WO2021213033A1 - 显示装置及其制作方法 - Google Patents

显示装置及其制作方法 Download PDF

Info

Publication number
WO2021213033A1
WO2021213033A1 PCT/CN2021/079691 CN2021079691W WO2021213033A1 WO 2021213033 A1 WO2021213033 A1 WO 2021213033A1 CN 2021079691 W CN2021079691 W CN 2021079691W WO 2021213033 A1 WO2021213033 A1 WO 2021213033A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
display device
sub
black matrix
Prior art date
Application number
PCT/CN2021/079691
Other languages
English (en)
French (fr)
Inventor
于勇
舒适
姚琪
袁广才
徐传祥
岳阳
黄海涛
李翔
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/628,516 priority Critical patent/US11832495B2/en
Publication of WO2021213033A1 publication Critical patent/WO2021213033A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/04Materials and properties dye
    • G02F2202/046Materials and properties dye fluorescent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display device and a manufacturing method thereof.
  • a light source the light emitted by the light source illuminates each of the sub-pixel areas
  • the light control layer is located on the light exit side of the light source, the light control layer includes: a color conversion structure located in the sub-pixel area, the color conversion structure includes a nanoporous material and at least distributed in the nanoporous material The color conversion material is used to convert the light emitted by the light source into light of a corresponding color in the sub-pixel area.
  • the color conversion material is also located on a side of the layer where the nanoporous material is located away from the light source.
  • the sub-pixel area includes: a blue sub-pixel area, a red sub-pixel area, and a green sub-pixel area;
  • the color conversion structure is specifically located in the red sub-pixel area and the green sub-pixel area, and the color conversion material includes: a red organic fluorescent dye located in the red sub-pixel area, and a red organic fluorescent dye located in the green sub-pixel area. Green organic fluorescent dye;
  • the light control layer further includes: a light scattering structure located in the blue sub-pixel area.
  • the display device further includes: a color resist layer located on the side of the light control layer away from the light source and located in each of the sub-pixel regions, and the light control layer is located at The orthographic projection of each of the sub-pixel regions is located within the orthographic projection of the color resist layer in each of the sub-pixel regions.
  • the above-mentioned display device provided by the embodiment of the present disclosure, it further includes: a driving backplane and a lens structure;
  • the light source is located on the drive backplane, the light source includes a plurality of blue diode chips, the color conversion structure and the light scattering structure cover the blue diode chip, and the lens structure is located on the Between the light control layer and the color resist layer.
  • the refractive index of the lens structure is 1.5 to 1.7, and the lens structure is in contact with the color conversion structure and the surface contacting the color resist layer.
  • the maximum distance is 1 ⁇ m ⁇ 2 ⁇ m.
  • the display device further includes: a retaining wall located between the adjacent color conversion structures and/or light scattering structures;
  • the slope angle of the retaining wall is 85°-90°, the surface reflectivity of the retaining wall is 70%-100%, and the height of the retaining wall in the direction perpendicular to the plane where the driving back plate is located is greater than the height of the retaining wall. Describe the height of the blue diode chip.
  • the light source includes a blue electroluminescent device located in each of the sub-pixel regions
  • the display device further includes: An encapsulation layer between the layer where the light-emitting device is located and the light control layer, and a first black matrix between the encapsulation layer and the light control layer;
  • the orthographic projection of the first black matrix on the plane where the display device is located partially overlaps the orthographic projection of the light control layer, and in a direction perpendicular to the plane where the display device is located, the first black matrix
  • the height of is smaller than the height of the light control layer.
  • the above-mentioned display device provided by the embodiment of the present disclosure, it further includes: a second black matrix located on a side of the first black matrix away from the encapsulation layer;
  • the orthographic projection of the second black matrix on the plane of the display device and the orthographic projection of the color resist layer do not overlap each other, and in a direction perpendicular to the plane of the display device, the second black matrix
  • the height of the matrix is smaller than the height of the color resist layer.
  • the light source includes a blue electroluminescent device located in each of the sub-pixel regions, and the display device further includes: a display substrate and a second display substrate that are opposed to each other.
  • the display substrate includes: each of the blue electroluminescent devices;
  • the first color filter substrate includes: a first base substrate, the color resist layer and the third black matrix sequentially located on the first base substrate, and the color resist layer located away from the first The light control layer on one side of the base substrate;
  • the orthographic projection boundary of the third black matrix on the first base substrate and the orthographic projection boundary of the color resist layer coincide with each other, and in a direction perpendicular to the first base substrate, the first base substrate
  • the height of the three black matrixes is the same as the height of the color resist layer.
  • the above-mentioned display device provided by an embodiment of the present disclosure, it further includes: a fourth black matrix located on a side of the third black matrix away from the first base substrate;
  • the orthographic projection boundary of the fourth black matrix on the first base substrate and the orthographic projection boundary of the light control layer coincide with each other, and in a direction perpendicular to the first base substrate, the first base substrate
  • the height of the four black matrixes is the same as the height of the light control layer.
  • the light source is a blue backlight
  • the display device further includes: an array substrate and a second color filter substrate that are opposed to each other, and are located in the array A liquid crystal layer between the substrate and the second color filter substrate;
  • the second color filter substrate includes: a second base substrate, the color resist layer and the fifth black matrix sequentially located on the second base substrate, and the color resist layer located away from the second The light control layer on one side of the base substrate;
  • the orthographic projection of the fifth black matrix on the second base substrate partially overlaps the orthographic projection of the color resist layer, and in a direction perpendicular to the second base substrate, the fifth The height of the black matrix is smaller than the height of the color resist layer.
  • the above-mentioned display device provided by an embodiment of the present disclosure, it further includes: a sixth black matrix located on a side of the fifth black matrix away from the second base substrate;
  • the orthographic projection of the sixth black matrix on the second base substrate partially overlaps the orthographic projection of the light control layer, and the sixth black matrix faces away from the surface on the side of the second base substrate It is flush with the surface of the light control layer facing away from the second base substrate.
  • the light source includes a blue electroluminescent device located in each of the sub-pixel regions
  • the display device further includes: located in the color resist layer away from each For the light-shielding layer on the side of the layer where the blue electroluminescent device is located, the orthographic projection of the light-shielding layer on the plane where the display device is located and the orthographic projection of the color resist layer do not overlap each other.
  • embodiments of the present disclosure also provide a manufacturing method of a display device, including:
  • the display device has a plurality of mutually independent sub-pixel regions, and the light control layer includes: a color conversion structure located in each of the sub-pixel regions, and the color conversion structure includes a nanoporous material and at least distributed in the nanometer.
  • a color conversion material in a porous material the color conversion material is used to convert the light emitted by the light source into light of a corresponding color in the sub-pixel area where it is located.
  • forming the light control layer specifically includes:
  • the nanoporous material and the color conversion material are mixed, and the mixed material is used to form a light control layer; alternatively, a nanoporous material layer is formed, and a photoresist layer including the color conversion material is formed on the nanoporous material layer. The photoresist layer is patterned to obtain the light control layer.
  • FIG. 1 is a schematic diagram of a structure of a display device provided by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of another structure of a display device provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of another structure of a display device provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of another structure of a display device provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another structure of a display device provided by an embodiment of the present disclosure.
  • Figure 6 is a picture of nanoporous silica glass in related technologies
  • Figure 7 is a picture of a nanoporous aluminum film in the related art.
  • OLED display products have advantages such as high resolution, high color gamut, and low power consumption compared with traditional liquid crystal (LCD) display products, and their share in display products is getting higher and higher, and the future can be foreseen It will still accelerate development.
  • the current development trend of OLED displays includes high resolution, high color gamut, and low power consumption.
  • the main structure of large-size OLED mass-produced products is white light OLED (WOLED) combined with color film (CF).
  • WOLED white light OLED
  • CF color film
  • the color gamut of OLED display products is generally less than the 90% NTSC color gamut standard. In order to cope with the high color gamut standard, it is difficult to solve the problem by improving the quality of CF.
  • Quantum dot (QD) display technology is an innovative semiconductor nanocrystal technology that can accurately transmit light, efficiently improve the color gamut and viewing angle of the display, make colors more pure and bright, and make color performance more tense. Displays using this technology can not only produce dynamic colors with a wider color gamut, but also show real color palettes in image quality, surpassing the traditional backlight technology.
