WO2021220957A1 - ロボットシステム、ロボット制御装置、制御方法及びコンピュータプログラム - Google Patents

ロボットシステム、ロボット制御装置、制御方法及びコンピュータプログラム Download PDF

Info

Publication number
WO2021220957A1
WO2021220957A1 PCT/JP2021/016423 JP2021016423W WO2021220957A1 WO 2021220957 A1 WO2021220957 A1 WO 2021220957A1 JP 2021016423 W JP2021016423 W JP 2021016423W WO 2021220957 A1 WO2021220957 A1 WO 2021220957A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
tool
posture
angle
unit
Prior art date
Application number
PCT/JP2021/016423
Other languages
English (en)
French (fr)
Inventor
一貴 若林
斉寛 西村
茂夫 吉田
豪 稲葉
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to DE112021002585.6T priority Critical patent/DE112021002585T5/de
Priority to CN202180030842.XA priority patent/CN115485109A/zh
Priority to US17/996,749 priority patent/US20230211499A1/en
Priority to JP2022518018A priority patent/JP7436640B2/ja
Publication of WO2021220957A1 publication Critical patent/WO2021220957A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0229Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member being situated alongside the workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/423Teaching successive positions by walk-through, i.e. the tool head or end effector being grasped and guided directly, with or without servo-assistance, to follow a path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45104Lasrobot, welding robot

Definitions

  • the present invention relates to a robot system, a robot control device, a control method, and a computer program.
  • Such a welding robot needs to teach the operation while considering the relative position and posture of the welding tool and the work during welding. Therefore, the operator needs a high degree of skill to teach the operation of the welding robot. Therefore, there is a demand for a robot system that can more easily teach the operation of a robot.
  • the robot system is a robot system that welds a workpiece using an operation pattern having feature points, and is a feature point teaching unit that stores the positions of the feature points taught using lead-through in a storage unit. Based on the position of the feature point and the posture of the input receiving unit that accepts the input of the angle value of the tool with respect to the work, the posture determining unit that determines the posture of the tool based on the angle value of the tool, and the position of the feature point. , A program generation unit that generates a robot program for a robot.
  • the robot control device is a robot control device for welding a workpiece using an operation pattern having feature points, and stores the positions of the feature points taught by using read-through in a storage unit.
  • a feature point teaching unit an input receiving unit that receives input of a tool angle value with respect to the work, a posture determining unit that determines the posture of the tool based on the angle value of the tool, a position of the feature point, and the above. It includes a program creation unit that generates a robot program for the robot based on the posture.
  • the control method is a robot control method for welding a work using an operation pattern having feature points, and includes a step of memorizing the position of the feature point taught by using lead-through and the step of storing the position of the feature point.
  • the computer program according to the present disclosure includes a step of storing the position of a feature point constituting an operation pattern taught by using read-through in a computer, a step of accepting an input of an angle value of the tool with respect to the work, and a step of the tool.
  • FIG. 1 is a diagram showing an outline of the robot system 1 according to the present embodiment.
  • the robot system 1 is a system for performing arc welding by the robot 10.
  • the robot system 1 includes a robot 10, a robot control device 20, and a teaching operation panel 30.
  • the robot 10 operates according to the control of the robot control device 20.
  • the robot 10 is a welding robot and includes a tool 11 and an arm 12.
  • the robot control device 20 is connected to the robot 10 and the teaching operation panel 30 to control the operation of the robot 10.
  • the robot control device 20 controls the operation of the robot 10 according to the operation of the teaching operation panel 30.
  • the teaching operation panel 30 is connected to the robot control device 20 and is used for operating the robot 10 by an operator.
  • FIG. 2 is a diagram showing a functional configuration of the robot system 1 according to the present embodiment.
  • the robot control device 20 includes a control unit 21 and a storage unit 22.
  • the control unit 21 is a processor such as a CPU (Central Processing Unit).
  • the control unit 21 executes various processes by executing the program stored in the storage unit 22.
  • control unit 21 includes a feature point teaching unit 211, an input receiving unit 212, a posture determining unit 213, a program generation unit 214, and a display control unit 215.
  • the storage unit 22 stores a ROM (Read Only Memory) for storing an OS (Operating System), an application program, etc., a RAM (Random Access Memory), a hard disk drive for storing various other information, an SSD (Solid State Drive), or the like. It is a device.
  • ROM Read Only Memory
  • OS Operating System
  • RAM Random Access Memory
  • SSD Solid State Drive
  • the teaching operation panel 30 includes a control unit 31, an operation unit 32, and a display unit 33.
  • the control unit 31 executes various processes by controlling the operation of the teaching operation panel 30.
  • the operation unit 32 is composed of buttons, keys, switches, etc., and receives various operations from the operator.
  • the display unit 33 is composed of a liquid crystal display or the like and displays various types of information.
  • the operation unit 32 and the display unit 33 may be configured by an integrated touch panel or the like. Further, the teaching operation panel 30 may be configured by a tablet terminal.
  • the feature point teaching unit 211 stores the position of the feature point taught by using the lead-through in the storage unit 22.
  • the "lead-through” specifically refers to a method in which the operator grasps the arm 12 of the robot 10 and moves the robot 10 to perform teaching.
  • the operation pattern of the robot 10 includes a plurality of feature points and is composed of a straight line, an arc, or the like.
  • the motion pattern may include a welding start point and a welding end point as feature points.
  • the operation pattern may include at least one of a start offset point offset in position and / or angle from the welding start point and an end offset point offset in position and / or angle from the welding end point.
  • the operation pattern is represented by one instruction block.
  • the operation pattern is the attributes of the command block, such as the position and angle offset from the welding start point and the welding start point, the angle value of the tool 11, the position and angle offset from the welding end point and the welding end point, and the welding conditions. Includes at least one of.
  • the welding conditions include the current, voltage, waveform (for example, pulse waveform, sinusoidal wave, etc.) at the time of welding, the type of welding (for example, MIG welding, mug welding, etc.) and the like.
  • the instruction block is a unit for executing the robot program, and indicates a command for one line of the robot program.
  • the input receiving unit 212 accepts the input of the angle value of the tool 11 with respect to the work. Specifically, the input receiving unit 212 receives the input of the aim angle and the advancing angle / receding angle of the tool 11 with respect to the work. Further, the input receiving unit 212 receives the input of the offset distance of the tool 11. It should be noted that these inputs are performed by, for example, by the operator using the teaching operation panel 30.
  • the torch advance method it is called the torch advance method that the arc precedes the tool (torch) with respect to the traveling direction of the tool, and the perpendicular line and the angle with respect to the tool and the work are the torch advance angles.
  • the torch retreat method the arc follows the wire in the traveling direction of the tool, and the perpendicular line and the angle with respect to the tool and the work are the torch retreat angles.
  • the posture determination unit 213 determines the posture of the tool 11 based on the angle value of the tool 11. Specifically, the posture determination unit 213 uses a line connecting the feature points as a reference line. Then, the posture determination unit 213 determines the angle of the tool 11 with respect to the reference line in the predetermined reference plane based on the angle value of the tool 11. Then, the posture determination unit 213 determines the angle of the tool 11 with respect to the reference line when the robot 10 is operating.
  • the predetermined reference plane is either a user-defined plane arbitrarily defined by the user, a horizontal plane of the robot 10, or a posture-defining plane of the tool 11.
  • the horizontal plane of the robot 10 may be, for example, a plane orthogonal to the vertical direction.
  • the posture definition surface of the tool 11 may be, for example, a surface defined as the initial posture of the tool 11.
  • the predetermined reference plane may be defined by a welding start point, a welding end point, and a point other than the welding start point and the welding end point.
  • the program generation unit 214 generates a robot program for the robot based on the position of the feature point and the posture of the tool 11. That is, the robot program generated by the program generation unit 214 includes an operation pattern.
  • the program generation unit 214 stores the generated robot program in the storage unit 22.
  • FIG. 3 is a diagram showing a specific example of lead-through. As shown in FIG. 3, the operator grabs the arm 12 of the robot 10 and moves the arm 12 of the robot 10 to the position P1 of the feature points constituting the operation pattern. Next, the operator moves the arm 12 of the robot 10 to the position P2 of the feature points constituting the operation pattern.
  • the feature point teaching unit 211 stores the positions P1 and P2 of the feature points taught by using the read-through by the operator.
  • the position P1 of the taught feature point is the welding start point
  • the position P2 of the taught feature point is the welding end point.
  • FIG. 4 is a diagram showing a specific example of determining the angle of the tool based on the angle value.
  • the posture determining unit 213 determines the angle ⁇ 1 for tilting the tool 11 in the vertical direction with reference to the position of the tool 11 at the position P1 shown in FIG. 3 based on the angle value.
  • attitude determination unit 213 tilts the tool 11 in the horizontal plane direction of the work W (the direction of the horizontal plane orthogonal to the vertical direction) with reference to the position of the tool 11 at the position P2 shown in FIG. 3 based on the angle value. Determine ⁇ 2.
  • FIG. 5 is a diagram showing a specific example of offsetting the position and / or angle of the tool 11.
  • the aim angle ⁇ 3 of the tool 11 is an angle with respect to the horizontal plane of the work W
  • the aim angle ⁇ 4 of the tool 11 is an angle with reference to the vertical plane of the work W.
  • the value of the aim angle ⁇ 3 or ⁇ 4 of the tool 11 is input by the operator using the teaching operation panel 30, and is received by the input receiving unit 212. Then, the posture determination unit 213 determines the posture of the tool 11 based on the value received by the input reception unit 212.
  • the tool 11 is offset from the position of the taught feature point after the welding is completed. Further, the tool 11 may be offset in position and angle from the position of the taught feature point after the welding is completed.
  • the offset position and / or angle is input by the operator using the teaching operation panel 30, and is received by the input receiving unit 212. Then, the posture determination unit 213 offsets the position and / or angle of the tool 11 from the position of the taught feature point based on the position and / or angle received by the input reception unit 212.
  • 6A to 6D are diagrams showing a display example displayed on the display unit 33 of the teaching operation panel 30.
  • the display control unit 215 uses read-through to display the first display mode 331 for teaching the operation pattern on the display unit 33.
  • the operator starts teaching the operation pattern by selecting the first display mode 331 by the operation unit 32.
  • the display control unit 215 displays the second display mode 332 for teaching the welding start point and the welding end point on the display unit 33.
  • the operator selects the "Kaishi" icon of the second display mode 332 by the operation unit 32.
  • the operator moves the arm 12 of the robot 10 using, for example, lead-through, and teaches the welding start point.
  • the operator may use lead-through to move the arm 12 of the robot 10 to teach the welding end point.
  • the display control unit 215 displays the third display mode 333 for storing the taught welding start point on the display unit 33.
  • the operator selects the third display mode 333 by the operation unit 32.
  • the feature point teaching unit 211 stores the taught welding start point in the storage unit 22.
  • the display control unit 215 displays the third display mode 333 for storing the taught welding end point on the display unit 33.
  • the operator selects the third display mode 333 by the operation unit 32.
  • the feature point teaching unit 211 stores the taught welding end point in the storage unit 22.
  • the display control unit 215 displays a fourth display mode 334 for accepting the input of the forward angle / backward angle of the tool 11 with respect to the work.
  • the operator inputs the angle value of the tool 11 by the operation unit 32.
  • the input receiving unit 212 receives the input of the aim angle and the forward angle / receding angle of the tool 11 with respect to the work. Further, the posture determination unit 213 determines the posture of the tool 11 based on the input target angle and forward / backward angle.
  • FIG. 7 is a flowchart showing a processing flow of the robot system 1 according to the present embodiment.
  • step S1 when the operator teaches the positions of the feature points forming the operation pattern by using read-through, the feature point teaching unit 211 stores the positions of the feature points taught by using lead-through in the storage unit 22. do.
  • step S2 the input receiving unit 212 receives the input of the angle value of the tool 11 with respect to the work.
  • the posture determination unit 213 determines the posture of the tool 11 based on the angle value of the tool 11.
  • step S4 the program generation unit 214 generates a robot program for the robot 10 based on the position of the feature point and the posture of the tool 11.
  • the robot system 1 includes a feature point teaching unit 211 that stores the positions of the feature points taught using read-through in the storage unit 22, and a tool 11 for the work W.
  • An input receiving unit 212 that accepts input of an angle value
  • an attitude determining unit 213 that determines the attitude of the tool 11 based on the angle value of the tool 11, and a robot program for the robot 10 based on the position and orientation of the feature points. It is provided with a program generation unit 214 for generating the above.
  • the robot system 1 teaches the feature points using read-through, so that the operator can intuitively teach the position. Further, since the robot system 1 determines the posture based on the angle value, the posture of the tool 11 can be set to an angle suitable for welding.
  • the robot system 1 completes the teaching of the robot 10 for welding by setting the aiming angle and the forward / backward angle as the angle values of the tool 11 and teaching only the positions of the two feature points. can do. Therefore, the robot system 1 can more easily teach the operation of the robot.
  • the operation pattern includes a plurality of feature points constituting a straight line, an arc, or the like.
  • the robot system 1 can define the traveling direction of the tool 11 even if the motion pattern includes a curve such as a straight line or an arc. Therefore, the robot system 1 can more easily teach the operation of the robot.
  • the operation pattern includes at least one of a start offset point in which the position and / or angle of the tool 11 is offset from the welding start point, and an end offset point in which the position and / or angle of the tool 11 is offset from the welding end point. ..
  • the robot system 1 can appropriately set the offset position and / or the angle of the tool 11.
  • the operation pattern is represented by one command block, and the operation pattern is the attribute of the command block, which is the position and angle offset from the welding start point and the welding start point, the angle value of the tool 11, the welding end point and the welding. Includes at least one of the position and angle offset from the end point and the welding conditions.
  • the robot system 1 can more easily create a robot program by calling the instruction block during the program.
  • the posture determination unit 213 uses a line connecting the feature points as a reference line. Then, the posture determination unit 213 determines the angle of the tool 11 with respect to the reference line in the predetermined reference plane based on the angle value, and determines the angle of the tool 11 with respect to the reference line during the operation of the robot 10. Thereby, the robot system 1 can appropriately determine the angle of the tool 11.
  • the predetermined reference plane may be either a user-defined plane arbitrarily defined by the user, a horizontal plane of the robot 10, or a posture-defining plane of the tool 11. This allows the robot system 1 to use an appropriate reference plane to determine the angle of the tool 11.
  • a predetermined reference plane may be defined by a welding start point, a welding end point, and one or more points other than the welding start point and the welding end point.
  • the robot system 1 can define the reference plane without defining the tool coordinate system of the tool 11 in advance. Further, the robot system 1 can define the reference plane with a small number of teaching points by using the welding start point and the welding end point. Only one point is required to be added, and it can be easily taught. When the score is increased, a more appropriate aspect can be defined by averaging or the like.
  • the embodiment of the present invention has mainly described arc welding, it can also be applied to other welding methods such as laser welding and spot welding, and applications such as sealing, deburring, cleaning, and painting.
  • the above robot system can be realized by hardware, software, or a combination thereof. Further, the control method performed by the cooperation of the robot systems described above can also be realized by hardware, software or a combination thereof.
  • what is realized by software means that it is realized by a computer reading and executing a program.
  • Non-transitory computer-readable media include various types of tangible storage media (tangible storage media).
  • Examples of non-temporary computer-readable media include magnetic recording media (eg, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-Rs / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)).
  • Robot system 10 Robot 20 Robot control device 30 Teaching operation panel 211 Feature point teaching unit 212 Input reception unit 213 Posture determination unit 214 Program generation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

より簡易にロボットの動作の教示を行うことができるロボットシステム、ロボット制御装置、制御方法及びプログラムを提供すること。ロボットシステムは、リードスルーを用いて教示された特徴点の位置を記憶部に記憶する特徴点教示部と、ワークWに対するツールの角度値の入力を受け付ける入力受付部と、ツールの角度値に基づいてツールの姿勢を決定する姿勢決定部と、特徴点の位置及び姿勢に基づいて、ロボットのためのロボットプログラムを生成するプログラム生成部と、を備える。

Description

ロボットシステム、ロボット制御装置、制御方法及びコンピュータプログラム
 本発明は、ロボットシステム、ロボット制御装置、制御方法及びコンピュータプログラムに関する。
 従来、溶接用ロボットは、ロボットの動作によって安定した溶接を実現し、溶接時に発生するスパッタやヒューム等からオペレータを解放する。このような溶接ロボットの動作は、様々な手法を用いて教示される(例えば、特許文献1参照)。特許文献1に記載の産業用ロボットは、リードスルー(ダイレクトティーチングともいう)を用いてロボットの動作を教示する。
特開昭60-233707号公報
 このような溶接用ロボットは、溶接中に溶接ツールとワークとの相対位置及び姿勢を考慮しつつ、動作を教示する必要がある。そのため、オペレータは、溶接用ロボットの動作を教示するために高い熟練度を必要としている。そこで、より簡易にロボットの動作の教示を行うことができるロボットシステムが望まれている。
 本開示に係るロボットシステムは、特徴点を有する動作パターンを用いてワークを溶接するロボットシステムであって、リードスルーを用いて教示された前記特徴点の位置を記憶部に記憶する特徴点教示部と、前記ワークに対するツールの角度値の入力を受け付ける入力受付部と、前記ツールの前記角度値に基づいて前記ツールの姿勢を決定する姿勢決定部と、前記特徴点の位置及び前記姿勢に基づいて、ロボットのためのロボットプログラムを生成するプログラム生成部と、を備える。
 本開示に係るロボット制御装置は、特徴点を有する動作パターンを用いてワークを溶接するためのロボット制御装置であって、リードスルーを用いて教示された前記特徴点の位置を記憶部に記憶する特徴点教示部と、前記ワークに対するツールの角度値の入力を受け付ける入力受付部と、前記ツールの前記角度値に基づいて前記ツールの姿勢を決定する姿勢決定部と、前記特徴点の位置及び前記姿勢に基づいて、ロボットのためのロボットプログラムを生成するプログラム作成部と、を備える。
 本開示に係る制御方法は、特徴点を有する動作パターンを用いてワークを溶接するためのロボット制御方法であって、リードスルーを用いて教示された前記特徴点の位置を記憶するステップと、前記ワークに対するツールの角度値の入力を受け付けるステップと、前記ツールの前記角度値に基づいて前記ツールの姿勢を決定するステップと、前記特徴点の位置及び前記姿勢に基づいて、前記ロボットのためのロボットプログラムを生成するステップと、を備える。
 本開示に係るコンピュータプログラムは、コンピュータに、リードスルーを用いて教示された動作パターンを構成する特徴点の位置を記憶するステップと、ワークに対するツールの角度値の入力を受け付けるステップと、前記ツールの前記角度値に基づいて前記ツールの姿勢を決定するステップと、前記特徴点の位置及び前記姿勢に基づいて、ロボットのためのロボットプログラムを生成するステップと、を実行させるためのコンピュータプログラム。
 本発明によれば、より簡易にロボットの動作の教示を行うことができる。
本実施形態に係るロボットシステムの概要を示す図である。 本実施形態に係るロボットシステムの機能構成を示す図である。 リードスルーの具体例を示す図である。 角度値によってツールの角度を決定する具体例を示す図である。 ツールの位置及び/又は角度をオフセットする具体例を示す図である。 教示操作盤の表示部に表示される表示例を示す図である。 教示操作盤の表示部に表示される表示例を示す図である。 教示操作盤の表示部に表示される表示例を示す図である。 教示操作盤の表示部に表示される表示例を示す図である。 本実施形態に係るロボットシステムの処理の流れを示すフローチャートである。
 以下、本発明の実施形態の一例について説明する。
 図1は、本実施形態に係るロボットシステム1の概要を示す図である。ロボットシステム1は、ロボット10によってアーク溶接を行うためのシステムである。ロボットシステム1は、ロボット10と、ロボット制御装置20と、教示操作盤30と、を備える。
 ロボット10は、ロボット制御装置20の制御に従って動作する。ロボット10は、溶接ロボットであり、ツール11と、アーム12と、を備える。
 ロボット制御装置20は、ロボット10及び教示操作盤30と接続され、ロボット10の動作を制御する。例えば、ロボット制御装置20は、教示操作盤30の操作に従ってロボット10の動作を制御する。
 教示操作盤30は、ロボット制御装置20と接続され、オペレータによってロボット10を操作するために用いられる。
 図2は、本実施形態に係るロボットシステム1の機能構成を示す図である。図2に示すように、ロボット制御装置20は、制御部21と、記憶部22と、を備える。制御部21は、CPU(Central Processing Unit)等のプロセッサである。制御部21は、記憶部22に記憶されたプログラムを実行することによって、各種の処理を実行する。
 また、制御部21は、特徴点教示部211と、入力受付部212と、姿勢決定部213と、プログラム生成部214と、表示制御部215と、を備える。
 記憶部22は、OS(Operating System)やアプリケーションプログラム等を格納するROM(Read Only Memory)、RAM(Random Access Memory)、その他の各種情報を格納するハードディスクドライブやSSD(Solid State Drive)等の記憶装置である。
 教示操作盤30は、制御部31と、操作部32と、表示部33と、を備える。
 制御部31は、教示操作盤30の動作を制御することによって、各種の処理を実行する。操作部32は、ボタン、キー、スイッチ等で構成され、オペレータからの各種操作を受け付ける。表示部33は、液晶ディスプレイ等で構成され、各種の情報を表示する。
 なお、操作部32及び表示部33は、一体化されたタッチパネル等で構成されてもよい。また、教示操作盤30は、タブレット端末によって構成されてもよい。
 次に、本実施形態に係るロボットシステム1におけるロボット10の動作を教示について説明する。
 特徴点教示部211は、オペレータがリードスルーを用いて動作パターンを構成する特徴点の位置を教示すると、リードスルーを用いて教示された特徴点の位置を記憶部22に記憶する。ここで、「リードスルー」とは、具体的には、ロボット10のアーム12をオペレータが掴んでロボット10を動かすことによってティーチングを行なう方式をいう。
 また、ロボット10の動作パターンは、複数の特徴点を含み、直線や円弧等で構成される。例えば、動作パターンは、特徴点として、溶接開始点及び溶接終了点を含んでもよい。
 また、動作パターンは、溶接開始点から位置及び/又は角度をオフセットした開始オフセット点、及び溶接終了点から位置及び/又は角度をオフセットした終了オフセット点の少なくとも1つを含んでもよい。
 また、動作パターンは、1つの命令ブロックで表される。そして、動作パターンは、命令ブロックの属性として、溶接開始点及び溶接開始点からオフセットされた位置及び角度、ツール11の角度値、溶接終了点及び溶接終了点からオフセットされた位置及び角度、溶接条件のうちの少なくとも1つを含む。
 ここで、溶接条件は、溶接時の電流、電圧、波形(例えば、パルス波形、正弦波等)、溶接の種類(例えば、ミグ溶接、マグ溶接等)等を含む。また、命令ブロックは、ロボットプログラムを実行する単位であり、ロボットプログラムの1行分の指令を示す。
 入力受付部212は、ワークに対するツール11の角度値の入力を受け付ける。具体的には、入力受付部212は、ワークに対するツール11の狙い角及び前進角/後退角の入力を受け付ける。また、入力受付部212は、ツール11のオフセット距離の入力を受け付ける。なお、これらの入力は、例えば、オペレータによって教示操作盤30を用いて行われる。
 ここで、ツールの進行方向に対して、アークがツール(トーチ)より先行するのがトーチ前進法とよばれ、ツールとワークに対する垂線と角度がトーチ前進角となる。一方、ツールの進行方向に対して、アークがワイヤより後行となるのがトーチ後退法であり、ツールとワークに対する垂線と角度がトーチ後退角となる。
 姿勢決定部213は、ツール11の角度値に基づいてツール11の姿勢を決定する。具体的には、姿勢決定部213は、特徴点間を結ぶ線を基準線とする。そして、姿勢決定部213は、ツール11の角度値に基づいて、所定の基準面内における基準線に対するツール11の角度を決定する。そして、姿勢決定部213は、ロボット10の動作時におけるツール11の基準線に対する角度を決定する。
 ここで、所定の基準面は、ユーザによって任意に定義されるユーザ定義面、ロボット10の水平面又はツール11の姿勢の定義面のいずれかである。また、ロボット10の水平面は、例えば、鉛直方向に直交する面であってもよい。また、ツール11の姿勢の定義面は、例えば、ツール11の初期姿勢として定義される面であってもよい。
 また、所定の基準面は、溶接開始点、溶接終了点、並びに溶接開始点及び溶接終了点以外の点によって定義されてもよい。
 プログラム生成部214は、特徴点の位置及びツール11の姿勢に基づいて、ロボットのためのロボットプログラムを生成する。すなわち、プログラム生成部214によって生成されたロボットプログラムは、動作パターンを含む。
 これにより、ロボットシステム1は、動作パターンを含むロボットプログラムを用いてワークを溶接することができる。プログラム生成部214は、生成されたロボットプログラムを記憶部22に記憶する。
 図3は、リードスルーの具体例を示す図である。図3に示すように、オペレータは、ロボット10のアーム12を掴み、動作パターンを構成する特徴点の位置P1へロボット10のアーム12を移動する。次に、オペレータは、動作パターンを構成する特徴点の位置P2へロボット10のアーム12を移動する。
 そして、特徴点教示部211は、オペレータによるリードスルーを用いて教示された特徴点の位置P1及びP2を記憶する。例えば、教示された特徴点の位置P1は、溶接開始点であり、教示された特徴点の位置P2は、溶接終了点である。
 図4は、角度値によってツールの角度を決定する具体例を示す図である。図4に示すように、姿勢決定部213は、角度値に基づいて、図3に示す位置P1におけるツール11の位置を基準として、ツール11を鉛直方向に傾ける角度θ1を決定する。
 また、姿勢決定部213は、角度値に基づいて、図3に示す位置P2におけるツール11の位置を基準として、ツール11をワークWの水平面方向(鉛直方向に直交する水平面の方向)に傾ける角度θ2を決定する。
 図5は、ツール11の位置及び/又は角度をオフセットする具体例を示す図である。ツール11の狙い角θ3は、ワークWの水平面を基準とした角度であり、ツール11の狙い角θ4は、ワークWの鉛直面を基準とした角度である。
 ツール11の狙い角θ3又はθ4の値は、オペレータによって教示操作盤30を用いて入力され、入力受付部212によって受け付けられる。そして、姿勢決定部213は、入力受付部212によって受け付けられた値に基づいて、ツール11の姿勢を決定する。
 図5に示すように、ツール11は、溶接終了後に、教示された特徴点の位置から位置をオフセットされる。また、ツール11は、溶接終了後に、教示された特徴点の位置から位置及び角度をオフセットされてもよい。
 オフセットされる位置及び/又は角度は、オペレータによって教示操作盤30を用いて入力され、入力受付部212によって受け付けられる。そして、姿勢決定部213は、入力受付部212によって受け付けられた位置及び/又は角度に基づいて、教示された特徴点の位置からツール11の位置及び/又は角度をオフセットする。
 図6Aから図6Dは、教示操作盤30の表示部33に表示される表示例を示す図である。図6Aに示すように、表示制御部215は、リードスルーを用いて、動作パターンを教示するための第1の表示態様331を表示部33に表示する。オペレータは、操作部32によって当該第1の表示態様331を選択することにより動作パターンの教示を開始する。
 次に、図6Bに示すように、表示制御部215は、溶接開始点及び溶接終了点を教示するための第2の表示態様332を表示部33に表示する。オペレータは、操作部32によって当該第2の表示態様332の「カイシ」のアイコンを選択する。そして、オペレータは、例えば、リードスルーを用いてロボット10のアーム12を移動し、溶接開始点を教示する。また、同様に、オペレータは、リードスルーを用いてロボット10のアーム12を移動し、溶接終了点を教示してもよい。
