WO2021215408A1 - 二酸化炭素還元触媒、及び二酸化炭素還元方法 - Google Patents

二酸化炭素還元触媒、及び二酸化炭素還元方法 Download PDF

Info

Publication number
WO2021215408A1
WO2021215408A1 PCT/JP2021/015916 JP2021015916W WO2021215408A1 WO 2021215408 A1 WO2021215408 A1 WO 2021215408A1 JP 2021015916 W JP2021015916 W JP 2021015916W WO 2021215408 A1 WO2021215408 A1 WO 2021215408A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
dioxide reduction
catalyst
reduction catalyst
selectivity
Prior art date
Application number
PCT/JP2021/015916
Other languages
English (en)
French (fr)
Inventor
徹 村山
玉青 石田
ちひろ 望月
エム. アブデル メイジド アリ
ユルゲン ベーム ロルフ
Original Assignee
東京都公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京都公立大学法人 filed Critical 東京都公立大学法人
Priority to CA3181054A priority Critical patent/CA3181054A1/en
Priority to CN202180030752.0A priority patent/CN115551636B/zh
Priority to US17/921,026 priority patent/US20230166242A1/en
Priority to JP2022517039A priority patent/JP7193037B2/ja
Priority to EP21792604.7A priority patent/EP4137231A4/en
Publication of WO2021215408A1 publication Critical patent/WO2021215408A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8953Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/108Auxiliary reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/10Carbon or carbon oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a carbon dioxide reduction catalyst and a carbon dioxide reduction method.
  • Carbon dioxide (CO 2 ) is one of the substances emitted into the atmosphere by burning fuel. Since carbon dioxide can cause global warming, its emission into the atmosphere is regulated by international treaties on climate change. Therefore, in order to reduce the emission of carbon dioxide into the atmosphere, a technique for converting carbon dioxide into an industrially useful substance has been proposed.
  • a technology for converting carbon dioxide into methanol which is widely used as a raw material for various industries, is known.
  • Industrially there is known a method of converting a gas containing carbon dioxide and hydrogen into methanol by a reduction reaction using a copper-zinc catalyst, for example, under conditions of 250 ° C. or higher and 50 atm or higher.
  • the energy cost is high because high temperature and high pressure conditions are required as reaction conditions.
  • water generated by the reaction causes a decrease in catalytic activity, there is a problem that a sufficient methanol selectivity cannot be obtained. Therefore, it is desired to develop a technique for a carbon dioxide reduction catalyst that can produce methanol at low cost and obtain a preferable methanol selectivity.
  • Patent Document 1 as a catalyst used to produce methanol by the reduction reaction of carbon dioxide, Au-doped Cu is supported on mesoporous silica (NH 2 -SBA-15), Au-Cu -supported mesoporous Techniques relating to catalyst preparation methods are disclosed. However, the technique disclosed in Patent Document 1 has a problem that the methanol selectivity due to the reduction reaction of carbon dioxide is not sufficient.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a carbon dioxide reduction catalyst which is used in a carbon dioxide reduction reaction and has a high methanol selectivity.
  • the present invention relates to a carbon dioxide reduction catalyst which is used when producing methanol by a carbon dioxide reduction reaction, contains Au and Cu as catalyst components, and contains ZnO as a carrier.
  • Au is contained in an amount of 2 to 25 mol% in the catalyst component.
  • the methanol selectivity due to the reduction of carbon dioxide is 80% or more.
  • the present invention also relates to a carbon dioxide reduction method for producing methanol by performing a carbon dioxide reduction reaction under the conditions of 50 bar or less using the carbon dioxide reduction catalyst.
  • the present invention also relates to a carbon dioxide reduction method for producing methanol by performing a carbon dioxide reduction reaction under conditions of 240 ° C. or lower using the carbon dioxide reduction catalyst.
  • the carbon dioxide reduction catalyst of the present invention has a high methanol selectivity in the carbon dioxide reduction reaction as compared with the prior art.
  • the carbon dioxide reduction catalyst according to the present embodiment contains gold (Au) and copper (Cu) as catalyst components, and ZnO as a carrier.
  • the carbon dioxide reduction catalyst has a higher methanol selectivity in the carbon dioxide reduction reaction than a conventionally known catalyst, and for example, a methanol selectivity of 80% or more can be obtained.
  • the methanol selectivity is the ratio (%) of the amount of substance (mol) of produced methanol to the amount of substance (mol) of carbon dioxide converted by the reduction reaction.
  • the carbon dioxide reduction catalyst according to the present embodiment contains gold (Au) and copper (Cu). It is preferable that 2 to 25 mol% of gold (Au) is contained in the catalyst component. When the content ratio of gold (Au) in the catalyst component satisfies the above, a preferable methanol selectivity by the carbon dioxide reduction catalyst can be obtained.
  • gold (Au) is more preferably contained in an amount of 4 to 25 mol%, and further preferably contained in an amount of 7 to 25 mol%.
  • the catalyst component may contain a catalyst component other than gold (Au) and copper (Cu) as long as the effect of the present invention is not impaired.
  • the amount of the catalyst component supported in the catalyst is preferably 0.1 to 10% by weight, more preferably 0.1 to 5% by weight, and even more preferably 0.1 to 3% by weight.
  • Gold (Au) as a catalyst component is preferably present in the catalyst as fine particles of a single metal.
  • the particle size of gold (Au) is preferably 50 nm or less, more preferably 20 nm or less.
  • Copper (Cu) as a catalyst component exists in the catalyst as copper oxide, metallic copper, copper-zinc alloy, or copper-gold alloy. Further, in the catalyst component, copper (Cu) is preferably contained in an amount of 30 to 99.9 mol%, more preferably 30 to 99.9 mol%, and even more preferably 75 to 99.9 mol%.
  • the content ratio of copper (Cu) and gold (Au) as a catalyst component is preferably Cu: Au of 49: 1 to 1: 3 in terms of substance amount ratio.
  • the catalyst component containing gold (Au) and copper (Cu) is dispersed and supported on a carrier containing ZnO.
  • a carrier containing ZnO containing ZnO.
  • gold (Au) and copper (Cu) are preferably supported together in the same minute region of, for example, 100 nm square, preferably 10 nm square.
  • the alloy is formed of gold (Au) and copper (Cu). From the above, a high selectivity of methanol by the carbon dioxide reduction reaction can be obtained.
  • the carbon dioxide reduction catalyst according to this embodiment contains ZnO.
  • the catalyst component containing gold (Au) and copper (Cu) is supported on a carrier containing ZnO.
  • a carrier containing ZnO By containing ZnO as a carrier, the activity of the catalyst component can be improved.
  • the crystallite diameter of ZnO as a carrier is not particularly limited, but is, for example, 10 to 60 nm.
  • the carrier may contain a carrier other than ZnO as long as the effect of the present invention is not impaired.
  • the specific surface area of the carbon dioxide reduction catalyst according to the present embodiment is not particularly limited, but for example, the BET specific surface area is preferably 5 m 2 / g or more, and more preferably 10 m 2 / g or more.
  • Examples of the method for producing a carbon dioxide reduction catalyst according to the present embodiment include a firing step of calcining a carrier containing ZnO, a catalyst component supporting step of supporting a catalyst component containing Au and Cu on the carrier, and a hydrogen reduction treatment step. And, including.
  • the firing step is a step of firing a carrier containing ZnO.
  • the firing temperature can be, for example, 300 ° C. to 500 ° C.
  • the firing method is not particularly limited, and firing can be performed in air, for example, using a known firing device.
  • the catalyst component supporting step is not particularly limited, and known methods such as a precipitation-precipitation method, a co-precipitation method, a precipitation-reduction method, a vapor phase graphing, and a solid-phase mixing method are exemplified.
  • the precipitation-precipitation method will be described as an example.
  • the carrier calcined by the calcining step is suspended in water.
  • alkali is added to the suspension to adjust the pH to the range of 8-9.
  • the gold compound and the copper compound are added to the suspension, and an alkali is further added to adjust the pH to about 7, and the catalyst component is precipitated and precipitated on the carrier.
  • the catalyst component is dispersed and immobilized on the surface of the carrier by continuously stirring the suspension for 1 hour or more while adjusting the concentration, pH, and temperature of each component.
  • the catalyst component dispersed and immobilized on the surface of the carrier is washed with water and then dried to obtain a precursor of a carbon dioxide reduction catalyst.
  • the gold compound used to support the catalyst component on the surface of the carrier by the precipitation-precipitation method is not particularly limited, and is, for example, chloroauric acid (HAuCl 4 ), chloroauric acid salt (for example, NaAuCl 4 ), and the like.
  • Gold cyanide (AuCN), potassium gold cyana (K [Au (CN) 2 ]), diethylamine trichloride gold acid ((C 2 H 5 ) 2NH ⁇ AuCl 3 ), ethylenediamine gold complex (eg, chloride complex (eg, chloride complex) Au [C 2 H 4 (NH 2 ) 2 ] 2 Cl 3 )) and dimethyl gold ⁇ -dicenea derivative complex (for example, dimethyl gold acetylacetonate ((CH 3 ) 2 Au [CH 3 COCHCOCH 3 ])), etc.
  • Examples include gold salts and gold complexes.
  • the copper compound is not particularly limited, but for example, copper nitrate (Cu (NO 3 ) 2 ) is used.
  • the gold compound and copper compound are not limited to the above, and salts, complexes and the like soluble in water and organic solvents can be used.
  • the alkali for adjusting the pH in the precipitation-precipitation method alkali metal hydroxides, carbonates, alkaline earth metal hydroxides or carbonates, ammonia, urea and the like can be used.
  • the temperature of the suspension is preferably 0 to 90 ° C, more preferably 30 to 70 ° C.
  • the hydrogen reduction treatment step is performed by treating the precursor obtained in the catalyst component supporting step in the presence of hydrogen.
  • the treatment temperature can be set to 300 ° C. to 500 ° C. or higher, and the temperature can be raised to the treatment temperature at 5 ° C./min in a hydrogen and nitrogen stream.
  • the processing time can be, for example, 2 hours.
  • the catalyst component supported on the carrier is reduced to a metallic state.
  • the treatment temperature is preferably, for example, 400 ° C. or higher, and more preferably 500 ° C. or higher. From the above, it is considered that Au and Cu as catalyst components are reduced to form an alloy, and a carbon dioxide reduction catalyst having a high methanol selectivity can be obtained.
  • the upper limit of the treatment temperature is not particularly limited, but is preferably 600 ° C. or lower, for example. As a result, the decrease in catalytic activity due to sintering can be suppressed.
  • the carbon dioxide reduction method using the carbon dioxide reduction catalyst according to the present embodiment can obtain a high selectivity of methanol, for example, a methanol selectivity of 80% or more.
  • CO 2 The reduction reaction of carbon dioxide (CO 2 ) is represented by the following formulas (1) to (3).
  • the reactions represented by the above formulas (1) to (3) are all equilibrium reactions.
  • the carbon dioxide reduction method using the carbon dioxide reduction catalyst according to the present embodiment can obtain a high selectivity of methanol even when the carbon dioxide reduction reaction is carried out under the reaction conditions of 50 bar or less.
  • the reaction conditions are preferably 40 bar or less, more preferably 20 bar or less, and further preferably 10 bar or less. Further, it may be 5 bar or less. As a result, the energy cost for achieving the reaction conditions can be reduced, and a sufficient methanol selectivity can be obtained.
  • the carbon dioxide reduction method using the carbon dioxide reduction catalyst according to the present embodiment can obtain a high selectivity of methanol even when the carbon dioxide reduction reaction is carried out under the reaction conditions of 240 ° C. or lower.
  • the reaction conditions are preferably 220 ° C. or lower, more preferably 200 ° C. or lower. As a result, the energy cost for achieving the reaction conditions can be reduced, and a higher methanol selectivity can be obtained.
  • Example 1 The carbon dioxide reduction catalyst of Example 1 was prepared by the following method. First, ZnO as a carrier was calcined at 300 ° C. for 2 hours in the presence of air. 50 mL of water was added to 1.0 g of the calcined ZnO to prepare a suspension, and the pH was adjusted to be in the range of 8 to 9 using a 1 M NaOH solution. The liquid temperature was set to 60 ° C. HAuCl 4 and Cu (NO 3 ) 2 were added to the prepared suspension with an Au content of 66 mol%, a Cu content of 34 mol%, and a catalyst loading amount of 1.31% by weight in the catalyst component.
  • the pH was adjusted to 7 using a 1M NaOH solution.
  • the liquid temperature was maintained at 60 ° C., and the mixture was stirred for 3 hours. Then, it was cooled to room temperature, and the formed precipitate was washed with water (40 ° C.) 5 times.
  • hydrogen reduction treatment was performed at 300 ° C. The hydrogen reduction treatment was carried out under a hydrogen and nitrogen stream (H 2 : 10 mL / min, N 2 : 90 mL / mim), and the heating rate was 5 ° C./min.
  • Example 2 to 9 and Comparative Example 2 For Examples 2 to 9 and Comparative Example 2, a carbon dioxide reduction catalyst was prepared so as to have the catalyst loading amount, Au content, and Cu content shown in Table 1. The ZnO firing temperature and the hydrogen reduction treatment temperature as the carrier were set to the temperatures shown in Table 1. Except for the above, the carbon dioxide reduction catalysts of Examples 2 to 9 and Comparative Example 2 were prepared in the same manner as in Example 1. In Comparative Example 1, a commercially available catalyst (catalyst component: Cu100%, manufactured by Alfer Acer) was used, and similarly, a commercially available catalyst (catalyst component: Cu100%, manufactured by C & CS Co., Ltd.) was used in Comparative Example 3.
  • Example 1 the particle size and BET specific surface area of Au as a catalyst component were measured.
  • the particle size of Au was measured by determining the particle size distribution by TEM (Transmission Electron Microscopy) measurement. The results are shown in Table 1.
  • the horizontal axis shows the content ratio (mol%) of Au in the catalyst component
  • the left vertical axis shows the MeOH and CO production rate (/ ⁇ mol gmetal -1 s -1 )
  • the right vertical axis shows.
  • the methanol selectivity (%) is shown.
  • the dashed line indicates the MeOH selectivity (%)
  • the solid line indicates the MeOH production rate
  • the alternate long and short dash line indicates the CO production rate (the same applies hereinafter).
  • FIG. 2 is a graph showing the results of performing a carbon dioxide reduction reaction under different pressure conditions using the carbon dioxide reduction catalyst of Example 8.
  • the temperature condition was 240 ° C.
  • the horizontal axis indicates the pressure condition (bar) of the carbon dioxide reduction reaction
  • the left vertical axis and the right vertical axis indicate the MeOH and CO production rate and the MeOH selectivity, respectively, as in FIG.
  • the test was conducted under pressure conditions of 5 bar, 10 bar, 20 bar, 40 bar, and 50 bar, respectively.
  • the carbon dioxide reduction catalyst of the example showed a high MeOH selectivity even when the pressure condition was 50 bar or less, 40 bar or less, 20 bar or less, 10 bar or less, and 5 bar or less.
  • FIG. 4 and FIG. 5 show carbon dioxide reduction under different temperature conditions using the carbon dioxide reduction catalysts of Example 8 (FIG. 3), Example 5 (FIG. 4), and Example 9 (FIG. 5), respectively. It is a graph which shows the result of having performed a reaction. The pressure conditions were 50 bar in each case.
  • the horizontal axis indicates the reaction temperature (° C.)
  • the left vertical axis and the right vertical axis indicate the MeOH and CO production rates and the MeOH selectivity, respectively, as in FIG.
  • the carbon dioxide reduction catalyst of the example showed a high MeOH selectivity when the temperature condition was 240 ° C. or lower. In particular, when the temperature condition was 200 ° C. or lower, and further 180 ° C. or lower, a high MeOH selectivity of almost 100% was exhibited.
  • FIG. 6 is a graph showing the results of performing a carbon dioxide reduction reaction using the carbon dioxide reduction catalysts of Example 8 and Comparative Examples 1 to 3 under a pressure condition of 10 bar and a temperature condition of 240 ° C.
  • the left vertical axis and the right vertical axis show MeOH, CO generation rate, and MeOH selectivity, respectively, as in FIG. 1.
  • the carbon dioxide reduction catalyst of the example has a high MeOH selectivity under a pressure condition of 10 bar and a high MeOH selectivity of 80% or more as compared with the carbon dioxide reduction catalyst of the comparative example. rice field.
  • FIG. 7 is a graph showing the results of performing a carbon dioxide reduction reaction using the carbon dioxide reduction catalysts of Example 8 and Comparative Examples 1 to 3 under a pressure condition of 50 bar and a temperature condition of 240 ° C.
  • the left vertical axis and the right vertical axis show MeOH, CO generation rate, and MeOH selectivity, respectively, as in FIG.
  • FIG. 8 is a graph showing the results of the carbon dioxide reduction reaction under a pressure condition of 5 bar and a temperature condition of 240 ° C. as in FIG. 7.
  • the left vertical axis and the right vertical axis show MeOH, CO generation rate, and MeOH selectivity, respectively, as in FIG.
  • the carbon dioxide reduction catalyst of the example showed a high MeOH selectivity under pressure conditions of 50 bar and 5 bar, respectively, as compared with the carbon dioxide reduction catalyst of the comparative example.
  • FIG. 9 is a graph showing the results of performing a carbon dioxide reduction reaction using the carbon dioxide reduction catalysts of Examples 1 to 3 and Comparative Examples 1 and 2 under a pressure condition of 40 bar and a temperature condition of 240 ° C.
  • the vertical axis represents MeOH selectivity.
  • the carbon dioxide reduction catalyst of the example showed a higher MeOH selectivity under a pressure condition of 40 bar and a temperature condition of 240 ° C. as compared with the carbon dioxide reduction catalyst of the comparative example.
  • the carbon dioxide reduction catalyst of Example 3 having a hydrogen reduction treatment temperature of 500 ° C. showed a high MeOH selectivity of 80% or more.
  • FIG. 10 is a graph showing the results of performing a carbon dioxide reduction reaction under different pressure conditions using the carbon dioxide reduction catalysts of Examples 4 and 5 at a temperature condition of 240 ° C.
  • the horizontal axis represents the pressure condition (bar) of the carbon dioxide reduction reaction
  • the vertical axis represents the MeOH selectivity (%).
  • the solid line shows the result of using the carbon dioxide reduction catalyst of Example 5
  • the broken line shows the result of using the carbon dioxide reduction catalyst of Example 4.
  • the carbon dioxide reduction catalyst of the example showed a high MeOH selectivity even under a pressure condition of 50 bar or less.
  • the carbon dioxide reduction catalyst of Example 5 having a hydrogen reduction treatment temperature of 500 ° C. showed a high MeOH selectivity even under a pressure condition of 5 bar.
  • FIG. 11 is a part of a TEM image of the carbon dioxide reduction catalyst of Example 5.
  • FIG. 12 shows the peak intensities of Cu and Au (CuKa, AuKa) measured by TEM-EDS measurement at the portion surrounded by the frame in FIG. 11 and shown in a graph.
