WO2021230309A1 - ホットスタンプ用鋼板 - Google Patents

ホットスタンプ用鋼板 Download PDF

Info

Publication number
WO2021230309A1
WO2021230309A1 PCT/JP2021/018158 JP2021018158W WO2021230309A1 WO 2021230309 A1 WO2021230309 A1 WO 2021230309A1 JP 2021018158 W JP2021018158 W JP 2021018158W WO 2021230309 A1 WO2021230309 A1 WO 2021230309A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
plating layer
steel sheet
less
hot stamping
Prior art date
Application number
PCT/JP2021/018158
Other languages
English (en)
French (fr)
Inventor
裕嗣 崎山
亜暢 小林
貴幸 原野
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202180026665.8A priority Critical patent/CN115398035B/zh
Priority to US17/801,963 priority patent/US20230078655A1/en
Priority to JP2022522189A priority patent/JP7269525B2/ja
Priority to EP21803022.9A priority patent/EP4151771B1/en
Publication of WO2021230309A1 publication Critical patent/WO2021230309A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0457Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium

Definitions

  • the present invention relates to a steel plate for hot stamping.
  • This application claims priority based on Japanese Patent Application No. 2020-0845484 filed in Japan on May 13, 2020, the contents of which are incorporated herein by reference.
  • LME liquid metal brittleness
  • Patent Document 1 discloses a technique for suppressing hydrogen intrusion into a steel material at a high temperature by enriching nickel in the surface region of the steel sheet.
  • Patent Document 2 discloses a technique for suppressing hydrogen intrusion into a steel material by coating the steel sheet with a barrier precoat containing nickel and chromium and having a weight ratio of Ni / Cr between 1.5 and 9. There is.
  • Patent Document 1 may not be able to sufficiently suppress the invasion of hydrogen generated when Al plating is applied. Further, in the method of Patent Document 2, in an environment where dew point control is not performed (for example, in a high dew point environment such as 30 ° C.), intrusion of hydrogen into the steel sheet may not be sufficiently suppressed.
  • the present invention has been made in view of the above problems, and is excellent in resistance to hydrogen intrusion into the steel sheet even in a high dew point environment even when hot stamping the Al-plated steel sheet. It is an object of the present invention to provide a steel sheet for hot stamping having hydrogen embrittlement characteristics.
  • the hot stamping steel sheet provided with the Al—Si alloy plated layer is provided with a Ni plating layer containing a desired average layer thickness (thickness) and a desired amount of Ni, and is an Al—Si alloy.
  • a Ni plating layer containing a desired average layer thickness (thickness) and a desired amount of Ni, and is an Al—Si alloy.
  • the hot stamping steel sheet according to one aspect of the present invention is With the base material, An Al—Si alloy plating layer having an Al content of 75% by mass or more, a Si content of 3% by mass or more, and a total of the Al content and the Si content of 95% by mass or more.
  • An Al oxide film having a thickness of 0 to 20 nm A Ni plating layer having a Ni content of more than 90% by mass,
  • the chemical composition of the base material is mass%. C: 0.01% or more, less than 0.70%, Si: 0.001 to 1.000%, Mn: 0.40 to 3.00%, sol.
  • Al 0.0002% to 0.5000%, P: 0.100% or less, S: 0.1000% or less, N: 0.0100% or less, Cu: 0 to 1.00%, Ni: 0 to 1.00%, Nb: 0 to 0.150%, V: 0 to 1.000%, Ti: 0 to 0.150%, Mo: 0 to 1.000%, Cr: 0 to 1.000% below, B: 0 to 0.0100%, Ca: 0 to 0.010%, REM: 0% to 0.300%, and the balance: Fe and impurities.
  • the thickness of the Al—Si alloy plating layer is 7 to 148 ⁇ m, and the thickness is 7 to 148 ⁇ m.
  • the thickness of the Ni plating layer is more than 200 nm and 2500 nm or less.
  • the Ni plating layer may be provided as an upper layer of the Al—Si alloy plating layer in direct contact with the Al—Si alloy plating layer.
  • the hot stamping steel sheet according to (1) above may have an Al oxide film having a thickness of 2 to 20 nm.
  • the hot stamping steel sheet according to any one of (1) to (3) above has the chemical composition of the base material in mass%.
  • the hot stamping steel sheet according to any one of (1) to (4) above has a dislocation density of 5 ⁇ 10 13 m / m 3 or more at a depth of 100 ⁇ m from the surface of the base metal. May be good.
  • an Al-plated steel sheet for hot stamping has excellent hydrogen resistance by suppressing the intrusion of hydrogen into the steel sheet in hot stamping in a high dew point environment. It is possible to provide a hot stamping steel sheet having embrittlement properties.
  • the configuration of the hot stamping steel sheet was determined based on the above findings.
  • the hot stamping steel sheet according to the present embodiment has the effect of the present invention due to the synergistic effect of each plating configuration.
  • the hot stamping steel plate 10 includes a steel plate (base material) 1, an Al—Si alloy plating layer 2, an Al oxide coating 3, and a Ni plating layer 4.
  • the hot stamping steel sheet 10A includes a base material 1, an Al—Si alloy plating layer 2, and a Ni plating layer 4, as shown in FIG.
  • each configuration will be described.
  • the numerical range represented by using “-” means a range including the numerical values before and after “-” as the lower limit value and the upper limit value. Numerical values indicated as “less than” and “greater than” do not include the value in the numerical range. All% of the chemical composition indicate mass%.
  • the steel sheet (base material) serving as the base material 1 of the hot stamping steel plate 10 according to the present embodiment has a chemical composition of mass%, C: 0.01% or more, less than 0.70%, Si: 0.001. % To 1.000%, Mn: 0.40% to 3.00%, sol. Al: 0.0002% to 0.5000%, P: 0.100% or less, S: 0.1000% or less, N: 0.0100% or less, and the balance: Fe and impurities.
  • C 0.01% or more, less than 0.70%
  • C is an important element for ensuring hardenability. If the C content of the base metal is less than 0.01%, it becomes difficult to obtain sufficient hardenability, and the tensile strength decreases. Therefore, the C content of the base material is preferably 0.01% or more. When the C content is 0.25% or more, a tensile strength of 1600 MPa or more can be obtained, which is preferable. The C content is more preferably 0.28% or more. On the other hand, when the C content is 0.70% or more, coarse carbides are generated and fracture is likely to occur, and the hydrogen embrittlement resistance property of the hot stamped compact is deteriorated. Therefore, the C content is set to less than 0.70%. The C content is preferably 0.36% or less.
  • Si: 0.001% to 1.000% Si is an element contained to ensure hardenability. If the Si content is less than 0.001%, the above effect cannot be obtained. Therefore, the Si content is set to 0.001% or more. A more preferable Si content is 0.005% or more. A more preferable Si content is 0.100% or more.
  • the Si content is preferably 0.350% or more in order to suppress the hot brittleness of Cu.
  • the inclusion 1.000% of Si, the austenite transformation temperature (Ac 3, etc.) is very high, or the cost increases required to heat for hot stamping, hot residual ferrite during hot stamping heating The tensile strength of the stamped body may decrease. Therefore, the Si content is 1.000% or less.
  • the Si content is preferably 0.8000% or less.
  • the austenite transformation temperature becomes high, so the Si content is preferably 0.600% or less.
  • the Si content may be 0.400% or less or 0.250% or less.
  • Mn 0.40% to 3.00%
  • Mn is an element that contributes to the improvement of the tensile strength of the hot stamped compact by strengthening the solid solution. If the Mn content is less than 0.40%, the hot stamped compact may break due to hydrogen embrittlement cracking. Therefore, the Mn content is set to 0.40% or more. The Mn content is preferably 0.80% or more. On the other hand, when the Mn content is more than 3.00%, coarse inclusions are generated in the steel and fracture is likely to occur, and the hydrogen embrittlement resistance is deteriorated. Therefore, the Mn content is 3 It should be 0.00% or less. The Mn content is preferably 2.00% or less.
  • Al is an element having an action of deoxidizing molten steel to make the steel sound (suppressing the occurrence of defects such as blow holes in the steel). sol. If the Al content is less than 0.0002%, deoxidation is not sufficiently performed and the above effect cannot be obtained, and hydrogen embrittlement cracking of the hot stamped compact may occur. Therefore, sol. The Al content is 0.0002% or more. sol. The Al content is preferably 0.0010% or more, or 0.0020% or more. On the other hand, sol. If the Al content exceeds 0.5000%, coarse oxides may be formed in the steel, and hydrogen embrittlement cracking of the hot stamped compact may occur. Therefore, sol. The Al content is 0.5000% or less. sol.
  • the Al content is preferably 0.4000% or less, or 0.3000% or less.
  • sol. Al means acid-soluble Al, and refers to the total amount of solid-dissolved Al existing in steel in a solid-dissolved state and Al existing in steel as an acid-soluble precipitate such as AlN.
  • P 0.100% or less
  • P is an element that segregates at the grain boundaries and reduces the strength of the grain boundaries. If the P content exceeds 0.100%, the strength of the grain boundaries may be significantly reduced, and hydrogen embrittlement cracking of the hot stamped compact may occur. Therefore, the P content is set to 0.100% or less.
  • the P content is preferably 0.050% or less. A more preferable P content is 0.010% or less.
  • the lower limit of the P content is not particularly limited, but if it is reduced to less than 0.0005%, the cost of removing P is significantly increased, which is economically unfavorable. Therefore, 0.0005% may be set as the lower limit in actual operation.
  • S 0.1000% or less
  • S is an element that forms inclusions in the steel. If the S content exceeds 0.1000%, a large amount of inclusions may be generated in the steel, the hydrogen embrittlement resistance of the hot stamped product may deteriorate, and hydrogen embrittlement cracking of the hot stamped product may occur. be. Therefore, the S content is set to 0.1000% or less.
  • the S content is preferably 0.0050% or less.
  • the lower limit of the S content is not particularly limited, but if it is reduced to less than 0.00015%, the cost of removing S is significantly increased, which is economically unfavorable. Therefore, 0.00015% may be set as the lower limit in actual operation.
  • N 0.0100% or less
  • N is an impurity element, which is an element that forms a nitride in steel and deteriorates the toughness and hydrogen embrittlement resistance of the hot stamped body. If the N content exceeds 0.0100%, coarse nitrides may be formed in the steel, and hydrogen embrittlement cracking of the hot stamped compact may occur. Therefore, the N content is 0.0100% or less.
  • the N content is preferably 0.0050% or less.
  • the lower limit of the N content is not particularly limited, but if it is reduced to less than 0.0001%, the cost of removing N is significantly increased, which is economically unfavorable. Therefore, 0.0001% may be set as the lower limit in actual operation.
  • the steel sheet (base material) constituting the hot stamping steel sheet 10 according to the present embodiment has Cu, Ni, Nb, V, Ti, Mo, Cr, B, Ca and optional elements instead of a part of Fe. It may contain one or more selected from the group consisting of REM. When the following optional elements are not contained, the content is 0%.
  • Cu: 0 to 1.00% Cu diffuses to the plating layer of the hot stamping member during hot stamping, and has an effect of reducing hydrogen invading during heating in the production of the hot stamping member. Therefore, Cu may be contained if necessary. Further, Cu is an element effective for improving the hardenability of steel and stably ensuring the tensile strength of the hot stamped compact after quenching. When Cu is contained, the Cu content is preferably 0.005% or more in order to surely exert the above effect. The Cu content is more preferably 0.150% or more. On the other hand, since the above effect is saturated even if the content exceeds 1.00%, the Cu content is preferably 1.00% or less. The Cu content is more preferably 0.350% or less.
  • Ni 0 to 1.00% Since Ni is an important element for suppressing hot brittleness due to Cu during steel sheet production and ensuring stable production, Ni may be contained. If the Ni content is less than 0.005%, the above effects may not be sufficiently obtained. Therefore, the Ni content is preferably 0.005% or more. The Ni content is preferably 0.05% or more. On the other hand, when the Ni content exceeds 1.00%, the critical hydrogen content of the hot stamping steel sheet decreases. Therefore, the Ni content is set to 1.00% or less. The Ni content is preferably 0.60% or less.
  • Nb 0 to 0.150% Since Nb is an element that contributes to the improvement of the tensile strength of the hot stamped compact by strengthening the solid solution, it may be contained as necessary.
  • the Nb content is preferably 0.010% or more in order to surely exert the above effect.
  • the Nb content is more preferably 0.030% or more.
  • the Nb content is more preferably 0.100% or less.
  • V 0 to 1.000%
  • V is an element that forms fine carbides and improves the limit hydrogen amount of the steel material by its fine granulation effect and hydrogen trapping effect. Therefore, V may be contained. In order to obtain the above effects, it is preferable to contain V in an amount of 0.005% or more, and more preferably 0.05% or more. However, if the V content exceeds 1.000%, the above effects are saturated and the economic efficiency is lowered. Therefore, the V content when contained is 1.000% or less.
  • Ti 0 to 0.150% Since Ti is an element that contributes to the improvement of the tensile strength of the hot stamped compact by strengthening the solid solution, it may be contained if necessary. When Ti is contained, the Ti content is preferably 0.010% or more in order to surely exert the above effect. The Ti content is preferably 0.020% or more. On the other hand, since the above effect is saturated even if the content exceeds 0.150%, the Ti content is preferably 0.150% or less. The Ti content is more preferably 0.120% or less.
  • Mo 0 to 1.000% Since Mo is an element that contributes to the improvement of the tensile strength of the hot stamped molded product by strengthening the solid solution, it may be contained if necessary. When Mo is contained, the Mo content is preferably 0.005% or more in order to surely exert the above effect. The Mo content is more preferably 0.010% or more. On the other hand, since the above effect is saturated even if the content exceeds 1.000%, the Mo content is preferably 1.000% or less. The Mo content is more preferably 0.800% or less.
  • Cr 0 to 1.000% Since Cr is an element that contributes to the improvement of the tensile strength of the hot stamped compact by strengthening the solid solution, it may be contained if necessary. When Cr is contained, the Cr content is preferably 0.050% or more in order to surely exert the above effect. The Cr content is more preferably 0.100% or more. On the other hand, since the above effect is saturated even if the content exceeds 1.000%, the Cr content is preferably 1.000% or less. The Cr content is more preferably 0.800% or less.
  • B 0-0.0100% Since B is an element that segregates at the grain boundaries and improves the strength of the grain boundaries, it may be contained as necessary.
  • the B content is preferably 0.0005% or more in order to surely exert the above effect.
  • the B content is preferably 0.0010% or more.
  • the B content is preferably 0.0100% or less.
  • the B content is more preferably 0.0075% or less.
  • Ca 0 to 0.010%
  • Ca is an element having an action of deoxidizing molten steel to make the steel sound.
  • the Ca content is preferably 0.001% or more.
  • the Ca content is preferably 0.010% or less.
  • REM 0 to 0.300%
  • the REM content is preferably 0.001% or more.
  • the REM content is preferably 0.300% or less.
  • the REM refers to a total of 17 elements composed of Sc, Y and lanthanoids, and the REM content refers to the total content of these elements.
  • the balance is Fe and impurities
  • the balance of the chemical composition of the base material 1 constituting the hot stamping steel sheet 10 according to the present embodiment is Fe and impurities.
  • Impurities are those that are unavoidably mixed or intentionally added from the steel raw material or scrap and / or in the steelmaking process, and after hot stamping the hot stamping steel sheet 10 according to the present embodiment, Examples of elements are acceptable as long as they do not impair the characteristics of the hot stamped product.
  • the chemical composition of the base material 1 described above may be measured by a general analysis method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrum
  • C and S may be measured by using the combustion-infrared absorption method