 次に、図6Cに示すように、表示制御部215は、教示された溶接開始点を記憶するための第3の表示態様333を表示部33に表示する。オペレータは、操作部32によって当該第3の表示態様333を選択する。これにより、特徴点教示部211は、教示された溶接開始点を記憶部22に記憶する。また、同様に、表示制御部215は、教示された溶接終了点を記憶するための第3の表示態様333を表示部33に表示する。オペレータは、操作部32によって当該第3の表示態様333を選択する。特徴点教示部211は、教示された溶接終了点を記憶部22に記憶する。
 次に、図6Dに示すように、表示制御部215は、ワークに対するツール11の前進角/後進角の入力を受け付けるための第4の表示態様334を表示する。オペレータは、操作部32によってツール11の角度値を入力する。
 入力受付部212は、ワークに対するツール11の狙い角及び前進角/後退角の入力を受け付ける。また、姿勢決定部213は、入力された狙い角及び前進角/後退角に基づいて、ツール11の姿勢を決定する。
 図7は、本実施形態に係るロボットシステム1の処理の流れを示すフローチャートである。ステップS1において、オペレータがリードスルーを用いて動作パターンを構成する特徴点の位置を教示すると、特徴点教示部211は、リードスルーを用いて教示された前記特徴点の位置を記憶部22に記憶する。
 ステップS2において、入力受付部212は、ワークに対するツール11の角度値の入力を受け付ける。
 ステップS3において、姿勢決定部213は、ツール11の角度値に基づいてツール11の姿勢を決定する。
 ステップS4において、プログラム生成部214は、特徴点の位置及びツール11の姿勢に基づいて、ロボット10のためのロボットプログラムを生成する。
 以上説明したように、本実施形態によれば、ロボットシステム1は、リードスルーを用いて教示された特徴点の位置を記憶部22に記憶する特徴点教示部211と、ワークWに対するツール11の角度値の入力を受け付ける入力受付部212と、ツール11の角度値に基づいてツール11の姿勢を決定する姿勢決定部213と、特徴点の位置及び姿勢に基づいて、ロボット10のためのロボットプログラムを生成するプログラム生成部214と、を備える。
 このようにロボットシステム1は、リードスルーを用いて特徴点を教示するため、オペレータは、直感的に位置を教示することができる。また、ロボットシステム1は、角度値に基づいて姿勢を決定するため、ツール11の姿勢を溶接に適した角度に設定することができる。
 また、ロボットシステム1は、ツール11の角度値として、狙い角及び前進角/後進角を設定し、2点の特徴点の位置のみを教示することによって、溶接のためのロボット10の教示を完了することができる。したがって、ロボットシステム1は、より簡易にロボットの動作の教示を行うことができる。
 また、動作パターンは、直線、円弧などを構成する複数の特徴点を含む。これにより、ロボットシステム1は、動作パターンにおいて、直線や円弧などの曲線を含んでいたとしても、ツール11の進行方向を規定することができる。よって、ロボットシステム1は、より簡易にロボットの動作の教示を行うことができる。
 また、動作パターンは、溶接開始点からツール11の位置及び/又は角度をオフセットした開始オフセット点、及び溶接終了点からツール11の位置及び/又は角度をオフセットした終了オフセット点の少なくとも1つを含む。これにより、ロボットシステム1は、ツール11のオフセット位置及び/又は角度を適切に設定することができる。
 また、動作パターンは、1つの命令ブロックで表され、動作パターンは、命令ブロックの属性として、溶接開始点及び溶接開始点からオフセットされた位置及び角度、ツール11の角度値、溶接終了点及び溶接終了点からオフセットされた位置及び角度、溶接条件のうちの少なくとも1つを含む。これにより、ロボットシステム1は、命令ブロックをプログラム中に呼び出すことによって、より簡易にロボットプログラムを作成することができる。
 また、姿勢決定部213は、特徴点間を結ぶ線を基準線とする。そして、姿勢決定部213は、角度値に基づいて所定の基準面内における基準線に対するツール11の角度を決定し、ロボット10の動作時におけるツール11の基準線に対する角度を決定する。これにより、ロボットシステム1は、ツール11の角度を適切に決定することができる。
 また、所定の基準面は、ユーザによって任意に定義されるユーザ定義面、ロボット10の水平面又はツール11の姿勢の定義面のいずれかであってもよい。これにより、ロボットシステム1は、ツール11の角度を決定するために適切な基準面を用いることができる。
 また、所定の基準面は、溶接開始点、溶接終了点、並びに溶接開始点及び溶接終了点以外の一つ以上の点によって定義されてもよい。これにより、ロボットシステム1は、事前にツール11のツール座標系を定義せずに、基準面を定義することができる。また、ロボットシステム1は、溶接開始点及び溶接終了点を用いることにより、少ない教示点で基準面を定義することができる。追加する点は、少なくとも一点あればよく、容易に教示できる。点数を増やした場合、平均化などにより、より適切な面を定義することができる。
 また、本発明の実施形態について主にアーク溶接について述べたが、レーザ溶接やスポット溶接などの他の溶接法や、シーリングやバリ取り、洗浄、塗装といったアプリケーションにおいても、適用が可能である。
 以上、本発明の実施形態について説明したが、上記のロボットシステムは、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。また、上記のロボットシステムのそれぞれの協働により行なわれる制御方法も、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。
 また、上述した各実施形態は、本発明の好適な実施形態ではあるが、上記各実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。
 1 ロボットシステム
 10 ロボット
 20 ロボット制御装置
 30 教示操作盤
 211 特徴点教示部
 212 入力受付部
 213 姿勢決定部
 214 プログラム生成部

