WO2021217700A1 - 显示面板及其制作方法、显示终端 - Google Patents

显示面板及其制作方法、显示终端 Download PDF

Info

Publication number
WO2021217700A1
WO2021217700A1 PCT/CN2020/089359 CN2020089359W WO2021217700A1 WO 2021217700 A1 WO2021217700 A1 WO 2021217700A1 CN 2020089359 W CN2020089359 W CN 2020089359W WO 2021217700 A1 WO2021217700 A1 WO 2021217700A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
display panel
wedge
layer
substrate material
Prior art date
Application number
PCT/CN2020/089359
Other languages
English (en)
French (fr)
Inventor
李林霜
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/771,349 priority Critical patent/US11539009B2/en
Publication of WO2021217700A1 publication Critical patent/WO2021217700A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate

Definitions

  • the present invention relates to the field of display technology, in particular to a display panel, a manufacturing method thereof, and a display terminal.
  • a flexible material is usually coated on a rigid glass substrate to form a flexible substrate, and then thin film transistors are prepared on the flexible substrate. Display device layer and packaging layer and other film layers, and finally separate the glass substrate from the flexible substrate through a peeling process.
  • the lower flexible substrate can be used to protect the upper flexible substrate from damage
  • the interface inertness between the upper and lower flexible substrates makes the upper and lower flexible substrates
  • the adhesion force of the display panel has the risk of being reduced in the repeated high and low temperature support process of the display panel, causing the upper flexible substrate and the lower flexible substrate to separate or even fall off, which seriously affects the process stability of the display panel and the yield of the subsequent peeling process.
  • the existing display panel has the inert interface between the upper and lower flexible substrates, which causes the upper flexible substrate and the lower flexible substrate to separate or even fall off, which seriously affects the process stability of the display panel and the subsequent peeling process.
  • the yield problem Therefore, it is necessary to provide a display panel, a manufacturing method thereof, and a display terminal to improve this defect.
  • the embodiments of the present disclosure provide a display panel, a manufacturing method thereof, and a display terminal, which are used to solve the problem of the existing display panel due to the inertia of the interface between the upper and lower flexible substrates causing the occurrence of the upper flexible substrate and the lower flexible substrate.
  • the separation or even peeling seriously affects the process stability of the display panel and the yield of the subsequent peeling process.
  • the embodiments of the present disclosure provide a display panel, including:
  • the thin film transistor array layer is arranged on the base substrate.
  • the display device layer is arranged on the side of the thin film transistor array layer away from the base substrate;
  • the base substrate includes a first substrate, a semi-interpenetrating network structure layer, and a second substrate that are stacked, and the semi-interpenetrating network structure layer is made of the material of the first substrate in a partially cured state. It is formed after interpenetrating with the uncured second substrate material coated on the surface of the first substrate material and curing.
  • a plurality of wedge-shaped structures arranged in an array are provided on the side of the first substrate close to the second substrate, and the end of the wedge-shaped structure away from the first substrate is embedded in Inside the second substrate.
  • the cross-sectional shape of the wedge structure is a trapezoid or an inverted trapezoid.
  • the plurality of wedge structures includes at least two wedge structures with different heights, and the wedge structures with different heights are spaced between the wedge structures with the same height.
  • the wedge-shaped structure is a single-layer structure formed of silicon nitride or silicon oxide material, or a laminated structure formed of silicon nitride and silicon oxide material.
  • the materials of the first substrate and the second substrate both include yellow polyimide.
  • the embodiment of the present disclosure provides a display terminal, including a terminal body and a display panel, the display panel is disposed on the terminal body, and the display panel includes:
  • the thin film transistor array layer is arranged on the base substrate.
  • the display device layer is arranged on the side of the thin film transistor array layer away from the base substrate;
  • the base substrate includes a first substrate, a semi-interpenetrating network structure layer, and a second substrate that are stacked, and the semi-interpenetrating network structure layer is made of the material of the first substrate in a partially cured state. It is formed after interpenetrating with the uncured second substrate material coated on the surface of the first substrate material and curing.
  • a plurality of wedge-shaped structures arranged in an array are provided on the side of the first substrate close to the second substrate, and the end of the wedge-shaped structure away from the first substrate is embedded in Inside the second substrate.
  • the cross-sectional shape of the wedge structure is a trapezoid or an inverted trapezoid.
  • the plurality of wedge structures includes at least two wedge structures with different heights, and the wedge structures with different heights are spaced between the wedge structures with the same height.
  • the wedge-shaped structure is a single-layer structure formed of silicon nitride or silicon oxide material, or a laminated structure formed of silicon nitride and silicon oxide material.
  • the materials of the first substrate and the second substrate both include yellow polyimide.
  • the embodiment of the present disclosure also provides a manufacturing method of a display panel, including:
  • the manufacturing method further includes:
  • the second substrate material Before coating the second substrate material, deposit an inorganic material on the surface of the first substrate material in a partially cured state, and perform yellow light and etching processes on the inorganic material to form a plurality of arrays arranged Wedge structure.
  • the manufacturing method further includes:
  • the glass substrate and the first substrate are peeled off.
  • both the first substrate material and the second substrate material include a yellow polyamic acid solution.
  • the solid content of the first substrate material is between 8 wt% and 15 wt%, and the viscosity of the first substrate material is between 8000 cP and 15000 cP.
  • the temperature during the process of heating the first substrate material to remove the solvent in the first substrate material is lower than 120°C, and the first substrate material is heated to make the first substrate material
  • the temperature during the partial curing of a substrate material is lower than 250°C.
  • the inorganic material includes silicon nitride or silicon oxide
  • the wedge structure is a single-layer structure formed of silicon nitride or silicon oxide material.
  • the inorganic material includes silicon nitride and silicon oxide
  • the wedge structure is a laminated structure formed by silicon nitride and silicon oxide materials.
  • a semi-interpenetrating network structure layer is formed between the first substrate and the second substrate, and a plurality of wedge-shaped structures arranged in an array are arranged between the first substrate and the second substrate.
  • FIG. 1 is a schematic plan view of a display panel provided by the present disclosure
  • FIG. 2 is a schematic diagram of the cross-sectional structure of the display panel along the A-A direction in FIG. 1 of the disclosed embodiment
  • FIG. 3 is a schematic cross-sectional structure diagram of another display panel along the direction A-A in FIG. 1 according to an embodiment of the disclosure
  • FIG. 4 is a schematic structural diagram of a display terminal provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic flowchart of a method for manufacturing a display panel provided by an embodiment of the disclosure.
  • FIG. 1 is a schematic plan view of a display panel 1 provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional structure view of the display panel 1 along the AA direction in FIG.
  • the display panel 1 provided by the embodiment of the present disclosure is an organic light emitting diode display panel with a top-emitting structure.
  • the thin film transistor array layer 12 is provided with a plurality of thin film transistors arranged in an array, and a plurality of scan lines and data signal lines.
  • the display device layer 13 includes an anode, a light-emitting layer, and a cathode that are stacked and arranged.
  • the above-mentioned structure is the same as that of a flexible organic light-emitting diode display panel in the prior art, and will not be repeated here.
