WO2021215486A1 - 水酸化リチウムの製造方法 - Google Patents
水酸化リチウムの製造方法 Download PDFInfo
- Publication number
- WO2021215486A1 WO2021215486A1 PCT/JP2021/016223 JP2021016223W WO2021215486A1 WO 2021215486 A1 WO2021215486 A1 WO 2021215486A1 JP 2021016223 W JP2021016223 W JP 2021016223W WO 2021215486 A1 WO2021215486 A1 WO 2021215486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- solution
- lithium hydroxide
- hydroxide
- barium
- Prior art date
Links
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 title claims abstract description 690
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 44
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 claims abstract description 72
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 claims abstract description 72
- 239000007788 liquid Substances 0.000 claims abstract description 60
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000003729 cation exchange resin Substances 0.000 claims abstract description 51
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 claims abstract description 42
- 229910001863 barium hydroxide Inorganic materials 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 35
- 229910052788 barium Inorganic materials 0.000 claims abstract description 31
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 31
- 230000033444 hydroxylation Effects 0.000 claims abstract description 17
- 238000005805 hydroxylation reaction Methods 0.000 claims abstract description 17
- 239000000243 solution Substances 0.000 claims description 220
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 102
- 229910001416 lithium ion Inorganic materials 0.000 claims description 102
- 229910052744 lithium Inorganic materials 0.000 claims description 101
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 99
- 229920005989 resin Polymers 0.000 claims description 72
- 239000011347 resin Substances 0.000 claims description 72
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 50
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 50
- 239000002904 solvent Substances 0.000 claims description 47
- 239000013522 chelant Substances 0.000 claims description 40
- 239000011575 calcium Substances 0.000 claims description 35
- 238000002425 crystallisation Methods 0.000 claims description 33
- 230000008025 crystallization Effects 0.000 claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 28
- 229910052791 calcium Inorganic materials 0.000 claims description 28
- 239000002699 waste material Substances 0.000 claims description 21
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 18
- 239000000920 calcium hydroxide Substances 0.000 claims description 18
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 18
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 15
- 229910001424 calcium ion Inorganic materials 0.000 claims description 15
- 230000002378 acidificating effect Effects 0.000 claims description 12
- 238000011282 treatment Methods 0.000 claims description 9
- 239000003929 acidic solution Substances 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 8
- 125000000524 functional group Chemical group 0.000 claims description 8
- 230000001376 precipitating effect Effects 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 229910001422 barium ion Inorganic materials 0.000 abstract description 16
- 229920001429 chelating resin Polymers 0.000 abstract description 11
- 239000013078 crystal Substances 0.000 abstract 1
- 238000001556 precipitation Methods 0.000 abstract 1
- 238000000605 extraction Methods 0.000 description 72
- 238000006243 chemical reaction Methods 0.000 description 33
- 239000012535 impurity Substances 0.000 description 30
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 23
- 239000002184 metal Substances 0.000 description 23
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 238000000926 separation method Methods 0.000 description 18
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 17
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 16
- 238000005201 scrubbing Methods 0.000 description 16
- 229910052782 aluminium Inorganic materials 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 14
- 239000002994 raw material Substances 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 229910017052 cobalt Inorganic materials 0.000 description 12
- 239000010941 cobalt Substances 0.000 description 12
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 12
- 229910052759 nickel Inorganic materials 0.000 description 12
- 229910001415 sodium ion Inorganic materials 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 11
- 239000008346 aqueous phase Substances 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 238000005341 cation exchange Methods 0.000 description 10
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 8
- 239000001569 carbon dioxide Substances 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 238000004090 dissolution Methods 0.000 description 8
- 238000005868 electrolysis reaction Methods 0.000 description 8
- 239000003002 pH adjusting agent Substances 0.000 description 8
- 238000000638 solvent extraction Methods 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000007774 positive electrode material Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000012074 organic phase Substances 0.000 description 6
- 150000003008 phosphonic acid esters Chemical class 0.000 description 6
- 150000003014 phosphoric acid esters Chemical class 0.000 description 6
- 238000007873 sieving Methods 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 238000007664 blowing Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910000032 lithium hydrogen carbonate Inorganic materials 0.000 description 5
- HQRPHMAXFVUBJX-UHFFFAOYSA-M lithium;hydrogen carbonate Chemical compound [Li+].OC([O-])=O HQRPHMAXFVUBJX-UHFFFAOYSA-M 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 125000000962 organic group Chemical group 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 3
- 229910001947 lithium oxide Inorganic materials 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000005292 vacuum distillation Methods 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- ZDFBXXSHBTVQMB-UHFFFAOYSA-N 2-ethylhexoxy(2-ethylhexyl)phosphinic acid Chemical compound CCCCC(CC)COP(O)(=O)CC(CC)CCCC ZDFBXXSHBTVQMB-UHFFFAOYSA-N 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229910018068 Li 2 O Inorganic materials 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000003011 anion exchange membrane Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical compound OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- -1 carbonic acid ions Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002641 lithium Chemical class 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/02—Oxides; Hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/80—Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/04—Processes using organic exchangers
- B01J39/07—Processes using organic exchangers in the weakly acidic form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J45/00—Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B5/00—Operations not covered by a single other subclass or by a single other group in this subclass
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B19/00—Obtaining zinc or zinc oxide
- C22B19/20—Obtaining zinc otherwise than by distilling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/10—Obtaining alkali metals
- C22B26/12—Obtaining lithium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
- C22B3/06—Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/38—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
- C22B3/384—Pentavalent phosphorus oxyacids, esters thereof
- C22B3/3844—Phosphonic acid, e.g. H2P(O)(OH)2
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/38—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
- C22B3/384—Pentavalent phosphorus oxyacids, esters thereof
- C22B3/3846—Phosphoric acid, e.g. (O)P(OH)3
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/26—Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
- C22B3/40—Mixtures
- C22B3/408—Mixtures using a mixture of phosphorus-based acid derivatives of different types
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/42—Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/001—Dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/005—Separation by a physical processing technique only, e.g. by mechanical breaking
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B2101/00—Type of solid waste
- B09B2101/15—Electronic waste
- B09B2101/16—Batteries
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Definitions
- This specification discloses a technique relating to a method for producing lithium hydroxide.
- lithium sulfate in the form of liquid or solid, and lithium carbonate can be obtained.
- lithium sulfate in the form of liquid or solid, and lithium carbonate can be obtained.
- a lithium solution in which lithium contained therein is dissolved is obtained.
- the lithium solution may be a lithium hydrogen carbonate solution, and lithium carbonate can be obtained from this lithium hydrogen carbonate solution.
- Examples of the technique related to this include those described in Patent Documents 1 and 2.
- the lithium solution may be concentrated by being subjected to extraction with a solvent of lithium ions and back extraction from the solvent to the aqueous phase, and the solution after back extraction after this extraction and back extraction is lithium sulfate. It may be a solution. Note that this type of extraction and back extraction are described in Patent Documents 3 to 5 and the like.
- the post-extraction liquid obtained after the above-mentioned back-extraction is generally carbonated by adding a carbonate or blowing carbon dioxide gas, as described in Patent Document 5.
- lithium is recovered as lithium carbonate.
- Patent Documents 6 and 7 describe a method for producing lithium hydroxide that can be used as a raw material for a positive electrode material of a lithium ion secondary battery from lithium carbonate.
- Patent Document 6 states, "In an electrolyzer composed of an anode tank, a cathode tank, and a cation exchange membrane, an aqueous solution or suspension of lithium carbonate is supplied to the anode tank for electrolysis to perform cation exchange.
- a method for producing lithium hydroxide that produces an aqueous solution of lithium hydroxide in a cathode tank via a membrane is disclosed.
- One or more sets consisting of an acid chamber, a salt chamber, an alkali chamber, and a water electrolysis chamber, which are arranged in the order of an alkali chamber, an anion exchange membrane, and a water electrolysis chamber partitioned by a new cation exchange membrane, are arranged.
- the water electrolysis chamber which is composed of the anion film on the most cathode side, is partitioned by the cathode instead of the cation film, and an aqueous solution of lithium salt is supplied to the salt chamber using an electrodialysis machine that serves as the cathode chamber.
- a method for producing lithium hydroxide which comprises taking out an acid from a chamber and an aqueous solution of lithium hydroxide from an alkali chamber. ”Has been proposed.
- Patent Documents 6 and 7 use lithium carbonate as a raw material, and produce lithium hydroxide from the lithium carbonate by electrolysis.
- this specification discloses a method for producing lithium hydroxide, which can obtain lithium hydroxide from lithium sulfate or lithium carbonate at a relatively low cost.
- One method for producing lithium hydroxide disclosed in this specification is a method for producing lithium hydroxide from lithium sulfate, in which the lithium hydroxide is reacted with barium hydroxide in a liquid to obtain a lithium hydroxide solution.
- Lithium hydroxide is precipitated in a lithium hydroxide solution that has undergone a hydroxylation step, a barium removal step of removing barium ions in the lithium hydroxide solution using a cation exchange resin and / or a chelate resin, and a barium removal step. It includes a crystallization step of causing the solution.
- Another method for producing lithium hydroxide disclosed in this specification is a method for producing lithium hydroxide from lithium carbonate, in which the lithium carbonate is reacted with calcium hydroxide in a liquid to obtain a lithium hydroxide solution.
- Lithium hydroxide is precipitated in a lithium hydroxide solution that has undergone a hydroxylation step, a calcium removal step of removing calcium ions in the lithium hydroxide solution using a cation exchange resin and / or a chelate resin, and a calcium hydroxide removal step. It includes a crystallization step of causing the solution.
- lithium hydroxide can be obtained from lithium sulfate or lithium carbonate at a relatively low cost.
- the method for producing lithium hydroxide is a method for producing lithium hydroxide from lithium sulfate.
