CN110277461B - 基于二硫化铼/二硒化钨异质结的光电器件及制备方法 - Google Patents

基于二硫化铼/二硒化钨异质结的光电器件及制备方法 Download PDF

Info

Publication number
CN110277461B
CN110277461B CN201910494240.4A CN201910494240A CN110277461B CN 110277461 B CN110277461 B CN 110277461B CN 201910494240 A CN201910494240 A CN 201910494240A CN 110277461 B CN110277461 B CN 110277461B
Authority
CN
China
Prior art keywords
layer
rhenium disulfide
heterojunction
tungsten diselenide
res
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910494240.4A
Other languages
English (en)
Other versions
CN110277461A (zh
Inventor
吴章婷
洪锦涛
张阳
郑鹏
郑梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201910494240.4A priority Critical patent/CN110277461B/zh
Publication of CN110277461A publication Critical patent/CN110277461A/zh
Application granted granted Critical
Publication of CN110277461B publication Critical patent/CN110277461B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开一种基于二硫化铼/二硒化钨(ReS2/WSe2)异质结的光电器件及制备方法,属于材料应用技术领域。本发明包括:P型硅衬底、二氧化硅绝缘层、单层ReS2和WSe2构成的异质结、漏极和源极;所述的源极、漏极、单层ReS2和WSe2均位于二氧化硅/硅(SiO2/Si)衬底上,其中Si为栅极。本发明还公开了一种简易地制备上述光电器件的方法。该光电探测器件实现了宽的势垒区和抑制了ReS2中的缺陷态对探测器的影响,提高了探测器的响应时间。