  • the display panel 1 may also be a micro light emitting diode (Micro LED) display panel, the structure of which is substantially the same as the organic light emitting diode display panel provided by the embodiments of the present disclosure. The difference lies in the display
  • the device layer 13 should include a plurality of micro light emitting diode devices arranged in an array.
  • the display panel 1 may also be a liquid crystal display panel or other flexible and transparent display devices.
  • the display device layer 13 should be sub-pixel electrodes arranged in an array.
  • the display panel 1 The color filter substrate and the liquid crystal layer should also be included.
  • the structure of the base substrate 10 provided in the embodiment of the present disclosure is also applicable, and there is no limitation here.
  • the base substrate 10 is a two-layer substrate structure, including a first substrate 101 and a second substrate 102 that are stacked and formed between the first substrate 101 and the second substrate 102.
  • the semi-interpenetrating network structure layer 103 The material of the first substrate 101 penetrates and exchanges with the material of the uncured second substrate 102 coated on the surface of the first substrate 101 in a partially cured state, and then forms a semi-interpenetrating network after being completely cured The structure of the semi-interpenetrating network structure layer 103.
  • the semi-interpenetrating network structure in the semi-interpenetrating network structure layer 103 can increase the bonding strength between the first substrate 101 and the second substrate 102, and reduce the bonding strength between the first substrate 101 and the second substrate 102.
  • the interface is inert, thereby reducing the risk of separation or even falling off between the first substrate 101 and the second substrate 102 of the display panel 1 in the subsequent process or during the bending process.
  • the base substrate 10 of the double-layer substrate structure The yield rate of separating the base substrate 10 from the glass substrate in the peeling process can also be improved.
  • the materials of the first substrate 101 and the second substrate 102 are both yellow polyimide, and yellow polyimide has good thermal properties, its expansion coefficient is small, and the thermal decomposition temperature is high. Using it as the material of the first substrate 101 and the second substrate 102 can improve the stability of the process that requires high-temperature heating to form the semi-interpenetrating network structure layer 103 and the subsequent process of the display panel.
  • the thickness of the first substrate 101 is 8 ⁇ m, and the thickness of the second substrate 102 is 5 ⁇ m, so as to ensure the protection function of the first substrate 101 while taking into account the first substrate 101 And the second substrate 102 has good flexibility characteristics.
  • the thickness of the first substrate 101 may also be 15 ⁇ m, and the thickness of the second substrate 102 may be 7 ⁇ m, which can also achieve good protection and flexibility characteristics.
  • the thickness of the first substrate 101 should be between 8 and 20 ⁇ m, and the thickness of the second substrate 102 should be between 5 and 8 ⁇ m.
  • the specific thickness can be set according to actual requirements, and there is no limitation here. .
  • FIG. 3 is a schematic cross-sectional structure diagram of another display panel provided by the embodiment of the present disclosure along the direction A-A in FIG. 1.
  • the structure of the display panel provided by the embodiment of the present disclosure is substantially the same as the display panel provided by the foregoing embodiment. The difference is that in the embodiment of the present disclosure, the first substrate 101 is provided on the side close to the second substrate 102 A plurality of wedge-shaped structures 15 arranged in an array.
  • the wedge structure 15 is further used to increase the bonding strength between the first substrate 101 and the second substrate 102, and reduce the bond strength between the first substrate 101 and the second substrate 102.
  • the interface is inert, thereby further reducing the risk of separation or even falling off between the first substrate 101 and the second substrate 102.
  • the cross-sectional shape of the wedge-shaped structure 15 along the AA direction is a trapezoid, thereby increasing the contact area of the wedge-shaped structure 15 with the second substrate 102 and the semi-interpenetrating network structure layer 103, thereby increasing the contact area with
  • the bonding strength between the semi-interpenetrating network structure layer 103 and the second substrate 102 reduces the inertia of the interface between the first substrate 101 and the second substrate 102.
  • the cross-sectional shape of the wedge-shaped structure 15 along the AA direction can also be an inverted trapezoid, rectangular or other arbitrary polygonal structure, which can achieve the same or similar technical effects as the above-mentioned structure, and there is no limitation here. .
  • the wedge-shaped structure 15 may be a single-layer structure formed by silicon nitride or silicon oxide materials, or may also be a stacked-layer structure formed by superimposing silicon nitride and silicon oxide materials.
  • the material of the wedge structure 15 is not limited to silicon nitride and silicon oxide, and can also be other inorganic materials, which is not limited here.
  • the heights of a plurality of the wedge-shaped structures 15 are uniform, so as to reduce the difficulty of the yellow light and the etching process for forming the wedge-shaped structure 15.
  • the plurality of wedge-shaped structures 15 includes at least two wedge-shaped structures with different heights, and adjacent wedge-shaped structures with the same height are spaced apart with wedge-shaped structures with different heights to further increase the first The bonding strength between the substrate 101 and the second substrate 102 is reduced, and the inertia of the interface between the first substrate 101 and the second substrate 102 is reduced.
  • the wedge-shaped structure 15 is composed of a main wedge-shaped structure 151 and a secondary wedge-shaped structure 152 with different heights, wherein the height of the main wedge-shaped structure 151 is greater than the height of the secondary wedge-shaped structure 152, and is adjacent to each other.
  • a secondary wedge structure 152 is arranged between the main wedge structures 151, so that a plurality of wedge structures with different heights are staggered and arranged on the first substrate 101 at intervals, and the other end is embedded in the second substrate 102 , Thereby further increasing the bonding strength between the first substrate 101 and the second substrate 102, and reducing the inertia of the interface between the first substrate 101 and the second substrate 102.
  • the height of the wedge structure 15 should be between 2000 ⁇ and 6000 ⁇ , and the height of the main wedge structure 151 is 1000 ⁇ higher than the height of the secondary wedge structure 152.
  • the specific value can be set according to actual needs. There are no restrictions.
  • the display panel provided by the embodiments of the present disclosure forms a semi-interpenetrating network structure layer between the first substrate and the second substrate, and between the first substrate and the second substrate
  • a plurality of wedge-shaped structures arranged in an array are provided to increase the bonding strength between the first substrate and the second substrate, and reduce the inertness of the interface between the first substrate and the second substrate and the difference between the two substrates. There is a risk of separation or even falling off, and at the same time, the separation yield of the glass substrate and the first substrate in the peeling process can be improved.
  • FIG. 4 is a schematic structural diagram of the display terminal provided by the embodiment of the present disclosure.
  • the display terminal 3 includes a terminal body 2 and a display panel 1.
  • the display panel 1 is installed on the terminal body 2.
  • the terminal body 2 and the display panel 1 may be combined into one body, and the display panel 1 is the display panel provided in the above-mentioned embodiment.
  • the display terminal 3 provided in the embodiment of the present disclosure can achieve the same technical effect as the display panel 1 provided in the above-mentioned embodiment, and will not be repeated here.
  • FIG. 5 is a schematic flowchart of a manufacturing method of a display panel provided by an embodiment of the disclosure, and the manufacturing method includes:
  • Step S1 Provide a glass substrate 16 as shown in 5a in FIG. 5, and coat a layer of the first substrate material YPA1 on the surface of the glass substrate 16;
  • Step S2 Heat the first substrate material YPA1 to remove the solvent in the first substrate material YPA1, and heat the first substrate material YPA1 again to make part of the first substrate material YPA1 Curing
