WO2021228027A1 - 冷媒整流管及空调室内机 - Google Patents

冷媒整流管及空调室内机 Download PDF

Info

Publication number
WO2021228027A1
WO2021228027A1 PCT/CN2021/092670 CN2021092670W WO2021228027A1 WO 2021228027 A1 WO2021228027 A1 WO 2021228027A1 CN 2021092670 W CN2021092670 W CN 2021092670W WO 2021228027 A1 WO2021228027 A1 WO 2021228027A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
rectifier tube
refrigerant rectifier
way
tube
Prior art date
Application number
PCT/CN2021/092670
Other languages
English (en)
French (fr)
Inventor
任滔
柴婷
刘景升
孟庆良
宋强
荣丹
邓志鑫
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021228027A1 publication Critical patent/WO2021228027A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/0209Ducting arrangements characterised by their connecting means, e.g. flanges

Definitions

  • the invention belongs to the technical field of air conditioners, and specifically relates to a refrigerant rectifier tube and an air conditioner indoor unit.
  • Existing room air conditioners, unitary air conditioners and multi-unit air conditioners all include two parts: an outdoor air conditioner and an indoor air conditioner.
  • the air conditioner indoor unit needs to be equipped with electronic expansion valves and 1 or 2 at the same time in its limited internal space. Dry filter, refrigerant distributor and liquid separation capillary, and through several U-shaped or L-shaped elbows to make a compact connection between these devices.
  • the refrigerant will change from single-phase to gas-liquid two-phase after throttling by the electronic expansion valve.
  • the gas-liquid two-phase refrigerant will undergo gas-liquid stratification under the action of centrifugal force when passing through the U-shaped or L-shaped elbow.
  • the liquid refrigerant is usually It is concentrated on the outside of the elbow, while the gaseous refrigerant is concentrated on the inside of the elbow.
  • the solution for rectifying the refrigerant in the existing air conditioner indoor unit is to allow the refrigerant after gas-liquid stratification to pass through a straight pipe.
  • the purpose is to allow the refrigerant to flow quickly in a straight pipe to achieve re-mixing and form a homogeneous flow pattern. Or the symmetrical flow pattern then enters the refrigerant distributor.
  • the length of the straight pipe often does not meet the optimal length requirement due to the limited internal space of the air conditioner indoor unit, which affects the rectification effect.
  • the results of the experimental test and research show that there is still a deviation of about 20% in the heat exchange of different flow paths in the existing indoor unit of this type of air conditioner.
  • the invention provides a compact refrigerant rectifier tube and an indoor unit of an air conditioner.
  • a single channel is formed at the inlet end and the outlet end of the refrigerant rectifier tube, and a plurality of branches connecting the two single channels are formed in the refrigerant rectifier tube.
  • the channel divides the refrigerant before the gas-liquid stratification evenly into multiple strands, and rejoins them at the outlet end to achieve the purpose of uniform mixing of the gas-liquid two-phase refrigerant; the outlet end of the refrigerant rectifier tube is used for distribution with the refrigerant The inlet end of the device is connected.
  • the inlet end of the refrigerant rectifier tube is used to connect with the elbow; there are two branch channels, and one of the branch channels is located in the elbow. On one side of the plane where the central axis of the elbow is located, the other branch channel is located on the other side of the plane where the central axis of the elbow is located.
  • the refrigerant rectifier tube includes two three-way tubes; one end of the three-way tube is provided with a single channel, and the other end is provided with a single channel communicating with Two channels; the two three-way pipes are provided with one end of the two-way corresponding to each other and butted to form two branch channels; the inlet end of the refrigerant rectifier tube is a three-way tube with a single One end of the channel, and the outlet end of the refrigerant rectifier tube is another end of the three-way tube provided with a single channel.
  • the refrigerant rectifier tube further includes a connecting sleeve provided with internal threads at both ends or the whole; one end of the two three-way tubes provided with a double channel Both are provided with external threads, and both ends of the connecting sleeve are respectively connected with the external threads of the two three-way pipes.
  • the refrigerant rectifier tube is formed with an L-shaped or U-shaped bend in the pipe section where the plurality of branch channels are located.
  • the refrigerant rectifier tube includes two three-way tubes; one end of the three-way tube is provided with a single channel, and the other end is provided with a single channel communicating with Dual channels; the dual channels of the two three-way pipes are communicated in a one-to-one correspondence through the two branch channels in the elbow; the inlet end of the refrigerant rectifier tube is one of the three-way tube provided with a single One end of the channel, and the outlet end of the refrigerant rectifier tube is another end of the three-way tube provided with a single channel.
  • the plurality of branch channels are a plurality of refrigerant tubes; or the plurality of branch channels are a plurality of holes formed by the refrigerant rectifier tube itself.
  • the outlet end of the refrigerant rectifier tube is set as a connection port for inserting the inlet end of the refrigerant distributor.
