WO2021220555A1 - 製鉄設備および還元鉄の製造方法 - Google Patents
製鉄設備および還元鉄の製造方法 Download PDFInfo
- Publication number
- WO2021220555A1 WO2021220555A1 PCT/JP2021/000237 JP2021000237W WO2021220555A1 WO 2021220555 A1 WO2021220555 A1 WO 2021220555A1 JP 2021000237 W JP2021000237 W JP 2021000237W WO 2021220555 A1 WO2021220555 A1 WO 2021220555A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- methane
- furnace
- blast furnace
- reduction
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 95
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 42
- 229910052742 iron Inorganic materials 0.000 title abstract description 10
- 239000007789 gas Substances 0.000 claims abstract description 448
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 392
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 126
- 230000009467 reduction Effects 0.000 claims abstract description 99
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 96
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 66
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 63
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 62
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 58
- 238000007664 blowing Methods 0.000 claims abstract description 50
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 49
- 238000010438 heat treatment Methods 0.000 claims abstract description 47
- 239000001257 hydrogen Substances 0.000 claims abstract description 40
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 31
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 26
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 26
- 239000006227 byproduct Substances 0.000 claims abstract description 18
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 10
- 239000002994 raw material Substances 0.000 claims description 61
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 31
- 229910001882 dioxygen Inorganic materials 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 26
- 238000002407 reforming Methods 0.000 claims description 22
- 238000000926 separation method Methods 0.000 claims description 17
- 238000011084 recovery Methods 0.000 claims description 8
- 238000009628 steelmaking Methods 0.000 claims description 5
- 238000005429 filling process Methods 0.000 claims description 4
- 230000002194 synthesizing effect Effects 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 238000004134 energy conservation Methods 0.000 abstract 1
- 238000006722 reduction reaction Methods 0.000 description 79
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 31
- 239000000571 coke Substances 0.000 description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 27
- 238000002485 combustion reaction Methods 0.000 description 26
- 239000001301 oxygen Substances 0.000 description 19
- 229910052760 oxygen Inorganic materials 0.000 description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 17
- 239000003638 chemical reducing agent Substances 0.000 description 17
- 238000005868 electrolysis reaction Methods 0.000 description 15
- 239000000446 fuel Substances 0.000 description 14
- 239000003345 natural gas Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 12
- 229930195733 hydrocarbon Natural products 0.000 description 12
- 150000002430 hydrocarbons Chemical class 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 11
- 238000010248 power generation Methods 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- 239000002737 fuel gas Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000000428 dust Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 239000003245 coal Substances 0.000 description 5
- 230000018044 dehydration Effects 0.000 description 5
- 238000006297 dehydration reaction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000005485 electric heating Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 238000006057 reforming reaction Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241001232253 Xanthisma spinulosum Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000002801 charged material Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/06—Making pig-iron in the blast furnace using top gas in the blast furnace process
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/001—Injecting additional fuel or reducing agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0073—Selection or treatment of the reducing gases
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/002—Evacuating and treating of exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/008—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/001—Injecting additional fuel or reducing agents
- C21B2005/005—Selection or treatment of the reducing gases
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/20—Increasing the gas reduction potential of recycled exhaust gases
- C21B2100/22—Increasing the gas reduction potential of recycled exhaust gases by reforming
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/20—Increasing the gas reduction potential of recycled exhaust gases
- C21B2100/26—Increasing the gas reduction potential of recycled exhaust gases by adding additional fuel in recirculation pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/20—Increasing the gas reduction potential of recycled exhaust gases
- C21B2100/28—Increasing the gas reduction potential of recycled exhaust gases by separation
- C21B2100/282—Increasing the gas reduction potential of recycled exhaust gases by separation of carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/40—Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
- C21B2100/44—Removing particles, e.g. by scrubbing, dedusting
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/60—Process control or energy utilisation in the manufacture of iron or steel
- C21B2100/64—Controlling the physical properties of the gas, e.g. pressure or temperature
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/80—Interaction of exhaust gases produced during the manufacture of iron or steel with other processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/122—Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/143—Reduction of greenhouse gas [GHG] emissions of methane [CH4]
Definitions
- the present invention relates to iron-making equipment and a method for producing reduced iron using the iron-making equipment.
- the raw material of iron is mainly iron oxide, and a reduction process for reducing this iron oxide is indispensable.
- the most popular and common reduction process in the world is the blast furnace.
- coke or pulverized coal and oxygen in hot air air heated to about 1200 ° C.
- CO and H 2 gas reduced gas
- iron ore, etc. is being reduced.
- the reducing agent ratio the amount of coke and pulverized coal used per 1 ton of hot metal
- the reducing agent ratio has been reduced to about 500 kg / t, but the reduction of the reducing agent ratio has already reached its limit. No further significant reduction in the ratio of reducing agents can be expected.
- iron oxide agglomerated iron ore
- a method of producing reduced iron by blowing a reducing gas containing carbon oxide to reduce iron oxide is also often used.
- natural gas or the like is used as the raw material gas for the reducing gas.
- the raw material gas is heated and reformed in the reformer together with the top gas discharged from the top of the reduction furnace to generate a reduction gas.
- the generated reducing gas is blown into the reduction furnace and reacts with the iron oxide raw material supplied from the upper part of the reduction furnace, and the iron oxide is reduced to become reduced iron.
- the produced reduced iron is discharged from the lower part of the reduction furnace.
- the gas after the iron oxide is reduced is discharged from the top of the reduction furnace as the top gas, and after dust collection and cooling, a part of the gas is sent to the reformer as a raw material for the reforming gas.
- the remaining furnace top gas is used as fuel gas for the heater / reformer.
- the exhaust gas of the reduction furnace and the natural gas are reformed by a reformer to generate a reduced gas mainly composed of CO and H 2 gas, and this reduction is performed. It is described that gas is blown into a reduction furnace to reduce iron oxide in the reduction furnace to produce reduced iron.
- Patent Document 2 describes a method of producing reduced iron by reforming coke oven gas and the top gas of a reducing furnace from which CO 2 has been removed to produce reducing gas and blowing it into the reducing furnace. ing.
- the reduced iron production method described in Patent Document 1 uses natural gas for producing reduced gas, and therefore has a problem that a certain amount of CO 2 emission is unavoidable, although it is lower than that of a blast furnace.
- Patent Document 2 is to produce a reducing gas by using a coke oven gas or a linz-Donaw gas generated in a steel mill.
- coke oven gas and linz-Donaw gas are indispensable as fuel gas for the lower process of heating furnaces and anointing furnaces in integrated steelworks, so if they are diverted to the reduced iron production process, there will be a shortage of fuel gas in the lower process. Will cause.
- natural gas was supplied externally to compensate for the shortage of gas in the lower process, and reduction of CO 2 emissions remained an issue without being realized.
- the coke oven gas is reformed as a raw material to obtain a reducing gas, but since the coke oven gas contains a large amount of sulfur, it is attached to equipment with a reaction such as a reformer. There is a concern that the catalyst will be damaged. Further, it is said that the reduced iron production process can be operated properly when the ratio of H 2 to CO is around 1.5. However, the H 2 content of the linz-Donaw gas is low, and the H 2 / CO value of the reduced gas produced is too low, so that the composition deviates from the proper operating composition of the reduced iron process. In order to avoid this, it is necessary to perform CO 2 separation on the linz-Donaw gas, and there is also a problem that extra CO 2 separation energy is required.
- the present invention has been made in view of the above-mentioned current situation, and contributes to the realization of energy saving and reduction of CO 2 emissions when producing reduced iron from iron oxide.
- the purpose is to make a proposal in conjunction with the iron-making equipment to be manufactured.
- the gist of the present invention is as follows. 1.
- a blowing device that blows methane gas synthesized by the methane synthesizer into the blast furnace, and A heating and reforming apparatus that heats or heat-modifies the blast furnace gas and / or the furnace top gas and the methane gas synthesized by the methane synthesizer to obtain a reducing gas containing carbon monoxide gas and hydrogen gas.
- a reduction gas blowing device that blows the reducing gas into the reduction furnace, A supply path for supplying the furnace top gas to the methane synthesizer and / or the heat reformer, and Steel making equipment characterized by having.
- a steelmaking facility having a carbon dioxide separating device for separating carbon dioxide from the furnace top gas in the supply path.
- a method for producing reduced iron using the iron-making equipment according to 1, 2 or 3 above The iron oxide filling process, which fills the reduction furnace with iron oxide, The reduction gas blowing step of blowing the reducing gas into the reduction furnace and A methane synthesis process for synthesizing methane from a mixed gas or carbon dioxide gas containing carbon dioxide and carbon monoxide and hydrogen gas, A gas reforming step of using the methane gas and the mixed gas as a raw material gas and heating the raw material gas to reform it into the reduced gas.