  • display products combining WOLED with QD and CF structures in related technologies but the color conversion efficiency of QD materials is low, which affects the popularization and application of such display products.
  • embodiments of the present disclosure provide a display device and a manufacturing method thereof.
  • a display device provided by an embodiment of the present disclosure, as shown in FIGS. 1 to 5, includes:
  • FIGS. 1 to 5 show mutually independent red sub-pixel regions R, green sub-pixel regions G, and blue sub-pixel regions B; in specific implementation, also It may include sub-pixel areas of other colors, which is not limited here;
  • a light source 101 the light emitted by the light source 101 illuminates each sub-pixel area
  • the light control layer 102 is located on the light exit side of the light source 101.
  • the light control layer 102 includes a color conversion structure 1021 located in the sub-pixel area.
  • the color conversion structure 1021 includes a nanoporous material and a color conversion material at least distributed in the nanoporous material. The conversion material is used to convert the light emitted by the light source 101 into light of a corresponding color in the sub-pixel area.
  • the nanoporous material has a size between 10nm and 100nm, its microscopic size is small and its specific surface area is large, the light will have a strong scattering effect inside the nanopore, and the light will have a strong scattering effect in the propagation process.
  • the effective light path in the medium will be greatly enhanced.
  • the color conversion material is distributed in the porous material, the absorption rate of the light emitted from the light source 101 by the color conversion material can be increased, and the color conversion efficiency of the color conversion material can be greatly improved.
  • the surface enhancement effect of most nanoporous materials can also enhance the fluorescence excitation characteristics and improve the light efficiency of the color conversion material.
  • the light control layer 102 with a lower film thickness can achieve higher light efficiency, thereby reducing the film thickness of the fluorescent material and saving costs.
  • display devices may be: LCD display devices, OLED display devices, micro LED display devices, mini LED display devices, and the like.
  • the light source 101 is an edge-type backlight or a direct-type backlight; when the display device is an OLED, the light source 101 is an OLED device; when the display device is a micro LED, the light source 101 is a micro LED Chip: When the display device is a mini LED, the light source 101 is a mini LED chip.
  • the color conversion materials are mostly materials that can absorb blue light and convert them into red or green light. Therefore, the light source 101 may specifically be a white light source or a blue light source. And when the light source 101 is a white light source, the color conversion material of each sub-pixel area can only convert light of a part of the wavelength in the white light source into light of a color corresponding to the sub-pixel area, so the utilization rate of the light source 101 is low .
  • the light source 101 is a blue light source
  • the color conversion material in each sub-pixel area can convert light of all wavelengths in the blue light source into light of a color corresponding to the sub-pixel area. Therefore, it is preferable that the light source 101 is a blue light source in the present disclosure.
  • the color conversion material can be a quantum dot (QD) material or an organic fluorescent dye.
  • QD materials contain toxic metals such as spacers (Cd), which cannot be commercialized.
  • Cd spacers
  • the luminous efficiency of Cd-free QD materials is much lower than that of Cd-containing QD materials, and QD materials themselves are extremely afraid of water and oxygen, and their performance at high temperatures will degrade more.
  • the manufacturing method of the color conversion structure 1021 in the present disclosure involves the process steps of mixing color conversion materials and photoresist, or mixing color conversion materials, nanoporous materials and photoresist, usually QD and photoresist.
  • the solubility is poor, and organic fluorescent dyes do not contain heavy metals and belong to the same organic material as the photoresist.
  • the two have good compatibility, and there is no problem of poor dispersion stability, which is conducive to formulating for photolithography or printing processes. Based on this, organic fluorescent dyes are preferred as color conversion materials in the present disclosure.
  • red organic fluorescent dyes are located at 430nm ⁇ 580nm and 580nm ⁇ 660nm, which can absorb blue and green light and convert into red light.
  • perylene red series CF488A, AlexaFluor488, FAM, DyLight 488, Cy2
  • perylene red dye Take perylene red dye as an example, its structure is the core skeleton perylene imide, through different modification of several bay positions and grafting different substituents, different colors and different properties of fluorescence can be realized Synthesis of dyes.
  • the absorption spectrum of green organic fluorescent dyes is between 430nm and 580nm, which can absorb blue light and convert it into green light, mainly including Alexa Fluor 430, Lucifer yellow and so on.
  • the central wavelength of the absorption spectrum of the green organic fluorescent dye can reach ⁇ 520nm, which meets the requirements of high color purity; while the green indium phosphide (InP) QD excitation wavelength below 530nm is seriously degraded. Therefore, organic fluorescent dyes have high luminous efficiency and high color conversion efficiency, and are more suitable for display products than QD materials.
  • Micro LED and mini LED products use three types of red LED chips, green LED chips, and blue LED chips to achieve full-color display, while the cost of red LED chips and green LED chips is relatively high.
  • a blue LED chip combined with a color conversion material can be used to realize a full-color display, which can greatly reduce the cost of the chip and improve the efficiency and yield of the massive transfer chip. And even if the LED chip generates a large amount of heat, the high temperature resistance of the organic fluorescent material can ensure the color conversion rate and maintain the white balance.
  • the nanoporous material may be an organic nanoporous material, an inorganic porous material, or a metal nanoporous material, which is not limited herein.
  • the nanoporous material may be nanoporous carbon, nanoporous gold, nanoporous silver, nanoporous silica glass (as shown in FIG. 6), nanoporous alumina film (as shown in FIG. 7), and the like.
  • the nanoporous material and the color conversion material may be mixed, and the mixed material may be used to form the light control layer; in this case, the color conversion material may be uniformly distributed in Inside the pores of nanoporous materials. It is also possible to first form a nanoporous material layer, then form a photoresist layer including a color conversion material on the nanoporous material layer, and finally pattern the photoresist layer to obtain a light control layer; in this case, the color conversion material is included.
  • the fluidity of the photoresist layer will cause part of the color conversion material to be distributed in the pores of the nanoporous material, and part of the color conversion material in the area is located on the layer where the nanoporous material is located. Therefore, optionally, in the above-mentioned display device provided by the embodiments of the present disclosure, the color conversion material may also be located on the side of the layer where the nanoporous material is located away from the light source (ie, located on the layer where the nanoporous material is located).
  • the sub-pixel area includes: a blue sub-pixel area B, a red sub-pixel area R, and a green sub-pixel area G;
  • the color conversion structure 1021 is specifically located in the red sub-pixel area R and the green sub-pixel area G, and the color conversion material includes: a red organic fluorescent dye located in the red sub-pixel area and a green organic fluorescent dye located in the green sub-pixel area;
  • the light control layer 102 further includes: a light scattering structure 1022 located in the blue sub-pixel area B.
  • a light scattering structure 1022 is provided in the blue sub-pixel area B, which is essentially a diffuser layer, which can scatter the light of the blue sub-pixel area B to match the viewing angle and white balance of the device.
  • scattering particles may also be provided in the color conversion structure 1021.
  • it may further include: a color resist layer 103 located on the side of the light control layer 102 away from the light source 101 and located in each sub-pixel area.
  • the orthographic projection of the light control layer 102 in each sub-pixel area is located within the orthographic projection of the color resist layer 103 in each sub-pixel area.
  • the design of the orthographic projection of the color resist layer 103 in each sub-pixel area covering the orthographic projection of the light control layer 102 in each sub-pixel area can avoid light leakage and color leakage due to the color conversion structure 1021 of the light control layer 102 that may not completely convert blue light.
  • the problem of domain decline, and then to meet the display needs.
  • the color resist layer 103 may be a color filter.
  • the color filter generally includes a red filter located in the red sub-pixel area R, a green filter located in the green sub-pixel area G, and a blue sub-pixel area. Zone blue filter.
  • the above-mentioned display device provided by the embodiment of the present disclosure is a micro LED or a mini LED, as shown in FIG. 1, it may further include: a driving back plate 104 and a lens structure 105;
  • the light source 101 is located on the driving back plate 104.
  • the light source 101 includes a plurality of blue diode chips.
  • the color conversion structure 1021 and the light scattering structure 1022 cover the blue diode chip to ensure the luminous efficiency.
  • the lens structure 105 is located on the light control layer 102 and the color resist Between layers 103.
  • the red organic fluorescent dye absorbs the red light converted from blue and green light
  • the green organic fluorescent dye absorbs the green light converted from blue light.