  • the total effective flow area of the plurality of branch channels is related to the flow area of the single channel at the inlet end of the refrigerant rectifier tube and the flow area of the single channel at the outlet end of the refrigerant rectifier tube. are equal.
  • the present invention also provides an air conditioner indoor unit, which includes the refrigerant rectifier tube described in any of the above technical solutions.
  • a plurality of branch channels are formed in the refrigerant rectifier tube to connect the single channel of the inlet end and the outlet end of the refrigerant rectifier tube.
  • the inlet side is connected.
  • the refrigerant distributor It enters the refrigerant distributor after it becomes a homogeneous gas-liquid state, so that the refrigerant distributor will not be affected by the refrigerant gas-liquid stratification when distributing the refrigerant, resulting in uneven distribution of the refrigerant in the different flow paths of the indoor heat exchanger Therefore, the heat exchange efficiency of the indoor heat exchanger can be guaranteed.
  • the inside of the elbow is gaseous refrigerant and the outside of the elbow is liquid refrigerant, in the refrigerant rectifier tube and air conditioner indoor unit provided by the present invention,
  • the inlet end of the refrigerant rectifier tube is used to connect with the elbow.
  • one branch channel is located on the side of the plane where the central axis of the elbow is, and the other branch channel is located on the plane where the central axis of the elbow is located. On the other side.
  • the gas-liquid two-phase refrigerant is evenly divided into the multiple branch channels and divided into multiple branch flow paths, so that the dryness of the refrigerant after entering the two branch channels is basically the same. Even if the single strand of refrigerant is stratified after passing through the U-shaped bend, the two strands of refrigerant collide and remix to become a homogeneous refrigerant, which further ensures the heat exchange efficiency of the indoor heat exchanger.
  • FIG. 1 is a schematic diagram of the structure of the first refrigerant rectifier tube of this embodiment
  • Figure 2 is a partial cross-sectional view of the first type of refrigerant rectifier tube in the A-A direction of this embodiment
  • FIG. 3 is a schematic diagram of the structure of a second type of refrigerant rectifier tube of this embodiment
  • Figure 4 is a partial cross-sectional view of the second type of refrigerant rectifier tube in the B-B direction of this embodiment
  • Figure 5 is a partial cross-sectional view of the second type of refrigerant rectifier tube in the C-C direction of this embodiment.
  • the refrigerant rectifier tube in the drawings is described as an example including two three-way tubes, the structural relationship of the refrigerant rectifier tube is not static. Without departing from the principle of the present invention, those skilled in the art It can be adjusted as needed to adapt to specific applications.
  • the refrigerant rectifier tube of this embodiment can also be integrally formed.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense. For example, they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the present invention provides a refrigerant rectifier tube and an indoor unit of an air conditioner.
  • the inlet end 11 of the refrigerant rectifier tube and the outlet end 12 of the refrigerant rectifier tube respectively form a single channel 101, and the refrigerant rectifier tube is formed in There are multiple branch channels 102 connecting the two single channels 101; the outlet end 12 of the refrigerant rectifier tube is used to connect with the inlet end of the refrigerant distributor (not shown in the figure).
  • this embodiment is described by taking two branch channels 102 provided in the refrigerant rectifier tube as an example, but those skilled in the art can set three or more branch channels in the refrigerant rectifier tube according to actual needs. 102, or directly use a porous microchannel flat tube.
  • the refrigerant rectifier tube provided in this embodiment may be integrally formed or formed by connecting multiple pipe sections.
  • a pipe section provided with a single channel 101 and a pipe section provided with multiple branch channels 102 may be connected, and the connection mode may be plug-in connection, threaded connection, or connection through a connecting sleeve.
  • the refrigerant rectifier tube in this embodiment is preferably selected as a copper tube material, but those skilled in the art in the specific implementation of the refrigerant rectification
  • the tubes can also be aluminum tubes and plastic hoses.
  • the refrigerant rectifier tube is formed with a plurality of branch channels 102 communicating with a single channel 101 of the inlet end 11 of the refrigerant rectifier tube and the outlet end 12 of the refrigerant rectifier tube, and the outlet of the refrigerant rectifier tube
  • the end 12 is used to connect with the inlet end of the refrigerant distributor.
  • the refrigerant enters the multiple branch channels 102 and is divided into multiple branch flow paths, and then the refrigerant in the multiple branch flow paths flows out of the outlet end 12 of the refrigerant rectifier tube and then enters a single channel 101 and undergoes collision and impact to remix, so that the gas and liquid phases are separated.
  • the refrigerant in the layer is transformed into a homogeneous gas-liquid refrigerant and then enters the refrigerant distributor, so that the refrigerant distributor will not be affected by the gaseous refrigerant when the refrigerant is distributed. Therefore, the heat exchange efficiency of the indoor heat exchanger can be guaranteed.