  • the horizontal axis represents the distance (nm) and the vertical axis represents the peak intensity.
  • the solid line indicates the peak intensity of Cu, and the broken line indicates the peak intensity of Au.
  • FIG. 13 is a chart showing the results of crystal structure analysis using XRD (X-ray diffraction) using the carbon dioxide reduction catalysts of Examples 1 to 9. The measurement was performed using an X-ray diffractometer (MiniFlex manufactured by Rigaku). As shown in FIG. 13, in the carbon dioxide reduction catalysts of Examples 1 to 9, no peak derived from the metal Au (38.3 °) and a peak derived from the metal Cu (43.3 °) were confirmed. Therefore, it is predicted that Au and Cu are in a highly dispersed state in the carbon dioxide reduction catalysts of Examples 1 to 9.
  • the "highly dispersed state” here means that Au and Cu exist as very small crystal particles or amorphous particles of several nanometers or less.
  • [Mössbauer spectroscopy] 14 to 17 are charts showing the results of 197 Au Mössbauer spectroscopic measurement of carbon dioxide reduction catalysts of Examples and Comparative Examples. Mössbauer spectroscopy was performed under the following conditions. A powdery sample was placed in a sample cell, and 197 Pt (half-life 18.6 hours, ⁇ -ray energy 77.4 keV) prepared by neutron irradiation in a nuclear reactor was used as the ⁇ -ray source. The temperature at the time of Mössbauer measurement was in the range of -261 to -264 ° C. The measurements were made at the Kyoto University Research Reactor Institute for Nuclear Science. FIG.
  • FIG. 14 shows the 197 Au Mössbauer spectrum of gold foil (corresponding to Comparative Example 2) as a standard substance, and the peak position P0 is the position of the velocity (Velocity, mm / s) 0 of FIGS. 15, 16 and 17. bottom.
  • Figure 15 shows a 197 Au Mossbauer spectrum of carbon dioxide reduction catalyst of Example 5
  • FIG. 16 shows a 197 Au Mossbauer spectrum of carbon dioxide reduction catalyst of Example 8
  • FIG. 17 is carbon dioxide reduction of Example 9
  • the 197 Au Mössbauer spectrum of the catalyst is shown. Isomer shifts and peak splits from the 197 Au Mössbauer spectrum of the standard material shown in FIG. 14 were performed for FIGS. 15, 16 and 17, and the alloy components were evaluated.
  • the carbon dioxide reduction catalyst of Example 5 shown in FIG. 15 has P51 (0.33 mm / s, component area ratio 66.0%, Cu concentration 8%) and P52 (1.97 mm / s, component area ratio 34.0). %, Cu concentration 49%) showed an isomer shift. The Cu concentration was converted from the isomer shift. As a result, if 8% of the atoms around one Au atom are Cu atoms, 66% of Au atoms are present, and 49% of the atoms around one Au atom are Cu atoms, and 34% of Au atoms are present. Can be interpreted. Therefore, the result of alloying Au was shown.
  • the carbon dioxide reduction catalysts of Example 9 shown in FIG. 17 are P91 (3.63 mm / s, component area ratio 96.4%, Cu concentration 91%) and P92 (0.99 mm / s, component area ratio 3.6). %, Cu concentration 25%) showed an isomer shift. The Cu concentration was converted from the isomer shift. As a result, there are 96.4% Au atoms in which 91% of the atoms around one Au atom are Cu atoms, and there are 3. Au atoms in which 25% of the atoms around one Au atom are Cu atoms. It can be interpreted as 6% present. Therefore, the result of alloying Au was shown.
  • [XAFS measurement] 18 to 21 are charts showing the results of XAFS (X-ray absorption fine structure) analysis when the carbon dioxide reduction catalyst of Example 9 was subjected to hydrogen reduction treatment.
  • 18 and 19 show the analysis results of the AuL 3 end
  • FIGS. 20 and 21 show the analysis results of the CuK end.
  • the XAFS measurement was performed under the following conditions. Measurements were taken at the large-scale radiation facility SPring-8 in Hyogo Prefecture, Industrial Use Beamline II (BL14B2). In the case of the AuL 3- end, the Si (311) plane was used for the spectroscopic crystal, and in the case of the CuK end, the Si (111) plane was used. The AuL 3 and CuK ends were measured by the permeation method, respectively.
  • a sample sandwiched between filter papers was packed in a cell having a diameter of about 10 mm and set in a quartz cell for in-situ measurement. After the measurement at room temperature, 10 vol% H 2 / He (20 mL / min) was circulated in the cell, and the measurement was carried out while raising the temperature from room temperature to 500 ° C. at 5 ° C./min. After a certain period of time had passed since the temperature reached 500 ° C., the air was cooled to room temperature, and then the measurement was performed again. For spectrum analysis, Ifefit's Athena, which is analysis software, was used.
  • FIG. 18 shows the AuL 3- end XAFS spectra of the carbon dioxide reduction catalyst of Example 9 before and after the hydrogen reduction treatment, and comparative gold foil (Au), gold oxide (Au 2 O 3 ), and Au Cu alloy (Au 7Cu 93). ..
  • the horizontal axis represents energy (eV), and the vertical axis represents normalized absorbance (a.u.) (common in FIGS. 19 to 21).
  • the carbon dioxide reduction catalyst of Example 9 shows a peak at a position close to gold oxide (Au 2 O 3 ) before the hydrogen reduction treatment, whereas after the hydrogen reduction treatment (500 ° C.), it shows a peak. It was confirmed that the peak was shown at a position close to the AuCu alloy (Au7Cu93). This suggests that the hydrogen reduction catalyst of Example 9 forms an alloy of Au and Cu by the hydrogen reduction treatment.
  • FIG. 19 shows the AuL 3- end XAFS spectra of the carbon dioxide reduction catalyst of Example 9 and the comparative gold foil (Au) and gold oxide (Au 2 O 3) at predetermined temperatures before and after the hydrogen reduction treatment and during the hydrogen reduction treatment. Is shown.
  • the peak at the position corresponding to gold oxide (Au 2 O 3) starts to decrease under the temperature condition of 105 ° C. or lower, and the temperature condition of 150 ° C. or higher It was confirmed that most of the peak at the position corresponding to gold oxide (Au 2 O 3 ) disappeared and the peak was shifted to the position close to the gold foil (Au).
  • Au was reduced in the carbon dioxide reduction catalyst of Example 9 by performing a hydrogen reduction treatment under a temperature condition of 400 ° C. or lower.
  • Figure 20 is a carbon dioxide reduction catalyst and of Example 9 before and after the hydrogen reduction treatment, AuCu alloy for comparison (Au7Cu93), copper foil (Cu), copper oxide ((II: Cu K of Cu 2 O): CuO and I
  • AuCu alloy for comparison Au7Cu93
  • Cu copper foil
  • Cu copper oxide
  • II copper oxide
  • FIG. 20 the carbon dioxide reduction catalyst of Example 9 showed a peak at a position close to copper oxide (II: CuO) before the hydrogen reduction treatment, and it was confirmed that copper was present at a II valence. rice field.
  • the hydrogen reduction treatment 500 ° C.
  • a peak was exhibited at a position close to the AuCu alloy (Au7Cu93). This suggests that the hydrogen reduction catalyst of Example 9 has an alloy of Au and Cu formed by the hydrogen reduction treatment.
  • FIG. 21 shows the CuK-end XAFS spectra of the carbon dioxide reduction catalyst of Example 9 before and after the hydrogen reduction treatment and at predetermined temperatures during the hydrogen reduction treatment.
  • T1 to T5 indicate a predetermined holding time after reaching 500 ° C.
  • T1 shows a holding time of 5 minutes
  • T2 shows a holding time of 10 minutes
  • T3 shows a holding time of 15 minutes
  • T4 shows a holding time of 20 minutes
  • T5 shows a holding time of 25 minutes.
  • the carbon dioxide reduction catalyst of Example 9 has a change in which the peak near the absorption edge decreases from the spectrum similar to copper oxide (II: CuO) in FIG. 20 under the temperature condition of 405 ° C. or lower. confirmed.
  • HAADF-STEM measurement The carbon dioxide reduction catalysts of Examples 5, 8 and 9 were measured using a high-angle scattering annular dark-field scanning transmission electron microscope (HAADF-STEM: High-Angle Anal Dark Field Scanning Transmission Electron Microscope). Each catalyst of Examples 5, 8 and 9 was dispersed in ethanol, added dropwise to a Ni grid for TEM measurement, and then dried to prepare a sample for measurement. For the measurement, Titan G2 60-300 (manufactured by FEI) was used.
  • FIG. 22 shows the results of HAADF-STEM of the carbon dioxide reduction catalyst of Example 5
  • FIG. 23 shows the results of Example 8
  • FIG. 24 shows the results of the carbon dioxide reduction catalyst of Example 9.
  • the nanoparticles supported on the ZnO carrier shown in FIGS. 22 to 24 consisted of high-intensity atoms and low-intensity atoms.
  • the high-intensity atom in FIGS. 22 to 24 indicates an Au atom
  • the low-intensity atom indicates a Cu atom. From the above, it was shown that Au and Cu formed one nanoparticle on the ZnO carrier. Therefore, it is suggested that an alloy of Au and Cu is formed.
  • [Durability test] 25 and 26 are graphs showing the results of continuous carbon dioxide reduction reactions using the carbon dioxide reduction catalyst of Example 8 under a pressure condition of 50 bar and a temperature condition of 240 ° C. Then, the changes over time in the MeOH and CO production rates and the MeOH selectivity were measured, and the results are shown in the graphs of FIGS. 25 and 26, respectively.
  • the horizontal axis represents the elapsed time (min), and the right vertical axis represents the MeOH selectivity.
  • the left vertical axis in FIG. 25 shows the MeOH and CO production rate (/ ⁇ mol gAu -1 s -1 ) with respect to the Au content (g) in the catalyst component.
  • the left vertical axis in FIG. 26 shows the MeOH and CO production rate (/ ⁇ mol gAu + Cu -1 s -1 ) with respect to the content (g) of Au and Cu in the catalyst component.
  • the carbon dioxide reduction catalyst according to the example shows high stability, and even when the carbon dioxide reduction reaction is continuously carried out for 2000 minutes or more, the activity and the methanol selectivity are lowered. Was not seen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

