WO2021223343A1 - Procédé de préparation d'une jonction pn à échelle hybride de nitrure de gallium-disulfure de molybdène - Google Patents

Procédé de préparation d'une jonction pn à échelle hybride de nitrure de gallium-disulfure de molybdène Download PDF

Info

Publication number
WO2021223343A1
WO2021223343A1 PCT/CN2020/109209 CN2020109209W WO2021223343A1 WO 2021223343 A1 WO2021223343 A1 WO 2021223343A1 CN 2020109209 W CN2020109209 W CN 2020109209W WO 2021223343 A1 WO2021223343 A1 WO 2021223343A1
Authority
WO
WIPO (PCT)
Prior art keywords
mos
pdms
gallium nitride
junction
molybdenum disulfide
Prior art date
Application number
PCT/CN2020/109209
Other languages
English (en)
Chinese (zh)
Inventor
曹玉洁
陈敦军
谢自力
Original Assignee
南京南大光电工程研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南大光电工程研究院有限公司 filed Critical 南京南大光电工程研究院有限公司
Publication of WO2021223343A1 publication Critical patent/WO2021223343A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials

Definitions

  • the invention relates to a method for preparing a mixed-scale PN junction of gallium nitride and molybdenum disulfide, which belongs to the field of micro-nano electronic devices.
  • two-dimensional PN semiconductor heterojunction has become the research focus of basic science and applied physics. It can realize new functions by combining the advantages of different materials, or regulate the material's performance through efficient charge transfer at the interface of the heterojunction. Photoelectric performance. Therefore, the two-dimensional PN semiconductor heterojunction has great prospects in practical applications in the fields of microelectronics and optoelectronics, such as photovoltaic devices, light emitters, and field effect transistors. The built-in electric field and interlayer recombination in the PN junction will determine the rectification characteristics, photovoltaic effect and light detection capability of the device.
  • MoS 2 As a typical transition metal sulfide, MoS 2 has a unique two-dimensional layered structure, and with its unique physical and optoelectronic properties, it has become a research hotspot for new functional materials.
  • n-MoS 2 /p-GaN mixed-scale PN junction there are three methods for preparing n-MoS 2 /p-GaN mixed-scale PN junction.
  • the first is to prepare n-MoS 2 on p-GaN by a traditional mechanical lift-off method. The device size is usually less than ten microns and the yield is low.
  • the second method is to directly grow the n-MoS 2 film on p-GaN by CVD synthesis method, and its size is mostly about one micron, which cannot meet the requirements of the test.
  • the third method is to transfer the pre-grown large-area n-MoS 2 to the p-GaN surface by a wet transfer method . The quality of the MoS 2 film will inevitably be damaged during the transfer process.
  • the purpose of the present invention is to provide a method for preparing a mixed-scale PN junction of gallium nitride and molybdenum disulfide, which can form a large-size MoS 2 film on the surface of p-GaN.
  • a preparation method of gallium nitride and molybdenum disulfide mixed-scale PN junction which includes the following steps:
  • a metal electrode is vapor-deposited on one side of the p-GaN layer surface, and finally when the MoS 2 film is transferred to the surface of the p-GaN layer, the surface of the p-GaN layer is not vapor-deposited electrode
  • One side of the buckle is back on the PDMS, and the metal electrode is not in contact with the PDMS.
  • spreading a uniform layer of MoS 2 flake crystals on the surface of the tape is specifically: spreading a layer of MoS 2 flake crystals on the surface of a piece of tape, and then using another unused tape with the MoS 2 flake crystals attached.
  • the adhesive tapes are adhered to each other, and this is repeated several times until a uniform MoS 2 flake crystal layer is formed on the surface of the tape.
  • the substrate is a sapphire substrate, a Si substrate or a SiC substrate.
  • the p-GaN layer is Mg-doped p-GaN with a doping concentration of 5.9 ⁇ 10 17 cm -3 and a thickness of 400-500 nm.
  • the electrode is a Ti/Al/Ni/Au multilayer metal prepared by physical vapor deposition, with a thickness of 30nm/150nm/50nm/100nm in sequence, forming an ohmic contact with p-GaN.
  • the size of the MoS 2 film prepared by the mechanical peeling method of direct transfer of the adhesive tape is very small, usually 5-10 microns or even smaller, and the substrate surface is not clean, and there are more MoS 2 in colloidal and bulk materials, but under normal circumstances, we The thin MoS 2 required is very small;
  • the bulky MoS 2 flakes will be transferred to the PDMS.
  • the MoS 2 flakes on the PDMS are mostly whole pieces (the tape usually has a lot of broken MoS 2 flakes, size of the film pieces MoS 2 MoS 2 resulting transfer sheet smaller to meet the demands), and then transferred to the film size of MoS 2 on the size of the film obtained will be much larger than the p-GaN transferred out of the ordinary tape, and on the substrate more clean.
  • the PDMS-assisted dry transfer used in the present invention has simple operation and low production cost, and has less damage to the MoS 2 film compared with the wet transfer method.
  • the MoS 2 film prepared by this method has a larger size, and the size of the PN junction is about 20-30 ⁇ m, and the sample substrate prepared by this method is relatively clean, which is convenient for subsequent device testing.
  • the prepared device exhibits obvious rectification effect, and has great application prospects in semiconductor rectifier tubes, PN junction photosensitive devices, etc.
  • Fig. 1 is a schematic diagram of preparing 400-500 nm Mg-doped p-GaN on a sapphire substrate.
  • Figure 2 is a schematic diagram of preparing an ohmic contact electrode on p-GaN.
  • Fig. 3 is a schematic diagram of preparing an n-MoS 2 thin film in an electrodeless area on p-GaN.
  • Figure 4 is a schematic diagram of the system structure of the I-V characteristic curve of the C-AFM test device.
  • Figure 5 shows the I-V characteristic curve obtained from the C-AFM test.
  • 1-sapphire substrate 2-gallium nitride, 3-electrode, 4-molybdenum disulfide film, 5-needle tip.
  • PA-MBE method deposits 400-500nm p-GaN on a sapphire substrate, growth method: metal gallium and nitrogen are used as Ga source and N source respectively, the growth temperature is 890°C; N 2 flow rate is 0.7sccm, power The temperature of the Ga source is 1050°C, and the temperature of the Mg source is 240°C.
  • the temperature rises to the required temperature first open the Ga baffle to grow a fresh GaN layer on the surface of the substrate, the growth time is 2 minutes, and then open the Mg baffle to start growth, the growth time is 2h;
  • the size of MoS 2 flake crystal is about 0.5mm*0.5mm
  • contact PDMS with the side where MoS 2 flake crystal is stuck with tape press lightly with a blade several times or lightly press several times with fingers
  • Transfer MoS 2 to PDMS to form a MoS 2 film remove the tape, and buckle the electrodeless part of the p-GaN layer in the device prepared in step (2) on the PDMS, press lightly several times or lightly with a blade
  • the MoS 2 film is transferred to the surface of the p-GaN layer to form a mixed-scale PN junction of gallium nitride and molybdenum disulfide.
  • FIG. 4 it is a schematic diagram of the system structure of C-AFM testing the IV characteristic curve of MoS 2 local carriers.
  • the conductive needle tip placed on the n-MoS 2 is grounded, and a bias voltage VBias is applied to the electrode 3 at the same time, and the range of the bias value is changed to obtain the IV characteristic curve at this point in the test range.
  • FIG. 5 it is the I-V characteristic curve graph of C-AFM test PN junction under certain bias voltage. It can be seen from the figure that the device exhibits obvious rectification characteristics, with a leakage current of about 1.5pA and a turn-on voltage of about 2V. When the applied bias reaches a certain value, the part where the current value exceeds 22nA will gradually become saturated, which is due to the limitation of the C-AFM test range.
  • the electrode making step can also be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