  • the refrigerant rectifier tube As a preferred embodiment of the above-mentioned refrigerant rectifier tube provided by this embodiment, as shown in Figs. It is a gaseous refrigerant and is liquid refrigerant on the outside of the bend.
  • the inlet end 11 of the refrigerant rectifier tube is used to connect with the elbow 4;
  • the branch channel 102 of the refrigerant rectifier tube has Two, one branch channel 102 is located on one side of the plane where the central axis of the bend 4 is located, and the other branch channel 102 is located on the other side of the plane where the central axis of the bend 4 is located.
  • the dry humidity of the refrigerant after entering the two branch channels 102 is basically equal, which is more conducive to the remixing of the two refrigerants after collision and impact to become a gas-liquid homogeneous refrigerant, and further ensures the heat exchange of the indoor heat exchanger efficient.
  • the refrigerant rectifier tube includes two three-way tubes (such as the first three-way tube 2 in FIG. 1 and FIG. 2).
  • one end of the three-way pipe is provided with a single channel 101, and the other end is provided with a double channel communicating with the single channel 101;
  • the two three-way pipes are provided with two channels corresponding to each other at one end To form two branch channels 102; the inlet end 11 of the refrigerant rectifier tube is the end of a tee tube with the single channel 101, and the outlet end 12 of the refrigerant rectifier tube is the end of the other tee tube with the single channel 101.
  • the refrigerant rectifier tube further includes a connecting sleeve (not shown in the figure) with internal threads on both ends or the whole; the two three-way pipes are provided with external threads on the two ends of the double channel, and the two connecting sleeves are provided with external threads. The ends are respectively connected with the external threads of the two three-way pipes. In this way, after the dual channels of the two three-way pipes are butt-connected, they are threadedly connected by the connecting sleeve at the connection position of the two three-way pipes, so that the connection of the two three-way pipes is more reliable.
  • the end of the tee tube with dual channels can be a pipe section with two channels, so that one end of a connecting tube can be inserted into one of the two channels of a tee tube.
  • the other end of the connecting pipe is inserted into one of the two-way channels in the other three-way pipe, and then the other one of the two-way channels in the two three-way pipes is connected through the other connecting pipe.
  • the two ends of the connecting pipe can be respectively welded to the three-way pipe; in addition, as another feasible way, an internal thread can be provided in the double channel, and the two ends of the connecting pipe can be provided with external threads, so that the connecting pipe and Double channels realize threaded connection.
  • end of the three-way pipe with dual channels can also be provided with two branch pipes in one pipe section, and a connecting pipe and a connecting sleeve can be used when connecting, which will not be repeated here.
  • the refrigerant rectifier tube is formed with an L-shaped or U-shaped bend in the pipe section where the plurality of branch channels 102 are located. 4. Among them, only the U-shaped elbow 4 is shown in FIG. 3. In this way, even if the gas-liquid two-phase separation occurs when the refrigerant flows through the elbow 4 of the refrigerant rectifier tube, when it enters the other single channel 101, multiple refrigerants can be effectively mixed by impact and collision.
  • the refrigerant rectifier tube includes two three-way tubes (as shown in Figures 3, 4 and 5).
  • the two branch channels 102 in the tube 4 are in one-to-one correspondence;
  • the inlet end 11 of the refrigerant rectifier tube is one end of a three-way tube with a single channel 101, and the outlet end 12 of the refrigerant rectifier tube is another three-way tube.
  • One end of a single channel 101 is provided.
  • the plurality of branch channels 102 are a plurality of refrigerant tubes; or the plurality of branch channels 102 are a plurality of channels formed by the refrigerant rectifier tube itself.
  • the outlet end 12 of the refrigerant rectifier tube is set as a connection port for the inlet end of the refrigerant distributor to be inserted. In this way, the outlet end 12 of the refrigerant rectifier tube can be plugged into the inlet end of the refrigerant distributor.
  • the total effective flow area of the multiple branch channels 102 is related to the flow area of the single channel 101 at the inlet end 11 of the refrigerant rectifier tube and the outlet end of the refrigerant rectifier tube.
  • the flow areas of the 12 single channels 101 are all equal. In this way, it is possible to reduce or avoid the factors affecting the gas-liquid two-phase change of the refrigerant caused by the change of the refrigerant pressure due to the change in the size of the flow cross section of the refrigerant rectifier tube.
  • this embodiment also provides an air conditioner indoor unit, which includes the refrigerant rectifier tube in any of the above embodiments.
  • the inlet end is connected to the elbow 4, and the outlet end is connected to the inlet end of the refrigerant distributor.
  • the inlet end 11 of the refrigerant rectifier tube can be directly connected to the refrigerant flowing out of the electronic expansion valve, and the outlet end 12 of the refrigerant rectifier tube is connected to the inlet end of the refrigerant distributor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