  • N may be measured by using the inert gas melting-thermal conductivity method.
  • the plating layer on the surface may be removed by mechanical grinding and then the chemical composition may be analyzed.
  • sol. Al may be measured by ICP-AES using a filtrate obtained by heat-decomposing the sample with an acid.
  • the area ratio of ferrite is preferably 20% or more in terms of the area ratio of the cross section. A more preferable area ratio of ferrite is 30% or more.
  • the area ratio of ferrite is preferably 80% or less.
  • a more preferable area ratio of ferrite is 70% or less.
  • the area ratio of pearlite is preferably 20% or more in terms of the area ratio of the cross section.
  • the area ratio of pearlite is preferably 80% or less.
  • a more preferable area ratio of pearlite is 70% or less.
  • the balance may be bainite, martensite or retained austenite.
  • the area ratio of the residual tissue may be less than 5%.
  • the area ratio of ferrite and pearlite is measured by the following method.
  • the cross section parallel to the rolling direction at the center position in the plate width direction is mirror-finished and polished at room temperature with colloidal silica containing no alkaline solution for 8 minutes to remove the strain introduced into the surface layer of the sample.
  • the length is 50 ⁇ m, 1/8 depth from the surface to 3/8 of the plate thickness, so that the 1/4 depth of the plate thickness can be analyzed from the surface at any position in the longitudinal direction of the sample cross section.
  • the depth region is measured by electron backscatter diffraction at a measurement interval of 0.1 ⁇ m to obtain crystal orientation information.
  • a device composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSP detector (DVC5 type detector manufactured by TSL) is used.
  • the degree of vacuum in the apparatus is 9.6 ⁇ 10 -5 Pa or less
  • the acceleration voltage is 15 kV
  • the irradiation current level is 13
  • the electron beam irradiation level is 62.
  • a reflected electron image is taken in the same field of view.
  • crystal grains in which ferrite and cementite are deposited in layers are specified from the backscattered electron image, and the area ratio of the crystal grains is calculated to obtain the area ratio of pearlite.
  • the obtained crystal orientation information is used for the "Grain Average Misorition" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSP analysis device. Therefore, a region having a Grain Average Composition value of 1.0 ° or less is determined to be ferrite.
  • the area ratio of ferrite is obtained by obtaining the area ratio of the region determined to be ferrite.
  • the area ratio of the remaining portion in the present embodiment is a value obtained by subtracting the area ratios of ferrite and pearlite from 100%.
  • Dislocation density at a depth of 100 ⁇ m from the surface is 5 ⁇ 10 13 m / m 3 or more
  • the dislocation density of the base material 1 constituting the hot stamping steel sheet 10 according to the present embodiment will be described. It is preferable that the dislocation density at a depth of 100 ⁇ m from the surface of the base material 1 constituting the hot stamping steel sheet 10 according to the present embodiment is 5 ⁇ 10 13 m / m 3 or more. A more preferable dislocation density is 50 ⁇ 10 13 m / m 3 or more.
  • the dislocation density is preferably 1000 ⁇ 10 13 m / m 3 or less.
  • a more preferable dislocation density is 150 ⁇ 10 13 m / m 3 or less.
  • the dislocation density can be measured by X-ray diffraction method or transmission electron microscope observation, but in this embodiment, it is measured by using X-ray diffraction method.
  • a sample is cut out from an arbitrary position 50 mm or more away from the end face of the base material 1 used for the hot stamping steel plate 10.
  • the size of the sample depends on the measuring device, but is about 20 mm square.
  • a mixed solution of 48% by mass of distilled water, 48% by mass of hydrogen peroxide solution, and 4% by mass of hydrofluoric acid is used to reduce the thickness of the sample by 200 ⁇ m.
  • the thickness of the front surface and the back surface of the sample is reduced by 100 ⁇ m, and a region of 100 ⁇ m is exposed from the sample surface before decompression. X-ray diffraction measurements are performed on this exposed surface to identify multiple diffraction peaks in the body-centered cubic lattice.
  • the dislocation density at a depth of 100 ⁇ m from the surface is obtained.
  • the modified Williamson-Hall method described in Non-Patent Document 1 is used.
  • the dislocation density is obtained after the Al—Si alloy plating layer 2 and the Ni plating layer 4 are removed.
  • Examples of the method for removing the Al—Si alloy plating layer 2 and the Ni plating layer 4 include a method of immersing the hot stamping steel sheet 10 in a NaOH aqueous solution.
  • the thickness of the base material 1 of the hot stamping steel plate 10 according to the present embodiment is not particularly limited, but is preferably 0.4 mm or more from the viewpoint of reducing the weight of the vehicle body.
  • a more preferable plate thickness of the base material 1 is 0.8 mm or more, 1.0 mm or more, or 1.2 mm or more.
  • the plate thickness of the base material 1 is preferably 6.0 mm or less.
  • a more preferable plate thickness of the base material 1 is 5.0 mm or less, 4.0 mm or less, 3.2 mm or less, or 2.8 mm or less.
  • the Al—Si alloy plating layer 2 of the hot stamping steel sheet 10 according to the present embodiment is provided as an upper layer of the base material 1.
  • the Al—Si alloy plating layer 2 is a plating containing Al and Si as main components.
  • Al and Si are the main components, at least the Al content is 75% by mass or more, the Si content is 3% by mass or more, and the Al content and the Si content are the same. It means that the total is 95% by mass or more.
  • the Al content in the Al—Si alloy plating layer 2 is preferably 80% by mass or more.
  • the Al content in the Al—Si alloy plating layer is preferably 95% by mass or less. When the Al content in the Al—Si alloy plating layer 2 is within this range, a scale having good adhesion is formed on the surface of the steel sheet during hot stamping.
  • the Si content in the Al—Si alloy plating layer 2 is preferably 3% by mass or more. More preferably, the Si content in the Al—Si alloy plating layer 2 is 6% by mass or more.
  • the Si content in the Al—Si alloy plating layer 2 is preferably 20% by mass or less. More preferably, the Si content is 12% by mass or less.
  • alloying of Fe—Al can be suppressed.
  • the Si content in the Al—Si alloy plating layer 2 is 20% by mass or less, the increase in the melting point of the Al—Si alloy plating layer 2 can be suppressed, and the temperature of the hot-dip plating bath can be lowered.
  • the Si content in the Al—Si alloy plating layer 2 is 20% by mass or less, the production cost can be reduced.
  • the total of the Al content and the Si content may be 97% by mass or more, 98% by mass or more, or 99% by mass or more.
  • the balance in the Al—Si alloy plating layer 2 is Fe and impurities. Examples of impurities include components that are inevitably mixed during the production of the Al—Si alloy plating layer 2, components in the base material 1, and the like.
  • the average layer thickness (thickness) of the Al—Si alloy plated layer 2 of the hot stamping steel sheet 10 according to the present embodiment is 7 ⁇ m or more. This is because if the thickness of the Al—Si alloy plating layer 2 is less than 7 ⁇ m, it may not be possible to form a scale having good adhesion during hot stamping.
  • a more preferable thickness of the Al—Si alloy plating layer 2 is 12 ⁇ m or more, 15 ⁇ m or more, 18 ⁇ m or more, or 22 ⁇ m or more.
  • the thickness of the Al—Si alloy plating layer 2 is 148 ⁇ m or less. This is because if the thickness of the Al—Si alloy plating layer 2 exceeds 148 ⁇ m, the above effects are saturated and the cost is high. More preferably, the thickness of the Al—Si alloy plating layer 2 is 100 ⁇ m or less, 60 ⁇ m or less, 45 ⁇ m or less, and 37 ⁇ m or less.
  • the thickness of the Al—Si alloy plating layer 2 is measured as follows. After cutting in the plate thickness direction of the hot stamping steel plate 10, the cross section of the hot stamping steel plate 10 is polished. The cross section of the polished steel sheet for hot stamping 10 is detected by line analysis from the surface of the steel sheet 10 for hot stamping to the base material 1 by an electron probe microanalyzer (FE-EPMA) using the ZAF method. The Al concentration (content) and Si concentration (content) in the components are measured.
  • the measurement conditions may be an acceleration voltage of 15 kV, a beam diameter of about 100 nm, an irradiation time of 1000 ms per point, and a measurement pitch of 60 nm.
  • a region having an Al concentration of 75% by mass or more, a Si concentration of 3% by mass or more, and a total of the Al concentration and the Si concentration of 95% by mass or more is determined to be the Al—Si alloy plating layer 2.
  • the thickness of the Al—Si alloy plating layer 2 is the length in the plate thickness direction of the above region.
  • the thickness of the Al—Si alloy plating layer 2 is measured at five positions separated by 5 ⁇ m intervals, and the arithmetic mean of the obtained values is taken as the thickness of the Al—Si alloy plating layer 2.
  • the Al content and Si content in the Al—Si alloy plating layer 2 are 1 / of the thickness of the Al—Si alloy plating layer 2 by collecting test pieces according to the test method described in JIS K 0150 (2005). By measuring the Al content and the Si content at the two positions, the Al content and the Si content in the Al—Si alloy plating layer 2 in the hot stamping steel plate 10 can be obtained.
  • the Al oxide film 3 of the hot stamping steel sheet 10 according to the present embodiment is provided in contact with the Al—Si alloy plating layer 2 as an upper layer of the Al—Si alloy plating layer 2.
  • the Al oxide film is a region in which the O content is 20 atomic% or more.
  • the thickness of the Al oxide film 3 is more than 20 nm, the coverage of the Ni plating layer 4 provided as the upper layer of the Al oxide film 3 is less than 90%. Therefore, the thickness of the Al oxide film 3 is 0 to 20 nm or less. More preferably, the thickness of the Al oxide film 3 is 10 nm or less. The thickness of the Al oxide film 3 may be 2 nm or more. Since the Al oxide film 3 may not be present, the lower limit of the Al oxide film 3 is 0 nm. In that case, the Ni plating layer 4 is formed so as to be in contact with the Al—Si alloy plating layer 2.
  • the thickness of the Al oxide film 3 is evaluated by alternately repeating Ar sputtering and X-ray photoelectron spectroscopy (XPS) measurement. Specifically, XPS measurement is performed after sputtering the steel sheet 10 for hot stamping by Ar sputtering (acceleration voltage 20 kV, sputtering rate 1.0 nm / min). The Ar sputtering and the XPS measurement are alternately performed, and these measurements are repeated until the peak of the binding energy of 73.8 eV to 74.5 eV of the 2p orbital of Al oxidized by the XPS measurement appears and disappears.
  • Ar sputtering and the XPS measurement are alternately performed, and these measurements are repeated until the peak of the binding energy of 73.8 eV to 74.5 eV of the 2p orbital of Al oxidized by the XPS measurement appears and disappears.
  • the thickness of the Al oxide film 3 is calculated from the sputtering time and the sputtering rate from the position where the O content becomes 20 atomic% or more for the first time after the start of sputtering to the position where the O content becomes less than 20 atomic%. ..
  • the sputtering rate is converted to SiO 2.
  • the thickness of the Al oxide film 3 is an arithmetic mean value measured at two points.
  • Ni plating layer The Ni-plated layer 4 of the hot stamping steel sheet 10 according to the present embodiment is provided in contact with the Al oxide film 3 as an upper layer of the Al oxide film 3. In the absence of the Al oxide coating 3, the Ni plating layer 4 is provided in contact with the Al—Si alloy plating layer 2 as an upper layer of the Al—Si alloy plating layer 2. Ni is difficult to oxidize, and it is difficult to generate hydrogen because oxidation by water is suppressed at high temperature. Moreover, even if hydrogen is generated and adsorbed on the surface, hydrogen atoms are bonded to each other and desorbed as hydrogen gas. Since the reaction is promoted, it has the effect of making it difficult for hydrogen to enter the steel plate. Therefore, by forming the Ni plating layer 4, it is possible to suppress the amount of hydrogen invading the hot stamping steel plate 10 during hot stamping.
  • the average layer thickness (thickness) of the Ni-plated layer 4 according to this embodiment is more than 200 nm.
  • a more preferable thickness of the Ni plating layer 4 is 280 nm or more, 350 nm or more, 450 nm or more, 560 nm or more, or 650 nm or more. If the thickness of the Ni plating layer 4 is 200 nm or less, the invasion of hydrogen into the base material 1 during hot stamping cannot be sufficiently suppressed.
  • the thickness of the Ni plating layer 4 is 2500 nm or less.
  • a more preferable thickness of the Ni plating layer 4 is 1500 nm or less, 1200 nm or less, or 1000 nm or less. When the thickness of the Ni plating layer 4 is more than 2500 nm, the effect of suppressing the amount of hydrogen invading the base material 1 is saturated and the cost is high.
  • the Ni content in the Ni plating layer 4 is 90% by mass or less, the effect of suppressing the amount of hydrogen invading the hot stamping steel sheet 10 may not be obtained. Therefore, the Ni content in the Ni plating layer 4 is more than 90% by mass. A more preferable Ni content is 92% by mass or more. A more preferable Ni content is 93% by mass or more or 94% by mass. A more preferable Ni content is 96% by mass or more, 98% by mass or more, or 99% by mass or more.
  • the chemical composition of the remainder (excluding Ni) of the Ni plating layer is not particularly limited. Cr may be contained in the Ni plating layer, but the ratio of Ni / Cr is preferably larger than 9, and more preferably 15 or more or 30 or more.
  • the Cr content in the Ni plating layer is 6.0% by mass or less, and more preferably 4.0% by mass or less or 3.0% by mass or less. More preferably, the Cr content in the Ni plating layer 3 is 2.0% by mass or less.
  • the coverage of the Ni plating layer 4 with respect to the Al oxide film 3 is 90% or more. More preferably, the coverage of the Ni plating layer 4 is 95% or more. If the coverage of the Ni plating layer 4 is less than 90%, the reaction between water vapor and Al cannot be sufficiently suppressed on the surface of the Al—Si alloy plating layer 2 at the time of hot stamping.
  • the coverage of the Ni plating layer 4 may be 100% or less, or 99% or less.
  • the coverage of the Ni plating layer is evaluated by measuring XPS. Specifically, for XPS measurement, a Quantum2000 type manufactured by ULVAC-PHI is used, a source Al K ⁇ ray is used, an output of 15 kV, 25 W, a spot size of 100 ⁇ m, a number of scans of 10 times, and a steel plate for hot stamping 10 with total energy. MultiPak V., an analysis software manufactured by ULVAC-PHI, measures by scanning in a range. Analysis is performed using 8.0 to obtain the content of Ni (atomic%), the content of Al (atomic%), and the content of other components (atomic%) in the detected metal components.
  • the Ni content (mass%) and the Al content (mass%) can be obtained.
  • the ratio (%) of the Ni content to the total of the Ni content and the Al content is calculated.
  • the obtained ratio is defined as the coverage rate (%) of Ni plating.
  • the thickness of the Ni plating layer 4 is measured by alternately repeating Ar sputtering etching and X-ray photoelectron spectroscopy (XPS) measurement. Specifically, XPS measurement is performed after sputtering etching of the hot stamping steel sheet 10 by Ar sputtering (acceleration voltage 20 kV, sputtering rate 1.0 nm / min). The Ar sputtering etching and the XPS measurement are alternately performed, and these measurements are repeated until the peak of the binding energy 852.5 eV to 852.9 eV of the Ni 2p orbital appears and disappears in the XPS measurement.
  • Ar sputtering etching acceleration voltage 20 kV, sputtering rate 1.0 nm / min.
  • the Ar sputtering etching and the XPS measurement are alternately performed, and these measurements are repeated until the peak of the binding energy 852.5 eV to 852.9 eV of the Ni 2p orbital appears and disappears
  • the layer thickness of the Ni plating layer 4 is set after the peak in the above range from the position where the Ni content becomes 10 atomic% or more for the first time after the start of sputtering to the position where the Ni content becomes less than 10 atomic% appears. It is calculated from the sputtering etching time until it disappears and the sputtering etching rate. The sputter etching rate is converted to SiO 2.
  • the thickness of the Ni plating layer 4 is an arithmetic mean value measured at two points.