La divulgation concerne un procédé de préparation d'une jonction PN à échelle hybride de nitrure de gallium-disulfure de molybdène, comprenant les étapes consistant : (1) à déposer une couche de p-GaN sur un substrat; et (2) à placer le PDMS sur la surface d'une feuille de verre propre et plate, à poser une couche de cristaux de feuille de type MoS2 uniforme sur la surface d'un ruban adhésif, à mettre PDMS en contact avec la surface collée avec le cristal de feuille de type MoS2 du ruban adhésif et à appliquer une pression, de sorte que MoS2 soit transféré au PDMS pour former un film de type MoS2, à éliminer la bande adhésive, puis à effectuer une petite modification de la surface de la couche P-GaN du dispositif préparé à l'étape (1) sur le PDMS et à appliquer une pression, de telle sorte que le film de type MoS2 soit transféré à la surface de la couche p-GaN, de manière à préparer la jonction PN à échelle hybride de nitrure de gallium-disulfure de molybdène. Dans la présente invention, un transfert sec auxiliaire PDMS est utilisé, l'opération est simple, et les coûts de fabrication sont faibles. Le film mince de type MoS2 préparé à l'aide du procédé a une taille relativement grande, et par comparaison à un procédé de décapage mécanique classique, le substrat d'échantillon préparé à l'aide du procédé est relativement propre, et facilite le test de dispositif ultérieur.
PCT/CN2020/109209 2020-05-07 2020-08-14 Procédé de préparation d'une jonction pn à échelle hybride de nitrure de gallium-disulfure de molybdène WO2021223343A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010375617.7 2020-05-07
CN202010375617.7A CN111430244B (zh) 2020-05-07 2020-05-07 氮化镓二硫化钼混合尺度pn结的制备方法

Publications (1)

Publication Number Publication Date
WO2021223343A1 true WO2021223343A1 (fr) 2021-11-11

Family

ID=71550989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109209 WO2021223343A1 (fr) 2020-05-07 2020-08-14 Procédé de préparation d'une jonction pn à échelle hybride de nitrure de gallium-disulfure de molybdène