一种冷媒整流管及空调室内机,包括使冷媒进入多个分支通道分成多支流路,多支流路中的冷媒流出冷媒整流管的出口端再进入一单通道中经过碰撞冲击进行混合,使得气液两相混合的冷媒转变为气液均相的冷媒再进入冷媒分配器,这样冷媒分配器在对冷媒进行分配时就不会受气态冷媒的影响而导致室内换热器的不同流路中冷媒分配不均的问题。

Description

冷媒整流管及空调室内机 技术领域
本发明属于空调技术领域,具体涉及一种冷媒整流管及空调室内机。
背景技术
现有的房间空调器、单元式空调器及多联式空调器都包括空调室外机和空调室内机两部分,空调室内机在其有限的内部空间中需要同时安装电子膨胀阀、1到2个干燥过滤器、冷媒分配器及分液毛细管,并通过若干根U型或者L型弯管对这些器件之间进行紧凑的连接。冷媒经过电子膨胀阀节流后会从单相变成气液两相,气液两相的冷媒在通过U型或者L型弯管时受离心力的作用会发生气液分层,液态冷媒通常都集中在弯管的外侧,而气态冷媒则集中在弯管的内侧。发生气液分层的冷媒一旦由冷媒分配器直接分配到室内换热器中,会导致室内换热器的不同流路中液态冷媒的分布极不均匀,从而降低了室内换热器的换热效率。
现有的空调室内机中对冷媒进行整流的方案为让气液分层后的冷媒经过一段直管,其目的是通过让冷媒在一段直管中快速流动以达到重新混合并形成均相流型或者对称流型再进入冷媒分配器。但是,一般需要直管的长度大于100mm才能实现对冷媒的有效整流,实际中发现由于空调室内机内部空间受限导致直管的长度往往达不到最佳长度要求,影响整流效果。实验测试研究的结果表明,现有的该类空调室内机中不同流路的换热量仍存在20%左右的偏差。
相应地,本领域需要新的一种结构紧凑的冷媒整流管及空调室内机来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的空调室内机通过直管进行冷媒整流因空间受限导致室内换热器的不同流路之间 发生偏流以及性能不稳定的问题,本发明提供一种紧凑的冷媒整流管及空调室内机。
首先,在本发明提供的一种冷媒整流管中,所述冷媒整流管的进口端和出口端分别形成有一单通道,所述冷媒整流管内形成有将两个所述单通道连通的多个分支通道,将发生气液分层之前的冷媒均匀的分成多股,并在出口端重新汇合在一起以达到气液两相冷媒均匀混合的目的;所述冷媒整流管的出口端用于与冷媒分配器的进口端连接。
作为本发明提供的上述冷媒整流管的一种优选的技术方案,所述冷媒整流管的进口端用于与弯管连接;所述分支通道有两个,一个所述分支通道位于所述弯管的中心轴线所在平面的一侧,另一个所述分支通道位于所述弯管的中心轴线所在平面的另一侧。
作为本发明提供的上述冷媒整流管的一种优选的技术方案,所述冷媒整流管包括两个三通管;所述三通管的一端设置有单通道,另一端设置有与其单通道连通的双通道;所述两个三通管的设置双通道的一端一一对应且彼此对接以形成两个所述分支通道;所述冷媒整流管的进口端为一个所述三通管的设置有单通道的一端,所述冷媒整流管的出口端为另一个所述三通管的设置有单通道的一端。
作为本发明提供的上述冷媒整流管的一种优选的技术方案,所述冷媒整流管还包括两端或整体都设置有内螺纹的连接套;所述两个三通管的设置双通道的一端均设置有外螺纹,所述连接套的两端分别与所述两个三通管的所述外螺纹连接。
作为本发明提供的上述冷媒整流管的一种优选的技术方案,所述冷媒整流管在所述多个分支通道所在的管段形成有L形或U形的弯管。
作为本发明提供的上述冷媒整流管的一种优选的技术方案,所述冷媒整流管包括两个三通管;所述三通管的一端设置有单通道,另一端设置有与其单通道连通的双通道;所述两个三通管的双通道都通过所述弯管中的两个分支通道一一对应地连通;所述冷媒整流管的进口端为一个所述三通管的设置有单通道的一端,所述冷媒整流管的出口端为另一个所述三通管的设置有单通道的一端。
作为本发明提供的上述冷媒整流管的一种优选的技术方案,所述多个分支通道为多个冷媒管;或者所述多个分支通道为所述冷媒整 流管自身形成的多个孔道。
作为本发明提供的上述冷媒整流管的一种优选的技术方案,所述冷媒整流管的出口端设置成供所述冷媒分配器的进口端插接的连接口。