  • the Ni concentration at the center position in the plate thickness direction of the Ni plating layer 4 obtained in the above measurement of the thickness of the Ni plating layer is taken as the Ni content.
  • the thickness of the hot stamping steel sheet 10 is not particularly limited, but may be, for example, 0.4 mm or more.
  • the thickness of the more preferable steel sheet is 0.8 mm or more, 1.0 mm or more, or 1.2 mm or more.
  • the thickness of the hot stamping steel may be 6.0 mm or less.
  • a more preferable thickness of the steel sheet is 5.0 mm or less, 4.0 mm or less, 3.2 mm or less, or 2.8 mm or less.
  • the slab to be subjected to hot rolling may be a slab manufactured by a conventional method, and may be a slab manufactured by a general method such as a continuous casting slab or a thin slab caster. Hot rolling may also be performed by a general method and is not particularly limited.
  • the cooling start temperature (cooling start temperature) after hot rolling is preferably Ac 3 points to 1400 ° C.
  • the dislocation density at a depth of 100 ⁇ m from the surface of the base material 1 of the hot stamping steel sheet 10 can be set to 5 ⁇ 10 13 m / m 3 or more.
  • a more preferable cooling start temperature is 1000 to 1150 ° C.
  • the element symbol in the above formula is the content of the element in mass%, and if it is not contained, 0 is substituted.
  • the average cooling rate in cooling after hot rolling is 30 ° C./sec or more.
  • a more preferable average cooling rate is 50 ° C./sec or higher. If the average cooling rate is less than 30 ° C./sec, the dislocation density at a depth of 100 ⁇ m from the surface of the base material 1 of the hot stamping steel sheet may not be 5 ⁇ 10 13 m / m 3 or more.
  • the average cooling rate is preferably 200 ° C./sec or less.
  • a more preferable average cooling rate is 100 ° C./sec or less. When the average cooling rate exceeds 200 ° C./sec, the dislocation density becomes excessively high.
  • the average cooling rate at this time is calculated from the temperature change on the surface of the steel sheet, and indicates the average cooling rate from the end of hot rolling to the start of winding.
  • the steel sheet After the start of cooling, the steel sheet is wound by cooling to a temperature range of 400 ° C to 600 ° C. If the winding start temperature is less than 400 ° C., the dislocation density at a depth of 100 ⁇ m from the surface of the base material 1 of the hot stamping steel sheet 10 becomes excessively high, which is not preferable. When the winding start temperature exceeds 600 ° C., the dislocation density cannot be 5 ⁇ 10 13 m / m 3 or more.
  • cold rolling may be further performed if necessary.
  • the cumulative rolling reduction in cold rolling is not particularly limited, but is preferably 40 to 60% from the viewpoint of shape stability of the steel sheet.
  • Al-Si alloy plating The above hot-rolled steel sheet is subjected to cold rolling as it is or after being cold-rolled, and then subjected to Al—Si alloy plating.
  • the method for forming the Al—Si alloy plating layer 2 is not particularly limited, and a hot-dip plating method, an electroplating method, a vacuum vapor deposition method, a clad method, a thermal spraying method and the like can be used.
  • a particularly preferable method is a hot-dip plating method.
  • the Si content is at least 3% by mass or more, and the total of the Al content and the Si content is 95% by mass or more.
  • An Al—Si alloy plated steel sheet is obtained by immersing the base material 1 in a plating bath whose components are adjusted to the above.
  • the temperature of the plating bath is preferably in the temperature range of 660 ° C to 690 ° C.
  • the hot-rolled steel sheet may be heated to a vicinity of the plating bath temperature of 650 ° C to 780 ° C, and then plating may be performed.
  • Fe when performing hot-dip plating, Fe may be mixed as an impurity in addition to Al and Si in the plating bath. Further, as long as the Si content is 3% by mass or more and the total of the Al content and the Si content is 95% by mass or more, the plating bath further contains Ni, Mg, Ti, Zn, Sb, and the like. It may contain Sn, Cu, Co, In, Bi, Ca, Mish metal and the like.
  • the Al oxide film 3 of the steel sheet (hereinafter referred to as Al-plated steel sheet) after forming the Al—Si alloy plated layer 2 is removed to obtain an Al oxide film-removed steel sheet.
  • the Al oxide film 3 is removed by immersing the Al-plated steel sheet in an acidic or basic removing liquid.
  • the acidic removing solution include dilute hydrochloric acid (HCl 0.1 mol / L) and the like.
  • the basic removing solution include an aqueous solution of sodium hydroxide (NaOH 0.1 mol / L) and the like.
  • the immersion time is adjusted so that the thickness of the Al oxide film 3 after the formation of the Ni plating layer 4 is 20 nm or less. For example, when the bath temperature is 40 ° C., the Al oxide film 3 is removed by immersing for 1 minute.
  • Ni plating After removing the Al oxide film 3 so that the thickness of the Al oxide film 3 is 20 nm or less, Ni plating is applied to the Al oxide film removed steel sheet within 1 minute to form the Ni plating layer 4, thereby hot stamping. It is preferable to obtain a steel plate for use.
  • the Ni plating layer 4 may be formed by an electroplating method, a vacuum vapor deposition method, or the like. When forming the Ni plating layer 4 by electroplating, the steel plate after removing the Al oxide film 3 is immersed in a plating bath made of nickel sulfate, nickel chloride, and boric acid, and soluble Ni is used for the anode, and the current density is used.
  • the Ni plating layer 4 can be formed so that the thickness is more than 200 nm and 2500 nm or less by appropriately controlling the energization time. After Ni plating, temper rolling may be performed with a cumulative rolling reduction of about 0.5 to 2% (particularly, when the above-mentioned plating base plate is a cold-rolled steel sheet).
  • Hot stamping conditions using the hot stamping steel sheet 10 according to the present embodiment will be described, but the hot stamping conditions for the hot stamping steel sheet 10 according to the present embodiment are not limited to these conditions.
  • the above-mentioned steel sheet 10 for hot stamping is placed in a heating furnace and heated at a heating rate of 2.0 ° C./sec to 10.0 ° C./sec to a temperature (reached temperature) of 3 points or more of Ac. After reaching the reached temperature, the steel sheet 10 for hot stamping is hot stamped and cooled to room temperature by holding it for about 5 to 300 seconds. As a result, a hot stamp molded product is obtained.
  • the tensile strength of the hot stamped product may be 1600 MPa or more. If necessary, the lower limit of the tensile strength may be 1650 MPa, 1700 MPa, 1750 MPa or 1800 MPa, and the upper limit thereof may be 2500 MPa, 2400 MPa or 2300 MPa or 2220 MPa.
  • the tensile strength of the hot stamped body can be measured by preparing the No. 5 test piece described in JIS Z 2241: 2011 from an arbitrary position of the hot stamped body and measuring by the test method described in JIS Z 2241: 2011. can.
  • the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one condition example. Not limited.
  • the present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • Al-Si plating The steel sheet manufactured above was plated with an Al—Si alloy. In the hot-dip plating bath of the Al—Si alloy, the components of the plating bath were adjusted so as to have the Al content and the Si content shown in Tables 2-1 and 2-2. The steel sheet produced by the above method was immersed in a plating bath having adjusted components to obtain the Al—Si alloy plated steel sheets shown in Tables 2-1 and 2-2.
  • Ni plating Next, the Al oxide film-removed steel sheet was subjected to Ni plating.
  • a Watt bath containing 200 to 400 g / L of nickel sulfate, 20 to 100 g / L of nickel chloride, and 5 to 50 g / L of boric acid was used. Adjust the ratios of nickel sulfate, nickel chloride, and boric acid so that the Ni content is as shown in Tables 2-1 and 2-2, pH 1.5 to 2.5, and bath temperature 45 ° C to 55. Adjusted to ° C.
  • Soluble Ni was used as the anode, the current density was 2 A / dm 2, and the energization time was controlled so as to have the thicknesses shown in Tables 2-1 and 2-2 to obtain a hot stamping steel sheet.
  • Tables 2-1 and 2-2 the ones described as thin-film deposition formed a Ni plating layer by vapor deposition, not by electroplating.
  • the vapor deposition plating was carried out at a vacuum degree of 5.0 ⁇ 10 -3 to 2.0 ⁇ 10 -5 Pa during vapor deposition, and an electron beam (voltage 10 V, current 1.0 A) was used as a heat source for vapor deposition. ..
  • the area ratio of the cross section was ferrite: 20 to 80%, pearlite: 20 to 80%, and the balance: less than 5%. ..
  • a sample was cut out from an arbitrary position 50 mm or more away from the end face of the steel sheet manufactured above.
  • the size of the sample was 20 mm square.
  • a mixed solution of 48% by mass of distilled water, 48% by mass of hydrogen peroxide solution and 4% by mass of hydrofluoric acid was used to reduce the thickness of the sample by 200 ⁇ m.
  • the thickness of the front surface and the back surface of the sample was reduced by 100 ⁇ m, and a region of 100 ⁇ m was exposed from the sample surface before decompression.
  • X-ray diffraction measurements were performed on this exposed surface to identify multiple diffraction peaks in the body-centered cubic lattice.
  • the dislocation density was analyzed from the half width of these diffraction peaks, and the dislocation density at a depth of 100 ⁇ m from the surface was obtained.
  • the analysis method the modified Williamson-Hall method described in Non-Patent Document 1 was used. The results obtained are shown in Tables 3-1 and 3-2.
  • the dislocation density was measured after removing the Ni-plated layer and the Al—Si alloy-plated layer of the hot stamping steel sheet manufactured above with an aqueous NaOH solution. The results were the same as those in Tables 3-1 and 3-2. It was a result.
  • the thickness of the Al—Si alloy plating layer was measured as follows.
  • the hot stamping steel sheet obtained by the above manufacturing method was cut in the plate thickness direction. After that, the cross section of the hot stamping steel sheet was polished, and the cross section of the polished hot stamping steel sheet was line-analyzed from the surface of the hot stamping steel sheet to the steel sheet by FE-EPMA using the ZAF method, and the detected components were detected.
  • the Al concentration and Si concentration in the inside were measured.
  • the measurement conditions were an acceleration voltage of 15 kV, a beam diameter of about 100 nm, an irradiation time of 1000 ms per point, and a measurement pitch of 60 nm.
  • the measurement was carried out in the range including the Ni plating layer, the Al—Si alloy plating layer and the steel plate.
  • a region in which the Al content is 75% by mass or more, the Si concentration is 3% by mass or more, and the total of the Al concentration and the Si concentration is 95% by mass or more is determined as an Al—Si alloy plating layer.
  • the thickness of the Al—Si alloy plating layer was set to the length in the plate thickness direction of the above region.
  • the thickness of the Al—Si alloy plating layer was measured at five positions separated by 5 ⁇ m intervals, and the arithmetic mean of the obtained values was taken as the thickness of the Al—Si alloy plating layer.
  • the evaluation results are shown in Tables 2-1 and 2-2.
  • the Al content and Si content in the Al—Si alloy plating layer are determined by collecting test pieces according to the test method described in JIS K 0150 (2005) and halving the total thickness of the Al—Si alloy plating layer. By measuring the Al content and the Si content of the above, the Al content and the Si content in the Al—Si alloy plated layer in the hot stamping steel plate 10 were obtained. The results obtained are shown in Tables 2-1 and 2-2.
  • the thickness of the Al oxide film was evaluated by alternately repeating Ar sputtering and X-ray photoelectron spectroscopy (XPS) measurement. Specifically, XPS measurement was performed after sputtering the steel sheet for hot stamping by Ar sputtering (acceleration voltage 0.5 kV, sputtering rate 0.5 nm / min based on SiO 2). XPS measurement was performed using a radiation source Al K ⁇ ray with an output of 15 kV, 25 W, a spot size of 100 ⁇ m, 10 scans, and a total energy range of 0 to 1300 eV.
  • the thickness of the Al oxide film is calculated from the sputtering time and the sputtering rate from the position where the O content becomes 20 atomic% or more for the first time after the start of sputtering to the position where the O content becomes less than 20 atomic%.
  • the sputtering rate is converted to SiO 2.
  • the thickness of the Al oxide film was an arithmetic mean value measured at two points. The results obtained are shown in Tables 2-1 and 2-2.
  • the thickness of the Ni plating layer 4 is measured by alternately repeating Ar sputtering etching and X-ray photoelectron spectroscopy (XPS) measurement. Specifically, XPS measurement is performed after sputtering etching of the hot stamping steel sheet 10 by Ar sputtering (acceleration voltage 20 kV, sputtering rate 1.0 nm / min). The Ar sputtering etching and the XPS measurement are alternately performed, and these measurements are repeated until the peak of the binding energy 852.5 eV to 852.9 eV of the Ni 2p orbital appears and disappears in the XPS measurement.
  • Ar sputtering etching acceleration voltage 20 kV, sputtering rate 1.0 nm / min.
  • the layer thickness of the Ni plating layer 4 is set after the peak in the above range from the position where the Ni content becomes 10 atomic% or more for the first time after the start of sputtering to the position where the Ni content becomes less than 10 atomic% appears. It is calculated from the sputtering etching time until it disappears and the sputtering etching rate. The sputter etching rate is converted to SiO 2.
  • the thickness of the Ni plating layer 4 is an arithmetic mean value measured at two points.
  • the coverage of the Ni plating layer was evaluated by XPS measurement.
  • XPS measurement is performed by scanning the hot stamping steel plate 10 with an output of 15 kV, 25 W, a spot size of 100 ⁇ m, 10 scans, and a total energy range of 0 to 1300 eV using a radiation source Al K ⁇ ray, and measuring the Ni content (Ni content ( Atomic%) and Al content (atomic%) were calculated. Next, the ratio (%) of the Ni content to the total of the Ni content and the Al content was calculated, and the obtained ratio was taken as the coverage rate (%) of the Ni plating. The results obtained are shown in Tables 2-1 and 2-2.
  • the tensile strength of the hot stamped body was determined by preparing the No. 5 test piece described in JIS Z 2241: 2011 from an arbitrary position of the hot stamped body and following the test method described in JIS Z 2241: 2011. In addition, the experimental No. in which the state of the scale was poor. 63 did not evaluate. The measured measurement results are shown in Tables 3-1 and 3-2. In Tables 3-1 and 3-2, early rupture is a test in which there is no yield point and the rupture occurs while the numerical value is rising, and the displacement at break in the measurement range of tensile strength is the tensile strength. It means that the test was the maximum value of the displacement (that is, the test in which there was no elongation after the maximum load and the test was broken).
  • a heated hydrogen analysis was performed on the hot stamped body, and the amount of invading hydrogen invaded in the heating furnace was measured.
  • the temperature of the hot stamp molded product is 200 ° C or lower after cooling with a hot stamping die, it is immediately cooled to -10 ° C or less with liquid nitrogen to freeze, and diffused to be released to 300 ° C by heated hydrogen analysis.
  • the amount of invading hydrogen (mass ppm) of the hot stamped product was evaluated using the amount of sex hydrogen. When the amount of invading hydrogen was 0.350 mass ppm or less, it was judged that the amount of invading hydrogen could be suppressed even in a high dew point environment, and the result was accepted.
  • Experiment No. 27 is a steel plate sol. Since the Al content was less than 0.0002%, it broke early due to hydrogen embrittlement cracking.
  • Reference numeral 31 is a steel plate sol. Since the Al content was more than 0.5000%, it broke early due to hydrogen embrittlement fracture.
  • the thickness of the Al—Si alloy plating layer was less than 7 ⁇ m, so that the scale condition was poor.
  • the thickness of the Ni plating layer was 200 nm or less, so that a large amount of hydrogen penetrated into the steel sheet.
  • both Al-plated steel sheets for hot stamping and hot stamping in a high dew point environment have excellent hydrogen embrittlement resistance by reducing the amount of invading hydrogen. , Industrial applicability is high.
  • Base material 2 Al-Si alloy plating layer 3 Al oxide coating 4 Ni plating layer 10 Steel sheet for hot stamping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

