TWI765521B - 製鐵設備及還原鐵之製造方法 - Google Patents

製鐵設備及還原鐵之製造方法 Download PDF

Info

Publication number
TWI765521B
TWI765521B TW110100903A TW110100903A TWI765521B TW I765521 B TWI765521 B TW I765521B TW 110100903 A TW110100903 A TW 110100903A TW 110100903 A TW110100903 A TW 110100903A TW I765521 B TWI765521 B TW I765521B
Authority
TW
Taiwan
Prior art keywords
gas
methane
mentioned
furnace
blast furnace
Prior art date
Application number
TW110100903A
Other languages
English (en)
Other versions
TW202140804A (zh
Inventor
高橋功一
小澤純仁
川尻雄基
守田祐哉
野内泰平
佐藤道貴
Original Assignee
日商杰富意鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商杰富意鋼鐵股份有限公司 filed Critical 日商杰富意鋼鐵股份有限公司
Publication of TW202140804A publication Critical patent/TW202140804A/zh
Application granted granted Critical
Publication of TWI765521B publication Critical patent/TWI765521B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/002Evacuating and treating of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B2005/005Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/22Increasing the gas reduction potential of recycled exhaust gases by reforming
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/26Increasing the gas reduction potential of recycled exhaust gases by adding additional fuel in recirculation pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/28Increasing the gas reduction potential of recycled exhaust gases by separation
    • C21B2100/282Increasing the gas reduction potential of recycled exhaust gases by separation of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/64Controlling the physical properties of the gas, e.g. pressure or temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/80Interaction of exhaust gases produced during the manufacture of iron or steel with other processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Abstract

本發明提出一種製鐵設備,其於自氧化鐵製造還原鐵時,有助於實現節能化以及能夠削減CO2 排出量之方法。 本發明之製鐵設備具有:高爐,其將氧化鐵還原;還原爐,其將氧化鐵還原;甲烷合成裝置,其由自上述高爐副產之包含二氧化碳、一氧化碳、氫之高爐氣體及/或自上述還原爐之爐頂排出之包含二氧化碳、一氧化碳、氫之爐頂氣體、以及氫氣合成甲烷;吹入裝置,其將由上述甲烷合成裝置合成之甲烷氣體吹入至上述高爐;加熱改質裝置,其將上述高爐氣體及/或上述爐頂氣體、以及由上述甲烷合成裝置合成之甲烷氣體加熱或加熱改質而形成包含一氧化碳氣體及氫氣之還原氣體;還原氣體吹入裝置,其將上述還原氣體吹入至上述還原爐;以及供給路徑,其將上述爐頂氣體供給至上述甲烷合成裝置及/或上述加熱改質裝置。

Description

製鐵設備及還原鐵之製造方法
本發明係關於一種製鐵設備及使用該製鐵設備之還原鐵之製造方法。
近年來,於地球環境問題或化石燃料枯竭問題之背景下,於各種領域中強烈要求節能化以及降低二氧化碳(CO2 )之排出量。該等情況於煉鐵廠中亦不例外,煉鐵廠之各步驟中正努力節能化。
按,鐵之原料主要係氧化鐵,將該氧化鐵還原需要還原製程。世界上最普及之一般的還原製程為高爐。該高爐中,於風口中使焦炭或粉煤與熱風(加熱至1200℃左右之空氣)中之氧反應生成CO及H2 氣體(還原氣體),藉由該等還原氣體而進行爐中之鐵礦石等之還原。因為近年來高爐操作技術之提高,雖然還原材料比(每製造1 t熔鐵之焦炭及粉煤之使用量)已降低至500 kg/t左右,但還原材料比之降低已經達到極限,無法期待還原材料比再進一步大幅度降低。
另一方面,亦經常使用以下方法:於產出天然氣之地域中,對豎式還原爐填充作為氧化鐵原料之燒結礦、團礦等經團塊化之鐵礦石(以下,總稱為氧化鐵),吹入包含氫及一氧化碳之還原氣體使氧化鐵還原而製造還原鐵。於該方法中,使用天然氣等作為還原氣體之原料氣體。原料氣體係與自還原爐之爐頂排出之爐頂氣體一起於改質器內加熱、改質而生成還原氣體。所生成之還原氣體被吹入至還原爐,使其與自還原爐之上部供給之氧化鐵原料反應,氧化鐵被還原,而成為還原鐵。所製造之還原鐵係自還原爐之下部排出。再者,供還原氧化鐵之後之氣體係自還原爐之爐頂以爐頂氣體之形式被排出,經集塵、冷卻之後,一部分作為改質氣體之原料送入至改質器。又,其餘之爐頂氣體被用作加熱、改質器之燃料氣體。
作為上述還原鐵製造製程,例如,於專利文獻1中記載有以下技術:將還原爐之廢氣與天然氣利用改質器改質,生成主要包括CO與H2 氣體之還原氣體,將該還原氣體吹入至還原爐而將還原爐內之氧化鐵還原,製造還原鐵。
又,於專利文獻2中記載有以下方法:將焦爐氣體與去除了CO2 之還原爐之爐頂氣體改質而製造還原氣體,將其吹入至還原爐,藉此製造還原鐵。 [先前技術文獻]  [專利文獻]
專利文獻1:日本專利特開2017-88912號公報 專利文獻2:日本專利第6190522號公報
(發明所欲解決之問題)
於專利文獻1中記載之還原鐵製造方法中,為了製造還原氣體使用天然氣,故而存在雖然較高爐低位,但是無法避免某程度上排出CO2 之問題。
又,專利文獻2中記載之方法係使用煉鐵廠內生成之焦爐氣體或轉爐氣體製造還原氣體者。此處,煉鐵廠中,焦爐氣體或轉爐氣體一貫作為加熱爐或退火爐等之後續步驟之燃料氣體而不可欠缺,故而若轉用於還原鐵製造製程,則於後續步驟中會導致燃料氣體不足。其結果,最終為了補償後續步驟之不足氣體變成自外部供給天然氣,而無法實現CO2 排出量之削減且仍殘留課題。
進而,於專利文獻2之方法中,將焦爐氣體作為原料改質而形成還原氣體,但焦爐氣體中包含較多硫份,故而擔心會損傷附隨於改質器等的反應設備之觸媒。又,還原鐵製造製程可被稱為可實現使H2 與CO之比為1.5左右之適當的操作。然而,轉爐氣體由於H2 含量較少,所生成之還原氣體之H2 /CO之值會過低,故而並非還原鐵製程之操作適當組成。為了避免該情況,亦存在必須對轉爐氣體進行CO2 分離,而有需要多餘之CO2 分離之能量的問題。
本發明係鑒於上述現狀而完成者,其目的在於提出自氧化鐵製造還原鐵時能夠節能化以及削減CO2 排出量之方法、與有助於實現該方法之製鐵設備。 (解決問題之技術手段)
本發明者等人為了解決習知技術所具有之上述課題進行了銳意研究,結果開發出了以下所述新穎之製造設備以及還原鐵之製造方法。 即,本發明之主旨為如下所述。 1.一種製鐵設備,其特徵在於,其具有: 高爐,其將氧化鐵還原; 還原爐,其將氧化鐵還原; 甲烷合成裝置,其由自上述高爐副產之包含二氧化碳、一氧化碳、氫之高爐氣體及/或自上述還原爐之爐頂排出之包含二氧化碳、一氧化碳、氫之爐頂氣體、以及氫氣合成甲烷; 吹入裝置,其將由上述甲烷合成裝置合成之甲烷氣體吹入至上述高爐; 加熱改質裝置,其將上述高爐氣體及/或上述爐頂氣體、以及由上述甲烷合成裝置合成之甲烷氣體加熱或加熱改質而形成包含一氧化碳氣體及氫氣之還原氣體; 還原氣體吹入裝置,其將上述還原氣體吹入至上述還原爐;以及 供給路徑,其將上述爐頂氣體供給至上述甲烷合成裝置及/或上述加熱改質裝置。
2.如上述1之製鐵設備,其中,於上述供給路徑具有自上述爐頂氣體分離二氧化碳之二氧化碳分離裝置。
3.如上述1或2之製鐵設備,其中,於上述甲烷合成裝置之上游側具有: 二氧化碳氣體分離回收裝置,其自上述高爐氣體分離回收二氧化碳氣體;以及 供給路徑,其將由上述二氧化碳氣體分離回收裝置回收之二氧化碳氣體供給至上述甲烷合成裝置。
4.一種還原鐵之製造方法,其係使用上述1、2或3之製鐵設備之還原鐵之製造方法,其具有: 氧化鐵填充步驟,其向還原爐填充氧化鐵; 還原氣體吹入步驟,其向上述還原爐吹入還原氣體; 甲烷合成步驟,其由包含二氧化碳及一氧化碳之混合氣體或二氧化碳氣體、與氫氣合成甲烷; 氣體改質步驟,其將上述甲烷氣體及上述混合氣體作為原料氣體,將上述原料氣體加熱而改質為上述還原氣體;以及 還原步驟,其於上述還原爐內藉由上述還原氣體將上述氧化鐵還原。
5.如上述4之還原鐵之製造方法,其中,上述混合氣體係自高爐副產之高爐氣體及/或自上述還原爐之爐頂排出之爐頂氣體。
6.如上述5之還原鐵之製造方法,其中,將於上述甲烷合成步驟合成之甲烷氣體之一部分吹入至上述高爐。
7.如上述5或6之還原鐵之製造方法,其中,上述高爐係於送風時使用氧氣之高爐。
8.一種還原鐵之製造方法,其係使用上述1、2或3之製鐵設備之還原鐵之製造方法;其具有: 氧化鐵填充步驟,其向還原爐填充氧化鐵; 還原氣體吹入步驟,其向上述還原爐吹入還原氣體; 二氧化碳分離步驟,其由自上述還原爐之爐頂排出之包含二氧化碳、一氧化碳、氫之爐頂氣體分離二氧化碳,回收包含一氧化碳與氫之混合氣體; 氣體加熱步驟,其將上述混合氣體作為原料氣體,將上述原料氣體加熱而形成上述還原氣體;以及 還原步驟,其於上述還原爐內藉由上述還原氣體將上述氧化鐵還原。
9.如上述8之還原鐵之製造方法,其中,於上述原料氣體之一部分使用甲烷氣體。
10.如上述9之還原鐵之製造方法,其中,上述甲烷氣體係經過由自上述還原爐之爐頂排出之包含二氧化碳、一氧化碳、氫之爐頂氣體的一部分及/或自上述高爐副產之包含二氧化碳、一氧化碳、氫之高爐氣體的一部分、與氫氣合成甲烷之甲烷合成步驟而合成的再生甲烷氣體, 且將上述再生甲烷氣體之一部分吹入至上述高爐。
11.如上述10之還原鐵之製造方法,其中,上述高爐係於送風時使用氧氣之高爐。 (對照先前技術之功效)
根據本發明,相對於習知使用天然氣製造氧化鐵原料之還原氣體,可實現例如利用高爐氣體之還原鐵製造製程,該還原鐵製造製程係由包含二氧化碳及一氧化碳之混合氣體或二氧化碳氣體、與氫氣合成甲烷,將該甲烷氣體及上述混合氣體作為原料氣體,將其加熱而製造還原氣體,將該還原氣體供氧化鐵之還原處理,結果,可大幅度削減還原鐵製造製程中之CO2 排出量。
圖1表示本發明之製鐵設備之一例。即,於圖1中,符號1係還原爐,2係氧化鐵,3係還原鐵,4係對於來自還原爐1之爐頂氣體之除塵裝置,5係爐頂氣體之供給路徑,6係將來自下述甲烷合成裝置之甲烷氣體及/或一氧化碳氣體加熱或加熱改質而形成包含一氧化碳氣體及氫氣之還原氣體之加熱改質裝置,7a係第1脫水裝置,7b係第2脫水裝置,7c係第3脫水裝置,8係自爐頂氣體分離二氧化碳之二氧化碳分離裝置,9係由爐頂氣體或高爐氣體與氫合成甲烷之甲烷合成裝置,10係向還原爐1供給還原氣體之還原氣體吹入裝置。進而,符號21係高爐,22係甲烷吹入裝置(風口),23係高爐側之脫水裝置,24係燃燒器。
本發明之還原鐵之製造方法係局部或全面地使用以上之製鐵設備,並根據各種形態製造還原鐵者,且基本具有:氧化鐵填充步驟,其向還原爐填充氧化鐵;還原氣體吹入步驟,其向上述還原爐吹入還原氣體;甲烷合成步驟,其由包含二氧化碳及一氧化碳之混合氣體或二氧化碳氣體、與氫氣合成甲烷;氣體改質步驟,其將上述甲烷氣體及上述混合氣體作為原料氣體,將上述原料氣體加熱而改質為上述還原氣體;以及還原步驟,其於上述還原爐內藉由上述還原氣體將上述氧化鐵還原。再者,此處所言之還原爐,係指將已投入之氧化鐵原料保持固體狀態而還原,直到排出該還原後之鐵為止之製程,不包含如高爐之製造高溫熔解之鐵之製程。 以下,關於本發明之還原鐵之製造方法對其每個實施形態詳細地進行說明。
[第1實施形態] 參照圖2對第1實施形態進行說明。於圖2中,選擇圖1中用作第1實施形態之構成進行表示,使用圖1所示之製鐵設備。 於本發明之第1實施形態中,根據以下順序製造還原鐵。首先,對成為還原鐵製造製程之中心之還原爐1自上部裝入氧化鐵2,使該氧化鐵2逐漸下降。於該氧化鐵2之下降過程中,藉由還原氣體吹入裝置10自還原爐1之中間部吹入包含高溫之CO、H2 及烴之還原氣體而將氧化鐵2還原,並自還原爐1之下部排出還原鐵3。於該還原爐1內之還原處理中,自還原爐1之上部排出主要包含CO、CO2 、H2 及H2 O之爐頂氣體。該爐頂氣體經除塵裝置4除塵之後,一部分作為原料氣體由第2脫水裝置7b進行水分調整後送入至加熱改質裝置6。其餘之爐頂氣體經第1脫水裝置7a脫水之後,於加熱改質裝置6之燃燒室中用作加熱用燃料。再者,作為於加熱改質裝置6之燃燒室中使爐頂氣體燃燒時之助燃氣體,較佳為使用氧氣而非空氣以便無氮混入。
為了將供給至加熱改質裝置6之爐頂氣體於加熱改質裝置6內加熱形成高溫之還原氣體,必須將用以使爐頂氣體成分(CO、CO2 、H2 及H2 O)調整為還原成分(CO、H2 及烴)之烴氣體與爐頂氣體一起供給至加熱改質裝置6內。作為該烴氣體,習知自外部供給天然氣之情況如上所述,但於本發明之第1實施形態中,重要的是於上述製鐵設備內使用利用甲烷合成裝置9生成之再生甲烷氣體(於圖1中為再生CH4 )來代替天然氣等自外部供給之烴氣體。
此處,用以合成甲烷氣體之原料使用自外部供給之氫氣與包含CO、CO2 及烴之氣體。包含CO、CO2 及烴之氣體只要為於煉鐵廠內能夠獲得之氣體則能夠應用,但於該第1實施形態中,如圖2所示,使用來自上述加熱改質裝置6之燃燒室之燃燒廢氣。即,將於加熱改質裝置6之燃燒室中使爐頂氣體作為助燃氣體較佳為與氧氣一起燃燒時產生之燃燒廢氣於第4脫水裝置7d中脫水之後,與氫一起供給至甲烷合成裝置9,此處進行甲烷合成。經合成之再生甲烷與將屬於原料氣體之爐頂氣體於第2脫水裝置7b中水分調整後所得之氣體一起供給至加熱改質裝置6內,於加熱改質裝置6內進行加熱後作為高溫之還原氣體供給至還原爐1。
用作上述原料氣體之爐頂氣體為了適當地調整還原氣體之組成而進行水分調整,但亦可一併於二氧化碳分離裝置8中進行CO2 分離。又,還原氣體之原料氣體使用再生甲烷及爐頂氣體,但為了調整組成亦可添加水或水蒸氣。又,既可於加熱改質裝置6中設置促進觸媒等反應之機構而產生改質反應,形成以CO、H2 為主之改質氣體,或者亦可於加熱改質裝置內僅進行加熱並直接吹入至還原爐。再者,於已進行CO2 分離時,可將分離後之富CO2 之氣體用作甲烷合成裝置9之原料氣體,但包含CO等可燃氣體之殘留氣體可用作加熱改質裝置6之燃料氣體、或供給至煉鐵廠內之其他製程而用於燃料氣體等。
附帶而言,用於合成再生甲烷之氫氣可使用自外部供給之無CO2 之氫,例如利用太陽光發電電力將水電解而生成之氫氣等。又,於加熱改質裝置6之燃燒室中用作助燃氣體之上述氧氣未必需要為氧濃度為100%之純氧,亦可包含少量之氧以外之氣體,例如氮、二氧化碳、氬等。但是,若氧濃度過低則氣體體積增大,從而產生必須使加熱改質裝置6或進行甲烷合成之甲烷合成裝置9大型化之問題,故而較佳為使氧濃度為80%以上。於第1實施形態中,若氧製造或氫製造中使用無CO2 之電力,則原理上可使CO2 排出為零。附帶而言,作為無CO2 之電力,例如可使用藉由太陽光發電、原子力發電而產生之電力。
[第2實施形態] 圖3表示本發明之第2實施形態。於第2實施形態中,藉由將自還原爐1產生之爐頂氣體之中在第1實施形態中用於加熱改質裝置6之加熱的氣體於脫水裝置7e中進行水分調整之後流入至甲烷合成裝置9,形成再生甲烷氣體(於圖3中為再生CH4 )之原料,而於加熱改質裝置6中合成需要之量之再生甲烷。此時,若加熱改質裝置6之加熱用燃料不足,則作為代替亦可自外部使用無CO2 之熱源,例如利用無CO2 之電力加熱之外部熱源。於該第2實施形態中,若於加熱改質裝置6之加熱或氫製造中使用無CO2 之電力,則原理上可使CO2 排出為零。
再者,於以上第1及第2實施形態中,若混入CO、CO2 、H2 、H2 O、烴以外之少量之不需要之氣體,例如沖洗用之氮氣等,則還原鐵製造製程內逐漸蓄積不需要之氣體,而產生還原氣體濃度降低之問題。因此,可於系統內定期地監視氮濃度,於氮濃度上升至某程度之後,例如於氮濃度為20%以上之後,進行暫時將流入至甲烷合成裝置9之爐頂氣體或燃燒廢氣排出至系統外之操作。此時無法生成再生甲烷氣體,故而亦可暫時進行代替再生甲烷氣體而吹入天然氣等之操作。
又,關於作為甲烷合成之原料自外部供給之氫氣,較佳為利用儘量不產生CO2 之製法來製造。例如,可使用水之電解等。此時,H2 氣體亦可未必為濃度100%之H2 氣體,但為了將所生成之再生甲烷氣體中之甲烷濃度保持得較高而H2 濃度越高越好。較佳係H2 濃度為80體積%以上。
[第3實施形態] 參照上述圖1,對本發明之第3實施形態進行說明。第3實施形態係有利於在存在製造熔鐵之高爐之煉鐵廠中一併設置本發明之還原鐵製造製程之情況下實現之方法。首先,第3實施形態中,作為還原鐵製造製程,例如,如圖1所示,自還原爐1之爐頂排出之爐頂氣體經除塵裝置4除塵之後,一部分作為原料氣體於第2脫水裝置7b中進行水分調整後送入至加熱改質裝置6,其餘之爐頂氣體於第1脫水裝置7a中脫水之後,於加熱改質裝置6之燃燒室中用作加熱用燃料。
此處,於第3實施形態中,有以下特徵:作為甲烷合成裝置9中之甲烷合成之原料,不使用在第1實施形態中使用之來自加熱改質裝置6之燃燒廢氣,除了在第2實施形態中使用之爐頂氣體以外,還使用自高爐21排出之高爐氣體。以下,對第3實施形態中之高爐之操作方法進行說明。
[高爐之操作方法] 於本發明之第3實施形態之高爐之操作方法中,自高爐21之爐頂部向高爐內裝入作為原料之燒結礦或塊礦石、團礦(以下,亦稱為礦石原料)或焦炭等(未圖示)。又,自設置於高爐21下部之吹入裝置(風口)22向高爐21內,吹入送風氣體與還原材料及再生甲烷氣體。再者,為了將自吹入裝置22向高爐21內吹入之還原材料與焦炭加以區分,亦稱為吹入還原材料。 然後,藉由利用送風氣體與還原材料之反應產生之一氧化碳氣體或氫氣,而將已裝入至高爐21內之礦石原料還原。於該礦石原料之還原反應中,產生二氧化碳,連同未與礦石原料反應之一氧化碳或氫等一起作為副產氣體自高爐之爐頂部排出。高爐21之爐頂部成為2.5氣壓左右之高壓條件,故而自該高爐之爐頂部排出之高爐氣體(副產氣體),因返回至常壓時之膨脹冷卻而水蒸氣冷凝,故而於脫水裝置23中將該冷凝水去除。
繼而,將高爐氣體之至少一部分導入至上述甲烷合成裝置9。然後,於甲烷合成裝置9中,使高爐氣體中所包含之一氧化碳及二氧化碳與氫氣反應,生成甲烷(CH4 )氣體。此處,將使高爐氣體反應所得之甲烷氣體稱為再生甲烷氣體(於圖1中為再生CH4 )。藉由將所獲得之再生甲烷氣體冷卻至常溫,而使再生甲烷氣體中之水蒸氣冷凝,於上述第3脫水裝置7c中將副產水去除。再者,如上所述,較佳為將該副產水供給至水之電解裝置,而於水之電解中使用。再者,供給至甲烷合成裝置9之高爐氣體之至少一部分亦可為非保持自高爐氣體排出之組成。例如,亦可藉由二氧化碳氣體分離回收裝置而將二氧化碳分離,僅將二氧化碳供給至甲烷合成裝置。
如此獲得之再生甲烷氣體與屬於上述原料氣體之爐頂氣體一起供給至加熱改質裝置6,於加熱改質裝置6內進行加熱後作為高溫之還原氣體供給至還原爐1。
進而,再生甲烷氣體之一部分,較佳係作為吹入還原材料供給至吹入裝置22。藉由將再生甲烷氣體用於吹入還原材料,可抑制其他吹入還原材料,例如粉煤或廢塑膠、氫氣或一氧化碳氣體等還原氣體之使用量。附帶而言,吹入還原材料向高爐內吹入之量係以再生甲烷氣體及其他吹入還原材料之合計為150 kg/t以下較為合適。此處,單位「kg/t」係指製造1 t熔鐵時向高爐內吹入之其他吹入還原材料之量。
再者,生成再生甲烷氣體時所使用之氫氣亦可為非氫濃度:100體積%之氣體,但為了使再生甲烷氣體之甲烷濃度為高濃度,較佳為使用氫濃度較高之氣體,具體而言,使用氫濃度為80體積%以上之氫氣。更佳為90體積%以上,進而較佳為95體積%以上。作為氫以外之其餘氣體,例如可列舉CO或CO2 、H2 S、CH4 、N2 等。
此處,生成再生甲烷氣體時所使用之氫氣之至少一部分,例如較佳為使用在水之電解裝置中藉由水之電解而生成之氫氣。其原因在於, ・水之電解中使用之水可使用在生成再生甲烷氣體之步驟中附帶地生成之副產水; ・又,可將水之電解中附帶地生成之副產氧氣使用於用作風口22之送風氣體之氧氣; 故而藉由與該高爐之操作條件(使用氧氣作為送風氣體,且使用再生甲烷氣體作為還原材料)組合,能夠構築效率極高之資源循環系統,又,操作靈活性亦提高。
又,水之電解中使用之水,如上所述,使用副產水較為合適,但關於不足量,只要自煉鐵廠內適當供給即可。 進而,副產氧氣全量作為用作送風氣體之氧氣使用較為合適,但亦可根據供給量,供給至其他氧使用設備(例如,轉爐或電爐、燃燒機器(加熱爐燃燒器或燒結點火燃燒器)等)。
另外,生成再生甲烷氣體時所使用之氫氣全量使用利用水之電解產生之氫氣較為合適,關於不足量,只要自外部或煉鐵廠內之其他設備供給即可。 作為煉鐵廠內之氫氣之供給源,例如可列舉焦爐氣體(自焦炭爐排出之副產氣體)等。於自焦爐氣體供給氫氣之情況下,可列舉將焦爐氣體中之氫利用變壓吸附法(PSA,Pressure Swing Adscorption)(物理吸附)等分離回收之方法、或將焦爐氣體中之烴改質(局部氧化)並自該改質氣體利用PSA(物理吸附)等將氫分離回收之方法等。 又,作為自外部供給之氫氣,例如可列舉藉由將天然氣等烴利用水蒸氣改質等進行改質而製造之氫氣、或使液化氫氣化所得之氫氣、將有機氫化物脫氫而製造之氫氣等。
再者,作為水之電解中使用之電力,並不特別限定,但較佳為使用來自能夠再生之能量之電力或利用煉鐵廠內之發電設備發電之電力。 於使用來自能夠再生之能量之電力之情況下,能夠進一步削減二氧化碳之排出量。此處,所謂能夠再生之能量,係指自然界穩定存在之能量,例如可列舉太陽光或風力、水力、地熱、生質等。 又,於使用利用煉鐵廠內之發電設備發電之電力之情況下,能夠構築更高效率之資源循環系統。此處,作為煉鐵廠內之發電設備,例如可列舉高爐之爐頂壓發電設備、或以高爐氣體為燃料(熱源)之發電設備。再者,於以高爐氣體為燃料(熱源)之發電設備中,可結合高爐之操作狀態,將焦爐氣體或轉爐氣體(自轉爐排出之副產氣體)、都市煤氣用於燃料。
於吹入裝置22中,混合再生甲烷氣體等吹入還原材料及氧氣,該混合氣體自吹入裝置22吹入至高爐21內之後立即迅速點燃、迅速氣體化。然後,於吹入裝置22之端部之高爐內,形成再生甲烷氣體等吹入還原材料或焦炭與氧氣反應之區域、即風徑區。
再者,存在如下情況:當送風氣體中之氧濃度增加時,爐內氣體量變少,高爐上部之裝入物之升溫不充分。於該情況下,如圖1所示,較佳為藉由燃燒器24使脫水裝置23下游之一部分高爐氣體局部燃燒,達到800℃~1000℃程度之後,向高爐爐身部吹入預熱氣體。
此處,於第3實施形態中,重要的是吹入裝置22使用氧氣而非使用熱風(加熱至1200℃左右之空氣)作為送風氣體。 即,於使用熱風(加熱至1200℃左右之空氣)作為送風氣體之情況下,由於燃燒氣體中包含不參與燃燒反應之50體積%左右之氮,故而風徑區中之火焰之溫度難以達到高溫。因此,若將吹入至高爐內之大量還原材料自粉煤置換為甲烷氣體,則上述粉煤-氧之反應中之反應熱與甲烷氣體-氧之反應中之反應熱的差會導致吹入裝置22之風口端溫度降低,使風口端溫度低於適當溫度之下限2000℃。其結果,導致高爐下部之熱效率不足或壓力損失上升、出渣不良等操作故障。又,由於高爐氣體中包含大量氮,故而於自高爐氣體生成甲烷氣體之步驟之前期步驟,需要進行分離氮與一氧化碳及二氧化碳之步驟。
另一方面,藉由使用氧氣作為送風氣體,可抑制不參與燃燒反應之氮氣混入,故而能夠使風口端溫度升高至充分的溫度。即,與使用熱風之情況相比,可使風徑區中之火焰溫度變高。因此,於自風口吹入大量甲烷作為還原材料之情況下,亦能夠將風口端溫度控制為適當範圍、即2000℃~2400℃之範圍。 因此,於第3實施形態中之高爐之操作方法中,重要的是使用氧氣作為送風氣體。
又,如上所述,於水之電解中,將附帶地生成之副產氧氣作為用作送風氣體之氧氣使用較為合適,藉此,能夠構築高效率之資源循環系統。 再者,副產氧氣以外之氧氣,例如可藉由深冷式空氣分離裝置而製造。
又,氧氣之氧濃度較佳為80體積%以上。即,若氧氣濃度較低,則有向高爐內導入之氣體量、甚至高爐之壓力損失增大,從而生產性降低之虞。又,於重複上述氣體循環之期間,再生甲烷氣體中之甲烷氣體之濃度相對降低。因此,氧氣中之氧濃度較佳為80體積%以上。更佳為90體積%以上,進而較佳為95體積%以上。尤其,若氧濃度為90體積%以上,則即便於超過通常之高爐操作期間進行操作之情況下,亦能夠將再生甲烷氣體中之甲烷氣體濃度保持為高濃度(90體積%左右)而無須外部甲烷氣體之供給等,故而非常有利。氧濃度亦可為100體積%。
再者,作為氧氣中之氧以外之其餘氣體,例如,亦可包含氮或二氧化碳等,但氮儘量低者較好。即,由於一般的高爐之高爐氣體中包含約50體積%之氮氣,故而有再生甲烷氣體中之甲烷濃度變低之可能性,因而欠佳。於該方面,自將氧氣送風之高爐排出之高爐氣體由於氮濃度大致為零,且大致成為CO、CO2 及H2 之組成,故而對合成甲烷較為合適。
又,於將再生甲烷氣體之一部分用作吹入甲烷氣體之情況下,甲烷濃度較佳為80體積%以上。再者,於再生甲烷氣體不足之情況下,亦可使用來自外部之甲烷氣體。 即,若吹入甲烷氣體中之甲烷濃度較低,則有向高爐內吹入之氣體量、甚至高爐之壓力損失增大,從而生產性降低之虞。又,於重複上述氣體循環之期間,再生甲烷氣體中之甲烷濃度相對降低。因此,吹入甲烷氣體之甲烷濃度較佳為80體積%以上。更佳為90體積%以上,進而較佳為95體積%以上。吹入甲烷氣體之甲烷濃度亦可為100體積%。 根據相同之理由,再生甲烷氣體(及外部甲烷氣體)之甲烷濃度亦較佳為80體積%以上。更佳為90體積%以上,進而較佳為95體積%以上。再生甲烷氣體(及外部甲烷氣體)之甲烷濃度亦可為100體積%。
再者,作為吹入甲烷氣體、再生甲烷氣體(及外部甲烷氣體)中之除甲烷以外之其餘氣體,例如,亦可包含一氧化碳、二氧化碳、氫及烴、以及氮等雜質氣體。 又,於再生甲烷氣體之甲烷濃度降低之情況下,例如,藉由使吹入甲烷氣體中之再生甲烷氣體之比例降低,另一方面,使甲烷濃度較高之外部甲烷氣體之比例增加,能夠將吹入甲烷氣體中之甲烷濃度保持得較高。
於以上所述之第3實施形態中,可將製造出之還原鐵3作為原料供給至高爐21。其結果,可削減高爐之還原材料比,亦可進一步削減CO2 。又,於該第3實施形態中,亦與第1及第2實施形態相同地,除了可使還原鐵製造製程之CO2 排出量原理上為零以外,來自高爐之CO2 亦作為再生甲烷氣體被再利用,故而具有亦可削減來自高爐之CO2 排出之優點。
[第4實施形態] 參照圖4對第4實施形態進行說明。圖4中,選擇圖1中用作第4實施形態之構成進行表示,且使用圖1所示之製鐵設備。 於本發明之第4實施形態中,按照以下順序製造還原鐵。首先,自上部將氧化鐵2裝入至成為還原鐵製造製程之中心之還原爐1,使該氧化鐵2逐漸下降。於該氧化鐵2之下降過程中,藉由還原氣體吹入裝置10自還原爐1之中間部吹入包含高溫之CO及H2 及烴之還原氣體而將氧化鐵2還原,自還原爐1之下部排出還原鐵3。於該還原爐1內之還原處理中,自還原爐1之上部排出主要包含CO、CO2 、H2 及H2 O之爐頂氣體。該爐頂氣體經除塵裝置4除塵之後,一部分作為原料氣體於二氧化碳分離裝置8中分離二氧化碳之後,於第2脫水裝置7b中進行水分調整後送入至加熱改質裝置6。其餘之爐頂氣體於第1脫水裝置7a中脫水之後,於加熱改質裝置6之燃燒室中用作加熱用燃料。又,原料氣體除了可使用自還原爐1排出之爐頂氣體以外還可使用自高爐21排出之高爐氣體。
繼而,將供給至加熱改質裝置6之爐頂氣體與經合成之再生甲烷一起於加熱改質裝置6內加熱後形成高溫之還原氣體。 用作上述原料氣體之爐頂氣體及高爐氣體為了適當調整還原氣體之組成而進行水分調整,但亦可一併於二氧化碳分離裝置8中進行CO2 分離。又,還原氣體之原料氣體使用再生甲烷、爐頂氣體及高爐氣體,但亦可為了調整組成而添加水或水蒸氣。又,可於加熱改質裝置6中,設置促進觸媒等反應之機構而產生改質反應,形成以CO、H2 為主之改質氣體,又亦可於加熱改質裝置內僅進行加熱並直接吹入至還原爐。
再者,高爐之操作與第3實施形態相同。將高爐氣體之至少一部分導入至上述甲烷合成裝置9,於甲烷合成裝置9中,使高爐氣體中所包含之一氧化碳及二氧化碳與氫氣反應,生成再生甲烷氣體。再生甲烷氣體與原料氣體一起供給至加熱改質裝置6,於加熱改質裝置6中形成還原氣體。剩餘之再生甲烷氣體亦可作為高爐之還原材料自風口吹入。
又,於圖4之設備中,藉由於甲烷合成裝置9之上游側進而設置自高爐氣體分離回收二氧化碳氣體之二氧化碳氣體分離回收裝置、與將由該二氧化碳氣體分離回收裝置回收之二氧化碳氣體供給至甲烷合成裝置9之路徑,可將包含一氧化碳、氫等燃料成分之二氧化碳氣體分離回收裝置之殘留氣體取出,用作煉鐵廠內之其他步驟,例如焦爐或發電所之燃料。即,向煉鐵廠內供給能量,且亦可實施本發明。
附帶而言,用於合成再生甲烷之氫氣可使用自外部供給之無CO2 之氫,例如利用太陽光發電電力電解而生成之氫氣等。又,於加熱改質裝置6之燃燒室中用作助燃氣體之上述氧氣未必需要為氧濃度100%之純氧,亦可包含少量之氧以外之氣體,例如氮、二氧化碳、氬等。但是,若氧濃度過低,則氣體體積增大,產生必須使加熱改質裝置6或進行甲烷合成之甲烷合成裝置9大型化之問題,故而較佳為使氧濃度為80%以上。於第1實施形態中,若氧製造或氫製造中使用無CO2 之電力,則原理上可使CO2 排出為零。附帶而言,作為無CO2 之電力,例如可使用藉由太陽光發電、原子力發電而產生之電力。 [實施例]
以下,記載本發明之實施例。再者,此處,作為每製造1 t還原鐵(DRI)之基本單位,記載操作參數。例如,於考慮3000 t/天之還原鐵設備之情況下,若將下述設為3000倍則成為每1天之參數。
[發明例1] 使用圖2中示意地表示之還原鐵製造設備,進行以下所示之還原爐操作。即,自還原爐1之上部裝入1394 kg/t之燒結礦作為氧化鐵2,自爐1之中間部吹入加熱至800℃之高溫還原氣體2200 Nm3 /t(H2 :62體積%,CO:38體積%)。此時,自爐1之上部排出2200 Nm3 /t(H2 :46體積%,CO:29體積%,CO2 :10體積%,H2 O:15體積%)之爐頂氣體。將該爐頂氣體除塵之後,將1501 Nm3 /t作為原料氣體,將其餘之699 Nm3 /t用作加熱改質裝置6之加熱燃料氣體。作為原料氣體之爐頂氣體為了進行水分調整而將86 kg/t之水去除之後,導入至加熱改質裝置6。另一方面,作為加熱燃料氣體之爐頂氣體於脫水之後,於加熱改質裝置6之燃燒室中,使用藉由利用無CO2 之電力驅動之深冷分離製程而生成之純氧進行燃燒。然後,將來自加熱改質裝置6之燃燒室之廢氣全量回收,將其脫水之後所得之燃燒廢氣269 Nm3 /t(CO2 :100體積%)送至甲烷合成裝置9。進而,於甲烷合成裝置9中,添加藉由利用無CO2 之電力之電解而生成之氫1075 Nm3 /t而合成再生甲烷氣體269 Nm3 /t。然後,經合成之再生甲烷氣體與作為上述原料氣體之爐頂氣體一起流入至加熱改質裝置6,作為還原氣體之原料加以利用。 以上之操作中,由於不自外部供給利用無CO2 之電力所得之氫以外之能量源,故而CO2 排出量為零。
[發明例2] 使用圖3中示意地表示之還原鐵製造設備,進行以下所示之還原爐操作。即,裝入至還原爐1之燒結礦、吹入至還原爐1之還原氣體、自爐頂排出之爐頂氣體、及原料氣體之條件與上述發明例1相同。供原料氣體之其餘之爐頂氣體699 Nm3 /t脫水之後,作為甲烷合成之原料送至甲烷合成裝置9。進而,於甲烷合成裝置9中,添加藉由利用無CO2 之電力之電解生成之氫551 Nm3 /t,合成再生甲烷氣體269 Nm3 /t。經合成之再生甲烷氣體流入至加熱改質裝置6,作為還原氣體之原料加以利用。此時,由於不供給加熱改質裝置6之加熱用燃料,故而取而代之自外部供給無CO2 之電力,進行電加熱。 以上之操作中,由於不自外部供給利用無CO2 之電力所得之氫及電加熱以外之能量源,故而CO2 排出量為零。
[發明例3] 使用圖1中示意地表示之製鐵設備,進行以下所示之高爐以及還原爐之操作。即,其係與上述發明例2類似之還原鐵製造製程,但為甲烷合成裝置9除了使用爐頂氣體以外還使用高爐氣體之事例。於高爐21中,為了使高爐氣體無氮,而將送風氣體設為純氧。將於該條件中產生之高爐氣體中之242 Nm3 /t(H2 :24體積%,CO:33體積%,CO2 :43體積%)與爐頂氣體220 Nm3 /t及藉由利用無CO2 之電力之電解生成之氫772 Nm3 /t一起流入至用以合成甲烷之甲烷合成裝置9。於甲烷合成裝置9中生成269 Nm3 /t之再生甲烷氣體,該再生甲烷氣體與作為原料氣體之爐頂氣體一起流入至加熱改質裝置6,作為還原氣體之原料加以利用。又,再生甲烷氣體之一部分作為吹入還原材料送至高爐21之吹入裝置22。於加熱改質裝置6之燃燒室中,使還原爐之爐頂氣體之一部分作為燃料燃燒,但不回收該廢氣。又,加熱改質裝置之燃料氣體不足之量雖未圖示,但自外部供給無CO2 之電力,進行電加熱。
根據上述操作,由於投入至用以合成甲烷之甲烷合成裝置9之氫氣係利用無CO2 之電力而產生者,故而於氫製造中不會產生CO2 。又,由於加熱改質裝置6之燃燒廢氣排出至系統外,故而此處產生362 kg/t之CO2 ,但同時將高爐氣體之一部分回收後作為再生甲烷氣體再利用,故而成功地將來自高爐21之CO2 削減362 kg/t。因此,於對存在已經設置之高爐之煉鐵廠附加本發明之還原鐵製造製程之情況下,藉由應用發明例3之操作而使CO2 之總排出量相抵成為零,從而還原鐵實現CO2 排出量實質為零之製造。再者,藉由本發明於還原鐵製造製程中之使用量、高爐氣體之廠內供給量減少,但高爐氣體由於卡路里較低,故而於後續步驟製程之加熱爐等中幾乎不使用,主要為發電用途。因此,若伴隨煉鐵廠內之供給高爐氣體不足之電力不足量利用無CO2 之電力來補充,則不會導致CO2 之增加而能夠運用於煉鐵廠。
又,再生甲烷氣體之一部分作為吹入還原材料送至高爐21之風口22,結果可削減自風口吹入之粉煤,進一步削減CO2
進而,將上述還原鐵製造製程中所得之還原鐵作為原料裝入至高爐21進行高爐操作,結果可削減高爐中之焦炭使用量,進一步獲得削減CO2 之效果。
[比較例1] 進行使用圖5所示之還原鐵製造設備之一般的還原爐操作。該一般的還原爐操作係於上述發明例1中將添加至作為原料氣體之爐頂氣體中之原料設為天然氣而非再生甲烷氣體之比較例1。即,自還原爐1之中間部吹入加熱至800℃之高溫還原氣體2200 Nm3 /t(H2 :62體積%,CO:38體積%),進行還原爐操作。此時,自爐上部排出2200 Nm3 /t(H2 :46體積%,CO:29體積%,CO2 :10體積%,H2 O:15體積%)之爐頂氣體。將該爐頂氣體除塵之後,將1501 Nm3 /t用作原料氣體,將其餘之699 Nm3 /t用作加熱改質裝置6之加熱燃料氣體。作為原料氣體為了進行水分調整而將86 kg/t之水去除,送入至加熱改質裝置6。加熱燃料氣體於脫水之後,於加熱改質裝置6之燃燒室中利用空氣燃燒,燃燒廢氣向大氣擴散。於加熱改質裝置6中,流入天然氣269 Nm3 /t與上述製程氣體,製造還原氣體。 以上之操作中,若將作為加熱改質裝置6之燃燒廢氣放出之CO2 換算,則成為528 kg-CO2 /t,無法抑制CO2 排出。
[比較例2] 進行使用圖6所示之還原鐵製造設備之一般的還原爐操作。該一般的還原爐操作係於上述發明例1中,將添加至作為原料氣體之爐頂氣體中之原料設為焦爐氣體而非再生甲烷氣體之比較例2。即,比較例2係於比較例1中,藉由將524 Nm3 /t之焦爐氣體代替天然氣流入至加熱改質裝置6而製造還原鐵。因此,與比較例1相同地,若將作為加熱改質裝置6之燃燒廢氣放出之CO2 換算,則成為456 kg-CO2 /t,但其係將煉鐵廠內產生之焦爐氣體之一部分用於還原鐵製程,故而焦爐側之CO2 排出亦減少456 kg-CO2 /t,於煉鐵廠相抵成為零。然而,由於焦爐氣體與高爐氣體不同於後續步驟中用作製程氣體者,故而無法藉由利用無CO2 之電力或使用無CO2 之電力之水電解所得之氫而代替。因此,於比較例2之方法中,於後續步驟中必須導入284 Nm3 /t之外部甲烷(天然氣等)。藉此,若就煉鐵廠整體來看則成為增加557 kg/t之CO2 排出之計算,無法抑制CO2 排出。又,由於焦爐氣體包含大量硫,且設置於加熱改質裝置之中之反應促進用觸媒不耐硫,故而必須亦追加設置大規模之脫硫設備。
再者,於該比較例2中所使用之焦爐氣體係一貫於煉鐵廠中後續步驟製程之燃料,例如加熱爐之燃燒器燃料等中所使用之重要的製程氣體,故而若於還原鐵製程中大量使用則會產生後續步驟之燃料不足之問題。具有10000 t/天之高爐之煉鐵廠中所使用之製造焦炭時產生之焦爐氣體成為169萬Nm3 /天。若使還原鐵之製造量為3000 t/天,則於本發明之還原鐵製造製程中所消耗之焦爐氣體為157萬Nm3 /t,產生之焦爐氣體之大致全量會使用完。因此,比較例2之方法不可能應用於實際之煉鐵廠。
1:還原爐 2:氧化鐵 3:還原鐵 4:除塵裝置 5:供給路徑 6:加熱改質裝置 7a:第1脫水裝置 7b:第2脫水裝置 7c:第3脫水裝置 7d:第4脫水裝置 7e:脫水裝置 8:二氧化碳分離裝置 9:甲烷合成裝置 10:還原氣體吹入裝置 21:高爐 22:吹入裝置 23:高爐側之脫水裝置 24:燃燒器
圖1係表示本發明之製造設備之示意圖。 圖2係表示本發明之第1實施形態中使用之還原鐵製造設備之示意圖。 圖3係表示本發明之第2實施形態中使用之還原鐵製造設備之示意圖。 圖4係表示本發明之第4實施形態中使用之還原鐵製造設備之示意圖。 圖5係表示比較例中使用之還原鐵製造設備之示意圖。 圖6係表示比較例中使用之還原鐵製造設備之示意圖。
1:還原爐
2:氧化鐵
3:還原鐵
4:除塵裝置
5:供給路徑
6:加熱改質裝置
7a:第1脫水裝置
7b:第2脫水裝置
7c:第3脫水裝置
8:二氧化碳分離裝置
9:甲烷合成裝置
10:還原氣體吹入裝置
21:高爐
22:吹入裝置
23:高爐側之脫水裝置
24:燃燒器

Claims (11)

  1. 一種製鐵設備,其特徵在於,其具有:高爐,其將氧化鐵還原;還原爐,其將氧化鐵還原;甲烷合成裝置,其由自上述高爐副產之包含二氧化碳、一氧化碳、氫之高爐氣體及/或自上述還原爐之爐頂排出之包含二氧化碳、一氧化碳、氫之爐頂氣體、以及氫氣合成甲烷氣體;吹入裝置,其將由上述甲烷合成裝置合成之甲烷氣體吹入至上述高爐;加熱改質裝置,其將上述高爐氣體及/或上述爐頂氣體、以及由上述甲烷合成裝置合成之甲烷氣體加熱或加熱改質而形成包含一氧化碳氣體及氫氣之還原氣體;還原氣體吹入裝置,其將上述還原氣體吹入至上述還原爐;以及爐頂氣體供給路徑,其將上述爐頂氣體供給至上述甲烷合成裝置及/或上述加熱改質裝置。
  2. 如請求項1之製鐵設備,其中,於上述供給路徑具有自上述爐頂氣體分離二氧化碳之二氧化碳分離裝置。
  3. 如請求項1或2之製鐵設備,其中,於上述甲烷合成裝置之上游側具有:二氧化碳氣體分離回收裝置,其自上述高爐氣體分離回收二氧化碳氣體;以及二氧化碳氣體供給路徑,其將由上述二氧化碳氣體分離回收裝置回收之二氧化碳氣體供給至上述甲烷合成裝置。
  4. 一種還原鐵之製造方法,其係使用請求項1、2或3之製鐵設備之還原鐵之製造方法,其具有:氧化鐵填充步驟,其向還原爐填充氧化鐵;還原氣體吹入步驟,其向上述還原爐吹入還原氣體;甲烷合成步驟,其由包含二氧化碳及一氧化碳之混合氣體或二氧化碳氣體、與氫氣合成甲烷氣體;氣體改質步驟,其將上述甲烷氣體及上述混合氣體作為原料氣體,將上述原料氣體加熱而改質為上述還原氣體;以及還原步驟,其於上述還原爐內藉由上述還原氣體將上述氧化鐵還原。
  5. 如請求項4之還原鐵之製造方法,其中,上述混合氣體係自高爐副產之高爐氣體及/或自上述還原爐之爐頂排出之爐頂氣體。
  6. 如請求項5之還原鐵之製造方法,其中,將於上述甲烷合成步驟合成之甲烷氣體之一部分吹入至上述高爐。
  7. 如請求項5或6之還原鐵之製造方法,其中,上述高爐係於送風時使用氧氣之高爐。
  8. 一種還原鐵之製造方法,其係使用請求項1、2或3之製鐵設備之還原鐵之製造方法;其具有:氧化鐵填充步驟,其向還原爐填充氧化鐵;還原氣體吹入步驟,其向上述還原爐吹入還原氣體;二氧化碳分離步驟,其由自上述還原爐之爐頂排出之包含二氧化碳、一氧化碳、氫之爐頂氣體分離二氧化碳,回收包含一氧化碳與氫之混合氣體; 氣體加熱步驟,其將上述混合氣體作為原料氣體,將上述原料氣體加熱而形成上述還原氣體;以及還原步驟,其於上述還原爐內藉由上述還原氣體將上述氧化鐵還原。
  9. 如請求項8之還原鐵之製造方法,其中,於上述原料氣體之一部分使用甲烷氣體。
  10. 如請求項9之還原鐵之製造方法,其中,上述甲烷氣體係經過由自上述還原爐之爐頂排出之包含二氧化碳、一氧化碳、氫之爐頂氣體的一部分及/或自上述高爐副產之包含二氧化碳、一氧化碳、氫之高爐氣體的一部分、與氫氣合成甲烷之甲烷合成步驟而合成的再生甲烷氣體,且將上述再生甲烷氣體之一部分吹入至上述高爐。
  11. 如請求項10之還原鐵之製造方法,其中,上述高爐係於送風時使用氧氣之高爐。
TW110100903A 2020-04-27 2021-01-11 製鐵設備及還原鐵之製造方法 TWI765521B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-078526 2020-04-27
JP2020078526 2020-04-27