  • Step S3 Coating a second substrate material on the surface of the first substrate material YPA1 in a partially cured state, the side of the first substrate material YPA1 close to the second substrate material and the second substrate material Mutual penetration and exchange;
  • Step S4 As shown in 5c in FIG. 5, the second substrate material is heated to remove the solvent in the second substrate material, and the first material YPA1 and the second substrate material are heated again until they are completely cured to form The first substrate 101, the semi-interpenetrating network structure layer 103 and the second substrate 102.
  • Step S5 as shown in 5d in FIG. 5, a barrier layer 11, a thin film transistor array layer 12, a display device layer 13, and an encapsulation layer 14 are sequentially formed on the side of the second substrate 102 away from the first substrate 101; and
  • Step S6 As shown in 5e in FIG. 5, the glass substrate 16 and the first substrate 101 are peeled off by a laser peeling process.
  • the first substrate material YPA1 is a yellow polyamic acid solution
  • the yellow polyamic acid solution is a copolymerized polyamic acid solution, which is synthesized at a low temperature in a polar aprotic solvent.
  • the polar aprotic solvent may be one of nitromethylpyrrolidone (NMP), dimethylformamide (DMF), or dimethylacetamide (DMAC).
  • the solid content of the first substrate material YPA1 is 10 wt%, so that the viscosity of the first substrate material YPA1 is moderate, and the convenience and uniformity of the coating of the first substrate material YPA1 are ensured.
  • the solid content of the first backing material YPA1 should be between 8wt% and 15wt%, so that the viscosity of the first backing material YPA1 is between 8000cP and 15000cP, so as to ensure that the first backing material
  • the specific values can be set according to actual needs, and there is no restriction here.
  • step S2 the temperature at which the first substrate material YPA1 is heated for the first time to remove the solvent in its solution is 100°C, and the temperature at which the first substrate material YPA1 is pre-cured during the second heating is 230°C, In this way, it is prevented that the solvent removal and pre-curing temperature is too high to cause the first substrate material YPA1 to remove the solvent too quickly, resulting in too many holes in the first substrate 101, which is not conducive to the subsequent formation of the semi-interpenetrating network structure layer 103.
  • the temperature of the first heating for solvent removal should be lower than 120°C, and the temperature of the second heating for pre-curing should be lower than 250°C to ensure the pre-curing requirement of the first substrate material YPA1.
  • the temperature of the first heating for solvent removal should be lower than 120°C
  • the temperature of the second heating for pre-curing should be lower than 250°C to ensure the pre-curing requirement of the first substrate material YPA1.
  • the curing degree of the first substrate material YPA1 in a partially cured state is 60%, so as to avoid the curing degree of the first substrate material YPA1 being too high, causing the first substrate material YPA1 to harden, thereby failing to form a semi-interconnected material. Pierce the network structure layer 103.
  • the curing degree of the first substrate material YPA1 can also be between 50% and 70% to meet the requirements of the subsequent manufacturing process. In actual applications, it can be set according to actual requirements. Do restrictions.
  • the remaining solvent content in the first substrate material YPA1 in a partially cured state in step S2 should be less than 30wt%, which is beneficial to the subsequent formation of the semi-interpenetrating network structure layer.
  • the movement of the molecular surface of the material in the second substrate material allows the amic acid in the partially solidified first substrate material YPA1 and the second substrate material to penetrate and exchange better, thereby further increasing the first substrate material.
  • the second substrate material is a yellow polyamic acid solution
  • the yellow polyamic acid solution is a copolymerized polyamic acid solution
  • the first substrate material YPA1 and The second substrate material is the same copolymerized polyamic acid solution.
  • the first substrate material YPA1 and the second substrate material may also be different types of copolymerized polyamic acid solutions, which are not limited here.
  • step S4 the conditions for removing the solvent in the second substrate material by heating for the first time are the same as the conditions for removing the solvent in step S2.
  • the temperature of heating the first substrate material YPA1 and the second substrate material should be greater than 400 °C, and the thermal expansion coefficient of the first substrate material YPA1 and the second substrate material should be less than 10ppm/°C, so that the first substrate material YPA1 and the second substrate material are cured completely through thermal imidization, thus forming The first substrate 101, the semi-interpenetrating network structure layer 103 and the second substrate 102.
  • the bonding strength between the first substrate 101 and the glass substrate 16 thus formed should be greater than 6N/cm, and the bonding strength between the semi-interpenetrating network structure layer 103 and the first substrate 101 and the second substrate 102 should be greater than 6N/cm. Greater than 8N/cm.
  • the film forming temperature of the barrier layer 11 is 280° C., and the barrier layer 11 is mainly used to prevent water vapor and oxygen from intruding into the thin film transistor array layer 12.
  • the film forming temperature of the barrier layer 11 only needs to be lower than 300° C., and the specific value can be set according to actual requirements, and there is no limitation here.
  • the highest temperature of the process for forming the thin film transistor array layer 12 should be 350°C, so that the gap between the first substrate 101 and the glass substrate 16, and the first substrate 101 and the second substrate are maintained during the process. The bond strength between 102 remains unchanged.
  • the display panel manufactured by the embodiments of the present disclosure is an organic light emitting diode display panel with a top-emitting structure, and the display device layer 13 includes an anode, a light-emitting layer, and a cathode that are stacked.
  • the display device layer 13 can also be a plurality of micro light emitting diode (Micro LED) devices arranged in an array. Therefore, the embodiments of the present disclosure can also be applied to Micro LED displays. Panel production.
  • the manufacturing method of the display panel provided in the embodiments of the present disclosure is also applicable, and will not be repeated here.
  • the manufacturing method further includes:
  • step S3 before step S3 is applied to the second substrate material, an inorganic material is deposited on the surface of the first substrate material YPA1 in a partially cured state by chemical vapor deposition, and the The inorganic material undergoes yellow light and etching processes to form a plurality of wedge-shaped structures 15 arranged in an array.
  • the second substrate material is then coated, so that the end of the first substrate 101 far away from the wedge structure 15 is embedded in the second substrate 102, thereby further increasing the first substrate 101 and the second substrate 101.
  • the bonding strength between the two substrates 102 and the inertness of the interface between the first substrate 101 and the second substrate 102 are reduced.
  • the plurality of wedge-shaped structures 15 may be a single-layer structure formed by silicon nitride or silicon oxide materials, or may also be a stacked-layer structure formed by superimposing silicon nitride and silicon oxide materials.
  • the material of the inorganic material is not limited to silicon nitride and silicon oxide, and can also be other inorganic materials, which is not limited here.
  • the method for manufacturing the display panel provided by the embodiments of the present disclosure is to form a semi-interpenetrating network structure layer between a first substrate and a second substrate, and A plurality of wedge-shaped structures arranged in an array are arranged between the bottoms to improve the bonding strength between the first substrate and the second substrate, and reduce the inertness of the interface between the first substrate and the second substrate and the two layers
  • the risk of separation or even falling off between the substrates can also increase the yield of the separation of the glass substrate and the first substrate in the laser lift-off process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(1)及其制作方法、显示终端(3),显示面板(1)包括衬底基板(10),衬底基板(10)包括第一衬底(101)、半互穿网络结构层(103)和第二衬底(102),半互穿网络结构层(103)由第一衬底(101)的材料在部分固化状态下与未固化的第二衬底(102)的材料相互渗透并固化后形成,提高两层衬底之间的黏结强度,降低界面惰性,从而提高玻璃基板(16)与第一衬底(101)分离的良率。