  • the scattering particles have a scattering effect on the blue light, so that the light of each sub-pixel area diverges in all directions, and the visible range is relatively large. Big.
  • the refractive index of the lens structure 105 is 1.5 to 1.7, such as 1.5, 1.6, 1.7, etc.; the lens structures 105 are respectively
  • the maximum distance between the surfaces in contact with the color conversion structure 1021 and the color resist layer 103 is 1 ⁇ m to 2 ⁇ m, for example, 1 ⁇ m, 1.1 ⁇ m, 1.2 ⁇ m, 1.3 ⁇ m , 1.4 ⁇ m, 1.5 ⁇ m, 1.6 ⁇ m, 1.7 ⁇ m, 1.8 ⁇ m, 1.9 ⁇ m, 2 ⁇ m, etc.
  • FIG. 1 further includes: a retaining wall 106 located between adjacent color conversion structures 1021 and/or light scattering structures 1022;
  • the slope angle of the retaining wall 106 is 85°-90°, such as 85°, 86°, 87°, 88°, 89°, 90°, etc.
  • the surface reflectivity of the retaining wall 106 is 70%-100%, such as 70%, 75%, 80%, 85%, 90%, 95%, 100%, and in the direction perpendicular to the plane where the driving backplane 104 is located, the height of the retaining wall 106 is greater than the height of the blue diode chip.
  • the arrangement of the retaining wall 106 can greatly reduce the loss of light, and at the same time can prevent color mixing between adjacent pixels, and to a certain extent can also converge the light to a positive viewing angle, further improving the anti-peeping effect.
  • the above-mentioned display device provided by the embodiment of the present disclosure is a micro LED or a mini LED, as shown in FIG. 1, it may further include: a first protective cover 107 located above the color resist layer 103.
  • the color resist layer 103 is fabricated on the first protective cover 107 using a high temperature process of 170° C. or 230° C.
  • the light source 101 includes a blue electroluminescent device located in each sub-pixel area
  • the display device may further include: The encapsulation layer 108 between the layer where each blue electroluminescent device is located and the light control layer 102, and the first black matrix 109 between the encapsulation layer 108 and the light control layer 102;
  • the orthographic projection of the first black matrix 109 on the plane of the display device overlaps with the orthographic projection of the light control layer 102, and the height of the first black matrix 109 is smaller than that of the light control layer 102 in the direction perpendicular to the plane of the display device. the height of.
  • the arrangement of the first black matrix 109 can avoid the light crosstalk of the red sub-pixel region R, the green sub-pixel region G, and the blue sub-pixel region B, and improve the display effect.
  • a blue electroluminescent device includes an anode 1011 arranged in each sub-pixel area, a blue light-emitting layer 1012 located above the anode 1011, and a blue light-emitting layer 1012 located on the entire surface.
  • the blue light-emitting layer 1012 may be provided only in each sub-pixel area, or may be provided on the entire surface.
  • the blue electroluminescent device may also include a hole injection layer, a hole transport layer, an electron blocking layer, a hole blocking layer, an electron transport layer, and an electron injection layer, which are not specifically limited herein.
  • the encapsulation layer 108 includes a first inorganic encapsulation layer 1081, an organic encapsulation layer 1082, and a second inorganic encapsulation layer 1083 that are sequentially located on the cathode 1013.
  • the OLED display device generally may also include the uppermost second protective cover 110.
  • the light control layer 102 is disposed between the second inorganic encapsulation layer 1083 and the second protective cover 110 in an on-cell manner. In order to ensure the luminescence (EL) performance, the light control layer 102 needs to use a low temperature process at 85°C.
  • it may further include: a second black matrix 111 located on the side of the first black matrix 109 away from the encapsulation layer 108;
  • the orthographic projection of the second black matrix 111 on the plane of the display device and the orthographic projection of the color resist layer 103 do not overlap each other, and in the direction perpendicular to the plane of the display device, the height of the second black matrix 111 is smaller than that of the color resist layer 103 height.
  • the provision of the second black matrix 111 can reduce the surface reflectivity. At the same time, since the color resist layer 103 in each sub-pixel area is located in the opening area of the second black matrix 111, it can also avoid reducing the transmittance and aperture ratio.
  • the color resist layer 103 is disposed between the second inorganic encapsulation layer 1083 and the second protective cover 110 in an on-cell manner.
  • the color resist layer 103 needs to use a low temperature process at 85°C.
  • the above-mentioned display device provided by the embodiment of the present disclosure is a top-emission OLED, as shown in FIG. 2, it may further include an insulating (OC) layer 112, a spacer (PS) layer 113, and a pixel definition (PDL).
  • OC insulating
  • PS spacer
  • PDL pixel definition
  • Layer 114 flat (PLN) layer 115, source and drain 116, interlayer dielectric (ILD) layer 117, first capacitor electrode 118, first gate insulation (GI1) layer 119, gate 120 and the Two capacitor electrodes 118', a second gate insulation (GI2) layer 121, an active layer 122 (specifically including a semiconductor region shielded by the gate 120 and a conductive region located on both sides of the semiconductor region), a flexible (PI) substrate 123, Buffer (PSA) layer 124 and base film substrate 125.
  • ILD interlayer dielectric
  • GI1 first gate insulation
  • GI2 second gate insulation
  • active layer 122 specifically including a semiconductor region shielded by the gate 120 and a conductive region located on both sides of the semiconductor region
  • PI flexible
  • PSA Buffer
  • the set display substrate 301 and the first color filter substrate 302 can be assembled together by the sealant 303;
  • the display substrate 301 includes: blue electroluminescent devices
  • the first color filter substrate 302 includes: a first base substrate 3021, a color resist layer 103 and a third black matrix 3022 sequentially located on the first base substrate 3021, and a color resist layer 103 which is located away from the first base substrate 3021 Side light control layer 102;
  • the orthographic projection boundary of the third black matrix 3022 on the first base substrate 3021 and the orthographic projection boundary of the color resist layer 103 coincide with each other, and in the direction perpendicular to the first base substrate 3021, the height of the third black matrix 3022 It is the same height as the color resist layer 103.
  • the color resist layer 103 of each sub-pixel area By disposing the color resist layer 103 of each sub-pixel area in the opening area of the third black matrix 3022, the light emitted from the side surface of the color resist layer 103 of the adjacent sub-pixel area can be blocked by the third black matrix 3022 between the two. Therefore, the light crosstalk between the red sub-pixel area R, the green sub-pixel area G, and the blue sub-pixel area B is effectively avoided, and the display effect is improved.
  • the structure of the blue electroluminescent device here is the same as the above-mentioned blue electroluminescent device, which will not be repeated here; and generally, the display substrate 301 also includes the above-mentioned base film substrate The film layers from 125 to encapsulation layer 108 will not be repeated here.
  • it may further include: a fourth black matrix 3023 located on a side 3021 of the third black matrix 3022 away from the first base substrate;
  • the orthographic projection boundary of the fourth black matrix 3023 on the first base substrate 3021 and the orthographic projection boundary of the light control layer 102 coincide with each other, and in the direction perpendicular to the first base substrate 3021, the height of the fourth black matrix 3023 It is the same height as the light control layer 102.
  • the light control layer 102 is located in the opening area of the fourth black matrix 3023, so that light emitted from the side of the light control layer 102 in different sub-pixel areas can be effectively blocked by the fourth black matrix 3023. Based on this, the fourth black matrix 3023 can be arranged The light crosstalk between the red sub-pixel area R, the green sub-pixel area G, and the blue sub-pixel area B is further avoided, and the display effect is improved.
  • the structure shown in Figure 3 can be applied to large-size top-emitting OLED products.
  • the light control layer 102 and the color resist layer 103 are both fabricated on the first base substrate 3021, and the light control layer 102 and the color resist layer 103 are used at 170°C or 230°C. High-temperature process, 230°C of which is consistent with the existing color film (CF) production process temperature.
  • the light source 101 includes a blue electroluminescent device located in each sub-pixel area
  • the display device may further include: The color resist layer 103 is away from the light shielding layer 401 on the side where each blue electroluminescent device is located, and the orthographic projection of the light shielding layer 401 on the plane where the display device is located and the orthographic projection of the color resist layer 103 do not overlap each other.
