WO2021215418A1 - 熱間プレス成形品の製造方法及び熱間プレス成形品 - Google Patents
熱間プレス成形品の製造方法及び熱間プレス成形品 Download PDFInfo
- Publication number
- WO2021215418A1 WO2021215418A1 PCT/JP2021/015950 JP2021015950W WO2021215418A1 WO 2021215418 A1 WO2021215418 A1 WO 2021215418A1 JP 2021015950 W JP2021015950 W JP 2021015950W WO 2021215418 A1 WO2021215418 A1 WO 2021215418A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- die
- steel sheet
- mold
- molding
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 239000010410 layer Substances 0.000 claims abstract description 259
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 204
- 239000010959 steel Substances 0.000 claims abstract description 204
- 229910052751 metal Inorganic materials 0.000 claims abstract description 96
- 239000002184 metal Substances 0.000 claims abstract description 96
- 238000007747 plating Methods 0.000 claims abstract description 79
- 238000010438 heat treatment Methods 0.000 claims abstract description 69
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 56
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 56
- 239000011247 coating layer Substances 0.000 claims abstract description 52
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 36
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 33
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 32
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 31
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 30
- 238000000465 moulding Methods 0.000 claims description 118
- 239000010936 titanium Substances 0.000 description 42
- 239000011701 zinc Substances 0.000 description 37
- 239000000463 material Substances 0.000 description 36
- 239000010408 film Substances 0.000 description 32
- 230000000694 effects Effects 0.000 description 24
- 238000007731 hot pressing Methods 0.000 description 21
- 239000011651 chromium Substances 0.000 description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 238000005240 physical vapour deposition Methods 0.000 description 17
- 239000000126 substance Substances 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- 239000010955 niobium Substances 0.000 description 13
- 229910045601 alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 239000012298 atmosphere Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 239000012535 impurity Substances 0.000 description 11
- 239000010949 copper Substances 0.000 description 10
- 239000011572 manganese Substances 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 229910052761 rare earth metal Inorganic materials 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 238000009835 boiling Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000005121 nitriding Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 238000000137 annealing Methods 0.000 description 7
- 229910052787 antimony Inorganic materials 0.000 description 7
- 239000010953 base metal Substances 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 229910000734 martensite Inorganic materials 0.000 description 7
- 150000004767 nitrides Chemical class 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- 229910018084 Al-Fe Inorganic materials 0.000 description 6
- 229910018192 Al—Fe Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000010960 cold rolled steel Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000007670 refining Methods 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000007733 ion plating Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910000997 High-speed steel Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052775 Thulium Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910002090 carbon oxide Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- -1 composed of C Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/208—Deep-drawing by heating the blank or deep-drawing associated with heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/012—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/201—Work-pieces; preparation of the work-pieces, e.g. lubricating, coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D35/00—Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
- B21D35/002—Processes combined with methods covered by groups B21D1/00 - B21D31/00
- B21D35/005—Processes combined with methods covered by groups B21D1/00 - B21D31/00 characterized by the material of the blank or the workpiece
- B21D35/007—Layered blanks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/88—Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0068—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
- C23C2/16—Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/1275—Next to Group VIII or IB metal-base component
- Y10T428/12757—Fe
Definitions
- the present invention relates to a method for producing a hot press molded product and a hot press molded product.
- the present application claims priority based on Japanese Patent Application No. 2020-074701 filed in Japan on April 20, 2020, the contents of which are incorporated herein by reference.
- a material having high mechanical strength tends to have low shape freezing property in molding processing such as bending processing, and when processing into a complicated shape, the processing itself becomes difficult.
- hot stamping method also called a hot stamping method, a hot stamping method, a high temperature pressing method, a warm pressing method, or a die quenching method
- the material to be molded is once heated to a high temperature (for example, 850 ° C. or higher) to be austenitic, and the material softened by heating is pressed and molded, or at the same time as molding.
- a high-strength processed product can be obtained after molding by transforming martensite by rapidly cooling with a mold.
- the material is once heated to a high temperature to be softened, and then pressed in a softened state, so that the material can be easily pressed. Therefore, by this hot press working, a press-molded product having both good shape freezing property and high mechanical strength can be obtained.
- the mechanical strength of the press-molded product can be increased by the quenching effect of cooling after molding.
- An example of a method of suppressing such a decrease in productivity is a method of coating a steel sheet.
- various materials such as an organic material and an inorganic material are used.
- zinc-based plating having a sacrificial anticorrosion effect is often applied to steel sheets from the viewpoint of their anticorrosion performance and steel sheet production technology.
- the heating temperature in hot press working is often higher than the Ac3 transformation point of steel in order to obtain a quenching effect, for example, the heating temperature is about 800 to 1000 ° C.
- this heating temperature is higher than the decomposition temperature of organic materials and the boiling point of metal materials such as Zn. Therefore, when a steel sheet coated with an organic material or a Zn-based metal material is heated for hot pressing, the plating layer on the surface of the steel sheet evaporates, which may cause significant deterioration of the surface properties.
- Al-based metals having a higher boiling point than organic material coatings or Zn-based metal coatings are preferably coated.
- a steel sheet coated with an Al-based metal a so-called Al-plated steel sheet, it is possible to prevent scale from adhering to the surface of the steel sheet, and steps such as a descaling step are not required, so that productivity is improved.
- the Al-based metal coating also has a rust preventive effect, the corrosion resistance after painting is also improved.
- Patent Document 1 describes a method of using an Al-plated steel sheet obtained by applying an Al-based metal coating to a steel having a predetermined steel component for hot press working.
- Patent Document 2 discloses a plated steel sheet for hot pressing in which a zinc-based metal soap film is provided on the surface of the plated steel sheet body on the Al plating layer side. Patent Document 2 discloses that the occurrence of wear on the sliding surface of a hot press die (die die) during hot press molding is suppressed.
- Patent Document 2 the material and the die mold rub against each other during hot molding, and a part of the metal soap film is peeled off, causing wear on the mold, and hot pressing is continued many times. As the process progressed, the surface irregularities of the worn mold may increase. In this case, there are problems such as galling on the material side after press molding and deterioration of slidability.
- Patent Document 3 discloses a technique in which a hard film is applied to a mold used for hot pressing of a galvanized steel sheet. Further, in Patent Documents 4, 5 and 6, in a hot press of an aluminum or zinc-plated steel sheet or an Al-plated steel sheet having a zinc compound or a metallic zinc layer as the outermost layer on the Al-plated layer, hard nitrides or the like are obtained. A technique for using a die mold coated with a PVD film is disclosed.
- press-molded products used in automobiles and the like are also required to have a low glossiness and a beautiful appearance. This is because if the glossiness is high, the molded product is considered to have many defects, which may lead to a decrease in corrosion resistance.
- the vertical wall portion is usually rubbed against the mold to increase the glossiness and deteriorate the quality of appearance.
- the technique of using a mold in which a hard film such as a nitride layer or PVD is applied to the surface of the mold described in Patent Documents 3 to 6 is used, the surface of the mold is hard, so that the surface of the material is flawed. There is a problem that it is easy to receive.
- the material is quickly press-molded to the bottom dead center in a high temperature state, so that the material surface is in a high temperature softened state, and the material surface is further pressed by the mold.
- the problem is that it is susceptible to flaws and the surface appearance of the press-molded product is impaired.
- the present invention has been made in view of the above problems.
- the present invention provides a method for manufacturing a hot press-molded product and a hot press molding having an excellent surface appearance in order to obtain a hot press-molded product having an excellent surface appearance (appearance) while suppressing wear of a die.
- the purpose is to provide goods.
- a metal layer containing at least one metal of Mg, Ca, V, Ti and Zn or a metal oxide containing oxides of Mg, Ca, V, Ti and Zn is formed on the surface of the Al-plated steel plate to be molded. It was found that by forming a layer or a mixed layer of the metal layer and the metal oxide layer, the gloss of the molded product can be suppressed to a low level, and a hot press molded product having an excellent surface appearance can be obtained. ..
- the hardness of the hard layer is adjusted. This means that it is important to control the molding start temperature and the average moving speed of the die mold.
- the formula of Tm ⁇ 850- (V / 4)-(HV Die / 100) that defines the upper limit of the molding start temperature is as follows: 1) The surface hardness of the Al-plated steel sheet gradually softens as the temperature rises and flaws occur. It is important to keep the molding start temperature below a certain temperature because it is easily affected. 2) Al-plated steel sheets are deheated and cooled by contact with the die mold during molding.
- the coefficients (1/4, 1/40, 1/100) in the equation (1) are the Vickers hardness and molding speed derived from the experience of the inventors so far and the newly obtained experimental results. It is a value to convert the influence of.
- the present invention has been made based on the above findings.
- the gist of the present invention is as follows.
- the method for producing a hot press-formed product according to one aspect of the present invention includes a heating step of heating an Al-plated steel plate to 850 ° C. to 1000 ° C., and after the heating step, the Al using a die die. It has a forming step of forming a plated steel plate to obtain a hot press-formed product, and the Al-plated steel plate includes a base metal steel plate, an Al plating layer formed on the surface of the base metal steel plate, and the Al plating.
- the coating layer is a metal layer containing at least one metal of Mg, Ca, V, Ti, Zn, Mg, Ca, V, Ti, Zn.
- a metal oxide layer containing one or more kinds of oxides, or a mixed layer containing the metal layer and the metal oxide layer, and the die mold has a hard layer on the surface and has the hard layer.
- the HV Die which is the surface hardness of the die mold at the position, is HV1500 or more and HV3800 or less, and the temperature of the Al-plated steel plate at the start of molding in the molding step is Tm in unit ° C., which is lower than the start of molding.
- the Tm and the V satisfy the following equation (1).
- Method for producing hot press-molded product according to the above [1] The HV Die , the Tm, and the V may satisfy the following equation (2).
- the thickness of the coating layer may be 0.3 to 10.0 ⁇ m.
- the surface temperature of the die mold at the start of molding is 5 ° C. or higher and 180 ° C. or lower. May be good.
- the hot press-formed product according to another aspect of the present invention is made of an Al-plated steel sheet having an Al-plated layer, and has a Gs60 ° of 30 or less on the surface, which is the glossiness specified in JIS Z 8741: 1997. Is.
- the Gs60 ° may be 25 or less.
- the hot press-molded product according to the above [5] or [6] has a coating layer on the surface of the Al plating layer, and the coating layer is at least one of Mg, Ca, V, Ti, and Zn.
- the thickness of the coating layer may be 0.3 to 10.0 ⁇ m.
- a method for manufacturing a hot press-molded product and a hot press having an excellent surface appearance for obtaining a hot press-molded product having an excellent surface appearance while suppressing wear of a die can be obtained.
- a method for producing a hot press-molded product according to an embodiment of the present invention (a method for producing a hot press-molded product according to the present embodiment) and a hot press-molded product according to an embodiment of the present invention (in the present embodiment).
- the hot press molded product will be described.
- the surface and the mold are rubbed and peeled off, and the peeled alloy layer and aluminum oxide work like abrasive powder, strongly scratching the surface plating of the Al-plated steel plate.
- the mold coated with a hard film On the surface of the mold coated with a hard film, if the hardness is low, the mold will be worn, and if it is high, the surface of the aluminum-plated steel sheet rubbed by the mold (for example, in the vertical wall) will be scratched.
- the temperature of the aluminum-plated steel sheet is removed by the contacting die during molding after the start of molding, and the temperature of the aluminum-plated steel sheet decreases, but when the molding speed is high, the heat is removed. Is suppressed, and the surface of the aluminum-plated steel sheet is more susceptible to scratches due to rubbing against the mold while the temperature of the aluminum-plated steel sheet is maintained at a higher temperature.
- the present inventors cover the Al-plated surface with a layer of a metal having a low hardness or a metal oxide having a low hardness, a molding temperature T (° C.), and a molding speed V (mm / s).
- a molding temperature T ° C.
- V molding speed
- the method for producing a hot press-molded product according to the present embodiment includes a heating step of heating an Al-plated steel sheet to 850 ° C. to 1000 ° C., and after the heating step, the Al-plated steel sheet is molded using a die mold. It has a molding process for obtaining a hot press molded product. The molding step is performed within, for example, 30 seconds after leaving the heating furnace. Further, the Al-plated steel plate has a base metal steel plate, an Al-plated layer formed on the surface of the base metal steel plate, and a coating layer formed on the surface of the Al-plated layer.
- the die mold has a hard layer on the surface of the mold that is in contact with the Al-plated steel sheet in the molding process, and the HV Die, which is the surface hardness of the die mold at the position having the hard layer, is HV1500 or more and HV3800. It is as follows.
- the temperature (molding temperature) of the Al-plated steel sheet at the start of molding is Tm in units of ° C.
- the average moving speed (molding speed) of the die mold from the start of molding to the bottom dead point is mm / unit.
- the steel sheet is drawn into the die hole of the die die and formed.
- the edge of the die hole also referred to as the die shoulder portion or the R portion
- the steel plate shrinks and the flange is deformed when it is pulled into the die hole.
- the thickness increases as the steel plate approaches the edge of the die hole (die shoulder).
- a high surface pressure is applied to the steel sheet.
- wrinkles occur in the steel sheet as the steel sheet approaches the edge of the die hole (die shoulder portion) in the shrinking flange deformation.
- the wrinkled steel sheet in the vicinity of the die hole comes into contact with the die mold, and the contacted portion becomes a high surface pressure.
- the plated steel sheet is softened by heating to a high temperature. Then, using a die, the softened plated steel sheet is pressed at a forming temperature of Tm ° C. and a forming rate of V mm / s to form the sheet, and then rapidly cooled by heat removal by holding the sheet in the die.
- the subsequent pressing can be easily performed by softening the plated steel sheet once.
- the press-molded product that has been hot-press-molded is hardened by heating and cooling, and becomes a molded product having a Vickers hardness of HV400 or more (load 1 kg-f (9.8 N)).
- the Al-plated steel sheet is heated to 850 ° C. to 1000 ° C.
- the heating temperature is 3 points or more of Ac of the base steel sheet
- the Al-plated steel sheet (base material portion) can be austenitic and the formability can be improved in the molding step of the next step.
- the base steel sheet can be transformed into martensite by rapid cooling with a die immediately after that, and as a result, high tensile strength is obtained as a hot press-formed product. You can get it.
- the heating temperature is set to 850 ° C. or higher.
- the heating temperature is preferably 890 ° C. or higher, more preferably 910 ° C. or higher, and further preferably 925 ° C. or higher.
- the heating temperature exceeds 1000 ° C., the surface of the aluminum plating (Al plating) is oxidized too much and the wear of the mold increases. In addition, it also leads to press molding at a high temperature, the plating surface becomes soft, and the material side is also susceptible to flaws from the mold. Therefore, the heating temperature is set to 1000 ° C. or lower.
- the heating temperature is preferably 980 ° C. or lower, more preferably 960 ° C. or lower.
- a heating method in addition to radiant heating by a normal electric furnace or a radiant tube furnace, a heating method by infrared heating, energization heating, induction heating or the like can be adopted.