二酸化炭素の還元反応に用いられ、メタノール選択率が高い二酸化炭素還元触媒を提供すること。 二酸化炭素の還元反応によりメタノールを生成する際に用いられ、触媒成分としてAu及びCuを含み、担体としてZnOを含む、二酸化炭素還元触媒。触媒成分としてのAuは、触媒成分中において7~25mol%含有されることが好ましい。これにより、メタノールの高い選択率、例えば80%以上の選択率が得られる。上記二酸化炭素還元触媒は、240℃以下、50bar以下といった条件下においても、メタノールの高い選択率が得られる。

Description

二酸化炭素還元触媒、及び二酸化炭素還元方法
 本発明は、二酸化炭素還元触媒、及び二酸化炭素還元方法に関する。
 燃料の燃焼により大気中に排出される物質の一つとして、二酸化炭素(CO)が挙げられる。二酸化炭素は、地球温暖化の原因となり得るため、気候変動に関する国際条約等において大気への排出量が規制されている。このため、二酸化炭素の大気への排出を削減するため、二酸化炭素を工業的に有用な物質へと転換させる技術が提案されている。
 例えば、二酸化炭素を各種工業原料として広く利用されるメタノールへと転換させる技術が知られている。工業的には、例えば250℃以上、50気圧以上の条件下で、二酸化炭素と水素を含む気体を、銅亜鉛系触媒を用いて還元反応させ、メタノールへと転換させる方法が知られている。しかし、反応条件として高温高圧条件を要するためエネルギーコストが高い点に課題がある。また、反応によって生じる水が触媒活性の低下を招くため、十分なメタノール選択率を得られない課題がある。このため、低コストでメタノールを生成でき、好ましいメタノール選択率が得られる二酸化炭素還元触媒に関する技術の開発が望まれている。
中国特許出願公開第106076396号明細書
 特許文献1には、二酸化炭素の還元反応によりメタノールを生成するために用いられる触媒として、AuがドープされたCuがメソポーラスシリカ(NH-SBA-15)に担持された、Au-Cu担持メソポーラス触媒の調製方法に関する技術が開示されている。しかし、特許文献1に開示された技術は、二酸化炭素の還元反応によるメタノール選択率が十分でない課題があった。
 本発明者らは、二酸化炭素還元触媒の改良を試みて鋭意検討した結果、優れたメタノール選択率を示す二酸化炭素還元触媒を見出した。
 本発明は、上記に鑑みてなされたものであり、二酸化炭素の還元反応に用いられ、メタノール選択率が高い二酸化炭素還元触媒を提供することを目的とする。
 本発明は、二酸化炭素の還元反応によりメタノールを生成する際に用いられ、触媒成分としてAu及びCuを含み、担体としてZnOを含む、二酸化炭素還元触媒に関する。
 前記触媒成分中において、前記Auは2~25mol%含まれることが好ましい。
 上記二酸化炭素還元触媒において、二酸化炭素の還元によるメタノール選択率が80%以上であることが好ましい。
 また、本発明は、上記二酸化炭素還元触媒を用い、50bar以下の条件で二酸化炭素の還元反応を行い、メタノールを生成する二酸化炭素還元方法に関する。
 また、本発明は、上記二酸化炭素還元触媒を用い、240℃以下の条件で二酸化炭素の還元反応を行い、メタノールを生成する二酸化炭素還元方法に関する。
 本発明の二酸化炭素還元触媒は、二酸化炭素の還元反応において、従来技術と比較してメタノール選択率が高い。
実施例及び比較例の二酸化炭素還元触媒に係るメタノール選択率、メタノール生成速度、及び一酸化炭素生成速度を示すグラフである。 実施例の二酸化炭素還元触媒に係るメタノール選択率、メタノール生成速度、及び一酸化炭素生成速度を示すグラフである。 実施例の二酸化炭素還元触媒に係るメタノール選択率、メタノール生成速度、及び一酸化炭素生成速度を示すグラフである。 実施例の二酸化炭素還元触媒に係るメタノール選択率、メタノール生成速度、及び一酸化炭素生成速度を示すグラフである。 実施例の二酸化炭素還元触媒に係るメタノール選択率、メタノール生成速度、及び一酸化炭素生成速度を示すグラフである。 実施例及び比較例の二酸化炭素還元触媒に係るメタノール選択率、メタノール生成速度、及び一酸化炭素生成速度を示すグラフである。 実施例及び比較例の二酸化炭素還元触媒に係るメタノール選択率、メタノール生成速度、及び一酸化炭素生成速度を示すグラフである。 実施例及び比較例の二酸化炭素還元触媒に係るメタノール選択率、メタノール生成速度、及び一酸化炭素生成速度を示すグラフである。 実施例及び比較例の二酸化炭素還元触媒に係るメタノール選択率を示すグラフである。 実施例の二酸化炭素還元触媒に係るメタノール選択率を示すグラフである。 実施例の二酸化炭素還元触媒に係るTEM画像である。 実施例の二酸化炭素還元触媒に係るTEM-EDS分析結果を示すグラフである。 実施例の二酸化炭素還元触媒に係るXRD分析結果を示すチャートである。 比較例のメスバウアー分析結果を示すチャートである。 実施例のメスバウアー分析結果を示すチャートである。 実施例のメスバウアー分析結果を示すチャートである。 実施例のメスバウアー分析結果を示すチャートである。 実施例等のXAFS分析結果を示すチャートである。 実施例等のXAFS分析結果を示すチャートである。 実施例等のXAFS分析結果を示すチャートである。 実施例等のXAFS分析結果を示すチャートである。 実施例5の二酸化炭素還元触媒のHAADF-STEM像である。 実施例8の二酸化炭素還元触媒のHAADF-STEM像である。 実施例9の二酸化炭素還元触媒のHAADF-STEM像である。 実施例の二酸化炭素還元触媒に係るメタノール選択率、メタノール生成速度、及び一酸化炭素生成速度を示すグラフである。 実施例の二酸化炭素還元触媒に係るメタノール選択率、メタノール生成速度、及び一酸化炭素生成速度を示すグラフである。
[二酸化炭素還元触媒]
 本実施形態に係る二酸化炭素還元触媒は、金(Au)及び銅(Cu)を触媒成分として含み、担体としてZnOを含む。上記二酸化炭素還元触媒は、従来公知の触媒に比べて、二酸化炭素還元反応におけるメタノール選択率が高く、例えば、80%以上のメタノール選択率が得られる。メタノール選択率は、還元反応により転換された二酸化炭素の物質量(mol)に対する、生成されたメタノールの物質量(mol)を割合(%)で示したものである。
 触媒成分として、本実施形態に係る二酸化炭素還元触媒は、金(Au)及び銅(Cu)を含む。触媒成分中において、金(Au)が2~25mol%含まれることが好ましい。触媒成分中の金(Au)の含有割合が上記を満たすことにより、二酸化炭素還元触媒による好ましいメタノール選択率が得られる。触媒成分中において、金(Au)は4~25mol%含有されることがより好ましく、7~25mol%含有されることが更に好ましい。上記触媒成分としては、本発明の効果を阻害しない限り、金(Au)及び銅(Cu)以外の触媒成分が含まれていてもよい。触媒成分の触媒における担持量は、0.1~10重量%含まれることが好ましく、0.1~5重量%含まれることがより好ましく、0.1~3重量%含まれることが更に好ましい。
 触媒成分としての金(Au)は金属単体の微粒子として触媒中に存在することが好ましい。例えば、金(Au)の粒子径は50nm以下であることが好ましく、20nm以下であることがより好ましい。上記により、触媒成分の反応サイトが増加し、触媒の活性を高めることができる。
 触媒成分としての銅(Cu)は酸化銅、金属銅、銅亜鉛合金、又は銅金合金として触媒中に存在する。また、触媒成分中において、銅(Cu)は30~99.9mol%含まれることが好ましく、30~99.9mol%含まれることがより好ましく、75~99.9mol%含まれることが更に好ましい。触媒成分としての銅(Cu)と金(Au)の含有比は、物質量比でCu:Auが49:1~1:3であることが好ましい。
 触媒成分としての金(Au)と銅(Cu)は、後述する触媒成分担持工程によってZnO等の担体に担持された直後は、金属水酸化物(Au(OH)-Cu(OH))の状態である。その後、後述する水素還元処理工程によって、金(Au)及び銅(Cu)は還元され、金属単体又は金属合金となる。その後、空気中での時間経過に伴い、銅(Cu)は徐々に一部酸化されて酸化銅(II)(CuO)及び酸化銅(I)(CuO)となると考えられる。
 金(Au)及び銅(Cu)を含む触媒成分は、分散されてZnOを含む担体上に担持されることが好ましい。上記により、触媒成分と担体との接触面積が広くなり、触媒の活性を向上できる。上記に加え、金(Au)及び銅(Cu)は、例えば100nm四方、好ましくは10nm四方の同一の微小領域に共に担持されることが好ましい。また、金(Au)及び銅(Cu)により合金が形成されることが好ましい。上記により、二酸化炭素還元反応によるメタノールの高い選択率が得られる。
 担体として、本実施形態に係る二酸化炭素還元触媒は、ZnOを含む。金(Au)及び銅(Cu)を含む触媒成分は、ZnOを含む担体上に担持される。担体としてZnOが含有されることで、触媒成分の活性を向上できる。担体としてのZnOの結晶子径は、特に制限されないが、例えば10~60nmである。上記担体としては、本発明の効果を阻害しない限り、ZnO以外の担体が含まれていてもよい。
 本実施形態に係る二酸化炭素還元触媒の比表面積は、特に制限されないが、例えばBET比表面積で5m/g以上であることが好ましく、10m/g以上であることがより好ましい。
[二酸化炭素還元触媒の製造方法]
 本実施形態に係る二酸化炭素還元触媒の製造方法としては、例えば、ZnOを含む担体を焼成する焼成工程と、Au及びCuを含む触媒成分を担体に担持させる触媒成分担持工程と、水素還元処理工程と、を含む。
 焼成工程は、ZnOを含む担体を焼成する工程である。焼成温度としては、例えば300℃~500℃とすることができる。焼成方法としては特に制限されず、公知の焼成装置を用いて例えば空気中で焼成することができる。
 触媒成分担持工程は、特に制限されず、例えば析出沈殿法、共沈法、析出還元法、気相グラフティング及び固相混合法等の公知の方法が例示される。以下、析出沈殿法を例に挙げて説明する。析出沈殿法では、まず、焼成工程により焼成した担体を水に懸濁させる。次に、上記懸濁液にアルカリを加え、pH8~9の範囲に調整する。次に、金化合物及び銅化合物を上記懸濁液に加え、更にアルカリを加えてpHを7程度に調整し、触媒成分を担体上に析出・沈殿させる。次に、上記懸濁液を、各成分濃度やpH、温度を調整しながら1時間以上撹拌し続けることで、触媒成分を担体表面に分散・固定化させる。次に、担体表面に分散・固定化された触媒成分を水洗した後に乾燥し、二酸化炭素還元触媒の前駆体を得る。