- lithium hydroxide is reacted with barium hydroxide in a solution and water is used.
- Lithium hydroxide that has undergone a hydroxide step to obtain a lithium oxide solution, a barium removal step that adsorbs and removes barium ions in the lithium hydroxide solution using a cation exchange resin and / or a chelate resin, and a barium removal step. It includes a crystallization step of precipitating lithium hydroxide in the solution.
- Lithium hydroxide has a lower melting point than lithium carbonate, and may be effectively used as a raw material for the positive electrode material of lithium ion secondary batteries. Therefore, in this embodiment, lithium hydroxide rather than lithium carbonate can be easily produced from lithium sulfate at low cost. In particular, here, it is an object of the present invention to sufficiently reduce impurities in lithium hydroxide to be produced and to produce high-purity lithium hydroxide suitable for use as a raw material for a positive electrode material.
- the step hydroxide reacting lithium sulfate and barium hydroxide based on the formula of Li 2 SO 4 + Ba (OH ) 2 ⁇ 2LiOH + BaSO 4, it is possible to obtain a lithium hydroxide relatively easily.
- barium sulfate produced by the reaction can be removed to some extent by solid-liquid separation.
- barium ions existing in the lithium hydroxide solution due to the addition of barium hydroxide in the hydroxylation step are adsorbed by the cation exchange resin and / or the chelate resin.
- the barium removal step of removing the barium is carried out, and then the crystallization step is carried out. As a result, high-purity lithium hydroxide having a low barium content can be obtained.
- Lithium sulfate which is a raw material for producing lithium hydroxide, can be obtained, for example, by a process of recovering valuable metals from lithium ion secondary battery waste.
- the lithium ion secondary battery has a housing containing aluminum as an exterior wrapping around the lithium ion secondary battery.
- the housing for example, there are those made of only aluminum and those containing aluminum, iron, aluminum laminate and the like.
- the lithium ion secondary battery has a positive electrode activity in the above-mentioned housing, which is composed of a single metal oxide selected from the group consisting of lithium, nickel, cobalt and manganese, or a composite metal oxide of two or more kinds.
- the material or the positive electrode active material may include an aluminum foil (positive electrode base material) coated and fixed with, for example, polyvinylidene fluoride (PVDF) or other organic binder.
- PVDF polyvinylidene fluoride
- the lithium ion secondary battery may contain copper, iron and the like.
- the lithium ion secondary battery usually contains an electrolytic solution in the housing.
- the electrolytic solution for example, ethylene carbonate, diethyl carbonate and the like may be used.
- An example of lithium sulfate obtained from such lithium ion secondary battery waste is shown below.
- lithium melting process As illustrated in FIG. 2, a lithium ion dissolution step of treating lithium ion secondary battery waste by roasting, crushing, sieving, etc., if necessary, and then dissolving the lithium contained therein in water or an acidic solution. Then, a solution containing lithium (hereinafter referred to as a lithium solution) can be obtained. Since the lithium dissolution step becomes alkaline as lithium dissolves, the pH of the lithium solution may be adjusted as necessary so that the pH of the lithium solution is finally 7 to 10. In this case, when the pH is 7 to 10, the elution of cobalt, nickel, aluminum and the like can be suppressed, and lithium can be mainly selectively dissolved.
- the lithium solution obtained by treating the lithium ion secondary battery waste by roasting or the like and then dissolving it in water or an acidic solution has few impurities and is suitable as a raw material for lithium hydroxide, which will be described later.
- the residue generated in the lithium dissolution step can be used in the recovery process of valuable metals such as cobalt and nickel by acid leaching, neutralization, solvent extraction and the like.
- the lithium solution does not recover lithium first from the under-sieving product obtained by roasting, crushing, and sieving the lithium-ion battery waste, but leaches all the elements to remove impurities.
- Valuable metals such as cobalt, nickel, and manganese may be recovered to prepare a solution in which lithium remains.
- Lithium concentration process Next, as shown in FIG. 2, a lithium ion in the lithium solution is extracted with a solvent, and a lithium concentration step of back-extracting the lithium ion in the solvent is performed to concentrate the lithium ion to obtain a lithium sulfate solution.
- the solvent after extracting the lithium ions can be scrubbed with a lithium solution containing the lithium ions. In this case, back extraction is performed on the solvent after scrubbing.
- sodium hydroxide is often used as a pH adjuster at the time of extraction, and in this case, the solvent after extraction contains sodium ions in addition to lithium ions. Therefore, it is preferable to perform the above scrubbing between the extraction and the back extraction. This is because scrubbing this solvent with a lithium solution is effective for removing the sodium ions extracted into the solvent.
- the lithium sulfate solution obtained in the lithium concentration step can be used as the lithium sulfate in the embodiment shown in FIG.
- the lithium solution (aqueous phase) and the solvent (organic phase) are brought into contact with each other, stirred and mixed with a mixer, and the lithium ions and the like in the lithium solution are transferred to the solvent. Then, the organic phase and the aqueous phase are separated by a settler based on the difference in specific densities.
- the O / A ratio as the volume ratio of the organic phase to the aqueous phase can be made larger than 1.5 / 1.0, although it depends on the lithium ion concentration and other conditions. In order to increase the extraction rate of lithium ions, the O / A ratio can be adjusted and the number of extraction stages can be increased.
- the phosphonic acid ester-based extractant alone, the phosphoric acid ester-based extractant alone, or the phosphonic acid ester-based extractant and the phosphoric acid ester-based extractant are used as the solvent with respect to the lithium solution.
- a mixed extract can be used.
- the phosphonic acid ester-based extractant 2-ethylhexyl phosphonate 2-ethylhexyl (trade name: PC-88A, Ionquest801) is preferable from the viewpoint of separation efficiency of nickel and cobalt.
- Examples of the phosphoric acid ester-based extractant include di-2-ethylhexyl phosphoric acid (trade name: D2EHPA or DP8R).
- the extractant can be used by diluting it with a hydrocarbon-based organic solvent such as aromatic, paraffin-based, or naphthenic-based, if necessary.
- a hydrocarbon-based organic solvent such as aromatic, paraffin-based, or naphthenic-based
- the concentration of the extractant can be, for example, 15% by volume to 35% by volume.
- the equilibrium pH at the time of extraction is preferably 7 to 8. This is because if the equilibrium pH is less than 7, the lithium extraction rate will be low and phase separation may be poor. On the other hand, if the equilibrium pH is higher than 8, the alkali concentration derived from the pH adjuster will be high. This is because the extractant and the diluent may separate. From this point of view, it is more preferable that the equilibrium pH at the time of extraction is 7.2 to 7.5.
- the "equilibrium pH” referred to here is the pH of the liquid-water phase when the liquid-water phase and the oil phase are separated by allowing them to stand after the solvent extraction operation, the scrubbing operation, and the back extraction operation.
- a pH adjuster such as sodium hydroxide, lithium hydroxide, aqueous ammonia or other alkaline solution can be used to adjust the pH to the above level during extraction.
- sodium hydroxide is preferable because it is cheaper than other reagents and has no odor.
- sodium hydroxide is added as a pH adjuster, the sodium ions resulting from the addition can be effectively removed by scrubbing, which will be described in detail later, so that the increase of sodium as an impurity can be suppressed.
- the lithium ions in the lithium solution are replaced with the sodium ions in the solvent, so that the sodium ions in the solvent can be effectively removed.
- the lithium ion and the sodium ion are generally replaced by the same number of moles. Therefore, if the number of moles of lithium ions in the lithium solution is equal to or greater than the number of moles of sodium ions in the solvent, the sodium ions in the solvent can be removed more effectively.
- the lithium ion concentration in the lithium solution used for scrubbing is preferably 1.0 g / L to 10.0 g / L, and more preferably 1.0 g / L to 5.0 g / L.
- the pH when the solvent and the lithium solution are mixed it is preferable to adjust the pH when the solvent and the lithium solution are mixed to be 5.0 to 9.0, and further to adjust the pH to 6.0 to 8.0. It is even more preferable to adjust to.
- the sodium ion concentration in the solvent can be preferably 1 mg / L or less.
- the lithium ions contained therein are back-extracted from the scrubbed solvent.
- a back extraction pre-extraction solution which is an acidic aqueous solution is used, and the mixture is stirred and mixed with a mixer or the like. As a result, the lithium ions contained in the solvent are transferred to the aqueous phase.
- the pre-extraction liquid used for back extraction may be any of inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, but sulfuric acid is preferable. This is because by using sulfuric acid, the liquid after back extraction becomes a lithium sulfate liquid, which can be used as a raw material for lithium hydroxide.
- the pH is maintained so that the equilibrium pH is preferably in the range of 0.5 to 2.0, more preferably in the range of 1.0 to 1.5. If the equilibrium pH at the time of back extraction is out of the range and becomes low, the amount of the pH adjuster at the time of extraction may increase. Further, when the equilibrium pH becomes higher than the above range, there is a concern that lithium ions may remain in the solvent. If the back extraction is performed in multiple stages, the pH may increase as the number of stages increases. In this case as well, for example, sulfuric acid is added so that the equilibrium pH is maintained within the above range. It is preferable to manage it. Although other conditions are appropriately set, the O / A ratio can be, for example, 1.0 or more, preferably 1.0 to 1.5.
- the post-extraction liquid obtained in the back-extraction step can be further subjected to the back-extraction step as a pre-extraction liquid, whereby the lithium ion concentration can be further increased.
- the back-extracted liquid can also be used in the scrubbing step as a lithium solution.
- the liquid after back extraction (lithium sulfate solution) has a lithium ion concentration of, for example, 10 g / L to 30 g / L, typically 20 g / L to 25 g / L.
- the sodium ion concentration in the liquid after back extraction is preferably 3 mg / L or less, more preferably 1 mg / L or less.