作为本发明提供的上述冷媒整流管的一种优选的技术方案,所述多个分支通道的有效流通总面积与所述冷媒整流管的进口端的单通道的流通面积和出口端的单通道的流通面积均相等。
然后,本发明还提供了一种空调室内机,所述空调室内机包括上述任一种技术方案中所述的冷媒整流管。
在本发明提供的一种冷媒整流管及空调室内机中,冷媒整流管内形成有将其进口端和出口端的单通道连通的多个分支通道,冷媒整流管的出口端用于与冷媒分配器的进口端连接。如此,冷媒分开后先进入多个分支通道分成多支流路,然后多支流路中的冷媒流出冷媒整流管的出口端时再进入一单通道中经过碰撞冲击重新进行混合,使得冷媒在单通道中转变成气液均相态后再进入冷媒分配器,这样冷媒分配器在对冷媒进行分配时就不会受冷媒气液分层的影响而导致室内换热器的不同流路中冷媒分配不均的问题,从而可以保证室内换热器的换热效率。
由于冷媒在经过弯管受离心作用发生气液分离时,弯管的弯道内侧为气态冷媒且在其弯道外侧为液态冷媒,在本发明提供的一种冷媒整流管及空调室内机中,冷媒整流管的进口端用于与弯管连接,冷媒整流管的两个分支通道中,一个分支通道位于弯管的中心轴线所在平面的一侧,另一个分支通道位于弯管的中心轴线所在平面的另一侧。如此,气液两相冷媒被均匀的分开进入多个分支通道分成多支流路,使得冷媒进入两个分支通道后的干度基本相等。对于单股冷媒即便经过U型弯发生了分层,但两股冷媒碰撞冲击后重新混合变成均相冷媒,并进一步地保证了室内换热器的换热效率。
附图说明
下面参照附图来描述本发明的冷媒整流管及空调室内机。附图中:
图1为本实施例的第一种冷媒整流管的结构示意图;
图2为本实施例的第一种冷媒整流管在A-A方向的部分剖示图;
图3为本实施例的第二种冷媒整流管的结构示意图;
图4为本实施例的第二种冷媒整流管在B-B方向的部分剖示图;
图5为本实施例的第二种冷媒整流管在C-C方向的部分剖示图。
附图标记列表
11-冷媒整流管的进口端;12-冷媒整流管的出口端;
101-单通道;102-分支通道;
2-第一三通管;3-第二三通管;4-弯管。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然附图中冷媒整流管是以包括两个三通管为例进行说明的,但是冷媒整流管的这种结构关系非一成不变的,在不偏离本发明原理的条件下,本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。例如,本实施例的冷媒整流管还可以一体成型。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可 以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
为了解决现有技术中的上述问题,即为了解决现有的空调室内机中存在的冷媒经过弯管发生气液分离后直接进入冷媒分配器,使得冷媒分配器不能将冷媒均匀地分配到室内换热器的不同流路,导致室内换热器的换热效率降低的问题,本发明提供了一种冷媒整流管及空调室内机。
首先,如图1至图5所示,在本实施例提供的一种冷媒整流管中,冷媒整流管的进口端11和冷媒整流管的出口端12分别形成有一单通道101,冷媒整流管内形成有将两个单通道101连通的多个分支通道102;冷媒整流管的出口端12用于与冷媒分配器(图中未示出)的进口端连接。
示例性地,本实施例是以冷媒整流管中设置有两个分支通道102为例进行说明的,但是本领域技术人员可以根据实际需要在冷媒整流管中设置三个及三个以上的分支通道102,或者直接采用多孔的微通道扁管。
此外,本实施例提供的冷媒整流管可以一体成型也可以由多个管段连接而成。例如,可以将设置有单通道101的管段、设置多个分支通道102的管段进行连接,其连接方式可为插接、螺纹连接或者通过连接套进行连接等。
由于铜管具有优良的弯曲性能、疲劳强度和抗氧化性,且具有寿命长的优点,所以本实施例中的冷媒整流管优先选用为铜管材质,但本领域技术人员在具体实施时冷媒整流管也可以选用铝管和塑料软管等。