- a method for producing reduced iron using the iron-making equipment according to 1, 2 or 3 above The iron oxide filling process, which fills the reduction furnace with iron oxide, The reduction gas blowing step of blowing the reducing gas into the reduction furnace and A carbon dioxide separation step of separating carbon dioxide from the top gas containing carbon dioxide, carbon monoxide, and hydrogen discharged from the top of the reduction furnace and recovering the mixed gas containing carbon monoxide and hydrogen.
- the methane gas is a part of the top gas containing carbon dioxide, carbon monoxide and hydrogen discharged from the top of the reduction furnace and / or a blast furnace containing carbon dioxide, carbon monoxide and hydrogen produced as a by-product from the blast furnace. It is a regenerated methane gas synthesized in the methane synthesis process that synthesizes methane from a part of the gas and hydrogen gas.
- methane is synthesized from a mixed gas or carbon dioxide gas containing carbon dioxide and carbon monoxide, and hydrogen gas, whereas the reduced gas as a raw material for iron oxide is conventionally produced using natural gas.
- a reduced iron production process using, for example, a blast furnace gas is realized, in which the methane gas and the mixed gas are used as a raw material gas and heated to produce a reduced gas, and the reduced gas is used for the reduction treatment of iron oxide.
- CO 2 emissions in the reduced iron production process can be significantly reduced.
- FIG. 1 shows an example of the steelmaking equipment of the present invention. That is, in FIG. 1, reference numeral 1 is a reduction furnace, 2 is iron oxide, 3 is reduced iron, 4 is a dust removing device for the blast furnace gas from the reduction furnace 1, 5 is a supply path of the blast furnace gas, and 6 is methane described later.
- a heat reformer that heats or heat reforms methane gas and / or carbon monoxide gas from a synthesizer to obtain a reduced gas containing carbon monoxide gas and hydrogen gas, 7a is a first dehydrator, and 7b is a second.
- 7c is a third dehydrator
- 8 is a carbon dioxide separator that separates carbon dioxide from the top gas
- 9 is a methane synthesizer that synthesizes methane from top gas or blast furnace gas and hydrogen
- 10 is It is a reduction gas blowing device that supplies reduction gas to the reduction furnace 1.
- reference numeral 21 is a blast furnace
- 22 is a methane blowing device (tuyere)
- 23 is a dehydrating device on the blast furnace side
- 24 is a burner.
- the method for producing reduced iron of the present invention is to produce reduced iron according to various forms by partially or wholly using the above iron making equipment, and is a step of filling iron oxide into a reduction furnace.
- it has a gas reforming step of heating the raw material gas and reforming it into the reducing gas using the gas as a raw material gas, and a reduction step of reducing the iron oxide with the reducing gas in the reducing furnace. Is to be.
- the reduction furnace referred to here refers to a process in which the input iron oxide raw material is reduced as a solid and the iron after the reduction is discharged, and a process for producing high-temperature melted iron such as a blast furnace is used. Not included.
- the method for producing reduced iron of the present invention will be described in detail for each embodiment.
- the first embodiment will be described with reference to FIG. In FIG. 2, the configuration used as the first embodiment is selected and shown in FIG. 1, and the iron-making equipment shown in FIG. 1 is used.
- reduced iron is produced according to the following procedure. First, iron oxide 2 is charged from above into the reduction furnace 1 which is the center of the reduced iron production process, and the iron oxide 2 is gradually lowered. In the process of lowering the iron oxide 2, the iron oxide 2 is reduced by blowing a reducing gas containing high temperature CO, H 2 and hydrocarbons from the reducing gas blowing device 10 from the intermediate portion of the reducing furnace 1, and the iron oxide 2 is reduced. The reduced iron 3 is discharged from the lower part of the.
- the furnace top gas containing CO, CO 2 , H 2 and H 2 O is mainly discharged from the upper part of the reduction furnace 1.
- This furnace top gas is dust-removed by the dust removing device 4, and then a part of the gas is sent to the heat reforming device 6 as a raw material gas after adjusting the water content by the second dehydrating device 7b.
- the remaining furnace top gas is dehydrated by the first dehydrating device 7a and then used as heating fuel in the combustion chamber of the heating reforming device 6. It is preferable to use oxygen gas instead of air as the combustion assisting gas when burning the furnace top gas in the combustion chamber of the heating reformer 6.
- the top gas components CO, CO 2 , H 2 and H
- a hydrocarbon gas for adjusting 2 O to a reducing component (CO, H 2 and a hydrocarbon) into the heat reforming apparatus 6.
- this hydrocarbon gas natural gas has been conventionally supplied from the outside, but in the first embodiment according to the present invention, instead of the hydrocarbon gas supplied from the outside such as natural gas, It is important to use the regenerated methane gas (regenerated CH 4 in FIG. 1) produced by using the methane synthesizer 9 in the above-mentioned iron making facility.
- a raw material for synthesizing methane gas hydrogen gas supplied from the outside and a gas containing CO, CO 2 and hydrocarbons are used.
- the gas containing CO, CO 2 and hydrocarbon is applicable as long as it is a gas available in the steelworks, but in the first embodiment, as shown in FIG. 2, the combustion of the heat reformer 6 is performed.
- the synthesized regenerated methane is supplied to the heat reformer 6 together with the gas at the top of the furnace, which is the raw material gas, and the water content is adjusted by the second dehydrator 7b, and is heated in the heat reformer 6. It is supplied to the reduction furnace 1 as a high-temperature reducing gas.
- the furnace top gas used as the raw material gas is adjusted in water content in order to properly adjust the composition of the reducing gas, but CO 2 may be separated by the carbon dioxide separator 8 at the same time.
- regenerated methane and furnace top gas are used as the raw material gas for the reducing gas, water or steam may be added to adjust the composition.
- a mechanism for promoting a reaction such as a catalyst may be provided to generate a reforming reaction, and the reforming gas may be mainly composed of CO and H 2, or in the heating reforming apparatus. It may be heated only and then blown into the reduction furnace as it is.
- the CO 2 rich gas after separation can be used as the raw material gas for the methane synthesizer 9, but the residual gas containing combustible gas such as CO can be used for the heat reforming device 6. It may be used as fuel gas in the above, or it may be supplied to other processes in the steel mill and used as fuel gas.
- the hydrogen gas used for the synthesis of regenerated methane CO 2- free hydrogen supplied from the outside, for example, hydrogen gas generated by electrolyzing water with photovoltaic power may be used.
- the above oxygen gas used as a combustion assisting gas in the combustion chamber of the heat reformer 6 does not necessarily have to be pure oxygen having an oxygen concentration of 100%, and some gas other than oxygen, such as nitrogen, carbon dioxide, argon, etc. May be included.
- the oxygen concentration is too low, the gas volume increases, which causes a problem that the heat reformer 6 and the methane synthesizer 9 for methane synthesis must be enlarged. Therefore, it is preferable to set the oxygen concentration to 80% or more. ..
- CO 2- free electric power for example, electric power generated by solar power generation or nuclear power generation may be used.
- FIG. 1 A second embodiment of the present invention is shown in FIG.
- the portion used for heating the heating reformer 6 in the first embodiment is water-adjusted by the dehydrating device 7e and then the methane synthesizer.
- a required amount of regenerated methane is synthesized in the heat reformer 6 by pouring it into 9 and using it as a raw material for regenerated methane gas (regenerated CH 4 in FIG. 3).
- an external CO 2- free heat source for example, an external heat source that heats using CO 2-free electric power can be used as an alternative. ..
- CO 2- free electric power is used for heating and hydrogen production in the heating reformer 6, CO 2 emissions can be reduced to zero in principle.
- the nitrogen concentration is monitored regularly in the system, and when the nitrogen concentration rises to a certain extent, for example, when the nitrogen concentration reaches 20% or more, the furnace top gas or combustion exhaust gas that temporarily flows into the methane synthesizer 9 is discharged. It is good to carry out an operation to discharge to the outside of the system. At this time, since recycled methane gas cannot be generated, it is possible to temporarily blow natural gas or the like instead of recycled methane gas.
- hydrogen gas supplied from the outside as a raw material for methane synthesis is preferably produced by a production method that does not generate CO 2 as much as possible.
- a production method that does not generate CO 2 as much as possible.
- electrolysis of water may be used.
- the H 2 gas does not necessarily have to be an H 2 gas having a concentration of 100%, but in order to keep the methane concentration in the generated regenerated methane gas high, the higher the H 2 concentration is, the better.
- the H 2 concentration is 80% by volume or more.
- a third embodiment of the present invention will be described with reference to FIG. 1 described above.
- the third embodiment is a method that is advantageously established when a reduced iron production process according to the present invention is installed in a steel mill having a blast furnace for producing hot metal.
- the top gas discharged from the top of the reduction furnace 1 is dust-removed by the dust removing device 4, and then a part of the gas is removed.