  • the bottom emission type OLED provided by the embodiment of the present disclosure further includes: an active layer 122 (specifically including a semiconductor region shielded by the gate 120 and a conductive region located on both sides of the semiconductor region), The light-shielding layer 401 completely covers the active layer 122, avoiding the interference of external light on the active layer 122.
  • an active layer 122 specifically including a semiconductor region shielded by the gate 120 and a conductive region located on both sides of the semiconductor region
  • the bottom emission type OLED provided by the embodiment of the present disclosure further includes: a pixel definition (PDL) layer 114, a first resin (Resin1) layer 402, a first passivation (PVX1) layer 403, and a second Passivation (PVX2) layer 404, auxiliary source and drain 116' (including covering the active layer 122 and electrically connected to the gate 120 to prevent light from the blue light-emitting device from irradiating the first part of the active layer 122, and electrically connecting the drain
  • the second resin (Resin2) layer 405 the interlayer dielectric (ILD) layer 117, the second gate insulating layer 121, the buffer (PSA) layer 124 and the flexible (PI) substrate 123.
  • the above-mentioned bottom-emission OLED display device provided by the present disclosure may be a large-size bottom-emission OLED product.
  • the color conversion structure 1021 and the color resist layer 103 are both arranged on the driving backplane. Specifically, the color conversion structure 1021 can be formed by a 230°C high-temperature process. And the color resist layer 103. The high temperature of 230°C will weaken the luminescence performance of QD materials, which is not suitable for QD materials.
  • the light source 101 is a blue backlight
  • the display device further includes an array substrate 501 and a second color filter substrate that are opposed to each other. 502, and a liquid crystal layer 503 located between the array substrate 501 and the second color filter substrate 502;
  • the second color filter substrate 502 includes: a second base substrate 5021, a color resist layer 103 and a fifth black matrix 5022 located on the second base substrate 5021 in sequence, and a second base substrate 5021 located on the color resist layer 103 away from the second base substrate 5021
  • the light control layer 102 on one side;
  • the orthographic projection of the fifth black matrix 5022 on the second base substrate 5021 and the orthographic projection of the color resist layer 103 partially overlap, and in the direction perpendicular to the second base substrate 5021, the height of the fifth black matrix 5022 is less than The height of the color resist layer 103.
  • the color resist layer 103 is located in each sub-pixel area, by arranging the color resist layer 103 in the opening area of the fifth black matrix 5022, the fifth black matrix 5022 can be used to prevent light from the side surface of the color resist layer 103 in different sub-pixel areas from irradiating to Adjacent sub-pixel regions, therefore, the arrangement of the fifth black matrix 5022 can avoid the light crosstalk of the red sub-pixel region R, the green sub-pixel region G, and the blue sub-pixel region B, and improve the display effect.
  • the LCD display device may further include: a sixth black matrix 5023 on the side of the fifth black matrix 5022 away from the second base substrate 5021;
  • the orthographic projection of the sixth black matrix 5023 on the second base substrate 5021 overlaps with the orthographic projection of the light control layer 102, and the surface of the sixth black matrix 5023 on the side facing away from the second base substrate 5021 and the light control layer 102 The surface on the side away from the second base substrate 5021 is flush.
  • the second color film substrate 502 further includes a metal transmission grating (WGP) 5024.
  • WGP metal transmission grating
  • the color conversion structure 1021 makes the polarized light passing through the liquid crystal layer 503 Depolarization
  • the metal transmission grating 5024 has a polarization effect. Therefore, a built-in metal transmission grating 5024 can be used to make the light passing through the metal transmission grating 5024 polarized, so as to solve the problem of depolarization of the color conversion structure 1021.
  • the arrangement of the sixth black matrix 5023 on the one hand can avoid the phenomenon of optical crosstalk, on the other hand, it also has a flattening effect, which is beneficial to the subsequent production of the metal transmission grating 5024.
  • the second color filter substrate 502 may further include a flat protective layer 5025.
  • the flat protection layer 5025 generally uses multiple layers of OC materials, such as high flatness materials such as first light-curable OC material/thermally-cured OC material/second light-curable OC material (UOC/HOC/FOC).
  • the color conversion structure 1021 in the above-mentioned LCD display device provided by the present disclosure can be manufactured using a high temperature process of 170°C or 230°C.
  • 170°C is consistent with the process temperature of the existing QD products
  • 230°C is consistent with the process temperature of the existing color film substrate. There is no need to re-adjust the temperature, which simplifies the manufacturing process.
  • the array substrate 501 may also include a spacer layer 113, a pixel electrode 5012, a flat layer 115, a source and drain 116, an interlayer dielectric layer 117, and a gate electrode.
  • “same layer” refers to a layer structure formed by using the same film forming process to form a film layer for forming a specific pattern, and then using the same mask plate to form a layer structure through a single patterning process. That is, one patterning process corresponds to a mask (also called a mask). Depending on the specific pattern, a patterning process may include multiple exposure, display or etching processes, and the specific patterns in the formed layer structure may be continuous or discontinuous, and these specific patterns may also be at different heights. Or have different thicknesses.
  • the embodiment of the present disclosure provides a method for manufacturing a display device. Since the principle of the manufacturing method to solve the problem is similar to that of the above-mentioned display device, the implementation of the manufacturing method provided by the embodiment of the present disclosure is Reference may be made to the implementation of the above-mentioned display device provided in the embodiments of the present disclosure, and the repetition is not repeated here.
  • an embodiment of the present disclosure also provides a manufacturing method of a display device, including:
  • a light control layer is formed on the light emitting side of the light source
  • the display device has a plurality of mutually independent sub-pixel areas, and the light control layer includes: a color conversion structure located in each sub-pixel area.
  • the color conversion structure includes a nanoporous material and a color conversion material at least distributed in the nanoporous material. The material is used to convert the light emitted by the light source into the light of the corresponding color in the sub-pixel area.
  • forming the light control layer can be specifically implemented in the following two possible ways:
  • the patterning process involved in forming each layer structure may not only include deposition, photoresist coating, mask masking, exposure, development, etching, Part or all of the process, such as photoresist stripping, may also include other processes, and the details are subject to the pattern formed in the actual manufacturing process, which is not limited here.
  • a post-baking process may also be included after development and before etching.
  • the deposition process may be a chemical vapor deposition method, a plasma enhanced chemical vapor deposition method or a physical vapor deposition method, which is not limited here;
  • the mask used in the mask process may be a half-tone mask (Half Tone Mask). ), Single Slit Mask or Gray Tone Mask, which is not limited here;
  • the etching can be dry etching or wet etching, which is not limited here.
  • the manufacturing process of the display device shown in FIG. 1 is as follows:
  • the first step firstly make a Micro LED or mini LED drive backplane 104, including a substrate, a buffer layer, a low-temperature polysilicon layer, a gate insulating layer, a gate electrode, an interlayer insulating layer, and source and drain sequentially formed on the substrate Polar layer, flat layer and pixel electrode layer.
  • Step 2 Transfer the blue micro LED or micro LED chip to the drive back plate 104 by a mass transfer method on the drive back plate 104 for bonding and upper electrode production; the blue micro LED or micro LED chip That is, the light source 101.
  • Step 3 Protect the blue micro LED chip. If it is a blue mini LED chip, you can skip this process.
  • the fourth step forming a highly reflective barrier wall 106 between the chips through a photolithography process.
  • the barrier wall 106 has a film thickness greater than the chip height, a slope angle of 85°-90° or more, and a surface reflectance greater than 70%-100%.
  • Step 5 sequentially form the color conversion structure 1021 of the red sub-pixel area R, the color conversion structure 1021 of the green sub-pixel area G, and the light scattering structure 1022 of the blue sub-pixel area B on the chip by photolithography or printing process, Preferably, it is a photolithography process.
  • the printing process is likely to cause a high step difference and cause uneven surface to affect the light extraction efficiency.
  • the color conversion structure 1021 is made by mixing nanoporous materials, organic fluorescent dyes, scattering particles and photoresist, and the light scattering structure 1022 is made by mixing scattering particles and photoresist. Specifically, it can be formed by a photolithography process, or it can be made by printing.
  • the color conversion structure 1021 and the light scattering structure 1022 constitute the light control layer 102.
  • the sixth step forming a lens structure 105 on the light control layer 102 by a photolithography process.