Description

基于二硫化铼/二硒化钨异质结的光电器件及制备方法
技术领域
本发明属于光电子功能器件领域,特别是涉及一种基于单层二硫化铼/二硒化钨异质结的光电器件及制备方法。
背景技术
自二维石墨烯发现以来,一系列具有非零带隙的二维材料(如过渡金属硫属化合物(TMDCs)、黑磷(BP)和氮化硼(BN))不断被研究,弥补了零带隙的石墨烯在逻辑器件等应用方面的缺陷,促进了二维材料在电子和光电子学方面的发展。由于TMDCs具有非常好的低维稳定性、可调节的带隙、强光致发光、以及在逻辑电路中可以制备成优异性能的光电器件等特性,被认为是极具潜力的电子和光电子材料。
缺陷是二维半导体材料研究中不可或缺的一环。实际上,在TMDCs中广泛存在着空位、吸附原子、晶界和替代掺杂等缺陷。这些缺陷的存在会对TMDCs的光学和光电性能产生很大的影响。二硫化铼(ReS2)是一种n型的直接带隙半导体,其直接带隙不随层数改变。少层的ReS2中缺陷态的存在,使得ReS2光电流产生很高的增益,其光响应率达到了88600AW-1。然而,深的束缚态使得ReS2具有超长的响应时间。此外,目前基于ReS2的PN光电器件需要复杂的制备工艺,增加器件成本,并且会在材料中引入新的缺陷。
发明内容
为了解决上述问题,本发明的目的是提供一种基于单层ReS2/WSe2异质结的光电器件。该光电器件利用单层ReS2和WSe2形成的宽的势垒区来抑制ReS2中的缺陷态对探测器的影响,提高了该光电器件的响应时间。
本发明的一个实施方式提供了一种基于二维ReS2-WSe2异质结的光电子器件,包括:
硅衬底层;
设置于所述硅衬底层上的绝缘层;
设置于所述绝缘层上的WSe2层和ReS2层,所述WSe2层与所述ReS2层范德瓦尔斯接触,形成WSe2/ReS2异质结;
设置于所述WSe2层和ReS2层上的电极层;
所述WSe2层为WSe2单晶层,所述ReS2层为ReS2单晶层。
作为优选的技术方案,硅衬底层为P型硅衬底层。
在本发明中,使用单层ReS2和WSe2构成异质结。ReS2中存在大量的S空位缺陷,为n型半导体。WSe2中存在W空位缺陷,为p型半导体。S空位缺陷的存在导致ReS2出现深能级的缺陷态,使得ReS2响应非常的慢,为分钟量级。该光电器件利用n型ReS2和p型WSe2形成的宽的势垒区来抑制ReS2中的缺陷态对探测器的影响,形成具有快速响应的光电子器件。
在本发明中使用了转移电极的方法制作电极,代替传统电子束曝光制备电极的方式。转移电极法在制作电极过程中能使异质结不会受到电子束辐照和残留PMMA影响,能够让异质结不受任何污染。
作为优选,所述P型硅衬底材料为单晶硅。进一步优选,所述P型Si衬底的电阻率小于0.005Ω·cm,晶向为100,厚度为490μm~510μm。
作为优选,所述绝缘层的材料为SiO2绝缘层,所述SiO2绝缘层的厚度为300nm。
作为优选,所述WSe2和ReS2的纯度均在99.99%以上。所述WSe2单晶层的厚度为0.75nm,所述ReS2的厚度为0.78nm。
作为优选,所述电极层的材料为金。电极层的厚度为100nm。
本发明提供的基于二维ReS2/WSe2异质结的光电子器件具有更快的响应速度,由于形成ReS2/WSe2异质结从而抑制了缺陷对ReS2光响应速度的影响。
本发明提供的制备基于二维ReS2/WSe2异质结的光电子器件的方法,包括:
(1)按顺序经过乙醇、丙酮、去离子水水超声5min,静置干燥得到衬底层;
(2)采用机械剥离法在所述衬底层上剥离得到单层WSe2,形成WSe2层;
(3)在PDMS上,采用机械剥离法在所述衬底层上剥离得到单层ReS2,形成ReS2层;
(4)采用干法转移技术将所述ReS2层和WSe2层形成范德瓦尔斯接触,得到ReS2/WSe2异质结;
(5)依次通过热蒸镀电极、转移电极、热处理法在所述ReS2上铺设电极层,形成基于二维ReS2/WSe2异质结的光电子器件。
作为优选,所述步骤(5)的具体过程为:
(5-1)采用标准热蒸镀法在SiO2/Si衬底上制作金电极,制作出的金电极厚度为100nm。
(5-2)采用转移电极法,用探针在显微镜下把制作好的金电极分别转移到ReS2层上和WSe2层上,形成基于二维ReS2/WSe2异质结的光电子器件。
(5-3)退火条件为135摄氏度,时间为2h,为了使电极能够和异质结形成良好的接触;
优选地在用探针转移电极前把电极切成边缘水平。
优选地,退火时通入H2和Ar,混气比H2:Ar=20:100,压强为100pa的条件下退火2h。
在本发明提供的制备方法中,采用机械剥离法、干转移法和转移电极法,确保了材料的单晶性和纯度,相较于湿法转移,工艺简单,设备要求低,污染性小,没有水等杂质分子对异质结接触产生影响;相比于电子束曝光法,可以避免PMMA残留和电子束对材料的影响。本发明减少了缺陷对ReS2光响应速率的影响。
附图说明
图1是实施例提供的基于二维ReS2/WSe2异质结的光电子器件的结构示意图;
图2是实施例制备得到的ReS2/WSe2异质结的光学显微图;
图3是实施例制备得到的ReS2/WSe2异质结的光电子器件光学显微图;
图4是基于二维单层ReS2的光电子器件的光响应图;
图5是基于二维ReS2/WSe2异质结的光电子器件的光响应图,包括激光分别照在异质结的结区处和ReS2上。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
为了更为具体地描述本发明,下面结合附图及具体实施方式对本发明的技术方案进行详细说明。
图1是实施例提供的基于二维ReS2/WSe2异质结的光电子器件的结构示意图。参见图1,该光电子器件包括:P型硅衬底层1、绝缘层2、WSe2层3、ReS2层4、电极层5、6,WSe2层3与ReS2层4范德瓦尔斯接触,形成ReS2/WSe2异质结。
实例:
本实施中WSe2层3为WSe2单晶层,ReS2层为ReS2单晶层。
本实施例制备的光电子器件中,衬底为Si衬底,绝缘层为SiO2绝缘层、电极层为Au电极。P型Si衬底的电阻率小于0.005Ω·cm,SiO2绝缘层厚度为300nm。
具体制备过程为:
(1)选取热氧化硅片作为衬底,先分别使用乙醇、丙酮、去离子水水超声5min,然后在加热台上300℃热处理衬底1h,静止于干燥环境中保存;
(2)准备scotch tape,采用类似机械剥离石墨烯的方法在硅片上剥离单层WSe2单晶。
(3)准备PDMS(聚二甲基硅氧烷),于载玻片上,将PDMS切成2mm×2mm的小方块后,在PDMS上剥离单层的ReS2单晶。
(4)通过干转移,将载玻片倒扣于显微镜物镜上,然后慢慢下降显微镜物镜直至ReS2单晶与WSe2单晶形成范德瓦尔斯接触,等待一段时间后,移开载玻片,形成ReS2/WSe2异质结,如图2所示;
(5)通过热蒸镀法,将以铜网覆盖在300nm SiO2/Si衬底上,热蒸镀100nm厚的金,然后将铜网撕掉后获得。
(6)通过转移电极法,用钨探针小心地将金电极挑起来并转移到准备好的异质结上制作好光电子器件如图3所示。
(7)在条件为135℃,混气比H2:Ar=20:100,压强为100pa的条件下退火2h使电极和材料形成良好的接触。
图2是实施例制备得到的ReS2/WSe2异质结的光学显微图。圆圈所标注的区域,浅灰色为单层的ReS2,深灰色为ReS2和WSe2构成的异质结区域。由图2可以看出,干法转移获得的异质结表面很洁净和均匀。
图3是是实施例制备得到的ReS2/WSe2异质结的光电子器件光学显微图。由图3可以看到,源(S)和漏(D)电极分别压在ReS2和WSe2上。由于使用的是探针转移电极的方式制备的器件,器件表面依然很洁净和均匀。
本实施例制备的光电子器件用作沟道层的背栅式结构光电探测器,对该光电子器件的光电探测的响应进行测试,测试结果如图5所示。由图4可以看出,激光关闭后,ReS2的电流下降非常的缓慢,响应时间大于20s。这是因为ReS2中缺陷形成的深束缚态使得载流子解束缚的时间变长。根据图5,本实施例制备的光电子器件的光响应速度明显快于ReS2器件如图4,响应时间小于20ms。这主要是因为n型ReS2和p型WSe2形成的宽的势垒区来抑制ReS2中的缺陷态对探测器的影响,形成具有较快响应的光电子器件。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不限于此,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围内。