- the water content of the raw material gas is adjusted by the second dehydrator 7b and sent to the heat reformer 6, and the remaining furnace top gas is dehydrated by the first dehydrator 7a and then burned by the heat reformer 6. Used as heating fuel in the room.
- the blast furnace top used in the second embodiment is not used as the raw material for methane synthesis in the methane synthesizer 9, and the combustion exhaust gas from the heat reformer 6 used in the first embodiment is not used.
- the blast furnace gas discharged from the blast furnace 21 is used. The operation method of the blast furnace in the third embodiment will be described below.
- blast furnace operating method In the blast furnace operating method according to the third embodiment of the present invention, sinter, lump ore, pellets (hereinafter, also referred to as ore raw material), coke, etc., which are raw materials, are charged into the blast furnace from the top of the blast furnace 21. (Not shown). Further, the blowing gas, the reducing agent, and the regenerated methane gas are blown into the blast furnace 21 from the blowing device (tuyere) 22 installed in the lower part of the blast furnace 21. The reducing agent blown from the blowing device 22 into the blast furnace 21 is also referred to as a blowing reducing material in order to distinguish it from coke.
- the ore raw material charged in the blast furnace 21 is reduced by the carbon monoxide gas and hydrogen gas generated by the reaction between the blower gas and the reducing agent.
- carbon dioxide is generated, and it is discharged from the top of the blast furnace as a by-product gas together with carbon monoxide and hydrogen that did not react with the ore raw material.
- the blast furnace gas (by-product gas) discharged from the top of the blast furnace is condensed by expansion and cooling when it returns to normal pressure. Therefore, the condensed water is removed in the dehydrator 23.
- the blast furnace gas is introduced into the above-mentioned methane synthesizer 9.
- carbon monoxide and carbon dioxide contained in the blast furnace gas are reacted with hydrogen gas to generate methane (CH 4) gas.
- methane gas obtained by reacting the blast furnace gas is referred to as regenerated methane gas (regenerated CH 4 in FIG. 1).
- regenerated methane gas regenerated CH 4 in FIG. 1
- the water vapor in the regenerated methane gas is condensed, and the by-product water is removed in the third dehydrator 7c described above.
- this by-product water it is preferable to supply this by-product water to a water electrolyzer and use it for electrolysis of water.
- At least a part of the blast furnace gas supplied to the methane synthesizer 9 does not have to have the composition discharged from the blast furnace gas.
- carbon dioxide may be separated by a carbon dioxide gas separation and recovery device, and only carbon dioxide may be supplied to the methane synthesizer.
- the regenerated methane gas thus obtained is supplied to the heating reformer 6 together with the above-mentioned raw material gas, the furnace top gas, and is heated in the heating reforming device 6 to be supplied to the reduction furnace 1 as a high-temperature reducing gas. ..
- the blowing device 22 it is preferable to supply a part of the regenerated methane gas to the blowing device 22 as a blowing reducing agent.
- the regenerated methane gas By diverting the regenerated methane gas as the blown reducing material, it is possible to reduce the amount of other blown reducing materials used, for example, pulverized coal, waste plastic, hydrogen gas, carbon monoxide gas, and the like.
- the total amount of the blown reducing agent blown into the blast furnace is 150 kg / t or less of the regenerated methane gas and other blown reducing materials.
- the unit of "kg / t" is the amount of other blown reducing agent blown into the blast furnace when 1 t of hot metal is manufactured.
- the hydrogen gas used to generate the regenerated methane gas does not have to be a gas having a hydrogen concentration of 100% by volume, but since the methane concentration of the regenerated methane gas is high, a gas having a high hydrogen concentration, specifically, a gas having a high hydrogen concentration. , It is preferable to use hydrogen gas having a hydrogen concentration of 80% by volume or more. It is more preferably 90% by volume or more, still more preferably 95% by volume or more. Examples of the residual gas other than hydrogen include CO, CO 2 , H 2 S, CH 4 , N 2, and the like.
- hydrogen gas produced by electrolysis of water as at least a part of the hydrogen gas used in the generation of regenerated methane gas, for example, in a water electrolysis device.
- a water electrolysis device it is preferable to use hydrogen gas produced by electrolysis of water as at least a part of the hydrogen gas used in the generation of regenerated methane gas, for example, in a water electrolysis device.
- by-product water that is secondarily produced in the process of producing regenerated methane gas can be used.
- the by-product oxygen gas generated secondarily in the electrolysis of water can be used as the oxygen gas used as the blower gas of the tuyere 22. Therefore, by combining with the operating conditions of this blast furnace (oxygen gas is used as the blowing gas and recycled methane gas is used as the reducing agent), it is possible to construct an extremely efficient resource recycling system, and the operation is also possible. This is because the flexibility is also improved.
- the by-product oxygen gas is preferably used as an oxygen gas to be used as a blower gas in its entirety, but another oxygen-using facility (for example, a converter, an electric furnace, or a combustion device (heating)) depends on the supply amount. It may be supplied to a furnace burner, a sintered ignition burner, etc.).
- hydrogen gas generated by electrolysis of water in its entirety as the hydrogen gas used for the generation of regenerated methane gas, but the shortage can be obtained from another facility outside or in the steel mill. You just have to supply it.
- the hydrogen gas supply source in the steel mill include coke oven gas (by-product gas discharged from the coke oven).
- PSA physical adsorption
- hydrocarbons in coke oven gas are reformed (partially oxidized). Examples thereof include a method of separating and recovering hydrogen from gas by PSA (physical adsorption) or the like.
- the hydrogen gas supplied from the outside includes, for example, hydrogen gas produced by reforming hydrocarbons such as natural gas by steam reforming, hydrogen gas obtained by vaporizing liquefied hydrogen, and organic substances. Examples include hydrogen gas produced by dehydrocarbonizing hydride.
- the electric power used for electrolysis of water is not particularly limited, but it is preferable to use electric power derived from renewable energy or electric power generated by a power generation facility in a steel mill.
- electricity derived from renewable energy it is possible to further reduce carbon dioxide emissions.
- the renewable energy is energy that is constantly present in the natural world, and examples thereof include solar power, wind power, hydropower, geothermal power, and biomass.
- the electric power generated by the power generation equipment in the steelworks it is possible to construct a more efficient resource recycling system.
- examples of the power generation equipment in the steelworks include a blast furnace top pressure power generation equipment and a power generation equipment using blast furnace gas as fuel (heat source).
- blast furnace gas fuel
- coke oven gas coke oven gas
- converter gas by-product gas discharged from converter
- city gas can be used as fuel according to the operating conditions of the blast furnace. can.
- a blowing reducing agent such as regenerated methane gas and oxygen gas are mixed, and the mixed gas is rapidly ignited and rapidly gasified immediately after being blown into the blast furnace 21 from the blowing device 22. Then, in the blast furnace at the tip of the blowing device 22, a raceway is formed, which is a region where a blowing reducing agent such as regenerated methane gas or coke reacts with oxygen gas.
- a part of the blast furnace gas downstream of the dehydrator 23 is partially burned by the burner 24 so as to be about 800 ° C. to 1000 ° C., and then blown into the blast furnace shaft portion. It is preferable to blow in preheated gas.
- oxygen gas as the blowing gas for the blowing device 22 instead of hot air (air heated to about 1200 ° C.). That is, when hot air (air heated to about 1200 ° C.) is used as the blowing gas, the combustion gas contains about 50% by volume of nitrogen that does not contribute to the combustion reaction, so that the temperature of the flame in the raceway becomes high. hard. Therefore, when most of the reducing material blown into the blast furnace is replaced with methane gas from pulverized coal, the difference between the reaction heat in the pulverized coal-oxygen reaction and the reaction heat in the methane gas-oxygen reaction described above causes the blowing device 22.
- the tuyere temperature drops below 2000 ° C., which is the lower limit of the appropriate temperature.
- operational troubles such as insufficient heat transfer at the lower part of the blast furnace, increased pressure loss, and poor slag discharge are caused.
- the blast furnace gas contains a large amount of nitrogen, a step of separating nitrogen from carbon monoxide and carbon dioxide is required in the pre-step of the step of generating methane gas from the blast furnace gas.
- oxygen gas as the blast gas
- Oxygen gas other than by-product oxygen gas can be produced by, for example, a deep-cooled air separation device.
- the oxygen concentration of the oxygen gas is preferably 80% by volume or more. That is, if the oxygen gas concentration is low, the amount of gas introduced into the blast furnace and, by extension, the pressure loss of the blast furnace may increase, resulting in a decrease in productivity. Further, while the above gas circulation is repeated, the concentration of methane gas in the regenerated methane gas decreases relatively. Therefore, the oxygen concentration in the oxygen gas is preferably 80% by volume or more. It is more preferably 90% by volume or more, still more preferably 95% by volume or more.