  • the lens structure 105 has a refractive index of 1.5 to 1.7, and an arch height h of 1 ⁇ m to 2 ⁇ m.
  • Step 7 On the first protective cover 107, a black matrix, a first part of the color resist layer 103 located in the red sub-pixel region R, a second part of the color resist layer 103 located in the green sub-pixel region G, and color resist are sequentially fabricated on the first protective cover 107.
  • the layer 103 is located in the third part of the blue sub-pixel region B and the OC insulating layer. Specifically, each layer is formed by a photolithography process.
  • the manufacturing process of the display device shown in FIG. 2 is as follows:
  • the first step firstly fabricate the drive backplane, including providing a base film substrate 125, forming a buffer layer 124, a flexible base 123, an active layer 122 made of low-temperature polysilicon, a second gate insulating layer 121, and a buffer layer 124 on the base film substrate 125 in sequence.
  • the gate 120 and the second capacitor electrode 118', the first gate insulating layer 119, the first capacitor electrode 118, the interlayer dielectric layer 117, the source and drain electrodes 116, the flat layer 115, the anode 1011 and the pixel defining layer 114 are arranged in the same layer .
  • the second step forming a blue OLED device on the layer where the anode 1011 is located by evaporation, including a hole injection layer, a hole transport layer, an electron blocking layer, a blue light emitting layer 1012, a hole blocking layer, an electron transport layer,
  • the electron injection layer and the cathode 1013, the blue OLED device is a top-emitting device, and the cathode 1013 adopts a semi-permeable metal, such as Mg/Ag.
  • Step 3 Encapsulate the blue OLED device.
  • the current mainstream packaging process for flexible OLEDs is an encapsulation layer 108 composed of three thin films: the first inorganic encapsulation layer 1081/organic encapsulation layer 1082/second inorganic encapsulation layer 1083.
  • the first inorganic encapsulation layer 1081 and the second inorganic encapsulation layer 1083 are made of silicon nitride (SiN) or silicon oxide (SiN), which are produced by means of plasma chemical vapor deposition (PECVD).
  • the organic encapsulation layer 1082 is made of organic material, and is made by inkjet printing (IJP).
  • Step 4 Perform a low-temperature COE (Color film on TFE) process on the encapsulation layer 108.
  • the COE production specifically includes: sequentially forming a black matrix and a color conversion structure 1021 in the red sub-pixel area R, and color conversion in the green sub-pixel area G The structure 1021, the light scattering structure 1022 of the blue sub-pixel region B, the first part of the color resist layer 103 in the red sub-pixel region R, the second part of the color resist layer 103 in the green sub-pixel region G, the color resist layer 103 The third part located in the blue sub-pixel area B and the insulating layer 112.
  • the above layers need to use a low temperature process at 85°C.
  • the color conversion structure 1021 is made by mixing nanoporous materials, organic fluorescent dyes, scattering particles and photoresist, and the light scattering structure 1022 is made by mixing scattering particles and photoresist. Specifically, it can be formed by a photolithography process, or it can be made by printing. Or, first form a layer of porous metal structure with an aperture of 30nm and a period of 110nm in the red sub-pixel area R and the green sub-pixel area B by metal sputtering and etching, and then use organic fluorescent dyes, scattering particles and photoresist. The mixture makes a color conversion structure 1021. The color conversion structure 1021 and the light scattering structure 1022 constitute the light control layer 102.
  • the black matrix may be a single-layer black matrix structure composed of the first black matrix 109, or may be a double-layer black matrix structure composed of the first black matrix 109 and the second black matrix 111.
  • the black matrix has a double-layer black matrix structure, before the OC is produced, the first black matrix 109, the light control layer 102, the color resist layer 103, and the second black matrix 111 are sequentially produced.
  • the second black matrix 111 can reduce the surface reflectance of the display device, but the line width of the second black matrix 111 cannot cover the color resist layer 103 to avoid reducing the transmittance and aperture ratio.
  • the area of the color resist layer 103 in each sub-pixel area must be larger than the area of the color conversion structure 1021 or the light scattering structure 1022 to avoid light leakage and color gamut reduction.
  • the manufacturing process of the display device shown in FIG. 3 is as follows:
  • the first step firstly fabricate the display backplane 301, which specifically includes providing a base film substrate 125, sequentially forming a buffer layer 124, a flexible base 123, an active layer 122 made of low-temperature polysilicon, and a second gate insulating layer on the base film substrate 125 121.
  • the gate 120 and the second capacitor electrode 118' arranged in the same layer, the first gate insulating layer 119, the first capacitor electrode 118, the interlayer dielectric layer 117, the source and drain 116, the flat layer 115, the anode 1011 and the pixel definition ⁇ 114.
  • the second step forming a blue OLED device on the layer where the anode 1011 is located by evaporation, including a hole injection layer, a hole transport layer, an electron blocking layer, a blue light emitting layer 1012, a hole blocking layer, an electron transport layer,
  • the electron injection layer and the cathode 1013, the blue OLED device is a top-emitting device, and the cathode 1013 adopts a semi-permeable metal, such as Mg/Ag.
  • Step 3 Encapsulate the blue OLED device.
  • the current mainstream packaging process for flexible OLEDs is the first inorganic encapsulation layer 1081/organic encapsulation layer 1082/second inorganic encapsulation layer 1083, the encapsulation layer 108 composed of three films.
  • the first inorganic encapsulation layer 1081 and the second inorganic encapsulation layer 1083 are made of silicon nitride (SiN) or silicon oxide (SiN), which are produced by means of plasma chemical vapor deposition (PECVD).
  • the organic encapsulation layer 1082 is made of organic material, and is made by inkjet printing (IJP).
  • Step 4 Fabrication of the first color filter substrate 302, which specifically includes: sequentially forming a black matrix and a color conversion structure 1021 in the red sub-pixel region R on the first base substrate 3021, and a color conversion structure 1021 in the green sub-pixel region G. , The light scattering structure 1022 of the blue sub-pixel region B, the first part of the color resist layer 103 in the red sub-pixel region R, the second part of the color resist layer 103 in the green sub-pixel region G, and the color resist layer 103 in the blue The third part in the color sub-pixel area B and the insulating protection layer 3024.
  • the above layers can be processed by a high-temperature process at 170°C or 230°C to be consistent with the existing CF process.
  • the color conversion structure 1021 is made by mixing nanoporous materials, organic fluorescent dyes, scattering particles and photoresist, and the light scattering structure 1022 is made by mixing scattering particles and photoresist. Specifically, it can be formed by a photolithography process, or it can be made by printing.
  • the color conversion structure 1021 and the light scattering structure 1022 constitute the light control layer 102.
  • the black matrix may be a single-layer black matrix structure composed of the third black matrix 3022, or may be a double-layer black matrix structure composed of the third black matrix 3022 and the fourth black matrix 3023.
  • the black matrix has a double-layer black matrix structure
  • the third black matrix 3022, the color resist layer 103, the fourth black matrix 3023, and the light control layer 102 are sequentially fabricated before the OC is fabricated.
  • the fourth black matrix 3023 can reduce the risk of pixel crosstalk.
  • the area of the color resist layer 103 in each sub-pixel area must be larger than the area of the color conversion structure 1021 or the light scattering structure 1022 to avoid light leakage and color gamut reduction.
  • the fifth step the display substrate 301 and the first color filter substrate 302 are encapsulated in a box, and a filler material (such as a frame sealant 303) can be used to fill between the two, or an air layer can also be used.
  • a filler material such as a frame sealant 303
  • the manufacturing process of the display device shown in FIG. 4 is as follows:
  • the first step manufacturing the drive backplane, including providing a flexible substrate 123, on which a light shielding layer 401, a buffer layer 124, an active layer 122, a second gate insulating layer 121, a gate 120, and an interlayer dielectric are sequentially formed on the flexible substrate 123
  • the first part of the layer 117, the source and drain 116, the color resist layer 103 is located in the red sub-pixel region R
  • the color resist layer 103 is located in the second part of the green sub-pixel region G
  • the color resist layer 103 is located in the blue sub-pixel region B
  • the color conversion structure 1021 is made by mixing nanoporous materials, organic fluorescent dyes, scattering particles and photoresist, and the light scattering structure 1022 is made by mixing scattering particles and photoresist. Specifically, it can be formed by a photolithography process, or it can be made by printing.