Country Status (2)

Country Link
CN (1) CN111430244B (fr)
WO (1) WO2021223343A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497248A (zh) * 2021-12-08 2022-05-13 华南师范大学 一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430244B (zh) * 2020-05-07 2021-11-23 南京南大光电工程研究院有限公司 氮化镓二硫化钼混合尺度pn结的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129166A (zh) * 2016-06-28 2016-11-16 深圳大学 一种GaN‑MoS2分波段探测器及其制备方法
WO2019099461A1 (fr) * 2017-11-14 2019-05-23 Massachusetts Institute Of Technology Croissance épitaxiale et transfert par l'intermédiaire de couches bidimensionnelles à motifs (2d)
CN110690317A (zh) * 2019-10-31 2020-01-14 华南理工大学 一种基于单层MoS2薄膜/GaN纳米柱阵列的自供电紫外探测器及其制备方法
CN110993703A (zh) * 2019-11-27 2020-04-10 中国科学院金属研究所 一种GaN/MoS2二维范德华异质结光电探测器及其制备方法
CN111430244A (zh) * 2020-05-07 2020-07-17 南京南大光电工程研究院有限公司 氮化镓二硫化钼混合尺度pn结的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129166A (zh) * 2016-06-28 2016-11-16 深圳大学 一种GaN‑MoS2分波段探测器及其制备方法
WO2019099461A1 (fr) * 2017-11-14 2019-05-23 Massachusetts Institute Of Technology Croissance épitaxiale et transfert par l'intermédiaire de couches bidimensionnelles à motifs (2d)
CN110690317A (zh) * 2019-10-31 2020-01-14 华南理工大学 一种基于单层MoS2薄膜/GaN纳米柱阵列的自供电紫外探测器及其制备方法
CN110993703A (zh) * 2019-11-27 2020-04-10 中国科学院金属研究所 一种GaN/MoS2二维范德华异质结光电探测器及其制备方法
CN111430244A (zh) * 2020-05-07 2020-07-17 南京南大光电工程研究院有限公司 氮化镓二硫化钼混合尺度pn结的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497248A (zh) * 2021-12-08 2022-05-13 华南师范大学 一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备方法

Also Published As

Publication number Publication date
CN111430244B (zh) 2021-11-23
CN111430244A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
CN106206710B (zh) 一种二维材料异质结场效应晶体管、其制备方法和晶体管阵列器件
WO2021223343A1 (fr) Procédé de préparation d'une jonction pn à échelle hybride de nitrure de gallium-disulfure de molybdène
CN110277461B (zh) 基于二硫化铼/二硒化钨异质结的光电器件及制备方法
CN103077963B (zh) 一种欧姆接触电极、其制备方法及包含该欧姆接触电极的半导体元件
CN110648922A (zh) 一种二维过渡金属硫属化合物薄膜大面积转移的方法及其应用
CN109727846A (zh) 大面积制备金属相与半导体相接触的二维碲化钼面内异质结的方法及应用
Liu et al. Highly efficient broadband photodetectors based on lithography-free Au/Bi 2 O 2 Se/Au heterostructures
CN112635594A (zh) 基于极性J-TMDs/β-Ga2O3异质结的高速光电子器件及其制备方法
WO2023045172A1 (fr) Détecteur de lumière bleue à hétérojonction carbure de titane/ingan, et procédé de préparation associé
CN107230615B (zh) 一种石墨烯电极的制备方法
CN111129169B (zh) 一种基于石墨烯/二硒化钨/二硒化锡叠层结构的光电器件及其制备方法
CN104319320B (zh) 一种具有复合透明电极的led芯片及其制作方法
CN108550624A (zh) 一种高散热性能双栅氧化镓场效应薄膜晶体管及其制备方法
CN110676384A (zh) 一种氮化硼封装的二维有机-无机异质结及其制备方法
CN110034192B (zh) 利用氧化亚锡调节阈值电压的氧化镓场效应管及制备方法
CN210325807U (zh) 一种氧化镓基场效应晶体管
CN111987173A (zh) 一种可集成的二维光电突触器件阵列及其制备方法
CN111864006A (zh) 基于引入氧缺陷的多层TMDs光电器件及制备方法
CN208077984U (zh) 具有顶栅和底栅结构的氧化镓薄膜场效应晶体管
CN203026510U (zh) 一种欧姆接触电极及包含该欧姆接触电极的半导体元件
CN112447858B (zh) 结型场效应晶体管及其制备方法
CN113823697B (zh) 基于二维尺寸裁剪的肖特基栅场效应晶体管及其制备方法
CN114864709A (zh) 一种光电探测器及其制备方法和应用
CN111354804B (zh) 基于Si锥/CuO异质结的自驱动光电探测器及其制备方法
CN113838817A (zh) 一种金刚石基氮化镓异质结二极管器件的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934259

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20934259

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 26/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20934259

Country of ref document: EP

Kind code of ref document: A1