1 including various detection values detected by the sensor group 13 and the switch group 14.
  • the road map information acquisition unit 214 acquires road map information from the server device 3 via the communication unit 11. More specifically, the road map information acquisition unit 214 acquires road map information including the lane information of the road at the current position of the vehicle 1 detected by the positioning sensor 10 and the road surface profile information of each lane.
  • the traveling lane identification unit 25 includes the current position information of the vehicle 1 acquired by the position information acquisition unit 211, the accuracy information of the positioning by the positioning sensor 10 acquired by the accuracy information acquisition unit 212, and the travel information acquisition unit 213.
  • the traveling lane in which the vehicle 1 travels is specified based on the acquired travel information of the vehicle 1 and the road map information of the traveling road of the vehicle 1 acquired by the road map information acquisition unit 214.
  • the positioning accuracy is equal to or higher than the predetermined value, in other words, whether or not the DOP is equal to or lower than the predetermined value ⁇ 1.
  • This is whether or not the lane can be accurately identified by using the position information of the vehicle detected by the positioning sensor 10 when there are a plurality of lanes on the road on which the vehicle 1 is traveling, that is, the lane is accurately determined. It is a determination as to whether or not the positioning accuracy is maintained to the extent that it can be specified, and a predetermined value ⁇ 1 is set in advance so as to satisfy this requirement.
  • the traveling lane specifying unit 25 determines that the DOP is equal to or less than the predetermined value ⁇ 1
  • the traveling lane specifying unit 25 identifies the traveling lane of the vehicle 1 based on the position information detected by the positioning sensor 10 and the lane position included in the road map information. ..
  • the traveling lane is determined based on the detected value of the lateral acceleration sensor 131 and the road surface profile information included in the road map information. Identify. That is, in this case, since it is difficult to accurately identify the traveling lane from the detected value of the positioning sensor 10, the traveling lane specified when the DOP is equal to or less than the predetermined value ⁇ 1 is used as the reference lane, and the lateral acceleration sensor is used.
  • the current traveling lane is specified by determining whether or not there is a lane change from the reference lane using the detected value of 131.
  • the amount of unevenness on the road surface is calculated from the lateral acceleration detected by the lateral acceleration sensor 131 by using the correlation between the road surface properties stored in advance and the lateral acceleration. If lateral acceleration is generated in vehicle 1 while the vehicle 1 is turning, the amount of lateral acceleration is corrected and the amount of unevenness on the road surface is calculated from the detected value of the lateral acceleration sensor 131. Then, a road surface profile showing a change in the amount of unevenness of the road surface along the traveling direction of the vehicle 1, that is, an actually measured road surface profile which is an actually measured value of the road surface profile, and a road surface profile for each lane included in the road map information, that is, a reference road surface.
  • the profile compares with the profile to determine if there is a lane change from the reference lane. For example, when the degree of agreement indicating the similarity between the measured road surface profile and the reference road surface profile changes from a state of a predetermined value or more to a state of less than a predetermined value, it is determined that the lane has changed from the reference lane to the adjacent lane. , This identifies the current driving lane.
  • the degree of agreement can be calculated using a correlation coefficient or the like. The degree of agreement is sometimes called the degree of similarity.
  • the traveling lane specifying unit 25 may compare the reference road surface profile and the actually measured profile of each lane, and specify the traveling lane according to the degree of matching thereof. .. For example, the lane with the highest degree of matching may be specified as the current driving lane.
  • the traveling lane specifying unit 25 determines whether or not the lane has been changed from the reference lane based on the signal from the turn signal switch 141. That is, since the direction indicator is generally operated when changing lanes, it is determined to change lanes to the left or right of the vehicle 1 based on the signal from the winker switch 141. For example, when vehicle 1 is traveling in the center (second lane) of three lanes on each side (first lane, second lane, third lane), whether or not there is a lane change by comparing the measured road surface profile with the reference road surface profile. However, it may not be possible to immediately determine whether the lane has been changed to either the left or right lane (first lane, third lane).
  • the winker switch 141 detects the operation of the turn signal when changing the lane of the vehicle 1 to the right and left lanes, for example, by separate switches. Thereby, based on the signal from the turn signal switch 141, it is possible to easily determine not only whether or not the vehicle has changed lanes, but also whether the vehicle 1 has changed lanes to the left or right.
  • the degree of matching between the measured road surface profile and the reference road surface profile may not be less than the specified value. Even in such a case, the presence or absence of a lane change can be satisfactorily determined by using the signal from the turn signal switch 141. Considering that the turn signal is not always operated when changing lanes, or the turn signal may be operated erroneously, the signal from the winker switch 141 is used in determining the lane change. It is preferable to use it as a supplement.
  • FIG. 5 is a flowchart showing an example of processing executed by the controller 20 (CPU) according to a predetermined program. The process shown in this flowchart is executed when the vehicle is running, and is repeated at a predetermined cycle.
  • step S1 the current position information of the vehicle 1 detected by the positioning sensor 10, the accuracy information of the positioning obtained by the positioning sensor 10, and the traveling of the vehicle 1 by the signals from the sensor group 13 and the switch group 14
  • the information and the road map information of the traveling road obtained through the communication unit 11 are acquired.
  • step S2 it is determined whether or not the DOP included in the positioning accuracy information is the predetermined value ⁇ 1 or less. If affirmed in step S2, the process proceeds to step S3, and the traveling lane on the road map is estimated based on the current position of the vehicle 1 detected by the positioning sensor 10 and the road map data. This traveling lane is stored in the storage unit of the controller 20 as a reference lane.
  • step S4 the measured road surface profile is obtained based on the detected value of the lateral acceleration sensor 131, and the degree of matching between the measured road surface profile and the reference road surface profile (degree of matching of the road surface profile) is calculated, and this is used as a reference value.
  • the reference value is calculated according to the traveling position instead of setting the reference value uniformly regardless of the traveling position. The reference value is updated as needed as the vehicle travels, and the latest reference value is stored in the storage unit.
  • step S6 it is determined whether or not the degree of matching of the road surface profiles calculated in step S5 is less than a predetermined value.
  • the predetermined value in this case is set based on the reference value stored in step S4. For example, the reference value is set to a predetermined value, or the value obtained by multiplying the reference value by a predetermined coefficient is set to the predetermined value. As a result, a predetermined value is set according to the traveling position of the vehicle 1, so that a good lane change determination can be made in consideration of the road surface condition.
  • the reference value is a degree of agreement (similarity) that serves as a reference for determining a lane change, and the reference value may be referred to as a reference similarity.
  • the predetermined value may be set without considering the reference value.
  • step S6 the process proceeds to step S7, and the current driving lane of vehicle 1 is estimated assuming that there is a lane change from the reference lane.
  • the traveling lane is composed of the first lane R1 and the second lane R2 and the vehicle 1 is traveling with the first lane R1 as the reference lane
  • the DOP is changed. It is determined that the predetermined value is less than ⁇ 1.
  • it is estimated that the traveling lane is the second lane R2, assuming that there is a lane change.
  • the degree of agreement between the measured road surface profile measured after it is determined that there is a lane change and the reference road surface profile of the second lane R2 is calculated, and it is determined whether or not the lane is the second lane R2 based on the degree of agreement.
  • the traveling lane may be estimated by this.
  • step S6 the process proceeds to step S8, and it is determined whether or not the direction indicator has been operated based on the signal from the winker switch 141. If affirmed in step S8, the process proceeds to step S7, and the traveling lane is estimated assuming that there is a lane change. As a result, when there is a lane change when the degree of matching of the road surface profile is equal to or more than a predetermined value, it is possible to satisfactorily determine that the lane change has occurred, and it is possible to accurately estimate the traveling lane. If it is denied in step S8, the process proceeds to step S9, and the traveling lane is estimated assuming that there is no lane change.
  • the traveling lane of the vehicle 1 is specified based on the position of the vehicle 1 detected by the positioning sensor 10 (step S3).
  • the reference lane of the vehicle 1 is based on the signal from the lateral acceleration sensor 131, with the traveling lane (first lane R1) in the section Sec1 immediately before entering the area AR as the reference lane. It is determined whether or not there is a lane change from (step S6).