  • the color conversion structure 1021 and the light scattering structure 1022 constitute the light control layer 102.
  • the area of the color resist layer 103 in each sub-pixel area must be larger than the area of the color conversion structure 1021 or the light scattering structure 1022 to avoid light leakage and color gamut reduction.
  • the second step forming the remaining components of the blue OLED device on the anode 1011 by evaporation, specifically including: a hole injection layer, a hole transport layer, an electron blocking layer, a blue light-emitting layer, which are sequentially located above the anode 1011, Hole blocking layer, electron transport layer, electron injection layer and cathode.
  • the blue OLED device is a bottom emitting device, and the cathode is made of a totally reflective metal, such as Ag.
  • Step 3 Encapsulate the blue OLED device.
  • rigid OLEDs generally use cover packaging
  • flexible OLEDs use thin-film packaging.
  • the manufacturing process of the display device shown in FIG. 5 is as follows:
  • the first step manufacturing the array substrate 501, including providing a third base substrate 5014, on the three base substrate 5014, the common electrode 5013 and the gate 120, the second gate insulating layer 121, and the active layer are sequentially formed on the same layer. 122, source and drain 116, planarization layer 115, pixel electrode 5012, and spacer layer 113.
  • Step 2 Fabrication of the second color filter substrate 502: specifically includes providing a second base substrate 5021, on which a black matrix and a color resist layer 103 are sequentially formed on the first part of the red sub-pixel region R , The color resist layer 103 is located in the second part of the green sub-pixel area G, the color resist layer 103 is located in the third part of the blue sub-pixel area B, the color conversion structure 1021 of the red sub-pixel area R, the green sub-pixel area G The color conversion structure 1021, the light scattering structure 1022 of the blue sub-pixel area B, and the flat protective layer 5025 are shown.
  • the color conversion structure 1021 is made by mixing nanoporous materials, organic fluorescent dyes, scattering particles and photoresist, and the light scattering structure 1022 is made by mixing scattering particles and photoresist. Specifically, it can be formed by a photolithography process, or it can be made by printing.
  • the color conversion structure 1021 and the light scattering structure 1022 constitute the light control layer 102.
  • the area of the color resist layer 103 in each sub-pixel area must be larger than the area of the color conversion structure 1021 or the light scattering structure 1022 to avoid light leakage and color gamut reduction.
  • the black matrix may be a single-layer black matrix structure composed of the fifth black matrix 5022, or may be a double-layer black matrix structure composed of the fifth black matrix 5022 and the sixth black matrix 5026. Specifically, when the black matrix has a double-layer black matrix structure, before fabricating the flat protective layer 5025, the fifth black matrix 5022, the color resist layer 103, the sixth black matrix 5023, and the light control layer 102 are fabricated in sequence. The sixth black matrix 5023 facilitates the subsequent fabrication of the metal transmission grating 5024.
  • the flat protective layer 5025 generally uses multiple layers of OC materials, such as high flatness materials such as the first photocurable OC material/thermal curing OC material/the second photocurable OC material. .
  • the process temperature of each of the above-mentioned layers is 170°C or 230°C.
  • the third step depositing aluminum (Al) metal on the flat protective layer 5025, and etching the Al metal to form a metal transmission grating 5024 with a width of 60 nm, a gap of 60 nm, and a height of 120 nm.
  • the fourth step align the array substrate 501 and the second color filter substrate 502 by using the liquid crystal dropping (ODF) method, and fill the liquid crystal layer 503 in the middle.
  • ODF liquid crystal dropping
  • the above-mentioned display device includes: a plurality of mutually independent sub-pixel areas; a light source, and the light emitted by the light source illuminates each sub-pixel area; a light control layer located on the light emitting side of the light source;
  • the color conversion structure of the pixel area includes a nanoporous material and a color conversion material at least distributed in the nanoporous material, the color conversion material is used to convert the light emitted by the light source into light of a corresponding color in the sub-pixel area. Because the size of nanoporous material is between 10nm and 100nm, its microscopic size is small, and the specific surface area is large.