Claims (5)

1.基于二硫化铼/二硒化钨异质结的光电器件,其特征在于,至少包括:硅衬底层;
设置于所述硅衬底层上的绝缘层;
设置于所述绝缘层上的二硫化铼层和二硒化钨层,所述二硫化铼层为1层单晶层,所述二硒化钨层为1层单晶层;所述二硫化铼层的一端与所述二硒化钨层的一端范德瓦尔斯接触,形成二硫化铼/二硒化钨异质结;
所述二硫化铼层的另一端和所述二硒化钨层的另一端分别设置电极层;
所述硅衬底层采用P型硅衬底材料,该P型硅衬底材料为单晶硅片,厚度为500±10μm;
所述绝缘层的材料为SiO2绝缘层,所述SiO2绝缘层的厚度为300±10nm;
所述二硫化铼层为单晶层,其厚度为0.78nm,所述二硒化钨层为单晶层,所述二硒化钨层的厚度为0.75nm;
所述电极层的材料为Au,厚度为100nm。
2.一种权利要求1所述的基于二硫化铼/二硒化钨异质结的光电器件的制备方法,其特征在于,包括以下步骤:
(1)按顺序经过乙醇、丙酮、去离子水清洗衬底后,静置干燥得到衬底层;
(2)采用机械剥离法在所述衬底层上剥离得到单层二硒化钨,形成二硒化钨层;
(3)在PDMS上,采用机械剥离法在所述衬底层上剥离得到单层二硫化铼,形成二硫化铼层;
(4)采用干法转移技术将所述二硫化铼层和二硒化钨层形成范德瓦尔斯接触,得到二硫化铼/二硒化钨异质结;
(5)依次通过热蒸镀电极、转移电极、热处理法在所述二硫化铼层和二硒化钨层上铺设电极层,形成基于二维二硫化铼/二硒化钨异质结的光电器件;
在所述步骤(1)中,先分别使用乙醇、丙酮、去离子水超声5min,然后在加热台上300℃热处理衬底1h。
3.如权利要求2所述的制备方法,其特征在于,所述步骤(5)的具体过程为:
(5-1)采用标准热蒸镀法在300nm SiO2/Si衬底上制作金电极,制作出的金电极厚度为100nm;
(5-2)采用转移电极法,用探针在显微镜下把制作好的金电极分别转移到二硫化铼层上和二硒化钨层上,形成基于二维二硫化铼/二硒化钨异质结的光电器件。
4.如权利要求3所述的制备方法,其特征在于,所述步骤(5)还包括以下步骤:
(5-3)退火条件为135摄氏度,时间为2h。
5.如权利要求4所述的制备方法,其特征在于,退火时通入H2和Ar,混气比H2:Ar=20:100,压强为100pa的条件下退火2h。
CN201910494240.4A 2019-06-09 2019-06-09 基于二硫化铼/二硒化钨异质结的光电器件及制备方法 Active CN110277461B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910494240.4A CN110277461B (zh) 2019-06-09 2019-06-09 基于二硫化铼/二硒化钨异质结的光电器件及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910494240.4A CN110277461B (zh) 2019-06-09 2019-06-09 基于二硫化铼/二硒化钨异质结的光电器件及制备方法

Publications (2)

Publication Number Publication Date
CN110277461A CN110277461A (zh) 2019-09-24
CN110277461B true CN110277461B (zh) 2021-07-23

Family

ID=67960574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910494240.4A Active CN110277461B (zh) 2019-06-09 2019-06-09 基于二硫化铼/二硒化钨异质结的光电器件及制备方法

Country Status (1)