- the heating is performed in an atmosphere, a nitrogen atmosphere, and a combustion gas atmosphere, and the dew point of the atmosphere is not particularly limited, but the heating atmosphere preferably contains 10% by volume or more of oxygen. By containing 10% by volume or more of oxygen, evaporation of the coating layer on the Al plating surface can be suppressed. More preferably, it is 20% by volume or more, which is the same as the atmospheric atmosphere.
- the rate of temperature rise by heating is preferably 7.0 ° C./s or less.
- the boiling point of Al as the coating layer formed on the surface of the Al-plated layer (Chemical Handbook Revised 2nd Edition, Basic Edition I (Author) : Japan Chemistry Society, Publisher: Maruzen Co., Ltd., Publication date 1975); Zn (same: boiling point 907 ° C), Mg (same: boiling point 1107 ° C), Ca (same: boiling point), which is relatively lower than 2467 ° C). 1487 ° C.) may be included. Therefore, the rapid temperature rise promotes evaporation of the coating layer, which may deteriorate the appearance of the parts after pressing.
- the coating layer is oxidized by oxygen in the atmosphere, and excessive evaporation is suppressed.
- the rate of temperature rise is more preferably 6.0 ° C./s or less.
- a K-type thermocouple is spot-welded to a steel plate, connected, and the plate temperature from the initial heating temperature Ts (° C) to 850 ° C is measured and heated. It is obtained by dividing by the time t (seconds) from the plate temperature Ts to reaching 850 ° C. after the start. As an equation, the rate of temperature rise can be obtained at (850-Ts) / t.
- the Al-plated steel sheet used in the heating step has a base steel sheet, an Al-plated layer formed on the surface of the base steel sheet, and a coating layer formed on the surface of the Al-plated layer.
- This coating layer is a metal layer containing at least one metal of Mg, Ca, V, Ti, Zn, a metal oxide layer containing one or more oxides of Mg, Ca, V, Ti, Zn, or a metal oxide layer. It is a mixed layer containing the metal layer and the metal oxide layer. Specifically, for example, as shown in FIG.
- the Al-plated steel sheet 1 is provided with Al-plated layers 3A and 3B on both sides (upper surface and lower surface) of the base steel sheet 2, and the Al-plated layers 3A and 3B, respectively.
- a coating layer (metal layer, metal oxide layer or a mixed layer thereof) 4A and 4B are provided on the surface as the outermost layer.
- the base steel sheet 2 (steel plate before plating) has, for example, mechanical strength such as high mechanical strength (for example, tensile strength, yield point, elongation, drawing, hardness, impact value, fatigue strength, creep strength, etc.).
- a steel sheet having (meaning various properties related to deformation and fracture) is preferable.
- the chemical composition of the base steel sheet 2 is not limited, but the chemical composition of the base steel sheet 2 is preferable when high mechanical strength is realized.
- An example of the composition is as follows.
- the notation of% regarding the chemical composition means mass% unless otherwise specified.
- the chemical composition of the base metal steel plate 2 is, for example, in mass%, C: 0.18% or more and 0.50% or less, Si: 2.00% or less, Mn: 0.30% or more and 5.00% or less.
- Cr 2.00% or less
- P 0.100% or less
- S 0.100% or less
- N 0.0100% or less
- Al 0.500% or less
- B 0.0002% or more 0. It contains 0100% or less
- V 2.00% or less
- Nb 0.
- Ni 5.00% or less
- Cu 3.00% or less
- Co 3.00% or less
- Sn 0.100% or less
- Sb 0.100% or less
- Mg 0.0050 % Or less
- Ca 0.0050% or less
- REM 0.0070% or less
- O 0.0070% or less
- the balance is composed of Fe and impurities.
- the hot press molded product obtained by the hot stamping method is required to have a high strength of, for example, 1000 MPa or more.
- the structure (metal structure) of the hot press molded product is required to be transformed into a structure mainly composed of martensite by quenching after hot stamping.
- the C content is preferably 0.18% or more.
- the C content is more preferably 0.20% or more, still more preferably 0.22% or more.
- the C content is preferably 0.50% or less.
- the C content is more preferably 0.40% or less, still more preferably 0.35% or less.
- the lower limit of the silicon (Si) content is not particularly limited and may be 0%, but when the silicon (Si) content is less than 0.01%, the hardenability and fatigue characteristics are inferior. Therefore, the Si content is preferably 0.01% or more.
- the Si content is more preferably 0.05% or more, further preferably 0.10% or more, still more preferably 0.30% or more.
- Si is an element that is more easily oxidized than Fe (easy oxidation element)
- the Si content exceeds 2.00% in the continuous annealing plating line, a stable Si-based oxide film will be formed during the annealing treatment.
- the Si content is preferably 2.00% or less.
- the Si content is more preferably 1.00% or less, still more preferably 0.80% or less, still more preferably 0.70% or less or 0.60% or less.
- Manganese (Mn) is an element effective for improving the hardenability of a steel sheet and further suppressing hot brittleness caused by S inevitably mixed. If the Mn content is less than 0.30%, the hardenability may decrease and the strength may be insufficient. Therefore, the Mn content is preferably 0.30% or more. The Mn content is more preferably 0.50% or more, further preferably 0.80% or more, still more preferably 1.00% or more. On the other hand, when the Mn content exceeds 5.00%, the impact characteristics after quenching are deteriorated. Therefore, the Mn content is preferably 5.00% or less. The Mn content is more preferably 4.00% or less, further preferably 3.00% or less, still more preferably 2.50% or less, or 2.00% or less.
- the lower limit of the chromium (Cr) content is not particularly limited and may be 0%, but chromium (Cr) is an element having an effect of enhancing the hardenability of the steel sheet. If the Cr content is less than 0.001%, the above-mentioned hardenability improving effect may not be obtained and the strength may be insufficient. Therefore, the Cr content is preferably 0.001% or more. The Cr content is more preferably 0.05% or more, still more preferably 0.10% or more.
- the Cr content is preferably 2.00% or less.
- the Cr content is more preferably 1.60% or less, further preferably 1.40% or less, still more preferably 1.00% or less.
- B Boron (B: 0.0002% or more and 0.0100% or less) Boron (B) is a useful element from the viewpoint of hardenability, and when it is contained in an amount of 0.0002% or more, the hardenability is improved. Therefore, the B content is preferably 0.0002% or more. The B content is more preferably 0.0005% or more, still more preferably 0.0010% or more. On the other hand, when the B content exceeds 0.0100%, the above-mentioned hardenability improving effect is saturated, and the manufacturability is lowered due to casting defects and cracks during hot rolling. Therefore, the B content is preferably 0.0100% or less. The B content is more preferably 0.0080% or less, further preferably 0.0070% or less, still more preferably 0.0060% or less.
- Al 0.500% or less
- Aluminum (Al) is contained in steel as a deoxidizer. Since Al is an element that is more easily oxidized than Fe, if the Al content exceeds 0.500%, a stable Al-based oxide film will be formed on the surface of the base steel sheet during the annealing treatment, and it will melt. There is a concern that the adhesiveness of Al plating will be hindered and non-plating will occur. Therefore, the Al content is preferably 0.500% or less.
- the Al content is more preferably 0.200% or less, further preferably 0.100% or less, still more preferably 0.080% or less.
- the lower limit of the Al content is not particularly limited and may be 0%, but it is not economical to set the Al content to less than 0.001% due to the refining limit. Therefore, the Al content may be 0.001% or more.
- Phosphorus (P) is an element contained as an impurity.
- P is also a solid solution strengthening element, and is also an element that can increase the strength of a steel sheet at a relatively low cost.
- the P content is preferably 0.100% or less.
- the P content is more preferably 0.050% or less, still more preferably 0.020% or less.
- the lower limit of the P content is not particularly limited and may be 0%, but it is not economical to set the P content to less than 0.001% due to the refining limit. Therefore, the P content may be 0.001% or more.
- S Sulfur
- MnS is an element contained as an impurity and becomes an inclusion in steel as MnS.
- S content is preferably 0.100% or less.
- the S content is more preferably 0.050% or less, further preferably 0.010% or less, still more preferably 0.005% or less.
- the lower limit of the S content is not particularly limited and may be 0%, but the S content is less than 0.0001%. If you do, it is not economical due to the refining limit. Therefore, the S content may be 0.0001% or more.
- N Nitrogen (N: 0.0100% or less)
- Nitrogen (N) is an element contained as an impurity, and from the viewpoint of stabilizing the characteristics, it is preferable to fix it with Ti, Nb, Al or the like (to make it a compound).
- the N content is preferably 0.0100% or less.
- the N content is more preferably 0.0080% or less.
- the N content is preferably low and may be 0%, but it is not economical to set the N content to less than 0.0010% due to the refining limit. Therefore, the N content may be 0.0010% or more.
- the base steel sheet 2 of the Al-plated steel sheet 1 may contain the above elements and may have a chemical composition in which the balance is composed of Fe and impurities. However, in order to further improve the characteristics, the base steel sheet 2 is described below.
- the lower limit of the content of the optional element of the base steel sheet 2 described below, which may further contain the element (arbitrary element) shown in the above, is 0%.
- the lower limit of the tungsten (W) and molybdenum (Mo) contents is not particularly limited and may be 0%, but W and Mo are each useful elements from the viewpoint of hardenability and are 0.01%. By containing the above, the effect of improving hardenability is exhibited. When the effect is obtained, it is preferable that the W content and the Mo content are each 0.01% or more. The W content and Mo content are more preferably 0.05% or more, respectively. On the other hand, when the contents of W and Mo each exceed 3.00%, the above effect is saturated and the cost also increases. Therefore, the W content and Mo content are preferably 3.00% or less. The W content and Mo content are more preferably 1.00% or less, respectively.
- V 2.00% or less
- the lower limit of the vanadium (V) content is not particularly limited and may be 0%, but V is a useful element from the viewpoint of hardenability, and by containing 0.01% or more, the hardenability It exerts the effect of improving. Therefore, when the effect is obtained, the V content is preferably 0.01% or more. The V content is more preferably 0.05% or more. On the other hand, when the V content exceeds 2.00%, the above effect is saturated and the cost also increases. Therefore, the V content is preferably 2.00% or less. The V content is more preferably 1.00% or less.
- the lower limit of the titanium (Ti) content is not particularly limited and may be 0%, but Ti is an element effective for fixing N and may be contained. In order to obtain this effect, it is preferable to contain Ti in an amount of about 3.4 times or more the N content in mass%. Even if the N content is reduced, it is often about 10 ppm (0.001%), so the Ti content is preferably 0.005% or more. The Ti content is more preferably 0.010% or more. On the other hand, if the Ti content is excessive, the hardenability is lowered and the strength is lowered. Such a decrease in hardenability and strength becomes remarkable when the Ti content exceeds 0.500%. Therefore, the Ti content is preferably 0.500% or less. The Ti content is more preferably 0.100% or less.
- the lower limit of the niobium (Nb) content is not particularly limited and may be 0%, but Nb is an element effective for fixing N and may be contained. In order to obtain this effect, it is preferable that Nb is contained in an amount of about 6.6 times or more the N content in mass%. Since the N content is often about 10 ppm (0.001%) even if it is reduced, the Nb content is preferably 0.006% or more. The Nb content is more preferably 0.010% or more. On the other hand, when the Nb content becomes excessive, the hardenability is lowered and the strength is lowered. Since such a decrease in hardenability and strength becomes remarkable when the Nb content exceeds 0.500%, it is preferable to set the Nb content to 0.500% or less. The Nb content is more preferably 0.100% or less.
- the chemical composition of the base steel sheet 2 contains Ni, Cu, Co, Sn, Sb, Mg, Ca, REM, O, etc., as long as the content is within the upper limit shown below. The effect in the embodiment is not impaired.
- Ni 5.00% or less
- the lower limit of the nickel (Ni) content is not particularly limited and may be 0%, but Ni is an element useful for improving low temperature toughness leading to improvement of impact resistance in addition to hardenability. ..
- the Ni content is preferably 0.01% or more.
- the Ni content exceeds 5.00%, the above-mentioned effects are saturated and the cost increases. Therefore, the Ni content is preferably 5.00% or less.
- the lower limit of the content of each of copper (Cu) and cobalt (Co) is not particularly limited and may be 0%, but both Cu and Co are useful for improving toughness in addition to hardenability. Element. When this effect is obtained, it is preferable that the Cu content and the Co content are each 0.01% or more. On the other hand, when the contents of each of Cu and Co exceed 3.00%, the above-mentioned effects are saturated and the cost increases. Further, the excessive content of Cu and Co both causes deterioration of the slab properties and generation of cracks and flaws during hot rolling. Therefore, it is preferable that the Cu content and the Co content are each 3.00% or less.
- the lower limit of the tin (Sn) and antimony (Sb) contents is not particularly limited and may be 0%, respectively, but both Sn and Sb are effective in improving the wettability and adhesion of the plating. Element. When this effect is obtained, it is preferable to contain at least one of Sn and Sb in an amount of 0.001% or more. On the other hand, when at least one of Sn and Sb is contained in an amount of more than 0.100%, flaws are likely to occur during production and the toughness is lowered. Therefore, the Sn content and the Sb content are preferably 0.100% or less, respectively.
- Mg, Ca 0.0050% or less
- Both Mg and Ca are elements contained as impurities, and the lower limits of the Mg content and the Ca content are not particularly limited and may be 0% respectively.
- the Mg content and the Ca content are preferably 0.0050% or less, respectively.
- REM and O are not essential elements and are contained as impurities in steel, for example.
- REM and O are elements that cause deterioration of the characteristics of the steel sheet, such as forming an oxide and serving as a starting point of fracture.
- oxides existing in the vicinity of the surface of the steel sheet may cause surface defects and deteriorate the appearance quality. Therefore, the lower the REM content and the O content, the better.
- the REM content and the O content are preferably 0.0070% or less, respectively.
- the lower limit of the REM and O contents is not particularly limited and may be 0%, but since the lower limit of the refining is 0.0005% in actual operation, the REM content and the O content are substantially. The lower limit is 0.0005%, respectively.
- the Al-plated layers 3A and 3B are plating layers having a composition of mass% and containing 50% or more of Al.
- the element other than Al is not particularly limited, but Si may be positively contained for the following reasons.
- an Al—Fe—Si alloy layer is formed at the interface between the Al plating layers 3A and 3B and the base steel plate 2 (base steel), and the brittleness formed during hot-dip plating.
- the formation of the Al—Fe alloy layer can be suppressed.
- the Si content is less than 3% by mass, the Al—Fe alloy layer grows thick at the stage of Al plating, and cracking of the plating layer is promoted during processing, which may adversely affect the corrosion resistance. be.
- the Si content exceeds 15% by mass, on the contrary, the volume fraction of the layer containing Si increases, and the processability and corrosion resistance of the plating layer may decrease.
- the Si content in the Al plating layer is preferably 3 to 15%.
- a method for producing an Al-plated steel sheet by processing the Al-plated layer into the base steel sheet a slab whose chemical composition has been adjusted by ordinary ironmaking and steelmaking is subjected to ordinary hot-rolling, pickling, and cold-rolling steps. Then, a method of manufacturing by continuous annealing of the Zenzimer type, immersion in a hot-dip Al plating bath, and adjustment of the Al plating layer thickness by wiping can be mentioned.
- the Al plating layers 3A and 3B prevent corrosion of the steel sheet when used as an automobile part. Further, in the Al-plated layers 3A and 3B, when the Al-plated steel sheet 1 is processed by hot press molding, scale (iron oxide) may be generated on the surface of the base material even if it is heated to a high temperature. No. By preventing the generation of scale by the Al plating layers 3A and 3B, the step of removing the scale, the surface cleaning step, the surface treatment step and the like can be omitted, and the productivity of the hot press molded product is improved. Iron oxide, which is a scale, grows hard and coarsely when heated, which also causes wear of the mold.
- the Al plating layers 3A and 3B have higher boiling points and melting points than the plating layers made of other metal-based materials (for example, Zn-based materials). Therefore, when molding by hot press molding, the Al plating layer does not easily evaporate, and hot press molding at a high temperature becomes possible. Therefore, the moldability in hot press molding is further improved, and molding becomes easy.
- other metal-based materials for example, Zn-based materials
- an Al oxide film having a thickness of 0.01 to 0.1 ⁇ m may be present on the surface of the Al plating layer of the Al plated steel sheet 1.
- the thickness of this Al oxide film may increase to 0.01 to 0.5 ⁇ m after hot pressing.
- the thickness of the Al oxide film increases after the hot press because it is oxidized by oxygen and water vapor in the atmosphere after the hot press molding.
- the formation of the Al oxide film and the increase in thickness are suppressed by the formation of a metal layer or a metal oxide layer on the surface of the Al plating layer.
- an Al oxide film is formed on the outermost surface side.
- a reaction occurs at the interface between the metal layer and / or the metal oxide layer and the Al plating layer, and a metal oxide containing Al is formed in the metal oxide layer after hot pressing. May occur.
- Al in the Al plating layer can be alloyed with Fe in the steel sheet by hot press forming and during hot press molding. Therefore, the Al plating layer is not always formed of a single layer having a constant component composition, but includes a partially alloyed layer (alloy layer). Since the alloy layer is hard and brittle, it causes wear of the mold during hot forming. However, by forming a metal layer or a metal oxide layer on the surface, it is possible to prevent the alloy layer from coming into contact with the mold and wearing the mold. Further, the flaws that the alloy layer receives from the mold are suppressed, and the deterioration of the appearance is suppressed.
- the thickness of the Al plating layers 3A and 3B is preferably 10 ⁇ m or more and 60 ⁇ m or less. If the thickness of the Al plating layers 3A and 3B is less than 10 ⁇ m, an iron scale is formed on the base steel plate 2 and wear of the mold is promoted.
- the thickness of the Al plating layers 3A and 3B is more preferably 12 ⁇ m or more, and even more preferably 15 ⁇ m or more.
- the adhesion amount of the Al plating layers 3A and 3B exceeds 60 ⁇ m, the plating receives a large shear stress and a large amount of Al plating is peeled off. In this case, the die mold is scratched and the mold wear is promoted.
- the thickness of the Al plating layers 3A and 3B is preferably 55 ⁇ m or less, more preferably 50 ⁇ m or less.
- the thickness of the Al plating layers 3A and 3B can be determined by collecting a sample so that the cross section in the thickness direction can be observed, polishing the cross section, and then observing the cross section with an optical microscope at a magnification of 1,000 times. can.
- a metal layer, a metal oxide layer, or a mixed layer thereof is used as the outermost coating layers 4A and 4B on the Al-plated layers 3A and 3B.
- the coating layers 4A and 4B are very important for suppressing wear of the mold and obtaining a beautiful appearance of the hot press molded product.
- one of the factors that causes the plating to be scratched is the presence of a hard Al—Fe alloy layer and aluminum oxide formed on the Al-plated surface during hot stamp heating. Can be mentioned.
- At least Mg, Ca, V, Ti, and Zn are provided so that the surfaces of the Al plating layers 3A and 3B cover the surfaces of the Al plating layers 3A and 3B.
- a metal layer containing one kind of metal, a metal oxide layer containing one or more of oxides of these metals, or a mixed layer containing a metal layer and a metal oxide layer is formed. The reason why the metal layer and the metal oxide layer are effective is not clear, but it is possible that a substance having a low Mohs hardness (Chemical Handbook Basic Edition p475, Maruzen Co., Ltd., published in 1966) is effective.
- Mg (2.0), Ca (1.5), and Zn (2.5) are all lower than Al (Mohs hardness 2.9).
- this alone does not always sort out wear.
- a metal its melting point may have an effect, and in the case of an oxide, its size may also have an effect.
- the metal oxide contained in the coating layer referred to in the present embodiment includes not only the oxide of the metal but also the hydroxide and the carbon oxide of the metal.
- the metal layer contained in the coating layer the metal constituting the metal oxide layer, and the metal oxide, metal Zn, Mg, or ZnO, MgO is preferable from the viewpoint of cost and availability.
- the coating layer always contains any one of a metal layer, a metal oxide layer containing one or more oxides of Mg, Ca, V, and Ti, or a mixed layer thereof.
- the metal layer, the metal oxide layer, or the mixed layer containing the metal layer and the metal oxide layer contains at least one element of Mg, Ca, V, Ti, and Zn in a total of 8% by mass.
- the coating layer may be a mixed layer of a metal layer and a metal oxide layer in which a part of the metal layer is an oxide.
- the metal layer or the metal oxide layer may be a layer made of the above-mentioned metal or metal oxide, but may be a layer in which a metal or metal oxide and a resin are mixed. Since the resin plays the role of a binder, the metal layer and the metal oxide layer can be firmly adhered to the Al plating surface by mixing the resin.
- the resin referred to here means a compound mainly composed of C, or a compound containing H, O, N, S and mainly composed of C. Even if the resin is mixed, it is easily burned in a heating furnace and released as carbon dioxide, and disappears from the coating layer after press molding, so that the influence on the characteristics of the metal layer and the metal oxide layer is small.
- the Al-plated steel sheet 1 is heated in an atmosphere containing oxygen or steam. Therefore, when hot press molding is performed after leaving the heating furnace, and after hot pressing (when it becomes a hot press molded product), a part of the metal that was not an oxide before hot pressing Alternatively, all of them are oxidized, and the metal layer becomes a mixed layer of a metal layer and a metal oxide layer or a metal oxide layer.
- the metal Zn layer is partially or wholly a ZnO layer.
- the method for forming the coating layers 4A and 4B is not particularly limited, but for example, if it is a metal layer, it can be formed on an Al-plated steel sheet by deposition by an electroplating method or vapor deposition by a physical vapor deposition method.
- a metal oxide layer for example, a method of forming a metal layer formed on an Al-plated steel plate by heating it in the air for a short time to oxidize it, or, for example, a commercially available metal oxide layer.
- a film can be formed by dispersing the sol in water, coating the aqueous dispersion on the Al-plated steel plate, and drying the water. At this time, the resin can be mixed with the aqueous dispersion.
- the thickness of the coating layers 4A and 4B is preferably 0.3 ⁇ m or more. It is more preferably 0.4 ⁇ m or more, and even more preferably 0.5 ⁇ m or more. On the other hand, if the thickness of the coating layer exceeds 10.0 ⁇ m, the appearance may be impaired by the metal layer or the metal oxide layer itself. Therefore, the thickness of the coating layer is preferably 10.0 ⁇ m or less.
- the thickness of the coating layer is more preferably 7.0 ⁇ m or less, still more preferably 5.0 ⁇ m or less.
- the thickness of the coating layers 4A and 4B (metal layer and / or metal oxide layer) is 1,000 to 30,000 times higher than that of the coating layers 4A and 4B (metal layer and / or metal oxide layer) by using SEM (Scanning Electron Microscope) from the cross section in the thickness direction after embedding and polishing with a resin. It can be measured by observing at magnification.
- the coating layers 4A and 4B which are the metal layer, the metal oxide layer, or a mixed layer containing the metal layer and the metal oxide layer, have a content of at least one element of Mg, Ca, V, Ti, and Zn.
- the heated Al-plated steel sheet 1 is molded using a die mold after the heating step is completed to obtain a hot press-formed product. If the time from the completion of the heating process to the start of molding exceeds 30 seconds, the base material of the austenitic steel sheet by heating may be ferrite-transformed, and a high-strength martensite structure may not be obtained after pressing. be. Therefore, it is preferable that the time from the completion of the heating step to the start of molding is within 30 seconds. Since it is preferable to mold as soon as possible, it is not necessary to limit the lower limit, but considering the equipment restrictions such as the transfer speed from the heating furnace to the press machine and the lowering speed of the die mold of the press machine, 3 seconds. The above may be applied. However, the time until molding is intended to secure the temperature of the Al-plated steel sheet.
- die mold It is not necessary to use a die mold used for molding, which is not particularly limited in use. Examples thereof include general tool steels represented by JIS SKD11 and SKD61 (JIS G 4404: 2015), high-speed steels, and the like.
- the die mold used in this embodiment has a hard layer on the surface of the mold in contact with the Al-plated steel sheet.
- the HV Die which is the surface hardness of the die mold at the position where the hard layer is provided, is HV1500 or more and HV3800 or less. This hard layer is very important for suppressing the wear of the die and obtaining a beautiful appearance of the hot press molded product.
- the hard layer is preferably formed with a thickness of 1.0 ⁇ m or more.
- the upper limit of the thickness of the hard layer is preferably 20 ⁇ m or less in order to suppress an excessive increase in internal stress and a decrease in toughness of the hard layer.
- the surface in the direction parallel to the relative movement direction for example, the surface of the R portion of the die is in contact with the vertical wall portion of the hot press molded product, and as another example, the wrinkle holding flange portion of the die.
- the surface of the crown of the bead can be mentioned. Hardness of the hard layer of the die mold When the HV Die is HV1500 or higher, wear on the sliding surface of the die mold (the surface that slides in contact with the steel plate) during hot press molding is suppressed. Will be done. If it is less than HV1500, the mold will wear.
- the materials of SKD11 and SKD61 are HV500 to HV1000, and generally, when nitriding is performed, they are HV600 to HV1400, and the mold wears. Therefore, the HV Die is set to HV1500 or higher. It is preferably HV2000 or higher, and more preferably HV2500 or higher. There is no upper limit to the surface hardness, but if it is excessively hard, the hard layer becomes brittle, and a phenomenon occurs in which the hard layer and the base material of the die mold are peeled off. Further, the die scratches the surface of the Al-plated steel sheet during hot pressing, which deteriorates the appearance. Therefore, the HV Die is set to HV3800 or less.
- the HV Die is preferably HV3600 or less, and more preferably HV3400 or less.
- the surface hardness HV Die of the die mold measures the test load between 10 g-f and 25 g-f (0.098N to 0.245N) in the Vickers hardness test method specified by JIS Z 2244: 2009. It is the hardness to be done.
- HM-211 manufactured by Mitutoyo Co., Ltd. can be used as a micro Vickers testing machine for measuring hardness.
- the points at which the Micro Vickers indenter is struck are separated by 30 ⁇ m or more to make two or more points, and the diagonal length of the indentation is determined by SEM observation.
- the material and forming method of the hard layer formed in the die mold are not limited as long as it satisfies HV Die ⁇ HV1500.
- a hard coating layer (deposited film) by a physical vapor deposition method (PVD method) can be mentioned, and specifically, a nitride film, a carbonized film, or a carbonized film mainly composed of one or more selected from Ti, Cr, and Al.
- Nitriding film, diamond-like carbon (DLC) film, and the like can be mentioned.
- the vapor-deposited film as the hard coating layer is preferably a film containing at least one of Ti and Cr.
- the metal element portion is any one or two or more kinds of nitrides, carbides, and carbonitrides selected from Ti, Cr, and Al. Further, it is more preferable that the metal element portion is any one of a nitride, carbide and carbon nitride mainly composed of Ti or Cr.
- the hardness HV Die of the PVD coating containing Ti, Cr, and Al as the metal element portion is between 2000 and 4000. When diamond-like carbon is used, the hardness HV Die of the PVD coating is between 5000 and 8000.
- a method of forming a thin-film deposition film by physical vapor deposition can be mentioned.
- the type of physical vapor deposition method for example, an arc ion plating method and a sputtering method are desirable.
- a chemical vapor deposition (CVD) method may be used.
- CVD chemical vapor deposition
- the reaction gas is a vapor source of the metal component (N 2 gas, CH 4 gas, etc.), temperature, and adjust the gas pressure, by applying a Bias voltage, mother die tool
- a PVD film can be formed on the surface of the material.
- nitrided layer Before forming a hard coating layer (deposited film) by a physical vapor deposition method (PVD method) on a die mold, it is preferable to form an underlying nitrided layer (a surface hardening treatment using diffusion called nitriding treatment). ..
- the nitrided layer is generally less than HV1500, and is not included in the hard layer of the mold required for wear resistance in this embodiment.
- the nitrided layer is formed by subjecting the base metal of the die mold to, for example, an ion nitriding treatment, that is, an ion nitriding treatment in an N 2 and H 2 gas atmosphere having a predetermined concentration at a temperature adjusted.
- a compound layer such as a nitride layer called a white layer formed by the nitriding treatment causes a decrease in adhesion. Therefore, the compound layer is prevented from being formed by controlling the treatment conditions, or is removed by polishing or the like. Is desirable.
- the temperature of the Al-plated steel sheet 1 at the start of molding is Tm in units of ° C., and the average of the die dies from the start of molding to the bottom dead point.
- V the moving speed
- molding is performed so that Tm and V satisfy the following equation (1) according to the HV Die. 800- (HV Die / 40) ⁇ Tm ⁇ 850- (V / 4)-(HV Die / 100) ... (1) Equation
- This (1) equation suppresses mold wear and is hot press molded. It is very important to get a beautiful appearance of the product.
- the temperature (molding temperature: Tm) (° C.) of the Al-plated steel sheet 1 at the start of molding must be ((850-V / 4)-(HV Die / 100)) or less.
- Tm molding temperature
- the surfaces of the Al-plated layers 3A and 3B on the surface of the Al-plated steel sheet 1 become soft and are damaged by rubbing against the mold. This facilitates the appearance of the hot-press molded product after molding (the quality of the appearance deteriorates).
- the average moving speed (molding speed: V) of the die mold from the start of molding to the arrival of the bottom dead point is from the start of molding until the movement of both the Al-plated steel plate 1 and the die mold stops (generally below).
- V It can be obtained from the S / t relationship.
- the reason why the appearance of the hot press molded product depends on the average moving speed V (molding speed) of the die mold during molding is that the higher the molding speed, the more the heat removal of the steel plate due to contact with the mold is suppressed, and the steel plate This is because the mold is easily impacted by a high temperature and is easily damaged, and the appearance is easily deteriorated.
- the start of molding means the timing at which the moving die mold comes into contact with the Al-plated steel sheet.
- Tm and V satisfy the equation (2).
- Tm the temperature of the Al-plated steel sheet at the start of molding (molding temperature: Tm) ( ° C.) is preferably ((850-V / 2)-(HV Die / 50)) or less.