このホットスタンプ用鋼板は、母材と、Al含有量が75質量%以上であり 、Si含有量が3質量%以上であり、かつ、Al含有量とSi含有量との合計が95質量%以上であるAl-Si合金めっき層と、厚さが0~20nmである酸化Al被膜と、Ni含有量が90質量%超であるNiめっき層と、をこの順で備え、前記母材が所定の化学組成を有し、前記Al-Si合金めっき層の厚さが7~148μmであり、前記Niめっき層の厚さが200nm超、2500nm以下である。

Description

ホットスタンプ用鋼板
 本発明は、ホットスタンプ用鋼板に関する。本願は、2020年5月13日に、日本に出願された特願2020-084584号に基づき優先権を主張し、その内容をここに援用する。
 近年、環境保護及び省資源化の観点から自動車車体の軽量化が求められており、自動車用部材への高強度鋼板の適用が加速している。自動車用部材はプレス成形によって製造されるが、鋼板の高強度化に伴い成形荷重が増加するだけでなく、成形性が低下するため、高強度鋼板においては、複雑な形状の部材への成形性が課題となる。このような課題を解決するため、鋼板が軟質化するオーステナイト域の高温まで加熱した後にプレス成形を実施するホットスタンプ技術の適用が進められている。ホットスタンプは、プレス加工と同時に、金型内において焼入れ処理を実施することで、自動車用部材への成形性と自動車用部材の強度確保とを両立する技術として注目されている。
 めっきなどを施していない裸材の鋼板に対してホットスタンプを行う場合、加熱時のスケールの形成及び表層脱炭を抑制するために、非酸化雰囲気でホットスタンプを行う必要がある。しかし、非酸化雰囲気でホットスタンプを行っても、加熱炉からプレス機までは、大気雰囲気であるので、ホットスタンプ後の鋼板の表面にはスケールが形成される。この鋼板の表面のスケールは、密着性が悪く、簡単に剥離してしまうため、他工程への悪影響が懸念される。そのため、ショットブラストなどを用いて除去する必要がある。ショットブラストは、鋼板の形状への影響があるという問題がある。また、スケール除去工程によって、ホットスタンプ工程の生産性が低下するという問題がある。
 鋼板表面のスケールの密着性を改善するために、鋼板の表面にめっきを形成する方法がある。めっきを形成することで、ホットスタンプを行っても鋼板の表面に密着性のよいスケールが形成されるため、スケール除去の工程が不要となる。そのため、ホットスタンプ工程の生産性が改善される。
 鋼板表面にめっきを形成する方法としては、Znめっき又はAlめっきを形成する方法が考えられるが、Znめっきを用いた場合、液体金属脆性(Liquid Metal Embrittlement、以下、LMEと称する)の問題がある。LMEとは、固体金属表面に液体金属が接触した状態で引張応力を付与すると、本来延性を示す固体金属が脆化する現象をいう。Znは融点が低く、ホットスタンプ時に、溶けたZnがFeの旧オーステナイト粒界に沿って入り込み、鋼板にマイクロクラックが生じてしまう。
 Alめっきを鋼板に施す場合、上記のLMEの問題は発生しないが、ホットスタンプ時にAlめっきの表面において、Alと水との反応が起こり、水素が発生する。そのため、鋼板への侵入水素量が多いという問題がある。この鋼板への水素の侵入量が多いと、ホットスタンプ後に応力を負荷すると鋼板が割れてしまう(水素脆化)。
 特許文献1には、鋼板の表面領域においてニッケルを富化することで、高温における鋼材への侵入水素を抑制する技術が開示されている。
 特許文献2には、鋼板をニッケル及びクロムを含み、重量比Ni/Crが1.5~9の間であるバリアプレコートで被覆することで、鋼材への侵入水素を抑制する技術が開示されている。
 しかし、特許文献1の方法では、Alめっきを施した場合に発生する水素の侵入を十分に抑制することはできない場合があった。また、特許文献2の方法では、露点制御をおこなわない環境(例えば30℃のような高露点環境下)では、鋼板への水素の侵入を十分に抑制できない場合があった。
国際公開2016/016707号 国際公開2017/187255号
T.Ungar、外3名、Journal of Applied Crystallography、1999年、第32巻、第992頁~第1002頁
 本発明は、上記の課題に鑑みてなされた発明であり、Alめっきが施された鋼板をホットスタンプする場合においても、高露点環境下でも鋼板への水素の侵入を抑制することで優れた耐水素脆化特性を有するホットスタンプ用鋼板を提供することを目的とする。
 本発明者らが鋭意検討した結果、Al-Si合金めっき層を備えるホットスタンプ用鋼板が、所望の平均層厚(厚さ)及び所望量のNiを含むNiめっき層を備え、Al-Si合金めっき層上の酸化Al被膜を所定の膜厚(厚さ)以下に制限することで、露点を制御しない環境下においてホットスタンプを行っても、ホットスタンプ用鋼板への水素の侵入量を十分に抑制できることを知見した。
 本発明は、上記の知見に基づき、さらに検討を進めてなされたものであり、その要旨は以下の通りである。
(1)本発明の一態様に係るホットスタンプ用鋼板は、
 母材と、
 Al含有量が75質量%以上であり 、Si含有量が3質量%以上であり、かつ、前記Al含有量と前記Si含有量との合計が95質量%以上であるAl-Si合金めっき層と、
 厚さ が0~20nmである酸化Al被膜と、
 Ni含有量が90質量%超であるNiめっき層と、
をこの順で備え、
 前記母材の化学組成が、質量%で、
C :0.01%以上、0.70%未満、
Si:0.001~1.000%、
Mn:0.40~3.00%、
sol.Al:0.0002%~0.5000%、 
P :0.100%以下、
S :0.1000%以下、
N :0.0100%以下、
Cu:0~1.00%、
Ni:0~1.00%、 
Nb:0~0.150%、
V:0~1.000%、
Ti:0~0.150%、
Mo:0~1.000%、
Cr:0~1.000%下、
B :0~0.0100%、
Ca:0~0.010%、
REM:0%~0.300%、および
残部:Fe及び不純物
であり、
 前記Al-Si合金めっき層の厚さが7~148μmであり、
 前記Niめっき層の厚さが200nm超、2500nm以下である。
(2) 上記(1)に記載のホットスタンプ用鋼板は、前記Niめっき層が前記Al-Si合金めっき層の上層として、前記Al-Si合金めっき層に直接接して設けられてもよい。
(3) 上記(1)に記載のホットスタンプ用鋼板は、前記酸化Al被膜の厚さが2~20nmであってもよい。
(4) 上記(1)~(3)のいずれか1つに記載のホットスタンプ用鋼板は、前記母材の前記化学組成が、質量%で、
Cu:0.005~1.000%、
Ni:0.005~1.000%、
Nb:0.010~0.150%、
V:0.005~1.000%、
Ti:0.010~0.150%、
Mo:0.005~1.000%、
Cr:0.050~1.000%、
B :0.0005~0.0100%、
Ca:0.001~0.010%
REM:0.001~0.300%からなる群から選択される1種又は2種以上を含有してもよい。
(5) 上記(1)~(4)のいずれか1つに記載のホットスタンプ用鋼板は、前記母材の表面から深さ100μmにおける転位密度が5×1013m/m以上であってもよい。
 本発明に係る上記態様によれば、Alめっきを施されたホットスタンプ用鋼板であっても、高露点環境下でのホットスタンプにおいて、鋼板への水素の侵入を抑制することで優れた耐水素脆化特性を有するホットスタンプ用鋼板を提供することができる。
本発明の実施形態に係るホットスタンプ用鋼板の断面模式図である。 本発明の別の実施形態に係るホットスタンプ用鋼板の断面模式図である。
<ホットスタンプ用鋼板>
 本発明者らが鋭意検討した結果、露点を制御しない環境においては、Alめっきを形成した鋼板をホットスタンプすると、Alめっき表面のAlと大気中の水とが反応することで、多量の水素が発生し、かつ、鋼板に水素が多く侵入することが分かった。
 本発明者らが、さらに鋭意検討したところ、下記の知見を得た。
(A)Niの含有量が90質量%超であるNiめっき層を用いると高露点下でのホットスタンプにおける鋼板への水素の侵入を抑制できる。
(B)Niめっき層の層厚(厚さ)が200nm超であると、大気中の水との反応が十分に抑制され、また、鋼板に侵入する水素の量を低減できる。
(C)Al-Si合金めっき層上の酸化Al被膜の膜厚(厚さ)を低減することで、Niめっき層が形成されていないNiめっき層の欠陥領域の面積を低減することができ、その結果、大気と接触するAl-Si合金めっき層表面のAlを低減することができる。
(D)Alめっきの上に電気めっきなどでNiめっき層を形成した場合、ホットスタンプ用鋼板としてはNiめっき層の密着性が不十分であったが、酸化Al被膜の厚さを0~20nmとすることで、ホットスタンプ用鋼板として使用できる程度に十分なNiめっき層の密着性が得られる。
 本実施形態に係るホットスタンプ用鋼板では、上述の知見に基づいて、ホットスタンプ用鋼板の構成を決定した。本実施形態に係るホットスタンプ用鋼板は、各めっき構成の相乗効果により、本発明の目的とする効果が得られる。ホットスタンプ用鋼板10は、図1に示すように、鋼板(母材)1、Al-Si合金めっき層2、酸化Al被膜3、及びNiめっき層4を備える。酸化Al被膜3が無い場合は、図2のように、ホットスタンプ用鋼板10Aは、母材1、Al-Si合金めっき層2、及びNiめっき層4を備える。以下、各構成について説明する。なお、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。「未満」、「超」と示す数値には、その値が数値範囲に含まれない。化学組成についての%は全て質量%を示す。
 (鋼板)
 本実施形態に係るホットスタンプ用鋼板10の母材1となる鋼板(母材)は、化学組成が、質量%で、C:0.01%以上、0.70%未満、Si:0.001%~1.000%、Mn:0.40%~3.00%、sol.Al:0.0002%~0.5000%、P:0.100%以下、S:0.1000%以下、N:0.0100%以下、および残部:Fe及び不純物である。
「C:0.01%以上、0.70%未満」
 Cは、焼入れ性を確保するために重要な元素である。母材のC含有量が0.01%未満では、十分な焼入れ性を得ることが困難となり、引張強さが低下する。そのため、母材のC含有量は0.01%以上とすることが好ましい。C含有量が0.25%以上の場合、1600MPa以上の引張強さを得られるので、好ましい。C含有量は、より好ましくは0.28%以上である。一方、C含有量が0.70%以上では、粗大な炭化物が生成して破壊が生じやすくなり、ホットスタンプ成形体の耐水素脆化特性が低下する。そのため、C含有量は0.70%未満とする。C含有量は、好ましくは0.36%以下である。
「Si:0.001%~1.000%」
 Siは、焼入れ性を確保するために含有させる元素である。Si含有量が0.001%未満では上記効果が得られない。そのため、Si含有量は0.001%以上とする。より好ましいSi含有量は、0.005%以上である。さらに好ましいSi含有量は、0.100%以上である。Cuを含有する場合は、Cuの熱間脆性を抑制するために、Si含有量は、0.350%以上であることが好ましい。1.000%超のSiを含有させると、オーステナイト変態温度(Ac等)が非常に高くなり、ホットスタンプのための加熱に要するコストが上昇したり、ホットスタンプ加熱時にフェライトが残留してホットスタンプ成形体の引張強さが低下したりする場合がある。このため、Si含有量は1.000%以下とする。Si含有量は、好ましくは0.8000%以下である。Cuを含有する場合は、オーステナイト変態温度の温度が高くなるので、Si含有量は、0.600%以下であることが好ましい。Si含有量は、0.400%以下または0.250%以下であってもよい。
「Mn:0.40%~3.00%」
 Mnは、固溶強化によりホットスタンプ成形体の引張強さの向上に寄与する元素である。Mn含有量が0.40%未満では、ホットスタンプ成形体が水素脆化割れで破断する場合がある。そのため、Mn含有量は0.40%以上とする。Mn含有量は、好ましくは0.80%以上である。一方、Mn含有量を3.00%超とすると、鋼中に粗大な介在物が生成して破壊が生じやすくなることに加え、耐水素脆化特性が低下するので、Mn含有量は、3.00%以下とする。Mn含有量は、好ましくは2.00%以下である。
「sol.Al:0.0002%~0.5000%」
 Alは、溶鋼を脱酸して鋼を健全化する(鋼にブローホールなどの欠陥が生じることを抑制する)作用を有する元素である。sol.Al含有量が0.0002%未満では、脱酸が十分に行われず上記効果が得られないことに加え、ホットスタンプ成形体の水素脆化割れが起きる場合がある。そのため、sol.Al含有量は0.0002%以上とする。sol.Al含有量は、好ましくは0.0010%以上、または0.0020%以上である。一方、sol.Al含有量が0.5000%を超えると、鋼中に粗大な酸化物が生成し、ホットスタンプ成形体の水素脆化割れが起きる場合がある。そのため、sol.Al含有量は0.5000%以下とする。sol.Al含有量は、好ましくは0.4000%以下、または0.3000%以下である。なお、sol.Alとは、酸可溶性Alを意味し、固溶状態で鋼中に存在する固溶Alと、AlN等の酸可溶性析出物として鋼中に存在するAlとの総量のことをいう。
「P:0.100%以下」
 Pは、粒界に偏析し、粒界の強度を低下させる元素である。P含有量が0.100%を超えると、粒界の強度が著しく低下して、ホットスタンプ成形体の水素脆化割れが起こる場合がある。そのため、P含有量は0.100%以下とする。P含有量は、好ましくは0.050%以下である。より好ましいP含有量は、0.010%以下である。P含有量の下限は特に限定しないが、0.0005%未満に低減すると、脱Pコストが大幅に上昇し、経済的に好ましくないため、実操業上、0.0005%を下限としてもよい。
「S:0.1000%以下」