 析出沈殿法によって、担体表面に触媒成分を担持させるために用いられる金化合物としては、特に制限されないが、例えば、四塩化金酸(HAuCl)、四塩化金酸塩(例えば、NaAuCl)、シアン化金(AuCN)、シアン化金カリウム(K[Au(CN)])、三塩化ジエチルアミン金酸((C)2NH・AuCl)、エチレンジアミン金錯体(例えば、塩化物錯体(Au[C(NHCl))及びジメチル金β‐ジケトン誘導体錯体(例えば、ジメチル金アセチルアセトナート((CHAu[CHCOCHCOCH]))等の金の塩や金錯体が挙げられる。銅化合物としては、特に制限されないが、例えば硝酸銅(Cu(NO)が用いられる。金化合物・銅化合物は上記に制限されず、水や有機溶媒に溶解可能な塩や錯体等を用いることができる。
 析出沈殿法における、pH調整用のアルカリとしては、アルカリ金属の水酸化物、炭酸塩、アルカリ土類金属の水酸化物又は炭酸塩、アンモニア及び尿素等を用いることができる。析出沈殿法における、懸濁液の温度は、0~90℃であることが好ましく、30~70℃であることがより好ましい。
 水素還元処理工程は、上記触媒成分担持工程において得られる前駆体を水素存在下で処理することで行われる。水素還元処理の条件としては、例えば処理温度を300℃~500℃以上とし、水素及び窒素気流中、5℃/minの条件で処理温度まで昇温させることで行うことができる。処理時間は、例えば2時間とすることができる。水素還元処理工程により、担体に担持された触媒成分が還元され金属状態となる。処理温度は、例えば400℃以上とすることが好ましく、500℃以上とすることがより好ましい。上記により、触媒成分としてのAu及びCuが還元され合金が形成されると考えられ、メタノール選択率の高い二酸化炭素還元触媒が得られる。処理温度の上限は、特に制限されないが、例えば600℃以下とすることが好ましい。上記によりシンタリングによる触媒活性の低下を抑制できる。
[二酸化炭素還元方法]
 本実施形態に係る二酸化炭素還元触媒を用いた二酸化炭素還元方法は、メタノールの高い選択率が得られ、例えば、80%以上のメタノール選択率が得られる。
 二酸化炭素(CO)の還元反応は下記の式(1)~(3)で表される。
 CO+3H⇔CHOH+HO       (1)
 CO+4H⇔CH+2HO        (2)
 CO+H⇔CO+HO           (3)
 上記式(1)~(3)で表される反応はいずれも平衡反応である。また、式(1)で表される反応は発熱反応(ΔH298=-49.6kJ/mol)であり、式(2)で表される反応は発熱反応(ΔH298=-165.0kJ/mol)であり、式(3)で表される反応は吸熱反応(ΔH298=41.2kJ/mol)である。
 上記式(2)、(3)の反応が起こる場合、最終生成物としてメタン(CH)及び一酸化炭素(CO)が生成され、メタノール(CHOH)は生成されない。更に、上記式(3)の逆水性シフト反応により生じる水(HO)が反応を抑制し、活性低下の原因となる。上記により、従来の二酸化炭素の還元方法ではメタノールの高い選択率及び活性が得られなかった。
 本実施形態に係る二酸化炭素還元触媒を用いた二酸化炭素還元方法は、50bar以下の反応条件で二酸化炭素の還元反応を行った場合においても、メタノールの高い選択率が得られる。上記反応条件としては、40bar以下であることが好ましく、20bar以下であることがより好ましく、10bar以下であることが更に好ましい。また、5bar以下であってもよい。上記により、反応条件を達成するためのエネルギーコストを低減でき、かつ十分なメタノール選択率が得られる。
 本実施形態に係る二酸化炭素還元触媒を用いた二酸化炭素還元方法は、240℃以下の反応条件で二酸化炭素の還元反応を行った場合においても、メタノールの高い選択率が得られる。上記反応条件としては、220℃以下であることが好ましく、200℃以下であることがより好ましい。上記により、反応条件を達成するためのエネルギーコストを低減できると共に、より高いメタノール選択率が得られる。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されず、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
<二酸化炭素還元触媒の作製>
[実施例1]
 以下の方法により、実施例1の二酸化炭素還元触媒を作製した。まず、担体としてのZnOを空気存在下300℃で2時間焼成した。上記焼成したZnO1.0gに水50mLを加えて懸濁液を作製し、1MNaOH溶液を用いてpHが8~9の範囲内となるように調整した。液温は60℃となるようにした。上記作製した懸濁液に対し、HAuCl及びCu(NOを、触媒成分中におけるAuの含有量が66mol%、Cuの含有量が34mol%、触媒担持量が1.31重量%となるように添加し、1MNaOH溶液を用いてpHが7となるように調整した。液温は60℃を維持し、3時間撹拌した。その後、室温まで冷却し、生成した沈殿を水(40℃)で5回洗浄した。80℃で一晩乾燥させた後、300℃で水素還元処理を行った。水素還元処理は水素及び窒素気流下(H:10mL/min、N:90mL/mim)で行い、昇温速度は5℃/minとした。
[実施例2~9、比較例1~3]
 実施例2~9、比較例2に関しては、表1に示した触媒担持量、Au含有量、Cu含有量となるように、二酸化炭素還元触媒の調製を行った。担体としてのZnO焼成温度及び水素還元処理温度は、表1に示す温度となるようにした。上記以外は実施例1と同様の方法で実施例2~9、比較例2の二酸化炭素還元触媒の作製を行った。比較例1は、市販の触媒(触媒成分:Cu100%、Alfer Acer社製)を用い、同様に比較例3にも市販の触媒(触媒成分:Cu100%、C&CS社製)を用いた。
 実施例1~5については、触媒成分としてのAuの粒子径及びBET比表面積を測定した。Auの粒子径測定はTEM(Transmission Electron Microscopy)測定により粒子径分布を求めることにより行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<評価結果>
[メタノール選択率及びメタノール生成速度]
 上記実施例5、6、7、8及び比較例1、2の二酸化炭素還元触媒を用いて二酸化炭素還元反応を行った。反応条件は、反応圧力50bar、反応温度250℃の条件下で行い、メタノール(MeOH)選択率(%)、メタノール(MeOH)及び一酸化炭素(CO)生成速度の測定を行った。なお、MeOH及びCOの生成速度は、触媒に担持された触媒成分(metal)の、単位重量(g)あたりの速度(μmol/s)として算出した。結果を図1のグラフに示す。
 図1のグラフ中、横軸は触媒成分中におけるAuの含有割合(mol%)を示し、左縦軸はMeOH及びCO生成速度(/μmol gmetal-1-1)を示し、右縦軸はメタノール選択率(%)を示す。図1中、破線はMeOH選択率(%)を示し、実線はMeOH生成速度を示し、一点鎖線はCO生成速度を示す(以下同様)。
 図1に示すように、実施例の二酸化炭素還元触媒は、全て、比較例の二酸化炭素還元触媒よりも高いMeOH選択率及びMeOH生成速度を示した。とりわけ、触媒成分中におけるAuの含有割合を2~25mol%とした実施例において、高いMeOH選択率を示した。Auの含有割合を7~25mol%とした場合、更に高いMeOH選択率を示した。
(240℃条件下における試験)
 図2は、実施例8の二酸化炭素還元触媒を用いて異なる圧力条件下で二酸化炭素還元反応を行った結果を示すグラフである。温度条件は、240℃とした。図2のグラフ中、横軸は二酸化炭素還元反応の圧力条件(bar)を示し、左縦軸及び右縦軸は図1と同様、それぞれMeOH及びCO生成速度、MeOH選択率を示す。図2に示すように、圧力条件をそれぞれ、5bar、10bar、20bar、40bar、50barとして試験を行った。
 図2に示すように、実施例の二酸化炭素還元触媒は、圧力条件を50bar以下、或いは40bar以下、20bar以下、10bar以下、5bar以下とした場合においても、高いMeOH選択率を示した。
(50bar条件下における試験)
 図3、図4、図5は、それぞれ実施例8(図3)、実施例5(図4)、実施例9(図5)の二酸化炭素還元触媒を用い、異なる温度条件下で二酸化炭素還元反応を行った結果を示すグラフである。圧力条件は、いずれも50barとした。図3、図4、図5のグラフ中、横軸は反応温度(℃)を示し、左縦軸及び右縦軸は図1と同様、それぞれMeOH及びCO生成速度、MeOH選択率を示す。
 図3、図4、図5に示すように、実施例の二酸化炭素還元触媒は、温度条件を240℃以下とした場合に、高いMeOH選択率を示した。とりわけ、温度条件を200℃以下、更には180℃以下とした場合において、ほぼ100%の高いMeOH選択率を示した。
(10bar条件下における試験)
 図6は、実施例8及び比較例1~3の二酸化炭素還元触媒を用い、圧力条件を10bar、温度条件を240℃として二酸化炭素還元反応を行った結果を示すグラフである。図6のグラフ中、左縦軸及び右縦軸は図1と同様、それぞれMeOH及びCO生成速度、MeOH選択率を示す。
 図6に示すように、実施例の二酸化炭素還元触媒は、比較例の二酸化炭素還元触媒と比較して、10barの圧力条件下においてMeOH選択率が高く、80%以上の高いMeOH選択率を示した。
(50bar、240℃条件下における試験)
 図7は、実施例8及び比較例1~3の二酸化炭素還元触媒を用い、圧力条件を50bar、温度条件を240℃として二酸化炭素還元反応を行った結果を示すグラフである。図7のグラフ中、左縦軸及び右縦軸は図6と同様、それぞれMeOH及びCO生成速度、MeOH選択率を示す。
(5bar、240℃条件下における試験)
 図8は、図7と同様に圧力条件を5bar、温度条件を240℃として二酸化炭素還元反応を行った結果を示すグラフである。図8のグラフ中、左縦軸及び右縦軸は図6と同様、それぞれMeOH及びCO生成速度、MeOH選択率を示す。
 図7及び図8に示すように、実施例の二酸化炭素還元触媒は、比較例の二酸化炭素還元触媒と比較して、それぞれ50bar、5barの圧力条件下においてMeOH選択率が高い結果を示した。
(メタノール選択率比較試験)
 図9は、実施例1~3及び比較例1、2の二酸化炭素還元触媒を用い、圧力条件を40bar、温度条件を240℃として二酸化炭素還元反応を行った結果を示すグラフである。図9のグラフ中、縦軸はMeOH選択率を示す。
 図9に示すように、実施例の二酸化炭素還元触媒は、比較例の二酸化炭素還元触媒と比較して、40barの圧力条件下、240℃の温度条件下において高いMeOH選択率を示した。とりわけ、水素還元処理温度を500℃とした実施例3の二酸化炭素還元触媒は、80%以上の高いMeOH選択率を示した。
(240℃条件下におけるメタノール選択率比較試験)