- the molding temperature Tm (° C.) is set to (800- (HV Die / 40)) or higher.
- Molding temperature Tm (° C.) is preferably, (805- (HV Die / 40 )) or more, more preferably (810- (HV Die / 40) ) or more.
- the average moving speed V (mm / s) of the die mold from the start of molding to the bottom dead point is not particularly limited as long as the formulas (1) and (2) are satisfied, but the molded product comes into contact with the die mold.
- the average moving speed (molding speed) is preferably 95 mm / s or less, and more preferably 85 mm / s or less.
- the average moving speed is preferably 15 mm / s or more, and more preferably 25 mm / s or more.
- the average moving speed V (mm / s) is the time (seconds) from the start of molding (when the mold operates) to the bottom dead center (when the movement of the mold and the press-molded product stops). It can be obtained by dividing the moving distance (mm).
- the temperature (molding temperature: Tm) (° C.) of the Al-plated steel sheet 1 at the start of molding it can be measured by attaching a thermocouple to the Al-plated steel sheet 1 or a radiation thermometer.
- Tm melting temperature
- the molding temperature Tm (° C.) is not particularly limited as long as the formulas (1) and (2) are satisfied, but from the viewpoint of martensitic transformation of the material during hot pressing and increasing the mechanical strength of the press-molded product, 550.
- the molding temperature Tm (° C.) is preferably 850 ° C. or lower, more preferably 830 ° C. or lower, and further preferably 810 ° C. or lower.
- the surface temperature of the die mold at the start of molding is preferably 180 ° C. or lower. If the mold side is scratched, unevenness will occur, the scratches on the material side will increase, and the appearance will deteriorate. It can be suppressed stably.
- the surface temperature of the die mold at the start of molding is more preferably 170 ° C. or lower, still more preferably 160 ° C. or lower.
- the lower limit of the surface temperature of the die mold is not particularly set, but is preferably 5 ° C. or higher.
- the mold temperature rises due to contact with the Al-plated steel plate heated during molding, and when molding is performed continuously, the mold heats up and the mold temperature gradually rises. 20 ° C. or higher is more preferable, and 50 ° C. or higher is even more preferable.
- the surface temperature of the die mold can be measured by attaching a thermocouple to the mold by spot welding.
- the moving distance of the die mold is preferably 150 mm or less.
- the moving distance referred to here is from the first contact between the die die and the Al-plated steel sheet during hot press forming until the die die stops lowering at the end of forming (generally also referred to as the bottom dead point). It means the moving distance of the die mold in the direction in which the die molds (upper mold and lower mold) move relative to each other.
- the moving distance of the die mold becomes longer, the distance between the Al-plated steel sheet and the mold rubbing against each other and sliding becomes longer.
- the peeled plated Al—Fe alloy layer and Al oxide start to work like an abrasive, and the appearance gradually deteriorates. If the moving distance exceeds 150 mm, the appearance will be significantly deteriorated.
- the moving distance of the die mold is more preferably 130 mm or less, still more preferably 110 mm or less.
- the metal material of the base material of the die mold is not particularly specified, and known metal materials such as cold die steel, hot die steel, high speed steel and cemented carbide can be used.
- improved metal grades that have been proposed as steel grades that can be used in molds including standard metal grades (steel grades) by JIS and the like, can also be applied.
- the hot press-formed product according to the present embodiment is a hot-press-formed product made of an Al-plated steel sheet having an Al-plated layer, and has a glossiness (Gs60 °) specified in JIS Z 8741: 1997 on the surface. It is 30 or less.
- the hot press-molded product according to the present embodiment can be obtained by the above-described method for producing a hot press-molded product according to the present embodiment.
- the hot press-formed product does not necessarily mean only the molded product formed by the hot press accompanied by the deformation of the steel plate shape of the Al-plated steel sheet, but the Al-plated steel sheet that has been slid after heating.
- the hot press molded product according to the present embodiment has a metal layer made of at least one metal of Mg, Ca, V, Ti, and Zn on the surface of the sliding surface that comes into contact with the die mold at least during hot pressing.
- An Al-plated steel plate on which a metal oxide layer composed of oxides of Mg, Ca, V, Ti, and Zn or a mixed layer composed of the metal and the metal oxide layer is formed is formed by hot pressing. Obtained by. Therefore, on the surface of the hot press molded product according to the present embodiment, the glossiness (Gs60 °) specified in JIS Z 8741: 1997 is 30 or less, and the surface appearance is excellent.
- the glossiness is preferably 25 or less.
- the glossiness may be measured at the vertical wall portion (sliding portion) where the appearance is most likely to deteriorate.
- At least one metal layer of Ca, V, Ti, Zn, Mg, Ca, V, Ti is formed on the surface of the Al plating layer. It is preferable to have at least one metal oxide layer of Zn, or a coating layer composed of a mixed layer of the metal layer and the metal oxide layer. Further, the thickness of the coating layer is preferably 0.3 to 10.0 ⁇ m.
- Example 1 Both sides of a cold-rolled steel sheet having a chemical composition (unit mass%, balance Fe and impurities) shown in Table 1 and having a thickness of 1.4 mm were Al-plated by the Zenzimer method.
- the annealing temperature before immersion in the plating bath was about 750 ° C.
- the Al plating bath contained 9.5% by mass of Si, and also contained Fe eluted from the cold-rolled steel sheet, and the balance was Al.
- the thickness (basis weight) of the Al plating layer after plating was adjusted by a gas wiping method, and the thickness (basis weight) of the Al plating layers formed on both sides of the cold-rolled steel sheet was set to 20 ⁇ m and then cooled.
- Example 2 Both sides of a cold-rolled steel sheet having a chemical composition (unit mass%, balance Fe and impurities) shown in Table 2 and having a thickness of 1.4 mm were Al-plated by the Zenzimer method.
- the annealing temperature before immersion in the plating bath was about 750 ° C.
- the Al plating bath contained 9.5% by mass of Si, and Fe eluted from the cold-rolled steel sheet, and the balance was Al.
- the thickness (basis weight) of the Al plating layer after plating was adjusted by a gas wiping method, and the thickness (basis weight) of the Al plating layers formed on both sides of the cold-rolled steel sheet was set to 30 ⁇ m, and then cooled.
- a metal layer of Mg, Ca, V, Ti and Zn, a metal layer of Zn and Mg mixed, and a metal layer of a mixture of Zn and V were formed by the ion plating method.
- the oxide layer and the metal are formed by forming metal layers on both sides of the Al plating layer and then heating them in the air at 700 ° C. for 4 minutes to oxidize a part of the metal layer.
- a mixed layer with the oxide layer was formed on the Al plating layer.
- the total content of at least one element of Mg, Ca, V, Ti and Zn was 8% by mass or more.
- Al-plated steel sheets A36 to A49 shown in Tables 3-1 to 3-4 were obtained.
- Al-plated steel sheets A50 and A51 in which no metal layer or metal oxide layer is applied on the Al-plated layer were also prepared.
- a sliding test was performed on the Al-plated steel sheets (A1 to A51) thus obtained by using a die mold.
- This test is a test that imitates sliding between the die die and the Al-plated steel sheet on a surface parallel to the direction in which the die die moves during hot pressing.
- the apparatus shown in FIG. 2 was used, and after heating to the heating temperatures shown in Tables 3-1 to 3-4, the sliding test was sandwiched between die molds with a pressing force of 3 kN and shown in Tables 3-1 to 3-4. Molding was performed by sliding a distance of 100 mm at a molding temperature of Tm (° C.) and a molding speed of V (mm / s). The time from the completion of heating to the start of molding was set to 3 to 30 seconds. The atmosphere during heating was the atmospheric environment.
- the die mold used for the sliding test was prepared as follows.
- a steel equivalent to SKD61 (JIS G 4404: 2015) is prepared as a tool steel, roughly processed into a shape similar to the die mold shown in 6A and 6B of FIG. 2 in an annealed state, and heated at 1180 ° C. in a vacuum. After quenching by cooling with nitrogen gas rather than holding, the hardness was adjusted to HV600 by tempering at 540 to 580 ° C. After that, finishing processing was performed to obtain base materials for a plurality of die dies. Some of the substrates were ion-nitrided under the following conditions.
- ion nitriding treatment was performed in an atmosphere having a flow rate ratio of 5% N 2 (remaining portion: H 2 ) under the condition of holding at 500 ° C. for 5 hours. Then, each test surface was finished by polishing to form a nitride layer.
- the hardness of the surface after forming the nitrided layer was HV1200.
- a hard layer was formed at a portion where the nitrided layer was formed.
- the hard layer was a PVD film, and plasma cleaning was performed with a thermal filament by applying a Bias voltage in an Ar atmosphere using an arc ion plating apparatus.
- a PVD film was formed at a Bias voltage using various metal targets as an evaporation source of metal components and N 2 gas as a reaction gas as a base and CH 4 gas as needed.
- the hardness of the surface of the die mold after PVD film formation was adjusted to HV2500, HV3200, or HV7000.
- Tables 3-1 to 3-4 show the respective molding conditions, the surface hardness of the die mold used, and the surface temperature at the start of molding.
- the appearance of the Al-plated steel sheet after the sliding test was evaluated.
- a metal layer was applied to the surface, it was oxidized by heating on the hot press molded product to form an oxide layer.
- the sliding portion of the hot press molded product is beautiful (glossiness Gs60 ° is 30 or less) while improving the wear resistance of the mold. Parts can be obtained.
- the heating temperature was too low in A3.
- the heating temperature of A4 was too high. Therefore, defects were generated in the Al-plated steel sheet after hot pressing, the glossiness increased to more than 30, and the appearance deteriorated.
- the molding temperature was too low.
- the molding temperatures of A8, A13, and A14 were too high. Therefore, the appearance of the Al-plated steel sheet after hot pressing deteriorated.
- the molding temperature was too low, so that the mold was also worn.
- the hardness of the mold surface was too low, and in A15 and A16, the molding temperature was too low. As a result, the mold was worn and the appearance of the Al-plated steel sheet after hot pressing was also deteriorated. In A21, the hardness of the mold surface was too high. As a result, the Al-plated steel sheet after hot pressing was flawed and its appearance was deteriorated. Since A50 and A51 do not have a metal layer or a metal oxide layer on the Al plating, flaws occur on the surface of the Al plated steel sheet after hot pressing, and the appearance is deteriorated. The hardness of the mold of A51 was low, and the mold was worn.
- a method for manufacturing a hot press-molded product and a hot press-molded product having an excellent surface appearance for obtaining a hot press-molded product having an excellent surface appearance while suppressing wear of a die Is obtained.