  • the light will have a strong scattering effect inside the nanopore, and the effective light path during the propagation process will be greatly enhanced. Therefore, when the color conversion material is distributed in the porous material, the absorption rate of the color conversion material to the light emitted by the light source can be increased, and the color conversion efficiency of the color conversion material can be greatly improved. At the same time, the surface enhancement effect of most nanoporous materials can also enhance the fluorescence excitation characteristics and improve the light efficiency of the color conversion material. Moreover, it can be understood that because the color conversion efficiency of the color conversion material is greatly improved, the light control layer with a lower film thickness can achieve higher light efficiency, thereby reducing the film thickness of the fluorescent material and saving costs.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

提供显示装置及其制作方法,包括:多个相互独立的子像素区;光源(101),光源(101)发出的光照射各子像素区;光控制层(102),位于光源(101)的出光侧,光控制层(102)包括:位于子像素区的色转换结构(1021),色转换结构(1021)包括纳米多孔材料和至少分布于纳米多孔材料中的色转换材料,色转换材料用于将光源(101)发出的光转换为所在子像素区对应颜色的光。

Description

显示装置及其制作方法
相关申请的交叉引用
本申请要求在2020年04月21日提交中国专利局、申请号为202010318261.3、申请名称为“显示装置及其制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示装置及其制作方法。
背景技术
随着显示技术的蓬勃发展,显示产品以迅雷不及掩耳之势入侵了我们的生活。显示产品的高色域意味着显示画面具有更加丰富多彩的色彩,具有更强的色彩展现能力,已经成为一个重要发展方向。
发明内容
本公开实施例提供的一种显示装置,包括:
多个相互独立的子像素区;
光源,所述光源发出的光照射各所述子像素区;
光控制层,位于所述光源的出光侧,所述光控制层包括:位于所述子像素区的色转换结构,所述色转换结构包括纳米多孔材料和至少分布于所述纳米多孔材料中的色转换材料,所述色转换材料用于将所述光源发出的光转换为所在所述子像素区对应颜色的光。
可选地,在本公开实施例提供的上述显示装置中,所述色转换材料还位于所述纳米多孔材料所在层背离所述光源的一侧。
可选地,在本公开实施例提供的上述显示装置中,所述子像素区,包括:蓝色子像素区、红色子像素区和绿色子像素区;
所述色转换结构具体位于所述红色子像素区和所述绿色子像素区,所述色转换材料包括:位于所述红色子像素区的红色有机荧光染料,以及位于所述绿色子像素区的绿色有机荧光染料;
所述光控制层,还包括:位于所述蓝色子像素区的光散射结构。
可选地,在本公开实施例提供的上述显示装置中,还包括:位于所述光控制层背离所述光源一侧且位于各所述子像素区的色阻层,所述光控制层在各所述子像素区的正投影位于所述色阻层在各所述子像素区的正投影内。
可选地,在本公开实施例提供的上述显示装置中,还包括:驱动背板和透镜结构;
所述光源位于所述驱动背板之上,所述光源包括多个蓝色二极管芯片,所述色转换结构和所述光散射结构包覆所述蓝色二极管芯片,所述透镜结构位于所述光控制层与所述色阻层之间。
可选地,在本公开实施例提供的上述显示装置中,所述透镜结构的折射率为1.5~1.7,所述透镜结构分别与所述色转换结构、所述色阻层接触的表面之间的最大距离为1μm~2μm。
可选地,在本公开实施例提供的上述显示装置中,还包括:位于相邻所述色转换结构和/或光散射结构之间的挡墙;
所述挡墙的坡度角为85°~90°,所述挡墙的表面反射率70%~100%,且在垂直于所述驱动背板所在平面的方向上所述挡墙的高度大于所述蓝色二极管芯片的高度。
可选地,在本公开实施例提供的上述显示装置中,所述光源包括位于各所述子像素区的蓝色电致发光器件,所述显示装置还包括:位于各所述蓝色电致发光器件所在层与所述光控制层之间的封装层,以及位于所述封装层与所述光控制层之间的第一黑矩阵;
所述第一黑矩阵在所述显示装置所在平面上的正投影与所述光控制层的正投影部分交叠,且在垂直于所述显示装置所在平面的方向上,所述第一黑矩阵的高度小于所述光控制层的高度。
可选地,在本公开实施例提供的上述显示装置中,还包括:位于所述第一黑矩阵背离所述封装层一侧的第二黑矩阵;
所述第二黑矩阵在所述显示装置所在平面上的正投影与所述色阻层的正投影互不交叠,且在垂直于所述显示装置所在平面的方向上,所述第二黑矩阵的高度小于所述色阻层的高度。
可选地,在本公开实施例提供的上述显示装置中,所述光源包括位于各所述子像素区的蓝色电致发光器件,所述显示装置还包括:相对而置的显示基板和第一彩膜基板;
所述显示基板,包括:各所述蓝色电致发光器件;
所述第一彩膜基板,包括:第一衬底基板,依次位于所述第一衬底基板上的所述色阻层和第三黑矩阵,以及位于所述色阻层背离所述第一衬底基板一侧的所述光控制层;
所述第三黑矩阵在所述第一衬底基板上的正投影边界与所述色阻层的正投影边界相互重合,且在垂直于所述第一衬底基板的方向上,所述第三黑矩阵的高度与所述色阻层的高度相同。
可选地,在本公开实施例提供的上述显示装置中,还包括:位于所述第三黑矩阵背离所述第一衬底基板一侧的第四黑矩阵;
所述第四黑矩阵在所述第一衬底基板上的正投影边界与所述光控制层的正投影边界相互重合,且在垂直于所述第一衬底基板的方向上,所述第四黑矩阵的高度与所述光控制层的高度相同。
可选地,在本公开实施例提供的上述显示装置中,所述光源为蓝色背光源,所述显示装置还包括:相对而置的阵列基板和第二彩膜基板,以及位于所述阵列基板与所述第二彩膜基板之间的液晶层;
所述第二彩膜基板,包括:第二衬底基板,依次位于所述第二衬底基板上的所述色阻层和第五黑矩阵,以及位于所述色阻层背离所述第二衬底基板一侧的所述光控制层;
所述第五黑矩阵在所述第二衬底基板上的正投影与所述色阻层的正投影 部分交叠,且在垂直于所述第二衬底基板的方向上,所述第五黑矩阵的高度小于所述色阻层的高度。
可选地,在本公开实施例提供的上述显示装置中,还包括:位于所述第五黑矩阵背离所述第二衬底基板一侧的第六黑矩阵;
所述第六黑矩阵在所述第二衬底基板上的正投影与所述光控制层的正投影部分交叠,且所述第六黑矩阵背离所述第二衬底基板一侧的表面与所述光控制层背离所述第二衬底基板一侧的表面平齐。
可选地,在本公开实施例提供的上述显示装置中,所述光源包括位于各所述子像素区的蓝色电致发光器件,所述显示装置还包括:位于所述色阻层背离各所述蓝色电致发光器件所在层一侧的遮光层,所述遮光层在所述显示装置所在平面上的正投影与所述色阻层的正投影互不交叠。
基于同一发明构思,本公开实施例还提供了一种显示装置的制作方法,包括:
提供光源;
在所述光源出光侧形成光控制层;
所述显示装置具有多个相互独立的子像素区,所述光控制层,包括:位于各所述子像素区的色转换结构,所述色转换结构包括纳米多孔材料和至少分布于所述纳米多孔材料中的色转换材料,所述色转换材料用于将所述光源发出的光转换为所在所述子像素区对应颜色的光。
可选地,在本公开实施例提供的上述制作方法中,形成光控制层,具体包括:
将纳米多孔材料和色转换材料混合,并采用混合后的材料形成光控制层;或者,形成纳米多孔材料层,并在纳米多孔材料层上形成包括色转换材料的光刻胶层后,对所述光刻胶层进行构图获得所述光控制层。
附图说明
图1为本公开实施例提供的显示装置的一种结构示意图;
图2为本公开实施例提供的显示装置的又一种结构示意图;
图3为本公开实施例提供的显示装置的又一种结构示意图;
图4为本公开实施例提供的显示装置的又一种结构示意图;
图5为本公开实施例提供的显示装置的又一种结构示意图;
图6为相关技术中纳米多孔石英玻璃的图片;
图7为相关技术中纳米多孔铝膜的图片。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
目前有机电致发光(OLED)显示产品由于相较于传统的液晶(LCD)显示产品具有高分辨率、高色域、低功耗等有点,在显示产品中份额越来越高,可以预见未来仍会加速发展。OLED显示目前发展的趋势有高分辨率、高色域、低功耗等方向,目前大尺寸OLED量产产品主要结构为白光OLED (WOLED)结合彩膜(CF)的方式。但是由于CF存在交叠(Overlap)问题,致使OLED显示产品的色域一般小于90%NTSC色域标准。为了应对高色域标准,从提高CF品质着手去解决较难。
量子点(QD)显示技术属于创新半导体纳米晶体技术,可以准确输送光线,高效提升显示屏的色域值以及视角,让色彩更加纯净鲜艳,使色彩表现更具张力。采用该技术的显示器不仅能产生色域范围更广的动态色彩,还能在画质中展现真实的色板,超越了传统意义上的背光技术。相关技术中已经出现了WOLED结合QD以及CF的结构的显示产品,但是QD材料的色转换效率较低,影响该类显示产品的推广应用。