- the concentration of methane gas in the regenerated methane gas is high (about 90% by volume) even when the blast furnace is operated beyond the normal operating period without supplying external methane gas. It is very advantageous because it can be kept at.
- the oxygen concentration may be 100% by volume.
- the residual gas other than oxygen in the oxygen gas may contain, for example, nitrogen, carbon dioxide, etc., but nitrogen should be as low as possible. That is, since the blast furnace gas of a general blast furnace contains about 50% by volume of nitrogen gas, the methane concentration in the regenerated methane gas may be low, which is not preferable. In this respect, the blast furnace gas discharged from the blast furnace that blows oxygen gas has a nitrogen concentration of almost zero and has a composition of almost CO, CO 2 and H 2 , and is therefore suitable for methane synthesis.
- the methane concentration is preferably 80% by volume or more. If the regenerated methane gas is insufficient, methane gas from the outside may be used. That is, if the methane concentration in the blown methane gas is low, the amount of gas blown into the blast furnace and, by extension, the pressure loss of the blast furnace may increase, resulting in a decrease in productivity. Further, while repeating the above-mentioned gas circulation, the methane concentration in the regenerated methane gas relatively decreases. Therefore, the methane concentration of the blown methane gas is preferably 80% by volume or more.
- the methane concentration of the blown methane gas may be 100% by volume.
- the methane concentration of the regenerated methane gas (and external methane gas) is preferably 80% by volume or more. It is more preferably 90% by volume or more, still more preferably 95% by volume or more.
- the methane concentration of the regenerated methane gas (and external methane gas) may be 100% by volume.
- the remaining gas other than methane in the blown methane gas and the regenerated methane gas (and the external methane gas) may include, for example, carbon monoxide, carbon dioxide, hydrogen and hydrocarbons, and impurity gases such as nitrogen. good.
- the methane concentration of the regenerated methane gas decreases, for example, the ratio of the regenerated methane gas in the blown methane gas is reduced, while the ratio of the external methane gas having a high methane concentration is increased, so that the methane concentration in the blown methane gas is reduced. Can be kept high.
- the produced reduced iron 3 can be supplied to the blast furnace 21 as a raw material.
- the ratio of reducing agents in the blast furnace can be reduced, and CO 2 can be further reduced.
- the CO 2 emission amount of the reduced iron production process can be set to zero in principle, and the CO 2 from the blast furnace can be reduced to zero. Since it is reused as recycled methane gas, it has the advantage of reducing CO 2 emissions from the blast furnace.
- a fourth embodiment will be described with reference to FIG.
- the configuration used as the fourth embodiment is selected and shown in FIG. 1, and the iron-making equipment shown in FIG. 1 is used.
- reduced iron is produced according to the following procedure.
- iron oxide 2 is charged from above into the reduction furnace 1 which is the center of the reduced iron production process, and the iron oxide 2 is gradually lowered.
- the iron oxide 2 is reduced by blowing a reducing gas containing high-temperature CO and H 2 and hydrocarbons from the reducing gas blowing device 10 from the intermediate portion of the reducing furnace 1, and the iron oxide 2 is reduced.
- the reduced iron 3 is discharged from the lower part of the.
- the furnace top gas containing CO, CO 2 , H 2 and H 2 O is mainly discharged from the upper part of the reduction furnace 1.
- the furnace top gas is dust-removed by the dust remover 4
- a part of the carbon dioxide is separated as a raw material gas by the carbon dioxide separator 8, and then the moisture is adjusted by the second dehydrator 7b to heat and reformer. It is sent to 6.
- the remaining furnace top gas is dehydrated by the first dehydrating device 7a and then used as heating fuel in the combustion chamber of the heating reforming device 6.
- blast furnace gas discharged from the blast furnace 21 can be used in addition to the furnace top gas discharged from the reduction furnace 1.
- the furnace top gas supplied to the heat reformer 6 is heated in the heat reformer 6 together with the synthesized regenerated methane to obtain a high-temperature reducing gas.
- the furnace top gas and the blast furnace gas used as the raw material gas are adjusted in water content in order to properly adjust the composition of the reducing gas, but CO 2 may be separated by the carbon dioxide separator 8 at the same time.
- recycled methane, furnace top gas and blast furnace gas are used as the raw material gas for the reduction gas, water or steam may be added to adjust the composition.
- a mechanism for promoting a reaction such as a catalyst may be provided to generate a reforming reaction to use a reforming gas mainly containing CO and H 2 , or in the heating reforming apparatus. It may be heated only and then blown into the reduction furnace as it is.
- the operation of the blast furnace is the same as that of the third embodiment. At least a part of the blast furnace gas is introduced into the above-mentioned methane synthesizer 9, and the methane synthesizer 9 reacts carbon monoxide and carbon dioxide contained in the blast furnace gas with hydrogen gas to generate regenerated methane gas. ..
- the regenerated methane gas is supplied to the heat reformer 6 together with the raw material gas, and is converted into a reducing gas by the heat reformer 6.
- the remaining regenerated methane gas may be blown from the tuyere as a reducing agent for the blast furnace.
- a carbon dioxide gas separation / recovery device that separates and recovers carbon dioxide gas from the blast furnace gas and carbon dioxide gas recovered by this carbon dioxide gas separation / recovery device are methane on the upstream side of the methane synthesis device 9.
- the residual gas of the carbon dioxide gas separation and recovery device containing fuel components such as carbon monoxide and hydrogen can be taken out, and other processes in the steel mill, such as a coke oven and a power plant, can be taken out.
- the hydrogen gas used for the synthesis of regenerated methane CO 2- free hydrogen supplied from the outside, for example, hydrogen gas generated by electrolysis with photovoltaic power may be used.
- the above oxygen gas used as a combustion assisting gas in the combustion chamber of the heat reformer 6 does not necessarily have to be pure oxygen having an oxygen concentration of 100%, and some gas other than oxygen, such as nitrogen, carbon dioxide, argon, etc. May be included.
- the oxygen concentration is too low, the gas volume increases, which causes a problem that the heat reformer 6 and the methane synthesizer 9 for methane synthesis must be enlarged. Therefore, it is preferable to set the oxygen concentration to 80% or more. ..
- CO 2- free electric power for example, electric power generated by solar power generation or nuclear power generation may be used.
- the furnace top gas used as a raw material gas was introduced into the heating reformer 6 after removing 86 kg / t of water for moisture adjustment.
- the furnace top gas used as the heated fuel gas was dehydrated and then burned in the combustion chamber of the heating reformer 6 using pure oxygen generated by a deep cold separation process driven by CO 2-free power. ..
- the synthesized regenerated methane gas was poured into the heating reformer 6 and used as a raw material for the reducing gas. At that time, since the heating fuel of the heating reformer 6 was not supplied, CO 2- free electric power was supplied from the outside instead, and electric heating was performed. In the above operations , CO 2 emissions were zero because no energy source other than hydrogen and electric heating by CO 2-free power was supplied from the outside.
- the amount of blast furnace gas supplied in the plant is reduced by the amount used in the reduced iron production process, but since blast furnace gas has low calories, it is rarely used in heating furnaces in the lower process, and is mainly used for power generation. be. Therefore, if the power shortage due to the shortage of supplied blast furnace gas in the steelworks is supplemented with CO 2 free power, the steelworks can be operated without increasing CO 2.
- Comparative Example 1 A general reduction furnace operation was carried out using the reduced iron production equipment shown in FIG. This general reduction furnace operation is Comparative Example 1 in which the raw material added to the furnace top gas as the raw material gas is natural gas instead of recycled methane gas in the above-mentioned Invention Example 1. That is, the reduction furnace was operated by blowing 2200 Nm 3 / t (H 2 : 62% by volume, CO: 38% by volume) of high-temperature reduction gas heated to 800 ° C. from the middle portion of the reduction furnace 1. At this time, 2200Nm 3 / t from the furnace top (H 2: 46 vol%, CO: 29 vol%, CO 2: 10 vol%, H 2 O: 15% by volume) furnace top gas is discharged.
- 2200Nm 3 / t H 2: 46 vol%, CO: 29 vol%, CO 2: 10 vol%, H 2 O: 15% by volume
- Comparative Example 2 A general reduction furnace operation was carried out using the reduced iron production equipment shown in FIG.
- This general reduction furnace operation is Comparative Example 2 in the above-mentioned Invention Example 1 in which the raw material to be added to the furnace top gas as the raw material gas is coke oven gas instead of recycled methane gas. That is, in Comparative Example 2, in Comparative Example 1, reduced iron is produced by pouring 524 Nm 3 / t coke oven gas into the heating reformer 6 instead of natural gas. Therefore, as in Comparative Example 1, the CO 2 emitted as the combustion exhaust gas of the heating reformer 6 is 456 kg-CO 2 / t, which is a part of the coke oven gas generated in the steelworks.