Claims (10)

  1.  特徴点を有する動作パターンを用いてワークを溶接するロボットシステムであって、
     リードスルーを用いて教示された前記特徴点の位置を記憶部に記憶する特徴点教示部と、
     前記ワークに対するツールの角度値の入力を受け付ける入力受付部と、
     前記ツールの前記角度値に基づいて前記ツールの姿勢を決定する姿勢決定部と、
     前記特徴点の位置及び前記姿勢に基づいて、ロボットのためのロボットプログラムを生成するプログラム生成部と、
    を備えるロボットシステム。
  2.  前記動作パターンは、複数の前記特徴点を含む、請求項1に記載のロボットシステム。
  3.  前記動作パターンは、溶接開始点から前記ツールの位置及び/又は角度をオフセットした開始オフセット点、及び溶接終了点から前記ツールの位置及び/又は角度をオフセットした終了オフセット点の少なくとも1つを含む、請求項1又は2に記載のロボットシステム。
  4.  前記動作パターンは、1つの命令ブロックで表され、前記動作パターンは、前記命令ブロックの属性として、溶接開始点及び溶接開始点からオフセットされた位置及び角度、前記ツールの前記角度値、溶接終了点及び溶接終了点からオフセットされた位置及び角度、溶接条件のうちの少なくとも1つを含む、請求項1から3のいずれか一項に記載のロボットシステム。
  5.  前記姿勢決定部は、前記特徴点間を結ぶ線を基準線とし、前記角度値に基づいて所定の基準面内における前記基準線に対する前記ツールの角度を決定し、前記ロボットの動作時における前記ツールの基準線に対する角度を決定する、請求項1から4のいずれか一項に記載のロボットシステム。
  6.  前記所定の基準面は、ユーザによって任意に定義されるユーザ定義面、前記ロボットの水平面又は前記ツールの姿勢の定義面のいずれかである、請求項5に記載のロボットシステム。
  7.  前記所定の基準面は、溶接開始点、溶接終了点、並びに前記溶接開始点及び前記溶接終了点以外の一つ以上の点によって定義される、請求項5に記載のロボットシステム。
  8.  特徴点を有する動作パターンを用いてワークを溶接するためのロボット制御装置であって、
     リードスルーを用いて教示された前記特徴点の位置を記憶部に記憶する特徴点教示部と、
     前記ワークに対するツールの角度値の入力を受け付ける入力受付部と、
     前記ツールの前記角度値に基づいて前記ツールの姿勢を決定する姿勢決定部と、
     前記特徴点の位置及び前記姿勢に基づいて、ロボットのためのロボットプログラムを生成するプログラム作成部と、
    を備えるロボット制御装置。
  9.  特徴点を有する動作パターンを用いてワークを溶接するためのロボット制御方法であって、
     リードスルーを用いて教示された前記特徴点の位置を記憶するステップと、
     前記ワークに対するツールの角度値の入力を受け付けるステップと、
     前記ツールの前記角度値に基づいて前記ツールの姿勢を決定するステップと、
     前記特徴点の位置及び前記姿勢に基づいて、ロボットのためのロボットプログラムを生成するステップと、
    を備える制御方法。
  10.  コンピュータに、
     リードスルーを用いて教示された動作パターンを構成する特徴点の位置を記憶するステップと、
     ワークに対するツールの角度値の入力を受け付けるステップと、
     前記ツールの前記角度値に基づいて前記ツールの姿勢を決定するステップと、
     前記特徴点の位置及び前記姿勢に基づいて、ロボットのためのロボットプログラムを生成するステップと、
    を実行させるためのコンピュータプログラム。
PCT/JP2021/016423 2020-04-28 2021-04-23 ロボットシステム、ロボット制御装置、制御方法及びコンピュータプログラム WO2021220957A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021002585.6T DE112021002585T5 (de) 2020-04-28 2021-04-23 Robotersystem, Roboter-Steuervorrichtung, Steuerverfahren und Computerprogramm
CN202180030842.XA CN115485109A (zh) 2020-04-28 2021-04-23 机器人系统、机器人控制装置、控制方法以及计算机程序
US17/996,749 US20230211499A1 (en) 2020-04-28 2021-04-23 Robot system, robot control device, control method, and computer program
JP2022518018A JP7436640B2 (ja) 2020-04-28 2021-04-23 ロボットシステム、ロボット制御装置、制御方法及びコンピュータプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-079429 2020-04-28
JP2020079429 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021220957A1 true WO2021220957A1 (ja) 2021-11-04