  • the traveling lane is estimated to be the second lane R2 (step S7). Whether or not the lane has been changed is also determined by the signal from the turn signal switch 141 (step S8).
  • the traveling lane of the vehicle 1 is specified again based on the position of the vehicle 1 detected by the positioning sensor 10 (step S3).
  • the lane estimation device 101 has a position information acquisition unit 211 that acquires the position information of the current position of the vehicle 1 obtained by the positioning sensor 10 that receives the signal transmitted from the positioning satellite 2 and positions the vehicle 1.
  • the accuracy information acquisition unit 212 that acquires the accuracy information of the positioning by the positioning sensor 10, and the traveling information of the vehicle 1 including the information of the sensor value of the lateral acceleration sensor 131 that changes according to the road surface profile of the road surface on which the vehicle 1 travels.
  • the traveling lane in which the vehicle 1 travels is determined.
  • a traveling lane specifying unit 25 for specifying is provided (FIG. 4). The traveling lane specifying unit 25 determines whether or not the positioning accuracy is equal to or higher than a predetermined value, that is, whether or not the DOP is equal to or lower than a predetermined value ⁇ 1 based on the accuracy information acquired by the accuracy information acquisition unit 212.
  • the traveling lane is specified based on the position information acquired by the position information acquisition unit 211 and the road map information acquired by the road map information acquisition unit 214. .. After that, when it is determined that the positioning accuracy is less than the predetermined value, that is, the DOP is larger than the predetermined value ⁇ 1, the traveling lane specifying unit 25 is subjected to the traveling information acquired by the traveling information acquisition unit 213 and the road map information acquisition unit 214. Based on the road surface profile information included in the acquired road map information, it is determined whether or not there is a lane change from the specified driving lane when it is determined that the positioning accuracy is equal to or higher than a predetermined value, and the determination result is obtained.
  • the driving lane is specified according to the above (Fig. 5).
  • the traveling lane is estimated mainly based on the signal from the positioning satellite 2, the error is smaller than the case where the traveling lane is estimated based on the road surface profile, and the traveling lane is estimated accurately. be able to.
  • the positioning accuracy is lowered, it is determined based on the road surface profile whether or not there is a lane change from the reference lane before the positioning accuracy is lowered.
  • the road surface profile information is only used for determining the lane change, and the traveling lane is estimated using the detection value of the positioning sensor 10 with a small error as the main information.
  • This makes it possible to satisfactorily estimate which of the plurality of lanes the vehicle 1 is traveling in. That is, not only in the area AR (Fig. 1) where high-rise buildings stand, but also in various places where the accuracy of positioning by the positioning sensor 10 decreases, such as in a tunnel, it is possible to compensate for the lack of accuracy and estimate the driving lane with high accuracy. can.
  • the travel information acquired by the travel information acquisition unit 213 further includes operation information of the direction indicator, that is, a signal from the blinker switch 141 (FIG. 4).
  • the traveling lane identification unit 25 determines that the positioning accuracy is equal to or higher than a predetermined value (DOP is a predetermined value ⁇ 1 or less) based on the accuracy information acquired by the accuracy information acquisition unit 212, and then the positioning accuracy is a predetermined value. If it is determined to be less than, the traveling lane is specified based on the signal from the turn signal switch 141 (FIG. 5). By using the operation information of the turn signal operated when changing lanes in this way, it is possible to estimate the traveling lane more accurately.
  • DOP is a predetermined value ⁇ 1 or less
  • the accuracy information acquired by the accuracy information acquisition unit 212 is the information of the accuracy reduction rate DOP.
  • the accuracy reduction rate widely known as objective information as the accuracy information the high-precision lane estimation device 101 can be easily and inexpensively configured, and the lane estimation device 101 is easy to spread. ..
  • the lane estimation device 101 of the present embodiment can also be used as a lane estimation method.
  • the position information of the current position of the vehicle 1 obtained by the positioning sensor 10 that receives the signal transmitted from the positioning satellite 2 and positions the vehicle 1, and the accuracy information of the positioning by the positioning sensor 10 are used.
  • the traveling information of the vehicle 1 including the sensor value information of the lateral acceleration sensor 131 that changes according to the road surface profile of the road surface on which the vehicle 1 travels, and the road map information including the lane information of the road and the road surface profile information.
  • step S1 Is executed by the computer (controller 20) (FIG. 5).
  • step of specifying the traveling lane it is determined whether or not the positioning accuracy is equal to or higher than the predetermined value (DOP is equal to or lower than the predetermined value ⁇ 1) based on the acquired accuracy information, and the positioning accuracy is equal to or higher than the predetermined value.
  • DOP is equal to or lower than the predetermined value ⁇ 1
  • step S4 If it is determined that the driving lane is specified based on the acquired position information and the road map information (step S4), then if it is determined that the positioning accuracy is less than a predetermined value, the acquired driving is performed. Based on the information and the road surface profile information included in the road map information, it is determined whether or not there is a lane change from the specified driving lane when it is determined that the positioning accuracy is equal to or higher than a predetermined value, and the determination result is used. It includes specifying the traveling lane accordingly (step S7). This makes it possible to accurately estimate the lane in which the vehicle 1 is traveling.
  • the vehicle position is determined by the positioning sensor 10 by receiving the signal transmitted from the positioning satellite.
  • the vehicle position is based on the method by satellite positioning and the method by inertial navigation. May be asked.
  • the accuracy information acquisition unit 212 acquires the DOP information as the accuracy information by the positioning sensor 10, but the accuracy information acquisition unit may acquire the accuracy information of other positioning.
  • the travel information acquisition unit 213 acquires the travel information of the vehicle 1 including the information of the detection value (sensor value) of the lateral acceleration sensor 131, but other detectors that change according to the road surface profile. It is also possible to acquire the traveling information including the information of the detected value of.
  • the traveling information acquisition unit may acquire travel information including information of a sensor that detects a roll angle and a roll rate, and information of a sensor that detects vibration of a vehicle in the vertical direction.
  • the presence or absence of a lane change is determined based on the operation information of the turn signal, but this may be determined based on a signal from another sensor or switch.
  • a signal from a sensor that detects a steering angle may be used as driving information to determine whether or not there is a lane change.
  • the travel information (lateral acceleration information) acquired by the travel information acquisition unit 213 and the road surface profile information (reference road surface profile information) included in the road map information acquired by the road map information acquisition unit 214.
  • the traveling lane is specified according to the determination result. That is, the traveling lane is specified based on the similarity (first similarity) between the actually measured road surface profile obtained from the traveling information and the reference profile corresponding to this actually measured road surface profile.
  • the degree of similarity between the pre-stored position information for each lane for example, the position information for each lane on a predetermined road with two lanes on each side and the position information obtained by the positioning sensor when the vehicle travels on the road.
  • the driving lane may be specified based on (second similarity).
  • the position information for each lane stored in advance is the position information obtained by the positioning sensor 10 when the vehicle travels in the lane in advance, and this information is the road map information acquired by the road map information acquisition unit 214. included.
  • a region (first region) and a second lane for determining that the traveling lane is the first lane may be determined in advance, and the traveling lane may be determined using the map. For example, when the first similarity is equal to or less than the first predetermined value and the second similarity is equal to or less than the second predetermined value, it is determined that the traveling lane is the second lane, and the first similarity is the first.
  • the traveling lane is the first lane when the first region is larger than the predetermined value and the second similarity is larger than the second predetermined value.
  • the region where the first similarity is larger than the first predetermined value but the second similarity is smaller than the second predetermined value (for example, the region where the second similarity is near 0) and the second similarity are from the second predetermined value.
  • the determination of the traveling lane may not be performed.
  • the lane estimation device 101 is mounted on the vehicle 1, but a part or all of the functions of the lane estimation device 101 may be provided on the server device 3.
  • the lane estimation device 101 is applied to a manually driven vehicle, but the lane estimation device 101 of the present invention can also be applied to an automatically driven vehicle.