 図10は、実施例4及び実施例5の二酸化炭素還元触媒を用い、温度条件を240℃とし、異なる圧力条件下で二酸化炭素還元反応を行った結果を示すグラフである。図10のグラフ中、横軸は二酸化炭素還元反応の圧力条件(bar)を示し、縦軸はMeOH選択率(%)を示す。図8において実線は実施例5の二酸化炭素還元触媒を用いた結果を示し、破線は実施例4の二酸化炭素還元触媒を用いた結果を示す。
 図10に示すように、実施例の二酸化炭素還元触媒は、50bar以下の圧力条件下においても、高いMeOH選択率を示した。とりわけ、水素還元処理温度を500℃とした実施例5の二酸化炭素還元触媒は、5barの圧力条件下においても高いMeOH選択率を示した。
[TEM-EDS測定]
 透過電子顕微鏡を用い、二酸化炭素還元触媒のTEM(Transmission Electron Microscopy)観察を行った。図11は、実施例5の二酸化炭素還元触媒のTEM画像の一部である。
 図12は、図11において枠線で囲まれた箇所においてTEM-EDS測定によりCu及びAuのピーク強度(CuKa、AuKa)を測定し、グラフに示したものである。図12のグラフ中、横軸は距離(nm)を示し、縦軸はピーク強度を示す。図12のグラフ中、実線はCuのピーク強度を示し、破線はAuのピーク強度を示す。
 図11及び図12に示すように、実施例5の二酸化炭素還元触媒は、触媒成分としての金(Au)及び銅(Cu)が、10nm四方以下の同一の微小領域に共に担持されて存在することが示された。これにより、金(Au)及び銅(Cu)により合金が形成されていることが推測される。
[XRD測定]
 図13は、実施例1~9の二酸化炭素還元触媒を用い、XRD(X線回折)を用いた結晶構造解析を行った結果を示すチャートである。測定は、X線回折装置(Rigaku社製、MiniFlex)を用いて行った。図13に示すように、実施例1~9の二酸化炭素還元触媒において、金属Auに由来するピーク(38.3°)及び金属Cuに由来するピーク(43.3°)は確認されなかった。このため、実施例1~9の二酸化炭素還元触媒において、Au及びCuは高分散状態であることが予測される。なお、ここでいう「高分散状態」とは、Au及びCuが、数ナノメートル以下の非常に小さい結晶粒子又はアモルファスとして存在することを意味する。
[メスバウアー分光測定]
 図14~図17は、実施例及び比較例の二酸化炭素還元触媒の197Auメスバウアー分光測定結果を示すチャートである。メスバウアー分光測定は以下の条件で行った。粉末状のサンプルをサンプルセルに入れ、γ線源には原子炉での中性子照射により作製した197Pt(半減期18.6時間、γ線エネルギー77.4keV)を用いた.メスバウアー測定時の温度は-261から-264°Cの範囲内であった。測定は京都大学複合原子力科学研究所で行った。
 図14は標準物質としての金ホイル(比較例2に相当)の197Auメスバウアースペクトルを示し、ピーク位置P0を図15、図16及び図17の速度(Velocity、mm/s)0の位置とした。図15は実施例5の二酸化炭素還元触媒の197Auメスバウアースペクトルを示し、図16は実施例8の二酸化炭素還元触媒の197Auメスバウアースペクトルを示し、図17は実施例9の二酸化炭素還元触媒の197Auメスバウアースペクトルを示す。図14に示す標準物質の197Auメスバウアースペクトルからのアイソマーシフトとピーク分割を図15、図16及び図17について行い、合金成分の評価を実施した。
 図15に示す実施例5の二酸化炭素還元触媒は、P51(0.33mm/s、成分面積割合66.0%、Cu濃度8%)及びP52(1.97mm/s、成分面積割合34.0%、Cu濃度49%)にアイソマーシフトがみられた。上記Cu濃度はアイソマーシフトから換算を行った。これにより、Au原子1個の周囲の原子の8%がCu原子であるAu原子が66%存在し、Au原子1個の周囲の原子の49%がCu原子であるAu原子が34%存在すると解釈できる。従って、Auが合金化している結果が示された。
 図16に示す実施例8の二酸化炭素還元触媒は、P81(3.94mm/s、成分面積割合100%、Cu濃度98.6%)にアイソマーシフトがみられた。上記Cu濃度はアイソマーシフトから換算を行った。これにより、Au原子1個の周囲の原子の98.6%がCu原子であるAu原子が100%存在すると解釈できる。従って、Auが合金化している結果が示された。
 図17に示す実施例9の二酸化炭素還元触媒は、P91(3.63mm/s、成分面積割合96.4%、Cu濃度91%)及びP92(0.99mm/s、成分面積割合3.6%、Cu濃度25%)にアイソマーシフトがみられた。上記Cu濃度はアイソマーシフトから換算を行った。これにより、Au原子1個の周囲の原子の91%がCu原子であるAu原子が96.4%存在し、Au原子1個の周囲の原子の25%がCu原子であるAu原子が3.6%存在すると解釈できる。従って、Auが合金化している結果が示された。
[XAFS測定]
 図18~図21は、実施例9の二酸化炭素還元触媒を水素還元処理した際の、XAFS(X線吸収微細構造)分析結果を示すチャートである。図18及び図19はAuL端の分析結果を示し、図20及び図21はCuK端の分析結果を示す。XAFS測定は以下の条件で行った。兵庫県の大型放射光施設SPring-8、産業利用ビームラインII(BL14B2)において測定を行った。AuL端の場合は分光結晶にSi(311)面を、CuK端の場合はSi(111)面を用いた。AuL、CuK端についてそれぞれ、透過法で測定を行った。直径約10mmのセルに濾紙で挟んだサンプルを詰め、in-situ測定用石英セルにセットした。室温で測定後、セル内に10vol%H/He(20mL/min)を流通させ、かつ室温から500℃まで5℃/minで昇温しながら測定を行った。500℃に到達してから一定時間経過後、室温まで空冷してから再度測定を行った。スペクトルの解析には解析ソフトであるIfeffitのAthenaを用いた。
 図18は、水素還元処理前後の実施例9の二酸化炭素還元触媒及び、比較用の金ホイル(Au)、酸化金(Au)、AuCu合金(Au7Cu93)のAuL端XAFSスペクトルを示す。図18中、横軸はエネルギー(eV)を示し、縦軸は規格化吸光度(Normalized absorption(a.u.))を示す(図19~図21において共通)。
 図18に示すように、実施例9の二酸化炭素還元触媒は、水素還元処理前は酸化金(Au)に近い位置にピークを示すのに対し、水素還元処理(500℃)後はAuCu合金(Au7Cu93)に近い位置にピークを示すことが確認された。これにより、実施例9の水素還元触媒は、水素還元処理によりAuとCuの合金が形成されることが示唆される。
 図19は、水素還元処理前後及び水素還元処理中の所定温度における実施例9の二酸化炭素還元触媒及び、比較用の金ホイル(Au)、酸化金(Au)のAuL端XAFSスペクトルを示す。
 図19に示すように、実施例9の二酸化炭素還元触媒は、105℃以下の温度条件で酸化金(Au)に相当する位置のピークが減少を開始し、150℃以上の温度条件で酸化金(Au)に相当する位置のピークの大部分が消失し、金ホイル(Au)に近い位置にピークがシフトしていることが確認された。これにより、実施例9の二酸化炭素還元触媒は、400℃以下の温度条件で水素還元処理を行うことでAuが還元されていることが確認された。
 図20は、水素還元処理前後の実施例9の二酸化炭素還元触媒及び、比較用のAuCu合金(Au7Cu93)、銅ホイル(Cu)、酸化銅((II:CuO及びI:CuO)のCuK端XAFSスペクトルを示す。
 図20に示すように、実施例9の二酸化炭素還元触媒は、水素還元処理前は酸化銅(II:CuO)に近い位置にピークを示し、銅はII価で存在していることが確認された。これに対し、水素還元処理(500℃)後はAuCu合金(Au7Cu93)に近い位置にピークを示すことが確認された。これにより、実施例9の水素還元触媒は、水素還元処理によりAuとCuの合金が形成されていることが示唆される。
 図21は、水素還元処理前後及び水素還元処理中の所定温度における実施例9の二酸化炭素還元触媒のCuK端XAFSスペクトルを示す。図21中、T1~T5は500℃到達後の所定の保持時間を示し、T1は5分、T2は10分、T3は15分、T4は20分、T5は25分の保持時間を示す。
 図21に示すように、実施例9の二酸化炭素還元触媒は、405℃以下の温度条件で図20における酸化銅(II:CuO)に類似したスペクトルから、吸収端付近のピークが減少する変化が確認された。また、500℃に到達後10分程度で大部分のCu(II)に相当する位置のピークが消失し、銅ホイル(Cu)に近い位置にピークがシフトしていることが確認された。これにより、実施例9の二酸化炭素還元触媒は、400℃以下の温度条件で水素還元処理を行うことでCuが還元されていることが確認された。
[HAADF-STEM測定]
 実施例5、8、9の二酸化炭素還元触媒を、高角散乱環状暗視野走査透過電子顕微鏡(HAADF-STEM:High-Angle Annular Dark Field Scanning Transmission Electron Microscopy)を用いて測定した。実施例5、8、9の各触媒を、エタノールに分散させ、TEM測定用のNiグリッドに滴下後、乾燥させ、測定用のサンプルとした。測定には、Titan G2 60-300(FEI社製)を用いた。
 図22は実施例5、図23は実施例8、図24は実施例9の二酸化炭素還元触媒のHAADF-STEM結果を示す。上記実施例の二酸化炭素還元触媒において、図22~図24に示される、ZnO担体上に担持されるナノ粒子は、高輝度の原子と低輝度の原子からなる様子が確認された。HAADF-STEM測定では、原子番号の大きい原子ほど輝度が高くなる。従って、図22~図24における高輝度の原子はAu原子を示し、低輝度の原子はCu原子を示す。以上より、ZnO担体上にAuとCuが一つのナノ粒子を形成している結果が示された。従って、AuとCuの合金が形成されていることが示唆される。
[耐久性試験]
 図25及び図26は、実施例8の二酸化炭素還元触媒を用い、圧力条件を50barとし、温度条件を240℃として二酸化炭素還元反応を連続的に行った結果を示すグラフである。そして、それぞれMeOH及びCO生成速度、MeOH選択率の経時変化を測定し、結果を図25及び図26のグラフに示した。図25及び図26のグラフ中、横軸は経過時間(min)を示し、右縦軸はMeOH選択率を示す。図25における左縦軸は触媒成分中におけるAuの含有量(g)に対するMeOH及びCO生成速度(/μmol gAu-1-1)を示す。図26における左縦軸は触媒成分中におけるAu及びCuの含有量(g)に対するMeOH及びCO生成速度(/μmol gAu+Cu-1-1)を示す。
 図25及び図26に示すように、実施例に係る二酸化炭素還元触媒は、高い安定性を示し、連続的に2000分以上二酸化炭素還元反応を行った場合においても、活性やメタノール選択率の低下がみられなかった。