- the coke oven gas used in Comparative Example 2 is an important process gas used as a fuel for the lower process process, for example, a burner fuel for a heating furnace in an integrated steel mill, it is used in a large amount in the reduced iron process. If this happens, there will be a problem of running out of fuel in the lower process.
- the amount of coke oven gas generated during the production of coke used in steelworks with a blast furnace of 10000 t / day is 1.69 million Nm 3 / day. Assuming that the production amount of reduced iron is 3000 tons / day, the coke oven gas consumed in the reduced iron production process of the present invention is 1.57 million Nm 3 / t, and almost all of the generated coke oven gas is used up. become. Therefore, the method of Comparative Example 2 cannot be applied to an actual steel mill.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Manufacture Of Iron (AREA)
Abstract
Description
即ち、本発明の要旨は、次のとおりである。
1.酸化鉄を還元する高炉と、
酸化鉄を還元する還元炉と、
前記高炉から副生する二酸化炭素、一酸化炭素、水素を含む高炉ガスおよび/または前記還元炉の炉頂より排出される二酸化炭素、一酸化炭素、水素を含む炉頂ガス並びに、水素ガスからメタンを合成するメタン合成装置と、
前記メタン合成装置で合成されたメタンガスを前記高炉に吹き込む吹込み装置と、
前記高炉ガスおよび/または前記炉頂ガス並びに、前記メタン合成装置で合成されたメタンガスを加熱または加熱改質し一酸化炭素ガスおよび水素ガスを含む還元ガスとする加熱改質装置と、
前記還元ガスを前記還元炉に吹き込む還元ガス吹込み装置と、
前記炉頂ガスを前記メタン合成装置および/または前記加熱改質装置へ供給する供給経路と、
を有することを特徴とする製鉄設備。
前記二酸化炭素ガス分離回収装置で回収された二酸化炭素ガスを前記メタン合成装置へ供給する経路と、を有する製鉄設備。
酸化鉄を還元炉へ充填する酸化鉄充填工程と、
前記還元炉へ還元ガスを吹込む還元ガス吹込み工程と、
二酸化炭素および一酸化炭素を含む混合ガスまたは二酸化炭素ガスと、水素ガスとからメタンを合成するメタン合成工程と、
前記メタンガスおよび前記混合ガスを原料ガスとして、前記原料ガスを加熱して前記還元ガスに改質するガス改質工程と、
前記還元炉内で前記還元ガスにより前記酸化鉄を還元する還元工程と、
を有する還元鉄の製造方法。
酸化鉄を還元炉へ充填する酸化鉄充填工程と、
前記還元炉へ還元ガスを吹込む還元ガス吹込み工程と、
前記還元炉の炉頂より排出される二酸化炭素、一酸化炭素、水素を含む炉頂ガスから二酸化炭素を分離し、一酸化炭素と水素を含む混合ガスを回収する二酸化炭素分離工程と、
前記混合ガスを原料ガスとして、前記原料ガスを加熱して前記還元ガスとするガス加熱工程と、
前記還元炉内で前記還元ガスにより前記酸化鉄を還元する還元工程と、
を有する還元鉄の製造方法。
前記再生メタンガスの一部を前記高炉に吹き込む前記9に記載の還元鉄の製造方法。
以下に、本発明の還元鉄の製造方法について実施形態毎に詳しく説明する。
第1の実施形態について、図2を参照して説明する。図2には、図1において第1の実施形態として用いる構成を選択して示してあり、図1に示した製鉄設備を用いている。
本発明の第1実施形態では、次の手順に従って還元鉄を製造する。まず、還元鉄製造プロセスの中心となる還元炉1に、上部から酸化鉄2を装入し、該酸化鉄2を徐々に降下させる。その酸化鉄2の降下過程において、還元炉1の中間部から高温のCO、H2および炭化水素を含む還元ガスを還元ガス吹込み装置10から吹き込むことによって酸化鉄2を還元し、還元炉1の下部から還元鉄3を排出する。この還元炉1内での還元処理において、還元炉1の上部からは主にCO、CO2、H2およびH2Oを含む炉頂ガスが排出される。この炉頂ガスは除塵装置4にて除塵されてから、一部は原料ガスとして第2の脱水装置7bにて水分調整して加熱改質装置6に送り込まれる。残りの炉頂ガスは、第1の脱水装置7aにて脱水ののち、加熱改質装置6の燃焼室において加熱用燃料として用いる。なお、加熱改質装置6の燃焼室にて炉頂ガスを燃焼させる際の助燃ガスとしては、窒素が混入しないように空気ではなく酸素ガスを用いることが好ましい。
本発明の第2の実施形態を図3に示す。第2実施形態では、還元炉1から発生した炉頂ガスのうち、第1実施形態において加熱改質装置6の加熱に用いていた分を、脱水装置7eにて水分調整してからメタン合成装置9に流し込み、再生メタンガス(図3において再生CH4)の原料とすることによって、加熱改質装置6において必要な量の再生メタンを合成する。このとき、加熱改質装置6の加熱用燃料が不足するようであれば、代替として外部よりCO2フリーの熱源、例えばCO2フリー電力を利用して加熱する外部熱源を用いることも可能である。この第2実施形態において、加熱改質装置6での加熱や水素製造にCO2フリーの電力を用いれば、原理的にはCO2排出をゼロとすることができる。
本発明の第3の実施形態について、上記した図1を参照して説明する。
第3実施形態は、溶銑を製造する高炉のある製鉄所において、本発明に従う還元鉄製造プロセスを併設する場合に有利に成立する方法である。まず、第3実施形態は、還元鉄製造プロセスとして、例えば図1に示すように、還元炉1の炉頂から排出される炉頂ガスは、除塵装置4にて除塵されてから、一部は原料ガスとして第2の脱水装置7bにて水分調整して加熱改質装置6に送り込まれ、残りの炉頂ガスは、第1の脱水装置7aにて脱水ののち、加熱改質装置6の燃焼室において加熱用燃料として用いる。
本発明の第3実施形態に従う高炉の操業方法では、高炉21の炉頂部から高炉内へ原料となる焼結鉱や塊鉱石、ペレット(以下、鉱石原料ともいう)やコークスなどが装入される(図示せず)。また、高炉21下部に設置された吹込装置(羽口)22から高炉21内へ、送風ガスと還元材および再生メタンガスとが吹込まれる。なお、吹込装置22から高炉21内へ吹込む還元材を、コークスと区別するため、吹込み還元材ともいう。
そして、送風ガスと還元材の反応により生じた一酸化炭素ガスや水素ガスによって、高炉21内に装入した鉱石原料が還元される。この鉱石原料の還元反応において、二酸化炭素が発生し、鉱石原料と反応しなかった一酸化炭素や水素などとともに、副生ガスとして、高炉の炉頂部から排出される。高炉21の炉頂部は2.5気圧程度の高圧条件となっているので、この高炉の炉頂部から排出される高炉ガス(副生ガス)が、常圧に戻る際の膨張冷却で水蒸気が凝縮するため、脱水装置23において、その凝縮水が除去される。
・水の電気分解で使用する水に、再生メタンガスを生成する工程において副次的に生成する副生水を使用することができ、
・また、水の電気分解において副次的に生成する副生酸素ガスを、羽口22の送風ガスとして用いる酸素ガスに使用することができる、
ことから、この高炉の操業条件(送風ガスとして酸素ガスを用い、かつ、還元材として再生メタンガスを用いる)と組み合わせることにより、極めて高効率な資源循環システムを構築することが可能となり、また、操業柔軟性も向上するからである。
さらに、副生酸素ガスは、全量、送風ガスとして用いる酸素ガスとして使用することが好適であるが、供給量に応じて、別の酸素使用設備(例えば、転炉や電気炉、燃焼機器(加熱炉バーナーや焼結点火バーナー)など)に供給してもよい。
製鉄所内の水素ガスの供給源としては、例えば、コークス炉ガス(コークス炉から排出される副生ガス)などが挙げられる。コークス炉ガスから水素ガスを供給する場合、コークス炉ガス中の水素をPSA(物理吸着)などで分離回収する方法や、コークス炉ガス中の炭化水素を改質(部分酸化)し、この改質ガスから、水素をPSA(物理吸着)などで分離回収する方法、などが挙げられる。
また、外部から供給される水素ガスとしては、例えば、天然ガスなどの炭化水素を水蒸気改質などによって改質することで製造される水素ガスや、液化水素を気化させて得られる水素ガス、有機ハイドライドを脱水素して製造される水素ガスなどが挙げられる。
再生可能エネルギー由来の電力を使用する場合、二酸化炭素の排出量の一層の削減が可能となる。ここで、再生可能エネルギーとは、自然界に定常的に存在するエネルギーであり、例えば、太陽光や風力、水力、地熱、バイオマスなどが挙げられる。
また、製鉄所内の発電設備で発電した電力を使用する場合、より高効率な資源循環システムを構築することが可能となる。ここで、製鉄所内の発電設備としては、例えば、高炉の炉頂圧発電設備や、高炉ガスを燃料(熱源)とする発電設備が挙げられる。なお、高炉ガスを燃料(熱源)とする発電設備では、高炉の操業状態に合わせて、コークス炉ガスや転炉ガス(転炉から排出される副生ガス)、都市ガスを燃料に用いることができる。
すなわち、送風ガスとして、熱風(1200℃程度に加熱した空気)を使用する場合、燃焼ガス中に燃焼反応に寄与しない50体積%程度の窒素が含まれるため、レースウェイにおける火炎の温度は高温となり難い。そのため、高炉内に吹込む還元材の多くを微粉炭からメタンガスに置換すると、上記した微粉炭-酸素の反応における反応熱と、メタンガス-酸素の反応における反応熱との差によって、吹込み装置22の羽口先温度が低下して、羽口先温度が適正温度の下限である2000℃を下回ってしまう。その結果、高炉下部の着熱不足や圧損上昇、出滓不良などの操業トラブルを招く。また、高炉ガスに窒素が多量に含まれるようになるので、高炉ガスからメタンガスを生成する工程の前工程で、窒素と、一酸化炭素および二酸化炭素とを分離する工程が必要となる。