- Al-plated steel sheet 2 Base steel sheet 3A Al-plated layer (upper surface side) 3B Al plating layer (bottom side) 4A coating layer (upper surface side) 4B coating layer (lower surface side) 5 Heating furnace for Al-plated steel sheet 6A Die mold (upper mold in contact with the upper surface of Al-plated steel sheet) 6B die mold (lower mold in contact with the lower surface of Al-plated steel sheet)
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本願は、2020年04月20日に、日本に出願された特願2020-074701号に基づき優先権を主張し、その内容をここに援用する。
よって、鋼板の機械的強度を高めることにより、以前使用されていた鋼板より薄くしても機械的強度を維持又は高めることが可能な鋼板について、研究開発が行われている。このような鋼板に対する要請は、自動車製造業のみならず、様々な製造業でも同様になされている。
Al系の金属被覆を施した鋼板、いわゆるAlめっき鋼板を用いることにより、鋼板表面にスケールが付着することを防止でき、デスケーリング工程などの工程が不要となるため生産性が向上する。また、Al系の金属被覆には防錆効果もあるので塗装後の耐食性も向上する。
例えば、特許文献3には、亜鉛めっき鋼板の熱間プレスに用いられる金型に硬質皮膜が施された技術が開示されている。また、特許文献4、5及び6にはアルミニウムや亜鉛のめっき鋼板、またはAlめっき層の上に最表層として亜鉛化合物や金属亜鉛層を有するAlめっき鋼板の熱間プレスにおいて、窒化物などの硬質なPVD皮膜が施されたダイ金型を利用する技術が開示されている。
一方で、自動車等に用いられるプレス成形品には、光沢度が低く美麗な外観を有することも求められる。光沢度が高いと成形品に疵が多いと見なされ、耐食性の低下などを招く心配があるからである。しかしながら、ホットスタンプにおいては、通常、縦壁部は金型と擦られて光沢度が増加し、外観の品質が低下する。特許文献3~6に記載された金型の表面に窒化層やPVDなどの硬質皮膜が施された金型を用いる技術を利用した場合、金型の表面が硬質であるため材料表面が疵を受け易いという課題がある。特に、ホットスタンプなどの熱間プレス方法を用いる場合、材料は高温の状態で速やかに下死点までプレス成形されるので、材料表面は高温軟化した状態であり、より一層金型によって材料表面が疵を受け易く、プレス成形品の表面外観が損なわれることが課題であった。
本発明は、金型の摩耗を抑制しつつ、表面外観(外観)に優れた熱間プレス成形品を得るための、熱間プレス成形品の製造方法と、表面外観に優れた熱間プレス成形品とを提供することを目的とする。
800-(HVDie/40)≦Tm≦850-(V/4)-(HVDie/100) ・・・(1)式、
さらに、成形に供するAlめっき鋼板の表面に、Mg、Ca、V、Ti、Znの少なくとも1種の金属を含む金属層または、Mg、Ca、V、Ti、Znの酸化物を含む金属酸化物層、または前記金属層と前記金属酸化物層との混合層を形成することで、成形品の光沢を低く抑えることができ、表面外観に優れた熱間プレス成形品を得られることが分かった。
この(1)式は、金型の表面に耐摩耗性を高める硬質層がある場合において、表面外観に優れた熱間プレス成形品を得るためには、その硬質層の硬さに応じた、成形開始温度、ダイ金型の平均移動速度の制御が重要であることを意味する。
成形開始温度の上限を定めたTm≦850-(V/4)-(HVDie/100)の式は、1)Alめっき鋼板の表面の硬さは温度が高くなることで徐々に軟化し疵を受け易くなるため、成形開始温度をある一定の温度以下に抑制することが重要であること、2)Alめっき鋼板は、成形時、ダイ金型との接触によって抜熱され冷却されるが、成形速度が速いと抜熱が抑制されるので、成形開始温度が同等であっても、成形速度が速いほどAlめっき鋼板の表面はより軟化した状態で加工されることになるので、成形速度に応じて成形開始温度を低くする必要があること、3)その疵の受け易さは、金型表面の硬質層の硬度の影響を受けるので、金型の表面の硬度が高いほど、成形開始温度を低くする必要があること、を意味している。
また、成形開始温度の下限を定めた800-(HVDie/40)≦Tmの式は、成形開始温度が低ければAlめっき鋼板の表面が硬くなり、金型側を疵付け易くなり、金型の耐摩耗性が低下することを意味している。金型の耐摩耗性が低下すれば、金型が受けた疵で金型表面に凹凸が生じ、結果として金型の凸による局部的な応力集中で熱間プレス成形品の表面が疵付けられ、表面外観が低下する。
(1)式中の係数(1/4、1/40、1/100)は、これまでの発明者らの経験と新たに得られた実験結果等とから導出された、ビッカース硬さや成形速度の影響を温度に換算するため値である。
[1]本発明の一態様に係る熱間プレス成形品の製造方法は、Alめっき鋼板を、850℃~1000℃に加熱する加熱工程と、前記加熱工程後、ダイ金型を用いて前記Alめっき鋼板を成形して熱間プレス成形品を得る成形工程と、を有し、前記Alめっき鋼板は、母材鋼板と、前記母材鋼板の表面に形成されたAlめっき層と、前記Alめっき層の表面に形成された被覆層と、を有し、前記被覆層は、Mg、Ca、V、Ti、Znの少なくとも1種の金属を含む金属層、Mg、Ca、V、Ti、Znの1種以上の酸化物を含む金属酸化物層、または前記金属層と前記金属酸化物層とを含む混合層であり、前記ダイ金型は、表面に硬質層を有し、前記硬質層を有する位置での前記ダイ金型の表面硬さであるHVDieがHV1500以上HV3800以下であり、前記成形工程の、成形開始時の前記Alめっき鋼板の温度を単位℃でTm、前記成形開始時から下死点到達時までの前記ダイ金型の平均移動速度を単位mm/sでVとしたとき、前記Tmと前記Vとが下記(1)式を満足する。
800-(HVDie/40)≦Tm≦850-(V/4)-(HVDie/100) ・・・(1)式
[2]上記[1]に記載の熱間プレス成形品の製造方法は、前記HVDie、前記Tm、及び前記Vが、以下(2)式を満足してもよい。
800-(HVDie/40)≦Tm≦850-(V/2)-(HVDie/50) ・・・(2)式
[3]上記[1]または[2]に記載の熱間プレス成形品の製造方法は、前記被覆層の厚みが、0.3~10.0μmであってもよい。
[4]上記[1]~[3]のいずれかに記載の熱間プレス成形品の製造方法は、前記成形開始時の前記ダイ金型の表面温度が、5℃以上180℃以下であってもよい。
[5]本発明の別の態様に係る熱間プレス成形品は、Alめっき層を有するAlめっき鋼板からなり、表面における、JIS Z 8741:1997に規定される光沢度であるGs60°が30以下である。
[6]上記[5]に記載の熱間プレス成形品は、前記Gs60°が25以下であってもよい。
[7]上記[5]または[6]に記載の熱間プレス成形品は、前記Alめっき層の表面に被覆層を有し、前記被覆層はMg、Ca、V、Ti、Znの少なくとも1種の金属からなる金属層、またはMg、Ca、V、Ti、Znの1種以上の酸化物からなる金属酸化物層、または前記金属層と前記金属酸化物層とからなる混合層であってもよい。
[8]上記[7]に記載の熱間プレス成形品は、前記被覆層の厚みが、0.3~10.0μmであってもよい。
本発明者らは、Alめっき(アルミめっき)鋼板が熱間プレス法によって加熱され、直後にプレス成形されるプロセスの場合に、めっきが疵付いて熱間プレス成形品の光沢度が高くなる原因を調査した。その結果、以下の4点が原因であることを突き止めた。
1)加熱後に、Alめっき表面にAlめっき層と母材が合金化反応することで形成される硬質なAl-Fe系の合金層及び/または硬質な酸化アルミが、プレス成形時にAlめっき鋼板の表面と金型とが擦られることで剥がれ、剥がれた合金層と酸化アルミが研磨粉の様に働き、Alめっき鋼板の表面のめっきを強く疵付けること、
2)硬質皮膜を施した金型表面において、硬さが低ければ金型が摩耗し、高ければ逆に金型により擦れたアルミめっき鋼板の表面(例えば縦壁部において)が疵付くこと、
3)加熱直後にプレス成形される場合において、成形開始の温度が高いとアルミめっきが軟質化するため、金型に擦られることでアルミめっき鋼板表面が疵を受けやすくなること、
4)プレス成形される場合において、成形開始後の成形中、アルミめっき鋼板の温度は接触した金型によって抜熱され、アルミめっき鋼板の温度は低下するが、成形速度が速い場合には抜熱が抑制され、アルミめっき鋼板の温度が高温をより維持された状態で金型と擦れ、より一層アルミめっき鋼板の表面が疵を受け易いこと。
本発明者らは、この知見に基づいて、Alめっき表面を、硬度の低い金属、または硬度の低い金属酸化物の層で覆うこと、成形温度T(℃)、成形速度V(mm/s)が、金型の表面硬さHVDieに対して、所定の関係を満足すること、によって課題を解決できることを見出した。
また、前記Alめっき鋼板は、母材鋼板と、前記母材鋼板の表面に形成されたAlめっき層と、前記Alめっき層の表面に形成された被覆層と、を有し、前記被覆層は、Mg、Ca、V、Ti、Znの少なくとも1種の金属を含む金属層または、Mg、Ca、V、Ti、Znの1種以上の酸化物を含む金属酸化物層、または前記金属層と前記金属酸化物層とを含む混合層である。
また、前記ダイ金型は、Alめっき鋼板と成形工程で接する金型表面に硬質層を有し、前記硬質層を有する位置での前記ダイ金型の表面硬さであるHVDieがHV1500以上HV3800以下である。
また、成形工程の、成形開始時の前記Alめっき鋼板の温度(成形温度)を単位℃でTm、成形開始から下死点までの前記ダイ金型の平均移動速度(成形速度)を単位mm/sでVとしたとき、前記Tmと前記Vとが下記(1)式を満足する。
800-(HVDie/40)≦Tm≦850-(V/4)-(HVDie)/100 ・・・(1)式
絞り成形の場合、縮みフランジ変形では鋼板がダイ穴の縁(ダイ肩部)に近づくに従い厚みが増加する。鋼板の厚みが増加すると、鋼板に高い面圧が付与される。
曲げ成形の場合、縮みフランジ変形では鋼板がダイ穴の縁(ダイ肩部)に近づくに従い、鋼板にしわが発生する。鋼板にしわが発生すると、ダイ穴の近傍でしわになった鋼板がダイ金型に接触し、接触した箇所が高面圧になる。
本実施形態に係る熱間プレス成形品の製造方法において、熱間プレス成形では、例えば、必要に応じてブランキング(打ち抜き加工)した後、高温に加熱してめっき鋼板を軟化させる。そして、金型を用いて、軟化しためっき鋼板を成形温度Tm℃、成形速度Vmm/sでプレスして成形し、その後、金型で保持することによる抜熱によって急速冷却する。このように、熱間プレス成形では、めっき鋼板を一旦軟化させることにより、後続するプレスを容易に行うことができる。また、熱間プレス成形されたプレス成形品は、加熱及び冷却により焼入れされ、ビッカース硬さでHV400以上(荷重1kg-f(9.8N))の高い硬度を有する成形品となる。
加熱工程では、Alめっき鋼板を、850℃~1000℃に加熱する。加熱温度を母材鋼板のAc3点以上である850℃以上にすることで、Alめっき鋼板(の母材部)をオーステナイト化させ、次工程の成形工程において成形性を高めることができる。また、Alめっき鋼板を850℃以上に加熱すると、その直後に金型で急速冷却することによって母材鋼板をマルテンサイト変態させることができ、その結果、熱間プレス成形品として高い引張強さを得ることが出来る。金型で急速冷却する前に鋼板温度が下がってしまうと、オーステナイトからフェライトへの変態が進んでしまい、金型で急速冷却しても所望のマルテンサイト変態が得られない。更に、850℃以上に加熱することは、Alめっき鋼板のAlめっき層と母材鋼板との合金化反応を十分進行させ、硬質で耐疵付き性に良好なAl-Fe系合金層を表面に形成させることにも寄与する。加熱温度が850℃未満では金型での冷却前にフェライト変態が開始し、成形品では十分な硬度が得られない場合がある。そのため、加熱温度を850℃以上とする。鋼板温度を成形工程でも高温で保つため、加熱温度は、好ましくは890℃以上、より好ましくは910℃以上、更に好ましくは925℃以上である。
一方、加熱温度が1000℃超になると、アルミめっき(Alめっき)表面の酸化が進み過ぎて金型の摩耗が増加する。また、高温でプレス成形することにも繋がり、めっき表面が軟質になって材料側も金型から疵を受け易くなる。そのため、加熱温度を1000℃以下とする。加熱温度は、好ましくは980℃以下、より好ましくは960℃以下である。
加熱方法としては、通常の電気炉、ラジアントチューブ炉による輻射加熱に加え、赤外線加熱、通電加熱、誘導加熱等による加熱方法を採用することが可能である。加熱は大気雰囲気、窒素雰囲気、燃焼ガス雰囲気で行われ、雰囲気の露点は特段限定されないが、加熱雰囲気は酸素を10体積%以上含有することが好ましい。酸素を10体積%以上含有することで、Alめっき表面上の被覆層の蒸発を抑制することができる。より好ましくは、大気雰囲気と同じ20体積%もしくはそれ以上である。
加熱による昇温速度は、7.0℃/s以下が好ましい。本実施形態に係る熱間プレス成形品の製造方法では、加熱するAlめっき鋼板において、Alめっき層の表面に形成された被覆層として、Alの沸点(化学便覧改訂2版・基礎編I(著者:日本化学会、出版社:丸善株式会社、出版日1975年);2467℃)よりも比較的低いZn(同:沸点907℃)や、Mg(同:沸点1107℃)、Ca(同:沸点1487℃)を含む場合がある。そのため、急激な昇温によって被覆層の蒸発が促進され、プレス後の部品外観が低下する可能性がある。昇温速度を7.0℃/s以下にすることで雰囲気中の酸素により被覆層は酸化され、過度な蒸発が抑制される。昇温速度は、6.0℃/s以下にすることがより好ましい。
昇温速度(℃/s)の求め方としては、鋼板にK型熱電対をスポット溶接して繋げ、加熱初期の温度Ts(℃)から850℃に到達するまでの板温を測定し、加熱開始後に板温Tsから850℃までに到達するまでの時間t(秒)で、除することで求められる。式としては、(850-Ts)/tで昇温速度が求まる。
加熱工程に供されるAlめっき鋼板は、母材鋼板と、母材鋼板の表面に形成されたAlめっき層と、Alめっき層の表面に形成された被覆層とを有する。この被覆層は、Mg、Ca、V、Ti、Znの少なくとも1種の金属を含む金属層または、Mg、Ca、V、Ti、Znの1種以上の酸化物を含む金属酸化物層、または前記金属層と前記金属酸化物層とを含む混合層である。
具体的には、例えば、図1に示されるように、Alめっき鋼板1は、母材鋼板2の両面(上面及び下面)にAlめっき層3A,3Bを備え、かつAlめっき層3A,3Bそれぞれの上に最表層として被覆層(金属層、金属酸化物層またはそれらの混合層)4A,4Bを備える。
すなわち、母材鋼板2の化学組成は、例えば、質量%で、C:0.18%以上0.50%以下、Si:2.00%以下、Mn:0.30%以上5.00%以下、Cr:2.00%以下、P:0.100%以下、S:0.100%以下、N:0.0100%以下、Al:0.500%以下、B:0.0002%以上0.0100%以下、を含有し、必要に応じてさらに、W:3.00%以下、Mo:3.00%以下、V:2.00%以下、Ti:0.500%以下、Nb:0.500%以下、Ni:5.00%以下、Cu:3.00%以下、Co:3.00%以下、Sn:0.100%以下、Sb:0.100%以下、及びMg:0.0050%以下、Ca:0.0050%以下、REM:0.0070%以下、及びO:0.0070%以下の1種以上を含有し、残部がFe及び不純物からなる。
(C:0.18%以上0.50%以下)
ホットスタンプ法で得られる熱間プレス成形品は、例えば1000MPa以上という高強度を有することが求められる。この場合、熱間プレス成形品の組織(金属組織)は、ホットスタンプ後に急冷することでマルテンサイトを主体とする組織に変態させることが要求される。
炭素(C)含有量が0.18%未満では、焼入れ性が低下して強度が不足する。そのため、C含有量は0.18%以上であることが好ましい。C含有量は、より好ましくは0.20%以上、さらに好ましくは0.22%以上である。
一方、C含有量が0.50%を超えると、鋼板の靭性の低下が著しく、加工性が低下する。そのため、C含有量は、0.50%以下とすることが好ましい。C含有量は、より好ましくは0.40%以下、さらに好ましくは0.35%以下である。
ケイ素(Si)含有量の下限は、特に限定するものではなく、0%としてもよいが、ケイ素(Si)が0.01%未満である場合、焼入れ性及び疲労特性が劣る。そのため、Si含有量は0.01%以上であることが好ましい。Si含有量は、より好ましくは0.05%以上、さらに好ましくは0.10%以上、一層好ましくは0.30%以上である。