Claims (5)

  1.  二酸化炭素の還元反応によりメタノールを生成する際に用いられ、
     触媒成分としてAu及びCuを含み、担体としてZnOを含む、二酸化炭素還元触媒。
  2.  前記触媒成分中において、前記Auは2~25mol%含まれる、請求項1に記載の二酸化炭素還元触媒。
  3.  二酸化炭素の還元によるメタノール選択率が80%以上である、請求項1又は2に記載の二酸化炭素還元触媒。
  4.  請求項1~3いずれかに記載の二酸化炭素還元触媒を用い、50bar以下の条件で二酸化炭素の還元反応を行い、メタノールを生成する二酸化炭素還元方法。
  5.  請求項1~3いずれかに記載の二酸化炭素還元触媒を用い、240℃以下の条件で二酸化炭素の還元反応を行い、メタノールを生成する二酸化炭素還元方法。
PCT/JP2021/015916 2020-04-24 2021-04-19 二酸化炭素還元触媒、及び二酸化炭素還元方法 WO2021215408A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3181054A CA3181054A1 (en) 2020-04-24 2021-04-19 Carbon dioxide reduction catalyst and carbon dioxide reduction method
CN202180030752.0A CN115551636B (zh) 2020-04-24 2021-04-19 二氧化碳还原催化剂和二氧化碳还原方法
US17/921,026 US20230166242A1 (en) 2020-04-24 2021-04-19 Carbon dioxide reduction catalyst and carbon dioxide reduction method
JP2022517039A JP7193037B2 (ja) 2020-04-24 2021-04-19 二酸化炭素還元触媒、及び二酸化炭素還元方法
EP21792604.7A EP4137231A4 (en) 2020-04-24 2021-04-19 CATALYST FOR REDUCING CARBON DIOXIDE AND METHOD FOR REDUCING CARBON DIOXIDE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-077403 2020-04-24
JP2020077403 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021215408A1 true WO2021215408A1 (ja) 2021-10-28