Abstract

車線推定装置(101)は、精度情報に基づいて測位の精度が所定値以上であるか否かを判定するとともに、測位の精度が所定値以上であると判定されると、位置情報と道路地図情報とに基づいて走行車線を特定し、その後、測位の精度が所定値未満と判定されると、走行情報と道路地図情報に含まれる路面プロファイルの情報とに基づいて、測位の精度が所定値以上であると判定されたときに特定された走行車線からの車線変更の有無を判定し、判定結果に応じて走行車線を特定する。

Description

車線推定装置および車線推定方法
 本発明は、車両走行時の車線を推定する車線推定装置および車線推定方法に関する。
 この種の装置として、従来、予め登録された複数の車線それぞれの路面プロファイルと、車両走行時に測定された路面プロファイルとを比較して、複数の車線についての路面プロファイルの類似度をそれぞれ算出し、類似度が高い車線を、車両走行時の車線として推定するようにした装置が知られている(例えば特許文献1参照)。
特開2016-45063号公報
 しかしながら、車両が走行する車線内の幅方向のタイヤの位置などは、車両毎に異なる場合がある。このため、上記特許文献1記載の装置のように、路面プロファイルの類似度に基づいて車線を推定するようにしたのでは、車両走行時の車線を精度よく推定することが困難である。
 本発明の一態様である車線推定装置は、測位衛星から送信された信号を受信して車両の位置を測位する測位センサにより得られた位置情報を取得する位置情報取得部と、測位センサによる測位の精度情報を取得する精度情報取得部と、車両が走行する路面の路面プロファイルに応じて変化する検出器の検出値の情報を含む車両の走行情報を取得する走行情報取得部と、道路の車線情報と路面プロファイルの情報とを含む道路地図情報を取得する道路地図情報取得部と、位置情報取得部により取得された位置情報と、精度情報取得部により取得された精度情報と、走行情報取得部により取得された走行情報と、道路地図情報取得部により取得された道路地図情報とに基づいて、車両が走行する走行車線を特定する走行車線特定部と、を備える。走行車線特定部は、精度情報取得部により取得された精度情報に基づいて測位の精度が所定値以上であるか否かを判定するとともに、測位の精度が所定値以上であると判定されると、位置情報取得部により取得された位置情報と道路地図情報取得部により取得された道路地図情報とに基づいて走行車線を特定し、その後、測位の精度が所定値未満と判定されると、走行情報取得部により取得された走行情報と道路地図情報取得部により取得された道路地図情報に含まれる路面プロファイルの情報とに基づいて、測位の精度が所定値以上であると判定されたときに特定された走行車線からの車線変更の有無を判定し、判定結果に応じて走行車線を特定する。
 本発明の他の態様である車線推定方法は、測位衛星から送信された信号を受信して車両の位置を測位する測位センサにより得られた位置情報を取得するステップと、測位センサによる測位の精度情報を取得するステップと、車両が走行する路面の路面プロファイルに応じて変化する検出器の検出値の情報を含む車両の走行情報を取得するステップと、道路の車線情報と路面プロファイルの情報とを含む道路地図情報を取得するステップと、取得された位置情報と精度情報と走行情報と道路地図情報とに基づいて、車両が走行する走行車線を特定するステップとを、コンピュータにより実行することを含む。走行車線を特定するステップは、取得された精度情報に基づいて測位の精度が所定値以上であるか否かを判定するとともに、測位の精度が所定値以上であると判定されると、取得された位置情報と道路地図情報とに基づいて走行車線を特定し、その後、測位の精度が所定値未満と判定されると、取得された走行情報と道路地図情報に含まれる路面プロファイルの情報とに基づいて、測位の精度が所定値以上であると判定されたときに特定された走行車線からの車線変更の有無を判定し、判定結果に応じて走行車線を特定することを含む。
 本発明によれば、車両が走行中の走行車線を精度よく推定することができる。
複数の車線が存在する道路の一例を模式的に示す図。 本発明の実施形態に係る車線推定装置を含む車線推定システムの全体構成を示す図。 図2のサーバ装置で得られる路面プロファイルの一例を示す図。 本発明の実施形態に係る車線推定装置の機能的構成を示すブロック図。 図4のコントローラで実行される処理の一例を示すフローチャート。
 以下、図1~図5を参照して本発明の実施形態について説明する。本発明の実施形態に係る車線推定装置は、複数の走行車線が存在する道路を車両が走行する場合において、車両が走行中の走行車線を推定するように構成される。走行車線が推定されると、車線毎の渋滞の予測、路面の凹凸状態を示す路面プロファイルの作成、故障車が停車している位置の推定、および逆走車の推定等を容易に実現することができる。
 走行車線の推定は、例えばGPS(Global Positioning System)などの測位用の人工衛
星(測位衛星)からの信号を、車両に搭載されたGPS受信機(GPSセンサ)などの測位センサによって受信して車両の位置を測定し、測定された車両の位置と、地図情報に含まれる車線の位置とを比較することで行うことができる。すなわち、測位センサを用いて車両の位置を測定する場合の測位精度が、車線の位置を特定できる程度の精度であれば、測位センサを用いて車線の位置を精度よく推定することができる。
 しかし、高層ビルが林立するビル街やトンネル内等においては、測位の精度が低下するため、測位センサを用いて車線の位置を精度よく推定することが困難である。図1は、複数の車線(例えば第1車線R1,第2車線R2)が存在する道路の一例を三次元マップとして模式的に示す図である。図中の矢印Aは、車両1の走行軌跡である。
 図1の領域ARは、高層ビルが林立するビル街であり、高層ビルによって囲まれたビル街(領域AR)の道路を走行する場合の測位精度は低い。したがって、図示のように領域AR内で車両1が第1車線R1から第2車線R2へ車線変更した場合に、測位センサによって車線変更が行われた地点および車線変更後の車線を精度よく推定することができないおそれがある。この点を考慮し、本実施形態は、以下のように車線推定装置を構成する。
 図2は、本発明の実施形態に係る車線推定装置を含む車線推定システムの全体構成を示す図である。図2に示すように、車線推定システムは、車両1に搭載された車載装置100と、ネットワーク200を介して車載装置100と通信可能なサーバ装置3とを有する。車両1は、例えばドライバが手動で運転する手動運転車両である。
 車載装置100は、測位衛星2から送信された測位用の信号を受信する測位センサ10と、ネットワーク200を介してサーバ装置3と通信する通信ユニット11とを有する。測位衛星2は、GPS衛星や準天頂衛星などの人工衛星であり、測位センサ10が受信した測位衛星2からの測位情報を利用して、車両1の現在位置(緯度、経度、高度)を算出することができる。
 ネットワーク200には、インターネット網や携帯電話網等に代表される公衆無線通信網だけでなく、所定の管理地域ごとに設けられた閉鎖的な通信網、例えば無線LAN、Wi-Fi(登録商標)、Bluetooth(登録商標)等も含まれる。サーバ装置3は、例えば単一のサーバとして、あるいは機能ごとに別々のサーバから構成される分散サーバとして構成される。クラウドサーバと呼ばれるクラウド環境に作られた分散型の仮想サーバとしてサーバ装置3を構成することもできる。
 サーバ装置3は、CPU,ROM,RAM、およびその他の周辺回路を有する演算処理装置を含んで構成され、機能的構成として、通信部31と、路面プロファイル生成部32と、記憶部33とを有する。