 Sは、鋼中に介在物を形成する元素である。S含有量が0.1000%を超えると、鋼中に多量の介在物が生成し、ホットスタンプ成形体の耐水素脆化特性が低下し、ホットスタンプ成形体の水素脆化割れが起こる場合がある。そのため、S含有量は0.1000%以下とする。S含有量は、好ましくは0.0050%以下である。S含有量の下限は特に限定しないが、0.00015%未満に低減すると、脱Sコストが大幅に上昇し、経済的に好ましくないため、実操業上、0.00015%を下限としてもよい。
「N:0.0100%以下」
 Nは、不純物元素であり、鋼中に窒化物を形成してホットスタンプ成形体の靱性および耐水素脆化特性を劣化させる元素である。N含有量が0.0100%を超えると、鋼中に粗大な窒化物が生成して、ホットスタンプ成形体の水素脆化割れが起こる場合がある。そのため、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0050%以下である。N含有量の下限は特に限定しないが、0.0001%未満に低減すると、脱Nコストが大幅に上昇し、経済的に好ましくないため、実操業上、0.0001%を下限としてもよい。
 本実施形態に係るホットスタンプ用鋼板10を構成する鋼板(母材)は、Feの一部に代えて、任意元素として、Cu、Ni、Nb、V、Ti、Mo、Cr、B、Ca及びREMからなる群から選択される1種又は2種以上を含有してもよい。以下の任意元素を含有しない場合の含有量は0%である。
「Cu:0~1.00%」
 Cuは、ホットスタンプ時にホットスタンプ部材のめっき層まで拡散して、ホットスタンプ部材の製造における、加熱時に侵入する水素を低減する作用を有する。そのため、必要に応じてCuを含有させてもよい。また、Cuは鋼の焼入れ性を高め、焼入れ後のホットスタンプ成形体の引張強さを安定して確保するために有効な元素である。Cuを含有させる場合、上記効果を確実に発揮させるために、Cu含有量は0.005%以上とすることが好ましい。Cu含有量は、より好ましくは0.150%以上である。一方、1.00%を超えて含有させても上記効果は飽和するため、Cu含有量は1.00%以下とすることが好ましい。Cu含有量は、より好ましくは0.350%以下である。
「Ni:0~1.00%」
 Niは、鋼板製造時のCuによる熱間脆性を抑制し、安定した生産を確保するために、重要な元素であるので、Niを含有させてもよい。Ni含有量が0.005%未満では、上記の効果を十分に得られない場合がある。したがって、Ni含有量は0.005%以上とすることが好ましい。Ni含有量は0.05%以上が好ましい。一方、Ni含有量が1.00%を超えると、ホットスタンプ用鋼板の限界水素量が低下する。したがって、Ni含有量は1.00%以下とする。Ni含有量は0.60%以下が好ましい。
「Nb:0~0.150%」
 Nbは、固溶強化によりホットスタンプ成形体の引張強さの向上に寄与する元素であるため、必要に応じて含有させても良い。Nbを含有させる場合、上記効果を確実に発揮させるために、Nb含有量は0.010%以上とすることが好ましい。Nb含有量は、より好ましくは0.030%以上である。一方、0.150%を超えてNbを含有させても上記効果は飽和するので、Nb含有量は0.150%以下とすることが好ましい。Nb含有量は、より好ましくは0.100%以下である。
「V:0~1.000%」
 Vは、微細な炭化物を形成し、その細粒化効果や水素トラップ効果により鋼材の限界水素量を向上させる元素である。そのため、Vを含有させてもよい。上記の効果を得るためには、Vを0.005%以上含有させることが好ましく、0.05%以上含有させることがより好ましい。しかしながら、V含有量が1.000%を超えると、上記の効果が飽和して経済性が低下する。したがって、含有させる場合のV含有量は1.000%以下とする。
「Ti:0~0.150%」
 Tiは、固溶強化によりホットスタンプ成形体の引張強さの向上に寄与する元素であるため、必要に応じて含有させても良い。Tiを含有させる場合、上記効果を確実に発揮させるために、Ti含有量は0.010%以上とすることが好ましい。Ti含有量は、好ましくは0.020%以上である。一方、0.150%を超えて含有させても上記効果は飽和するので、Ti含有量は0.150%以下とすることが好ましい。Ti含有量は、より好ましくは0.120%以下である。
「Mo:0~1.000%」
 Moは、固溶強化によりホットスタンプ成形体の引張強さの向上に寄与する元素であるため、必要に応じて含有させても良い。Moを含有させる場合、上記効果を確実に発揮させるために、Mo含有量は0.005%以上とすることが好ましい。Mo含有量は、より好ましくは0.010%以上である。一方、1.000%を超えて含有させても上記効果は飽和するため、Mo含有量は1.000%以下とすることが好ましい。Mo含有量は、より好ましくは0.800%以下である。
「Cr:0~1.000%」
 Crは、固溶強化によりホットスタンプ成形体の引張強さの向上に寄与する元素であるため、必要に応じて含有させても良い。Crを含有させる場合、上記効果を確実に発揮させるために、Cr含有量は0.050%以上とすることが好ましい。Cr含有量は、より好ましくは0.100%以上である。一方、1.000%を超えて含有させても上記効果は飽和するため、Cr含有量は1.000%以下とすることが好ましい。Cr含有量は、より好ましくは0.800%以下である。
「B:0~0.0100%」
 Bは、粒界に偏析して粒界の強度を向上させる元素であるため、必要に応じて含有させても良い。Bを含有させる場合、上記効果を確実に発揮させるために、B含有量は0.0005%以上とすることが好ましい。B含有量は、好ましくは0.0010%以上である。一方、0.0100%を超えて含有させても上記効果は飽和するため、B含有量は0.0100%以下とすることが好ましい。B含有量は、より好ましくは0.0075%以下である。
「Ca:0~0.010%」
 Caは、溶鋼を脱酸して鋼を健全化する作用を有する元素である。この作用を確実に発揮させるためには、Ca含有量を0.001%以上とすることが好ましい。一方、0.010%を超えて含有させても上記効果は飽和するため、Ca含有量は0.010%以下とすることが好ましい。
「REM:0~0.300%」
 REMは、溶鋼を脱酸して鋼を健全化する作用を有する元素である。この作用を確実に発揮させるためには、REM含有量を0.001%以上とすることが好ましい。一方、0.300%を超えて含有させても上記効果は飽和するため、REM含有量は0.300%以下とすることが好ましい。
 なお、本実施形態においてREMとは、Sc、Y及びランタノイドからなる合計17元素を指し、REMの含有量とはこれらの元素の含有量の合計を指す。
「残部がFe及び不純物」
 本実施形態に係るホットスタンプ用鋼板10を構成する母材1の化学組成の残部は、Fe及び不純物である。不純物としては、鋼原料もしくはスクラップから及び/又は製鋼過程で不可避的に混入し、あるいは、意図的に添加されたものであって本実施形態に係るホットスタンプ用鋼板10をホットスタンプした後の、ホットスタンプ成形体の特性を阻害しない範囲で許容される元素が例示される。
 上述した母材1の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。表面のめっき層は機械研削により除去してから化学組成の分析を行えばよい。sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。
「金属組織」
 次に、本実施形態に係るホットスタンプ用鋼板10を構成する母材1の金属組織について説明する。ホットスタンプ用鋼板10の母材1の金属組織は、断面の面積率において、フェライトの面積率は20%以上が好ましい。より好ましいフェライトの面積率は30%以上である。フェライトの面積率は80%以下が好ましい。より好ましいフェライトの面積率は70%以下である。断面の面積率においてパーライトの面積率は20%以上であることが好ましい。パーライトの面積率は80%以下であることが好ましい。より好ましいパーライトの面積率は70%以下である。残部がベイナイト、マルテンサイトまたは残留オーステナイトであってもよい。残部組織の面積率は5%未満であってもよい。
(フェライト及びパーライトの面積率の測定方法)
 フェライトおよびパーライトの面積率の測定は、以下の方法で行う。板幅方向中央位置における、圧延方向に平行な断面を鏡面に仕上げ、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて8分間研磨し、サンプルの表層に導入されたひずみを除去する。サンプル断面の長手方向の任意の位置において、表面から板厚の1/4深さを分析できるように、長さ50μm、表面から板厚の1/8深さ~表面から板厚の3/8深さの領域を、0.1μmの測定間隔で電子後方散乱回折法により測定して結晶方位情報を得る。測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSP検出器(TSL製DVC5型検出器)とで構成された装置を用いる。この際、装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13、電子線の照射レベルは62とする。さらに、同一視野において反射電子像を撮影する。
 まず、反射電子像からフェライトとセメンタイトが層状に析出した結晶粒を特定し、当該結晶粒の面積率を算出することで、パーライトの面積率を得る。その後、パーライトと判別された結晶粒を除く結晶粒に対し、得られた結晶方位情報をEBSP解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Grain Average Misorientation」機能を用いて、Grain Average Misorientation値が1.0°以下の領域をフェライトと判定する。フェライトと判定された領域の面積率を求めることで、フェライトの面積率を得る。
(残部組織の面積率の決定方法)
 本実施形態における残部の面積率は、100%から、フェライトとパーライトの面積率を差し引いた値とする。
「表面から深さ100μmにおける転位密度が5×1013m/m以上」
 本実施形態に係るホットスタンプ用鋼板10を構成する母材1の転位密度について説明する。本実施形態に係るホットスタンプ用鋼板10を構成する母材1の表面から深さ100μmにおける転位密度が5×1013m/m以上であることが好ましい。より好ましい転位密度は、50×1013m/m以上である。母材11の表面から100μmにおける転位密度が5×1013m/m以上であると、Al-Si合金めっき層2中のAlが母材1側に移行しやすくなる。そのため、ホットスタンプ時の加熱によって、Al-Si合金めっき層2中のAlがホットスタンプ用鋼板10のNiめっき層4の最表面にまで移動することを抑制することができる。転位密度は、1000×1013m/m以下であることが好ましい。より好ましい転位密度は、150×1013m/m以下である。
「転位密度の測定」
 次に、母材1の表面から深さ100μmにおける転位密度の測定方法について説明する。転位密度は、X線回折法あるいは透過型電子顕微鏡観察によって測定することができるが、本実施形態ではX線回折法を用いて測定する。
 まず、ホットスタンプ用鋼板10に用いる母材1の端面から50mm以上離れた任意の位置から、サンプルを切り出す。サンプルの大きさは、測定装置にもよるが、20mm角程度の大きさとする。蒸留水48質量%、過酸化水素水48質量%、フッ化水素酸4質量%の混合溶液を用いて、サンプルを200μm減厚する。この時、サンプルの表面と裏面とは100μmずつ減厚され、減圧前のサンプル表面から100μmの領域が露出する。この露出した表面についてX線回折測定を行い、体心立方格子の複数の回折ピークを特定する。これらの回折ピークの半値幅から転位密度を解析することで、表面から深さ100μmにおける転位密度を得る。解析法については、非特許文献1に記載のmodified Williamson-Hall法を使用する。なお、Al-Si合金めっき層2及びNiめっき層4を備えるホットスタンプ用鋼板10の上記転位密度を測定する場合は、Al-Si合金めっき層2及びNiめっき層4を除去した後に、転位密度を測定する。Al-Si合金めっき層2及びNiめっき層4を除去する方法としては、例えば、NaOH水溶液にホットスタンプ用鋼板10を浸漬する方法が挙げられる。
 本実施形態に係るホットスタンプ用鋼板10の母材1の板厚は特に限定しないが、車体軽量化の観点から、0.4mm以上が好ましい。より好ましい母材1の板厚は0.8mm以上、1.0mm以上又は1.2mm以上である。母材1の板厚は6.0mm以下とすることが好ましい。より好ましい母材1の板厚は、5.0mm以下、4.0mm以下、3.2mm以下又は2.8mm以下である。
(Al-Si合金めっき層)
 本実施形態に係るホットスタンプ用鋼板10のAl-Si合金めっき層2は、母材1の上層として設けられている。Al-Si合金めっき層2は、Al及びSiを主成分とするめっきである。ここで、Al及びSiを主成分とするとは、少なくとも、Al含有量が75質量%以上であり、Si含有量が3質量%以上であり、かつ、Alの含有量とSiの含有量との合計が95質量%以上であることをいう。Al-Si合金めっき層2中のAl含有量は、80質量%以上であることが好ましい。Al-Si合金めっき層中のAl含有量は95質量%以下であることが好ましい。Al-Si合金めっき層2中のAl含有量がこの範囲であれば、ホットスタンプ時に鋼板の表面に密着性の良いスケールが形成される。
 Al-Si合金めっき層2中のSi含有量は、3質量%以上であることが好ましい。より好ましくは、Al-Si合金めっき層2中のSi含有量は6質量%以上である。Al-Si合金めっき層2中のSi含有量は、20質量%以下であることが好ましい。より好ましくはSi含有量は、12質量%以下である。Al-Si合金めっき層2中のSi含有量が3質量%以上であれば、Fe-Alの合金化を抑制することができる。また、Al-Si合金めっき層2中のSi含有量が20質量%以下であれば、Al-Si合金めっき層2の融点の上昇を抑制でき、溶融めっき浴の温度を低くすることができる。そのため、Al-Si合金めっき層2中のSi含有量が20質量%以下であれば、生産コストを下げることができる。Alの含有量とSiの含有量との合計は、97質量%以上、98質量%以上又は99質量%以上であってもよい。Al-Si合金めっき層2中の残部は、Fe及び不純物である。不純物としては、Al-Si合金めっき層2の製造中に不可避的に混入する成分や母材1中の成分等が挙げられる。