Country Link
CN (1) CN110277461B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707560B (zh) * 2020-05-21 2023-07-18 哈尔滨工业大学 一种插入二维半导体硒化铟纳米片改善二维过渡金属硫族化合物电接触的方法
CN111863625B (zh) * 2020-07-28 2023-04-07 哈尔滨工业大学 一种单一材料pn异质结及其设计方法
CN111960471B (zh) * 2020-08-06 2022-10-25 天津理工大学 调控二维晶体带隙的方法
CN113644159B (zh) * 2021-06-30 2024-05-07 杭州电子科技大学 一种基于二维材料的光电探测器及其制备方法
CN113937175B (zh) * 2021-09-08 2024-06-11 杭州电子科技大学 二维硫化铼光电探测器及制备方法
CN114361296A (zh) * 2022-01-06 2022-04-15 电子科技大学 一种基于异质结结构的高性能光电探测器的制备方法
CN114864736A (zh) * 2022-02-24 2022-08-05 电子科技大学 一种基于二维过渡金属硫化物半导体的新型激子调控器件及其制备方法和调控方法
CN115332374B (zh) * 2022-08-04 2024-08-09 北京工业大学 一种二类二维异质结层间激发态光吸收跃迁增强的器件
CN117747696A (zh) * 2023-12-22 2024-03-22 齐鲁工业大学(山东省科学院) 一种具有正负双极性响应特性的光电探测器及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956320B (zh) * 2014-04-16 2016-08-31 苏州大学 一种将电极图形转移在任意基底上并构建电子器件的方法
CN105679861B (zh) * 2016-01-20 2018-05-04 浙江大学 一种表面等离子增强的二维材料/半导体异质结太阳能电池及其制备方法
CN107230615B (zh) * 2017-05-08 2019-07-26 南京大学 一种石墨烯电极的制备方法
CN107425081B (zh) * 2017-06-28 2019-02-26 中国人民解放军国防科学技术大学 基于石墨烯类二维材料保护层的拓扑绝缘体阵列型光电探测器及其制备方法和应用
CN107833940B (zh) * 2017-10-20 2020-06-30 浙江大学 一种基于二维二硫化钼-二硫化铼异质结的光电子器件、制备方法及应用
CN108365092B (zh) * 2018-01-18 2020-06-16 南京大学 一种基于二维原子晶体的耐高温忆阻器

Also Published As

Publication number Publication date
CN110277461A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
CN110277461B (zh) 基于二硫化铼/二硒化钨异质结的光电器件及制备方法
JP6178400B2 (ja) ワイドバンドギャップ半導体材料含有のエミッタ領域を有する太陽電池
CN107833940B (zh) 一种基于二维二硫化钼-二硫化铼异质结的光电子器件、制备方法及应用
CN109065662B (zh) 一种Te/MoS2范德华异质结构及其制备方法和应用
US20110240099A1 (en) Photovoltaic nanowire device
TWI430465B (zh) 利用高縱橫比之奈米結構以增強效率的太陽電池裝置
WO2018157521A1 (zh) 能够提高光电转换效率的perc太阳能电池及其制备方法
FR2937055A1 (fr) Procede de fabrication a basse temperature de nanofils semiconducteurs a croissance laterale et transistors a base de nanofils, obtenus par ce procede
TW201001726A (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
Han et al. Highly efficient and flexible photosensors with GaN nanowires horizontally embedded in a graphene sandwich channel
KR20100118605A (ko) 하이-애스펙트-비 나노구조들을 갖는 광전 소자들
US20080217651A1 (en) Photodetector
CN114497248A (zh) 一种基于混维Sn-CdS/碲化钼异质结的光电探测器及其制备方法
Li et al. Ga composition dictates macroscopic photovoltaic and nanoscopic electrical characteristics of Cu (in $ _ {1-X} $ Ga $ _X $) Se $ _2 $ thin films via grain-boundary-type inversion
CN111864006A (zh) 基于引入氧缺陷的多层TMDs光电器件及制备方法
CN110676384A (zh) 一种氮化硼封装的二维有机-无机异质结及其制备方法
TW201727929A (zh) 製造鍺覆絕緣體型基材的方法
CN109950364B (zh) 基于二维硒化亚锗光电探测器的成像元件制备方法
Iyer et al. GaAs 1-x Sb x nanowires on a graphitic substrate
Lee et al. Analysis of SiGe/Si quantum dot superlattices grown by low-pressure chemical vapor deposition for thin solar cells
An et al. Single‐Crystalline Ge1− xSnx/Si p–n Heterojunction Photodiodes with Sn Compositions up to 10%
TW202218175A (zh) 鈣鈦礦金屬-半導體-金屬型光電探測器及其製法
US11384286B2 (en) GaAs1-xSbx nanowires on a graphitic substrate
CN116121873B (zh) 一种碲化锑-二硫化钨垂直异质结纳米材料及其制备方法
CN114927586B (zh) 一种基于新型三元材料的异质结光电探测器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant