WO2021218581A1 - 扬声器模组及电子设备 - Google Patents

扬声器模组及电子设备 Download PDF

Info

Publication number
WO2021218581A1
WO2021218581A1 PCT/CN2021/085807 CN2021085807W WO2021218581A1 WO 2021218581 A1 WO2021218581 A1 WO 2021218581A1 CN 2021085807 W CN2021085807 W CN 2021085807W WO 2021218581 A1 WO2021218581 A1 WO 2021218581A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
housing
speaker
electronic device
acoustic
Prior art date
Application number
PCT/CN2021/085807
Other languages
English (en)
French (fr)
Inventor
杨铁亮
林洲
丁俊
寇大贺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021218581A1 publication Critical patent/WO2021218581A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/03Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/03Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets
    • H04M1/035Improving the acoustic characteristics by means of constructional features of the housing, e.g. ribs, walls, resonating chambers or cavities

Definitions

  • This application relates to the field of electroacoustic technology, and in particular to a speaker module and electronic equipment.
  • a speaker In order to obtain a better audio effect, a speaker usually requires a larger sound cavity volume.
  • an electronic device such as a mobile phone
  • speakers can be applied to electronic devices with an open sound cavity, that is, the internal cavity of the entire electronic device is used as the back cavity of the speaker.
  • how to design the speaker of an electronic device to meet the optimization requirements of the user's holding experience is an urgent problem to be solved.
  • the embodiments of the present application provide a speaker module and an electronic device.
  • an acoustic resonator By arranging an acoustic resonator in an open acoustic cavity, the problem of housing vibration caused by speaker vibration can be solved, so as to optimize the user's holding experience.
  • a speaker module which is installed in a housing of an electronic device, and includes a speaker housing, a speaker body located inside the speaker housing, and an acoustic resonator located outside the speaker housing.
  • the speaker body is used for vibrating and sounding.
  • the speaker body divides the speaker housing into a front cavity and a rear cavity that are not connected to each other.
  • An open acoustic cavity is formed inside the housing, the vibration of the speaker module drives the housing of the electronic device to vibrate, the acoustic resonator is located in the open acoustic cavity, and the resonance frequency of the acoustic resonator is within the range of the vibration frequency of the housing.
  • the speaker module provided by the embodiment of the application is additionally equipped with an acoustic resonator.
  • the acoustic resonator is located in the open acoustic cavity of the housing, and the resonance frequency is within the vibration range of the housing, which can absorb part of the sound energy of the speaker module, thereby reducing
  • the acoustic energy transmitted to the housing of the electronic device achieves the purpose of reducing the amplitude of the housing of the electronic device.
  • the resonance frequency of the acoustic resonator is the same as the frequency corresponding to the maximum amplitude of the housing.
  • the resonance frequency of the acoustic resonator is consistent with the frequency corresponding to the maximum amplitude of the shell, which can effectively absorb the sound energy when the shell vibrates near the frequency corresponding to the maximum amplitude, so as to effectively reduce the maximum amplitude of the shell.
  • the acoustic resonator includes a first cavity and a second cavity, the first cavity and the second cavity are in communication, the second cavity is in communication with the outside through the opening, and the The volume is greater than the volume of the second cavity, and the inner diameter of the first cavity is greater than the inner diameter of the second cavity.
  • the acoustic resonator is a Helmholtz resonant cavity, the second cavity provides sound quality, and the first cavity provides sound capacity. By adjusting the size of the first cavity and the size of the second cavity, the resonance of the acoustic resonator can be changed frequency.
  • the acoustic resonator includes a resonator housing, a first cavity and a second cavity are opened inside the resonator housing, and the resonator housing is fixedly connected to the inner wall of the housing.
  • an acoustic resonator that is separately installed in the housing is installed.
  • the acoustic resonator can absorb part of the acoustic energy of the speaker module, thereby reducing the acoustic energy transmitted to the battery cover, and reducing the amplitude of the battery cover Purpose.
  • the resonator housing is formed by integral injection molding.
  • the injection molding process is easy to implement, and the separately installed acoustic resonator is easy to assemble.
  • the acoustic resonator includes a resonator housing, a first cavity and a second cavity are opened inside the resonator housing, and the resonator housing and the speaker housing are integrally formed.
  • the acoustic resonator and the speaker housing of the speaker module are integrally formed.
  • the acoustic resonator has a first cavity and a second cavity, which can reduce the sound energy transmitted to the battery cover and achieve the purpose of reducing the amplitude of the battery cover At the same time, make full use of the manufacturing process and structural shape of the speaker shell itself to ensure dimensional tolerances.
  • a plurality of electronic devices are further arranged in the housing, and any one of the speaker housing, the inner wall of the housing, and the electronic devices is enclosed to have the acoustic resonance of the first cavity and the second cavity. Device.
  • the space between the electronic device and the inner wall of the shell is used in the open acoustic cavity of the electronic device to directly form an acoustic resonator between the electronic device and the inner wall of the shell, which can reduce the sound energy transmitted to the battery cover and reduce the battery.
  • the purpose of the amplitude of the cover is to rationally use the internal space of the electronic device and improve the space utilization rate.
  • the acoustic resonator includes a sealing element, the sealing element surrounds the contours of the first cavity and the second cavity, and the sealing element is sandwiched between the speaker housing, the inner wall of the housing, and any of the electronic devices. Between the two to form an acoustic resonator having a first cavity and a second cavity.
  • the acoustic resonator is formed by the sealing member sandwiched between the electronic device and the casing, which can reduce the acoustic energy transmitted to the battery cover and achieve the purpose of reducing the amplitude of the battery cover At the same time, rational use of the internal space of electronic equipment to improve space utilization.
  • the sealing member is a foam or a rubber strip.
  • foam or rubber strips as the sealing element surrounding the acoustic resonator can ensure the sealing of the acoustic resonator cavity, and the material cost is low and easy to implement.
  • the opening of the acoustic resonator and the sound guide channel are arranged opposite or adjacent to each other.
  • the acoustic resonator can be arranged close to the sound guide channel, and the acoustic resonator is placed on the propagation path of the sound wave, so as to reduce the acoustic energy transmitted to the shell.
  • the number of acoustic resonators is at least two.
  • At least two acoustic resonators are provided, and the resonant frequencies of the at least two acoustic resonators are different, which can reduce the corresponding amplitude of the housing near the two resonant frequencies, which is beneficial to further improve the user's holding experience.
  • At least two acoustic resonators are arranged in series; or, at least two acoustic resonators are arranged in parallel.
  • Acoustic resonators arranged in series or in parallel can reduce the amplitude near the two resonance frequencies.
  • the sound-guiding channel is filled with a sound-absorbing material.
  • the airflow generated by the vibration enters the open acoustic cavity through the sound guide channel, through the absorption of the sound-absorbing material, the friction between the air and the gap in the sound-absorbing material will cause the energy of the air to attenuate, thereby reducing the shell vibration.
  • a plurality of baffles are provided in the sound guide channel, and the plurality of baffles respectively extend from the inner wall surfaces on both sides of the sound guide channel to form a vibration damping channel with a curved path.
  • the vibration damping channel itself can also absorb the energy of the air vibration inside. The combined effect attenuates the air flow energy transmitted by the air vibration in the vibration damping channel, thereby reducing the sound vibration energy transmitted to the open acoustic cavity and reducing the vibration of the shell.
  • an electronic device including a housing and the above speaker module installed in the housing, the housing is provided with a speaker hole, and the speaker hole communicates with the speaker hole.
  • the embodiment of the present application provides an electronic device.
  • An acoustic resonator is added to the open acoustic cavity of the electronic device.
  • the acoustic resonator can absorb part of the sound energy of the speaker module, thereby reducing the sound energy transmitted to the housing of the electronic device.
  • FIG. 1 is a schematic diagram of the structure of an electronic device provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of an acoustic resonator provided by an embodiment of the application
  • FIG. 3 is a schematic structural diagram of an electronic device with two acoustic resonators arranged in parallel according to an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of an electronic device with two acoustic resonators arranged in series according to an embodiment of the application;
  • FIG. 5 is a schematic diagram of the effect of the acoustic resonator in the electronic device provided by an embodiment of the application on the amplitude of the electronic device housing;
  • FIG. 6 is a schematic diagram of a three-dimensional structure of an electronic device provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of the cross-sectional structure corresponding to the position A-A in FIG. 6 provided by an embodiment of the application;
  • FIG. 8 is a schematic diagram of a disassembled structure corresponding to the electronic device provided in FIG. 7;
  • Fig. 9 is an enlarged view of B in Fig. 8.
  • FIG. 10 is a schematic diagram of a disassembled structure from another angle corresponding to the electronic device provided in FIG. 7; FIG.
  • Figure 11 is an enlarged view of C in Figure 10;
  • FIG. 12 is a schematic diagram of the layout of internal electronic devices of an electronic device provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of another layout of internal electronic devices of an electronic device according to an embodiment of the application.
  • FIG. 14 is a schematic diagram of another layout of internal electronic devices of an electronic device provided by an embodiment of the application.
  • 15 is another schematic diagram of disassembling the electronic device provided by an embodiment of the application.
  • Figure 16 is an enlarged view at D in Figure 15;
  • FIG. 17 is a schematic diagram of the cross-sectional structure of the electronic device provided in FIG. 15 corresponding to A-A of FIG. 6
  • FIG. 18 is a schematic diagram of another structure of an acoustic resonator provided by an embodiment of the application.
  • FIG. 19 is a schematic diagram of still another disassembly structure of an electronic device provided by an embodiment of the application.
  • Figure 20 is an enlarged view of E in Figure 19;
  • FIG. 21 is a schematic structural diagram of a speaker module of an electronic device provided by an embodiment of the application.
  • FIG. 22 is a schematic diagram of a corresponding disassembly structure of the speaker module in FIG. 21 installed in an electronic device;
  • FIG. 23 is a schematic cross-sectional structure diagram at F-F in FIG. 21;
  • Fig. 24 is a schematic cross-sectional structure diagram at H-H in Fig. 21;
  • 25 is a schematic diagram of another structure of a speaker module of an electronic device provided by an embodiment of the application.
  • FIG. 26 is a schematic diagram of still another structure of a speaker module of an electronic device provided by an embodiment of the application.
  • 200-speaker module 21-speaker housing; 22-speaker body; 23-front cavity; 231-sound hole; 24-rear cavity; 241-sound guide channel; 242-sound-absorbing material; 243-baffle plate; 244- Damping channel;
  • the embodiments of this application provide an electronic device, including but not limited to mobile phones, tablet computers, notebook computers, ultra-mobile personal computers (UMPC), handheld computers, walkie-talkies, netbooks, POS machines, personal digital assistants ( Personal digital assistant (PDA), wearable devices, virtual reality devices, wireless USB flash drives, Bluetooth speakers, Bluetooth headsets or vehicle-mounted devices, such as mobile or fixed terminal devices with housings and speaker modules.
  • UMPC ultra-mobile personal computers
  • PDA personal digital assistant
  • wearable devices virtual reality devices
  • wireless USB flash drives wireless USB flash drives
  • Bluetooth speakers Bluetooth headsets or vehicle-mounted devices, such as mobile or fixed terminal devices with housings and speaker modules.
  • the speakers of electronic devices In order to obtain better audio effects, the speakers of electronic devices generally require a larger sound cavity volume, but it is difficult for terminal devices such as mobile phones to provide enough space for audio devices.
  • the design of an open back cavity can use the internal cavity of the entire electronic device as the sound cavity volume of the audio device, which significantly increases the volume of the speaker back cavity.
  • Fig. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device includes a housing 100 and a speaker module 200 installed in the housing 100.
  • the speaker module 200 includes a speaker housing 21 and a speaker body 22 located inside the speaker housing 21.
  • the speaker body 22 may include structures such as a diaphragm, a voice coil, and a magnetic circuit system. Under the action of the magnetic circuit system, the voice coil with varying current is vibrated by different magnitudes of ampere force, and the voice coil vibration drives the diaphragm to vibrate. The membrane vibration pushes the surrounding air to vibrate, thereby producing sound.
  • the speaker housing 21 is separated by the speaker body 22 into a front cavity 23 and a rear cavity 24.
  • the front cavity 23 communicates with the outside of the electronic device through a sound hole 231 to lead out the sound generated by the speaker body 22, and the rear cavity 24 passes through a sound guide channel 241 It communicates with the inside of the housing 100, that is, an open acoustic cavity is used to improve the audio effect of the speaker module 200.
  • the micro speaker module with a closed back cavity used on a mobile phone is limited by the stacking of the mobile phone architecture, and the volume of the back cavity is generally 0.6-0.9 cc;
  • the equivalent back cavity can reach 8-10cc.
  • its low frequency can be increased by 8-10dB, and the audio effect is greatly improved.
  • the original 0.6-0.9cc rear cavity of the micro speaker module can be eliminated to provide space for other components.
  • the speaker module 200 under the action of the three paths of sound wave transmission, air impact and structural vibration transmission, the speaker module 200 will cause vibration of the electronic device housing 100 when the speaker module 200 emits sound.
  • the greater the amplitude of the speaker module 200 the more serious the vibration problem of the housing 100.
  • the amplitude of the speaker module needs to be designed to be larger and larger, resulting in an increasing risk of housing vibration. For example, the amplitude of a 12*16mm micro speaker module can reach 0.6mm or more.
  • the amplitude of the battery cover of the mobile phone can reach 10 ⁇ m or more, and the user can feel the comparison when holding it. Severe vibration sense, therefore, the shell vibration problem is a bottleneck problem in suppressing the application of the open acoustic cavity solution in electronic equipment.
  • an embodiment of the present application provides an electronic device, in which an acoustic resonator 300 is added to the open acoustic cavity of the electronic device.
  • the acoustic energy of the group 200 reduces the acoustic energy transmitted to the housing of the electronic device, and achieves the purpose of reducing the amplitude of the housing of the electronic device.
  • the housing 100 is provided with at least one acoustic resonator 300, wherein the resonance frequency of the at least one acoustic resonator 300 can be consistent with the frequency corresponding to the maximum amplitude of the housing 100, so as to effectively reduce the maximum amplitude of the housing 100.
  • the acoustic resonator 300 can be arranged close to the sound guide channel 241, so that the acoustic resonator 300 is on the propagation path of sound waves, so as to reduce the sound propagating to the housing 100. energy.
  • the acoustic resonator 300 may be a Helmholtz resonant cavity.
  • FIG. 2 is a schematic structural diagram of an acoustic resonator provided by an embodiment of the application. 1 and 2, the acoustic resonator 300 includes a first cavity 31 and a second cavity 32 that are connected to each other.
  • the inner diameter of the second cavity 32 is smaller than the inner diameter of the first cavity 31, and the second cavity
  • the body 32 communicates with the outside through the opening 321, the second cavity 32 provides sound quality, and the first cavity 31 provides sound capacity.
  • the resonant frequency of the acoustic resonator 300 can be changed so that the frequency of the acoustic resonator 300 is consistent with that of the shell.
  • the frequency of the maximum amplitude of the body 100 is the same.
  • the formula for the resonance frequency of the acoustic resonator 300 is:
  • M is the sound quality and C is the sound capacity.
  • L is the length of the second cavity 32
  • is the cross-sectional area of the second cavity 32
  • V is the volume of the first cavity 31
  • c0 is the speed of the sound wave in the air.
  • the resonance frequency of the acoustic resonator 300 depends on the length and cross-sectional area of the second cavity 32 and the volume of the first cavity 31.
  • the first cavity 31 may be a spherical, cubic or other shape cavity
  • the second cavity 32 may be a cylindrical cavity, and its cross section may be circular, square or other shapes.
  • the speaker module 200 applied in a mobile phone may be a miniature speaker, and the vibration frequency of the housing 100 is relatively low, for example, between 100HZ-2000HZ.
  • the resonance frequency of the acoustic resonator 300 is less than 2000 Hz.
  • the diameter of the second cavity 32 may be set in the range of 0.4-1.5 mm, the length of the second cavity 32 may be set between 1-10 mm, and the volume of the first cavity 31 may be set at 0.2-1.5 cm ⁇ 3.
  • the number of acoustic resonators 300 may be two or more.
  • the frequency of one of the acoustic resonators 300 can be set to be consistent with the frequency of the maximum amplitude of the housing 100, so that this acoustic resonator 300 can reduce the frequency of the housing 100 at this frequency. The amplitude of the place.
  • FIG. 3 is a schematic structural diagram of an electronic device having two acoustic resonators arranged in parallel according to an embodiment of the application. Referring to FIG. 3, two acoustic resonators 300 are arranged in parallel, that is, two acoustic resonators 300 are independently arranged and not connected to each other, and the two acoustic resonators 300 are both located in an open acoustic cavity, and respectively play a role of absorbing acoustic energy.
  • the two acoustic resonators 300 may have different resonance frequencies to reduce vibrations in different frequency ranges; the two acoustic resonators 300 may be arranged side by side or stacked, and the openings 321 of the two acoustic resonators 300 may have the same orientation. They are all arranged close to the sound guide channel 241 to minimize the sound energy transmitted to the housing 100 and improve the vibration reduction effect.
  • two acoustic resonators 300 are arranged in the housing 100 of the electronic device, and the two acoustic resonators 300 are arranged in series.
  • Fig. 4 is a schematic structural diagram of an electronic device having two acoustic resonators arranged in series according to an embodiment of the application. Referring to FIG. 4, two acoustic resonators 300 arranged in series, that is, two acoustic resonators 300 are connected to each other, and the opening 321 of only one acoustic resonator 300 is connected to the outside.
  • the opening 321 of the first acoustic resonator 300 communicates with the outside
  • the opening 321 of the second acoustic resonator 300 communicates with the first cavity 31 of the first acoustic resonator 300
  • the second acoustic resonator 300 communicates with the first cavity 31.
  • the opening 321 of the acoustic resonator 300 can be connected to any position on the first cavity 31 of the first acoustic resonator 300.
  • the two acoustic resonators 300 may have different resonance frequencies to reduce vibrations in different frequency ranges respectively.
  • FIG. 5 is a schematic diagram of the effect of the acoustic resonator in the electronic device provided by an embodiment of the application on the amplitude of the electronic device housing.
  • the abscissa represents the vibration frequency of the electronic device housing 100.
  • the housing 100 vibrates, it is affected by factors such as shape, material, and internal device layout.
  • the magnitude of the amplitude may be different, where the ordinate represents the maximum amplitude value on the housing 100 of the electronic device. That is to say, the meaning of any point on the curve in FIG. 5 is that when the vibration frequency of the housing 100 of the electronic device is the value of the abscissa, correspondingly, a position on the housing 100 has the largest amplitude, and the amplitude at this position is Is the value of the ordinate.
  • the solid line in FIG. 5 represents the corresponding relationship between the amplitude and frequency of the electronic device housing 100 when the acoustic resonator 300 is not provided.
  • the amplitude of the housing 100 first gradually Increase, and reach the maximum amplitude when the vibration frequency is around 500HZ, and then gradually decrease.
  • the dotted line in FIG. 5 represents the correspondence between the amplitude and frequency of the electronic device housing 100 when an acoustic resonator 300 is added.
  • the resonance frequency of the acoustic resonator 300 is consistent with the frequency corresponding to the maximum amplitude of the housing 100, that is, near 500HZ .
  • the vibration frequency of the housing 100 is around 500 Hz, the amplitude is significantly reduced, forming a trough.
  • the vibration frequency is between 100HZ-800HZ, the amplitude is reduced to varying degrees.
  • adding an acoustic resonator 300 and setting the frequency of the acoustic resonator 300 to be consistent with the frequency corresponding to the maximum amplitude of the housing 100 can effectively reduce the amplitude of the housing 100 and improve the user's holding experience.
  • the dotted line in FIG. 5 represents the correspondence between the amplitude and frequency of the electronic device housing 100 when two additional acoustic resonators 300 are added, and the resonance frequency of one acoustic resonator 300 is consistent with the frequency corresponding to the maximum amplitude of the housing 100 , Which is near 500HZ.
  • the amplitude is significantly reduced, and when the frequency is near 220 Hz, the amplitude is also significantly reduced, forming two troughs.
  • the vibration frequency is between 100HZ-900HZ, the amplitude is reduced to varying degrees.
  • the frequency of one of the acoustic resonators 300 is set to be the same as the frequency corresponding to the maximum amplitude of the housing 100, and the effect of reducing the amplitude of the housing 100 is better, which is conducive to further improving the user's holding experience .
  • the number of acoustic resonators 300 added in the open acoustic cavity can be three or more, so as to further reduce the amplitude of the housing 100 and improve the vibration damping effect.
  • the acoustic resonator 300 may have a variety of specific structural forms.
  • the acoustic resonator 300 may be a separately formed device that is fixed. In the interior of the housing 100; or the acoustic resonator 300 can be used by using the inner wall surface of the housing 100 and the outer wall surface of the electronic device including the speaker module 200 in the housing 100, by arranging foam or Soft rubber strips and other materials are enclosed into an acoustic resonator 300 with two cavities; or, a cavity can be added to the speaker module 200 to form an acoustic resonator 300 integrated with the speaker module 200.
  • a mobile phone is used as an example of the above-mentioned electronic device for description.
  • FIG. 6 is a schematic diagram of a three-dimensional structure of an electronic device provided by an embodiment of the application.
  • the housing 100 of the mobile phone includes a screen 11 and a battery cover 12, and the screen 11 and the battery cover 12 are enclosed as a receiving space to accommodate electronic devices such as batteries, camera modules, and speaker modules 200.
  • the screen 11 may be a liquid crystal display or an organic light-emitting diode flexible display
  • the battery cover 12 may be made of various materials such as a metal cover, a glass cover, and a plastic cover.
  • a speaker hole 121 is opened on the battery cover 12 so that the sound generated by the speaker module 200 can be transmitted from the speaker hole 121 to the outside of the mobile phone.
  • a plurality of speaker holes 121 are arranged side by side, which can be opened on the side wall of the battery cover 12 and located at the bottom of the mobile phone.
  • FIG. 7 is a schematic diagram of the cross-sectional structure corresponding to the position A-A in FIG. 6 provided by an embodiment of the application.
  • the speaker module 200 is located in the accommodating space enclosed by the display screen 11 and the battery cover 12, and the speaker module 200 is connected to the battery cover 12 and is arranged close to the speaker hole 121.
  • the speaker housing 21 of the speaker module 200 is fixedly installed on the battery cover 12.
  • the speaker body 22 located inside the speaker housing 21 is used to generate sound.
  • the speaker body 22 divides the speaker housing 21 into a front cavity 23 and a rear cavity 24.
  • the sound hole 231 and the speaker hole 121 are arranged directly opposite to each other to lead out the sound generated by the speaker body 22 in the front cavity 23, and the rear cavity 24 communicates with the inside of the housing 100 through the sound guide channel 241.
  • the battery cover 12 When the speaker module 200 is in operation, the battery cover 12 may vibrate due to sound wave transmission, airflow impact, and structural vibration.
  • an acoustic resonator 300 is also provided near the speaker module 200 to absorb the sound energy generated by the speaker module 200 to reduce the sound energy transmitted to the battery cover 12.
  • the purpose of reducing the amplitude of the housing 100 is achieved.
  • the acoustic resonator 300 includes a first cavity 31 and a second cavity 32 communicating with each other.
  • the inner diameter of the second cavity 32 is smaller than the inner diameter of the first cavity 31, and the second cavity 32 communicates with the outside through an opening 321.
  • the second cavity 32 provides sound quality
  • the first cavity 31 provides sound capacity.
  • the acoustic resonator 300 is a separately molded part, including a resonator housing.
  • the first cavity 31 and the second cavity 32 are hollow cavities opened inside the resonator housing.
  • the resonator housing can be injection molded.
  • the acoustic resonator 300 is fixed to the battery cover 12 by means of bonding or the like.
  • Fig. 8 is a schematic diagram of the disassembled structure corresponding to the electronic device provided in Fig. 7, Fig. 9 is an enlarged view at B in 8
  • Fig. 10 is a schematic diagram of the disassembled structure corresponding to the electronic device provided in Fig. 7 from another angle
  • Fig. 11 is The enlarged view at C in Figure 10.
  • the sound hole 231 of the speaker module 200 can be set as a long strip hole, and the size of the sound hole 231 matches the plurality of sound holes 121 arranged side by side, and the speaker module When 200 is connected to the battery cover 12, the sound hole 231 opens toward the outside of the battery cover 21 and is set directly opposite to the speaker hole 121.
  • the sound guide channel 241 of the speaker module 200 is arranged toward the inside of the battery cover 12 to make full use of the internal space of the mobile phone as an open sound cavity.
  • the resonator housing of the acoustic resonator 300 can be arranged in a rectangular parallelepiped, with a hollow structure inside, and having a first cavity 31 and a second cavity 32.
  • the volume of the first cavity 31 is larger than that of the second cavity 32.
  • 32 communicates with the outside through the opening 321.
  • the opening 321 can be located at the position of the rectangular parallelepiped facing the sound guide channel 241 to shorten the distance between the sound guide channel 241 and the second cavity 32 and reduce the propagation to the battery cover 12. Sound energy on the top.
  • the acoustic resonator separately installed on the battery cover in the open acoustic cavity of the electronic device can be easily achieved by injection molding.
  • the acoustic resonator can absorb part of the sound energy of the speaker module, thereby reducing the transmission to The acoustic energy at the battery cover achieves the purpose of reducing the amplitude of the battery cover.
  • a number of electronic devices 400 are also provided in the housing 100 of the electronic device.
  • the electronic devices 400 may have structures such as batteries, charging modules, chips, and the like.
  • an acoustic resonator 300 having a first cavity 31 and a second cavity 32 can be enclosed and formed.
  • FIG. 12 is a schematic diagram of the layout of internal electronic devices of an electronic device provided by an embodiment of the application.
  • the positions of the multiple electronic devices 400 can be adjusted so that any two adjacent electronic devices 400 can be separated from each other. If there is a gap, the gap, the display screen 11 and the battery cover 12 together form a cavity. If the gap has two different widths, and the narrower width side has an opening, the gap can form a first cavity 31 and a second cavity 32. The volume of the second cavity 32 is smaller than that of the first cavity 31. The second cavity 32 communicates with the outside through the opening 321, which forms the acoustic resonator 300.
  • FIG. 13 is a schematic diagram of another layout of internal electronic devices of an electronic device provided by an embodiment of the application.
  • the positions of the multiple electronic devices 400 can be adjusted so that the side walls of the electronic device 400 and the battery cover 12 can have The interval, the interval, the display screen 11 and the battery cover 12 together form a cavity.
  • a smaller number of electronic devices 400 can complete the arrangement of the acoustic resonator 300, thereby reducing the difficulty of arranging the electronic devices 400.
  • FIG. 14 is a schematic diagram of another layout of internal electronic devices of an electronic device according to an embodiment of the application.
  • the upper and lower surfaces of the speaker module 200 and the electronic device 400 are sealed and connected to the display screen 11 and the battery cover 12, respectively, and the positions of the multiple electronic devices 400 can be adjusted to make the electronic device 300 and the speaker module
  • the speaker module 299 and the side wall of the battery cover 12 are used to form the cavity of the acoustic resonator, which can further reduce the number of electronic devices 400 that need to be used, thereby reducing the difficulty of arranging the electronic devices 400.
  • the acoustic resonator 300 may also be formed by surrounding the sealing member 33, which may be formed as the outer contours of the first cavity 31 and the second cavity 32, and the sealing member 33 It is sandwiched between the electronic device 400 or between the electronic device 400 and the inner wall of the housing 100 to form the acoustic resonator 300 having the first cavity 31 and the second cavity 32.
  • FIG. 15 is another schematic diagram of disassembly of the electronic device provided by an embodiment of the application
  • FIG. 16 is an enlarged view at D in FIG.
  • FIG. 17 is an electronic device provided in FIG. 15 corresponding to AA in FIG. Schematic diagram of the cross-sectional structure.
  • the sealing member 33 is sandwiched between the electronic device 400 and the bottom wall of the battery cover 12. The pattern enclosed by the sealing member 33, the flat surface of the electronic device 400 and the battery The bottom wall of the cover 12 together constitutes an acoustic resonator 300 having a first cavity 31 and a second cavity 32.
  • the sealing member 33 may be one or more of ethylene-vinyl acetate copolymer foam, polyethylene foam, polyurethane foam, acrylic foam, high-foam polypropylene, and rubber strips.
  • a sealed connection is adopted between the sealing member 33 and the electronic device 400 and the housing 100 to ensure that the cavity of the acoustic resonator 300 maintains airtightness at all positions except the opening 321.
  • the sealing member 33 has elasticity, and when it is sandwiched between the electronic device 400 or between the electronic device 400 and the housing, it deforms when subjected to a squeezing force, thereby ensuring the sealing performance.
  • the surface of the sealing member 33 connected to the electronic device 400 and the housing 100 has an adhesive layer. When the sealing member 33 is viscous, it is reliably connected to the electronic device 400 and the housing 100, and can ensure that the acoustic resonator 300 is in addition to The other positions of the opening 321 are kept tight.
  • the pattern enclosed by the sealing member 33 also needs to be adapted to the size of the electronic device 400.
  • the contour shape of the figure enclosed by the seal 33 can be realized in multiple ways.
  • the patterns corresponding to the first cavity 31 and the second cavity 32 may both be rectangular, and the area of the pattern corresponding to the first cavity 31 is larger than the area of the pattern corresponding to the second cavity 32, corresponding to the second cavity.
  • a gap is provided on the pattern of the cavity 32 to form the opening 321 of the second cavity 32.
  • the length directions of the first cavity 31 and the second cavity 32 are the same.
  • FIG. 18 is a schematic diagram of another structure of an acoustic resonator provided by an embodiment of the application. Referring to FIG. 18, the length directions of the first cavity 31 and the second cavity 32 may not be consistent.
  • the electronic device includes the speaker module 200 itself, That is, the outer wall surface of the speaker housing 21 of the speaker module 200 may also be used.
  • FIG. 19 is a schematic diagram of still another disassembled structure of an electronic device provided by an embodiment of the application
  • FIG. 20 is an enlarged view of E in FIG. 19.
  • the acoustic resonator 300 is arranged between the speaker housing 21 and the display screen 11.
  • the speaker housing 21 is connected to the battery cover 12. There is a certain height gap between the top of the speaker housing 21 and the display screen 11.
  • a sealing member 33 is arranged to surround the contour of the acoustic resonator 300, and a sealing member is arranged 33 and the speaker housing 21 and the display screen 11 are sealed and connected, and the speaker housing 21, the sealing member 23 and the display screen 11 together form an acoustic resonator 300 having a first cavity 31 and a second cavity 32.
  • the electronic device utilizes the space between the electronic device and the inner wall of the housing in the open acoustic cavity of the electronic device, and the position of the electronic device is used to directly form an acoustic resonator between the electronic device and the inner wall of the housing.
  • the acoustic resonator is formed by using foam to surround the battery cover, which can reduce the acoustic energy transmitted to the battery cover and achieve the purpose of reducing the amplitude of the battery cover.
  • the internal space of the electronic device is reasonably used and the space utilization rate is improved.
  • FIG. 21 is a schematic structural diagram of a speaker module of an electronic device provided by an embodiment of the application
  • FIG. 22 is a corresponding disassembled structure diagram of the speaker module in FIG. 21 installed in an electronic device.
  • the acoustic resonator 300 can be integrated with the speaker module 200 to make full use of the manufacturing process and structural shape of the speaker module 200 to ensure dimensional tolerances, and at the same time, no additional components are added, which is convenient Assembly of electronic equipment.
  • the speaker module 200 includes a speaker housing 21, and two opposite sides of the speaker housing 21 are respectively provided with a sound hole 231 and a sound guide channel 241.
  • the resonator housing of the acoustic resonator 300 and the speaker housing 21 are integrally formed with a hollow structure inside to form a resonant cavity.
  • the resonator housing of the acoustic resonator 300 is provided with an opening 321 that communicates the internal resonant cavity and the outside. .
  • the relative relationship between the resonator housing of the acoustic resonator 300 and the speaker housing 21 has various forms. For example, as shown in FIG. 21, the resonator housing of the acoustic resonator 300 is located on one side of the speaker housing 21, and the opening 321 is adjacent to Sound guide channel 241 is set.
  • Fig. 23 is a schematic cross-sectional structure diagram at F-F in Fig. 21.
  • the speaker module 200 further includes a speaker body 22 located inside the speaker housing 21.
  • the speaker body 22 is used to generate sound.
  • the speaker body 22 separates the speaker housing 21 into a front cavity 23 and a rear cavity 24.
  • the cavity 23 leads the sound generated by the speaker body 22 through the sound hole 231, and the rear cavity 24 communicates with the inside of the housing 100 through the sound guide channel 241.
  • Fig. 24 is a schematic cross-sectional structure diagram at H-H in Fig. 21.
  • the acoustic resonator 300 includes a first cavity 31 and a second cavity 32 that are connected to each other.
  • the diameter of the second cavity 32 is smaller than that of the first cavity 31.
  • the second cavity 32 passes through the opening
  • the hole 321 communicates with the outside.
  • the electronic device provided by the embodiments of the present application is provided with an acoustic resonator and the speaker housing of the speaker module are integrally formed.
  • the acoustic resonator has a first cavity and a second cavity, which can reduce the sound energy transmitted to the battery cover. While achieving the purpose of reducing the amplitude of the battery cover, it also makes full use of the manufacturing process and structural shape of the speaker module itself to ensure dimensional tolerances.
  • the acoustic resonator 300 is provided to absorb the sound wave energy of the speaker module 200 to reduce the vibration of the housing 100.
  • the vibration of the housing 100 can also be reduced by attenuating the energy of the vibration of the airflow.
  • FIG. 25 is a schematic diagram of another structure of a speaker module of an electronic device according to an embodiment of the application.
  • the sound-guiding channel 241 of the speaker module 200 can be filled with a sound-absorbing material 242.
  • the sound-absorbing material 242 may be loose and porous fibers, foam particles, zeolite, activated carbon, and other materials that can attenuate air vibration energy.
  • the speaker body 22 vibrates, the air flow generated by the vibration enters the open acoustic cavity through the sound guide channel 241. Through the adsorption of the sound absorbing material 242, the friction between the air and the gap in the sound absorbing material 242 will cause the energy of the air to attenuate, thereby The vibration of the housing 100 is reduced.
  • FIG. 26 is a schematic diagram of still another structure of a speaker module of an electronic device provided by an embodiment of the application.
  • a plurality of partitions 243 may be provided in the sound guide channel 241 of the speaker module 200, and the plurality of partitions 243 may be self-guided on both sides of the sound channel 241.
  • the wall surfaces extend toward each other to form a damping channel 244 with a curved path.
  • the vibration damping channel 244 itself can also absorb the air vibration in it.
  • the combined energy attenuates the airflow energy transmitted by the air vibration in the damping channel 244, thereby reducing the sound vibration energy transmitted to the open acoustic cavity and reducing the vibration of the housing 100.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or through an intermediate medium. Indirect connection can be the internal communication between two elements or the interaction between two elements.
  • Indirect connection can be the internal communication between two elements or the interaction between two elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Telephone Set Structure (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

本申请实施例提供一种扬声器模组及电子设备,扬声器模组安装在电子设备的壳体内,包括扬声器外壳、位于扬声器外壳内部的扬声器本体和位于扬声器外壳外部的声谐振器;扬声器本体用于振动发声,扬声器本体将扬声器外壳分隔成互不连通的前腔和后腔,前腔通过出声孔和壳体的外部连通,后腔通过导声通道和壳体的内部连通以使壳体的内部形成开放声腔,扬声器模组的振动带动电子设备的壳体振动,声谐振器位于开放声腔内,且声谐振器的谐振频率处于壳体的振动频率的范围内。本申请实施例提供一种扬声器模组及电子设备,通过在开放声腔内设置声谐振器,可解决扬声器振动造成的壳体振动的问题,以优化用户握持体验。

Description

扬声器模组及电子设备
本申请要求于2020年04月30日提交中国专利局、申请号为202010361730.X、申请名称为“扬声器模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电声技术领域,尤其涉及一种扬声器模组及电子设备。
背景技术
扬声器为了获得更好的音频效果通常需要更大的音腔体积,但是扬声器应用于手机等电子设备时,电子设备很难提供足够的空间给扬声器。为了在电子设备有限的架构空间下实现更好的音频效果,如实现立体声,可将扬声器应用于开放声腔的电子设备中,即采用整个电子设备的内部腔体作为扬声器的后腔。然而,如何设计电子设备的扬声器,使其满足用户握持体验的优化需求,是一个亟待解决的问题。
发明内容
本申请实施例提供一种扬声器模组及电子设备,通过在开放声腔内设置声谐振器,可解决扬声器振动造成的壳体振动的问题,以优化用户握持体验。
本申请实施例一方面提供一种扬声器模组,安装在电子设备的壳体内,包括扬声器外壳、位于扬声器外壳内部的扬声器本体和位于扬声器外壳外部的声谐振器。
扬声器本体用于振动发声,扬声器本体将扬声器外壳分隔成互不连通的前腔和后腔,前腔通过出声孔和壳体的外部连通,后腔通过导声通道和壳体的内部连通以使壳体的内部形成开放声腔,扬声器模组的振动带动电子设备的壳体振动,声谐振器位于开放声腔内,且声谐振器的谐振频率处于壳体的振动频率的范围内。
本申请实施例提供的扬声器模组,增设声谐振器,声谐振器位于壳体的开放声腔内,且谐振频率处于壳体振动的范围内,可吸收部分扬声器模组的声能量,从而减小传播到电子设备壳体处的声能量,达到降低电子设备的壳体的振幅的目的。
在一种可能的实施方式中,声谐振器的谐振频率和壳体的最大振幅对应的频率一致。
声谐振器的谐振频率与壳体的最大振幅对应的频率一致,可有效吸收壳体在最大振幅对应的频率附近振动时的声能量,以有效降低壳体的最大振幅。
在一种可能的实施方式中,声谐振器包括第一腔体和第二腔体,第一腔体和第二腔体连通,第二腔体通过开孔和外部连通,第一腔体的体积大于第二腔体的体积,第一腔体的内径尺寸大于第二腔体的内径尺寸。
声谐振器为亥姆霍兹共振腔,第二腔体提供声质量,第一腔体提供声容,通过调整第一腔体的尺寸和第二腔体的尺寸,可以改变声谐振器的谐振频率。
在一种可能的实施方式中,声谐振器包括谐振器外壳,谐振器外壳内部开设有第一腔 体和第二腔体,谐振器外壳固定连接在壳体内壁上。
在电子设备的开放声腔内设置单独安装在壳体内的声谐振器,声谐振器可吸收部分扬声器模组的声能量,从而减小传播到电池盖处的声能量,达到降低电池盖的振幅的目的。
在一种可能的实施方式中,谐振器外壳采用一体注塑成型。注塑成型工艺上容易实现,且单独安装的声谐振器容易装配。
在一种可能的实施方式中,声谐振器包括谐振器外壳,谐振器外壳内部开设有第一腔体和第二腔体,谐振器外壳和扬声器外壳一体成型。
设置声谐振器与扬声器模组的扬声器外壳一体成型,声谐振器具有第一腔体和第二腔体,可在减小传播到电池盖处的声能量,达到降低电池盖的振幅的目的的同时,充分利用扬声器外壳本身的制造工艺和结构形状,保证尺寸公差。
在一种可能的实施方式中,壳体内还设置有多个电子器件,扬声器外壳、壳体内壁及电子器件中的任意多个,围设成具有第一腔体和第二腔体的声谐振器。
在电子设备的开放声腔内利用电子器件和壳体内壁之间的空间,直接使电子器件和壳体内壁之间构成声谐振器,可在减小传播到电池盖处的声能量,达到降低电池盖的振幅的目的的同时,合理利用电子设备的内部空间,提高空间利用率。
在一种可能的实施方式中,声谐振器包括密封件,密封件围设成第一腔体和第二腔体的轮廓,密封件夹设在扬声器外壳、壳体内壁及电子器件中的任意两个之间,以形成具有第一腔体和第二腔体的声谐振器。
通过利用电子器件的位置,采用夹设在电子器件和壳体之间的密封件围设形成声谐振器,可在减小传播到电池盖处的声能量,达到降低电池盖的振幅的目的的同时,合理利用电子设备的内部空间,提高空间利用率。
在一种可能的实施方式中,密封件为泡棉或橡胶条。
采用泡棉或橡胶条作为围设成声谐振器的密封件,可以保证声谐振器腔体的密封性,且材料成本低,易于实现。
在一种可能的实施方式中,声谐振器的开孔和导声通道相对设置或相邻设置。
为了提高声谐振器抑制壳体振动的效果,可以使声谐振器靠近导声通道设置,使声谐振器处于声波的传播路径上,以减小传播到壳体上的声能量。
在一种可能的实施方式中,声谐振器的数量为至少两个。
设置至少两个声谐振器,至少两个声谐振器的谐振频率不同,可降低壳体在两个谐振频率附近对应的振幅,有利于进一步提高用户握持体验。
在一种可能的实施方式中,至少两个声谐振器串联设置;或者,至少两个声谐振器并联设置。
串联设置或并联设置的声谐振器,均可在两个谐振频率附近起到降低振幅的作用。
在一种可能的实施方式中,导声通道内填充有吸音材料。
当扬声器本体振动时,振动产生的气流经过导声通道进入开放声腔的过程中,通过吸音材料的吸附作用,空气与吸音材料中的空隙的摩擦作用会造成空气的能量衰减,从而减轻壳体的振动。
在一种可能的实施方式中,导声通道内设置有多个隔板,多个隔板分别自导声通道两侧的内壁面相向延伸,形成具有弯曲路径的减振通道。
当扬声器本体振动时,振动产生的气流经过导声通道进入开放声腔的过程中,在减振通道内产生多次变向与反射,同时减振通道本身也可吸收其内空气振动的能量,相结合地起到了使减振通道内空气振动传播的气流能量衰减的作用,从而减弱了传递至开放声腔的声音振动能量,减轻壳体的振动。
本申请实施例另一方面提供一种电子设备,包括壳体和安装在壳体内的如上的扬声器模组,壳体上开设有扬声孔,出声孔和扬声孔连通。
本申请实施例提供一种电子设备,在电子设备的开放声腔内增设声谐振器,声谐振器可吸收部分扬声器模组的声能量,从而减小传播到电子设备壳体处的声能量,达到降低电子设备壳体的振幅的目的。
附图说明
图1为本申请一实施例提供的电子设备的结构示意图;
图2为本申请一实施例提供的声谐振器的结构示意图;
图3为本申请一实施例提供的具有并联设置的两个声谐振器的电子设备的结构示意图;
图4为本申请一实施例提供的具有串联设置的两个声谐振器的电子设备的结构示意图;
图5为本申请一实施例提供的电子设备中声谐振器对电子设备壳体的振幅的影响效果的示意图;
图6为本申请一实施例提供的电子设备的立体结构示意图;
图7为本申请一实施例提供的对应于图6中A-A处的剖面结构示意图;
图8为图7提供的电子设备对应的拆解结构示意图;
图9为图8中B处的放大图;
图10为图7提供的电子设备对应的另一角度的拆解结构示意图;
图11为图10中C处的放大图;
图12为本申请一实施例提供的电子设备的内部电子器件的布局示意图;
图13为本申请一实施例提供的电子设备的内部电子器件的另一种布局示意图;
图14为本申请一实施例提供的电子设备的内部电子器件的又一种布局示意图;
图15为本申请一实施例提供的电子设备的另一种拆解示意图;
图16为图15中D处的放大图;
图17为图15提供的电子设备的对应于图6的A-A处的剖面结构示意图
图18为本申请一实施例提供的声谐振器的另一种结构示意图;
图19为本申请一实施例提供的电子设备的再一种拆解结构示意图;
图20为图19中E处的放大图;
图21为本申请一实施例提供的电子设备的扬声器模组的结构示意图;
图22为图21中的扬声器模组安装在电子设备中对应的拆解结构示意图;
图23为图21中F-F处的剖面结构示意图;
图24为图21中H-H处的剖面结构示意图;
图25为本申请一实施例提供的电子设备的扬声器模组的另一种结构示意图;
图26为本申请一实施例提供的电子设备的扬声器模组的再一种结构示意图。
附图标记说明:
100-壳体;11-显示屏;12-电池盖;121-扬声孔;
200-扬声器模组;21-扬声器外壳;22-扬声器本体;23-前腔;231-出声孔;24-后腔;241-导声通道;242-吸音材料;243-隔板;244-减振通道;
300-声谐振器;31-第一腔体;32-第二腔体;321-开孔;33-密封件;
400-电子器件。
具体实施方式
本申请实施例提供一种电子设备,包括但不限于手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、对讲机、上网本、POS机、个人数字助理(personal digital assistant,PDA)、可穿戴设备、虚拟现实设备、无线U盘、蓝牙音响、蓝牙耳机或车载装置等具有壳体和扬声器模组的移动或固定终端设备。
电子设备的扬声器为了获得更好的音频效果通常需要更大的音腔体积,但手机等终端设备难以提供足够的空间给音频器件。为了在有限的架构空间下实现更好的音频效果,采用开放后腔的设计可以将整个电子设备的内部腔体作为音频器件的音腔体积,显著增加扬声器后腔体积。
图1本申请一实施例提供的电子设备的结构示意图。参考图1所示,电子设备包括壳体100和安装在壳体100内的扬声器模组200,扬声器模组200包括扬声器外壳21和位于扬声器外壳21内部的扬声器本体22。扬声器本体22可以包括振膜、音圈、磁路系统等结构,在磁路系统的作用下,具有变化的电流的音圈受到不同大小的安培力而振动,音圈振动带动振膜振动,振膜振动推动周围的空气振动,从而产生声音。
扬声器外壳21被扬声器本体22分隔成前腔23和后腔24,前腔23通过出声孔231与电子设备的外部连通,以将扬声器本体22产生的声音导出,后腔24通过导声通道241与壳体100的内部连通,即采用开放声腔,以提高扬声器模组200的音频效果。
例如,手机上采用的后腔封闭的微型扬声器模组,受限于手机架构堆叠,其后腔体积一般在0.6-0.9cc;若采用开放声腔,可以充分利用手机部件间隙,微型扬声器模组的等效后腔可以达到8-10cc,相对其后腔体积在0.6-0.9cc的设计,其低频可提升8-10dB,音频效果有非常大的提升。同时,若采用开放声腔,那么可以取消微型扬声器模组原有的0.6-0.9cc后腔,为其它部件提供空间。
但是,对于开放声腔的扬声器模组200,在声波传递、气流冲击和结构振动传递这三条路径的作用下,扬声器模组200发声时会引起电子设备壳体100的振动。扬声器模组200的振幅越大,壳体100振动的问题就越严重。为了提升手机等电子设备中微型扬声器模组的低频性能,扬声器模组的振幅需设计的越来越大,导致壳体振动的风险越来越高。例如,12*16mm的微型扬声器模组的振幅可以达到0.6mm以上,将其应用于开放后腔设计的手机中时,手机的电池盖的振幅可以达到10μm以上,用户握持时能够感受到比较严重的振感,因此,壳体振动问题是抑制开放声腔方案在电子设备中应用的瓶颈问题。
基于上述问题,本申请实施例提供一种电子设备,在电子设备的开放声腔内增设声谐振器300,声谐振器300的谐振频率处于壳体100的振动频率的范围内,可吸收部分扬声器模组200的声能量,从而减小传播到电子设备壳体处的声能量,达到降低电子设备壳体 的振幅的目的。
壳体100内设置有至少一个声谐振器300,其中至少一个声谐振器300的谐振频率可以与壳体100的最大振幅对应的频率一致,以有效降低壳体100的最大振幅。为了提高声谐振器300抑制壳体100振动的效果,可以使声谐振器300靠近导声通道241设置,使声谐振器300处于声波的传播路径上,以减小传播到壳体100上的声能量。
本申请实施例中,声谐振器300可以为亥姆霍兹(Helmholtz)共振腔。图2为本申请一实施例提供的声谐振器的结构示意图。参考图1和图2所示,声谐振器300包括相互连通的第一腔体31和第二腔体32,第二腔体32的内径尺寸小于第一腔体31的内径尺寸,第二腔体32通过开孔321与外部连通,第二腔体32提供声质量,第一腔体31提供声容。
根据亥姆霍兹(Helmholtz)谐振器设计理论,通过调整第一腔体31的尺寸和第二腔体32的尺寸,可以改变声谐振器300的谐振频率,使声谐振器300的频率与壳体100的最大振幅的频率一致。具体地,根据亥姆霍兹(Helmholtz)谐振器设计理论,声谐振器300的谐振频率的公式为:
Figure PCTCN2021085807-appb-000001
其中,M为声质量,C为声容。
Figure PCTCN2021085807-appb-000002
其中,L为第二腔体32的长度,ρ为第二腔体32的截面积,V为第一腔体31的体积,c0为空气中声波的速度。
从上述公式中可以看出,声谐振器300的谐振频率取决于第二腔体32的长度、截面积以及第一腔体31的体积。第一腔体31可以为球形、立方体形或者其它形状的腔体,第二腔体32可以为柱形腔体,其截面可以为圆形、方形或其它形状。
应用于手机中的扬声器模组200可以为微型扬声器,壳体100的振动频率较低,例如处于100HZ-2000HZ之间。对应地,声谐振器300的谐振频率小于2000HZ。可设置第二腔体32的直径处于0.4-1.5mm的范围内,设置第二腔体32的长度在1-10mm之间,设置第一腔体31的体积在0.2-1.5cm^3。
本申请实施例中,声谐振器300的数量可以为两个或两个以上。设置两个或两个以上声谐振器300时,可设置其中一个声谐振器300的频率与壳体100的最大振幅的频率一致,以使这一个声谐振器300可以减少壳体100在该频率处的振幅。
在一种可能的实施方式中,电子设备的壳体100内设置有两个声谐振器300,两个声谐振器300并联设置。图3为本申请一实施例提供的具有并联设置的两个声谐振器的电子设备的结构示意图。参考图3所示,并联设置的两个声谐振器300,即两个声谐振器300独立设置互不连通,两个声谐振器300均位于开放声腔内,分别起到吸收声能量的作用。两个声谐振器300可以具有不同的谐振频率,以分别减轻不同频率段内的振动;两个声谐振器300可以并排设置或层叠设置,两个声谐振器300的开孔321可以朝向一致,均靠近导声通道241设置,以尽量减少传播到壳体100处的声能量,提高减振效果。
在另一种可能的实施方式中,电子设备的壳体100内设置有两个声谐振器300,两个声谐振器300串联设置。图4为本申请一实施例提供的具有串联设置的两个声谐振器的电 子设备的结构示意图。参考图4所示,串联设置的两个声谐振器300,即两个声谐振器300互相连通,仅一个声谐振器300的开孔321与外部连通。具体地,第一个声谐振器300的开孔321与外部连通,第二个声谐振器300的开孔321与第一个声谐振器300的第一腔体31连通,第二个声谐振器300的开孔321可以连接在第一个声谐振器300的第一腔体31上的任意位置。两个声谐振器300可以具有不同的谐振频率,以分别减轻不同频率段内的振动。
图5为本申请一实施例提供的电子设备中声谐振器对电子设备壳体的振幅的影响效果的示意图。参考图5所示,需要说明的是,横坐标表示电子设备壳体100的振动频率,壳体100在振动时,受到形状、材料、内部器件布局等因素的影响,壳体100的不同位置处的振幅大小可能不同,其中,纵坐标表示电子设备的壳体100上最大的振幅值。也就是说,图5中曲线上任一点的含义是,电子设备的壳体100的振动频率为横坐标的值时,对应地,壳体100上存在一个位置的振幅最大,该位置处的振幅即为纵坐标的值。
图5中实线表示未设置声谐振器300时电子设备壳体100的振幅和频率之间的对应关系,在100HZ-2000HZ的范围内,随着振动频率的增加,壳体100的振幅先逐渐增加,并在振动频率处于500HZ附近时,达到振幅的最大值,随后又逐渐减小。
图5中的虚线表示增设一个声谐振器300时电子设备壳体100的振幅和频率之间的对应关系,声谐振器300的谐振频率与壳体100最大振幅对应的频率一致,即处于500HZ附近。此时,壳体100的振动频率在500HZ附近时,振幅显著降低,形成了一个波谷。并且,振动频率处于100HZ-800HZ之间时,振幅均存在不同程度的降低。因此,增设一个声谐振器300,设置声谐振器300的频率和壳体100的最大振幅对应的频率一致,可有效降低壳体100的振幅,提高用户握持体验。
图5中的点划线表示增设两个声谐振器300时电子设备壳体100的振幅和频率之间的对应关系,其中一个声谐振器300的谐振频率与壳体100最大振幅对应的频率一致,即处于500HZ附近。此时,壳体100在频率处于500HZ附近时,振幅显著降低,并且,在频率处于220HZ附近时,振幅也显著降低,形成了两个波谷。此外,振动频率处于100HZ-900HZ之间时,振幅均存在不同程度的降低。因此,增设两个声谐振器300,设置其中一个声谐振器300的频率和壳体100的最大振幅对应的频率一致,降低壳体100的振幅的效果更好,有利于进一步提高用户握持体验。
可以理解地,开放声腔内增设的声谐振器300的数量可以为三个或更多个,以进一步降低壳体100的振幅,提高减振效果。
本申请实施例中,在满足形成亥姆霍兹(Helmholtz)共振腔的基础上,声谐振器300的具体结构形式可以有多种,例如,声谐振器300可以为一个单独成型的器件,固定在壳体100的内部;或者声谐振器300可以通过利用壳体100的内壁面,以及壳体100内包括扬声器模组200在内的电子器件的外壁面,通过在空余间隙内设置泡棉或者软橡胶条等材料,围设成具有两个腔体的声谐振器300;或者,可以在扬声器模组200上增设腔体,形成与扬声器模组200一体的声谐振器300。
下面结合附图来对本申请实施例提供的电子设备中声谐振器的不同结构形式进行说明。
场景一
本申请实施例中,以手机为上述电子设备的例子来进行说明。
图6为本申请一实施例提供的电子设备的立体结构示意图。参考图6所示,手机的壳体100包括屏幕11和电池盖12,屏幕11和电池盖12围设成收容空间,以收容电池、摄像模组、扬声器模组200等电子器件。其中,屏幕11可以液晶显示屏或者有机发光二极管柔性显示屏,电池盖12可以由金属盖、玻璃盖、塑胶盖等多种材料制成。电池盖12上开设有扬声孔121,以使扬声器模组200产生的声音可从扬声孔121传出至手机的外部。多个扬声孔121并排设置,可开设在电池盖12的侧壁上,位于手机的底部。
图7为本申请一实施例提供的对应于图6中A-A处的剖面结构示意图。参考图7所示,扬声器模组200位于显示屏11和电池盖12围成的收容空间内,扬声器模组200连接在电池盖12上,且靠近扬声孔121设置。
具体地,扬声器模组200的扬声器外壳21固定安装在电池盖12上,位于扬声器外壳21内部的扬声器本体22用于产生声音,扬声器本体22将扬声器外壳21分隔成前腔23和后腔24,出声孔231和扬声孔121正对设置,以将前腔23内扬声器本体22产生的声音导出,后腔24通过导声通道241与壳体100的内部连通。
扬声器模组200工作时,由于声波传递、气流冲击和结构振动,会引起电池盖12振动。为了减弱电池盖12的振动,本实施例中,扬声器模组200的附近还设置有声谐振器300,用于吸收扬声器模组200产生的声能量,以减少传播到电池盖12处的声能量,从而达到降低壳体100的振幅的目的。
声谐振器300包括相互连通的第一腔体31和第二腔体32,第二腔体32的内径尺寸小于第一腔体31的内径尺寸,第二腔体32通过开孔321与外部连通,第二腔体32提供声质量,第一腔体31提供声容。本实施例中,声谐振器300为单独成型的一个部件,包括谐振器外壳,第一腔体31和第二腔体32为开设在谐振器外壳内部的中空腔体,谐振器外壳可通过注塑成型等方式制作,声谐振器300通过粘接等方式固定在电池盖12上。
图8为图7提供的电子设备对应的拆解结构示意图,图9为8中B处的放大图,图10为图7提供的电子设备对应的另一角度的拆解结构示意图,图11为图10中C处的放大图。参考图8-图11所示,扬声器模组200的出声孔231,可设置为一个长条形孔,出声孔231的尺寸与多个并排设置的扬声孔121相匹配,扬声器模组200连接在电池盖12上时,出声孔231开孔朝向电池盖21的外部,且正对扬声孔121设置。扬声器模组200的导声通道241,朝向电池盖12的内部设置,以充分利用手机内部空间作为开放声腔。
声谐振器300的谐振器外壳可以呈长方体设置,其内部为中空结构,具有第一腔体31和第二腔体32,第一腔体31的体积大于第二腔体32,第二腔体32通过开孔321与外部连通,开孔321可以位于该长方体的面对导声通道241的位置上,以缩短导声通道241和第二腔体32之间的距离,减少传播到电池盖12上的声能量。
本申请实施例提供的电子设备,在电子设备的开放声腔内单独安装在电池盖上的声谐振器,注塑成型容易实现,声谐振器可吸收部分扬声器模组的声能量,从而减小传播到电池盖处的声能量,达到降低电池盖的振幅的目的。
场景二
电子设备的壳体100内还设置有若干个电子器件400,电子器件400可以为电池、充电模组、芯片等结构。利用电子器件400、扬声器模组200以及壳体100的内壁,可围设 形成具有第一腔体31和第二腔体32的声谐振器300。
图12为本申请一实施例提供的电子设备的内部电子器件的布局示意图。参考图12所示,在电子器件400的上下表面分别与显示屏11和电池盖12密封连接的基础上,调整多个电子器件400的位置,可使任意相邻的两个电子器件400之间具有间隔,则该间隔与显示屏11和电池盖12共同构成腔体。设置该间隔具有两段不同的宽度,且较窄宽度的一侧具有开口,则该间隔可构成第一腔体31和第二腔体32,第二腔体32的体积小于第一腔体31,第二腔体32与外部通过开孔321连通,即形成了声谐振器300。
图13为本申请一实施例提供的电子设备的内部电子器件的另一种布局示意图。参考图13所示,在电子器件400的上下表面分别与显示屏11和电池盖12密封连接的基础上,调整多个电子器件400的位置,可使电子器件400和电池盖12的侧壁具有间隔,则该间隔与显示屏11和电池盖12共同构成腔体。借助电池盖12的侧壁来形成腔体的其中一个表面,可使更少数量的电子器件400即可完成声谐振器300的设置,从而降低电子器件400的排布难度。
图14为本申请一实施例提供的电子设备的内部电子器件的又一种布局示意图。参考图14所示,在扬声器模组200和电子器件400的上下表面分别与显示屏11和电池盖12密封连接的基础上,调整多个电子器件400的位置,可使电子器件300和扬声器模组200之间具有间隔,该间隔与显示屏11、电池盖12的侧壁和底壁共同构成腔体。同时借助扬声器模组299和电池盖12的侧壁来形成声谐振器的腔体,可进一步减少需要利用的电子器件400的数量,从而降低电子器件400的排布难度。
在一种可选的实施方式中,声谐振器300还可以通过密封件33围设形成,密封件33可围设成第一腔体31和第二腔体32的外轮廓,将密封件33夹设在电子器件400之间、或者电子器件400和壳体100的内壁之间,即可形成具有第一腔体31和第二腔体32的声谐振器300。
图15为本申请一实施例提供的电子设备的另一种拆解示意图,图16为图15中D处的放大图,图17为图15提供的电子设备的对应于图6的A-A处的剖面结构示意图。参考图15-图17所示,本申请实施例中,密封件33夹设在电子器件400和电池盖12的底壁之间,密封件33围成的图形、电子器件400的平整面和电池盖12的底壁,共同构成具有第一腔体31和第二腔体32的声谐振器300。
其中,密封件33可以为乙烯-醋酸乙烯共聚物泡棉、聚乙烯泡棉、聚氨基甲酸酯泡棉、亚克力泡棉、高发泡聚丙烯、橡胶条中的一种或者多种。
可以理解的是,密封件33与电子器件400、壳体100之间采用密封连接,以保证声谐振器300的腔体在除了开孔321处的其它位置均保持密封性。示例性地,密封件33具有弹性,其夹设在电子器件400之间或者电子器件400和壳体之间时,受到挤压力发生变形,从而可保证密封性。或者,密封件33的与电子器件400、壳体100连接的表面具有胶层,密封件33具备粘性时,和电子器件400、壳体100之间连接可靠,且可保证声谐振器300在除了开孔321处的其它位置均保持密封性。
在使第一腔体31和第二腔体32的尺寸可满足声谐振器300的谐振频率要求的基础上,密封件33围成的图形还需要适应于电子器件400的尺寸。密封件33围成的图形的轮廓外形具有多种实现方式。例如,对应于第一腔体31和第二腔体32的图形可以均为长方形, 对应于第一腔体31的图形的面积大于对应于第二腔体32的图形的面积,对应于第二腔体32的图形上设置有缺口,用于形成第二腔体32的开孔321。参考图16所示,第一腔体31和第二腔体32的长度方向一致。图18为本申请一实施例提供的声谐振器的另一种结构示意图。参考图18所示,第一腔体31和第二腔体32的长度方向也可以不一致。
不难理解的是,在采用泡棉、橡胶条等材料在电子器件之间、或者电子器件和壳体的内壁之间围设形成声谐振器300时,该电子器件包括扬声器模组200本身,即也可利用扬声器模组200的扬声器外壳21的外壁面。
图19为本申请一实施例提供的电子设备的再一种拆解结构示意图,图20为图19中E处的放大图。参考图19-图20所示,在一种可能的实施方式中,声谐振器300设置在扬声器外壳21和显示屏11之间。扬声器外壳21连接在电池盖12上,扬声器外壳21的顶部和显示屏11之间具有一定高度的间隙,在该高度范围内,设置密封件33围设成声谐振器300的轮廓,设置密封件33和扬声器外壳21、显示屏11之间密封连接,则扬声器外壳21、密封件23和显示屏11共同构成具有第一腔体31、第二腔体32的声谐振器300。
本申请实施例提供的电子设备,在电子设备的开放声腔内利用电子器件和壳体内壁之间的空间,通过利用电子器件的位置,直接使电子器件和壳体内壁之间构成声谐振器,或者采用泡棉围设形成声谐振器,可在减小传播到电池盖处的声能量,达到降低电池盖的振幅的目的的同时,合理利用了电子设备的内部空间,提高了空间利用率。
场景三
图21为本申请一实施例提供的电子设备的扬声器模组的结构示意图,图22为图21中的扬声器模组安装在电子设备中对应的拆解结构示意图。参考图21和图22所示,声谐振器300可以和扬声器模组200一体设置,以充分利用扬声器模组200本身的制造工艺和结构形状,保证尺寸公差,同时,不增加额外的部件,便于电子设备的装配。
其中,扬声器模组200包括扬声器外壳21,扬声器外壳21相对的两个侧面上分别开设有出声孔231和导声通道241。声谐振器300的谐振器外壳和扬声器外壳21一体成型,其内部为空心结构,用来形成共振腔体,声谐振器300的谐振器外壳上设置有连通内部共振腔体和外部的开孔321。声谐振器300的谐振器外壳与扬声器外壳21的相对关系具有多种形式,示例性地,如图21所示,声谐振器300的谐振器外壳位于扬声器外壳21的一侧,开孔321邻近导声通道241设置。
图23为图21中F-F处的剖面结构示意图。参考图21和23所示,扬声器模组200还包括位于扬声器外壳21内部的扬声器本体22,扬声器本体22用于产生声音,扬声器本体22将扬声器外壳21分隔成前腔23和后腔24,前腔23通过出声孔231将扬声器本体22产生的声音导出,后腔24通过导声通道241与壳体100的内部连通。
图24为图21中H-H处的剖面结构示意图。参考图21和24所示,声谐振器300包括相互连通的第一腔体31和第二腔体32,第二腔体32的管径小于第一腔体31,第二腔体32通过开孔321与外部连通。
本申请实施例提供的电子设备,设置声谐振器与扬声器模组的扬声器外壳一体成型,声谐振器具有第一腔体和第二腔体,可在减小传播到电池盖处的声能量,达到降低电池盖的振幅的目的的同时,充分利用扬声器模组本身的制造工艺和结构形状,保证尺寸公差。
上述实施例中,通过设置声谐振器300吸收扬声器模组200的声波能量,以减轻壳体 100的振动。在一种可行的实施方式中,还可以通过使气流振动的能量衰减,来减轻壳体100的振动。
示例性地,图25为本申请一实施例提供的电子设备的扬声器模组的另一种结构示意图。参考图25所示,在一种可能的实施例中,扬声器模组200的导声通道241中可填充吸音材料242。吸音材料242可以为疏松多孔的纤维、泡棉颗粒、沸石、活性炭等能使空气振动能量衰减的材料。当扬声器本体22振动时,振动产生的气流经过导声通道241进入开放声腔的过程中,通过吸音材料242的吸附作用,空气与吸音材料242中的空隙的摩擦作用会造成空气的能量衰减,从而减轻壳体100的振动。
图26为本申请一实施例提供的电子设备的扬声器模组的再一种结构示意图。参考图26所示,在另一种可能的实施例中,扬声器模组200的导声通道241内可设置多个隔板243,多个隔板243可分别自导声通道241两侧的内壁面相向延伸,形成具有弯曲路径的减振通道244。当扬声器本体22振动时,振动产生的气流经过导声通道241进入开放声腔的过程中,在减振通道244内产生多次变向与反射,同时减振通道244本身也可吸收其内空气振动的能量,相结合地起到了使减振通道244内空气振动传播的气流能量衰减的作用,从而减弱了传递至开放声腔的声音振动能量,减轻壳体100的振动。
本申请实施例中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例各实施例技术方案的范围。

Claims (15)

  1. 一种扬声器模组,安装在电子设备的壳体内,其特征在于,包括扬声器外壳、位于所述扬声器外壳内部的扬声器本体和位于所述扬声器外壳外部的声谐振器;
    所述扬声器本体用于振动发声,所述扬声器本体将所述扬声器外壳分隔成互不连通的前腔和后腔,所述前腔通过出声孔和所述壳体的外部连通,所述后腔通过导声通道和所述壳体的内部连通以使所述壳体的内部形成开放声腔,所述扬声器模组的振动带动所述电子设备的壳体振动,所述声谐振器位于所述开放声腔内,且所述声谐振器的谐振频率处于所述壳体的振动频率的范围内。
  2. 根据权利要求1所述的扬声器模组,其特征在于,所述声谐振器的谐振频率和所述壳体的最大振幅对应的频率一致。
  3. 根据权利要求1或2所述的扬声器模组,其特征在于,所述声谐振器包括第一腔体和第二腔体,所述第一腔体和所述第二腔体连通,所述第二腔体通过开孔和外部连通,所述第一腔体的体积大于所述第二腔体的体积,所述第一腔体的内径尺寸大于所述第二腔体的内径尺寸。
  4. 根据权利要求3所述的扬声器模组,其特征在于,所述声谐振器包括谐振器外壳,所述谐振器外壳内部开设有所述第一腔体和所述第二腔体,所述谐振器外壳固定连接在所述壳体内壁上。
  5. 根据权利要求4所述的扬声器模组,其特征在于,所述谐振器外壳采用一体注塑成型。
  6. 根据权利要求3所述的扬声器模组,其特征在于,所述声谐振器包括谐振器外壳,所述谐振器外壳内部开设有所述第一腔体和所述第二腔体,所述谐振器外壳和所述扬声器外壳一体成型。
  7. 根据权利要求3所述的扬声器模组,其特征在于,所述壳体内还设置有多个电子器件,所述扬声器外壳、所述壳体内壁及所述电子器件中的任意多个,围设成具有所述第一腔体和所述第二腔体的声谐振器。
  8. 根据权利要求7所述的扬声器模组,其特征在于,所述声谐振器包括密封件,所述密封件围设成所述第一腔体和所述第二腔体的轮廓,所述密封件夹设在所述扬声器外壳、所述壳体内壁及所述电子器件中的任意两个之间,以形成具有所述第一腔体和所述第二腔体的声谐振器。
  9. 根据权利要求8所述的扬声器模组,其特征在于,所述密封件为泡棉或橡胶条。
  10. 根据权利要求3-9任一项所述的扬声器模组,其特征在于,所述声谐振器的开孔和所述导声通道相对设置或相邻设置。
  11. 根据权利要求1-10任一项所述的扬声器模组,其特征在于,所述声谐振器的数量为至少两个。
  12. 根据权利要求11所述的扬声器模组,其特征在于,至少两个所述声谐振器串联设置;或者,至少两个所述声谐振器并联设置。
  13. 根据权利要求1-12任一项所述的扬声器模组,其特征在于,所述导声通道内填充有吸音材料。
  14. 根据权利要求1-12任一项所述的扬声器模组,其特征在于,所述导声通道内设置 有多个隔板,多个所述隔板分别自所述导声通道两侧的内壁面相向延伸,形成具有弯曲路径的减振通道。
  15. 一种电子设备,其特征在于,包括壳体和安装在所述壳体内的如权利要求1-14任一项所述的扬声器模组,所述壳体上开设有扬声孔,所述出声孔和所述扬声孔连通。
PCT/CN2021/085807 2020-04-30 2021-04-07 扬声器模组及电子设备 WO2021218581A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010361730.XA CN113596672B (zh) 2020-04-30 2020-04-30 扬声器模组及电子设备
CN202010361730.X 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021218581A1 true WO2021218581A1 (zh) 2021-11-04

Family

ID=78237106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085807 WO2021218581A1 (zh) 2020-04-30 2021-04-07 扬声器模组及电子设备

Country Status (2)

Country Link
CN (1) CN113596672B (zh)
WO (1) WO2021218581A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116668924A (zh) * 2023-07-26 2023-08-29 荣耀终端有限公司 一种电子设备
CN116684507A (zh) * 2022-09-29 2023-09-01 荣耀终端有限公司 电子设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116420357A (zh) * 2020-11-06 2023-07-11 三星电子株式会社 包括扬声器模块的电子装置
CN114697802A (zh) * 2022-03-31 2022-07-01 苏州三星电子电脑有限公司 扬声器及具有扬声器的笔记本电脑
CN114979891A (zh) * 2022-05-24 2022-08-30 维沃移动通信有限公司 吸振装置及电子设备
CN115580811A (zh) * 2022-09-30 2023-01-06 镇江贝斯特新材料股份有限公司 低共振结构及电子设备
WO2024087168A1 (zh) * 2022-10-28 2024-05-02 深圳市韶音科技有限公司 扬声器
CN116761122B (zh) * 2023-08-15 2024-05-17 荣耀终端有限公司 扬声器模组及电子设备
CN116761123B (zh) * 2023-08-22 2023-12-12 荣耀终端有限公司 扬声器模组及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064805A (zh) * 2006-04-28 2007-10-31 株式会社东芝 内置硬盘的电视机
US7578368B2 (en) * 2007-03-07 2009-08-25 Foxconn Technology Co., Ltd. Speaker set for electronic product
CN207070330U (zh) * 2017-06-26 2018-03-02 歌尔科技有限公司 扬声器模组以及电子设备
CN209299516U (zh) * 2019-01-17 2019-08-23 歌尔科技有限公司 一种扬声器模组及电子设备
CN110248275A (zh) * 2019-06-06 2019-09-17 华勤通讯技术有限公司 半扬声器模组及电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1481086A (fr) * 1966-01-31 1967-05-19 Enceinte acoustique du type des résonateurs de helmholtz
DE4424995A1 (de) * 1994-07-15 1996-01-18 Nokia Deutschland Gmbh Gehäuse für Baßlautsprecher
FR2934738B1 (fr) * 2008-08-04 2011-07-29 Sagem Comm Combine telephonique sans fil ayant une chaine electroacoustique a large bande passante.
CN101765037A (zh) * 2009-12-25 2010-06-30 国光电器股份有限公司 带有声学陷波器的音箱及其吸收中频驻波的方法
CN203851284U (zh) * 2013-12-25 2014-09-24 歌尔声学股份有限公司 扬声器模组及其包含该扬声器模组的电子装置
CN104754454B (zh) * 2015-03-25 2019-03-26 歌尔股份有限公司 扬声器模组
CN206602648U (zh) * 2017-03-03 2017-10-31 瑞声科技(新加坡)有限公司 扬声器模组
CN107360517A (zh) * 2017-07-04 2017-11-17 瑞声科技(新加坡)有限公司 扬声器箱
US11265645B2 (en) * 2018-09-24 2022-03-01 Apple Inc. Acoustic chambers damped with side-branch resonators, and related systems and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064805A (zh) * 2006-04-28 2007-10-31 株式会社东芝 内置硬盘的电视机
US7578368B2 (en) * 2007-03-07 2009-08-25 Foxconn Technology Co., Ltd. Speaker set for electronic product
CN207070330U (zh) * 2017-06-26 2018-03-02 歌尔科技有限公司 扬声器模组以及电子设备
CN209299516U (zh) * 2019-01-17 2019-08-23 歌尔科技有限公司 一种扬声器模组及电子设备
CN110248275A (zh) * 2019-06-06 2019-09-17 华勤通讯技术有限公司 半扬声器模组及电子设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116684507A (zh) * 2022-09-29 2023-09-01 荣耀终端有限公司 电子设备
CN116684507B (zh) * 2022-09-29 2024-03-15 荣耀终端有限公司 电子设备
CN116668924A (zh) * 2023-07-26 2023-08-29 荣耀终端有限公司 一种电子设备
CN116668924B (zh) * 2023-07-26 2023-11-14 荣耀终端有限公司 一种电子设备

Also Published As

Publication number Publication date
CN113596672A (zh) 2021-11-02
CN113596672B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2021218581A1 (zh) 扬声器模组及电子设备
US10225646B2 (en) Speaker box
CN203574855U (zh) 扬声器模组
US10334354B2 (en) Speaker box
US10469953B2 (en) Speaker box
TWI244303B (en) Resonation chambers within a cell phone
WO2022089032A1 (zh) 一种扬声器模组和电子设备
CN109874067A (zh) 扬声器箱
US11317195B2 (en) Miniature loudspeaker module
JP2022532103A (ja) スピーカ及び端末機器
EP4024900A1 (en) Sound producing device and electronic equipment
WO2021052308A1 (zh) 移动终端
US20110158448A1 (en) Speakerbox
CN207304902U (zh) 扬声器模组以及电子设备
CN205040024U (zh) 双向微型扬声器
JP7318095B1 (ja) スピーカ装置及び電子機器
CN216057474U (zh) 扬声器装置及电子设备
CN207124749U (zh) 扬声器模组以及电子设备
CN115314816A (zh) 一种扬声器以及电子设备
CN113676581A (zh) 发声器件及电子设备
CN220043656U (zh) 扬声器模组和电子设备
JP7371216B1 (ja) スピーカ及び電子機器
CN113923288B (zh) 电子设备
CN213661902U (zh) 电子设备
CN211670953U (zh) 一种发声装置模组和电子产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797774

Country of ref document: EP

Kind code of ref document: A1