Family

ID=78373566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016423 WO2021220957A1 (ja) 2020-04-28 2021-04-23 ロボットシステム、ロボット制御装置、制御方法及びコンピュータプログラム

Country Status (5)

Country Link
US (1) US20230211499A1 (ja)
JP (1) JP7436640B2 (ja)
CN (1) CN115485109A (ja)
DE (1) DE112021002585T5 (ja)
WO (1) WO2021220957A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256281A (ja) * 1987-04-15 1988-10-24 Hitachi Ltd 溶接ト−チ姿勢の教示方式
JPH08123536A (ja) * 1994-10-25 1996-05-17 Fanuc Ltd 溶接トーチ姿勢の教示方法
JP2012106323A (ja) * 2010-11-19 2012-06-07 Daihen Corp アーク溶接ロボット制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233707A (ja) 1984-05-07 1985-11-20 Shin Meiwa Ind Co Ltd 産業用ロボツト

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256281A (ja) * 1987-04-15 1988-10-24 Hitachi Ltd 溶接ト−チ姿勢の教示方式
JPH08123536A (ja) * 1994-10-25 1996-05-17 Fanuc Ltd 溶接トーチ姿勢の教示方法
JP2012106323A (ja) * 2010-11-19 2012-06-07 Daihen Corp アーク溶接ロボット制御装置

Also Published As

Publication number Publication date
JPWO2021220957A1 (ja) 2021-11-04
DE112021002585T5 (de) 2023-02-16
US20230211499A1 (en) 2023-07-06
JP7436640B2 (ja) 2024-02-21
CN115485109A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
JP5360237B2 (ja) ロボットシステムの制御方法
US9718189B2 (en) Robot teaching device for teaching robot offline
JP2018058117A (ja) パラメータ設定のリアルタイム絵文字表現を備えたユーザインターフェース
US20200306967A1 (en) Programming assistance for robots
EP3263268B1 (en) Offline teaching device
JP2014213375A (ja) アーク溶接装置
JP3665344B2 (ja) ロボットのジョグ操作方法及びロボットのジョグ操作システム
WO2021220957A1 (ja) ロボットシステム、ロボット制御装置、制御方法及びコンピュータプログラム
WO1985003783A1 (en) Scaling method in an automatic welding machine
JP2009119589A (ja) ロボットシミュレータ
JP6705847B2 (ja) 加工結果に基づいた学習制御を行うロボットシステム及びその制御方法
JP4859386B2 (ja) アーク溶接装置及びアーク溶接装置のウィービング溶接方法
JP2009119525A (ja) 溶接ロボットにおける溶接線座標の教示方法及び溶接ロボットの多層盛溶接におけるオフセット値の教示方法
JP4354608B2 (ja) 溶接用ロボットの教示方法及び装置
JP2010240664A (ja) 溶接ロボット及び溶接におけるウィービング動作の制御方法
JP5459707B2 (ja) アーク溶接ロボットの制御装置
JP2012106321A (ja) ロボットの制御方法およびロボット制御装置
JP3146550B2 (ja) 産業用ロボットの制御装置
JP4727106B2 (ja) 溶接ロボットの自動運転方法
US20230286153A1 (en) Path generation for manual robot teaching
JP7142249B2 (ja) 溶接装置およびその制御方法
JPH0523854A (ja) ウイービング動作を行うアーク溶接ロボツト
WO2022163669A1 (ja) プログラム評価装置および教示装置
JPS58155188A (ja) 産業用ロボツト
JP5946680B2 (ja) アーク溶接用プログラムのプログラム変換方法、及びアーク溶接用プログラムのプログラム変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518018

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21797805

Country of ref document: EP

Kind code of ref document: A1