在本实施例提供的一种冷媒整流管中,冷媒整流管内形成有冷媒整流管的进口端11和冷媒整流管的出口端12的单通道101连通的多个分支通道102,冷媒整流管的出口端12用于与冷媒分配器的进口端连接。如此,冷媒进入多个分支通道102分成多支流路,然后多支流路中的冷媒流出冷媒整流管的出口端12时再进入一单通道101中经过碰撞冲击重新进行混合,使得气液两相分层的冷媒转变为气液均相的冷媒然后再进入冷媒分配器,这样冷媒分配器在对冷媒进行分配时就不会受气态冷媒的 影响而导致室内换热器的不同流路中冷媒分配不均的问题,从而可以保证室内换热器的换热效率。
作为本实施例提供的上述冷媒整流管的一种优选的实施方式,如图1和图2所示,由于冷媒在经过弯管4受离心作用发生气液分离时,弯管4的弯道内侧为气态冷媒且在其弯道外侧为液态冷媒,在本实施例提供的一种冷媒整流管中,冷媒整流管的进口端11用于与弯管4连接;该冷媒整流管的分支通道102有两个,一个分支通道102位于弯管4的中心轴线所在平面的一侧,另一个分支通道102位于弯管4的中心轴线所在平面的另一侧。如此,使得冷媒进入两个分支通道102后的干湿度基本相等,从而更有利于两股冷媒碰撞冲击后重新混合变成气液均相的冷媒,并进一步地保证了室内换热器的换热效率。
作为本实施例提供的上述冷媒整流管的一种优选的实施方式,继续参照图1和图2,冷媒整流管包括两个三通管(如图1和图2中的第一三通管2和第二三通管3);三通管的一端设置有单通道101,另一端设置有与其单通道101连通的双通道;两个三通管的设置双通道的一端一一对应且彼此对接以形成两个分支通道102;冷媒整流管的进口端11为一个三通管的设置有单通道101的一端,冷媒整流管的出口端12为另一个三通管的设置有单通道101的一端。
作为本实施例提供的上述冷媒整流管的一种优选的实施方式,继续参照图1和图2,两个三通管的设置双通道的一端可以通过焊接实现连接;此外,作为另一种可实施的方式,冷媒整流管还包括两端或整体都设置有内螺纹的连接套(图中未示出);两个三通管的设置双通道的一端均设置有外螺纹,连接套的两端分别与两个三通管的外螺纹连接。如此,两个三通管的双通道对接后,在两个三通管的连接位置通过连接套螺纹连接,以使得两个三通管连接的更可靠。
再如,如图2所示,三通管设置有双通道的一端可以为设置有两个孔道的一个管段,这样可以通过一个连接管的一端插入一个三通管双通道中的一个通道,该连接管的另一端插入另一个三通管中双通道中的一个通道,然后通过另外一个连接管连接两个三通管中双通道的另一个通道。其中,可以将连接管的两端分别焊接在三通管上;此外,作为另一种可实施的方式,可以在双通道中设置内螺纹,连接管的两端设 置外螺纹,使得连接管与双通道实现螺纹连接。
此外,三通管设置有双通道的一端还可以为一管段中设置有两个分支管,在连接时可以使用连接管和连接套,在此不再赘述。
作为本实施例提供的上述冷媒整流管的一种优选的实施方式,参照图3、图4和图5,冷媒整流管在多个分支通道102所在的管段形成有L形或U形的弯管4。其中,仅有U形的弯管4被图3示出。如此,冷媒在流过冷媒整流管的弯管4部分时即使发生气液两相分离,其在进入另一单通道101时,多股冷媒冲击碰撞即可进行有效的混合。
作为本实施例提供的上述冷媒整流管的一种优选的实施方式,继续参照图3、图4和图5,冷媒整流管包括两个三通管(如图3、图4和图5中的第一三通管2和第二三通管3);三通管的一端设置有单通道101,另一端设置有与其单通道101连通的双通道;两个三通管的双通道都通过弯管4中的两个分支通道102一一对应地连通;冷媒整流管的进口端11为一个三通管的设置有单通道101的一端,冷媒整流管的出口端12为另一个三通管的设置有单通道101的一端。
作为本实施例提供的上述冷媒整流管的一种优选的实施方式,多个分支通道102为多个冷媒管;或者多个分支通道102为冷媒整流管自身形成的多个孔道。
作为本实施例提供的上述冷媒整流管的一种优选的实施方式,冷媒整流管的出口端12设置成供冷媒分配器的进口端插接的连接口。如此,可以实现冷媒整流管的出口端12与冷媒分配器的进口端的插接。