 通信部31は、ネットワーク200を介し車載装置100と無線通信可能に構成され、車両1の位置情報と、車両1の走行情報とを、車両1の通信ユニット11を介してそれぞれ取得する。位置情報は、車両1の測位センサ10が受信した信号によって算出された車両1の現在位置を示す情報である。走行情報は、車両1に搭載された各種センサにより取得された車両1の走行状態を示す情報である。走行情報には、車両1の左右方向の加速度(横加速度)を検出する加速度センサ(横加速度センサ)による検出値の情報が含まれる。通信部31は、走行車線の推定の対象である車両(対象車両)1だけでなく、対象車両以外の複数の車両1の位置情報と走行情報とを常時取得する。
 路面プロファイル生成部32は、通信部31を介して取得された対象車両以外の複数の車両1の位置情報と走行情報とに基づいて、路面性状を示す路面プロファイルを生成する。図3は、路面プロファイルの一例を示す図である。図中の横軸は、走行車線に沿った車両1の進行方向の位置、つまり道のりであり、縦軸は、路面の凹凸の量(深さまたは高さ)、つまり路面粗さである。一般に、路面の凹凸の量が大きいほど車両1の横加速度は大きい。したがって、路面性状と横加速度とは所定の相関関係を有する。路面プロファイル生成部32は、この所定の相関関係を用いて、横加速度から道路上の車両位置に対応する路面の凹凸量を算出し、図3に示すように車両1の進行方向における路面プロファイルを生成する。
 同一車線を異なる車両1が走行する場合に、路面上のタイヤの位置が異なることにより、各車両1の横加速度センサにより検出された路面プロファイルが異なることがある。この場合、路面プロファイル生成部32は、例えば各車両1の横加速度センサにより検出されたそれぞれの路面プロファイルを平均化して、各路面の代表的な路面プロファイルを生成する。
 路面プロファイル生成部32は、路面性状の測定用の専用車両を走行させることにより得られたデータから、路面プロファイルを生成することもできる。例えばレーザプロファイラを搭載した専用車両を走行させ、そのときの測定データを、専用車両の位置データとともに取得することで、横加速度センサを用いることなく路面プロファイルを生成することもできる。
 記憶部33は、路面プロファイル生成部32により路面プロファイルが生成されるときに用いられる路面性状と横加速度との間の所定の相関関係を記憶するとともに、道路地図情報を記憶する。道路地図情報には、道路の位置情報、道路形状(曲率など)の情報、道路の勾配の情報、交差点や分岐店の位置情報、車線数の情報、車線の幅員および車線毎の位置情報が含まれる。車線毎の位置情報とは、車線の中央位置や車線位置の境界の情報などである。さらに道路地図情報には、路面プロファイル生成部32により生成された道路の各位置での路面プロファイル(図3)の情報が含まれる。
 記憶部33に記憶される道路地図情報のうち、路面プロファイルの情報は、路面プロファイル生成部32により路面プロファイルが生成される度に更新される。他の道路地図情報は、所定周期で、あるいは任意のタイミングで更新される。なお、本実施形態では、車両1の走行車線を推定する場合、車両1の走行位置における路面プロファイル(参照用路面プロファイル)が既に記憶部33に記憶されているものとして扱う。
 図4は、本実施形態に係る車線推定装置101の機能的構成を示すブロック図である。車線推定装置101は、図2の車載装置100の一部を構成する。図4に示すように、車線推定装置101は、測位センサ10と、通信ユニット11と、センサ群13と、スイッチ群14と、コントローラ20とを備える。測位センサ10と通信ユニット11とセンサ群13とスイッチ群14とは、それぞれコントローラ20に通信可能に接続される。
 センサ群13は、車両1の走行状態を検出する複数のセンサの総称である。センサ群13には、車両1の左右方向の加速度を検出する横加速度センサ131が含まれる。スイッチ群14は、車両1の走行状態を検出する複数のスイッチの総称である。スイッチ群14には、ドライバによる方向指示器の操作を検出するウインカースイッチ141が含まれる。なお、方向指示器とは、車両1の右左折や進路変更の際に、その方向を周囲に示すための装置であり、ウインカーレバーなどにより構成される。
 コントローラ20は、CPU等の演算部と、ROM,RAM等の記憶部と、その他の周辺回路とを有するコンピュータを含んで構成される電子制御ユニットである。コントローラ20の演算部は、機能的構成として、情報取得部21と、走行車線特定部25とを有する。情報取得部21は、位置情報取得部211と、精度情報取得部212と、走行情報取得部213と、道路地図情報取得部214とを有する。コントローラ20の記憶部には、サーバ装置3の記憶部33と同様、路面プロファイルが生成されるときに用いられる路面性状と横加速度との間の所定の相関関係や、各種判定を行う場合の閾値などが記憶される。
 位置情報取得部211は、測位センサ10により検出された車両1の現在の位置情報を取得する。精度情報取得部212は、測位センサ10による測位の精度情報を取得する。測位の精度は、天空における測位衛星2の配置によって影響を受け、主に精度低下率DOP(Dilution of Precision)によって表すことができる。すなわち、精度低下率が大きいほど、測位の精度が低下する。精度低下率の情報は、例えば測位センサ10により取得することができる。精度情報取得部212は、測位センサ10を介して精度情報(精度低下率の情報)を取得する。
 走行情報取得部213は、センサ群13とスイッチ群14とにより検出された各種検出値を含む車両1の走行情報を取得する。道路地図情報取得部214は、通信ユニット11を介してサーバ装置3から道路地図情報を取得する。より詳しくは、道路地図情報取得部214は、測位センサ10により検出された車両1の現在位置における道路の車線情報と、各車線の路面プロファイルの情報とを含む道路地図情報を取得する。
 走行車線特定部25は、位置情報取得部211により取得された車両1の現在の位置情報と、精度情報取得部212により取得された測位センサ10による測位の精度情報と、走行情報取得部213により取得された車両1の走行情報と、道路地図情報取得部214により取得された車両1の走行中の道路の道路地図情報とに基づいて、車両1が走行する走行車線を特定する。
 具体的には、まず、測位の精度が所定値以上であるか否か、換言するとDOPが所定値α1以下であるか否かを判定する。これは、車両1が走行中の道路に複数の車線が存在するときに、測位センサ10により検出された車両の位置情報を用いて車線を精度よく特定できるか否か、すなわち、車線を精度よく特定できる程度に測位の精度が保たれているか否かの判定であり、この要件を満たすように予め所定値α1が設定される。走行車線特定部25は、DOPが所定値α1以下であると判定すると、測位センサ10により検出された位置情報と道路地図情報に含まれる車線位置とに基づいて、車両1の走行車線を特定する。
 一方、測位の精度が所定値未満、すなわちDOPが所定値α1より大きいと判定されると、横加速度センサ131の検出値と道路地図情報に含まれる路面プロファイルの情報とに基づいて、走行車線を特定する。すなわち、この場合には、測位センサ10の検出値により走行車線を精度よく特定することは困難であるため、DOPが所定値α1以下のときに特定された走行車線を基準車線とし、横加速度センサ131の検出値を用いて基準車線からの車線変更の有無を判定することにより現在の走行車線を特定する。
 具体的には、予め記憶された路面性状と横加速度との相関関係を用いて、横加速度センサ131により検出された横加速度から路面の凹凸量を算出する。なお、車両1が旋回走行中等で車両1に横加速度が生じている場合には、その分を補正して、横加速度センサ131の検出値から路面の凹凸量を算出する。そして、車両1の進行方向に沿った路面の凹凸量の変化を表す路面プロファイル、すなわち路面プロファイルの実測値である実測路面プロファイルと、道路地図情報に含まれる車線毎の路面プロファイル、すなわち参照用路面プロファイルとを比較し、基準車線からの車線変更の有無を判定する。例えば実測路面プロファイルと参照用路面プロファイルとの類似性を表す一致度が所定値以上の状態から所定値未満の状態になったときに、基準車線から隣の車線への車線変更があったと判定し、これにより現在の走行車線を特定する。なお、一致度は相関係数等を用いて算出することができる。一致度を類似度と呼ぶこともある。
