WO2021226806A1 - 甘蓝型油菜高密度全基因组snp芯片及其应用 - Google Patents
甘蓝型油菜高密度全基因组snp芯片及其应用 Download PDFInfo
- Publication number
- WO2021226806A1 WO2021226806A1 PCT/CN2020/089681 CN2020089681W WO2021226806A1 WO 2021226806 A1 WO2021226806 A1 WO 2021226806A1 CN 2020089681 W CN2020089681 W CN 2020089681W WO 2021226806 A1 WO2021226806 A1 WO 2021226806A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brassica napus
- snp
- chip
- genome
- analysis
- Prior art date
Links
- 240000002791 Brassica napus Species 0.000 title claims abstract description 39
- 235000011293 Brassica napus Nutrition 0.000 title claims abstract description 37
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 26
- 238000004458 analytical method Methods 0.000 claims abstract description 22
- 230000002068 genetic effect Effects 0.000 claims abstract description 14
- 239000002773 nucleotide Substances 0.000 claims description 3
- 125000003729 nucleotide group Chemical group 0.000 claims description 2
- 230000004807 localization Effects 0.000 claims 1
- 239000000523 sample Substances 0.000 abstract description 20
- 210000000349 chromosome Anatomy 0.000 abstract description 6
- 102000054765 polymorphisms of proteins Human genes 0.000 abstract description 3
- 238000009395 breeding Methods 0.000 description 13
- 230000001488 breeding effect Effects 0.000 description 13
- 241000196324 Embryophyta Species 0.000 description 7
- 238000003205 genotyping method Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000012163 sequencing technique Methods 0.000 description 6
- 235000011331 Brassica Nutrition 0.000 description 5
- 241000219198 Brassica Species 0.000 description 5
- 240000007124 Brassica oleracea Species 0.000 description 5
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 5
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 5
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 240000007594 Oryza sativa Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 241000209140 Triticum Species 0.000 description 4
- 235000021307 Triticum Nutrition 0.000 description 4
- 238000013507 mapping Methods 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 244000068988 Glycine max Species 0.000 description 3
- 235000010469 Glycine max Nutrition 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 108091033319 polynucleotide Proteins 0.000 description 3
- 239000002157 polynucleotide Substances 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 2
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 230000009418 agronomic effect Effects 0.000 description 2
- 238000012098 association analyses Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000009973 maize Nutrition 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- 239000003147 molecular marker Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 208000035240 Disease Resistance Diseases 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 206010021929 Infertility male Diseases 0.000 description 1
- 208000007466 Male Infertility Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 101000708283 Oryza sativa subsp. indica Protein Rf1, mitochondrial Proteins 0.000 description 1
- 241000576755 Sclerotia Species 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 230000036579 abiotic stress Effects 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 238000012268 genome sequencing Methods 0.000 description 1
- 125000004383 glucosinolate group Chemical group 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000009403 interspecific hybridization Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000005849 recognition of pollen Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
Definitions
- the invention relates to the fields of molecular biology, genomics, bioinformatics and plant molecular breeding, and specifically relates to a high-density whole genome SNP chip of Brassica napus and its application.
- SNP markers are based on DNA sequencing (Davey et al., Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 12:499-510.), since the advent of the 454 sequencer in 2005
- the second-generation sequencing technology has been continuously improved, the efficiency of genome sequencing has been greatly improved, the cost of sequencing has been drastically reduced, and the complete genome sequence of a large number of species has been completed, which has greatly promoted the progress of functional genome research.
- Re-sequencing different varieties using the SNP markers found in re-sequencing, to construct a high-density cabbage-type oil menu ploidy map (HapMap), and using Genome-wide Association Mapping (GWAS) to analyze important agronomic traits Association analysis, identify candidate gene loci related to important agronomic traits, and establish a set of efficient, rapid, mature and stable, low-cost, high-throughput genotyping methods (WEI DaYong, etc., Genome-Wide Association Study of the Fertility Restorer Loci for polCMS in Rapeseed (Brassica napus L.). Scientia Agricultura Sinica.2017, Issue(5):802-810), is the priority of molecular biology researchers.
- Illumina Infinium Rice SNP50 (Chen et al., A High-Density SNP Genotyping Array for RiceBiology and Molecular Breeding.Mo lecular Plant,2014,7(3):541-553) has been widely used in germplasm resource screening, variety authenticity and purity identification, genetic background analysis of breeding materials, etc.; Ganal et al. (Alargemaize(ZeamaysL.