- the lithium ion concentration in the lithium sulfate solution obtained from the lithium ion secondary battery waste as described above is, for example, 10.0 g / L to 30.0 g / L, typically 20.0 g / L. It is ⁇ 25.0 g / L.
- the sodium ion concentration in the lithium sulfate solution is, for example, less than 10.0 mg / L, typically 3.0 mg / L or less, and more typically 1.0 mg / L or less.
- Other impurities other than sodium, such as potassium, calcium, iron, copper, zinc, aluminum, nickel, cobalt, manganese, etc. have been maintained in a low state even before solvent extraction. On the other hand, impurities such as phosphorus and chlorine are removed before solvent extraction, resulting in a low concentration.
- lithium hydroxide process In the hydroxylation step, lithium sulfate as the above-mentioned back-extracting solution or the like is reacted with barium hydroxide in the solution to obtain a lithium hydroxide solution.
- the reaction here can be represented by Li 2 SO 4 + Ba (OH ) 2 ⁇ 2LiOH + BaSO 4.
- barium hydroxide As a result, a lithium hydroxide solution in which lithium hydroxide is dissolved is generated, and barium sulfate is precipitated.
- the use of barium hydroxide is effective in that a lithium hydroxide solution can be produced by a chemical reaction with lithium sulfate.
- barium hydroxide is added to the lithium sulfate solution and reacted in the solution.
- the lithium sulfate and barium hydroxide are added to a liquid such as water to form a slurry, which causes a reaction.
- barium hydroxide can be added in a solid state, the reaction efficiency can be improved by adding barium hydroxide as a barium hydroxide solution in a liquid state.
- barium hydroxide has a high saturation solubility between 40 ° C. and 100 ° C., so it is better to bring a barium hydroxide solution at 40 ° C. to 100 ° C. into contact with lithium sulfate for reaction.
- the barium hydroxide solution is a saturated aqueous solution.
- Barium hydroxide is 1.05 times to 1.70 times the total equivalent of lithium ion and free sulfate ion when the amount of lithium hydroxide and sulfate ion are excessive in the above reaction formula. It is preferable to add twice. By adding barium hydroxide in excess to some extent in this way, sulfate ions can be removed. Even if a relatively large amount of barium hydroxide is added, barium ions can be effectively removed in the barium removing step described later. If the amount of barium hydroxide added is too small, there is a concern that unreacted lithium sulfate will precipitate during crystallization and the amount recovered as lithium hydroxide will decrease.
- the sulfate ion when the sulfate ion is excessive, the sulfate ion may remain as an impurity during crystallization.
- the amount of barium hydroxide added when the amount of barium hydroxide added is excessive, the amount of barium hydroxide that does not contribute to the reaction increases. Barium hydroxide, which does not contribute to the reaction, becomes an impurity during crystallization, which increases the load on the barium removal step and may increase the total cost.
- the above-mentioned free sulfate ion means the difference when the sulfate ion is more than the lithium ion. Therefore, the total equivalent of lithium ions and free sulfate ions has the same meaning as the equivalent of lithium ions when the number of lithium ions is greater than that of sulfate ions, and the same as the equivalent of sulfate ions when the number of sulfate ions is greater than that of lithium ions.
- the pH of the liquid should be 9 or more.
- the upper limit is not particularly specified, but if the pH exceeds 12, it will only become excessive, so 12 or less is preferable. If the pH is low, the reaction from lithium sulfate to lithium hydroxide may be insufficient, while if the pH is high, barium hydroxide is excessive, and the drug cost and the cost for removal are high. There is a risk.
- barium sulfate produced by the above reaction can be removed by performing solid-liquid separation using a thickener or a filter press after the reaction. That is, most of barium sulfate can be separated from the lithium hydroxide solution by solid-liquid separation after the reaction.
- barium may dissolve and remain in the lithium hydroxide solution. Since the barium ion contained in the lithium hydroxide solution deteriorates the quality of lithium hydroxide after crystallization, in this embodiment, the barium removal step described below is performed to remove the barium ion.
- barium removal process In the barium removal step, in order to remove barium ions in the lithium hydroxide solution obtained in the above-mentioned hydroxylation step, the lithium hydroxide solution is brought into contact with a cation exchange resin and / or a chelate resin to remove the impurities. .. Specifically, a lithium hydroxide solution is passed through the resin. As a result, barium ions that can be contained in the lithium hydroxide solution are adsorbed on the resin, so that barium can be removed from the lithium hydroxide solution. As a result, high-purity lithium hydroxide can be obtained after the crystallization step described later.
- the resin from which barium ions and the like are removed shall be at least one of the cation exchange resin and the chelate resin.
- the lithium hydroxide solution may be brought into contact with either the cation exchange resin or the chelate resin, and then with the other. That is, the resin adsorption process may be performed in a plurality of steps.
- a cation exchange resin is a synthetic resin that binds to cations by having an acidic group on the surface.
- the chelate resin is a resin having a functional group that forms a complex with a metal ion. Since the lithium hydroxide solution contains lithium ions and the like in addition to barium ions, it is desirable to use a cation exchange resin and / or a chelate resin having a high selectivity difference from lithium ions in this impurity removal step.
- a cation exchange resin When a cation exchange resin is used, it is preferable to use a weakly acidic cation exchange resin having a carboxyl group as a functional group as the cation exchange resin. Since the strong acid cation exchange resin has a low difference in selectivity between the monovalent metal and the divalent metal, the divalent metal may leak from a relatively early stage of liquid passage. On the other hand, the weakly acidic cation exchange resin has high selectivity for a divalent metal because it is adsorbed so as to sandwich the metal between two carboxyl groups. In particular, a weakly acidic cation exchange resin having a high ion exchange capacity and excellent physical strength is suitable.
- the chelate resin has high selectivity for a specific metal due to the chelating effect of the ion exchange of functional groups and the coordination bond.
- a chelate resin can be effectively used in a lithium hydroxide solution in which lithium ions and the like coexist.
- iminodiacetic acid type and aminophosphate type chelating resins There are iminodiacetic acid type and aminophosphate type chelating resins. Among them, the aminophosphate type chelating resin is preferable in that the selectivity of barium or the like to monovalent ions is higher than that of other chelating resins.
- the space velocity (SV) in the column is preferably in the range of 5 to 20.
- This space velocity (SV) means the ratio (double amount) of the amount of passage of the lithium hydroxide solution per hour to the cation exchange resin or chelate resin packed in the column.
- the space velocity (SV) is too high, there is a concern that the adsorption time of barium ions on the resin is insufficient and the barium ions in the lithium hydroxide solution are not sufficiently removed. If the space speed (SV) is too slow, the processing speed decreases and the processing time increases.
- the pH of the lithium hydroxide solution is preferably 9 or more, that is, the lithium hydroxide solution is preferably alkaline. This is because if the pH of the lithium hydroxide solution here is less than 9, the removal efficiency of barium ions may decrease or even lithium ions may be adsorbed depending on the resin used here. Because.
- the pH of the lithium hydroxide solution at the time of contact with the resin may be changed depending on the type of resin to be selected and the like.
- Crystallization process In the crystallization step, lithium hydroxide in the lithium hydroxide solution from which impurities have been removed in the above barium removing step is precipitated. Thereby, lithium hydroxide can be obtained.
- the drying temperature of the crystallized product is preferably a temperature of less than 60 ° C. at which water of crystallization does not desorb. This is because when the water of crystallization is desorbed, it becomes anhydrous lithium hydroxide and has deliquescent property, which makes it difficult to handle.
- crushing treatment or the like can be performed.
- the lithium hydroxide thus obtained has a barium content sufficiently reduced to, for example, 10 mass ppm or less by undergoing the above-mentioned barium removing step.
- Such high-purity lithium hydroxide is suitable for use as a raw material for manufacturing a lithium ion secondary battery.
- the method for producing lithium hydroxide is a method for producing lithium hydroxide from lithium carbonate.
- lithium carbonate is reacted with calcium hydroxide in a solution and water is used.
- Lithium hydroxide that has undergone a hydroxylation step to obtain a lithium oxide solution, a calcium removal step of adsorbing and removing calcium ions in the lithium hydroxide solution using a cation exchange resin and / or a chelate resin, and a calcium removal step. It includes a crystallization step of precipitating lithium hydroxide in the solution.
- Lithium hydroxide has a lower melting point than lithium carbonate, and may be effectively used as a raw material for the positive electrode material of lithium ion secondary batteries. Therefore, in this embodiment, lithium hydroxide can be easily produced from lithium carbonate at low cost. In particular, here, it is an object of the present invention to sufficiently reduce impurities in lithium hydroxide to be produced and to produce high-purity lithium hydroxide suitable for use as a raw material for a positive electrode material.
- lithium hydroxide can be obtained relatively easily based on the formula of Li 2 CO 3 + Ca (OH) 2 ⁇ 2 LiOH + CaCO 3 by the hydroxylation step of reacting lithium carbonate with calcium hydroxide.
- the calcium carbonate produced by the reaction can be removed to some extent by solid-liquid separation.
- Lithium carbonate which is a raw material for producing lithium hydroxide, can be obtained, for example, by a process of recovering valuable metals from lithium ion secondary battery waste.
- the lithium ion secondary battery has a housing containing aluminum as an exterior wrapping around the lithium ion secondary battery.
- the housing for example, there are those made of only aluminum and those containing aluminum, iron, aluminum laminate and the like.
- the lithium ion secondary battery has a positive electrode activity in the above-mentioned housing, which is composed of a single metal oxide selected from the group consisting of lithium, nickel, cobalt and manganese, or a composite metal oxide of two or more kinds.
- the material or the positive electrode active material may include an aluminum foil (positive electrode base material) coated and fixed with, for example, polyvinylidene fluoride (PVDF) or other organic binder.
- PVDF polyvinylidene fluoride
- the lithium ion secondary battery may contain copper, iron and the like.