 本実施形態に係るホットスタンプ用鋼板10のAl-Si合金めっき層2の平均層厚(厚さ)は7μm以上である。何故なら、Al-Si合金めっき層2の厚さが7μm未満であると、ホットスタンプ時に密着性のよいスケールを形成することができない場合があるためである。より好ましいAl-Si合金めっき層2の厚さは12μm以上、15μm以上、18μm以上又は22μm以上である。Al-Si合金めっき層2の厚さは148μm以下である。何故なら、Al-Si合金めっき層2の厚さが148μm超であると、上記の効果が飽和することに加え、コストが高くなるためである。より好ましいAl-Si合金めっき層2の厚さは100μm以下、60μm以下、45μm以下、37μm以下である。
 Al-Si合金めっき層2の厚さは以下のように測定する。ホットスタンプ用鋼板10の板厚方向に切断を行った後、ホットスタンプ用鋼板10の断面を研磨する。研磨したホットスタンプ用鋼板10の断面を、電子線マイクロアナライザ(Electron Probe MicroAnalyser:FE-EPMA)により、ホットスタンプ用鋼板10の表面から母材1までをZAF法を用いて線分析し、検出された成分中のAl濃度(含有量)及びSi濃度(含有量)を測定する。測定条件は、加速電圧15kV、ビーム径100nm程度、1点あたりの照射時間1000ms、測定ピッチ60nmとすればよい。Al濃度が75質量%以上、Si濃度が3質量%以上、かつ、Al濃度とSi濃度との合計が95質量%以上である領域をAl-Si合金めっき層2と判定する。Al-Si合金めっき層2の層の厚さは、上記の領域の板厚方向の長さとする。5μm間隔ずつ離れた5箇所の位置でAl-Si合金めっき層2の層の厚さを測定し、求めた値の算術平均をAl-Si合金めっき層2の厚さとする。
 Al-Si合金めっき層2中のAl含有量及びSi含有量は、JIS K 0150(2005)に記載の試験方法に従って、試験片を採取し、Al-Si合金めっき層2の厚さの1/2位置のAl含有量及びSi含有量を測定することで、ホットスタンプ用鋼板10におけるAl-Si合金めっき層2中のAl含有量及びSi含有量を得ることができる。
(酸化Al被膜)
 本実施形態に係るホットスタンプ用鋼板10の酸化Al被膜3は、Al-Si合金めっき層2の上層として、Al-Si合金めっき層2に接して設けられている。酸化Al被膜は、Oの含有量が20atomic%以上である領域とする。
 本実施形態に係るホットスタンプ用鋼板10の酸化Al被膜3の厚さが20nm超の場合、Al-Si合金めっき層2の上に設けられるNiめっき層4との密着性が低下して、ホットスタンプ成形などのハンドリング時に上層めっきが剥離してしまう可能性がある。このめっき剥離は、ホットスタンプ行うことに対しては問題とならない程度ではあるが、耐水素脆化特性が低下する。また、酸化Al被膜3の厚さが20nm超の場合、酸化Al被膜3の上層として設けられるNiめっき層4の被覆率が90%未満となる。このため、酸化Al被膜3の厚さは、0~20nm以下である。より好ましくは、酸化Al被膜3の厚さは、10nm以下である。酸化Al被膜3の厚さは、2nm以上であってもよい。酸化Al被膜3は無くてもよいので、酸化Al被膜3の下限は0nmである。その場合、Al-Si合金めっき層2に接するように、Niめっき層4が形成される。
 酸化Al被膜3の厚さは、ArスパッタリングとX線光電子分光法(XPS)測定とを交互に繰り返すことで、評価する。具体的には、Arスパッタリング(加速電圧20kV、スパッタレート1.0nm/min)でホットスタンプ用鋼板10のスパッタリングを行った後に、XPS測定を行う。このArスパッタリングとXPS測定とは交互に行い、XPS測定で酸化したAlの2p軌道の結合エネルギー73.8eV~74.5eVのピークが現れてからなくなるまで、これらの測定を繰り返す。酸化Al被膜3の厚さは、スパッタリングを開始して初めてOの含有量が20atomic%以上となる位置から、Oの含有量が20atomic%未満となる位置までのスパッタリング時間とスパッタレートとから算出する。スパッタレートはSiO換算で行う。酸化Al被膜3の厚さは、2箇所で測定した算術平均値とする。
(Niめっき層)
 本実施形態に係るホットスタンプ用鋼板10のNiめっき層4は、酸化Al被膜3の上層として酸化Al被膜3に接して設けられている。酸化Al被膜3が無い場合は、Niめっき層4は、Al-Si合金めっき層2の上層として、Al-Si合金めっき層2に接して設けられている。Niは酸化しづらく、高温で水による酸化が抑制されることにより水素を発生しにくい上、水素が発生し表面に吸着しても、水素原子同士が結合し水素ガスとなって脱離するTafel反応を促進させるため、鋼板中に水素が侵入しづらくなる効果を有する。そのため、Niめっき層4を形成することで、ホットスタンプする際のホットスタンプ用鋼板10への水素の侵入量を抑制することができる。
 本実施形態に係るNiめっき層4の平均層厚(厚さ)は、200nm超である。より好ましいNiめっき層4の厚さは、280nm以上、350nm以上、450nm以上、560nm以上又は650nm以上である。Niめっき層4の厚さが200nm以下であると、ホットスタンプ時の母材1への水素の侵入を十分に抑制できない。また、Niめっき層4の厚さは2500nm以下である。より好ましいNiめっき層4の厚さは、1500nm以下、1200nm以下又は1000nm以下である。Niめっき層4の厚さが2500nm超であると、母材1への水素の侵入量を抑制する効果が飽和し、コストが高くなる。
 Niめっき層4中のNi含有量が90質量%以下であると、ホットスタンプ用鋼板10への水素の侵入量を抑制する効果が得られない場合がある。このため、Niめっき層4中のNi含有量は、90質量%超である。より好ましいNi含有量は、92質量%以上である。より好ましいNi含有量は、93質量%以上又は94質量%である。さらに好ましいNi含有量は、96質量%以上、98質量%以上又は99質量%以上である。Niめっき層の(Niを除く)残部の化学組成は、特に限定されない。Niめっき層中にCrを含有してもよいが、Ni/Crの比が9よりも大きいことが好ましく、この比が15以上または30以上であることがより好ましい。より好ましくはNiめっき層中のCr含有量は6.0質量%以下が好ましく、4.0質量%以下または3.0%質量%以下であることがより好ましい。さらに好ましくはNiめっき層3中のCr含有量は、2.0質量%以下である。Cr含有量を低減することで、水素の侵入量を低減することができる。
 酸化Al被膜3に対するNiめっき層4の被覆率(酸化Al被膜3がない場合は、Al-Si合金めっき層2に対するNiめっき層4の被覆率)が90%以上であることが好ましい。より好ましくは、Niめっき層4の被覆率が95%以上である。Niめっき層4の被覆率が90%未満であると、ホットスタンプ時のAl-Si合金めっき層2表面で水蒸気とAlとの反応を十分に抑制できない。Niめっき層4の被覆率は、100%以下であってもよく、99%以下であってもよい。
 Niめっき層の被覆率は、XPSの測定で評価する。具体的には、XPS測定は、アルバック・ファイ社製のQuantum2000型を用い、線源Al Kα線を用い、出力15kV、25W、スポットサイズ100μm、スキャン回数10回、ホットスタンプ用鋼板10を全エネルギー範囲で走査して測定し、アルバック・ファイ社製の解析ソフトMultiPak V.8.0を用いて解析し、検出された金属成分におけるNiの含有量(atomic%)、Alの含有量(atomic%)、及び他の成分の含有量を(atomic%)を得る。得られた含有量(atomic%)を含有量(質量%)に換算することで、Ni含有量(質量%)及びAl含有量(質量%)を得ることができる。次にNiの含有量とAlの含有量との合計に対するNi含有量の割合(%)を計算する。得られた割合をNiめっきの被覆率(%)とする。
 Niめっき層4の厚さは、ArスパッタリングエッチングとX線光電子分光法(XPS)測定とを交互に繰り返すことで、測定する。具体的には、Arスパッタリング(加速電圧20kV、スパッタレート1.0nm/min)でホットスタンプ用鋼板10のスパッタリングエッチングを行った後に、XPS測定を行う。このArスパッタリングエッチングとXPS測定とは交互に行い、XPS測定でNiの2p軌道の結合エネルギー852.5eV~852.9eVのピークが現れてからなくなるまで、これらの測定を繰り返す。Niめっき層4の層厚は、スパッタリングを開始して初めてNiの含有量が10atomic%以上となる位置から、Niの含有量が10atomic%未満となる位置までの上記の範囲のピークが現れてからなくなるまでのスパッタリングエッチング時間とスパッタエッチングレートとから算出する。スパッタエッチングレートはSiO換算で行う。Niめっき層4の厚さは、2箇所で測定した算術平均値とする。
 Niめっき層4中のNi含有量は、上記のNiめっき層の厚さの測定において得られるNiめっき層4の板厚方向の中心位置におけるNi濃度をNi含有量とする。
(厚さ)
 ホットスタンプ用鋼板10の厚さは、特に限定されないが、例えば、0.4mm以上であってもよい。よりこのましい鋼板の厚みは、0.8mm以上、1.0mm以上又は1.2mm以上である。ホットスタンプ用鋼の厚さは6.0mm以下であってもよい。より好ましい鋼板の厚みは5.0mm以下、4.0mm以下、3.2mm以下又は2.8mm以下である。
<ホットスタンプ用鋼板の製造方法>
 次に、ホットスタンプ用鋼板10の好適な製造方法について説明する。熱間圧延に供するスラブは、常法で製造したスラブであればよく、例えば、連続鋳造スラブ、薄スラブキャスターなどの一般的な方法で製造したスラブであればよい。熱間圧延も一般的な方法で行えばよく、特に限定しない。
「冷却開始温度」
 熱間圧延後の冷却の開始温度(冷却開始温度)は、Ac点~1400℃であることが好ましい。この範囲で冷却を開始することで、ホットスタンプ用鋼板10の母材1の表面から深さ100μmにおける転位密度を5×1013m/m以上にすることができる。より好ましい冷却開始温度は、1000~1150℃である。なお、Ac点(℃)は下記(1)式で表される。
 Ac=912-230.5×C+31.6×Si-20.4×Mn-14.8×Cr-18.1×Ni+16.8×Mo-39.8×Cu・・・(1)
 なお、上記式中の元素記号は、当該元素の質量%での含有量であり、含有しない場合は0を代入する。
「冷却速度」
 熱間圧延後の冷却における平均冷却速度が30℃/秒以上であることが好ましい。より好ましい平均冷却速度は50℃/秒以上である。平均冷却速度が30℃/秒未満であると、ホットスタンプ用鋼板の母材1の表面から深さ100μmにおける転位密度を5×1013m/m以上にすることができない場合がある。平均冷却速度は、200℃/秒以下とするのが好ましい。より好ましい平均冷却速度は、100℃/秒以下である。平均冷却速度が200℃/秒超となると、過度に転位密度が高くなる。この時の平均冷却速度は、鋼板の表面の温度変化から算出するものであり、熱間圧延終了後から巻取り開始までの平均冷却速度を示す。
 冷却開始後、400℃~600℃の温度域まで冷却して鋼板を巻き取る。巻取り開始温度が400℃未満では、ホットスタンプ用鋼板10の母材1の表面から深さ100μmにおける転位密度が過度に高くなるので、好ましくない。巻取り開始温度が600℃超では、転位密度を5×1013m/m以上にすることができない。
 巻取り後、必要に応じて、さらに冷間圧延を行ってもよい。冷間圧延における累積圧下率は特に限定しないが、鋼板の形状安定性の観点から、40~60%とすることが好ましい。
「Al-Si合金めっき」
 上記の熱延鋼板をそのまま、もしくは冷間圧延を施した後、Al-Si合金めっきを施す。Al-Si合金めっき層2の形成方法は、特に限定されるものではなく、溶融めっき法、電気めっき法、真空蒸着法、クラッド法、溶射法等を用いることができる。特に好ましくは、溶融めっき法である。
 溶融めっき法で、Al-Si合金めっき層2を形成する場合は、少なくともSiの含有量が3質量%以上で、Alの含有量とSiの含有量との合計が95質量%以上となるように成分を調整しためっき浴に上記の母材1を浸漬することでAl-Si合金めっき鋼板を得る。めっき浴の温度は660℃~690℃の温度域が好ましい。Al-Si合金めっき層2を施す前に、めっき浴温度650℃~780℃の近傍まで熱延鋼板を昇温してからめっきを行ってもよい。
 また、溶融めっきを行う場合、めっき浴にはAlやSiの他に不純物としてFeが混入している場合がある。また、Siの含有量が3質量%以上、かつ、Alの含有量とSiの含有量との合計が95質量%以上となる限り、さらにめっき浴にはNi、Mg、Ti、Zn、Sb、Sn、Cu、Co、In、Bi、Ca、ミッシュメタル等を含有していてもよい。
「酸化Al被膜除去」
 次に、Al-Si合金めっき層2を形成後の鋼板(以下、Alめっき鋼板)の酸化Al被膜3を除去して、酸化Al被膜除去鋼板を得る。酸化Al被膜3の除去は、Alめっき鋼板を酸性又は塩基性の除去液に浸漬することで行う。酸性の除去液としては、希塩酸(HCl 0.1mol/L)などが挙げられる。塩基性の除去液としては、水酸化ナトリウム水溶液(NaOH 0.1mol/L)などが挙げられる。浸漬時間は、Niめっき層4形成後の酸化Al被膜3の厚さが20nm以下になるように、調整する。例えば、浴温40℃の場合、1分間浸漬することで、酸化Al被膜3を除去する。
「Niめっき」
 酸化Al被膜3の厚さが20nm以下になるように酸化Al被膜3を除去後、1分以内に酸化Al被膜除去鋼板に対してNiめっきを施してNiめっき層4を形成することでホットスタンプ用鋼板を得ることが好ましい。Niめっき層4の形成は、電気めっき法、真空蒸着法などで形成してもよい。