Family

ID=78269267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015916 WO2021215408A1 (ja) 2020-04-24 2021-04-19 二酸化炭素還元触媒、及び二酸化炭素還元方法

Country Status (6)

Country Link
US (1) US20230166242A1 (ja)
EP (1) EP4137231A4 (ja)
JP (1) JP7193037B2 (ja)
CN (1) CN115551636B (ja)
CA (1) CA3181054A1 (ja)
WO (1) WO2021215408A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672835A (zh) * 2022-03-22 2022-06-28 华南理工大学 一种泡沫铜上原位生长的铜纳米线及其制备与在电催化合成尿素中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258737A (ja) * 1990-03-07 1991-11-19 Mitsui Toatsu Chem Inc メタノールの製造方法
CN106076396A (zh) 2016-06-06 2016-11-09 昆明理工大学 一种Au掺杂的Cu负载型介孔催化剂的制备方法及其应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3190034B2 (ja) * 1990-09-10 2001-07-16 智行 乾 酸化物系触媒、その製造法、該触媒を用いたco▲下2▼の接触水素化方法、および該触媒を用いたco▲下2▼とh▲下2▼からの液状炭化水素の製造法
JPH0736893B2 (ja) * 1991-03-08 1995-04-26 工業技術院長 二酸化炭素の接触還元用触媒とこれを用いるメタノールの製造方法
JP5127145B2 (ja) * 2006-02-17 2013-01-23 新日鐵住金株式会社 メタノール合成用触媒及び当該触媒の製造方法、並びにメタノールの製造方法
TWI315999B (en) * 2006-04-12 2009-10-21 Univ Nat Central Hydrogen production via partial oxidation of methanol over au/cuo-zno catalysts
JP2010235550A (ja) * 2009-03-31 2010-10-21 Tokyo Electric Power Co Inc:The メタノール合成方法
CN107185543A (zh) * 2017-06-05 2017-09-22 衢州学院 一种用于二氧化碳加氢合成甲醇的催化剂及其制备与应用
CN110433864B (zh) * 2019-07-11 2020-11-27 厦门大学 一种mof负载双金属型催化剂的制备及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258737A (ja) * 1990-03-07 1991-11-19 Mitsui Toatsu Chem Inc メタノールの製造方法
CN106076396A (zh) 2016-06-06 2016-11-09 昆明理工大学 一种Au掺杂的Cu负载型介孔催化剂的制备方法及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KIM, KI-JOONG ET AL.: "Effect of Gold Nanoparticles Addition to CuO-ZnO/A1203 Catalyst in Conversion of Carbon Dioxide to Methanol", JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, vol. 17, no. 4, 2017, pages 2724 - 2727, XP055492345, DOI: 10.1166/jnn.2017.13359 *
MARTIN OLIVER, MONDELLI CECILIA, CURULLA-FERRÉ DANIEL, DROUILLY CHARLOTTE, HAUERT ROLAND, PÉREZ-RAMÍREZ JAVIER: "Zinc-Rich Copper Catalysts Promoted by Gold for Methanol Synthesis", ACS CATALYSIS, AMERICAN CHEMICAL SOCIETY, US, vol. 5, no. 9, 4 September 2015 (2015-09-04), US , pages 5607 - 5616, XP055870505, ISSN: 2155-5435, DOI: 10.1021/acscatal.5b00877 *
PASUPULETY NAGARAJU, HAFEDH DRISS, ABDULRAHIM AHMAD, AL-ZAHRANI, PETROV LACHEZAR ANGELOV, PASUPULETY NAGARAJU, DRISS HAFEDH, ALHAM: "Influence of preparation method on the catalytic activity of Au/Cu-Zn-Al catalysts for C02 hydrogenation to methanol", COMPTES RENDUS DE L'ACADEMIE BULGARE DES SCIENCES, 1 January 2015 (2015-01-01), pages 1511 - 1518, XP055870507, Retrieved from the Internet <URL:https://www.researchgate.net/profile/Raj-Pasupu/publication/288774135_Influence_of_preparation_method_on_the_catalytic_activity_of_AUCU-ZN-AL_catalysts_for_CO2_hydrogenation_to_methanol/links/569ca46c08ae748dfb1147e3/Influence-of-preparation-method-on-the-catalytic-activity-of-AU-CU-ZN-AL-catalysts-for-CO2-hydrogenation-to-methanol.pdf> [retrieved on 20211208] *
PASUPULETY NAGARAJU; DRISS HAFEDH; ALHAMED YAHIA ABOBAKOR; ALZAHRANI ABDULRAHIM AHMED; DAOUS MUHAMMAD A.; PETROV LACHEZAR: "Studies on Au/Cu–Zn–Al catalyst for methanol synthesis ", APPLIED CATALYSIS A: GENERAL, ELSEVIER, AMSTERDAM, NL, vol. 504, 25 February 2015 (2015-02-25), AMSTERDAM, NL , pages 308 - 318, XP029278658, ISSN: 0926-860X, DOI: 10.1016/j.apcata.2015.01.036 *
See also references of EP4137231A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672835A (zh) * 2022-03-22 2022-06-28 华南理工大学 一种泡沫铜上原位生长的铜纳米线及其制备与在电催化合成尿素中的应用
CN114672835B (zh) * 2022-03-22 2023-06-20 华南理工大学 一种泡沫铜上原位生长的铜纳米线及其制备与在电催化合成尿素中的应用

Also Published As

Publication number Publication date
JP7193037B2 (ja) 2022-12-20
EP4137231A4 (en) 2023-09-27
CN115551636A (zh) 2022-12-30
EP4137231A1 (en) 2023-02-22
CA3181054A1 (en) 2021-10-28
JPWO2021215408A1 (ja) 2021-10-28
CN115551636B (zh) 2024-04-02
US20230166242A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
Štengl et al. Sodium titanate nanorods: preparation, microstructure characterization and photocatalytic activity
Alvaro et al. Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman
Savereide et al. The effect of support morphology on CoOX/CeO2 catalysts for the reduction of NO by CO
Yu et al. Preparation and characterization of Fe-doped TiO 2 nanoparticles as a support for a high performance CO oxidation catalyst
WO2006002582A1 (en) Catalytic material and method of production thereof
Unwiset et al. Catalytic activities of titania-supported nickel for carbon-dioxide methanation
Eaimsumang et al. Effect of synthesis time on morphology of CeO2 nanoparticles and Au/CeO2 and their activity in oxidative steam reforming of methanol
Dasireddy et al. Production of syngas by CO2 reduction through Reverse Water–Gas Shift (RWGS) over catalytically-active molybdenum-based carbide, nitride and composite nanowires
Luo et al. Enhanced, robust light-driven H 2 generation by gallium-doped titania nanoparticles
WO2021215408A1 (ja) 二酸化炭素還元触媒、及び二酸化炭素還元方法
Savereide et al. Identifying properties of low-loaded CoOX/CeO2 via X-ray absorption spectroscopy for NO reduction by CO
CN110711579B (zh) 一种分解臭氧的银锰催化剂、其制备方法及用途
JP2024519404A (ja) 1つ以上の金属をドープした窒化タンタル、触媒、触媒を用いた水分解の方法、及びそれらを作製する方法
WO2017068350A1 (en) Methods of making metal oxide catalysts
Abla et al. Exceptionally redox-active precursors in the synthesis of gold core-tin oxide shell nanostructures
Cihlar et al. Low-temperature sol–gel synthesis of anatase nanoparticles modified by Au, Pd and Pt and activity of TiO 2/Au, Pd, Pt photocatalysts in water splitting
Zhu et al. Seeded-growth preparation of high-performance Ni/MgAl 2 O 4 catalysts for tar steam reforming
Seridi et al. Structural study of radiolytic catalysts Ni-Ce/Al2O3 and Ni-Pt/Al2O3
Jiménez-Calvo et al. Titania-Carbon Nitride Interfaces in Gold-Catalyzed CO Oxidation
Guo et al. Au/M-TiO 2 nanotube catalysts (M= Ce, Ga, Co, Y): Preparation, characterization and their catalytic activity for CO oxidation
Ershov et al. Bimetallic Pd-M (M= Co, Ni, Zn, Ag) nanoparticles containing transition metals: Synthesis, characterization, and catalytic performance
Li et al. C, N co-doping promoted mesoporous Au/TiO 2 catalyst for low temperature CO oxidation
Papa et al. Morphology, chemical state of nanometric-sized Pt–Cu and Pt–Ag particles, and their photocatalytic activity for mineralization of methanol
Bond et al. Reduction of MgO-supported iron oxide: Formation and characterization of Fe/MgO catalysts
Wang et al. Hydrothermal synthesis and performance of a novel nanocrystalline Pb2Sn2O6 photocatalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517039

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3181054

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021792604

Country of ref document: EP

Effective date: 20221118

NENP Non-entry into the national phase

Ref country code: DE