- SNP genotyping array development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome.PLos One.2011, 6:e28334)
- the Illumina Infinium maize SNP50 gene chip was used to analyze two maize recombinant inbred line populations and obtained High-density genetic linkage maps containing 20913 and 14524 markers respectively; in the domestication history of soybeans, Affymetrix Axiom genome-wide SNP chip NJAU 355K SoySNP analyzed 105 wild and 262 cultivars, and concluded that soybean cultivars originated in China
- the conclusions of the central and northern regions Wang et al., Development and application of a novel gene-wide SNP array reveals domestication history in soybean. Sci Rep.
- the present invention designs a 50K DNA chip based on 32,216,304 SNPs, which are extracted from resequencing data of 510 rape inbred lines.
- 1,618 functional probes targeting published functional genes have been designed, such as mitochondrial-specific genes from the cytoplasmic male sterility mitochondrial genome and corresponding restorer genes, as well as the specificity of genetically modified materials. Sex probe.
- the experimental results show that, compared with the Brassica60K chip of cabbage, the probes of the Bnapus50K chip have more polymorphisms in the tested varieties. Therefore, the Bnapus50K chip has better applications in the genome breeding and genome research of Brassica napus. prospect.
- the purpose of the present invention is to provide a high-density whole-genome SNP chip for Brassica napus, the SNP chip includes 42,090
- SNP molecular marker its nucleotide sequence is shown in SEQID No. 1 ⁇ 42,090.
- Another object of the present invention is to provide the application of a high-density whole genome SNP chip of Brassica napus.
- the present invention adopts the following technical measures:
- the suballelic frequency is greater than 0.05 and the mass score is greater than or equal to 30, a total of 11,249,037; SNPs that are less than 50bp away from the left and right SNPs are removed , Remaining 1,040,415; Extract the uniquely aligned SNP:
- the 50bp sequence on the left and right sides of the SNP has a unique match on one side (the matching degree of the sequence at other positions is less than 85%), a total of 286,921; these 286,921 sites are submitted to the scoring system for scoring , And integrated the QTL loci (including flowering time, oil content, self-incompatibility, etc.) reported in 25 rape GWAS literatures reviewed, and finally selected 45,707 polynucleotides.
- the application of the Brassica napus high-density whole genome SNP chip includes the use of the SNP chip provided by the present invention to identify or locate the functional gene of Brassica napus; the use of the SNP chip provided by the present invention to analyze the genetic diversity of Brassica napus; and the use of the present invention provides The SNP chip is used for the analysis of Brassica napus varieties.
- the present invention has the following advantages:
- the invention Compared with the same type of Brassica 60K chips that integrates 52,157 SNP markers, the invention has a better variety representation than the same type of Brassica 60K chips that are publicly released by 16 international academic and commercial institutions.
- the SNP sites of the Brassica 60K chip were identified and screened from more than 70 Brassica napus sequencing data.
- the Bnapus50K Brassica napus genome chip SNP sites of the present invention were derived from the resequencing results of 510 Brassica napus varieties.
- the Bnapus 50K probe of the present invention is more evenly distributed on the genome than Brassica60K ( Figure 1, left).
- Figure 1 is a schematic diagram of the distribution of all SNP sites on the Brassica 60K chip and Bnapus50K whole genome breeding chip on the whole genome.
- the left picture is the Brassica60K chip, and the right picture is the Bnapus 50K chip.
- Figure 2 is a typing diagram of Brassica napus P4, 1L238 and their hybrid progeny P4/1L238.
- Figure 3 shows the Manhattan chart of the GWAS association results.
- Figure 4 shows the BSA positioning results.
- the present invention uses 510 cabbage rape varieties (89.8% of the varieties are from China, 10.2% of the varieties are from East Asia, Europe, America, Australia and other countries, which are very representative of Chinese rape varieties) re-sequencing results to identify A total of 32,216,304 original mutation sites (SNP+INDEL) were retained, and only two genotypes were retained.
- the suballelic frequency was greater than 0.05 and the mass score was greater than or equal to 30, a total of 11,249,037 sites; the distance between the left and right SNPs was less than 50bp SNP, 1,040,415 remaining; extract the uniquely aligned SNP: the 50bp sequence on the left and right sides of the SNP has a unique match on one side (the matching degree of the sequence at other positions is less than 85%), a total of 286,921; these 286,921 sites are submitted to the scoring system Score and integrate the QTL loci reported in 25 rape GWAS literatures reviewed, and finally screened 45707 polynucleotides. These sequences were submitted to Illumina, and the Infinium chip manufacturing technology was used to make SNP chips. Among them, 42,090 high-quality probes were successfully synthesized and named Bnapus50K; the nucleotide sequences of the 42,090 probes are as SEQ ID NO.1 ⁇ 42,090 shown.