 電気めっきでNiめっき層4を形成する場合は、硫酸ニッケル、塩化ニッケル、及びホウ酸からなるめっき浴に酸化Al被膜3を除去後の鋼板を浸漬し、アノードに可溶性のNiを用い、電流密度及び通電時間を適宜制御して、厚さが200nm超、2500nm以下となるようにNiめっき層4を形成することができる。
 Niめっきの後、累積圧下率で0.5~2%程度の調質圧延を行ってもよい(特に、上記のめっき原板が冷間圧延された鋼板である場合)。
 <ホットスタンプ工程>
 本実施形態に係るホットスタンプ用鋼板10を用いた、ホットスタンプの条件の一例を説明するが、本実施形態に係るホットスタンプ用鋼板10のホットスタンプ条件はこの条件に限定されない。
 上述のホットスタンプ用鋼板10を加熱炉に入れ、加熱速度は2.0℃/秒~10.0℃/秒で、Ac点以上の温度(到達温度)まで加熱する。到達温度になった後は、5秒~300秒ほど保持し、ホットスタンプ用鋼板10をホットスタンプし、室温まで冷却する。これにより、ホットスタンプ成形体を得る。
(ホットスタンプ成形体の引張強さ)
 ホットスタンプ成形体の引張強さを1600MPa以上としてもよい。必要に応じて、引張強さの下限を、1650MPa、1700MPa、1750MPa又は1800MPaとしてもよく、その上限を2500MPa、2400MPa、2300MPa又は2220MPaとしてもよい。ホットスタンプ成形体の引張強さは、ホットスタンプ成形体の任意の位置からJIS Z 2241:2011に記載の5号試験片を作製し、JIS Z 2241:2011に記載の試験方法により測定することができる。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
(鋼板の製造)
 表1-1及び1-2に示す化学組成の溶鋼を鋳造して製造したスラブに、Ac~1400℃の温度まで加熱して熱間圧延を行い、表2-1及び2-2に記載の冷却条件で冷却し、表2-1及び2-2に記載の巻取り開始温度で巻取ることにより、熱延鋼板(鋼板)を得た。実験No.73~82については、熱延後3.2mmから厚さ1.6mmに冷間圧延を行い、冷延鋼板を得た。その他の鋼板は、熱間圧延で厚さ1.6mmまで圧延した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(Al-Siめっき)
 上記で製造した鋼板に対し、Al-Si合金めっきを施した。Al-Si合金の溶融めっき浴は、表2-1及び2-2に記載のAl含有量及びSi含有量となるように、めっき浴の成分を調整した。成分を調整しためっき浴に上記の方法により製造した鋼板を浸漬し、表2-1及び2-2に記載のAl-Si合金めっき鋼板を得た。
(酸化Al被膜除去)
 Al-Siめっき鋼板の表面の酸化Al被膜を表2-1及び2-2に記載の方法で除去した。表2-1及び2-2にアルカリと記載されている場合は、除去液として0.1mol/Lの水酸化ナトリウム水溶液を用いた。表2-1及び2-2に酸と記載されている場合は、除去液として0.1mol/Lの希塩酸を用いた。上記で得たAl-Siめっき鋼板を除去液に浸漬し、酸化Al被膜除去鋼板を得た。
(Niめっき)
 次に、酸化Al被膜除去鋼板に対し、Niめっきを施した。Niめっき浴には、硫酸ニッケル200~400g/L、塩化ニッケル20~100g/L、ほう酸5~50g/Lを含むWatt浴を用いた。表2-1及び2-2に記載のNi含有量となるように、硫酸ニッケル、塩化ニッケル、及びホウ酸の比率を調整し、pH=1.5~2.5、浴温45℃~55℃に調整した。アノードは可溶性のNiを用い、電流密度2A/dmとし、表2-1及び2-2に記載の厚さとなるように、通電時間を制御して、ホットスタンプ用鋼板を得た。なお、表2-1及び2-2中の蒸着と記載があるものは電気めっきではなく、蒸着でNiめっき層を形成した。蒸着めっきは、蒸着中の真空度5.0×10-3~2.0×10-5Paで実施し、蒸着のための熱源には電子線(電圧10V、電流1.0A)を用いた。得られたホットスタンプ用鋼板の母材の各組織を上述の方法で確認したところ、断面の面積率において、フェライト:20~80%、パーライト:20~80%、残部:5%未満であった。
(ホットスタンプ)
 次に、高露点環境下(露点:30℃)で、表3-1及び3-2に記載の通りの条件でホットスタンプ用鋼板をホットスタンプし、ホットスタンプ成形体を得た。
(転位密度測定)
 上記で製造した鋼板の端面から50mm以上離れた任意の位置から、サンプルを切り出した。サンプルの大きさは、20mm角とした。蒸留水48質量%、過酸化水素水48質量%、フッ化水素酸4質量%の混合溶液を用いて、サンプルを200μm減厚した。この時、サンプルの表面と裏面とは100μmずつ減厚され、減圧前のサンプル表面から100μmの領域が露出した。この露出した表面についてX線回折測定を行い、体心立方格子の複数の回折ピークを特定した。これらの回折ピークの半値幅から転位密度を解析し、表面から深さ100μmにおける転位密度を得た。解析法については、非特許文献1に記載のmodified Williamson-Hall法を使用した。得られた結果を表3-1及び3-2に示す。なお、上記で製造したホットスタンプ用鋼板のNiめっき層及びAl-Si合金めっき層をNaOH水溶液を用いて除去した後に、転位密度を測定したところ、表3-1及び表3-2と同様の結果であった。
(Al-Si合金めっき層の厚さ)
 Al-Si合金めっき層の厚さは以下のように測定した。上記の製造方法で得られたホットスタンプ用鋼板を板厚方向に切断した。その後、ホットスタンプ用鋼板の断面を研磨し、研磨したホットスタンプ用鋼板の断面を、FE-EPMAにより、ホットスタンプ用鋼板の表面から鋼板までをZAF法を用いて線分析し、検出された成分中のAl濃度及びSi濃度を測定した。測定条件は、加速電圧15kV、ビーム径100nm程度、1点あたりの照射時間1000ms、測定ピッチ60nmとした。Niめっき層、Al-Si合金めっき層及び鋼板が含まれる範囲で測定を行った。Al含有量が75質量%以上であり、Si濃度が3質量%以上であり、かつ、Al濃度とSi濃度との合計が95質量%以上である領域をAl-Si合金めっき層と判定し、Al-Si合金めっき層の厚さは、上記の領域の板厚方向の長さとした。5μm間隔ずつ離れた5箇所の位置でAl-Si合金めっき層の厚さを測定し、求めた値の算術平均をAl-Si合金めっき層の厚さとした。評価結果を表2-1及び2-2に示す。
(Al-Si合金めっき層中のAl含有量及びSi含有量測定)
 Al-Si合金めっき層中のAl含有量及びSi含有量は、JIS K 0150(2005)に記載の試験方法に従って、試験片を採取し、Al-Si合金めっき層の全厚の1/2位置のAl含有量及びSi含有量を測定することで、ホットスタンプ用鋼板10におけるAl-Si合金めっき層中のAl含有量及びSi含有量を得た。得られた結果を表2-1及び2-2に示す。
(酸化Al被膜の厚さ)
 酸化Al被膜の厚さは、ArスパッタリングとX線光電子分光法(XPS)測定を交互に繰り返すことで、評価した。具体的には、Arスパッタリング(加速電圧0.5kV、SiOを基準としたスパッタレート0.5nm/min)でホットスタンプ用鋼板のスパッタリングを行った後に、XPS測定を行った。XPS測定は、線源Al Kα線を用い、出力15kV、25W、スポットサイズ100μm、スキャン回数10回、全エネルギー範囲0~1300eVで行った。ArスパッタリングとXPS測定は交互に行い、XPS測定でAlの2p軌道の結合エネルギー73.8eV~74.5eVのピークが現れてからなくなるまで、これらの測定を繰り返した。酸化Al被膜の厚さは、スパッタリングを開始して初めてOの含有量が20atomic%以上となる位置から、Oの含有量が20atomic%未満となる位置までのスパッタリング時間とスパッタリングレートから算出する。スパッタリングレートはSiO換算で行う。酸化Al被膜の厚さは、2箇所で測定した算術平均値とした。得られた結果を表2-1及び2-2に示す。
(Niめっき層の厚さ)
 Niめっき層4の厚さは、ArスパッタリングエッチングとX線光電子分光法(XPS)測定とを交互に繰り返すことで、測定する。具体的には、Arスパッタリング(加速電圧20kV、スパッタレート1.0nm/min)でホットスタンプ用鋼板10のスパッタリングエッチングを行った後に、XPS測定を行う。このArスパッタリングエッチングとXPS測定とは交互に行い、XPS測定でNiの2p軌道の結合エネルギー852.5eV~852.9eVのピークが現れてからなくなるまで、これらの測定を繰り返す。Niめっき層4の層厚は、スパッタリングを開始して初めてNiの含有量が10atomic%以上となる位置から、Niの含有量が10atomic%未満となる位置までの上記の範囲のピークが現れてからなくなるまでのスパッタリングエッチング時間とスパッタエッチングレートとから算出する。スパッタエッチングレートはSiO換算で行う。Niめっき層4の厚さは、2箇所で測定した算術平均値とする。
(Niめっき層のNi含有量)
 Niめっき層中のNi含有量は、Niめっき層の厚さの測定において得られたNiめっき層の板厚方向の中心位置におけるNi濃度をNi含有量とした。具体的には、板厚方向のNiめっき層の中心位置で測定して得られた値の算術平均(N=2)をNi含有量とした。得られた結果を表2-1及び2-2に示す。
(Niめっき層の被覆率)
 Niめっき層の被覆率は、XPS測定で評価した。XPS測定は、線源Al Kα線を用い、出力15kV、25W、スポットサイズ100μm、スキャン回数10回、ホットスタンプ用鋼板10を全エネルギー範囲0~1300eVで走査して測定し、Niの含有量(atomic%)とAlの含有量(atomic%)を算出した。次にNiの含有量とAlの含有量との合計に対するNi含有量の割合(%)を計算し、得られた割合をNiめっきの被覆率(%)とした。得られた結果を表2-1及び2-2に示す。
(引張強さ)
 ホットスタンプ成形体の引張強さは、ホットスタンプ成形体の任意の位置からJIS Z 2241:2011に記載の5号試験片を作製し、JIS Z 2241:2011に記載の試験方法に従って求めた。なお、スケールの状態が劣悪であった実験No.63は評価しなかった。測定した測定結果を表3-1及び3-2に示す。表3-1および3-2において、早期破断とあるのは、降伏点を有さず、数値が上昇中に破断した試験であり、引張強さの測定範囲の破断時の変位が、引張強さの最大値となる試験(つまり、最大荷重後の伸びがなく、破断した試験)であったことを意味する。
(加熱炉で侵入した水素量)
 ホットスタンプ成形体に対し、昇温水素分析を行い、加熱炉で侵入した侵入水素量を測定した。ホットスタンプ成形体は、ホットスタンプの金型による冷却で200℃以下となったら、ただちに液体窒素で-10℃以下に冷却して凍結し、昇温水素分析にて300℃までに放出される拡散性水素量を用いて、ホットスタンプ成形体の侵入水素量(質量ppm)を評価した。侵入水素量が0.350質量ppm以下の場合を高露点環境下でも侵入水素量を抑制できると判断し合格とした。侵入水素量が0.350質量ppm超の場合を不合格とした。なお、スケールの状態が劣悪であった実験No.63は水素量を測定しなかった。また、早期破断した実験No.8、13、22、26、27、31、34についても水素量を測定しなかった。測定結果を表3-1及び3-2に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3-1及び3-2に示す通り、本発明の範囲を満足する実験No.2~7、9~12、14~21、23~25、28~30、32、33、35~62、64、65、67、71~73、75~82は加熱炉での侵入水素量も少なかった。
 実験No.1は、Niめっき層のNi含有量が75%であったので、多量の水素が鋼板に侵入した。
 実験No.8は、鋼板のC含有量が0.70%以上であったので、水素脆化割れで早期に破断した。
 実験No.13は、鋼板のMn含有量が0.40%未満であったので、水素脆化割れで早期に破断した。
 実験No.22は、鋼板のP含有量が0.100%超であったので、水素脆化割れで早期に破断した。
 実験No.26は、鋼板のS含有量が0.1000%超であったので、水素脆化割れで早期に破断した。
 実験No.27は、鋼板のsol.Al含有量が0.0002%未満であったので、水素脆化割れで早期に破断した。
 実験No.31は、鋼板のsol.Al含有量が0.5000%超であったので、水素脆化破壊で早期に破断した。
 実験No.34は、鋼板のN含有量が0.0100%超であったので、水素脆化割れで早期に破断した。
 実験No.54は、引張強度及び侵入水素量は合格基準を満足したが、冷却開始温度がAc点未満であったので、平均転位密度が低く、侵入水素量が他の発明例よりも高かった。
 実験No.56は、引張強度及び侵入水素量は合格基準を満足したが、冷却速度が30℃/秒未満であったので、平均転位密度が低く、侵入水素量が他の発明例よりも高かった。
 実験No.59は、引張強度及び侵入水素量は合格基準を満足したが、巻取り開始温度が600℃超であったので、平均転位密度が低く、侵入水素量が他の発明例よりも高かった。
 実験No.63は、Al-Si合金めっき層の厚さが7μm未満であったので、スケールの状態が劣悪であった。
 実験No.66は、酸化Al被膜が20nm超であったので、多量の水素が鋼板に侵入した。
 実験No.68は、Niめっき層のNi含有量が85%であったので、多量の水素が鋼板に侵入した。
 実験No.69は、Niめっき層がなかったので、多量の水素が鋼板に侵入した。
 実験No.70は、Niめっき層の厚さが200nm以下であったので、多量の水素が鋼板に侵入した。
 実験No.74は、酸化Al被膜が21nmであったので、上層めっき被膜(Niめっき層)が剥離し、多量の水素が鋼板に侵入した。
 本発明によれば、Alめっきを施されたホットスタンプ用鋼板であっても、高露点環境下でのホットスタンプにおいても、侵入水素量を低減することで優れた耐水素脆化特性を有するので、産業上の利用可能性が高い。
 1  母材
 2  Al-Si合金めっき層
 3  酸化Al被膜
 4  Niめっき層
 10 ホットスタンプ用鋼板