- the lithium ion secondary battery usually contains an electrolytic solution in the housing.
- the electrolytic solution for example, ethylene carbonate, diethyl carbonate and the like may be used.
- An example of lithium carbonate obtained from such lithium ion secondary battery waste is shown below.
- lithium melting process As illustrated in FIG. 4, a lithium ion dissolution step of treating lithium ion secondary battery waste by roasting, crushing, sieving, etc., if necessary, and then dissolving the lithium contained therein in water or an acidic solution. Then, a solution containing lithium (hereinafter referred to as a lithium solution) can be obtained. Since the lithium dissolution step becomes alkaline as lithium dissolves, the pH of the lithium solution may be adjusted as necessary so that the pH of the lithium solution is finally 7 to 10. In this case, when the pH is 7 to 10, the elution of cobalt, nickel, aluminum and the like can be suppressed, and lithium can be mainly selectively dissolved.
- lithium can be dissolved while supplying carbonic acid ions by, for example, blowing carbon dioxide gas or supplying carbonate or carbonated water.
- the reaction of H 2 O + CO 2 ⁇ H 2 CO 3 and Li 2 CO 3 + H 2 CO 3 ⁇ 2 LiHoCO 3 the reaction of H 2 O + CO 2 ⁇ H 2 CO 3 and Li 2 CO 3 + H 2 CO 3 ⁇ 2 LiHoCO 3 , and for lithium hydroxide and lithium oxide, 2 LiOH ⁇ Li 2 O + H 2 O and Li 2
- O + H 2 CO 3 + CO 2 ⁇ 2 LiHCO 3 or Li 2 O + CO 2 ⁇ Li 2 CO 3 and Li 2 CO 3 + H 2 CO 3 ⁇ 2 LiHoCO 3 a lithium hydrogen carbonate solution as a lithium solution is obtained.
- the blowing of carbon dioxide gas is preferable in that the contamination of impurities can be suppressed and the increase in the amount of liquid can be suppressed, so that the lithium concentration does not dilute.
- Specific examples of the carbonate when adding the carbonate include sodium carbonate and the like, and the amount of the carbonate added in this case is, for example, 1.0 to 2.0 times the molar equivalent, preferably 1.0 to 2.0 times the molar equivalent.
- the molar equivalent can be 1.0 to 1.2 times.
- the lithium solution obtained by treating the lithium ion secondary battery waste by roasting or the like and then dissolving it in water or an acidic solution has few impurities and is suitable as a raw material for lithium hydroxide, which will be described later.
- the residue generated in the lithium dissolution step can be used in the recovery process of valuable metals such as cobalt and nickel by acid leaching, neutralization, solvent extraction and the like.
- the lithium solution does not recover lithium first from the sieving product obtained by roasting, crushing, and sieving the lithium ion secondary battery waste, but leaches all the elements to remove impurities.
- valuable metals such as cobalt, nickel, and manganese may be recovered to form a solution in which lithium remains.
- the lithium concentration process When the lithium solution is a lithium hydrogen carbonate solution, the lithium concentration can be increased and concentrated by heat concentration or the like as shown in FIG. 4 (a).
- the lithium solution can be concentrated by heating it to a temperature of, for example, 50 ° C. to 90 ° C.
- carbonic acid can be desorbed from the lithium solution as carbon dioxide gas, and lithium carbonate can be obtained.
- methanol, ethanol or the like it is also possible to add methanol, ethanol or the like to the lithium solution to remove carbonic acid with such a non-aqueous solvent.
- methanol and ethanol are preferably used as non-aqueous solvents because they are inexpensive.
- a non-aqueous solvent may be mixed and stirred with the lithium solution.
- the resulting lithium carbonate can be purified as needed. Specifically, in the purification of lithium carbonate, lithium carbonate obtained by desorption of carbonic acid from the lithium solution is washed with repulp, and carbonic acid gas is blown into the lithium carbonate to dissolve the carbonic acid in the solution. Next, the lithium hydrogen carbonate solution is separated from calcium, magnesium, etc. by solid-liquid separation. Then, after decarboxylation and concentration, it is separated into purified lithium carbonate and a filtrate by solid-liquid separation. If the impurity grade in the purified lithium carbonate is high, further cleaning can be performed.
- a lithium concentration step of extracting the lithium ions in the lithium solution with a solvent and back-extracting the lithium ions in the solvent may be performed.
- the lithium ion concentration step of extraction with a solvent and back extraction lithium ions are concentrated to obtain, for example, a lithium sulfate solution.
- the solvent after extracting the lithium ions may be scrubbed with a lithium solution containing lithium ions.
- back extraction is performed on the solvent after scrubbing.
- the lithium sulfate solution thus obtained can be made into lithium carbonate by carrying out the carbonation step described later. The details of this extraction and back extraction will be described below.
- the lithium solution (aqueous phase) and the solvent (organic phase) are brought into contact with each other, stirred and mixed with a mixer, and the lithium ions and the like in the lithium solution are transferred to the solvent. Then, the organic phase and the aqueous phase are separated by a settler based on the difference in specific densities.
- the O / A ratio as the volume ratio of the organic phase to the aqueous phase can be made larger than 1.5 / 1.0, although it depends on the lithium ion concentration and other conditions. In order to increase the extraction rate of lithium ions, the O / A ratio can be adjusted and the number of extraction stages can be increased.
- the phosphonic acid ester-based extractant alone, the phosphoric acid ester-based extractant alone, or the phosphonic acid ester-based extractant and the phosphoric acid ester-based extractant are used as the solvent with respect to the lithium solution.
- a mixed extract can be used.
- the phosphonic acid ester-based extractant 2-ethylhexyl phosphonate 2-ethylhexyl (trade name: PC-88A, Ionquest801) is preferable from the viewpoint of separation efficiency of nickel and cobalt.
- Examples of the phosphoric acid ester-based extractant include di-2-ethylhexyl phosphoric acid (trade name: D2EHPA or DP8R).
- the extractant can be used by diluting it with a hydrocarbon-based organic solvent such as aromatic, paraffin-based, or naphthenic-based, if necessary.
- a hydrocarbon-based organic solvent such as aromatic, paraffin-based, or naphthenic-based
- the concentration of the extractant can be, for example, 15% by volume to 35% by volume.
- the equilibrium pH at the time of extraction is preferably 7 to 8. This is because if the equilibrium pH is less than 7, the lithium extraction rate will be low and phase separation may be poor. On the other hand, if the equilibrium pH is higher than 8, the alkali concentration derived from the pH adjuster will be high. This is because the extractant and the diluent may separate. From this point of view, it is more preferable that the equilibrium pH at the time of extraction is 7.2 to 7.5.
- the "equilibrium pH" referred to here is the pH of the aqueous phase when the aqueous phase and the oil phase are separated by allowing them to stand after the solvent extraction operation, the scrubbing operation, and the back extraction operation.
- a pH adjuster such as sodium hydroxide, lithium hydroxide, aqueous ammonia or other alkaline solution can be used to adjust the pH to the above level during extraction.
- sodium hydroxide is preferable because it is cheaper than other reagents and has no odor.
- the solvent from which lithium ions have been extracted can be scrubbed with a lithium solution.
- the lithium ion concentration in the lithium solution used for scrubbing is preferably 1.0 g / L to 10.0 g / L, and more preferably 1.0 g / L to 5.0 g / L.
- the lithium ions contained therein are back-extracted from the solvent.
- a back extraction pre-extraction solution which is an acidic aqueous solution is used, and the mixture is stirred and mixed with a mixer or the like. As a result, the lithium ions contained in the solvent are transferred to the aqueous phase.
- the pre-extraction liquid used for back extraction may be any of inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, but sulfuric acid is preferable. This is because by using sulfuric acid, the liquid after back extraction becomes a lithium sulfate liquid, which can be used as a raw material for lithium hydroxide.
- the pH is maintained so that the equilibrium pH is preferably in the range of 0.5 to 2.0, more preferably in the range of 1.0 to 1.5. If the equilibrium pH at the time of back extraction is out of the range and becomes low, the amount of the pH adjuster at the time of extraction may increase. Further, when the equilibrium pH becomes higher than the above range, there is a concern that lithium ions may remain in the solvent. If the back extraction is performed in multiple stages, the pH may increase as the number of stages increases. In this case as well, for example, sulfuric acid is added so that the equilibrium pH is maintained within the above range. It is preferable to manage it. Although other conditions are appropriately set, the O / A ratio can be, for example, 1.0 or more, preferably 1.0 to 1.5.
- the post-extraction liquid obtained in the back-extraction step can be further subjected to the back-extraction step as a pre-extraction liquid, whereby the lithium ion concentration can be further increased.
- the back-extracted liquid can also be used in the scrubbing step as a lithium solution.
- the liquid after back extraction (lithium sulfate solution) has a lithium ion concentration of, for example, 10 g / L to 30 g / L, typically 20 g / L to 25 g / L.
- the lithium ion concentration in the lithium sulfate solution obtained from the lithium ion secondary battery waste as described above is, for example, 10.0 g / L to 30.0 g / L, typically 20.0 g / L. It is ⁇ 25.0 g / L.
- potassium, calcium, iron, copper, zinc, aluminum, nickel, cobalt, manganese and the like are maintained in a low state even before solvent extraction.
- impurities such as phosphorus and chlorine are removed before solvent extraction, resulting in a low concentration.
- the lithium ions in the lithium sulfate solution are converted to lithium carbonate by adding carbonate to the lithium sulfate solution or blowing carbon dioxide gas.
- the liquid temperature is set in the range of 20 ° C. to 50 ° C., and the mixture is stirred as necessary to maintain a predetermined time.
- the carbonate include sodium carbonate, ammonium carbonate and the like, but sodium carbonate is preferable from the viewpoint of recovery rate.