 走行車線特定部25は、車線変更があったと判定したときに、各車線の参照用路面プロファイルと実測プロファイルとをそれぞれ比較し、それらの一致度に応じて走行車線を特定するようにしてもよい。例えば一致度が最も高い車線を、現在の走行車線として特定するようにしてもよい。
 走行車線特定部25は、DOPが所定値α1未満と判定されると、さらにウインカースイッチ141からの信号に基づいて基準車線からの車線変更の有無を判定する。すなわち、車線変更時には一般に方向指示器が操作されるため、ウインカースイッチ141からの信号に基づいて車両1の左右への車線変更を判定する。例えば車両1が片側3車線(第1車線、第2車線、第3車線)の中央(第2車線)を走行しているとき、実測路面プロファイルと参照用路面プロファイルとの比較により車線変更の有無が判定されても、左右いずれの車線(第1車線、第3車線)に車線変更されたかを即座に判定できない場合がある。
 この点、ウインカースイッチ141は、車両1を右側および左側の車線へ車線変更する際の方向指示器の操作を、例えば別々のスイッチによりそれぞれ検出する。これにより、ウインカースイッチ141からの信号に基づいて、車線変更の有無だけでなく、車両1が左右いずれの車線に車線変更されたかを容易に判定できる。
 車両1が車線変更した場合に実測路面プロファイルと参照用路面プロファイルの一致度が所定値未満とならないことがある。このような場合であっても、ウインカースイッチ141からの信号を用いることで、車線変更の有無を良好に判定できる。なお、車線変更時に常に方向指示器が操作されるとは限らない、あるいは方向指示器が誤って操作される可能性がある点を考慮すると、ウインカースイッチ141からの信号は、車線変更の判定において補助的に用いることが好ましい。
 図5は、予め定められたプログラムに従いコントローラ20(CPU)で実行される処理の一例を示すフローチャートである。このフローチャートに示す処理は、車両走行時に実行され、所定周期で繰り返される。まず、ステップS1で、測位センサ10により検出された車両1の現在の位置情報と、測位センサ10により得られた測位の精度情報と、センサ群13とスイッチ群14からの信号による車両1の走行情報と、通信ユニット11を介して得られた走行中の道路の道路地図情報とを取得する。
 次いで、ステップS2で、測位の精度情報に含まれるDOPが所定値α1以下であるか否かを判定する。ステップS2で肯定されるとステップS3に進み、測位センサ10により検出された車両1の現在位置と道路地図データとに基づいて、道路地図上の走行車線を推定する。この走行車線は、基準車線としてコントローラ20の記憶部に記憶される。
 次いで、ステップS4で、横加速度センサ131の検出値に基づいて実測路面プロファイルを求めるとともに、実測路面プロファイルと参照用路面プロファイルとの一致度(路面プロファイルの一致度)を算出し、これを基準値として記憶部に記憶する。すなわち、路面プロファイルの一致度は路面状態により異なることがあるため、基準値を走行位置に拘わらず一律に設定するのではなく、走行位置に応じて基準値を算出する。基準値は、車両走行に伴い随時更新され、記憶部には最新の基準値が記憶される。
 ステップS2で否定されるとステップS5に進み、ステップS4と同様にして、路面プロファイルの一致度を算出する。つまり、実測路面プロファイルと参照用路面プロファイルとの一致度を算出する。次いで、ステップS6で、ステップS5で算出した路面プロファイルの一致度が所定値未満か否かを判定する。この場合の所定値は、ステップS4で記憶された基準値に基づいて設定される。例えば基準値が所定値に、あるいは基準値に所定の係数を乗算した値が所定値に設定される。これにより車両1の走行位置に応じて所定値が設定されるようになるため、路面状態を考慮して良好な車線変更の判定を行うことができる。なお、基準値は、車線変更の判定の基準となる一致度(類似度)であり、基準値を基準類似度と呼ぶことがある。所定値を、基準値を考慮せずに設定してもよい。
 ステップS6で肯定されるとステップS7に進み、基準車線からの車線変更ありとして車両1の現在の走行車線を推定する。例えば、図1に示すように走行車線が第1車線R1と第2車線R2とからなり、第1車線R1を基準車線として走行しているとき、車両1が領域AR内に進入すると、DOPが所定値α1未満と判定される。このとき、路面プロファイルの一致度が所定値未満と判定されると、車線変更ありとして走行車線を第2車線R2と推定する。車線変更ありと判定された後に測定された実測路面プロファイルと第2車線R2の参照用路面プロファイルとの一致度を算出し、一致度に基づいて車線が第2車線R2であるか否かを判定し、これにより走行車線を推定するようにしてもよい。
 ステップS6で否定されるとステップS8に進み、ウインカースイッチ141からの信号に基づいて方向指示器が操作されたか否かを判定する。ステップS8で肯定されるとステップS7に進み、車線変更ありとして走行車線を推定する。これにより、路面プロファイルの一致度が所定値以上のときに車線変更あった場合に、その車線変更があったことを良好に判定することができ、走行車線を精度よく推定することができる。ステップS8で否定されるとステップS9に進み、車線変更なしとして走行車線を推定する。
 本実施形態に係る車線推定装置101による動作をまとめると以下のようになる。図1に示すように、領域ARに至る前の区間Sec1では、測位センサ10により検出された車両1の位置に基づいて車両1の走行車線が特定される(ステップS3)。その後、車両1が領域AR内に進入すると、領域ARに進入する直前の区間Sec1内の走行車線(第1車線R1)を基準車線として、横加速度センサ131からの信号に基づき車両1の基準車線からの車線変更の有無が判定される(ステップS6)。
 このとき、車線変更ありと判定されると、走行車線が第2車線R2と推定される(ステップS7)。車線変更の有無は、ウインカースイッチ141からの信号によっても判定される(ステップS8)。車両1が領域ARから出て区間Sec2での走行を開始すると、再び、測位センサ10により検出された車両1の位置に基づいて車両1の走行車線が特定される(ステップS3)。
 本実施形態によれば以下のような作用効果を奏することができる。
(1)車線推定装置101は、測位衛星2から送信された信号を受信して車両1を測位する測位センサ10により得られた車両1の現在位置の位置情報を取得する位置情報取得部211と、測位センサ10による測位の精度情報を取得する精度情報取得部212と、車両1が走行する路面の路面プロファイルに応じて変化する横加速度センサ131のセンサ値の情報を含む車両1の走行情報を取得する走行情報取得部213と、道路の車線情報と路面プロファイルの情報とを含む道路地図情報を取得する道路地図情報取得部214と、位置情報取得部211により取得された位置情報と、精度情報取得部212により取得された精度情報と、走行情報取得部213により取得された走行情報と、道路地図情報取得部214により取得された道路地図情報とに基づいて、車両1が走行する走行車線を特定する走行車線特定部25と、を備える(図4)。走行車線特定部25は、精度情報取得部212により取得された精度情報に基づいて測位の精度が所定値以上であるか否か、すなわちDOPが所定値α1以下であるか否かを判定するとともに、測位の精度が所定値以上であると判定されると、位置情報取得部211により取得された位置情報と道路地図情報取得部214により取得された道路地図情報とに基づいて走行車線を特定する。その後、測位の精度が所定値未満、すなわちDOPが所定値α1より大きいと判定されると、走行車線特定部25は、走行情報取得部213により取得された走行情報と道路地図情報取得部214により取得された道路地図情報に含まれる路面プロファイルの情報とに基づいて、測位の精度が所定値以上であると判定されたときに特定された走行車線からの車線変更の有無を判定し、判定結果に応じて走行車線を特定する(図5)。