そのため、第3実施形態における高炉の操業方法では、送風ガスとして、酸素ガスを使用することが重要となる。
すなわち、吹込みメタンガス中のメタン濃度が低いと、高炉内への吹込むガス量、ひいては、高炉の圧力損失が増大して、生産性が低下するおそれがある。また、上記したガス循環を繰り返す間に、再生メタンガス中のメタン濃度が相対的に低下する。そのため、吹込みメタンガスのメタン濃度は、80体積%以上とすることが好ましい。より好ましくは90体積%以上、さらに好ましくは95体積%以上である。吹込みメタンガスのメタン濃度は100体積%であってもよい。
同様の理由から、再生メタンガス(および外部メタンガス)のメタン濃度も、80体積%以上とすることが好ましい。より好ましくは90体積%以上、さらに好ましくは95体積%以上である。再生メタンガス(および外部メタンガス)のメタン濃度は100体積%であってもよい。
また、再生メタンガスのメタン濃度が低下した場合には、例えば、吹込みメタンガスにおける再生メタンガスの割合を低下させる一方、メタン濃度の高い外部メタンガスの割合を増加させることによって、吹込みメタンガス中のメタン濃度を高く保つことが可能である。
第4の実施形態について、図4を参照して説明する。図4には、図1において第4の実施形態として用いる構成を選択して示してあり、図1に示した製鉄設備を用いている。
本発明の第4実施形態では、次の手順に従って還元鉄を製造する。まず、還元鉄製造プロセスの中心となる還元炉1に、上部から酸化鉄2を装入し、該酸化鉄2を徐々に降下させる。その酸化鉄2の降下過程において、還元炉1の中間部から高温のCOおよびH2および炭化水素を含む還元ガスを還元ガス吹込み装置10から吹き込むことによって酸化鉄2を還元し、還元炉1の下部から還元鉄3を排出する。この還元炉1内での還元処理において、還元炉1の上部からは主にCO、CO2、H2およびH2Oを含む炉頂ガスが排出される。この炉頂ガスは除塵装置4にて除塵されてから、一部は原料ガスとして二酸化炭素分離装置8にて二酸化炭素を分離後、第2の脱水装置7bにて水分調整して加熱改質装置6に送り込まれる。残りの炉頂ガスは、第1の脱水装置7aにて脱水ののち、加熱改質装置6の燃焼室において加熱用燃料として用いる。また、原料ガスには還元炉1から排出される炉頂ガスに加え高炉21から排出される高炉ガスを使用することができる。
上記原料ガスとして用いる炉頂ガスおよび高炉ガスは、還元ガスの組成を適正に調整するために水分調整を行うが、併せて二酸化炭素分離装置8にてCO2分離を行ってもよい。また、還元ガスの原料ガスには再生メタン、炉頂ガスおよび高炉ガスを用いているが、組成調整のために水もしくは水蒸気を添加してもよい。また、加熱改質装置6においては、触媒等反応を促進する機構を設けて改質反応を発生させ、CO、H2を主とする改質ガスとしてもよいし、また加熱改質装置内では加熱のみを行い、そのまま還元炉に吹き込んでもよい。
図2に模式的に示した還元鉄製造設備を用いて、次に示す還元炉操業を行った。すなわち、還元炉1の上部から酸化鉄2として1394kg/tの焼結鉱を装入し、炉1の中間部からは800℃に加熱した高温還元ガス2200Nm3/t(H2:62体積%、CO:38体積%)の吹き込みを行った。このとき、炉1の上部からは2200Nm3/t(H2:46体積%、CO:29体積%、CO2:10体積%、H2O:15体積%)の炉頂ガスが排出された。この炉頂ガスを除塵したのち、1501Nm3/tを原料ガスとして、残りの699Nm3/tを加熱改質装置6の加熱燃料ガスとして用いた。原料ガスとする炉頂ガスは、水分調整のために86kg/tの水を取り除いたのち、加熱改質装置6に導入した。一方、加熱燃料ガスとする炉頂ガスは、脱水ののち、加熱改質装置6の燃焼室にて、CO2フリー電力で駆動する深冷分離プロセスによって生成された純酸素を用いて燃焼させた。そして、加熱改質装置6の燃焼室からの排ガスを全量回収し、これを脱水した燃焼排ガス269Nm3/t(CO2:100体積%)はメタン合成装置9に送給した。さらにメタン合成装置9には、CO2フリー電力による電気分解で生成した水素1075Nm3/tを加えて再生メタンガス269Nm3/tを合成した。そして、合成された再生メタンガスは前記原料ガスとする炉頂ガスとともに加熱改質装置6に流し込まれ、還元ガスの原料として利用した。
以上の操業では、CO2フリー電力による水素以外のエネルギー源を外部から供給することはないため、CO2排出量はゼロであった。
図3に模式的に示した還元鉄製造設備を用いて、次に示す還元炉操業を行った。すなわち、還元炉1に装入する焼結鉱、還元炉1に吹き込む還元ガス、炉頂から排出される炉頂ガス、および原料ガスの条件は、上記した発明例1と同一である。原料ガスに供した残りの炉頂ガス699Nm3/tは、脱水した後、メタン合成の原料としてメタン合成装置9に送給した。さらにメタン合成装置9に、CO2フリー電力による電気分解で生成された水素551Nm3/tを加えて、再生メタンガス269Nm3/tを合成した。合成された再生メタンガスは加熱改質装置6に流し込み、還元ガスの原料として利用した。その際、加熱改質装置6の加熱用燃料が供給されなくなるため、代わりにCO2フリー電力を外部から供給し、電気加熱を行った。
以上の操業では、CO2フリー電力による水素および電気加熱以外のエネルギー源を外部から供給することはないため、CO2排出量はゼロであった。
図1に模式的に示した製鉄設備を用いて、次に示す高炉並びに還元炉の操業を行った。すなわち、上記の発明例2と類似の還元鉄製造プロセスであるが、メタン合成装置9には炉頂ガスに加えて高炉ガスを用いる、事例である。高炉21では、高炉ガスを窒素レスとするべく、送風ガスを純酸素とした。この条件において発生する高炉ガスのうち、242Nm3/t(H2:24体積%、CO:33体積%、CO2:43体積%)を、炉頂ガス220Nm3/tおよびCO2フリー電力による電気分解で生成された水素772Nm3/tとともにメタン合成のためのメタン合成装置9に流し込んだ。メタン合成装置9では269Nm3/tの再生メタンガスが生成され、この再生メタンガスは原料ガスとする炉頂ガスとともに加熱改質装置6に流し込まれ、還元ガスの原料として利用した。また、再生メタンガスの一部は、高炉21の吹込み装置22に吹込み還元材として送給した。加熱改質装置6の燃焼室には、還元炉の炉頂ガスの一部を燃料として燃焼させるが、この排ガスは回収しなかった。また、加熱改質装置の燃料ガスが不足する分は、図示していないがCO2フリー電力を外部から供給し、電気加熱を行った。
図5に示す還元鉄製造設備を用いる、一般的な還元炉操業を行った。この一般的な還元炉操業は、上記した発明例1において、原料ガスとする炉頂ガスに加える原料を再生メタンガスではなく天然ガスとする比較例1である。すなわち、還元炉1の中間部から800℃に加熱した高温還元ガス2200Nm3/t(H2:62体積%、CO:38体積%)を吹き込み、還元炉操業を行った。このとき、炉上部からは2200Nm3/t(H2:46体積%、CO:29体積%、CO2:10体積%、H2O:15体積%)の炉頂ガスが排出された。この炉頂ガスを除塵したのち、1501Nm3/tを原料ガスに、残りの699Nm3/tを加熱改質装置6の加熱燃料ガスとして用いた。原料ガスとしては水分調整のために86kg/tの水が取り除かれ、加熱改質装置6に送り込んだ。加熱燃料ガスは、脱水ののち、加熱改質装置6の燃焼室にて空気で燃焼され、燃焼排ガスは大気放散した。加熱改質装置6では、前記プロセスガスとともに天然ガス269Nm3/tが流し込まれ、還元ガスを製造した。
以上の操業において、加熱改質装置6の燃焼排ガスとして放出されるCO2を換算すると、528kg-CO2/tとなり、CO2の排出を抑制できなかった。
図6に示す還元鉄製造設備を用いる、一般的な還元炉操業を行った。この一般的な還元炉操業は、上記した発明例1において、原料ガスとする炉頂ガスに加える原料を再生メタンガスではなくコークス炉ガスとする比較例2である。すなわち、比較例2は、比較例1において、天然ガスの代わりに524Nm3/tのコークス炉ガスを加熱改質装置6に流し込むことで還元鉄を製造するものである。従って、比較例1と同様に、加熱改質装置6の燃焼排ガスとして放出されるCO2を換算すると、456kg-CO2/tとなるが、これは製鉄所内で発生したコークス炉ガスの一部を還元鉄プロセスに流用したものなので、コークス炉側のCO2排出も456kg-CO2/t減少しており、製鉄所としては差し引きゼロとなる。しかし、コークス炉ガスは高炉ガスとは異なり下工程でプロセスガスとして用いられているものなので、CO2フリー電力やCO2フリー電力を用いた水電解によって得られる水素によって代替することはできない。したがって、比較例2の方法では下工程で284Nm3/tの外部メタン(天然ガス等)を導入する必要がある。これにより製鉄所全体としてみると557kg/tのCO2排出増となる計算となり、CO2の排出を抑制できなかった。また、コークス炉ガスは硫黄を多量に含んでおり、加熱改質装置の中に設けた反応促進用触媒は硫黄に弱いため、追加で大規模な脱硫設備も設ける必要があった。
2 酸化鉄
3 還元鉄
4 除塵装置
5 供給経路
6 加熱改質装置
7a 第1の脱水装置
7b 第2の脱水装置
7c 第3の脱水装置
7d 第4の脱水装置
8 二酸化炭素分離装置
9 メタン合成装置
10 還元ガス吹込み装置
21 高炉
22 吹込み装置
23 高炉側の脱水装置
24 バーナー
Claims (11)
- 酸化鉄を還元する高炉と、
酸化鉄を還元する還元炉と、
前記高炉から副生する二酸化炭素、一酸化炭素、水素を含む高炉ガスおよび/または前記還元炉の炉頂より排出される二酸化炭素、一酸化炭素、水素を含む炉頂ガス並びに、水素ガスからメタンを合成するメタン合成装置と、
前記メタン合成装置で合成されたメタンガスを前記高炉に吹き込む吹込み装置と、
前記高炉ガスおよび/または前記炉頂ガス並びに、前記メタン合成装置で合成されたメタンガスを加熱または加熱改質し一酸化炭素ガスおよび水素ガスを含む還元ガスとする加熱改質装置と、
前記還元ガスを前記還元炉に吹き込む還元ガス吹込み装置と、
前記炉頂ガスを前記メタン合成装置および/または前記加熱改質装置へ供給する供給経路と、
を有することを特徴とする製鉄設備。 - 請求項1において、前記供給経路に、前記炉頂ガスから二酸化炭素を分離する二酸化炭素分離装置を有する製鉄設備。
- 請求項1または2において、前記メタン合成装置の上流側に前記高炉ガスから二酸化炭素ガスを分離回収する二酸化炭素ガス分離回収装置と、