- the pH of the lithium sulfate solution at the time of carbonation is relatively high, 10 to 13. If carbonate is added in a low pH state, it will be released as carbon dioxide gas, so there is a concern that the reaction efficiency will decrease.
- Lithium carbonate can be obtained by performing a carbonation step on a lithium sulfate solution.
- lithium carbonate solution calcium hydroxide is added to the lithium carbonate solution and reacted in the solution.
- the lithium carbonate and calcium hydroxide are added to a liquid such as water to form a slurry, which causes a reaction.
- Calcium hydroxide is preferably added 1.05 to 1.10 times as much as lithium hydroxide in the above reaction formula in a molar equivalent amount. If the amount of calcium hydroxide added is excessive, the amount of calcium hydroxide that does not contribute to the reaction increases. Calcium hydroxide, which does not contribute to the reaction, increases the amount of residue during solid-liquid separation and becomes an impurity during crystallization, which increases the load on the calcium removal step and may increase the total cost.
- the pH of the liquid should be 9 or more.
- the upper limit is not particularly specified, but if the pH exceeds 12, it will only become excessive, so 12 or less is preferable. If the pH is low, the reaction from lithium carbonate to lithium hydroxide may be insufficient, while if the pH is high, calcium hydroxide is excessive, resulting in drug cost and cost for removal. There is a risk.
- Most of the calcium carbonate produced by the above reaction can be removed by performing solid-liquid separation using a thickener or a filter press after the reaction. That is, most of the calcium carbonate can be separated from the lithium hydroxide solution by solid-liquid separation after the reaction.
- the calcium ion is removed by performing the calcium removal step described below.
- the lithium hydroxide solution is brought into contact with a cation exchange resin and / or a chelate resin to remove the impurities. .. Specifically, a lithium hydroxide solution is passed through the resin. As a result, calcium ions that can be contained in the lithium hydroxide solution are adsorbed on the resin, so that calcium can be removed from the lithium hydroxide solution. As a result, high-purity lithium hydroxide can be obtained after the crystallization step described later.
- the resin that removes calcium ions and the like is at least one of a cation exchange resin and a chelate resin.
- the lithium hydroxide solution may be brought into contact with either the cation exchange resin or the chelate resin, and then with the other. That is, the resin adsorption process may be performed in a plurality of steps.
- a cation exchange resin is a synthetic resin that binds to cations by having an acidic group on the surface.
- the chelate resin is a resin having a functional group that forms a complex with a metal ion. Since the lithium hydroxide solution contains lithium ions and the like in addition to calcium ions, it is desirable to use a cation exchange resin and / or a chelate resin having a high selectivity difference from lithium ions in this impurity removal step.
- a cation exchange resin When a cation exchange resin is used, it is preferable to use a weakly acidic cation exchange resin having a carboxyl group as a functional group as the cation exchange resin. Since the strong acid cation exchange resin has a low difference in selectivity between the monovalent metal and the divalent metal, the divalent metal may leak from a relatively early stage of liquid passage. On the other hand, the weakly acidic cation exchange resin has high selectivity for a divalent metal because it is adsorbed so as to sandwich the metal between two carboxyl groups. In particular, a weakly acidic cation exchange resin having a high ion exchange capacity and excellent physical strength is suitable.
- the chelate resin has high selectivity for a specific metal due to the chelating effect of the ion exchange of functional groups and the coordination bond.
- a chelate resin can be effectively used in a lithium hydroxide solution in which lithium ions and the like coexist.
- iminodiacetic acid type and aminophosphate type chelating resins There are iminodiacetic acid type and aminophosphate type chelating resins. Among them, the aminophosphate type chelating resin is preferable in that the selectivity of calcium and the like with respect to monovalent ions is higher than that of other chelating resins.
- the space velocity (SV) in the column is preferably in the range of 5 to 20.
- This space velocity (SV) means the ratio (double amount) of the amount of passage of the lithium hydroxide solution per hour to the cation exchange resin or chelate resin packed in the column.
- the space velocity (SV) is too high, there is a concern that the adsorption time of calcium ions on the resin is insufficient and the calcium ions in the lithium hydroxide solution are not sufficiently removed. If the space speed (SV) is too slow, the processing speed decreases and the processing time increases.
- the pH of the lithium hydroxide solution is preferably 9 or more, that is, the lithium hydroxide solution is preferably alkaline. This is because if the pH of the lithium hydroxide solution here is less than 9, the removal efficiency of calcium ions may decrease or even lithium ions may be adsorbed depending on the resin used here. Because.
- the pH of the lithium hydroxide solution at the time of contact with the resin may be changed depending on the type of resin to be selected and the like.
- the drying temperature of the crystallized product is preferably a temperature of less than 60 ° C. at which water of crystallization does not desorb. This is because when the water of crystallization is desorbed, it becomes anhydrous lithium hydroxide and has deliquescent property, which makes it difficult to handle.
- crushing treatment or the like can be performed.
- the lithium hydroxide thus obtained has a calcium content sufficiently reduced to, for example, 10 mass ppm or less by undergoing the calcium removal step described above.
- Such high-purity lithium hydroxide is suitable for use as a raw material for manufacturing a lithium ion secondary battery.
- Example 1 the lithium hydroxide solution obtained as described above is passed through a column packed with 20 mL of a cation exchange resin having a carboxyl group (AMBERLITE IRC76 manufactured by Organo Corporation) at room temperature to remove impurities. It was removed. The pH of the lithium hydroxide solution during this liquid passage was 12, and the space velocity (SV) was 9.
- a cation exchange resin having a carboxyl group AMBERLITE IRC76 manufactured by Organo Corporation
- Example 2 impurities were removed by passing the above lithium hydroxide solution through a column filled with 20 mL of a chelate resin (AMBERLITE IRC747UPS manufactured by Organo Corporation) at room temperature.
- a chelate resin AMBERLITE IRC747UPS manufactured by Organo Corporation
- the pH of the lithium hydroxide solution during this liquid passage was 12, and the space velocity (SV) was 9.
- Table 1 shows the impurity content of lithium hydroxide obtained in each of Examples 1 and 2 and Comparative Example 1 above.
- Example 3 lithium sulfate and barium hydroxide were added as solids to pure water to cause a reaction. Specifically, two types of solid barium hydroxide, 419 g (1.7 equivalents) and 493 g (2.0 equivalents), were prepared with respect to 100 g of solid lithium sulfate. The above lithium sulfate and each barium hydroxide were added to 500 mL of pure water, and the mixture was stirred and held at 60 ° C. for 24 hours and then solid-liquid separated to recover the lithium hydroxide solution.
- Example 4 both lithium sulfate and barium hydroxide were mixed as a solution and reacted, and then the lithium hydroxide solution was recovered. More specifically, a 200 mL solution obtained by dissolving 50 g of lithium sulfate in pure water at 60 ° C., 123 g (1.0 equivalent), 130 g (1.05 equivalent) and 136 g (1.1 equivalent) of barium hydroxide. Each of) was mixed with pure water to make an 800 mL solution at 60 ° C., and after stirring and holding at 60 ° C. for 24 hours, solid-liquid separation was performed to obtain a lithium hydroxide solution.
- Table 3 shows the grades of lithium hydroxide produced by shaking the amount of barium hydroxide as in Examples 3 and 4 and crystallizing each of the obtained lithium hydroxide solutions by vacuum distillation. ..
- Wako's special grade reagents were used for lithium sulfate and barium hydroxide.
- Table 3 shows the values of sulfur and barium as the impurity grades in the lithium hydroxide obtained by crystallization, where S is derived from unreacted lithium sulfate and Ba is derived from unreacted barium hydroxide. ..
- Example 1 the lithium hydroxide solution obtained as described above is passed through a column packed with 20 mL of a cation exchange resin having a carboxyl group (AMBERLITE IRC76 manufactured by Organo Corporation) at room temperature to remove impurities. It was removed. The pH of the lithium hydroxide solution during this liquid passage was 12, and the space velocity (SV) was 9.
- a cation exchange resin having a carboxyl group AMBERLITE IRC76 manufactured by Organo Corporation
- Example 2 impurities were removed by passing the above lithium hydroxide solution through a column filled with 20 mL of a chelate resin (AMBERLITE IRC747UPS manufactured by Organo Corporation) at room temperature.
- a chelate resin AMBERLITE IRC747UPS manufactured by Organo Corporation
- the pH of the lithium hydroxide solution during this liquid passage was 12, and the space velocity (SV) was 9.
- Table 4 shows the impurity content of lithium hydroxide obtained in each of Examples 1 and 2 and Comparative Example 1 above.
- lithium hydroxide solution Sodium carbonate was added to the above lithium sulfate solution for carbonation, calcium hydroxide was added, and solid-liquid separation was performed by filtration to obtain a lithium hydroxide solution.
- the lithium hydroxide solution after passing through the resin was heated and concentrated at a temperature of 50 ° C. to hydroxylate. Lithium was crystallized. As a result, high-purity lithium hydroxide at the same level as in Examples 1 and 2 in Table 4 was obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
具体的には、特許文献6には、「陽極槽と陰極槽と陽イオン交換膜から構成された電解装置において陽極槽に炭酸リチウム水溶液ないし懸濁液を供給して電解を行い、陽イオン交換膜を介した陰極槽において水酸化リチウム水溶液を生成させる水酸化リチウムの製造方法」が開示されている。
また特許文献7には、「陽極と陰極との間にカチオン交換膜とアニオン交換膜とが交互に配列され、陽極とカチオン交換膜とで陽極室が形成され、次に陽極側から陰極側にむけて当該カチオン交換膜とアニオン膜とで区画された酸室、当該アニオン交換膜ともうひとつのカチオン交換膜とで区画された塩室、このカチオン交換膜ともうひとつのアニオン交換膜とで区画されたアルカリ室、更にこのアニオン交換膜と新たなカチオン交換膜とで区画された水電解室の順に配列されている酸室、塩室、アルカリ室、水電解室からなる組がひとつ以上配列されていて最も陰極側のアニオン膜とで構成される水電解室をカチオン膜の代わりに陰極で区画し、陰極室とする電気透析装置を使用して塩室にリチウム塩の水溶液を供給して酸室から酸を、アルカリ室から水酸化リチウム水溶液を取り出すことを特徴とする水酸化リチウムの製造方法。」が提案されている。
この明細書で開示する他の水酸化リチウムの製造方法は、炭酸リチウムから水酸化リチウムを製造する方法であって、前記炭酸リチウムを水酸化カルシウムと液中で反応させ、水酸化リチウム溶液を得る水酸化工程と、陽イオン交換樹脂及び/又はキレート樹脂を用いて、前記水酸化リチウム溶液中のカルシウムイオンを除去するカルシウム除去工程と、カルシウム除去工程を経た水酸化リチウム溶液で水酸化リチウムを析出させる晶析工程とを含むものである。
<硫酸リチウムから水酸化リチウムを製造する方法>
一の実施形態に係る水酸化リチウムの製造方法は、硫酸リチウムから水酸化リチウムを製造する方法であって、たとえば図1に示すように、硫酸リチウムを水酸化バリウムと液中で反応させ、水酸化リチウム溶液を得る水酸化工程と、陽イオン交換樹脂及び/又はキレート樹脂を用いて、水酸化リチウム溶液中のバリウムイオンを吸着して除去するバリウム除去工程と、バリウム除去工程を経た水酸化リチウム溶液中の水酸化リチウムを析出させる晶析工程とを含む。
但し、水酸化リチウム溶液にバリウムイオンが残留することは避けられず、このまま晶析しても当該バリウムの存在によって水酸化リチウムの純度が低下する。
水酸化リチウムの製造の原料とする硫酸リチウムは、たとえば、リチウムイオン二次電池廃棄物から有価金属を回収するプロセス等で得られるものとすることができる。
このようなリチウムイオン二次電池廃棄物から得られる硫酸リチウムの例を以下に示す。
図2に例示するように、リチウムイオン二次電池廃棄物を、必要に応じて焙焼・破砕・篩別等で処理した後、そこに含まれるリチウムを水又は酸性溶液で溶解させるリチウム溶解工程で、リチウムを含有する溶解液(以下、リチウム溶解液と称する。)が得られる。リチウム溶解工程は、リチウムが溶解するにつれてアルカリ性を示すので、最終的にリチウム溶解液のpHが7~10になるように、必要に応じてpHを調整してもよい。この場合、pHが7~10であれば、コバルト、ニッケルやアルミニウム等の溶出を抑制して、主としてリチウムを選択的に溶解させることができるからである。リチウムイオン二次電池廃棄物を焙焼等で処理した後に水又は酸性溶液で溶解させて得られるリチウム溶解液は、不純物が少なく、後述する水酸化リチウムの原料として好適である。なお、リチウム溶解工程で生じる残渣は、酸浸出、中和及び溶媒抽出等によるコバルトやニッケル等の有価金属の回収プロセスに用いられ得る。
次いで、図2に示すように、リチウム溶解液中のリチウムイオンを溶媒で抽出するとともに、溶媒中のリチウムイオンを逆抽出するリチウム濃縮工程を行ってリチウムイオンを濃縮し、硫酸リチウム溶液を得る。ここで、リチウム濃縮工程では、リチウムイオンを抽出した後の溶媒をリチウムイオンを含むリチウム溶液でスクラビングすることができる。この場合、スクラビングした後の溶媒に対して逆抽出を行う。
なお、その他の条件は適宜設定されるが、O/A比は、たとえば1.0以上、好ましくは1.0~1.5とすることができる。
水酸化工程では、上記の逆抽出後液等としての硫酸リチウムを、液中で水酸化バリウムと反応させ、水酸化リチウム溶液を得る。ここでの反応は、Li2SO4+Ba(OH)2→2LiOH+BaSO4で表すことができる。これにより、水酸化リチウムが溶解した水酸化リチウム溶液が生成し、硫酸バリウムが沈殿する。水酸化バリウムを用いることは、硫酸リチウムと化成反応により水酸化リチウム溶液を生成できる点で有効である。
バリウム除去工程では、上記水酸化工程で得られた水酸化リチウム溶液中のバリウムイオンを除去するため、水酸化リチウム溶液を陽イオン交換樹脂及び/又はキレート樹脂と接触させて、当該不純物を除去する。具体的には、水酸化リチウム溶液を当該樹脂に通液する。これにより、水酸化リチウム溶液に含まれ得るバリウムイオンが当該樹脂に吸着されるので、水酸化リチウム溶液からバリウムを除去することができる。その結果として、後述の晶析工程後に高純度の水酸化リチウムを得ることができる。
晶析工程では、上記のバリウム除去工程で不純物を除去した水酸化リチウム溶液中の水酸化リチウムを析出させる。それにより、水酸化リチウムを得ることができる。
一の実施形態に係る水酸化リチウムの製造方法は、炭酸リチウムから水酸化リチウムを製造する方法であって、たとえば図3に示すように、炭酸リチウムを水酸化カルシウムと液中で反応させ、水酸化リチウム溶液を得る水酸化工程と、陽イオン交換樹脂及び/又はキレート樹脂を用いて、水酸化リチウム溶液中のカルシウムイオンを吸着して除去するカルシウム除去工程と、カルシウム除去工程を経た水酸化リチウム溶液中の水酸化リチウムを析出させる晶析工程とを含む。
但し、水酸化リチウム溶液にカルシウムイオンが残留することは避けられず、このまま晶析しても当該カルシウムの存在によって水酸化リチウムの純度が低下する。
水酸化リチウムの製造の原料とする炭酸リチウムは、たとえば、リチウムイオン二次電池廃棄物から有価金属を回収するプロセス等で得られるものとすることができる。
このようなリチウムイオン二次電池廃棄物から得られる炭酸リチウムの例を以下に示す。
図4に例示するように、リチウムイオン二次電池廃棄物を、必要に応じて焙焼・破砕・篩別等で処理した後、そこに含まれるリチウムを水又は酸性溶液で溶解させるリチウム溶解工程で、リチウムを含有する溶解液(以下、リチウム溶解液と称する。)が得られる。リチウム溶解工程は、リチウムが溶解するにつれてアルカリ性を示すので、最終的にリチウム溶解液のpHが7~10になるように、必要に応じてpHを調整してもよい。この場合、pHが7~10であれば、コバルト、ニッケルやアルミニウム等の溶出を抑制して、主としてリチウムを選択的に溶解させることができるからである。
リチウム溶解液が炭酸水素リチウム溶液である場合、図4(a)のように、加熱濃縮等によって、リチウム濃度を高めて濃縮することができる。ここでは、リチウム溶解液を、たとえば50℃~90℃の温度に加熱して濃縮することができる。これにより、リチウム溶解液から炭酸を炭酸ガスとして脱離させることができ、炭酸リチウムが得られる。または、リチウム溶解液に、メタノールやエタノール等を添加して、そのような非水溶媒による炭酸の脱離を行うことも可能である。なかでも、メタノールやエタノールは安価であることから非水溶媒として用いることが好ましい。ここで添加方法として具体的には、リチウム溶解液に対して非水溶媒を混合撹拌することを挙げることができる。
これにより得られる炭酸リチウムは、必要に応じて精製を行うことができる。炭酸リチウムの精製は具体的には、リチウム溶解液からの炭酸の脱離により得られた炭酸リチウムに対してリパルプ洗浄を行うとともに、そこに炭酸ガスを吹き込んで、液中に炭酸を溶解させ、次いで、固液分離により、炭酸水素リチウム溶液と、カルシウムやマグネシウムなどを分離させる。その後、脱炭酸・濃縮を行った後、固液分離により、精製炭酸リチウムと濾液とに分離させる。この精製炭酸リチウム中の不純物品位が高い場合は、さらに洗浄を行うことができる。
なお、その他の条件は適宜設定されるが、O/A比は、たとえば1.0以上、好ましくは1.0~1.5とすることができる。
上述したリチウム濃縮工程で溶媒による抽出及び逆抽出を行うことにより、たとえば炭酸リチウムの溶解度以上にリチウム濃度を濃縮し、図4(b)に示すように、硫酸リチウム溶液が得られた場合、炭酸化工程を行う。
Caを用いた水酸化工程では、上記の炭酸リチウムを液中で水酸化カルシウムと反応させ、水酸化リチウム溶液を得る。ここでの反応は、Li2CO3+Ca(OH)2→2LiOH+CaCO3で表すことができる。これにより、水酸化リチウムが溶解した水酸化リチウム溶液が生成し、炭酸カルシウムが沈殿する。水酸化工程で水酸化カルシウムを用いることは、たとえば硫酸リチウムを炭酸リチウムに変換したのち、炭酸リチウムと化成反応により水酸化リチウム溶液を生成できる点で有効である。
カルシウム除去工程では、上記水酸化工程で得られた水酸化リチウム溶液中のカルシウムイオンを除去するため、水酸化リチウム溶液を陽イオン交換樹脂及び/又はキレート樹脂と接触させて、当該不純物を除去する。具体的には、水酸化リチウム溶液を当該樹脂に通液する。これにより、水酸化リチウム溶液に含まれ得るカルシウムイオンが当該樹脂に吸着されるので、水酸化リチウム溶液からカルシウムを除去することができる。その結果として、後述の晶析工程後に高純度の水酸化リチウムを得ることができる。
晶析工程では、上記のカルシウム除去工程で不純物を除去した水酸化リチウム溶液中の水酸化リチウムを析出させる。それにより、水酸化リチウムを得ることができる。
250gの硫酸リチウム、648gの水酸化バリウムを、5000mLの水に添加した後、濾過による固液分離を行い、水酸化リチウム溶液を得た。水酸化リチウム溶液中のLi濃度は6.0g/L、Ba濃度は1.3g、pHは12であった。
上述した実施例1で用いた陽イオン交換樹脂及び、実施例2で用いたキレート樹脂のそれぞれについて、樹脂量に対し通水する流量倍数であるBV(Bed Volume)を変化させた際の、当該樹脂に通液した後の水酸化リチウム溶液中のLi濃度及びBa濃度の変化を確認した。BVは、BV=通液量(L)/樹脂体積(L)で表される。なおここでは、試験例1-1と同様の水酸化リチウム溶液を用いた。その結果を図5にグラフで示す。
焙焼後のリチウムイオン二次電池廃棄物中のリチウムを水又は酸性溶液で溶解させて、得られたリチウム溶解液から溶媒によりリチウムイオンを抽出、抽出後の溶媒をリチウム溶液でスクラビングし、スクラビングを経た後の溶媒からリチウムイオンを逆抽出し、それにより逆抽出後液としての硫酸リチウム溶液を得た。逆抽出後液の不純物組成を表2に示す。
その結果、表1の実施例1及び実施例2と同様の水準の高純度の水酸化リチウムが得られた。
水酸化工程で、硫酸リチウム及び水酸化バリウムを固体で用いた場合と、溶液とした場合での反応効率の違いを確認する試験を行った。