作为本实施例提供的上述冷媒整流管的一种优选的实施方式,多个分支通道102的有效流通总面积与冷媒整流管的进口端11的单通道101的流通面积和冷媒整流管的出口端12的单通道101的流通面积均相等。如此,可以减少或避免由于冷媒整流管的流通截面大小变化导致冷媒压力改变,而带来的影响冷媒发生气液两相变化的因素。
然后,本实施例还提供了一种空调室内机,该空调室内机包括上述任一种实施方式中的冷媒整流管。
示例性地,空调室内机在使用本实施例的冷媒整流管时,对于图1和图2所示的冷媒整流管,其进口端连接弯管4,出口端连接冷媒分配器的进口端。对于图3至图5所示的冷媒整流管,对冷媒整流管的进口 端11可以直接接入由电子膨胀阀流出的冷媒,冷媒整流管的出口端12连接冷媒分配器的进口端。
可以理解的是,本领域技术人员也可以将本实施例提供的冷媒整流管用于空调室外机。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的保护范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种冷媒整流管,其特征在于,所述冷媒整流管的进口端和出口端分别形成有一单通道,所述冷媒整流管内形成有将两个所述单通道连通的多个分支通道;
    所述冷媒整流管的出口端用于与冷媒分配器的进口端连接。
  2. 根据权利要求1所述的冷媒整流管,其特征在于,所述冷媒整流管的进口端用于与弯管连接;
    所述分支通道有两个,一个所述分支通道位于所述弯管的中心轴线所在平面的一侧,另一个所述分支通道位于所述弯管的中心轴线所在平面的另一侧。
  3. 根据权利要求2所述的冷媒整流管,其特征在于,所述冷媒整流管包括两个三通管;所述三通管的一端设置有单通道,另一端设置有与其单通道连通的双通道;
    所述两个三通管的设置双通道的一端一一对应且彼此对接以形成两个所述分支通道;
    所述冷媒整流管的进口端为一个所述三通管的设置有单通道的一端,所述冷媒整流管的出口端为另一个所述三通管的设置有单通道的一端。
  4. 根据权利要求3所述的冷媒整流管,其特征在于,所述冷媒整流管还包括两端或整体都设置有内螺纹的连接套;
    所述两个三通管的设置双通道的一端均设置有外螺纹,所述连接套的两端分别与所述两个三通管的所述外螺纹连接。
  5. 根据权利要求1所述的冷媒整流管,其特征在于,所述冷媒整流管在所述多个分支通道所在的管段形成有L形或U形的弯管。
  6. 根据权利要求5所述的冷媒整流管,其特征在于,所述冷媒整流管包括两个三通管;所述三通管的一端设置有单通道,另一端设置有与其 单通道连通的双通道;
    所述两个三通管的双通道都通过所述弯管中的两个分支通道一一对应地连通;
    所述冷媒整流管的进口端为一个所述三通管的设置有单通道的一端,所述冷媒整流管的出口端为另一个所述三通管的设置有单通道的一端。
  7. 根据权利要求1所述的冷媒整流管,其特征在于,所述多个分支通道为多个冷媒管;或者
    所述多个分支通道为所述冷媒整流管自身形成的多个孔道。
  8. 根据权利要求1所述的冷媒整流管,其特征在于,所述冷媒整流管的出口端设置成供所述冷媒分配器的进口端插接的连接口。
  9. 根据权利要求1所述的冷媒整流管,其特征在于,所述多个分支通道的有效流通总面积与所述冷媒整流管的进口端的单通道的流通面积和出口端的单通道的流通面积均相等。
  10. 一种空调室内机,所述空调室内机包括权利要求1至9中任一项所述的冷媒整流管。
PCT/CN2021/092670 2020-07-22 2021-05-10 冷媒整流管及空调室内机 WO2021228027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010710933.5 2020-07-22
CN202010710933.5A CN111829152A (zh) 2020-07-22 2020-07-22 冷媒整流管及空调室内机