一方、SiはFeよりも酸化されやすい元素(易酸化性元素)であるため、連続焼鈍めっきラインにおいてSi含有量が2.00%を超えると、焼鈍処理中に、安定なSi系酸化被膜が母材鋼板表面に形成されて、溶融Alめっきの付着性が阻害され、不めっきを生じることが懸念される。そのため、Si含有量は、2.00%以下とすることが好ましい。Si含有量は、より好ましくは1.00%以下であり、さらに好ましくは0.80%以下、一層好ましくは0.70%以下または0.60%以下である。
マンガン(Mn)は、鋼板の焼入れ性を高め、更に、不可避的に混入するSに起因する熱間脆性を抑制するために有効な元素である。Mn含有量が0.30%未満である場合には、焼入れ性が低下して強度が不足する場合がある。そのため、Mn含有量は0.30%以上であることが好ましい。Mn含有量は、より好ましくは0.50%以上、さらに好ましくは0.80%以上、一層好ましくは1.00%以上である。
一方、Mn含有量が5.00%を超える場合には、焼入れ後の衝撃特性が低下する。そのため、Mn含有量は5.00%以下とすることが好ましい。Mn含有量は、より好ましくは4.00%以下、さらに好ましくは3.00%以下、一層好ましくは2.50%以下、または2.00%以下である。
クロム(Cr)含有量の下限は、特に限定するものではなく、0%としてもよいが、クロム(Cr)は、鋼板の焼入れ性を高める効果を奏する元素である。Cr含有量が0.001%未満である場合には、上記のような焼入れ性向上効果を得ることができずに強度が不足する場合がある。そのため、Cr含有量は0.001%以上であることが好ましい。Cr含有量は、より好ましくは、0.05%以上、さらに好ましくは0.10%以上である。
一方、Crは、Feよりも酸化されやすい元素(易酸化性元素)であるため、Cr含有量が2.00%を超える場合には、焼鈍処理中に安定なCr系酸化被膜が母材鋼板表面に形成されてしまい、溶融Alめっきの付着性が阻害されて不めっきを生じることが懸念される。そのため、Cr含有量は、2.00%以下とすることが好ましい。Cr含有量は、より好ましくは1.60%以下、さらに好ましくは1.40%以下、一層好ましくは1.00%以下である。
ホウ素(B)は、焼入れ性の観点から有用な元素であり、0.0002%以上含有させることで、焼入れ性が向上する。そのため、B含有量を0.0002%以上とすることが好ましい。B含有量は、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
一方、B含有量が0.0100%を超えると、上記の焼入れ性向上効果は飽和する上、鋳造欠陥や熱間圧延時の割れが生じるなど、製造性が低下する。そのため、B含有量は、0.0100%以下とすることが好ましい。B含有量は、より好ましくは0.0080%以下であり、さらに好ましくは0.0070%以下、一層好ましくは0.0060%以下である。
アルミニウム(Al)は、脱酸剤として鋼中に含有される。Alは、Feよりも易酸化性元素であるため、Al含有量が0.500%を超える場合には、焼鈍処理中に安定なAl系酸化被膜が母材鋼板表面に形成されてしまい、溶融Alめっきの付着性が阻害されて不めっきを生じることが懸念される。そのため、Al含有量は、0.500%以下とすることが好ましい。Al含有量は、より好ましくは0.200%以下、さらに好ましくは0.100%以下、一層好ましくは0.080%以下である。
一方、Al含有量の下限は、特に限定するものではなく、0%としてもよいいが、Al含有量を0.001%未満とすることは、精錬限界上から経済的ではない。そのため、Al含有量を0.001%以上としてもよい。
リン(P)は、不純物として含有される元素である。Pは固溶強化元素でもあり、比較的安価に鋼板の強度を上昇させることができる元素でもある。しかしながら、P含有量が0.100%を超える場合には、靭性が低下するなどの悪影響が大きく出てしまう。そのため、P含有量は0.100%以下とすることが好ましい。P含有量は、より好ましくは0.050%以下、さらに好ましくは0.020%以下である。
一方、P含有量の下限は、特に限定するものではなく、0%としてもよいが、P含有量を0.001%未満とすることは、精錬限界上から経済的ではない。そのため、P含有量を0.001%以上としてもよい。
硫黄(S)は、不純物として含有される元素であり、MnSとして鋼中の介在物になる。S含有量が0.100%を超える場合には、MnSが破壊の起点となり、延性及び靭性が低下して、加工性が低下する。そのため、S含有量は、0.100%以下とすることが好ましい。S含有量は、より好ましくは0.050%以下、さらに好ましくは0.010%以下、一層好ましくは0.005%以下である。
一方、Sは本実施形態に係るアルミ系めっき鋼板において必要とされないので、S含有量の下限は、特に限定するものではなく、0%としてもよいが、S含有量を0.0001%未満とする場合には、精錬限界上から経済的ではない。そのため、S含有量を0.0001%以上としてもよい。
窒素(N)は、不純物として含有される元素であり、特性の安定化の観点からはTi、Nb、及びAl等を用いて固定する(化合物とする)ことが好ましい。N含有量が増加すると、Nの固定用に含有させる元素の含有量が多量となり、コストアップを招くことになる。そのため、N含有量は、0.0100%以下であることが好ましい。N含有量は、より好ましくは0.0080%以下である。N含有量は少ない方が好ましく、0%でもよいが、N含有量を0.0010%未満とすることは、精錬限界上から経済的ではない。そのため、N含有量を0.0010%以上としてもよい。
タングステン(W)及びモリブデン(Mo)含有量の下限は、特に限定するものではなく、0%としてもよいが、W、Moは、それぞれ焼入れ性の観点から有用な元素であり、0.01%以上含有させることで、焼入れ性を向上させる効果を発揮する。効果を得る場合、W含有量、Mo含有量をそれぞれ0.01%以上とすることが好ましい。W含有量、Mo含有量は、より好ましくは、それぞれ0.05%以上である。
一方、W及びMoの含有量がそれぞれ3.00%を超える場合には、上記効果は飽和し、また、コストも上昇する。そのため、W含有量、Mo含有量は、3.00%以下であることが好ましい。W含有量、Mo含有量は、より好ましくは、それぞれ1.00%以下である。
バナジウム(V)含有量の下限は、特に限定するものではなく、0%としてもよいが、Vは、焼入れ性の観点から有用な元素であり、0.01%以上含有させることで、焼入れ性を向上させる効果を発揮する。そのため、効果を得る場合、V含有量を0.01%以上とすることが好ましい。V含有量は、より好ましくは0.05%以上である。
一方、V含有量が2.00%を超えた場合には、上記効果が飽和し、また、コストも上昇する。そのため、V含有量は、2.00%以下とすることが好ましい。V含有量は、より好ましくは1.00%以下である。
チタン(Ti)含有量の下限は、特に限定するものではなく、0%としてもよいが、Tiは、Nを固定するために有効な元素であり、含有させてもよい。この効果を得る場合、質量%にてN含有量の約3.4倍以上のTiを含有させることが好ましい。N含有量は、低減させたとしても10ppm(0.001%)程度となることが多いので、Ti含有量は、0.005%以上であることが好ましい。Ti含有量は、より好ましくは0.010%以上である。
一方、Ti含有量が過剰になると、焼入れ性が低下し、また、強度が低下する。このような焼入れ性及び強度の低下は、Ti含有量が0.500%を超えると顕著となる。そのため、Ti含有量は、0.500%以下とすることが好ましい。Ti含有量は、より好ましくは0.100%以下である。
ニオブ(Nb)含有量の下限は、特に限定するものではなく、0%としてもよいが、Nbは、Nを固定するために有効な元素であり、含有させてもよい。この効果を得る場合、Nbを、質量%にてN含有量の約6.6倍以上含有させることが好ましい。N含有量は、低減させたとしても10ppm(0.001%)程度となることが多いため、Nb含有量は、0.006%以上であることが好ましい。Nb含有量は、より好ましくは、0.010%以上である。
一方、Nb含有量が過剰になると、焼入れ性が低下し、また、強度が低下する。このような焼入れ性及び強度の低下は、Nb含有量が0.500%を超えると顕著となるため、Nb含有量を0.500%以下とすることが好ましい。Nb含有量は、より好ましくは、0.100%以下である。
ニッケル(Ni)含有量の下限は、特に限定するものではなく、0%としてもよいが、Niは、焼入れ性に加え、耐衝撃特性改善に繋がる低温靭性を向上させるために有用な元素である。上記効果を得る場合、Ni含有量を0.01%以上とすることが好ましい。
一方、Ni含有量が5.00%を超えると、上記のような効果は飽和し、また、コストも上昇する。そのため、Ni含有量を、5.00%以下とすることが好ましい。
銅(Cu)、コバルト(Co)それぞれの含有量の下限は、特に限定するものではなく、0%としてもよいが、Cu、Coは、どちらも焼入れ性に加え、靭性を向上させるために有用な元素である。この効果を得る場合、Cu含有量、Co含有量を、それぞれ0.01%以上とすることが好ましい。
一方、Cu、Coそれぞれの含有量が3.00%を超えると、上記のような効果は飽和し、また、コストも上昇する。また、過剰なCu、Coの含有は、どちらも鋳片性状の劣化や熱間圧延時の割れや疵の発生を生じさせる。そのため、Cu含有量、Co含有量を、それぞれ3.00%以下とすることが好ましい。
スズ(Sn)及びアンチモン(Sb)含有量の下限は、特に限定するものではなく、それぞれ0%としてもよいが、Sn、Sbは、いずれもめっきの濡れ性や密着性を向上させるのに有効な元素である。この効果を得る場合、Sn又はSbの少なくとも何れか一方を0.001%以上含有させることが好ましい。
一方、Sn又はSbの少なくとも何れか一方を、0.100%を超えて含有させた場合、製造時に疵が発生しやすくなったり、また、靭性が低下したりする。そのため、Sn含有量、Sb含有量は、それぞれ0.100%以下であることが好ましい。
MgやCaは、いずれも不純物として含有される元素であり、Mg含有量、Ca含有量の下限は、特に限定するものではなく、それぞれ0%としてもよい。Mg、Caは、いずれも含有させることで母材の介在物抑制に効果がある場合があり含有させても良いが、多量の場合は破壊の起点となる。このためMg含有量、Ca含有量は、それぞれ0.0050%以下であることが好ましい。
REM、Oは必須元素ではなく、例えば鋼中に不純物として含有される。REM、Oは、酸化物を形成し破壊の起点になるなど鋼板の特性劣化をもたらす元素である。また、鋼板の表面の近傍に存在する酸化物は、表面疵の原因となり、外観品位を劣化させる場合もある。このため、REM含有量、O含有量は低ければ低いほど良い。特に、REM含有量、O含有量が0.0070%超で特性劣化が顕著であるため、REM含有量含有量、O含有量はそれぞれ0.0070%以下が好ましい。REM、O含有量の下限は、特に限定するものではなく、0%としてもよいが、実操業上、精錬上の下限は0.0005%であるので、REM含有量、O含有量の実質的な下限はそれぞれ0.0005%である。
その他の成分については、特に規定するものではないが、Zr、As等の元素がスクラップから混入する場合がある。しかしながら、混入量が通常の範囲であれば、本実施形態に係る母材鋼板2の特性(機械的強度等)には影響しない。
母材鋼板2の化学組成の残部は鉄(Fe)及び不純物である。不純物とは、鋼材を工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって混入する成分であって、本実施形態に係るAlめっき鋼板1に悪影響を与えない範囲で許容されるものを意味する。
本実施形態に係る熱間プレス成形品の製造方法で用いられるAlめっき鋼板1において、Alめっき層3A,3Bは、その組成が、質量%で、Alを50%以上含有するめっき層である。Al以外の元素は、特に限定しないが、以下の理由からSiを積極的に含有させてもよい。
一方、Si含有量が質量%で15%を超える場合には、逆にSiを含む層の体積率が増加し、めっき層の加工性及び耐食性が低下するおそれがある。従って、Alめっき層中のSi含有量は、3~15%とすることが好ましい。
Alめっき層を前記母材鋼板に処理してAlめっき鋼板を製造する方法としては、通常の製銑、製鋼によって化学成分を調整されたスラブを、通常の熱延、酸洗、冷延工程を経て、ゼンジマー式の連続的な焼鈍、溶融Alめっき浴への浸漬とワイピングによるAlめっき層厚の調整によって製造される方法が挙げられる。
この酸化Al被膜の形成、厚みの増加は、Alめっき層の表面に金属層または金属酸化物層が形成されることで抑制される。ただし、本実施形態に係るAlめっき鋼板1のようにAlめっき層3A,3B上に金属層、金属酸化物層を含む被覆層4A,4Bがある場合、最表面側としては酸化Al被膜の形成は抑制されることとなるものの、金属層及び/または金属酸化物層とAlめっき層との界面において反応が生じ、熱間プレス後の金属酸化物層にAlを含んだ金属酸化物が形成される場合がある。
一方で、Alめっき層3A,3Bの付着量が60μm超であると、めっきが大きな剪断応力を受け多量のAlめっきが剥離する。この場合、ダイ金型が疵つき、金型の摩耗が促進される。Alめっき層3A,3Bの厚さは、好ましくは55μm以下、より好ましくは50μm以下である。
本実施形態に係る熱間プレス成形品の製造方法で用いるAlめっき鋼板1では、Alめっき層3A,3B上に最表層の被覆層4A,4Bとして金属層、金属酸化物層またはこれらの混合層を備える。
この被覆層4A,4Bは、金型の摩耗を抑え、熱間プレス成形品の美麗な外観を得る上で非常に重要である。
上述したように、Alめっき鋼板1を熱間プレスした場合に、めっきが疵付く要因の一つとして、ホットスタンプ加熱時にAlめっき表面に形成される硬質なAl-Fe合金層や酸化アルミの存在が挙げられる。
そのため、本実施形態に係る熱間プレス成形品の製造方法では、Alめっき層3A,3Bの表面に、Alめっき層3A,3B表面を覆うように、Mg、Ca、V、Ti、Znの少なくとも1種の金属を含む金属層、またはこれらの金属の酸化物の1種以上を含む金属酸化物層、または金属層と金属酸化物層とを含む混合層を形成させる。金属層や金属酸化物層が有効である理由は明らかでは無いが、モース硬度(化学便覧基礎編 p475、丸善株式会社、昭和41年発刊)が低い物質が有効である可能性が考えられる。例えばAl(モース硬度2.9)に対し、Mg(同2.0)、Ca(同1.5)、Zn(同2.5)といずれも低い。また酸化Al(モース硬度9)に対し、MgO(同5.5~6)、CaCO3(同3)、ZnO(同4.5~5)、TiO2(モース硬度:5.5~7.5)である。ただし、これだけで摩耗が整理されるとは限らず、例えば金属であればその融点が影響し得る場合があり、酸化物であればそのサイズなども影響し得る場合も考えられる。本実施形態で言う被覆層が含む金属酸化物には、上記金属の酸化物だけでなく、上記金属の水酸化物及び炭酸化物も含む。水酸化物、炭酸化物も、加熱炉で加熱された後は殆どが酸化物に変わると考えられるからである。
被覆層が含む金属層、金属酸化物層を構成する金属、金属酸化物としては、コストと入手の容易さからは、金属Zn、Mg、またはZnO、MgOが好ましい。
一方で、熱間プレスの加熱工程での被覆層の蒸発を抑制する観点からは、比較的沸点の低いZnまたはZnO単独の層ではなく、Mg、Ca、V、Ti少なくとも1種の金属を含む金属層、Mg、Ca、V、Tiの1種以上の酸化物を含む金属酸化物層、またはそれらの混合層のいずれかを必ず含む被覆層であることが好ましい。
本実施形態において、金属層、金属酸化物層、または金属層と金属酸化物層とを含む混合層は、Mg、Ca、V、Ti、Znの少なくとも1種の元素が、合計で8質量%以上含まれている層を指す。
被覆層は、金属層の一部が、酸化物となった、金属層と金属酸化物層との混合層であってもよい。また、金属層や金属酸化物層は、上述した金属または金属酸化物からなる層であってもよいが、金属や金属酸化物と、樹脂とが混合された層であっても良い。樹脂はバインダーの役割を担うので、樹脂を混合することで金属層や金属酸化物層をAlめっき表面に強固に密着させることができる。ここで言う樹脂とは、主にCから成る化合物、またはH、O、N、Sを含み主にCから成る化合物を意味する。樹脂を混合しても、容易に加熱炉で燃焼され二酸化炭素として放出され、プレス成形後に被覆層から無くなるため、金属層や金属酸化物層の特性への影響は小さい。
一方、被覆層の厚みが10.0μmを超えると金属層または金属酸化物層自身によって外観が損なわれる場合がある。そのため、被覆層の厚みを10.0μm以下とすることが好ましい。被覆層の厚みは、より好ましくは7.0μm以下、更に好ましくは5.0μm以下である。