Description

显示面板及其制作方法、显示终端 技术领域
本发明涉及显示技术领域,尤其涉及一种显示面板及其制作方法、显示终端。
背景技术
现有技术中对于柔性有机发光二极管(organic light emitting diode, OLED)显示面板的工艺制程,通常是将柔性材料涂布在刚性玻璃基板上形成柔性衬底,然后在柔性衬底上制备薄膜晶体管、显示器件层和封装层等膜层,最后通过剥离工艺将玻璃基板与柔性衬底分离。
技术问题
目前常用的柔性衬底有单层柔性衬底和双层柔性衬底。对于单层柔性衬底结构的显示面板,在将玻璃基板与柔性衬底剥离过程中,由于玻璃基板表面或者玻璃基板与柔性衬底交界面处颗粒的存在,使得柔性衬底受到损坏,导致显示面板破片严重,降低剥离工艺的良率。对于双层柔性衬底结构的显示面板,虽然可以利用下层柔性衬底来保护上层柔性衬底免受损坏,但是由于上下层柔性衬底之间存在界面惰性,使得上下两层柔性衬底之间的附着力在显示面板反复的高低温支持工艺中有降低的风险,导致上层柔性衬底与下层柔性衬底发生分离甚至脱落,严重影响显示面板的制程稳定性以及后续剥离工艺的良率。
综上所述,现有显示面板存在由于上下两层柔性衬底之间存在的界面惰性导致上层柔性衬底与下层柔性衬底发生分离甚至脱落,严重影响显示面板的制程稳定性以及后续剥离工艺的良率的问题。故,有必要提供一种显示面板及其制作方法、显示终端来改善这一缺陷。
技术解决方案
本揭示实施例提供一种显示面板及其制作方法、显示终端,用于解决现有显示面板存在的由于上下两层柔性衬底之间存在的界面惰性导致上层柔性衬底与下层柔性衬底发生分离甚至脱落,严重影响显示面板的制程稳定性以及后续剥离工艺的良率的问题。
本揭示实施例提供一种显示面板,包括:
衬底基板;
薄膜晶体管阵列层,设置于所述衬底基板上;以及
显示器件层,设置于所述薄膜晶体管阵列层远离所述衬底基板的一侧;
其中,所述衬底基板包括层叠设置的第一衬底、半互穿网络结构层和第二衬底,所述半互穿网络结构层由所述第一衬底的材料在部分固化状态下与涂布在所述第一衬底材料表面的未固化的所述第二衬底的材料相互渗透并经固化后形成。
根据本揭示一实施例,所述第一衬底靠近所述第二衬底的一侧上设有阵列排布的多个楔形结构,所述楔形结构远离所述第一衬底的一端嵌入至所述第二衬底内。
根据本揭示一实施例,所述楔形结构的截面形状为梯形或者倒置梯形。
根据本揭示一实施例,多个所述楔形结构中包括至少两种不同高度的楔形结构,并且高度相同的所述楔形结构之间间隔设有不同高度的所述楔形结构。
根据本揭示一实施例,所述楔形结构为氮化硅或氧化硅材料形成的单层结构,或者为氮化硅和氧化硅材料形成的叠层结构。
根据本揭示一实施例,所述第一衬底和所述第二衬底的材料均包括黄色聚酰亚胺。
本揭示实施例提供一种显示终端,包括终端主体和显示面板,所述显示面板设置于所述终端主体上,所述显示面板包括:
衬底基板;
薄膜晶体管阵列层,设置于所述衬底基板上;以及
显示器件层,设置于所述薄膜晶体管阵列层远离所述衬底基板的一侧;
其中,所述衬底基板包括层叠设置的第一衬底、半互穿网络结构层和第二衬底,所述半互穿网络结构层由所述第一衬底的材料在部分固化状态下与涂布在所述第一衬底材料表面的未固化的所述第二衬底的材料相互渗透并经固化后形成。
根据本揭示一实施例,所述第一衬底靠近所述第二衬底的一侧上设有阵列排布的多个楔形结构,所述楔形结构远离所述第一衬底的一端嵌入至所述第二衬底内。
根据本揭示一实施例,所述楔形结构的截面形状为梯形或者倒置梯形。
根据本揭示一实施例,多个所述楔形结构中包括至少两种不同高度的楔形结构,并且高度相同的所述楔形结构之间间隔设有不同高度的所述楔形结构。
根据本揭示一实施例,所述楔形结构为氮化硅或氧化硅材料形成的单层结构,或者为氮化硅和氧化硅材料形成的叠层结构。
根据本揭示一实施例,所述第一衬底和所述第二衬底的材料均包括黄色聚酰亚胺。
本揭示实施例还提供一种显示面板的制作方法,包括:
提供玻璃基板,在所述玻璃基板表面涂布一层第一衬底材料;
加热所述第一衬底材料,以去除所述第一衬底材料中的溶剂,并再次加热所述第一衬底材料,以使所述第一衬底材料部分固化;
在呈部分固化状态的所述第一衬底材表面涂布第二衬底材材料,所述第一衬底材料靠近所述第二衬底材料的一侧与所述第二衬底材料之间相互渗透并发生交换;以及
加热所述第二衬底材料,以去除所述第二衬底材料中的溶剂,并再次加热直至所述第一衬底材料和所述第二衬底材料完全固化,形成第一衬底、半互穿网络结构层和第二衬底。
根据本揭示一实施例,所述制作方法还包括:
涂布所述第二衬底材料前,在呈部分固化状态的所述第一衬底材料表面沉积无机材料,并对所述无机材料进行黄光以及刻蚀工艺,形成阵列排布的多个楔形结构。
根据本揭示一实施例,所述制作方法还包括:
在所述第二衬底远离所述第一衬底的一侧上依次形成阻隔层、薄膜晶体管阵列层、显示器件层以及封装层;以及
将所述玻璃基板与所述第一衬底剥离。
根据本揭示一实施例,所述第一衬底材料和所述第二衬底材料均包括黄色聚酰胺酸溶液。
根据本揭示一实施例,所述第一衬底材料的固含量介于8wt%~15wt%之间,所述第一衬底材料的黏度介于8000cP至15000cP之间。
根据本揭示一实施例,加热所述第一衬底材料以去除所述第一衬底材料中的溶剂的过程中的温度低于120℃,加热所述第一衬底材料以使所述第一衬底材料部分固化的过程中的温度低于250℃。
根据本揭示一实施例,所述无机材料包括氮化硅或者氧化硅,所述楔形结构为氮化硅或者氧化硅材料形成的单层结构。
根据本揭示一实施例,所述无机材料包括氮化硅和氧化硅,所述楔形结构为氮化硅和氧化硅材料所形成的叠层结构。
有益效果
本揭示实施例通过在第一衬底与第二衬底之间形成半互穿网络结构层,并且在第一衬底与第二衬底之间设置阵列排布的多个楔形结构,以此提高第一衬底与第二衬底之间的黏结强度,降低第一衬底与第二衬底的之间的界面惰性以及两层衬底之间分离甚至脱落的风险,同时还可以提高剥离工艺的玻璃基板与第一衬底分离的良率。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是揭示的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本揭示提供的显示面板的平面示意图;
图2为本揭示实施例图1中显示面板沿A-A方向的截面结构示意图;
图3为本揭示实施例提供的另一种显示面板沿图1中A-A方向的截面结构示意图;
图4为本揭示实施例提供的显示终端的结构示意图;