- the method of using Bnapus50K Brassica napus whole genome breeding chip to detect Brassica napus samples includes the following steps:
- Bnapus50K chip is applied to the genetic background analysis of Brassica napus:
- the Bnapus50K chip was used to detect P4/1L238 and its parents P4 and 1L238 to determine whether it can be used for the background selection of the progeny population of the hybrid combination.
- Bnapus50K chip is used in genome-wide association study (Genome-wide association study; GWAS):
- Genome-wide association analysis is to use millions of single-nucleotide polymorphisms (SNPs) in the genome as molecular genetic markers to conduct a control analysis or correlation analysis at the whole-genome level, and to find out the impact through comparison A new strategy for gene mutation of complex traits.
- SNPs single-nucleotide polymorphisms
- the Bnapus50K chip was used to detect 356 Brassica napus materials, and the same quantitative trait RT2 (root weight at seedling stage) of the corresponding materials was determined, and the p value associated with each point and the phenotype was calculated. Draw the corresponding Manhattan map according to the p value.
- Bnapus50K chip is used in mixed grouping analysis (Bulkedsegregation analysis; BSA):
- BSA Bitsegregation analysis
- segregated group grouping analysis is a method of analysis by selecting individuals with extreme or representative traits in a group to form a mixed pool. By studying the difference of allele/molecular marker frequency between mixed pools, the locus related to the trait is located on the genome.
- the Bnapus50K chip was used to detect two cabbage rape mixed pools with extreme phenotypes (flowering and closed flowers) (20 samples of each were mixed), and the genes of each locus were tested. The type is compared, and the position of the difference site is marked in the Brassica napus genome.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
Claims (4)
- 甘蓝型油菜高密度全基因组SNP芯片,其特征在于,所述的SNP芯片包括42090个SNP分子标记,其核苷酸序列如SEQID No.1~42090所示。
- 权利要求1所述的SNP芯片在甘蓝型油菜功能基因鉴定或定位中的应用。
- 权利要求1所述的SNP芯片在甘蓝型油菜遗传多样性分析中的应用。
- 权利要求1所述的SNP芯片在甘蓝型油菜品种分析中的应用。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/089681 WO2021226806A1 (zh) | 2020-05-11 | 2020-05-11 | 甘蓝型油菜高密度全基因组snp芯片及其应用 |
CN202080001504.9A CN115867667A (zh) | 2020-05-11 | 2020-05-11 | 甘蓝型油菜高密度全基因组snp芯片及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/089681 WO2021226806A1 (zh) | 2020-05-11 | 2020-05-11 | 甘蓝型油菜高密度全基因组snp芯片及其应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021226806A1 true WO2021226806A1 (zh) | 2021-11-18 |
Family
ID=78525610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/089681 WO2021226806A1 (zh) | 2020-05-11 | 2020-05-11 | 甘蓝型油菜高密度全基因组snp芯片及其应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115867667A (zh) |
WO (1) | WO2021226806A1 (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114231654A (zh) * | 2021-12-23 | 2022-03-25 | 中国农业科学院油料作物研究所 | 一种与油菜千粒重关联的parms分子标记及应用 |