被覆層4A,4B(金属層及び/または金属酸化物層)の厚みは、樹脂で埋め込み研磨した上で厚み方向断面からSEM(Scanning Electron Microscope)を用いて1,000倍~30,000倍の倍率で観察することで測定できる。この金属層、金属酸化物層、または金属層と金属酸化物層とを含む混合層である被覆層4A、4Bは、Mg、Ca、V、Ti、Znの少なくとも1種の元素の含有率が、合計で8質量%以上の層を指し、その含有率は断面からのEPMA(Electron Probe Micro Analyzer)による分析で求める。必要に応じて、被覆層と埋め込み樹脂との境目を明確化するため、埋め込み前に材料表面に金蒸着を施して観察しても良い。
成形工程では、加熱されたAlめっき鋼板1を、加熱工程完了後、ダイ金型を用いて成形して熱間プレス成形品を得る。
加熱工程が完了してから成形開始までの時間が30秒超であると、加熱でオーステナイト化した鋼板の母材がフェライト変態してしまい、プレス後に高強度のマルテンサイト組織が得られなくなる場合がある。そのため、加熱工程完了後、成形開始までの時間を30秒以内とすることが好ましい。なるべく早く成形することが好ましいので、下限については限定する必要はないが、加熱炉からプレス機までの搬送速度やプレス機のダイ金型の下降する速度などの設備制約等を考えると、3秒以上としてもよい。ただし、成形までの時間はAlめっき鋼板の温度の確保を目的とする。
成形に用いるダイ金型は、特に用途として限定されるものを用いる必要は無い。JISのSKD11、SKD61(JIS G 4404:2015)で示される一般的な工具鋼、又はハイスピード鋼などが例示される。
ただし、本実施形態で用いるダイ金型は、Alめっき鋼板と接する金型の表面に硬質層を有する。また、硬質層を有する位置でのダイ金型の表面硬さであるHVDieは、HV1500以上HV3800以下である。
この硬質層は金型の摩耗を抑え、熱間プレス成形品の美麗な外観を得る上で非常に重要である。
摩耗をより抑制するためには、硬質層は、1.0μm以上の厚みで形成されていることが好ましい。硬質層の厚みの上限は、硬質層の内部応力の過度の増加や靭性低下を抑制するため20μm以下が好ましい。
本実施形態に係る熱間プレス成形品の製造方法では、ダイ金型の上型と下型とが一定の方向に相対移動し、この移動によって、上型と下型との間に設置された鋼板がダイ金型のダイ穴に引き込まれて成形される。このようなプレス成形に際しては、ダイ金型(上型と下型)が相対移動する方向と平行な方向(一般には鉛直方向)の面において、加工される鋼板と接触して摺動される。相対移動する方向と平行な方向の面は、例えば、金型のR部の表面が、熱間プレス成形品の縦壁部と接触しており、他の例としては金型のしわ押さえフランジ部の表面やビード付き金型の場合はビード頭頂部の表面などが挙げられる。
ダイ金型が備える硬質層の硬さHVDieがHV1500以上であることで、熱間プレス成形の際にダイ金型の摺動面(鋼板と接触して摺動する面)での摩耗が抑制される。HV1500未満では、金型が摩耗する。例えばSKD11やSKD61の素材はHV500~HV1000であり、一般的に窒化処理を行った場合ではHV600~HV1400であり、金型が摩耗する。そのため、HVDieはHV1500以上とする。好ましくはHV2000以上であり、より好ましくはHV2500以上である。表面硬さに上限は設けないが、過剰に硬質な場合には硬質層が脆性となり、硬質層とダイ金型の母材とが剥離する現象が起こる。更には金型が熱間プレス時のAlめっき鋼板の表面を疵付け、外観を低下させる。そのため、HVDieはHV3800以下とする。HVDieは、好ましくはHV3600以下であり、より好ましくはHV3400以下である。
ダイ金型の表面硬さHVDieは、JIS Z 2244:2009で指定されるビッカース硬さ試験方法において、試験荷重を10g-fから25g-f(0.098Nから0.245N)の間で測定される硬さである。硬さを測定するマイクロビッカース試験機には、株式会社ミツトヨ製HM-211を用いることができる。硬さの測定に関しては、マイクロビッカース圧子を打つ点を30μm以上離して2点以上とし、圧痕の対角線長さをSEM観察することで、硬さを求める。
例えば、物理蒸着法(PVD法)による硬質コーティング層(蒸着膜)が挙げられ、具体的にはTi、Cr及びAlから選ばれる1種又は2種以上を主体とする窒化膜、炭化膜、炭窒化膜、ダイヤモンドライクカーボン(DLC)膜、等が挙げられる。
中でも、硬質コーティング層としての蒸着膜としては、Ti及びCrの少なくとも一方を含む膜であることが好ましい。例えば、その金属元素部分がTi、Cr、及びAlから選んだ1種もしくは2種以上を主体とする窒化物、炭化物、炭窒化物のいずれかであることが好ましい。さらには、その金属元素部分がTi又はCrを主体とする窒化物、炭化物、炭窒化物のいずれかであることがより好ましい。金属元素部分がTi、Cr、Alを含むPVDコーティングの硬さHVDieは、2000~4000の間となる。ダイヤモンドライクカーボンを用いた場合は、PVDコーティングの硬さHVDieは5000~8000の間となる。
例えば、金属成分の蒸発源である各種金属製ターゲット及び反応ガス(N2ガス、CH4ガス等)を用い、温度、ガス圧力を調整して、Bias電圧をかけることで、ダイ金型の母材の表面にPVD膜を成膜することができる。
ダイ金型に物理蒸着法(PVD法)による硬質コーティング層(蒸着膜)を形成する前に、下層となる窒化層を形成(窒化処理と言った拡散を利用した表面硬化処理)することが好ましい。ただし、窒化層は一般にHV1500未満であり、本実施形態では耐摩耗として必要な金型の硬質層には含めない。
窒化層の形成は、ダイ金型の母材に、例えばイオン窒化処理、つまり所定濃度のN2及びH2ガス雰囲気中で、温度を調整してイオン窒化処理を施すことで行われる。
この時、窒化処理で形成される白層と呼ばれる窒化物層などの化合物層は、密着性を低下させる原因となるため、処理条件の制御により形成させないようにするか、あるいは研磨等により除去することが望ましい。
800-(HVDie/40)≦Tm≦850-(V/4)-(HVDie/100) ・・・(1)式
この(1)式は、金型の摩耗を抑え、熱間プレス成形品の美麗な外観を得る上で非常に重要である。
成形開始時のAlめっき鋼板1の温度(成形温度:Tm)(℃)は、((850-V/4)-(HVDie/100))以下である必要がある。成形温度が((850-V/4)-(HVDie/100))超では、Alめっき鋼板1の表面のAlめっき層3A,3Bの表面が軟質となり、金型と擦れることで疵を受け易くなり、成形後の熱間プレス成形品の外観が低下(外観の品質が低下)する。成形開始時から下死点到達時までのダイ金型の平均移動速度(成形速度:V)は、成形開始から、Alめっき鋼板1とダイ金型の両方の動きが停止するまで(一般には下死点とも呼ばれる)までの間の時間t(秒)、成形開始からAlめっき鋼板とダイ金型の両方の動きが停止するまでのダイ金型の移動距離S(mm)を用いて、V=S/tの関係から求めることが出来る。熱間プレス成形品の外観が、成形時のダイ金型の平均移動速度V(成形速度)に依存する理由として、成形速度が速くなるほど金型との接触による鋼板の抜熱が抑制され、鋼板が金型から高温で衝撃を受けて疵を受け易くなり、外観が低下し易いからである。ここで成形開始時とは、移動するダイ金型が、Alめっき鋼板に接触したタイミングをいう。
また、材料(Alめっき鋼板)側の疵付きを抑制する適正な温度は、金型表面の硬度の影響も受けるので、Tm及びVは、(2)式を満足することが好ましい。
800-(HVDie/40)≦Tm≦850-(V/2)-(HVDie/50) ・・・(2)式
すなわち、成形開始時のAlめっき鋼板の温度(成形温度:Tm)(℃)は、((850-V/2)-(HVDie/50))以下であることが好ましい。金型表面の硬度HVDieが高い場合の方がよりプレス成形品の表面を疵付け易いので、HVDieに応じて、成形温度をより抑制することで、一層美麗な熱間プレス成形品が得られるからである。
一方、成形温度Tm(℃)が(800-(HVDie/40))未満では、鋼板の表面が硬質化するためプレス時に金型と鋼板とが強く擦れて金型が摩耗する。そのため、成形温度(℃)を(800-(HVDie/40))以上とする。成形温度Tm(℃)は好ましくは、(805-(HVDie/40))以上、より好ましくは(810-(HVDie/40))以上である。
成形開始から下死点までのダイ金型の平均移動速度V(mm/s)は、(1)式、(2)式を満足すれば特に限定されないが、成形品はダイ金型と接触することで抜熱されるが、平均移動速度を遅くすることで、抜熱が大きくなり、より低温で成形品がダイ金型と接触することとなるので、成形品表面の傷付きが減り、光沢度が低下する。そのため、外観の点で、平均移動速度(成形速度)は、95mm/s以下が好ましく、85mm/s以下がより好ましい。ただし、平均移動速度が遅過ぎれば過剰な成形品の抜熱を招き、材料のマルテンサイト変態の阻害や、材料表面の硬質化により金型の摩耗が促進される。そのため、平均移動速度(成形速度)は、15mm/s以上が好ましく、25mm/s以上がより好ましい。平均移動速度V(mm/s)は、成形開始(金型が稼働した時点)から下死点(金型とプレス成形品の移動が停止した時点)までの時間(秒)で、金型の移動距離(mm)を除することで求まる。
成形開始時のAlめっき鋼板1の温度(成形温度:Tm)(℃)の測定方法としては、放射温度計やAlめっき鋼板1への熱電対の取り付けなどによって測定することが出来る。一般に、熱電対を取り付ける場合、熱電対の取り付け部分が凸状になり熱間プレス成形を阻害することになるため、Alめっき鋼板の鋼板端部の側面(Alめっき層を有する面に垂直な面)に取り付ける方法を用いてもよい。成形温度Tm(℃)は、(1)式、(2)式を満足すれば特に限定されないが、熱間プレス時に材料をマルテンサイト変態させ、プレス成形品の機械的強度を高める観点から、550℃以上が好ましく、600℃以上がより好ましく、650℃以上が更に好ましい。一方、加熱炉からプレス成形までの移動時間を確保する観点から、成形温度Tm(℃)は、850℃以下が好ましく、830℃以下がより好ましく、810℃以下が更に好ましい。
ダイ金型の表面温度は、金型に熱電対を点溶接で付け測定することができる。
本実施形態に係る熱間プレス成形品は、Alめっき層を有するAlめっき鋼板からなる熱間プレス成形品であって、表面における、JIS Z 8741:1997に規定される光沢度(Gs60°)が30以下である。
本実施形態に係る熱間プレス成形品は、上述した本実施形態に係る熱間プレス成形品の製造方法によって得ることができる。本実施形態において、熱間プレス成形品とは、必ずしもAlめっき鋼板の鋼板形状の変形を伴う熱間プレスによって形成された成形品だけを指すのではなく、加熱後に摺動を受けたAlめっき鋼板や、加熱後に金型に挟まれ圧力を受けたAlめっき鋼板も含む。
本実施形態に係る熱間プレス成形品は、少なくとも熱間プレス時にダイ金型と接触する摺動面において、表面にMg、Ca、V、Ti、Znの少なくとも1種の金属からなる金属層、Mg、Ca、V、Ti、Znの酸化物からなる金属酸化物層、または前記金属と前記金属酸化物層とからなる混合層が形成されたAlめっき鋼板が、熱間プレスによって成形されることによって得られる。
そのため、本実施形態に係る熱間プレス成形品の表面において、JIS Z 8741:1997に規定される光沢度(Gs60°)が30以下であり、表面外観に優れる。光沢度は好ましくは25以下である。
光沢度は、最も外観が低下しやすい縦壁部(摺動部)で測定すればよい。
表1に記載の化学組成(単位質量%、残部Fe及び不純物)を有する板厚1.4mmの冷延鋼板の両面に、ゼンジマー法でAlめっきを施した。めっき浴浸漬前の焼鈍温度は約750℃とした。Alめっき浴はSiを9.5質量%含有し、他に冷延鋼板から溶出するFeを含有し、残部はAlであった。めっき後のAlめっき層の厚み(目付量)をガスワイピング法で調整し、冷延鋼板の両面に形成するAlめっき層の厚み(目付量)を、いずれも20μmとした後、冷却した。
その後、両面のAlめっき層上に、一部については、薬液(シグマアルドリッチジャパン社製、シーアイ化成株式会社製、多木化学株式会社製、TECNAN社製、タテホ化学工業株式会社製、鈴木工業株式会社製)の酸化Zn、酸化Ti、酸化V、酸化Mg、及び/または酸化Caをロールコーターで塗布し、約80℃で焼きつける作業をそれぞれ施し、Mg、Ca、V、Ti、及び/またはZnの酸化物被膜を両面に形成した。一部では、酸化Znに対し同質量%のポリウレタン樹脂を混合させ、塗布、焼付け被膜を形成した。いずれの被覆層も、Mg、Ca、V、Ti、Znの少なくとも1種の元素の含有率の合計は、8質量%以上であった。
このようにして、表3-1~表3-4に示すAlめっき鋼板A1~A35を得た。
表2に記載の化学組成(単位質量%、残部Fe及び不純物)を有する板厚1.4mmの冷延鋼板の両面に、ゼンジマー法でAlめっきを施した。めっき浴浸漬前の焼鈍温度は約750℃とし、Alめっき浴はSiを9.5質量%含有し、他に冷延鋼板から溶出するFeを含有し、残部はAlであった。めっき後のAlめっき層の厚み(目付量)をガスワイピング法で調整し、冷延鋼板の両面に形成するAlめっき層の厚み(目付量)を、いずれも30μmとした後、冷却した。また、Alめっき層上の両面に、イオンプレーティング法によってMg、Ca、V、Ti、Znの金属層、及びZnとMgの混合した金属層、ZnとVの混合した金属層を形成した。また、一部については、同様に金属層をAlめっき層上の両面に形成した後に700℃で4分間大気中に加熱することで金属層の一部を酸化させることで、酸化物層と金属酸化物層との混合層をAlめっき層上に形成させた。いずれの被覆層も、Mg、Ca、V、Ti、Zn少なくとも1種の元素の含有率の合計は、8質量%以上であった。
このようにして、表3-1~表3-4に示すAlめっき鋼板A36~A49を得た。
併せて、Alめっき層上には金属層または金属酸化物層を施さないAlめっき鋼板A50、A51も準備した。
また、摺動試験に用いたダイ金型は以下の要領で準備した。
工具鋼としてSKD61(JIS G 4404:2015)に相当する鋼を用意し、焼鈍状態にて図2の6A、6Bに示すダイ金型に近似した形状に粗加工し、真空中で1180℃の加熱保持より窒素ガス冷却により焼入れ後、540~580℃での焼戻しにより硬さがHV600になるように調質した。その後、仕上げ加工を行って、複数のダイ金型の基材を得た。
一部の前記基材に、次に示す条件にてイオン窒化処理を施した。具体的には、流量比が5%N2(残部:H2)の雰囲気中で、500℃に5時間保持の条件で、イオン窒化処理を施した。その後、それぞれの試験面を研磨によって仕上げ、窒化層を形成した。窒化層形成後の表面の硬度はHV1200であった。
また、一部の基材については、窒化層を形成した箇所に硬質層を形成した。硬質層はPVD膜であり、アークイオンプレーティング装置を用い、Ar雰囲気中で、Bias電圧を印加し、熱フィラメントによるプラズマクリーニングを行った。この後、金属成分の蒸発源である各種金属製ターゲット及び反応ガスとしてN2ガスをベースに、必要に応じCH4ガスを用い、Bias電圧にてPVD膜の成膜を行った。PVD膜形成後のダイ金型の表面の硬度はHV2500、HV3200、またはHV7000に調製した。
摺動距離50mm位置を切断で切り出し、光沢度計を用いて、JIS Z 8741:1997に規定される光沢度(Gs60°)を測定した。
光沢度が25以下をVG(Very Cood)、25超30以下をG(Good)、30超をNG(No Good)とした。
また、金型の耐摩耗性の評価を行った。
具体的には、成形後の金型表面の形状プロファイルを接触式粗度計(株式会社小坂研究所SE700、測定探針の径R2μm)を用いて、JIS B 0601:2013に沿って算術平均粗さRa測定した。摺動していない部分のRaと摺動した部分のRaとの差を比べ、摺動した部分のRaが5μm以上大きい場合をNG(No Good)、差が5μm未満の場合をG(Good)とした。
結果を表3-1~表3-4に示す。
比較例においては、A3では加熱温度が低過ぎた。またA4は加熱温度が高すぎた。そのため、熱間プレス後のAlめっき鋼板に疵が発生し光沢度が増加し30超となり、外観は低下した。
A7では成形温度が低過ぎた。A8とA13とA14とは成形温度が高過ぎた。そのため、熱間プレス後のAlめっき鋼板の外観が低下した。A7は、成形温度が低過ぎたため金型も摩耗した。
また、A15からA18では、金型表面の硬度が低過ぎ、A15とA16は成形温度も低過ぎた。そのため、金型に摩耗が生じ、熱間プレス後のAlめっき鋼板の外観も低下した。
A21では金型表面の硬度が高過ぎた。そのため、熱間プレス後のAlめっき鋼板に疵が発生し、外観が低下した。
A50、A51はAlめっき上に金属層または金属酸化物層が無いため、熱間プレス後のAlめっき鋼板の表面に疵が生じ、外観が低下した。A51は金型の硬度も低く、金型の摩耗も生じた。
2 母材鋼板
3A Alめっき層(上面側)
3B Alめっき層(下面側)
4A 被覆層(上面側)
4B 被覆層(下面側)
5 Alめっき鋼板の加熱炉