图5为本揭示实施例提供的显示面板制作方法的流程示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本揭示可用以实施的特定实施例。本揭示所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示,而非用以限制本揭示。在图中,结构相似的单元是用以相同标号表示。
下面结合附图和具体实施例对本揭示做进一步的说明:
本揭示实施例提供一种显示面板,下面结合图1至图2进行详细说明。如图1和图2所示,图1为本揭示实施例提供的显示面板1的平面示意图,图2为本揭示实施例图1中显示面板1沿A-A方向的截面结构示意图,显示面板100包括衬底基板10、设置于所述衬底基板10上的阻隔层11、设置于所述阻隔层11远离衬底基板10一侧上的薄膜晶体管阵列层12、设置于薄膜晶体管阵列层12远离衬底基板10一侧上的显示器件层13以及覆盖显示器件层13的封装层14。
本揭示实施例所提供的显示面板1为顶发光结构的有机发光二极管显示面板,薄膜晶体管阵列层12内设有阵列排布的多个薄膜晶体管以及多条扫描线以及数据信号线,显示器件层13包括层叠设置的阳极、发光层以及阴极,上述结构与现有技术中柔性有机发光二极管显示面板的结构相同,此处不再赘述。此外,在一些实施例中,显示面板1也可以为微发光二极管(micro light emitting diode, Micro LED)显示面板,其结构与本揭示实施例所提供的有机发光二极管显示面板大致相同,区别在于显示器件层13应包括阵列排布的多个微发光二极管器件。此外,在另一些实施例中,显示面板1也可以为液晶显示面板或者其他多种柔性透明显示装置,对于液晶显示面板,显示器件层13则应为阵列排布的子像素电极,显示面板1还应包括彩膜基板以及液晶层,本揭示实施例所提供的衬底基板10结构也同样适用,此处不做限制。
如图2所示,衬底基板10为双层衬底结构,包括层叠设置的第一衬底101和第二衬底102以及形成与所述第一衬底101和第二衬底102之间的半互穿网络结构层103。第一衬底101的材料在部分固化状态下与涂布在第一衬底101表面的未固化的第二衬底102的材料相互渗透并发生交换,再经过完全固化后形成具有半互穿网络结构的半互穿网络结构层103。半互穿网络结构层103中的半互穿网络结构可增大第一衬底101与第二衬底102之间的黏结强度,并降低第一衬底101与第二衬底102之间的界面惰性,从而降低显示面板1在后续工艺制程或者在弯折过程中的第一衬底101与第二衬底102之间发生分离甚至脱落的风险,同时双层衬底结构的衬底基板10还可以提高剥离工艺中衬底基板10与玻璃基板分离的良率。
在本揭示实施例中,第一衬底101和第二衬底102的材料均为黄色聚酰亚胺,黄色聚酰亚胺具有良好的热学性能,其膨胀系数较小、热分解温度较高,将其作为第一衬底101和第二衬底102的材料,可提高需要经过高温加热形成半互穿网络结构层103的制程以及显示面板后续制程的稳定性。
在本揭示实施例中,所述第一衬底101的厚度为8μm,第二衬底102的厚度为5μm,以此在保证第一衬底101的保护作用的同时,兼顾第一衬底101和第二衬底102良好的柔性特性。在一些实施例中,所述第一衬底101的厚度也可以为15μm,第二衬底102的厚度为7μm,同样可以获得良好的保护作用以及柔性特性。当然,第一衬底101的厚度的应介于8~20μm之间,第二衬底102的厚度应介于5~8μm之间,具体厚度可以根据实际需求进行设定,此处不做限制。
本揭示实施例还提供一种显示面板,如图1和图3所示,图3为本揭示实施例提供的另一种显示面板沿图1中A-A方向的截面结构示意图。本揭示实施例提供的显示面板与上述实施例所提供的显示面板的结构大致相同,区别之处在于,本揭示实施例中,第一衬底101靠近第二衬底102的一侧上设有阵列排布的多个楔形结构15,所述楔形结构105远离第一衬底101的一端穿透所述半互穿网络结构层103并嵌入至所述第二衬底102内,以此在形成有半互穿网络结构层103的基础上,进一步通过楔形结构15提高第一衬底101与第二衬底102之间的黏结强度,并降低第一衬底101与第二衬底102之间的界面惰性,以此进一步降低第一衬底101与第二衬底102之间发生分离甚至脱落的风险。
在本揭示实施例中,所述楔形结构15沿A-A方向的截面形状为梯形,以此增大楔形结构15与第二衬底102以及半互穿网络结构层103的接触面积,从而增大与半互穿网络结构层103以及第二衬底102之间的黏结强度,降低第一彻底101与第二衬底102之间的界面惰性。当然,在一些实施例中,所述楔形结构15沿A-A方向的截面形状也可以为倒置梯形、矩形或者其他任意多边形结构,均可以实现与上述结构相同或者相似的技术效果,此处不做限制。
可选的,所述楔形结构15可以为氮化硅或者氧化硅材料所形成的单层结构,或者也可以为氮化硅和氧化硅材料叠加所形成的叠层结构。当然所述楔形结构15的材料不仅限于氮化硅和氧化硅,同样也可以为其他无机材料,此处不做限制。
可选的,多个所述楔形结构15的高度均一致,以此降低形成楔形结构15的黄光以及刻蚀工艺制程的难度。在一些实施例中,多个楔形结构15中包括至少两种不同高度的楔形结构,并且相邻的高度相同的楔形结构之间间隔设有与其高度不同的楔形结构,以此进一步增大第一衬底101与第二衬底102之间的黏结强度,并降低第一衬底101与第二衬底102之间的界面惰性。
优选的,如图3所示,所述楔形结构15由高度不同的主楔形结构151和次楔形结构152组成,其中主楔形结构151的高度大于所述次楔形结构152的高度,并且相邻两个主楔形结构151之间设有一个次楔形结构152,以此使得高度不同的多个楔形结构相互交错并间隔排布于第一衬底101上,同时另一端嵌入至第二衬底102中,从而进一步增大第一衬底101与第二衬底102之间的黏结强度,并降低第一衬底101与第二衬底102之间的界面惰性。
进一步的,所述楔形结构15的高度应介于2000Å~6000Å之间,并且所述主楔形结构151的高度比次楔形结构152的高度要高1000Å,具体数值可以根据实际需求进行设定,此处不做限制。
本揭示实施例的有益效果:本揭示实施例提供的显示面板通过在第一衬底与第二衬底之间形成半互穿网络结构层,并且在第一衬底与第二衬底之间设置阵列排布的多个楔形结构,以此提高第一衬底与第二衬底之间的黏结强度,降低第一衬底与第二衬底的之间的界面惰性以及两层衬底之间分离甚至脱落的风险,同时还可以提高剥离工艺的玻璃基板与第一衬底分离的良率。
本揭示实施例还提供一种显示终端,如图4所示,图4为本揭示实施例提供的显示终端的结构示意图,所述显示终端3包括终端主体2和显示面板1,所述显示面板1设置于所述终端主体2上。终端主体2与所述显示面板1可结合为一体,所述显示面板1为上述实施例所提供的显示面板。本揭示实施例所提供的显示终端3能够实现与上述实施例所提供的显示面板1相同的技术效果,此处不再赘述。