Claims (5)

  1.  母材と、
     Al含有量が75質量%以上であり、Si含有量が3質量%以上であり、かつ、前記Al含有量と前記Si含有量との合計が95質量%以上であるAl-Si合金めっき層と、
     厚さ が0~20nmである酸化Al被膜と、
     Ni含有量が90質量%超であるNiめっき層と、
    をこの順で備え、
     前記母材の化学組成が、質量%で、
    C :0.01%以上、0.70%未満、
    Si:0.001~1.000% 、
    Mn:0.40~3.00%、
    sol.Al:0.0002%~0.5000%、 
    P :0.100%以下、
    S :0.1000%以下、
    N :0.0100%以下、
    Cu:0~1.00%、
    Ni:0~1.00%、 
    Nb:0~0.150%、
    V:0~1.000%、
    Ti:0~0.150%、
    Mo:0~1.000%、
    Cr:0~1.000%下、
    B :0~0.0100%、
    Ca:0~0.010%、
    REM:0%~0.300%、および
    残部:Fe及び不純物
    であり、
     前記Al-Si合金めっき層の厚さが7~148μmであり、
     前記Niめっき層の厚さが200nm超、2500nm以下である
    ことを特徴とするホットスタンプ用鋼板。
  2.  前記Niめっき層が前記Al-Si合金めっき層の上層として、前記Al-Si合金めっき層に直接接して設けられる、請求項1に記載のホットスタンプ用鋼板。
  3.  前記酸化Al被膜の厚さが2~20nmである、請求項1に記載のホットスタンプ用鋼板。
  4.  前記母材の前記化学組成が、質量%で、
    Cu:0.005~1.000%、
    Ni:0.005~1.000%、
    Nb:0.010~0.150%、
    V:0.005~1.000%、
    Ti:0.010~0.150%、
    Mo:0.005~1.000%、
    Cr:0.050~1.000%、
    B :0.0005~0.0100%、
    Ca:0.001~0.010%
    REM:0.001~0.300%からなる群から選択される1種又は2種以上を含有することを特徴とする、請求項1~3のいずれか1項に記載のホットスタンプ用鋼板。
  5.  前記母材の表面から深さ100μmにおける転位密度が5×1013m/m以上であることを特徴とする請求項1~4のいずれか1項に記載のホットスタンプ用鋼板。
PCT/JP2021/018158 2020-05-13 2021-05-13 ホットスタンプ用鋼板 WO2021230309A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180026665.8A CN115398035B (zh) 2020-05-13 2021-05-13 热压用钢板
US17/801,963 US20230078655A1 (en) 2020-05-13 2021-05-13 Steel sheet for hot stamping
JP2022522189A JP7269525B2 (ja) 2020-05-13 2021-05-13 ホットスタンプ用鋼板
EP21803022.9A EP4151771B1 (en) 2020-05-13 2021-05-13 Steel sheet for hot stamping

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020084584 2020-05-13
JP2020-084584 2020-05-13

Publications (1)

Publication Number Publication Date
WO2021230309A1 true WO2021230309A1 (ja) 2021-11-18

Family

ID=78524505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018158 WO2021230309A1 (ja) 2020-05-13 2021-05-13 ホットスタンプ用鋼板

Country Status (5)

Country Link
US (1) US20230078655A1 (ja)
EP (1) EP4151771B1 (ja)
JP (1) JP7269525B2 (ja)
CN (1) CN115398035B (ja)
WO (1) WO2021230309A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116334482A (zh) * 2022-02-28 2023-06-27 北京理工大学重庆创新中心 一种添加Ce元素的无涂层抗高温氧化热冲压成形钢
WO2023149466A1 (ja) * 2022-02-04 2023-08-10 日本製鉄株式会社 鋼板
US11926120B2 (en) 2020-05-13 2024-03-12 Nippon Steel Corporation Steel sheet for hot stamping

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246182A (ja) * 1991-01-28 1992-09-02 Nisshin Steel Co Ltd 重ね抵抗溶接性に優れた表面処理鋼板
JPH0860326A (ja) * 1994-08-17 1996-03-05 Kobe Steel Ltd 高光沢意匠性複層めっき鋼板およびその製造方法
JP2011152589A (ja) * 2009-08-06 2011-08-11 Nippon Steel Corp ホットスタンプ加工に用いる異強度部分を持つ金属加工品の製造に適した輻射伝熱加熱用鋼板及びその製造方法
KR20150075682A (ko) * 2013-12-26 2015-07-06 주식회사 포스코 내식성이 우수한 열간 프레스 성형용 강판 및 이를 이용한 열간 프레스 성형부품의 제조방법
WO2016016707A1 (fr) 2014-07-30 2016-02-04 Arcelormittal Procédé de fabrication de tôles d'acier pour durcissement sous presse, et pièces obtenues par ce procédé
WO2017182382A1 (de) * 2016-04-18 2017-10-26 Salzgitter Flachstahl Gmbh Bauteil aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech und verfahren zur herstellung eines solchen bauteils
WO2017187255A1 (en) 2016-04-29 2017-11-02 Arcelormittal A press hardening method
JP2017532442A (ja) * 2014-08-20 2017-11-02 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 表面仕上げされた鋼板およびこれらの製造方法
JP2018513909A (ja) * 2015-02-19 2018-05-31 アルセロールミタル アルミニウム系被膜および亜鉛被膜で被覆された板からのリン酸塩処理可能な部品の製造方法
WO2019097440A1 (en) * 2017-11-17 2019-05-23 Arcelormittal A method for the manufacturing of liquid metal embrittlement resistant zinc coated steel sheet
EP3489386A1 (de) * 2017-11-27 2019-05-29 Muhr und Bender KG Beschichtetes stahlsubstrat und verfahren zum herstellen eines gehärteten bauteils aus einem beschichteten stahlsubstrat
JP2020509200A (ja) * 2016-12-23 2020-03-26 ポスコPosco 耐食性に優れたアルミニウム系めっき鋼材、それを用いたアルミニウム系合金化めっき鋼材、及びそれらの製造方法
JP2020084584A (ja) 2018-11-26 2020-06-04 株式会社キクテック ハンプ施工方法とハンプゲージシート

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346277A (ja) * 1993-06-08 1994-12-20 Kawasaki Steel Corp 耐遅れ破壊性に優れた高張力冷延鋼板
JP4246182B2 (ja) 2004-10-27 2009-04-02 独立行政法人科学技術振興機構 信号発生装置及び信号発生方法
JP5218703B2 (ja) * 2010-06-21 2013-06-26 新日鐵住金株式会社 耐加熱黒変性に優れた溶融Alめっき鋼板及びその製造方法
JP5614496B2 (ja) * 2011-04-01 2014-10-29 新日鐵住金株式会社 塗装後耐食性に優れたホットスタンプ成形された高強度部品およびその製造方法
JP6082451B2 (ja) * 2015-03-18 2017-02-15 株式会社神戸製鋼所 熱間プレス用鋼板およびその製造方法
CN107904535A (zh) * 2017-11-16 2018-04-13 河钢股份有限公司 用于热冲压成形钢的镀层及其制造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246182A (ja) * 1991-01-28 1992-09-02 Nisshin Steel Co Ltd 重ね抵抗溶接性に優れた表面処理鋼板
JPH0860326A (ja) * 1994-08-17 1996-03-05 Kobe Steel Ltd 高光沢意匠性複層めっき鋼板およびその製造方法
JP2011152589A (ja) * 2009-08-06 2011-08-11 Nippon Steel Corp ホットスタンプ加工に用いる異強度部分を持つ金属加工品の製造に適した輻射伝熱加熱用鋼板及びその製造方法
KR20150075682A (ko) * 2013-12-26 2015-07-06 주식회사 포스코 내식성이 우수한 열간 프레스 성형용 강판 및 이를 이용한 열간 프레스 성형부품의 제조방법
WO2016016707A1 (fr) 2014-07-30 2016-02-04 Arcelormittal Procédé de fabrication de tôles d'acier pour durcissement sous presse, et pièces obtenues par ce procédé
JP2017532442A (ja) * 2014-08-20 2017-11-02 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 表面仕上げされた鋼板およびこれらの製造方法
JP2018513909A (ja) * 2015-02-19 2018-05-31 アルセロールミタル アルミニウム系被膜および亜鉛被膜で被覆された板からのリン酸塩処理可能な部品の製造方法
WO2017182382A1 (de) * 2016-04-18 2017-10-26 Salzgitter Flachstahl Gmbh Bauteil aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech und verfahren zur herstellung eines solchen bauteils
WO2017187255A1 (en) 2016-04-29 2017-11-02 Arcelormittal A press hardening method
JP2019518136A (ja) * 2016-04-29 2019-06-27 アルセロールミタル プレス焼入れ方法
JP2020509200A (ja) * 2016-12-23 2020-03-26 ポスコPosco 耐食性に優れたアルミニウム系めっき鋼材、それを用いたアルミニウム系合金化めっき鋼材、及びそれらの製造方法
WO2019097440A1 (en) * 2017-11-17 2019-05-23 Arcelormittal A method for the manufacturing of liquid metal embrittlement resistant zinc coated steel sheet
EP3489386A1 (de) * 2017-11-27 2019-05-29 Muhr und Bender KG Beschichtetes stahlsubstrat und verfahren zum herstellen eines gehärteten bauteils aus einem beschichteten stahlsubstrat
JP2020084584A (ja) 2018-11-26 2020-06-04 株式会社キクテック ハンプ施工方法とハンプゲージシート

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4151771A4
T. UNGAR, JOURNAL OF APPLIED CRYSTALLOGRAPHY, vol. 32, 1999, pages 992 - 1002

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11926120B2 (en) 2020-05-13 2024-03-12 Nippon Steel Corporation Steel sheet for hot stamping
WO2023149466A1 (ja) * 2022-02-04 2023-08-10 日本製鉄株式会社 鋼板
CN116334482A (zh) * 2022-02-28 2023-06-27 北京理工大学重庆创新中心 一种添加Ce元素的无涂层抗高温氧化热冲压成形钢

Also Published As

Publication number Publication date
EP4151771A4 (en) 2023-10-04
JPWO2021230309A1 (ja) 2021-11-18
EP4151771B1 (en) 2024-08-07
CN115398035A (zh) 2022-11-25
US20230078655A1 (en) 2023-03-16
JP7269525B2 (ja) 2023-05-09
CN115398035B (zh) 2024-03-29
EP4151771A1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
KR102252841B1 (ko) 고강도 아연 도금 강판 및 그 제조 방법
RU2693226C1 (ru) Оцинкованный стальной лист для горячего прессования и способ производства горячепрессованного формованного изделия
CA2772026C (en) High-strength galvanized steel sheet and method of manufacturing the same
RU2710813C1 (ru) Горячештампованная сталь
WO2021230309A1 (ja) ホットスタンプ用鋼板
KR102119373B1 (ko) 핫 프레스용 강판 및 그 제조 방법, 그리고 핫 프레스 부재 및 그 제조 방법
EP3216886A1 (en) Hot-dip galvanized steel sheet
EP3216887A1 (en) Hot-dip galvanized steel sheet
JP2021181625A (ja) 高強度部材、高強度部材の製造方法及び高強度部材用鋼板の製造方法
JP6760521B1 (ja) 高延性高強度電気亜鉛系めっき鋼板およびその製造方法
CN113906152B (zh) 热压成型体
WO2017009936A1 (ja) 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6962452B2 (ja) 高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP7269526B2 (ja) ホットスタンプ用鋼板
WO2021230306A1 (ja) ホットスタンプ部材
KR20240075861A (ko) 핫 스탬프용 강판 및 핫 스탬프 성형체
CN115066516B (zh) 热冲压成型体
WO2022215636A1 (ja) ホットスタンプ用鋼板およびホットスタンプ部材
CN113874537B (zh) 热压用钢板
CN113906151B (zh) 热压成型体
WO2022215635A1 (ja) ホットスタンプ用鋼板およびホットスタンプ部材
WO2023199638A1 (ja) ホットスタンプ成形体
KR20220091571A (ko) 핫 스탬프 성형체
WO2024122121A1 (ja) めっき鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522189

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217065978

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021803022

Country of ref document: EP

Effective date: 20221213