 このように本実施形態では、主に測位衛星2からの信号に基づいて走行車線を推定するため、路面プロファイルに基づいて走行車線を推定する場合よりも誤差が小さく、走行車線を精度よく推定することができる。測位精度が低下すると、路面プロファイルに基づいて測位精度が低下する前の基準車線からの車線変更の有無を判定する。換言すると、路面プロファイルの情報は車線変更の判定に用いるだけであり、誤差の小さい測位センサ10の検出値を主たる情報として走行車線を推定する。これにより、車両1が複数の車線のいずれを走行しているかを良好に推定することができる。すなわち、高層ビルが林立する領域AR(図1)だけでなく、トンネル内等、測位センサ10による測位の精度が低下する種々の場所において、精度不足を補って精度よく走行車線を推定することができる。
(2)走行情報取得部213により取得される走行情報には、さらに方向指示器の操作情報、すなわちウインカースイッチ141からの信号が含まれる(図4)。走行車線特定部25は、精度情報取得部212により取得された精度情報に基づいて測位の精度が所定値以上(DOPが所定値α1以下)であると判定された後、測位の精度が所定値未満と判定されると、ウインカースイッチ141からの信号に基づいて走行車線を特定する(図5)。このように車線変更時に操作される方向指示器の操作情報を用いることで、より精度よく走行車線を推定することができる。
(3)精度情報取得部212により取得された精度情報は、精度低下率DOPの情報である。このように客観的な情報として広く知られている精度低下率を精度情報として用いることで、高精度の車線推定装置101を容易かつ安価に構成することができ、車線推定装置101が普及しやすい。
(4)本実施形態の車線推定装置101は、車線推定方法として用いることもできる。車線推定方法においては、測位衛星2から送信された信号を受信して車両1を測位する測位センサ10により得られた車両1の現在位置の位置情報と、測位センサ10による測位の精度情報と、車両1が走行する路面の路面プロファイルに応じて変化する横加速度センサ131のセンサ値の情報を含む車両1の走行情報と、道路の車線情報と路面プロファイルの情報とを含む道路地図情報と、をそれぞれ取得するステップ(ステップS1)と、取得された位置情報と精度情報と走行情報と道路地図情報とに基づいて、車両1が走行する走行車線を特定するステップ(ステップS4、ステップS7、ステップS9)とを、コンピュータ(コントローラ20)により実行することを含む(図5)。そして、走行車線を特定するステップは、取得された精度情報に基づいて測位の精度が所定値以上(DOPが所定値α1以下)であるか否かを判定するとともに、測位の精度が所定値以上であると判定されると、取得された位置情報と道路地図情報とに基づいて走行車線を特定し(ステップS4)、その後、測位の精度が所定値未満と判定されると、取得された走行情報と道路地図情報に含まれる路面プロファイルの情報とに基づいて、測位の精度が所定値以上であると判定されたときに特定された走行車線からの車線変更の有無を判定し、判定結果に応じて走行車線を特定することを含む(ステップS7)。これにより、車両1が走行中の車線を精度よく推定することができる。
 なお、上記実施形態では、測位衛星から送信された信号を受信して測位センサ10により車両位置が測位されるようにしたが、この衛星測位による手法と慣性航法による手法とに基づいて、車両位置を求めるようにしてもよい。上記実施形態では、精度情報取得部212が測位センサ10による精度情報としてDOPの情報を取得するようにしたが、精度情報取得部が他の測位の精度情報を取得するようにしてもよい。衛星測位による手法と慣性航法による手法とに基づいて車両位置を求める場合には、衛星測位により得られる位置データと慣性航法により得られる位置データとを比較して精度情報を取得するようにしてもよい。
 上記実施形態では、走行情報取得部213が横加速度センサ131の検出値(センサ値)の情報を含む車両1の走行情報を取得するようにしたが、路面プロファイルに応じて変化する他の検出器の検出値の情報を含む走行情報を取得するようにしてもよい。例えばロール角やロールレートを検出するセンサの検出値や、上下方向の車両の振動を検出するセンサの検出値の情報を含む走行情報を、走行情報取得部が取得するようにしてもよい。上記実施形態では、方向指示器の操作情報に基づいて車線変更の有無を判定するようにしたが、他のセンサやスイッチからの信号に基づいてこれを判定するようにしてもよい。例えば操舵角を検出するセンサからの信号を走行情報として車線変更の有無を判定するようにしてもよい。
 上記実施形態では、走行情報取得部213により取得された走行情報(横加速度の情報)と、道路地図情報取得部214により取得された道路地図情報に含まれる路面プロファイル情報(参照用路面プロファイルの情報)とに基づいて、測位の精度が所定値以上であると判定されたときに特定された走行車線からの車線変更の有無を判定し、判定結果に応じて走行車線を特定するようにした。すなわち、走行情報により求められる実測路面プロファイルとこの実測路面プロファイルに対応する参照用プロファイルとの類似度(第1類似度)に基づいて走行車線を特定するようにした。これに加え、予め記憶された車線毎の位置情報、例えば片側2車線の所定道路における車線毎の位置情報と、当該道路を車両が走行するときに測位センサにより得られた位置情報との類似度(第2類似度)に基づいて走行車線を特定するようにしてもよい。予め記憶された車線毎の位置情報とは、予め車両が当該車線を走行したときに測位センサ10により得られた位置情報であり、この情報は道路地図情報取得部214が取得する道路地図情報に含まれる。
 この場合、例えば第1類似度を横軸、第2類似度を縦軸とした第1車線についてのマップに、走行車線が第1車線であると判別する領域(第1領域)と第2車線であると判別する領域(第2領域)とを予め設定し、マップを用いて走行車線を判定するようにしてもよい。例えば、第1類似度が第1所定値以下かつ第2類似度が第2所定値以下の第2領域のときに、走行車線が第2車線であると判定し、第1類似度が第1所定値より大きくかつ第2類似度が第2所定値より大きい第1領域のときに、走行車線が第1車線であると判定するようにしてもよい。なお、第1類似度が第1所定値より大きいが第2類似度が第2所定値より小さい領域(例えば第2類似度が0近傍の領域)、および第2類似度が第2所定値より大きいが第1類似度が第1所定値より小さい領域(例えば第1類似度が0近傍の領域)は、走行車線の判定を行わないようにしてもよい。
 上記実施形態では、車線推定装置101を車両1に搭載したが、車線推定装置101の機能の一部または全部をサーバ装置3に設けるようにしてもよい。上記実施形態では、車線推定装置101を手動運転車両に適用したが、本発明の車線推定装置101は自動運転車両に適用することもできる。
 以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態と変形例の1つまたは複数を任意に組み合わせることも可能であり、変形例同士を組み合わせることも可能である。
1 車両、2 測位衛星、10 測位センサ、11 通信ユニット、20 コントローラ、21 情報取得部、25 走行車線特定部、101 車線推定装置、131 横加速度センサ、141 ウインカースイッチ、211 位置情報取得部、212 精度情報取得部、213 走行情報取得部、214 道路地図情報取得部