本揭示实施例还提供一种显示面板的制作方法,下面结合图5进行详细说明。如图5所示,图5为本揭示实施例提供的显示面板制作方法的流程示意图,所述制作方法包括:
步骤S1:如图5中5a所示提供玻璃基板16,在所述玻璃基板16表面涂布一层第一衬底材料YPA1;
步骤S2:加热所述第一衬底材料YPA1,以去除所述第一衬底材料YPA1中的溶剂,并再次加热所述第一衬底材料YPA1,以使所述第一衬底材料YPA1部分固化;
步骤S3:在呈部分固化状态的第一衬底材料YPA1表面涂布第二衬底材料,所述第一衬底材料YPA1靠近所述第二衬底材料的一侧与第二衬底材料之间相互渗透并发生交换;
步骤S4:如图5中5c所示,加热所述第二衬底材料,以去除第二衬底材料中的溶剂,并再次加热第一材料YPA1和第二衬底材料,直至完全固化,形成第一衬底101、半互穿网络结构层103和第二衬底102。
步骤S5:如图5中5d所示,在第二衬底102远离第一衬底101的一侧上依次形成阻隔层11、薄膜晶体管阵列层12、显示器件层13以及封装层14;以及
步骤S6:如图5中5e所示,通过激光剥离工艺,将玻璃基板16与第一衬底101剥离。
具体地,在步骤S1中,第一衬底材料YPA1为黄色聚酰胺酸溶液,所述黄色聚酰胺酸溶液为共聚型聚酰胺酸溶液,其在极性非质子溶剂中通过低温合成。在本揭示实施例中,所述极性非质子溶剂可以为氮甲基吡咯烷酮(NMP)、二甲基甲酰胺(DMF)或者二甲基乙酰胺(DMAC)中的一种。
在本揭示实施例中,第一衬底材料YPA1的固含量为10wt%,以此使得第一衬底材料YPA1的黏度适中,保证第一衬底材料YPA1涂布的便利性以及均匀性。在其他实施例中,第一衬底材料YPA1的固含量应介于8wt%~15wt%之间,从而使得第一衬底材料YPA1的黏度介于8000cP~15000cP之间,以此保证第一衬底材料YPA1涂布的便利性和均匀性,具体数值可以根据实际需求进行设定,此处不做限制。
具体地,在步骤S2中,第一次加热第一衬底材料YPA1以去除其溶液内溶剂的温度为100℃,第二次加热对第一衬底材料YPA1进行预固化的温度为230℃,以此防止去除溶剂以及预固化的温度过高导致第一衬底材料YPA1去溶剂速度过快,导致第一衬底101内部产生过多的孔洞,不利于后续形成半互穿网络结构层103。在一些实施例中,第一次加热进行去溶剂的温度应低于120℃,第二次加热进行预固化的温度低于250℃,保证第一衬底材料YPA1的预固化需求,在实际应用中可根据实际需求进行设定,此处不做限制。
在步骤S2中,呈部分固化状态的第一衬底材料YPA1的固化程度为60%,以避免第一衬底材料YPA1的固化程度过高导致第一衬底材料YPA1硬化,从而无法形成半互穿网络结构层103。在一些实施例中,第一衬底材料YPA1的固化程度也可以介于50%~70%之间即可满足后续制作工艺的需求,在实际应用中可根据实际需求进行设定,此处不做限制。此外,在步骤S2中呈部分固化状态的第一衬底材料YPA1中剩余溶剂含量应低于30wt%,从而有利于后续形成所述半互穿网络结构层的过程中第一衬底材料YPA1与第二衬底材料中的材料的分子面的运动,使得部分固化的第一衬底材料YPA1中的酰胺酸与第二衬底材料可以更好地相互穿透并发生交换,从而进一步增大第一衬底101与第二衬底102之间的黏结强度。
具体地,在步骤S3中,第二衬底材料为黄色聚酰胺酸溶液,所述黄色聚酰胺酸溶液为共聚型聚酰胺酸溶液,且在本实施例中所述第一衬底材料YPA1与第二衬底材料为同一种共聚型聚酰胺酸溶液。当然,在一些实施例中,所述第一衬底材料YPA1与第二衬底材料也可以为不同种类的共聚型聚酰胺酸溶液,此处不做限制。
在步骤S4中,第一次加热去除第二衬底材料中溶剂的条件与步骤S2中去溶剂的条件相同,步骤S4中加热第一衬底材料YPA1与第二衬底材料的温度应大于400℃,且第一衬底材料YPA1和第二衬底材料的热膨胀系数应低于10ppm/℃,以此使得第一衬底材料YPA1和第二衬底材料通过热亚胺化固化完全,从而形成第一衬底101、半互穿网络结构层103以及第二衬底102。以此形成的第一衬底101与玻璃基板16之间的黏结强度应大于6N/cm,半互穿网络结构层103分别与第一衬底101和第二衬底102之间的黏结强度应大于8N/cm。
在步骤S5中,阻隔层11的成膜温度为280℃,所述阻隔层11主要用于防止水汽和氧气侵入薄膜晶体管阵列层12内部。在其他实施例中,阻隔层11的成膜温度只要低于300℃即可,具体数值可以根据实际需求进行设定,此处不做限制。在步骤S5中,形成所述薄膜晶体管阵列层12的制程最高温度应为350℃,以此制程工艺中维持第一衬底101与玻璃基板16之间以及第一衬底101与第二衬底102之间的黏结强度保持不变。
本揭示实施例所制作形成的显示面板为顶发光结构的有机发光二极管显示面板,所述显示器件层13包括层叠设置的阳极、发光层以及阴极。当然,在一些实施例中,所述显示器件层13也可以为阵列排布的多个微发光二极管(micro light emitting diode, Micro LED)器件,因此本揭示实施例同样也可以适用于Micro LED显示面板的制作。此外,对于柔性液晶显示面板等其他柔性显示面板,本揭示实施例所提供的显示面板的制作方法也同样适用,此处不做赘述。
在本揭示实施例中所述制作方法还包括:
如图5中5b所示,在进行步骤S3涂布所述第二衬底材料之前,在呈部分固化状态的第一衬底材料YPA1表面通过化学气相沉积的方法沉积无机材料,并对所述无机材料进行黄光以及刻蚀工艺,形成阵列排布的多个楔形结构15。在进行上述步骤后,再涂布第二衬底材料,以此使得楔形结构15远离的第一衬底101的一端嵌入至第二衬底102内,从而进一步增大第一衬底101与第二衬底102之间的黏结强度,并降低第一衬底101与第二衬底102之间的界面惰性。
可选的,多个所述楔形结构15可以为氮化硅或者氧化硅材料所形成的单层结构,或者也可以为氮化硅和氧化硅材料叠加所形成的叠层结构。当然所述无机材料的材料不仅限于氮化硅和氧化硅,同样也可以为其他无机材料,此处不做限制。
本揭示实施例的有益效果:本揭示实施例提供的显示面板的制作方法通过在第一衬底与第二衬底之间形成半互穿网络结构层,并且在第一衬底与第二衬底之间设置阵列排布的多个楔形结构,以此提高第一衬底与第二衬底之间的黏结强度,降低第一衬底与第二衬底的之间的界面惰性以及两层衬底之间分离甚至脱落的风险,同时还可以提高激光剥离工艺中玻璃基板与第一衬底分离的良率。
综上所述,虽然本揭示以优选实施例揭露如上,但上述优选实施例并非用以限制本揭示,本领域的普通技术人员,在不脱离本揭示的精神和范围内,均可作各种更动与润饰,因此本揭示的保护范围以权利要求界定的范围为基准。