250gの炭酸リチウム、648gの水酸化カルシウムを、5000mLの水に添加した後、濾過による固液分離を行い、水酸化リチウム溶液を得た。水酸化リチウム溶液中のLi濃度は6.0g/L、Ca濃度は0.03g/L、pHは12であった。
上述した実施例1で用いた陽イオン交換樹脂及び、実施例2で用いたキレート樹脂のそれぞれについて、樹脂量に対し通水する流量倍数であるBV(Bed Volume)を変化させた際の、当該樹脂に通液した後の水酸化リチウム溶液中のLi濃度及びCa濃度の変化を確認した。BVは、BV=通液量(L)/樹脂体積(L)で表される。なおここでは、試験例2-1と同様の水酸化リチウム溶液を用いた。その結果を図7にグラフで示す。
焙焼後のリチウムイオン二次電池廃棄物中のリチウムを水又は酸性溶液で溶解させて、得られたリチウム溶解液から溶媒によりリチウムイオンを抽出、抽出後の溶媒をリチウム溶液でスクラビングし、スクラビングを経た後の溶媒からリチウムイオンを逆抽出し、それにより逆抽出後液としての硫酸リチウム溶液を得た。逆抽出後液の不純物組成を表5に示す。
その結果、表4の実施例1及び実施例2と同様の水準の高純度の水酸化リチウムが得られた。
Claims (16)
- 硫酸リチウムから水酸化リチウムを製造する方法であって、
前記硫酸リチウムを水酸化バリウムと液中で反応させ、水酸化リチウム溶液を得る水酸化工程と、陽イオン交換樹脂及び/又はキレート樹脂を用いて、前記水酸化リチウム溶液中のバリウムイオンを除去するバリウム除去工程と、バリウム除去工程を経た水酸化リチウム溶液で水酸化リチウムを析出させる晶析工程とを含む、水酸化リチウムの製造方法。 - 前記バリウム除去工程で、前記陽イオン交換樹脂及び/又はキレート樹脂と接触させる際の前記水酸化リチウム溶液のpHを9以上とする、請求項1に記載の水酸化リチウムの製造方法。
- 前記バリウム除去工程で、前記水酸化リチウム溶液を前記陽イオン交換樹脂及び/又はキレート樹脂に通す際の空間速度(SV)を5~20とする請求項1又は2に記載の水酸化リチウムの製造方法。
- 前記バリウム除去工程で、官能基としてカルボキシル基を持つ弱酸性陽イオン交換樹脂を用いる、請求項1~3のいずれか一項に記載の水酸化リチウムの製造方法。
- 前記硫酸リチウムを硫酸リチウム溶液とし、
前記硫酸リチウム溶液が、焙焼後のリチウムイオン二次電池廃棄物中のリチウムを水又は酸性溶液で溶解させてリチウム溶解液を得るリチウム溶解工程と、リチウム溶解液から溶媒によりリチウムイオンを抽出するとともに該リチウムイオンを逆抽出するリチウム濃縮工程とを含む処理で得られたものである請求項1~4のいずれか一項に記載の水酸化リチウムの製造方法。 - 前記リチウム濃縮工程で、溶媒にリチウムを抽出した後、当該溶媒をリチウム溶液でスクラビングし、スクラビングした後の溶媒から、リチウムイオンを逆抽出する請求項5に記載の水酸化リチウムの製造方法。
- リチウムイオン二次電池の製造に用いる水酸化リチウムを製造する、請求項1~6のいずれか一項に記載の水酸化リチウムの製造方法。
- 前記水酸化工程で、前記水酸化バリウムを水酸化バリウム溶液とし、当該水酸化バリウム溶液を前記硫酸リチウムと接触させる、請求項1~7のいずれか一項に記載の水酸化リチウムの製造方法。
- 前記水酸化バリウム溶液が飽和水溶液である、請求項8に記載の水酸化リチウムの製造方法。
- 前記水酸化工程で、前記水酸化バリウム溶液を、40℃~100℃の液温で前記硫酸リチウムと接触させる請求項8又は9に記載の水酸化リチウムの製造方法。
- 炭酸リチウムから水酸化リチウムを製造する方法であって、
前記炭酸リチウムを水酸化カルシウムと液中で反応させ、水酸化リチウム溶液を得る水酸化工程と、陽イオン交換樹脂及び/又はキレート樹脂を用いて、前記水酸化リチウム溶液中のカルシウムイオンを除去するカルシウム除去工程と、カルシウム除去工程を経た水酸化リチウム溶液で水酸化リチウムを析出させる晶析工程とを含む、水酸化リチウムの製造方法。 - 前記カルシウム除去工程で、前記陽イオン交換樹脂及び/又はキレート樹脂と接触させる際の前記水酸化リチウム溶液のpHを9以上とする、請求項11に記載の水酸化リチウムの製造方法。
- 前記カルシウム除去工程で、前記水酸化リチウム溶液を前記陽イオン交換樹脂及び/又はキレート樹脂に通す際の空間速度(SV)を5~20とする請求項11又は12に記載の水酸化リチウムの製造方法。
- 前記カルシウム除去工程で、官能基としてカルボキシル基を持つ弱酸性陽イオン交換樹脂を用いる、請求項11~13のいずれか一項に記載の水酸化リチウムの製造方法。
- 前記炭酸リチウムが、焙焼後のリチウムイオン二次電池廃棄物中のリチウムを水又は酸性溶液で溶解させてリチウム溶解液を得るリチウム溶解工程と、リチウム溶解液のリチウムイオンを濃縮するリチウム濃縮工程とを含む処理で得られたものである請求項11~14のいずれか一項に記載の水酸化リチウムの製造方法。
- リチウムイオン二次電池の製造に用いる水酸化リチウムを製造する、請求項11~15のいずれか一項に記載の水酸化リチウムの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/918,787 US20230132311A1 (en) | 2020-04-21 | 2021-04-21 | Method for producing lithium hydroxide |
KR1020227029210A KR102707582B1 (ko) | 2020-04-21 | 2021-04-21 | 수산화리튬의 제조 방법 |
EP21792875.3A EP4140952A4 (en) | 2020-04-21 | 2021-04-21 | PROCESS FOR PRODUCING LITHIUM HYDROXIDE |
CN202180014067.9A CN115087621A (zh) | 2020-04-21 | 2021-04-21 | 氢氧化锂的制造方法 |
CA3173751A CA3173751A1 (en) | 2020-04-21 | 2021-04-21 | Method for producing lithium hydroxide |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020075634A JP7303777B2 (ja) | 2020-04-21 | 2020-04-21 | 水酸化リチウムの製造方法 |
JP2020-075635 | 2020-04-21 | ||
JP2020-075634 | 2020-04-21 | ||
JP2020075635A JP2021172537A (ja) | 2020-04-21 | 2020-04-21 | 水酸化リチウムの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021215486A1 true WO2021215486A1 (ja) | 2021-10-28 |
Family
ID=78269200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/016223 WO2021215486A1 (ja) | 2020-04-21 | 2021-04-21 | 水酸化リチウムの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230132311A1 (ja) |
EP (1) | EP4140952A4 (ja) |
KR (1) | KR102707582B1 (ja) |
CN (1) | CN115087621A (ja) |
CA (1) | CA3173751A1 (ja) |
WO (1) | WO2021215486A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7100211B1 (ja) | 2022-01-05 | 2022-07-12 | Jx金属株式会社 | リチウムイオン電池廃棄物の金属回収方法 |
JP7100217B1 (ja) | 2022-01-05 | 2022-07-12 | Jx金属株式会社 | リチウムイオン電池廃棄物の金属回収方法 |
CN115286014A (zh) * | 2022-08-15 | 2022-11-04 | 江苏昌吉利新能源科技有限公司 | 一种通过回收废锂基润滑脂制备高纯氢氧化锂的方法 |
WO2023132297A1 (en) * | 2022-01-05 | 2023-07-13 | Jx Nippon Mining & Metals Corporation | Method for recovering metals from lithium ion battery waste |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024202908A1 (en) * | 2023-03-30 | 2024-10-03 | Jx Metals Circular Solutions Co., Ltd | Method for recovering metals |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009046390A (ja) * | 2008-10-24 | 2009-03-05 | Nippon Chem Ind Co Ltd | 高純度炭酸リチウムの製造方法 |
JP2009270188A (ja) | 2008-05-07 | 2009-11-19 | Kee:Kk | 高純度水酸化リチウムの製造方法 |
JP2010180439A (ja) | 2009-02-04 | 2010-08-19 | Sumitomo Metal Mining Co Ltd | 硫酸酸性水溶液からのニッケル回収方法 |
JP2011032151A (ja) * | 2009-08-04 | 2011-02-17 | Kee:Kk | 炭酸リチウムの水酸化リチウムへの転換方法 |
JP2011031232A (ja) | 2009-08-04 | 2011-02-17 | Kee:Kk | 水酸化リチウムの製造方法 |
JP2014162982A (ja) | 2013-02-27 | 2014-09-08 | Jx Nippon Mining & Metals Corp | 金属混合溶液からの金属の分離回収方法 |
KR20160002578A (ko) * | 2014-06-30 | 2016-01-08 | 재단법인 포항산업과학연구원 | 수산화리튬의 제조 방법 |
JP2019026916A (ja) | 2017-08-02 | 2019-02-21 | Jx金属株式会社 | リチウムイオン二次電池スクラップからのリチウムの回収方法 |
JP2019026531A (ja) | 2017-08-02 | 2019-02-21 | Jx金属株式会社 | リチウム化合物の溶解方法および、炭酸リチウムの製造方法 |
JP2019099901A (ja) * | 2017-12-05 | 2019-06-24 | ティーエムシー株式会社 | リチウム含有水溶液からリチウムを回収する方法 |
JP2019178395A (ja) * | 2018-03-30 | 2019-10-17 | Jx金属株式会社 | リチウムイオン電池スクラップからのリチウムの回収方法 |
JP2019530795A (ja) * | 2016-10-31 | 2019-10-24 | 湖南金源新材料股▲ふん▼有限公司 | 電池廃棄物による硫酸ニッケル、硫酸マンガン、硫酸リチウム、硫酸コバルト及び四酸化三コバルトの製造方法 |