Claims (7)

  1.  測位衛星から送信された信号を受信して車両の位置を測位する測位センサにより得られた位置情報を取得する位置情報取得部と、
     前記測位センサによる測位の精度情報を取得する精度情報取得部と、
     前記車両が走行する路面の路面プロファイルに応じて変化する検出器の検出値の情報を含む前記車両の走行情報を取得する走行情報取得部と、
     道路の車線情報と前記路面プロファイルの情報とを含む道路地図情報を取得する道路地図情報取得部と、
     前記位置情報取得部により取得された位置情報と、前記精度情報取得部により取得された精度情報と、前記走行情報取得部により取得された走行情報と、前記道路地図情報取得部により取得された道路地図情報とに基づいて、前記車両が走行する走行車線を特定する走行車線特定部と、を備え、
     前記走行車線特定部は、前記精度情報取得部により取得された精度情報に基づいて測位の精度が所定値以上であるか否かを判定するとともに、測位の精度が前記所定値以上であると判定されると、前記位置情報取得部により取得された位置情報と前記道路地図情報取得部により取得された道路地図情報とに基づいて走行車線を特定し、その後、測位の精度が前記所定値未満と判定されると、前記走行情報取得部により取得された走行情報と前記道路地図情報取得部により取得された道路地図情報に含まれる前記路面プロファイルの情報とに基づいて、測位の精度が前記所定値以上であると判定されたときに特定された走行車線からの車線変更の有無を判定し、判定結果に応じて走行車線を特定することを特徴とする車線推定装置。
  2.  請求項1に記載の車線推定装置において、
     前記走行情報取得部により取得される走行情報には、さらに方向指示器の操作情報が含まれ、
     前記走行車線特定部は、前記精度情報取得部により取得された精度情報に基づいて測位の精度が前記所定値以上であると判定された後、測位の精度が前記所定値未満と判定されると、前記方向指示器の操作情報に基づいて走行車線を特定することを特徴とする車線推定装置。
  3.  請求項1または2に記載の車線推定装置において、
     前記精度情報取得部により取得された精度情報は、精度低下率の情報であることを特徴とする車線推定装置。
  4.  請求項1から3のいずれか1項に記載の車線推定装置において、
     前記道路地図情報に含まれる前記路面プロファイルは、参照用路面プロファイルであり、
     前記走行車線特定部は、前記精度情報取得部により取得された精度情報に基づいて前記測位の精度が前記所定値以上であると判定された後、測位の精度が前記所定値未満と判定されると、前記走行情報取得部により取得された走行情報に基づいて、前記車両が走行する路面の路面プロファイルの実測値である実測路面プロファイルを算出するとともに、前記参照用路面プロファイルと前記実測路面プロファイルとの類似度を算出し、前記類似度が所定値以上の状態から前記所定値未満の状態に変化すると、車線変更があったと判定することを特徴とする車線推定装置。
  5.  請求項4に記載の車線推定装置において、
     前記類似度は、第1類似度であり、
     前記走行車線特定部は、さらに前記位置情報取得部により取得された位置情報と前記道路地図情報取得部により取得された道路地図情報に含まれる位置情報との類似度である第2類似度を算出し、前記第1類似度と前記第2類似度とに基づいて、前記走行車線を特定することを特徴とする車線推定装置。
  6.  請求項4または5に記載の車線推定装置において、
     前記走行車線特定部は、前記精度情報取得部により取得された精度情報に基づいて前記測位の精度が前記所定値以上であると判定されると、前記参照用路面プロファイルと前記実測路面プロファイルとの類似度である基準類似度を算出し、この基準類似度に基づいて前記所定値が設定されることを特徴とする車線推定装置。
  7.  測位衛星から送信された信号を受信して車両の位置を測位する測位センサにより得られた位置情報を取得するステップと、
     前記測位センサによる測位の精度情報を取得するステップと、
     前記車両が走行する路面の路面プロファイルに応じて変化する検出器の検出値の情報を含む前記車両の走行情報を取得するステップと、
     道路の車線情報と前記路面プロファイルの情報とを含む道路地図情報を取得するステップと、
     取得された位置情報と精度情報と走行情報と道路地図情報とに基づいて、前記車両が走行する走行車線を特定するステップとを、コンピュータにより実行することを含み、
     前記走行車線を特定するステップは、取得された精度情報に基づいて測位の精度が所定値以上であるか否かを判定するとともに、測位の精度が前記所定値以上であると判定されると、取得された位置情報と道路地図情報とに基づいて走行車線を特定し、その後、測位の精度が前記所定値未満と判定されると、取得された走行情報と道路地図情報に含まれる前記路面プロファイルの情報とに基づいて、測位の精度が前記所定値以上であると判定されたときに特定された走行車線からの車線変更の有無を判定し、判定結果に応じて走行車線を特定することを含むことを特徴とする車線推定方法。
PCT/JP2021/016984 2020-05-22 2021-04-28 車線推定装置および車線推定方法 WO2021235209A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022524360A JP7358638B2 (ja) 2020-05-22 2021-04-28 車線推定装置および車線推定方法
US17/926,618 US20230184555A1 (en) 2020-05-22 2021-04-28 Lane estimation apparatus and lane estimation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020089655 2020-05-22
JP2020-089655 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021235209A1 true WO2021235209A1 (ja) 2021-11-25