Claims (20)

  1. 一种显示面板,包括:
    衬底基板;
    薄膜晶体管阵列层,设置于所述衬底基板上;以及
    显示器件层,设置于所述薄膜晶体管阵列层远离所述衬底基板的一侧;
    其中,所述衬底基板包括层叠设置的第一衬底、半互穿网络结构层和第二衬底,所述半互穿网络结构层由所述第一衬底的材料在部分固化状态下与涂布在所述第一衬底材料表面的未固化的所述第二衬底的材料相互渗透并经固化后形成。
  2. 如权利要求1所述的显示面板,其中,所述第一衬底靠近所述第二衬底的一侧上设有阵列排布的多个楔形结构,所述楔形结构远离所述第一衬底的一端嵌入至所述第二衬底内。
  3. 如权利要求2所述的显示面板,其中,所述楔形结构的截面形状为梯形或者倒置梯形。
  4. 如权利要求2所述的显示面板,其中,多个所述楔形结构中包括至少两种不同高度的楔形结构,并且高度相同的所述楔形结构之间间隔设有不同高度的所述楔形结构。
  5. 如权利要求2所述的显示面板,其中,所述楔形结构为氮化硅或氧化硅材料形成的单层结构,或者为氮化硅和氧化硅材料形成的叠层结构。
  6. 如权利要求1所述的显示面板,其中,所述第一衬底和所述第二衬底的材料均包括黄色聚酰亚胺。
  7. 一种显示终端,包括终端主体和显示面板,所述显示面板设置于所述终端主体上,所述显示面板包括:
    衬底基板;
    薄膜晶体管阵列层,设置于所述衬底基板上;以及
    显示器件层,设置于所述薄膜晶体管阵列层远离所述衬底基板的一侧;
    其中,所述衬底基板包括层叠设置的第一衬底、半互穿网络结构层和第二衬底,所述半互穿网络结构层由所述第一衬底的材料在部分固化状态下与涂布在所述第一衬底材料表面的未固化的所述第二衬底的材料相互渗透并经固化后形成。
  8. 如权利要求7所述的显示终端,其中,所述第一衬底靠近所述第二衬底的一侧上设有阵列排布的多个楔形结构,所述楔形结构远离所述第一衬底的一端嵌入至所述第二衬底内。
  9. 如权利要求8所述的显示终端,其中,所述楔形结构的截面形状为梯形或者倒置梯形。
  10. 如权利要求8所述的显示终端,其中,多个所述楔形结构中包括至少两种不同高度的楔形结构,并且高度相同的所述楔形结构之间间隔设有不同高度的所述楔形结构。
  11. 如权利要求8所述的显示终端,其中,所述楔形结构为氮化硅或氧化硅材料形成的单层结构,或者为氮化硅和氧化硅材料形成的叠层结构。
  12. 如权利要求7所述的显示终端,其中,所述第一衬底和所述第二衬底的材料均包括黄色聚酰亚胺。
  13. 一种显示面板的制作方法,包括:
    提供玻璃基板,在所述玻璃基板表面涂布一层第一衬底材料;
    加热所述第一衬底材料,以去除所述第一衬底材料中的溶剂,并再次加热所述第一衬底材料,以使所述第一衬底材料部分固化;
    在呈部分固化状态的所述第一衬底材表面涂布第二衬底材材料,所述第一衬底材料靠近所述第二衬底材料的一侧与所述第二衬底材料之间相互渗透并发生交换;以及
    加热所述第二衬底材料,以去除所述第二衬底材料中的溶剂,并再次加热直至所述第一衬底材料和所述第二衬底材料完全固化,形成第一衬底、半互穿网络结构层和第二衬底。
  14. 如权利要求13所述的显示面板的制作方法,其中,所述制作方法还包括:
    涂布所述第二衬底材料前,在呈部分固化状态的所述第一衬底材料表面沉积无机材料,并对所述无机材料进行黄光以及刻蚀工艺,形成阵列排布的多个楔形结构。
  15. 如权利要求13所述的显示面板的制作方法,其中,所述制作方法还包括:
    在所述第二衬底远离所述第一衬底的一侧上依次形成阻隔层、薄膜晶体管阵列层、显示器件层以及封装层;以及
    将所述玻璃基板与所述第一衬底剥离。
  16. 如权利要求13所述的显示面板的制作方法,其中,所述第一衬底材料和所述第二衬底材料均包括黄色聚酰胺酸溶液。
  17. 如权利要求16所述的显示面板的制作方法,其中,所述第一衬底材料的固含量介于8wt%~15wt%之间,所述第一衬底材料的黏度介于8000cP至15000cP之间。
  18. 如权利要求13所述的显示面板的制作方法,其中,加热所述第一衬底材料以去除所述第一衬底材料中的溶剂的过程中的温度低于120℃,加热所述第一衬底材料以使所述第一衬底材料部分固化的过程中的温度低于250℃。
  19. 如权利要求14所述的显示面板的制作方法,其中,所述无机材料包括氮化硅或者氧化硅,所述楔形结构为氮化硅或者氧化硅材料形成的单层结构。
  20. 如权利要求14所述的显示面板的制作方法,其中,所述无机材料包括氮化硅和氧化硅,所述楔形结构为氮化硅和氧化硅材料所形成的叠层结构。
PCT/CN2020/089359 2020-04-26 2020-05-09 显示面板及其制作方法、显示终端 WO2021217700A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/771,349 US11539009B2 (en) 2020-04-26 2020-05-09 Display panel and manufacturing method thereof, display terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010336733.8A CN111524905A (zh) 2020-04-26 2020-04-26 显示面板及其制作方法、显示终端
CN202010336733.8 2020-04-26