前記二酸化炭素ガス分離回収装置で回収された二酸化炭素ガスを前記メタン合成装置へ供給する経路と、を有する製鉄設備。 - 請求項1、2または3に記載の製鉄設備を使用する還元鉄の製造方法であって、
酸化鉄を還元炉へ充填する酸化鉄充填工程と、
前記還元炉へ還元ガスを吹込む還元ガス吹込み工程と、
二酸化炭素および一酸化炭素を含む混合ガスまたは二酸化炭素ガスと、水素ガスとからメタンを合成するメタン合成工程と、
前記メタンガスおよび前記混合ガスを原料ガスとして、前記原料ガスを加熱して前記還元ガスに改質するガス改質工程と、
前記還元炉内で前記還元ガスにより前記酸化鉄を還元する還元工程と、
を有する還元鉄の製造方法。 - 前記混合ガスが、高炉から副生される高炉ガスおよび/または前記還元炉の炉頂から排出される炉頂ガスである請求項4に記載の還元鉄の製造方法。
- 前記メタン合成工程で合成されたメタンガスの一部を前記高炉に吹き込む請求項5に記載の還元鉄の製造方法。
- 前記高炉が、送風に酸素ガスを用いる高炉である請求項5または6に記載の還元鉄の製造方法。
- 請求項1、2または3に記載の製鉄設備を使用する還元鉄の製造方法であって、
酸化鉄を還元炉へ充填する酸化鉄充填工程と、
前記還元炉へ還元ガスを吹込む還元ガス吹込み工程と、
前記還元炉の炉頂より排出される二酸化炭素、一酸化炭素、水素を含む炉頂ガスから二酸化炭素を分離し、一酸化炭素と水素を含む混合ガスを回収する二酸化炭素分離工程と、
前記混合ガスを原料ガスとして、前記原料ガスを加熱して前記還元ガスとするガス加熱工程と、
前記還元炉内で前記還元ガスにより前記酸化鉄を還元する還元工程と、
を有する還元鉄の製造方法。 - 前記原料ガスの一部にメタンガスを使用する請求項8に記載の還元鉄の製造方法。
- 前記メタンガスが、前記還元炉の炉頂より排出される二酸化炭素、一酸化炭素、水素を含む炉頂ガスの一部および/または前記高炉から副生する二酸化炭素、一酸化炭素、水素を含む高炉ガスの一部と、水素ガスとからメタンを合成するメタン合成工程で合成された再生メタンガスであり、
前記再生メタンガスの一部を前記高炉に吹き込む請求項9に記載の還元鉄の製造方法。 - 前記高炉が、送風に酸素ガスを用いる高炉である請求項10に記載の還元鉄の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/995,310 US20230175084A1 (en) | 2020-04-27 | 2021-01-06 | Steelmaking line and method of producing reduced iron |
CA3179019A CA3179019A1 (en) | 2020-04-27 | 2021-01-06 | Steelmaking line and method of producing reduced iron |
EP21797227.2A EP4144868B1 (en) | 2020-04-27 | 2021-01-06 | Steelmaking line and method of producing reduced iron |
CN202180029381.4A CN115427588B (zh) | 2020-04-27 | 2021-01-06 | 炼钢设备和还原铁的制造方法 |
BR112022021678A BR112022021678A2 (pt) | 2020-04-27 | 2021-01-06 | Linha de fabricação de aço e método de produção de ferro reduzido |
KR1020227039871A KR20220162174A (ko) | 2020-04-27 | 2021-01-06 | 제철 설비 및 환원철의 제조 방법 |
JP2021540264A JP7028373B1 (ja) | 2020-04-27 | 2021-01-06 | 製鉄設備および還元鉄の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-078526 | 2020-04-27 | ||
JP2020078526 | 2020-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021220555A1 true WO2021220555A1 (ja) | 2021-11-04 |
Family
ID=78331932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/000237 WO2021220555A1 (ja) | 2020-04-27 | 2021-01-06 | 製鉄設備および還元鉄の製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20230175084A1 (ja) |
EP (1) | EP4144868B1 (ja) |
JP (1) | JP7028373B1 (ja) |
KR (1) | KR20220162174A (ja) |
CN (1) | CN115427588B (ja) |
BR (1) | BR112022021678A2 (ja) |
CA (1) | CA3179019A1 (ja) |
TW (1) | TWI765521B (ja) |
WO (1) | WO2021220555A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114480754A (zh) * | 2022-01-28 | 2022-05-13 | 新疆八一钢铁股份有限公司 | 一种碳氢耦合的高炉炼铁方法 |
EP4219772A1 (de) * | 2022-01-28 | 2023-08-02 | Linde GmbH | Eisendirektreduktion mit reduzierter kohlendioxidfreisetzung |
WO2024165142A1 (en) * | 2023-02-07 | 2024-08-15 | NextChem S.p.A. | Process of direct reduction of iron ores by means of synthesis gas produced with catalytic partial oxidation |
TWI860214B (zh) | 2023-12-20 | 2024-10-21 | 中國鋼鐵股份有限公司 | 監控方法、監控系統及非暫態電腦可讀取媒體 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117460845A (zh) * | 2021-06-14 | 2024-01-26 | 杰富意钢铁株式会社 | 还原铁的制造方法 |
CN114634831A (zh) * | 2022-03-25 | 2022-06-17 | 新疆八一钢铁股份有限公司 | 一种高炉喷吹等离子矩重整循环冶金煤气的工艺方法 |
GB202213759D0 (en) * | 2022-09-20 | 2022-11-02 | Univ Birmingham | Improved blast furnace |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6342320A (ja) * | 1986-08-07 | 1988-02-23 | ホエスト−アルピン・アクチェンゲゼルシャフト | ミル装置およびそれを用いた鋼製造方法 |
JP2011225969A (ja) * | 2010-03-29 | 2011-11-10 | Jfe Steel Corp | 高炉又は製鉄所の操業方法 |
JP2012007213A (ja) * | 2010-06-25 | 2012-01-12 | Mitsubishi Heavy Ind Ltd | 直接還元製鉄法およびそのための還元ガス製造装置 |
JP2017088912A (ja) | 2015-11-04 | 2017-05-25 | 株式会社神戸製鋼所 | 還元鉄の製造方法 |
JP6190522B2 (ja) | 2013-07-31 | 2017-08-30 | ミドレックス テクノロジーズ,インコーポレイテッド | コークス炉ガス及び酸素製鋼炉ガスを用いた酸化鉄の金属鉄への還元 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1609456A3 (ru) * | 1985-07-18 | 1990-11-23 | Кабусики Кайся Кобе Сейкосе (Фирма) | Способ пр мого получени железа |
US6045602A (en) * | 1998-10-28 | 2000-04-04 | Praxair Technology, Inc. | Method for integrating a blast furnace and a direct reduction reactor using cryogenic rectification |
AT409634B (de) * | 2000-05-15 | 2002-09-25 | Voest Alpine Ind Anlagen | Verfahren und vorrichtung zur herstellung von roheisen oder flüssigen stahlvorprodukten aus eisenerzhältigen einsatzstoffen |
MY133537A (en) * | 2002-01-24 | 2007-11-30 | Kobe Steel Ltd | Method for making molten iron |
CN100523228C (zh) * | 2007-07-31 | 2009-08-05 | 张文慧 | 利用焦炉气制还原气生产海绵铁的方法及其设备 |
EP2543743B1 (en) * | 2010-03-02 | 2017-11-29 | JFE Steel Corporation | Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides |
AT511892B1 (de) * | 2011-08-31 | 2013-07-15 | Siemens Vai Metals Tech Gmbh | Verfahren zur aufbereitung von abgasen aus anlagen zur roheisenherstellung und/oder von synthesegas |