6A ダイ金型(Alめっき鋼板の上面と接する上型)
6B ダイ金型(Alめっき鋼板の下面と接する下型)
Claims (8)
- Alめっき鋼板を、850℃~1000℃に加熱する加熱工程と、
前記加熱工程後、ダイ金型を用いて前記Alめっき鋼板を成形して熱間プレス成形品を得る成形工程と、
を有し、
前記Alめっき鋼板は、
母材鋼板と、
前記母材鋼板の表面に形成されたAlめっき層と、
前記Alめっき層の表面に形成された被覆層と、
を有し、
前記被覆層は、Mg、Ca、V、Ti、Znの少なくとも1種の金属を含む金属層、Mg、Ca、V、Ti、Znの1種以上の酸化物を含む金属酸化物層、または前記金属層と前記金属酸化物層とを含む混合層であり、
前記ダイ金型は、表面に硬質層を有し、前記硬質層を有する位置での前記ダイ金型の表面硬さであるHVDieがHV1500以上HV3800以下であり、
前記成形工程の、成形開始時の前記Alめっき鋼板の温度を単位℃でTm、前記成形開始時から下死点到達時までの前記ダイ金型の平均移動速度を単位mm/sでVとしたとき、前記Tmと前記Vとが下記(1)式を満足する、
ことを特徴とする、熱間プレス成形品の製造方法。
800-(HVDie/40)≦Tm≦850-(V/4)-(HVDie/100) ・・・(1)式 - 前記HVDie、前記Tm、及び前記Vが、以下(2)式を満足することを特徴とする、請求項1に記載の熱間プレス成形品の製造方法。
800-(HVDie/40)≦Tm≦850-(V/2)-(HVDie/50) ・・・(2)式 - 前記被覆層の厚みが、0.3~10.0μmであることを特徴とする、請求項1または2に記載の熱間プレス成形品の製造方法。
- 前記成形開始時の前記ダイ金型の表面温度が、5℃以上180℃以下であることを特徴とする、請求項1から3のいずれか一項に記載の熱間プレス成形品の製造方法。
- Alめっき層を有するAlめっき鋼板からなり、表面における、JIS Z 8741:1997に規定される光沢度であるGs60°が30以下であることを特徴とする、熱間プレス成形品。
- 前記Gs60°が25以下であることを特徴とする、請求項5に記載の熱間プレス成形品。
- 前記Alめっき層の表面に被覆層を有し、前記被覆層はMg、Ca、V、Ti、Znの少なくとも1種の金属からなる金属層、またはMg、Ca、V、Ti、Znの1種以上の酸化物からなる金属酸化物層、または前記金属層と前記金属酸化物層とからなる混合層であることを特徴とする、請求項5又は6に記載の熱間プレス成形品。
- 前記被覆層の厚みが、0.3~10.0μmであることを特徴とする、請求項7に記載の熱間プレス成形品。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022517045A JP7303475B2 (ja) | 2020-04-20 | 2021-04-20 | 熱間プレス成形品の製造方法及び熱間プレス成形品 |
EP21792241.8A EP4140613A4 (en) | 2020-04-20 | 2021-04-20 | METHOD OF MAKING A HOT PRESS FORMED ARTICLE AND HOT PRESS FORMED ARTICLE |
US17/918,265 US20230166314A1 (en) | 2020-04-20 | 2021-04-20 | Method for manufacturing hot-press-formed article, and hot-press-formed article |
KR1020227036046A KR20220151700A (ko) | 2020-04-20 | 2021-04-20 | 열간 프레스 성형품의 제조 방법 및 열간 프레스 성형품 |
MX2022012929A MX2022012929A (es) | 2020-04-20 | 2021-04-20 | Metodo para fabricar articulo formado por prensado en caliente y articulo formado por prensado en caliente. |
CN202180042784.2A CN115697580A (zh) | 2020-04-20 | 2021-04-20 | 热压成形品的制造方法以及热压成形品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020074701 | 2020-04-20 | ||
JP2020-074701 | 2020-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021215418A1 true WO2021215418A1 (ja) | 2021-10-28 |
Family
ID=78269102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/015950 WO2021215418A1 (ja) | 2020-04-20 | 2021-04-20 | 熱間プレス成形品の製造方法及び熱間プレス成形品 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230166314A1 (ja) |
EP (1) | EP4140613A4 (ja) |
JP (1) | JP7303475B2 (ja) |
KR (1) | KR20220151700A (ja) |
CN (1) | CN115697580A (ja) |
MX (1) | MX2022012929A (ja) |
WO (1) | WO2021215418A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3931251B2 (ja) | 1998-07-09 | 2007-06-13 | アルセロール フランス | 熱処理後の耐久性に優れた熱間圧延および冷間圧延被覆鋼板 |
JP6055324B2 (ja) | 2013-01-29 | 2016-12-27 | 株式会社神戸製鋼所 | 軟質金属に対する耐凝着性に優れた硬質皮膜 |
JP6125313B2 (ja) | 2013-04-26 | 2017-05-10 | 新日鐵住金株式会社 | めっき鋼板の熱間プレス方法 |
JP6369659B1 (ja) | 2016-12-28 | 2018-08-08 | 新日鐵住金株式会社 | 熱間プレス用めっき鋼板、熱間プレス用めっき鋼板の製造方法、熱間プレス成形品の製造方法、及び車両の製造方法 |
JP6477867B2 (ja) | 2015-04-23 | 2019-03-06 | 日立金属株式会社 | 被覆金型およびその製造方法 |
WO2019198728A1 (ja) | 2018-04-13 | 2019-10-17 | 日本製鉄株式会社 | 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット |
JP2020074701A (ja) | 2018-11-06 | 2020-05-21 | ハウスウェルネスフーズ株式会社 | 凝集又は沈殿が抑制された乳酸菌含有飲料の製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6055324B2 (ja) | 1979-06-12 | 1985-12-04 | 株式会社クボタ | 移動車における変速操作装置 |
JPS56135155A (en) | 1980-03-27 | 1981-10-22 | Yohei Hashimoto | Biliary acid analysis method |
KR20130132566A (ko) * | 2010-12-24 | 2013-12-04 | 뵈스트알파인 스탈 게엠베하 | 경화된 구조적 요소의 제조 방법 |
BR112014024344B1 (pt) * | 2012-04-18 | 2020-12-22 | Nippon Steel Corporation | chapa de aço revestida de alumínio e método para prensagem a quente da chapa de aço revestida de alumínio |
JP5825413B1 (ja) * | 2014-04-23 | 2015-12-02 | Jfeスチール株式会社 | 熱間プレス成形品の製造方法 |
JP5613349B1 (ja) * | 2014-07-16 | 2014-10-22 | 日新製鋼株式会社 | 着色塗装金属板および外装建材 |
TW201731988A (zh) * | 2016-03-08 | 2017-09-16 | 日鐵住金鋼板股份有限公司 | 塗裝板及其製造方法 |
CN112236244B (zh) * | 2018-07-04 | 2022-10-04 | 日本制铁株式会社 | 热压成型品的制造方法、压制成型品、冲模模具及模具套件 |
-
2021
- 2021-04-20 EP EP21792241.8A patent/EP4140613A4/en active Pending
- 2021-04-20 KR KR1020227036046A patent/KR20220151700A/ko not_active Application Discontinuation
- 2021-04-20 CN CN202180042784.2A patent/CN115697580A/zh active Pending
- 2021-04-20 MX MX2022012929A patent/MX2022012929A/es unknown
- 2021-04-20 WO PCT/JP2021/015950 patent/WO2021215418A1/ja active Application Filing
- 2021-04-20 US US17/918,265 patent/US20230166314A1/en active Pending
- 2021-04-20 JP JP2022517045A patent/JP7303475B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3931251B2 (ja) | 1998-07-09 | 2007-06-13 | アルセロール フランス | 熱処理後の耐久性に優れた熱間圧延および冷間圧延被覆鋼板 |
JP6055324B2 (ja) | 2013-01-29 | 2016-12-27 | 株式会社神戸製鋼所 | 軟質金属に対する耐凝着性に優れた硬質皮膜 |
JP6125313B2 (ja) | 2013-04-26 | 2017-05-10 | 新日鐵住金株式会社 | めっき鋼板の熱間プレス方法 |
JP6477867B2 (ja) | 2015-04-23 | 2019-03-06 | 日立金属株式会社 | 被覆金型およびその製造方法 |
JP6369659B1 (ja) | 2016-12-28 | 2018-08-08 | 新日鐵住金株式会社 | 熱間プレス用めっき鋼板、熱間プレス用めっき鋼板の製造方法、熱間プレス成形品の製造方法、及び車両の製造方法 |
WO2019198728A1 (ja) | 2018-04-13 | 2019-10-17 | 日本製鉄株式会社 | 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット |
JP2020074701A (ja) | 2018-11-06 | 2020-05-21 | ハウスウェルネスフーズ株式会社 | 凝集又は沈殿が抑制された乳酸菌含有飲料の製造方法 |
Non-Patent Citations (2)
Title |
---|
"Chemical Handbook Basic", 1966, MARUZEN CO., LTD., pages: 475 |
THE CHEMICAL SOCIETY OF JAPAN: "Chemical Handbook Revised", 1975, MARUZEN CO., LTD. |
Also Published As
Publication number | Publication date |
---|---|
EP4140613A4 (en) | 2023-05-10 |
JP7303475B2 (ja) | 2023-07-05 |
JPWO2021215418A1 (ja) | 2021-10-28 |
KR20220151700A (ko) | 2022-11-15 |
CN115697580A (zh) | 2023-02-03 |
EP4140613A1 (en) | 2023-03-01 |
US20230166314A1 (en) | 2023-06-01 |
MX2022012929A (es) | 2022-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7253837B2 (ja) | ホットスタンプ加工済コンポーネントを製造する方法、及びホットスタンプ加工済コンポーネント | |
CN109982839B (zh) | 用于热压印的热轧涂覆钢板、热压印涂覆钢部件以及用于制造其的方法 | |
WO2020108594A1 (zh) | 一种冷弯性能优良的锌系镀覆热成型钢板或钢带及其制造方法 | |
CA2832894C (en) | Steel sheet for hot stamping member and method of producing same | |
US20190160519A1 (en) | Automobile part and method for manufacturing automobile part | |
JP5387720B2 (ja) | 熱間プレス成形された鋼板部材および熱間プレス鋼板部材用鋼板ならびにそれらの製造方法 | |
KR102428588B1 (ko) | 알루미늄계 도금 강판, 알루미늄계 도금 강판의 제조 방법 및 자동차용 부품의 제조 방법 | |
WO2014171417A1 (ja) | 熱間プレス用めっき鋼板、めっき鋼板の熱間プレス方法及び自動車部品 | |
KR20160032194A (ko) | 열간 프레스 성형 부재의 제조 방법 및 열간 프레스 성형 부재 | |
CN111511942B (zh) | 镀铝系钢板、镀铝系钢板的制造方法及汽车用部件的制造方法 | |
JP2013091099A (ja) | 熱間プレス成形品およびその製造方法 | |
JP6152836B2 (ja) | 熱間プレス成形品の製造方法 | |
JPWO2019198728A1 (ja) | 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット | |
CN110114510B (zh) | 热压用镀覆钢板、热压用镀覆钢板的制造方法、热压成形品的制造方法及车辆的制造方法 | |
JP7255634B2 (ja) | 熱間プレス部材およびその製造方法 | |
JP3661559B2 (ja) | 加工性とめっき密着性に優れた合金化溶融亜鉛めっき高張力鋼板とその製造方法 | |
CN114599810B (zh) | 热冲压用钢板及热冲压成形体 | |
WO2021215418A1 (ja) | 熱間プレス成形品の製造方法及び熱間プレス成形品 | |
JP7215519B2 (ja) | 熱間プレス部材およびその製造方法 | |
JP7215518B2 (ja) | 熱間プレス部材およびその製造方法 | |
WO2022091351A1 (ja) | Zn系めっきホットスタンプ成形品 | |
JP6708310B2 (ja) | めっき鋼板、めっき鋼板コイル、熱間プレス成形品の製造方法、及び自動車部品 | |
JP4782057B2 (ja) | 熱間プレス時のスケール密着性に優れた高強度鋼板およびその製造方法 | |
JP6648874B1 (ja) | 熱間プレス成形品の製造方法、プレス成形品、ダイ金型、及び金型セット | |
CN115135798A (zh) | 热冲压构件及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21792241 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022517045 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202217057197 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20227036046 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021792241 Country of ref document: EP Effective date: 20221121 |