Family

ID=78708515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016984 WO2021235209A1 (ja) 2020-05-22 2021-04-28 車線推定装置および車線推定方法

Country Status (3)

Country Link
US (1) US20230184555A1 (ja)
JP (1) JP7358638B2 (ja)
WO (1) WO2021235209A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230021457A (ko) * 2021-08-05 2023-02-14 현대모비스 주식회사 차량의 장애물 감지 시스템 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211715A (ja) * 2009-05-29 2009-09-17 Clarion Co Ltd 車線位置検知システム
JP2010019759A (ja) * 2008-07-11 2010-01-28 Mazda Motor Corp 車両用走行車線検出装置
JP2016045063A (ja) * 2014-08-22 2016-04-04 株式会社日立製作所 路面性状測定装置、及び路面性状測定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019759A (ja) * 2008-07-11 2010-01-28 Mazda Motor Corp 車両用走行車線検出装置
JP2009211715A (ja) * 2009-05-29 2009-09-17 Clarion Co Ltd 車線位置検知システム
JP2016045063A (ja) * 2014-08-22 2016-04-04 株式会社日立製作所 路面性状測定装置、及び路面性状測定方法

Also Published As

Publication number Publication date
US20230184555A1 (en) 2023-06-15
JPWO2021235209A1 (ja) 2021-11-25
JP7358638B2 (ja) 2023-10-10

Similar Documents

Publication Publication Date Title
US8892331B2 (en) Drive assist system and wireless communication device for vehicle
JP7020348B2 (ja) 自車位置推定装置
US10289120B2 (en) Self-position estimation device and self-position estimation method
CN110871796A (zh) 车道保持控制装置
JP6936658B2 (ja) 車両の運転支援装置
EP1256784A2 (en) Car navigation apparatus capable of determining entry into parking area
JP5257252B2 (ja) 運転支援装置および運転支援システム
JP2008046873A (ja) 車両同定装置、位置算出装置
JP6806891B2 (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
JP2015162175A (ja) 自動運転装置
JP2019066193A (ja) 自車位置検出装置
JP2016218015A (ja) 車載センサ補正装置、自己位置推定装置、プログラム
JP6834914B2 (ja) 物体認識装置
JP4597423B2 (ja) 位置補正装置
US20200114923A1 (en) Output device, control method, program and storage medium
WO2021235209A1 (ja) 車線推定装置および車線推定方法
JP6916705B2 (ja) 自動運転の自車位置検出装置
JP2018017668A (ja) 情報処理装置、及び情報処理プログラム
US20190145781A1 (en) Object recognition device, object recognition method and program
KR20150061994A (ko) 차량의 주차위치 추적 장치 및 그 방법
WO2017109978A1 (ja) 距離推定装置、距離推定方法及びプログラム
JP6642192B2 (ja) 車両の位置検出装置
CN106842245A (zh) 车辆位置校正的方法及导航系统
CN111198391A (zh) 用于定位车辆的系统和方法
US20230242102A1 (en) Position estimation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524360

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808639

Country of ref document: EP

Kind code of ref document: A1