Publications (2)

Publication Number Publication Date
TW202140804A TW202140804A (zh) 2021-11-01
TWI765521B true TWI765521B (zh) 2022-05-21

Family

ID=78331932

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110100903A TWI765521B (zh) 2020-04-27 2021-01-11 製鐵設備及還原鐵之製造方法

Country Status (9)

Country Link
US (1) US20230175084A1 (zh)
EP (1) EP4144868A4 (zh)
JP (1) JP7028373B1 (zh)
KR (1) KR20220162174A (zh)
CN (1) CN115427588A (zh)
BR (1) BR112022021678A2 (zh)
CA (1) CA3179019A1 (zh)
TW (1) TWI765521B (zh)
WO (1) WO2021220555A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4219772A1 (de) * 2022-01-28 2023-08-02 Linde GmbH Eisendirektreduktion mit reduzierter kohlendioxidfreisetzung
CN114480754A (zh) * 2022-01-28 2022-05-13 新疆八一钢铁股份有限公司 一种碳氢耦合的高炉炼铁方法
GB202213759D0 (en) * 2022-09-20 2022-11-02 Univ Birmingham Improved blast furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342320A (ja) * 1986-08-07 1988-02-23 ホエスト−アルピン・アクチェンゲゼルシャフト ミル装置およびそれを用いた鋼製造方法
JP2011225969A (ja) * 2010-03-29 2011-11-10 Jfe Steel Corp 高炉又は製鉄所の操業方法
JP2012007213A (ja) * 2010-06-25 2012-01-12 Mitsubishi Heavy Ind Ltd 直接還元製鉄法およびそのための還元ガス製造装置
CN110199033A (zh) * 2016-12-22 2019-09-03 沙特基础全球技术有限公司 用高纯度甲烷生产直接还原铁的直接还原工艺

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1609456A3 (ru) * 1985-07-18 1990-11-23 Кабусики Кайся Кобе Сейкосе (Фирма) Способ пр мого получени железа
US6045602A (en) * 1998-10-28 2000-04-04 Praxair Technology, Inc. Method for integrating a blast furnace and a direct reduction reactor using cryogenic rectification
AT409634B (de) * 2000-05-15 2002-09-25 Voest Alpine Ind Anlagen Verfahren und vorrichtung zur herstellung von roheisen oder flüssigen stahlvorprodukten aus eisenerzhältigen einsatzstoffen
MY133537A (en) * 2002-01-24 2007-11-30 Kobe Steel Ltd Method for making molten iron
CN100523228C (zh) * 2007-07-31 2009-08-05 张文慧 利用焦炉气制还原气生产海绵铁的方法及其设备
EP2543743B1 (en) * 2010-03-02 2017-11-29 JFE Steel Corporation Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
AT511892B1 (de) * 2011-08-31 2013-07-15 Siemens Vai Metals Tech Gmbh Verfahren zur aufbereitung von abgasen aus anlagen zur roheisenherstellung und/oder von synthesegas
KR101321072B1 (ko) * 2011-09-06 2013-10-23 주식회사 포스코 일산화탄소 및 수소를 포함하는 합성가스 제조장치 및 그의 제조방법
CN102758048A (zh) * 2012-07-30 2012-10-31 中冶南方工程技术有限公司 原燃料热装、全热氧高炉与竖炉联合生产工艺
JP6019893B2 (ja) * 2012-07-31 2016-11-02 Jfeスチール株式会社 高炉の操業方法
US20150329931A1 (en) * 2012-09-14 2015-11-19 Voestalpine Stahl Gmbh Method for storing discontinuously produced energy
UA117374C2 (uk) 2013-07-31 2018-07-25 Мідрекс Текнолоджиз, Інк. Відновлення оксиду заліза до металевого заліза із застосуванням коксового газу та газу зі сталеплавильної печі з подачею кисню
US10316376B2 (en) * 2015-06-24 2019-06-11 Midrex Technologies, Inc. Methods and systems for increasing the carbon content of sponge iron in a reduction furnace
JP2017088912A (ja) 2015-11-04 2017-05-25 株式会社神戸製鋼所 還元鉄の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342320A (ja) * 1986-08-07 1988-02-23 ホエスト−アルピン・アクチェンゲゼルシャフト ミル装置およびそれを用いた鋼製造方法
JP2011225969A (ja) * 2010-03-29 2011-11-10 Jfe Steel Corp 高炉又は製鉄所の操業方法
JP2012007213A (ja) * 2010-06-25 2012-01-12 Mitsubishi Heavy Ind Ltd 直接還元製鉄法およびそのための還元ガス製造装置
CN110199033A (zh) * 2016-12-22 2019-09-03 沙特基础全球技术有限公司 用高纯度甲烷生产直接还原铁的直接还原工艺

Also Published As

Publication number Publication date
TW202140804A (zh) 2021-11-01
CA3179019A1 (en) 2021-11-04
WO2021220555A1 (ja) 2021-11-04
JPWO2021220555A1 (zh) 2021-11-04
CN115427588A (zh) 2022-12-02
BR112022021678A2 (pt) 2022-12-20
EP4144868A1 (en) 2023-03-08
KR20220162174A (ko) 2022-12-07
US20230175084A1 (en) 2023-06-08
JP7028373B1 (ja) 2022-03-02
EP4144868A4 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
TWI765521B (zh) 製鐵設備及還原鐵之製造方法
KR101610661B1 (ko) 제련 환원 공정을 수행하기 위한 방법 및 장치
TWI778450B (zh) 高爐之操作方法及高爐附帶設備
KR101321823B1 (ko) 일산화탄소 및 수소를 포함하는 합성가스 제조장치 및 제조방법
TWI803522B (zh) 用於製造熱合成氣(尤其用於鼓風爐操作)之方法
KR101384804B1 (ko) 제선공정의 배출가스를 이용한 용철제조장치 및 제조방법
JP7272312B2 (ja) 還元鉄の製造方法
RU2808735C1 (ru) Линия производства восстановленного железа и способ получения восстановленного железа
TWI758025B (zh) 高爐之操作方法及高爐附帶設備
TWI765510B (zh) 高爐之操作方法及高爐附帶設備
TWI759054B (zh) 高爐之操作方法及高爐附帶設備
TWI775216B (zh) 高爐之操作方法及高爐附帶設備
JP7197756B1 (ja) 製鉄装置
JP7192845B2 (ja) 高炉の操業方法および高炉附帯設備
CN117377778A (zh) 用于对高炉装置进行操作的方法
CN117940587A (zh) 为炼铁炼钢厂生产直接还原铁的方法
EA045314B1 (ru) Способ эксплуатации установки доменной печи
CN117460845A (zh) 还原铁的制造方法