JP2020164969A (ja) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | リチウム濃縮方法及び、水酸化リチウムの製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107128954B (zh) * | 2017-03-01 | 2018-10-16 | 衢州永东化工有限公司 | 一种生产电池级氢氧化锂的方法 |
CN107285345A (zh) * | 2017-07-17 | 2017-10-24 | 中国恩菲工程技术有限公司 | 制备单水氢氧化锂的系统 |
KR102354730B1 (ko) * | 2017-08-02 | 2022-02-09 | 제이엑스금속주식회사 | 리튬 화합물의 용해 방법 및, 탄산리튬의 제조 방법, 그리고, 리튬 이온 이차 전지 스크랩으로부터의 리튬의 회수 방법 |
CN108658099A (zh) * | 2018-05-24 | 2018-10-16 | 白银中天化工有限责任公司 | 一种电池级单水氢氧化锂提纯工艺 |
JP7115123B2 (ja) * | 2018-08-02 | 2022-08-09 | 住友金属鉱山株式会社 | リチウムの精製方法 |
-
2021
- 2021-04-21 CA CA3173751A patent/CA3173751A1/en active Pending
- 2021-04-21 EP EP21792875.3A patent/EP4140952A4/en active Pending
- 2021-04-21 WO PCT/JP2021/016223 patent/WO2021215486A1/ja unknown
- 2021-04-21 CN CN202180014067.9A patent/CN115087621A/zh active Pending
- 2021-04-21 US US17/918,787 patent/US20230132311A1/en active Pending
- 2021-04-21 KR KR1020227029210A patent/KR102707582B1/ko active IP Right Grant
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009270188A (ja) | 2008-05-07 | 2009-11-19 | Kee:Kk | 高純度水酸化リチウムの製造方法 |
JP2009046390A (ja) * | 2008-10-24 | 2009-03-05 | Nippon Chem Ind Co Ltd | 高純度炭酸リチウムの製造方法 |
JP2010180439A (ja) | 2009-02-04 | 2010-08-19 | Sumitomo Metal Mining Co Ltd | 硫酸酸性水溶液からのニッケル回収方法 |
US20110135547A1 (en) | 2009-02-04 | 2011-06-09 | Sumitomo Metal Mining Co., Ltd. | Method for recovering nickel from sulfuric acid aqueous solution |
JP2011032151A (ja) * | 2009-08-04 | 2011-02-17 | Kee:Kk | 炭酸リチウムの水酸化リチウムへの転換方法 |
JP2011031232A (ja) | 2009-08-04 | 2011-02-17 | Kee:Kk | 水酸化リチウムの製造方法 |
JP2014162982A (ja) | 2013-02-27 | 2014-09-08 | Jx Nippon Mining & Metals Corp | 金属混合溶液からの金属の分離回収方法 |
KR20160002578A (ko) * | 2014-06-30 | 2016-01-08 | 재단법인 포항산업과학연구원 | 수산화리튬의 제조 방법 |
JP2019530795A (ja) * | 2016-10-31 | 2019-10-24 | 湖南金源新材料股▲ふん▼有限公司 | 電池廃棄物による硫酸ニッケル、硫酸マンガン、硫酸リチウム、硫酸コバルト及び四酸化三コバルトの製造方法 |
JP2019026916A (ja) | 2017-08-02 | 2019-02-21 | Jx金属株式会社 | リチウムイオン二次電池スクラップからのリチウムの回収方法 |
JP2019026531A (ja) | 2017-08-02 | 2019-02-21 | Jx金属株式会社 | リチウム化合物の溶解方法および、炭酸リチウムの製造方法 |
JP2019099901A (ja) * | 2017-12-05 | 2019-06-24 | ティーエムシー株式会社 | リチウム含有水溶液からリチウムを回収する方法 |
JP2019178395A (ja) * | 2018-03-30 | 2019-10-17 | Jx金属株式会社 | リチウムイオン電池スクラップからのリチウムの回収方法 |
JP2020164969A (ja) * | 2019-03-29 | 2020-10-08 | Jx金属株式会社 | リチウム濃縮方法及び、水酸化リチウムの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4140952A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7100211B1 (ja) | 2022-01-05 | 2022-07-12 | Jx金属株式会社 | リチウムイオン電池廃棄物の金属回収方法 |
JP7100217B1 (ja) | 2022-01-05 | 2022-07-12 | Jx金属株式会社 | リチウムイオン電池廃棄物の金属回収方法 |
WO2023132297A1 (en) * | 2022-01-05 | 2023-07-13 | Jx Nippon Mining & Metals Corporation | Method for recovering metals from lithium ion battery waste |
JP2023100237A (ja) * | 2022-01-05 | 2023-07-18 | Jx金属株式会社 | リチウムイオン電池廃棄物の金属回収方法 |
JP2023100197A (ja) * | 2022-01-05 | 2023-07-18 | Jx金属株式会社 | リチウムイオン電池廃棄物の金属回収方法 |
EP4335821A3 (en) * | 2022-01-05 | 2024-06-26 | JX Metals Corporation | Method for recovering metals from lithium ion battery waste |
EP4339158A3 (en) * | 2022-01-05 | 2024-07-03 | JX Metals Corporation | Method for recovering metals from lithium ion battery waste |
CN115286014A (zh) * | 2022-08-15 | 2022-11-04 | 江苏昌吉利新能源科技有限公司 | 一种通过回收废锂基润滑脂制备高纯氢氧化锂的方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4140952A4 (en) | 2024-05-15 |
CN115087621A (zh) | 2022-09-20 |
KR102707582B1 (ko) | 2024-09-20 |
KR20220132578A (ko) | 2022-09-30 |
US20230132311A1 (en) | 2023-04-27 |
CA3173751A1 (en) | 2021-10-28 |
EP4140952A1 (en) | 2023-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021215486A1 (ja) | 水酸化リチウムの製造方法 | |
JP2021172537A (ja) | 水酸化リチウムの製造方法 | |
US20230087180A1 (en) | Preparation of lithium carbonate from lithium chloride containing brines | |
JP6714226B2 (ja) | 電池廃棄物による硫酸ニッケル、硫酸マンガン、硫酸リチウム、硫酸コバルト及び四酸化三コバルトの製造方法 | |
JP7303777B2 (ja) | 水酸化リチウムの製造方法 | |
CN112553647A (zh) | 从卤水产生氢氧化锂单水合物的方法 | |
US20210079496A1 (en) | Method for the recovery of lithium | |
JP2019099901A (ja) | リチウム含有水溶液からリチウムを回収する方法 | |
AU2011376865A1 (en) | Process for producing lithium carbonate from concentrated lithium brine | |
US20230019776A1 (en) | Ion exchange system and method for conversion of aqueous lithium solution | |
JP7158332B2 (ja) | リチウム濃縮方法及び、水酸化リチウムの製造方法 | |
JP7558647B2 (ja) | 水酸化リチウムの製造方法 | |
JP6986997B2 (ja) | 炭酸リチウムの製造方法及び、炭酸リチウム | |
EP2412675A1 (en) | Process for isolating vanadium | |
TWI811993B (zh) | 硫酸鈷之製造方法 | |
CN113443639B (zh) | 一种电子级氢氧化钾的制备工艺 | |
WO2023054258A1 (ja) | 水酸化リチウムの製造方法 | |
JP2022191115A (ja) | 硫酸コバルトの製造方法 | |
KR102670694B1 (ko) | 공정개선을 통한 탄산리튬으로부터 수산화리튬의 고효율 제조방법 | |
JP7156491B1 (ja) | 硫酸コバルトの製造方法 | |
JP6989840B2 (ja) | リン酸回収方法 | |
WO2023074442A1 (ja) | リチウム含有溶液の製造方法および水酸化リチウムの製造方法 | |
JP2024535568A (ja) | 金属回収方法 | |
JP2022108703A (ja) | 硫酸コバルトの製造方法 | |
JP2023076987A (ja) | 硫酸コバルトの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21792875 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227029210 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3173751 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021792875 Country of ref document: EP Effective date: 20221121 |