Publications (1)

Publication Number Publication Date
WO2021217700A1 true WO2021217700A1 (zh) 2021-11-04

Family

ID=71912044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089359 WO2021217700A1 (zh) 2020-04-26 2020-05-09 显示面板及其制作方法、显示终端

Country Status (2)

Country Link
CN (1) CN111524905A (zh)
WO (1) WO2021217700A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112071796B (zh) 2020-09-03 2023-06-02 深圳市华星光电半导体显示技术有限公司 柔性基板及其制作方法、柔性显示装置
CN112188749B (zh) * 2020-10-02 2024-05-17 西安瑞特三维科技有限公司 一种制备fpc板的装置及方法
CN113285046B (zh) * 2021-05-21 2023-07-04 京东方科技集团股份有限公司 衬底基板、衬底基板制造方法与显示面板
CN114677918B (zh) * 2022-03-22 2023-11-28 深圳市华星光电半导体显示技术有限公司 柔性显示面板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180145124A1 (en) * 2016-11-21 2018-05-24 Samsung Display Co., Ltd. Flexible display device
CN110165076A (zh) * 2019-05-27 2019-08-23 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板
CN110611042A (zh) * 2019-08-26 2019-12-24 武汉华星光电半导体显示技术有限公司 一种柔性衬底基板、柔性显示面板及其制备方法
CN110854136A (zh) * 2019-10-31 2020-02-28 深圳市华星光电半导体显示技术有限公司 柔性显示装置基板及其制备方法
CN110867462A (zh) * 2019-10-30 2020-03-06 深圳市华星光电半导体显示技术有限公司 一种显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180145124A1 (en) * 2016-11-21 2018-05-24 Samsung Display Co., Ltd. Flexible display device
CN110165076A (zh) * 2019-05-27 2019-08-23 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板
CN110611042A (zh) * 2019-08-26 2019-12-24 武汉华星光电半导体显示技术有限公司 一种柔性衬底基板、柔性显示面板及其制备方法
CN110867462A (zh) * 2019-10-30 2020-03-06 深圳市华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN110854136A (zh) * 2019-10-31 2020-02-28 深圳市华星光电半导体显示技术有限公司 柔性显示装置基板及其制备方法

Also Published As

Publication number Publication date
CN111524905A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2021217700A1 (zh) 显示面板及其制作方法、显示终端
WO2020113797A1 (zh) 柔性阵列基板及其制作方法、显示面板
WO2021012547A1 (zh) 柔性oled显示面板及其制作方法
WO2021003848A1 (zh) 显示面板和显示面板的制备方法
CN109309176B (zh) 显示基板的制备方法及其显示基板
WO2016095643A1 (zh) 柔性显示基板母板及柔性显示基板的制备方法
WO2020000609A1 (zh) 显示面板及其制造方法
US10490758B2 (en) Flexible OLED display panel and manufacturing method thereof
TWI765882B (zh) 柔性基板的製造方法
WO2021082065A1 (zh) 柔性显示装置基板及其制备方法
TWI765904B (zh) 積層體、電子裝置之製造方法、積層體之製造方法
WO2022047895A1 (zh) 柔性基板及其制作方法、柔性显示装置
WO2020113752A1 (zh) 显示器结构及制造方法
WO2020056867A1 (zh) 柔性显示面板及其制备方法
WO2021159584A1 (zh) Oled显示面板及其制作方法
CN107146857A (zh) 显示面板、显示面板的制作方法和显示装置
WO2021017243A1 (zh) 显示面板母板和显示面板母板的制备方法
WO2021003900A1 (zh) 显示面板及其制备方法
WO2020237827A1 (zh) 有机发光二极管显示面板
US11539009B2 (en) Display panel and manufacturing method thereof, display terminal
WO2021031322A1 (zh) Oled显示面板及其制备方法
WO2021003880A1 (zh) 一种柔性显示面板及其制备方法
WO2020029553A1 (zh) 显示屏及显示装置
CN109449290B (zh) 柔性基板及其制作方法、阵列基板、显示面板和显示装置
WO2019153394A1 (zh) 柔性基板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934128

Country of ref document: EP

Kind code of ref document: A1