Publications (1)

Publication Number Publication Date
WO2021228027A1 true WO2021228027A1 (zh) 2021-11-18

Family

ID=72924748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092670 WO2021228027A1 (zh) 2020-07-22 2021-05-10 冷媒整流管及空调室内机

Country Status (2)

Country Link
CN (1) CN111829152A (zh)
WO (1) WO2021228027A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829152A (zh) * 2020-07-22 2020-10-27 青岛海尔空调电子有限公司 冷媒整流管及空调室内机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015965A1 (fr) * 2006-08-01 2008-02-07 Daikin Industries, Ltd. Dispositif de réfrigération
CN202204215U (zh) * 2011-08-31 2012-04-25 海信(山东)空调有限公司 一种换热器的分流装置及换热器
CN205939847U (zh) * 2016-08-03 2017-02-08 广东美的制冷设备有限公司 冷媒混合器及空调器
CN106440548A (zh) * 2016-11-11 2017-02-22 珠海格力电器股份有限公司 一种分液头及空调
CN109386988A (zh) * 2018-10-22 2019-02-26 广东美的暖通设备有限公司 多联机系统及其室外机、控制方法及装置和存储介质
CN111829152A (zh) * 2020-07-22 2020-10-27 青岛海尔空调电子有限公司 冷媒整流管及空调室内机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159321A (ja) * 1995-12-08 1997-06-20 Daikin Ind Ltd 分流ヘッダー
CN101963171B (zh) * 2010-10-26 2012-02-01 西安建筑科技大学 一种矩形断面t型分流整流三通
CN103363733B (zh) * 2012-04-10 2016-03-30 珠海格力电器股份有限公司 分液装置及包括该分液装置的空调器
CN202581969U (zh) * 2012-04-26 2012-12-05 海尔集团公司 空调器用分流器及具有该分流器的空调器
CN103673419B (zh) * 2012-09-12 2016-06-01 珠海格力电器股份有限公司 一种空调及其空调分流器
CN202792731U (zh) * 2012-09-24 2013-03-13 珠海格力电器股份有限公司 分液器稳流装置
CN204027077U (zh) * 2014-04-09 2014-12-17 深圳麦克维尔空调有限公司 一种风冷冷风/热泵机组系统
CN104034098A (zh) * 2014-07-04 2014-09-10 珠海格力电器股份有限公司 空调器及其进液均流装置
CN207247643U (zh) * 2017-09-07 2018-04-17 三菱重工海尔(青岛)空调机有限公司 一种新型分配器
CN110230901A (zh) * 2019-05-27 2019-09-13 广州大学 一种气液两相共用型的冷媒分配管及热泵系统
CN212538223U (zh) * 2020-07-22 2021-02-12 青岛海尔空调电子有限公司 冷媒整流管及空调室内机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015965A1 (fr) * 2006-08-01 2008-02-07 Daikin Industries, Ltd. Dispositif de réfrigération
CN202204215U (zh) * 2011-08-31 2012-04-25 海信(山东)空调有限公司 一种换热器的分流装置及换热器
CN205939847U (zh) * 2016-08-03 2017-02-08 广东美的制冷设备有限公司 冷媒混合器及空调器
CN106440548A (zh) * 2016-11-11 2017-02-22 珠海格力电器股份有限公司 一种分液头及空调
CN109386988A (zh) * 2018-10-22 2019-02-26 广东美的暖通设备有限公司 多联机系统及其室外机、控制方法及装置和存储介质
CN111829152A (zh) * 2020-07-22 2020-10-27 青岛海尔空调电子有限公司 冷媒整流管及空调室内机

Also Published As

Publication number Publication date
CN111829152A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
EP3217135B1 (en) Layered header, heat exchanger, and air-conditioning device
EP3205968B1 (en) Heat exchanger and air conditioning device
CN104949394B (zh) 一种换热器
JPWO2019058540A1 (ja) 冷媒分配器、及び、空気調和装置
EP3051245A1 (en) Laminate-type header, heat exchanger, and air-conditioning apparatus
EP2998680B1 (en) Laminated header, heat exchanger, and air conditioner
WO2021228027A1 (zh) 冷媒整流管及空调室内机
EP3136039A1 (en) Laminated header, heat exchanger, and air-conditioner
CN107543340A (zh) 节流兼分流组件及空调器
WO2017012382A1 (zh) 多联机室外机和具有其的多联机
CN212538223U (zh) 冷媒整流管及空调室内机
CN110440079B (zh) 连接管组件、换热器、制冷系统和空调器
KR20120081815A (ko) 공기 조화기
JP2006349238A (ja) 冷媒分流器
JPH11325656A (ja) ヘッダー分流器
CN213811242U (zh) 用于空调器的分液装置及空调器
CN204880868U (zh) 一种换热器及具有该换热器的空调系统
JP2006317098A (ja) 分流器
JPH0218449Y2 (zh)
KR20110045430A (ko) 분배기를 갖는 전자식 팽창밸브
CN205261961U (zh) 制冷系统
CN108844262B (zh) 分流器及具有其的空调器
CN218328401U (zh) 一种空调器
CN220507311U (zh) 一种微通道换热器和空调器
CN110440062B (zh) 连接管组件、换热器、制冷系统及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803205

Country of ref document: EP

Kind code of ref document: A1