KR101321072B1 (ko) * | 2011-09-06 | 2013-10-23 | 주식회사 포스코 | 일산화탄소 및 수소를 포함하는 합성가스 제조장치 및 그의 제조방법 |
CN102758048A (zh) * | 2012-07-30 | 2012-10-31 | 中冶南方工程技术有限公司 | 原燃料热装、全热氧高炉与竖炉联合生产工艺 |
JP6019893B2 (ja) * | 2012-07-31 | 2016-11-02 | Jfeスチール株式会社 | 高炉の操業方法 |
US20150259760A1 (en) * | 2012-09-14 | 2015-09-17 | Voestalpine Stahl Gmbh | Method for producing steel |
WO2015146872A1 (ja) * | 2014-03-26 | 2015-10-01 | Jfeスチール株式会社 | 酸素高炉の操業方法 |
US10316376B2 (en) * | 2015-06-24 | 2019-06-11 | Midrex Technologies, Inc. | Methods and systems for increasing the carbon content of sponge iron in a reduction furnace |
CN110199033A (zh) * | 2016-12-22 | 2019-09-03 | 沙特基础全球技术有限公司 | 用高纯度甲烷生产直接还原铁的直接还原工艺 |
-
2021
- 2021-01-06 CN CN202180029381.4A patent/CN115427588B/zh active Active
- 2021-01-06 CA CA3179019A patent/CA3179019A1/en active Pending
- 2021-01-06 BR BR112022021678A patent/BR112022021678A2/pt unknown
- 2021-01-06 WO PCT/JP2021/000237 patent/WO2021220555A1/ja active Application Filing
- 2021-01-06 KR KR1020227039871A patent/KR20220162174A/ko not_active Application Discontinuation
- 2021-01-06 EP EP21797227.2A patent/EP4144868B1/en active Active
- 2021-01-06 US US17/995,310 patent/US20230175084A1/en active Pending
- 2021-01-06 JP JP2021540264A patent/JP7028373B1/ja active Active
- 2021-01-11 TW TW110100903A patent/TWI765521B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6342320A (ja) * | 1986-08-07 | 1988-02-23 | ホエスト−アルピン・アクチェンゲゼルシャフト | ミル装置およびそれを用いた鋼製造方法 |
JP2011225969A (ja) * | 2010-03-29 | 2011-11-10 | Jfe Steel Corp | 高炉又は製鉄所の操業方法 |
JP2012007213A (ja) * | 2010-06-25 | 2012-01-12 | Mitsubishi Heavy Ind Ltd | 直接還元製鉄法およびそのための還元ガス製造装置 |
JP6190522B2 (ja) | 2013-07-31 | 2017-08-30 | ミドレックス テクノロジーズ,インコーポレイテッド | コークス炉ガス及び酸素製鋼炉ガスを用いた酸化鉄の金属鉄への還元 |
JP2017088912A (ja) | 2015-11-04 | 2017-05-25 | 株式会社神戸製鋼所 | 還元鉄の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4144868A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114480754A (zh) * | 2022-01-28 | 2022-05-13 | 新疆八一钢铁股份有限公司 | 一种碳氢耦合的高炉炼铁方法 |
EP4219772A1 (de) * | 2022-01-28 | 2023-08-02 | Linde GmbH | Eisendirektreduktion mit reduzierter kohlendioxidfreisetzung |
WO2023143870A1 (de) * | 2022-01-28 | 2023-08-03 | Linde Gmbh | Eisendirektreduktion mit reduzierter kohlendioxidfreisetzung |
WO2024165142A1 (en) * | 2023-02-07 | 2024-08-15 | NextChem S.p.A. | Process of direct reduction of iron ores by means of synthesis gas produced with catalytic partial oxidation |
TWI860214B (zh) | 2023-12-20 | 2024-10-21 | 中國鋼鐵股份有限公司 | 監控方法、監控系統及非暫態電腦可讀取媒體 |
Also Published As
Publication number | Publication date |
---|---|
EP4144868A1 (en) | 2023-03-08 |
TWI765521B (zh) | 2022-05-21 |
CN115427588A (zh) | 2022-12-02 |
EP4144868A4 (en) | 2023-08-30 |
JPWO2021220555A1 (ja) | 2021-11-04 |
US20230175084A1 (en) | 2023-06-08 |
EP4144868B1 (en) | 2024-07-24 |
JP7028373B1 (ja) | 2022-03-02 |
KR20220162174A (ko) | 2022-12-07 |
BR112022021678A2 (pt) | 2022-12-20 |
TW202140804A (zh) | 2021-11-01 |
CN115427588B (zh) | 2024-08-06 |
CA3179019A1 (en) | 2021-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7028373B1 (ja) | 製鉄設備および還元鉄の製造方法 | |
JP7028364B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7131694B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7028363B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
WO2021215059A1 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7272312B2 (ja) | 還元鉄の製造方法 | |
RU2808735C1 (ru) | Линия производства восстановленного железа и способ получения восстановленного железа | |
WO2024135852A1 (ja) | 還元鉄の製造方法 | |
WO2024135697A1 (ja) | 還元鉄の製造方法 | |
WO2024135695A1 (ja) | 還元鉄の製造方法 | |
JP7192845B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7131698B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
JP7131697B2 (ja) | 高炉の操業方法および高炉附帯設備 | |
WO2024135696A1 (ja) | 還元鉄の製造方法 | |
KR20220158450A (ko) | 수소 기반 용철 제조 방법 및 그 장치 | |
CN117460845A (zh) | 还原铁的制造方法 | |
EA041394B1 (ru) | Способ эксплуатации доменной печи |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021540264 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21797227 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3179019 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202217058512 Country of ref document: IN |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112022021678 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20227039871 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021797227 Country of ref document: EP Effective date: 20221128 |
|
ENP | Entry into the national phase |
Ref document number: 112022021678 Country of ref document: BR Kind code of ref document: A2 Effective date: 20221025 |