CN114752702A (zh) * | 2022-05-25 | 2022-07-15 | 中国农业科学院油料作物研究所 | 一种与油菜钙含量性状QTL紧密连锁的分子标记BnCa-2C2及其应用 |
CN114854895A (zh) * | 2022-05-25 | 2022-08-05 | 中国农业科学院油料作物研究所 | 一种与油菜锌含量性状QTL紧密连锁的分子标记BnZn-3A1及其应用 |
CN114990250A (zh) * | 2022-05-25 | 2022-09-02 | 中国农业科学院油料作物研究所 | 与油菜甲基硒代半胱氨酸含量性状QTL紧密连锁的分子标记BnMes-5A1及其应用 |
CN115992292A (zh) * | 2023-03-21 | 2023-04-21 | 湖南农业大学 | 一种甘蓝型油菜snp分子标记组合及其应用 |
CN116004898A (zh) * | 2022-12-23 | 2023-04-25 | 广东省农业科学院作物研究所 | 一种花生40K液相SNP芯片PeanutGBTS40K及其应用 |
CN116555469A (zh) * | 2023-04-04 | 2023-08-08 | 郑州大学 | 与油菜紫薹性状基因位点紧密连锁的snp分子标记在薹油两用型紫薹油菜新品种选育中的应用 |
CN116555474A (zh) * | 2023-04-29 | 2023-08-08 | 中国农业科学院油料作物研究所 | 油菜千粒重关联的parms分子标记或标记组合的应用 |
EP4278891A1 (en) * | 2022-05-20 | 2023-11-22 | KWS SAAT SE & Co. KGaA | Clubroot resistance and markers in brassica |
CN117344046A (zh) * | 2023-09-28 | 2024-01-05 | 河南省农业科学院园艺研究所 | 一种白菜全基因组液相芯片及其应用 |
NL2033442B1 (en) * | 2022-07-05 | 2024-01-19 | Univ Henan Agricultural | A Preparation Method and the Application of an Ultra-high Density SNP Chip for Wheat |
CN117512185A (zh) * | 2023-12-06 | 2024-02-06 | 中国农业科学院油料作物研究所 | 一种与油菜秸秆木质素含量关联分子标记组合及应用 |
CN118326074A (zh) * | 2024-05-06 | 2024-07-12 | 中国农业科学院油料作物研究所 | 一种与甘蓝型油菜种子脂肪酸组分显著关联的位点qFAC.A9-1的分子标记及应用 |
-
2020
- 2020-05-11 WO PCT/CN2020/089681 patent/WO2021226806A1/zh active Application Filing
- 2020-05-11 CN CN202080001504.9A patent/CN115867667A/zh active Pending
Non-Patent Citations (3)
Title |
---|
CLARKE WAYNE E; HIGGINS ERIN E; PLIESKE JOERG; WIESEKE RALF; SIDEBOTTOM CHRISTINE; KHEDIKAR YOGENDRA; BATLEY JACQUELINE; EDWARDS D: "A high density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single locus markers in the allotetraploid genome", THEORETICAL AND APPLIED GENETICS, vol. 129, no. 10, 30 June 2016 (2016-06-30), pages 1887 - 1899, XP036055960, ISSN: 0040-5752, DOI: 10.1007/s00122-016-2746-7 * |
G. DURSTEWITZ , A. POLLEY , J. PLIESKE , H. LUERSSEN , E. M. GRANER , R. WIESEKE , M. W. GANAL: "SNP discovery by amplicon sequencing and multiplex SNP genotyping in the allopolyploid species Brassica napus", GENOME., vol. 53, no. 11, 31 December 2010 (2010-12-31), Ottawa; CA , pages 948 - 956, XP009531772, ISSN: 0831-2796, DOI: 10.1139/G10-079 * |
ZHOU LONG-HUA;JIANG LI-XI: "SNP Molecular Marker and Research Progress of Its Application in Brassica Napus", JOURNAL OF AGRICULTURAL BIOTECHNOLOGY, vol. 24, no. 10, 6 July 2016 (2016-07-06), pages 1608 - 1616, XP009531818, ISSN: 1674-7968, DOI: 10.3969/j.issn.1674-7968.2016.10.018 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114231654A (zh) * | 2021-12-23 | 2022-03-25 | 中国农业科学院油料作物研究所 | 一种与油菜千粒重关联的parms分子标记及应用 |
EP4278891A1 (en) * | 2022-05-20 | 2023-11-22 | KWS SAAT SE & Co. KGaA | Clubroot resistance and markers in brassica |
CN114752702A (zh) * | 2022-05-25 | 2022-07-15 | 中国农业科学院油料作物研究所 | 一种与油菜钙含量性状QTL紧密连锁的分子标记BnCa-2C2及其应用 |
CN114854895A (zh) * | 2022-05-25 | 2022-08-05 | 中国农业科学院油料作物研究所 | 一种与油菜锌含量性状QTL紧密连锁的分子标记BnZn-3A1及其应用 |
CN114990250A (zh) * | 2022-05-25 | 2022-09-02 | 中国农业科学院油料作物研究所 | 与油菜甲基硒代半胱氨酸含量性状QTL紧密连锁的分子标记BnMes-5A1及其应用 |
CN114752702B (zh) * | 2022-05-25 | 2023-08-11 | 中国农业科学院油料作物研究所 | 一种与油菜钙含量性状QTL紧密连锁的分子标记BnCa-2C2及其应用 |
NL2033442B1 (en) * | 2022-07-05 | 2024-01-19 | Univ Henan Agricultural | A Preparation Method and the Application of an Ultra-high Density SNP Chip for Wheat |
CN116004898A (zh) * | 2022-12-23 | 2023-04-25 | 广东省农业科学院作物研究所 | 一种花生40K液相SNP芯片PeanutGBTS40K及其应用 |
CN115992292A (zh) * | 2023-03-21 | 2023-04-21 | 湖南农业大学 | 一种甘蓝型油菜snp分子标记组合及其应用 |
CN115992292B (zh) * | 2023-03-21 | 2023-06-27 | 湖南农业大学 | 一种甘蓝型油菜snp分子标记组合及其应用 |
WO2024193422A1 (zh) * | 2023-03-21 | 2024-09-26 | 湖南农业大学 | 一种甘蓝型油菜snp分子标记组合及其应用 |
CN116555469A (zh) * | 2023-04-04 | 2023-08-08 | 郑州大学 | 与油菜紫薹性状基因位点紧密连锁的snp分子标记在薹油两用型紫薹油菜新品种选育中的应用 |
CN116555474A (zh) * | 2023-04-29 | 2023-08-08 | 中国农业科学院油料作物研究所 | 油菜千粒重关联的parms分子标记或标记组合的应用 |
CN116555474B (zh) * | 2023-04-29 | 2023-11-17 | 中国农业科学院油料作物研究所 | 油菜千粒重关联的parms分子标记或标记组合的应用 |
CN117344046A (zh) * | 2023-09-28 | 2024-01-05 | 河南省农业科学院园艺研究所 | 一种白菜全基因组液相芯片及其应用 |
CN117512185A (zh) * | 2023-12-06 | 2024-02-06 | 中国农业科学院油料作物研究所 | 一种与油菜秸秆木质素含量关联分子标记组合及应用 |
CN118326074A (zh) * | 2024-05-06 | 2024-07-12 | 中国农业科学院油料作物研究所 | 一种与甘蓝型油菜种子脂肪酸组分显著关联的位点qFAC.A9-1的分子标记及应用 |
Also Published As
Publication number | Publication date |
---|---|
CN115867667A (zh) | 2023-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021226806A1 (zh) | 甘蓝型油菜高密度全基因组snp芯片及其应用 | |
WO2018085971A1 (zh) | 棉花全基因组snp芯片及其应用 | |
US20160153056A1 (en) | Rice whole genome breeding chip and application thereof | |
CN108060261B (zh) | 一种对玉米snp标记组合进行捕获测序的方法及其应用 | |
CN112981001B (zh) | 鉴定矮杆甘蓝型油菜的分子标记BnC04Y2255及其应用 | |
CN113584216B (zh) | 小麦粒重基因TaCYP78A16的KASP标记开发及其应用 | |
CN110923352B (zh) | 小麦抗白粉病基因PmDTM的KASP标记及其应用 | |
CN114574613B (zh) | 一种小麦-拟鹅观草全基因组液相芯片及应用 | |
Ma et al. | Construction of chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) in the background of the japonica rice cultivar Nipponbare (Oryza sativa L.) | |
US20130040826A1 (en) | Methods for trait mapping in plants | |
CN111334597B (zh) | 用于检测西瓜白粉病抗性的snp位点、kasp标记及其应用 | |
CN116590453B (zh) | 一个与莲植株矮化性状相关的snp分子标记及其应用 | |
CN108456740A (zh) | 一个水稻稻瘟病抗性位点‘Pi-jx’及其Indel标记引物和育种应用 | |
WO2020082314A1 (zh) | 水稻绿色基因芯片与应用 | |
CN115786567B (zh) | 一种具有半显性的玉米矮化相关分子标记及其应用 | |
CN115961076A (zh) | 马铃薯非整倍体种间杂种基因组分析方法及其在抗寒附加系材料创制中的应用 | |
CN113278723B (zh) | 合成芥菜中导入的白菜基因组片段或遗传多样性分析的组合物及应用 | |
CN116479155A (zh) | 马铃薯抗寒分子组合标记及其在育种中的应用 | |
CN112746121B (zh) | 一种与大豆农艺性状相关的snp位点组合、基因芯片及应用 | |
CN111118192B (zh) | 小麦穗基部小穗结实性主效qtl的kasp分子标记及其应用 | |
CN111733278A (zh) | 水稻钠钾离子吸收qtl连锁的snp分子标记及其应用 | |
CN117327832B (zh) | 玉米高密度全基因组snp芯片及其应用 | |
CN117887885B (zh) | 大豆油分含量相关主效单核苷酸多态性位点及其应用 | |
CN113801957B (zh) | 与小麦粒长主效QTL连锁的SNP分子标记KASP-BE-kl-sau2及应用 | |
CN117248061B (zh) | 与大豆籽粒油分含量相关的InDel位点、分子标记、引物及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20935905 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20935905 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/06/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20935905 Country of ref document: EP Kind code of ref document: A1 |