针对相关技术中存在的上述问题,本公开实施例提供了一种显示装置及其制作方法。
具体地,本公开实施例提供的一种显示装置,如图1至图5所示,包括:
多个相互独立的子像素区;示例性地,图1至图5中示出了相互独立的红色子像素区R、绿色子像素区G和蓝色子像素区B;在具体实施时,还可以包括其他颜色的子像素区,在此不做限定;
光源101,光源101发出的光照射各子像素区;
光控制层102,位于光源101的出光侧,光控制层102包括:位于子像素区的色转换结构1021,色转换结构1021包括纳米多孔材料和至少分布于纳米多孔材料中的色转换材料,色转换材料用于将光源101发出的光转换为所在子像素区对应颜色的光。
在本公开实施例提供的上述显示装置中,由于纳米多孔材料尺寸在10nm~100nm之间,其微观尺寸较小,比表面积较大,光会在纳米孔内部具有强烈的散射效应,在传播过程中的有效光径将被大大增强,当色转换材料分布在多孔材料中时,能够提高色转换材料对光源101出射光线的吸收率,大幅度提高色转换材料的色转换效率。同时大部分纳米多孔材料的表面增强效应,也能够增强荧光激发特性,提高色转换材料的光效。并且,可以理解的是,因为色转换材料的色转换效率被大幅提高,所以较低膜厚下的光控制层 102即可达到较高的光效,从而降低荧光材料的膜厚,节省成本。
需要说明的是,本公开实施例提供的上述显示装置可以为:LCD显示装置、OLED显示装置、微发光二极管显示装置(micro LED)、迷你发光二极管(mini LED)显示装置等。
具体地,在显示装置为LCD时,光源101为侧入式背光源或直下式背光源;在显示装置为OLED时,光源101为OLED器件;在显示装置为micro LED时,光源101为micro LED芯片;在显示装置为mini LED时,光源101为mini LED芯片。
相关技术中,色转换材料多为可吸收蓝光转换为红光或绿光的材料,因此光源101具体可以为白色光源或蓝色光源。并且在光源101为白色光源的情况下,各子像素区的色转换材料仅可以将白色光源中部分波长的光线转换为与子像素区对应颜色的光,如此则对光源101的利用率较低。而在光源101为蓝色光源的情况下,各子像素区的色转换材料可以将蓝色光源中全部波长的光线转换为与子像素区对应颜色的光。因此,在本公开中优选光源101为蓝色光源。
色转换材料可以为量子点(QD)材料,也可以为有机荧光染料。QD材料含有隔(Cd)等有毒金属,无法进行商业化应用,无Cd的QD材料的发光效率远低于含Cd的QD材料,且QD材料本身极怕水氧,高温下性能衰减较多。另外在本公开中色转换结构1021的制造方法涉及到将色转换材料与光刻胶混合、或将色转换材料、纳米多孔材料与光刻胶混合的工艺步骤,通常QD与光刻胶的相溶性较差,而有机荧光染料不含重金属且与光刻胶同属于有机材料,二者相溶性较好,不会存在分散稳定性不好的问题,利于形成配方进行光刻工艺或者打印工艺。基于此,在本公开中优选有机荧光染料作为色转换材料。
相关技术中,红色有机荧光染料的吸收光谱位于430nm~580nm和580nm~660nm,可以吸收蓝光和绿光,转换出红光,主要有以下几大类:苝红系列、CF 488A、Alexa Fluor 488、FAM、DyLight 488、Cy2;以苝红染料 为例,其结构为核心骨架苝酰亚胺,通过对几个湾位进行不同的改性,接枝不同取代基,可实现不同颜和不同性质荧光染料的合成。绿色有机荧光染料吸收光谱位于430nm~580nm,可吸收蓝光转换为绿光,主要包括Alexa Fluor 430,Lucifer yellow等。并且绿色有机荧光染料的吸收光谱中心波长可达~520nm,符合高色纯度要求;而绿色磷化铟(InP)QD激发波长在530nm以下效率劣化严重。因此有机荧光染料具有高光效、高色转换效率,和QD材料相比更适合应用于显示产品。
相关技术中,Micro LED和mini LED产品采用红色LED芯片、绿色LED芯片和蓝色LED芯片三种芯片实现全彩显示,而红色LED芯片和绿色LED芯片的成本较高。在本公开中可使用蓝色LED芯片结合色转换材料的方法实现全彩显示,能够极大的降低芯片成本,且提高巨量转移芯片的效率和良率。并且即使LED芯片发热量较大,有机荧光材料的耐高温性可以很好地保证色转换率,维持白平衡。
此外,在本公开实施例提供的上述显示装置中,纳米多孔材料可以为有机纳米多孔材料,也可以为无机多孔材料,还可以为金属纳米多孔材料,在此不做限定。具体地,纳米多孔材料可以为纳米多孔碳、纳米多孔金、纳米多孔银、纳米多孔石英玻璃(如图6所示)、纳米多孔氧化铝膜(如图7所示)等。
可选地,在本公开实施例提供的上述显示装置中,可以将纳米多孔材料和色转换材料混合,并采用混合后的材料形成光控制层;在此情况下,色转换材料可以均匀分布于纳米多孔材料的孔内。也可以首先形成纳米多孔材料层,之后在纳米多孔材料层上形成包括色转换材料的光刻胶层,最后对光刻胶层进行构图获得光控制层;在此情况下,包括色转换材料的光刻胶层的自身的流动性会使得部分色转换材料分布于纳米多孔材料的孔内,区域部分色转换材料位于纳米多孔材料所在层之上。因此,可选地,在本公开实施例提供的上述显示装置中,色转换材料还可以位于纳米多孔材料所在层背离光源的一侧(即位于纳米多孔材料所在层之上)。
可选地,在本公开实施例提供的上述显示装置中,如图1至图5所示,子像素区,包括:蓝色子像素区B、红色子像素区R和绿色子像素区G;
色转换结构1021具体位于红色子像素区R和绿色子像素区G,色转换材料包括:位于红色子像素区的红色有机荧光染料,以及位于绿色子像素区的绿色有机荧光染料;
光控制层102,还包括:位于蓝色子像素区B的光散射结构1022。
由于红色有机荧光染料吸收蓝光和绿光转换成红光,绿色有机荧光染料吸收蓝光转换成绿光,相当于在色转换结构1021上产生了自发光,该自发光会向四面八方发散。因此在蓝色子像素区B设置了光散射结构1022,其实质为一层散射粒子(diffuser)层,可将蓝色子像素区B的光进行散射,匹配器件视角和白平衡。一般地,为更好地实现红色子像素区R、绿色子像素区G和蓝色子像素区B的视角和白平衡匹配,可在色转换结构1021中也设置散射粒子。
可选地,在本公开实施例提供的上述显示装置中,如图1至图5所示,还可以包括:位于光控制层102背离光源101一侧且位于各子像素区的色阻层103,光控制层102在各子像素区的正投影位于色阻层103在各子像素区的正投影内。
采用色阻层103在各子像素区的正投影覆盖光控制层102在各子像素区的正投影的设计,可避免由于光控制层102的色转换结构1021可能未完全转换蓝光造成漏光和色域下降的问题,进而满足显示需求。具体地,该色阻层103可以为彩色滤光片,彩色滤光片一般包括位于红色子像素区R的红色滤光片、位于绿色子像素区G的绿色滤光片和位于蓝色子像素区的蓝色滤光片。
可选地,在本公开实施例提供的上述显示装置为micro LED或mini LED时,如图1所示,还可以包括:驱动背板104和透镜结构105;
光源101位于驱动背板104之上,光源101包括多个蓝色二极管芯片,色转换结构1021和光散射结构1022包覆蓝色二极管芯片,确保发光率,透镜结构105位于光控制层102与色阻层103之间。
红色有机荧光染料吸收蓝光和绿光转换成的红光,绿色有机荧光染料吸收蓝光转换成的绿光,散射粒子对蓝光具有散射作用,使得各子像素区的光线向四面八方发散,可视范围较大。通过设置透镜结构105可将红色子像素区R的红光、绿色子像素区G的绿光和蓝色子像素区B的蓝光汇聚至正视角,提高出光效率,实现防窥显示应用。
可选地,在本公开实施例提供的上述显示装置中,为更好地将光线汇聚至正视角,透镜结构105的折射率为1.5~1.7,例如1.5、1.6、1.7等;透镜结构105分别与色转换结构1021、色阻层103接触的表面之间的最大距离(即透镜结构105的拱高h,如图1所示)为1μm~2μm,例如1μm、1.1μm、1.2μm、1.3μm、1.4μm、1.5μm、1.6μm、1.7μm、1.8μm、1.9μm、2μm等。
可选地,在本公开实施例提供的上述显示装置中,如图1所示,还包括:位于相邻色转换结构1021和/或光散射结构1022之间的挡墙106;
挡墙106的坡度角为85°~90°,例如85°、86°、87°、88°、89°、90°等,挡墙106的表面反射率70%~100%,例如70%、75%、80%、85%、90%、95%、100%,且在垂直于驱动背板104所在平面的方向上,挡墙106的高度大于蓝色二极管芯片的高度。
挡墙106的设置能够极大的减少出光损失,同时还能防止相邻间像素之间混色现象,并且在一定程度上还可将光汇聚至正视角,进一步提高防窥效果。
一般地,在本公开实施例提供的上述显示装置为micro LED或mini LED时,如图1所示,还可以包括:位于色阻层103上方的第一保护盖板107。色阻层103在第一保护盖板107上制作使用170℃或230℃的高温工艺制程。
可选地,在本公开实施例提供的上述显示装置为顶发射型OLED时,如图2所示,光源101包括位于各子像素区的蓝色电致发光器件,显示装置还可以包括:位于各蓝色电致发光器件所在层与光控制层102之间的封装层108,以及位于封装层108与光控制层102之间的第一黑矩阵109;
第一黑矩阵109在显示装置所在平面上的正投影与光控制层102的正投 影部分交叠,且在垂直于显示装置所在平面的方向上,第一黑矩阵109的高度小于光控制层102的高度。
由于光控制层102位于各子像素区,且第一黑矩阵109在显示装置所在平面上的正投影与光控制层102的正投影部分交叠相当于将光控制层102设置于第一黑矩阵109的开口区域,因此第一黑矩阵109的设置可以避免红色子像素区R、绿色子像素区G和蓝色子像素区B的光串扰,提高显示效果。
一般地,如图2所示,蓝色电致发光器件包括设置在各子像素区的阳极1011,位于阳极1011上方的蓝色发光层1012,以及位于蓝色发光层1012上方且整面设置的阴极1013。可选地,蓝光发光层1012可以仅设置在各子像素区,也可以整面设置。当然,蓝色电致发光器件还可以包括空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层、电子传输层和电子注入层,在此不做具体限定。
另外,如图2所示,封装层108包括依次位于阴极1013之上的第一无机封装层1081、有机封装层1082和第二无机封装层1083。OLED显示装置一般还可以包括最上方的第二保护盖板110。光控制层102通过内嵌(On Cell)的方式设置于第二无机封装层1083与第二保护盖板110之间。为确保发光(EL)性能,光控制层102需使用85℃的低温工艺制程。
可选地,在本公开实施例提供的上述显示装置中,如图2所示,还可以包括:位于第一黑矩阵109背离封装层108一侧的第二黑矩阵111;
第二黑矩阵111在显示装置所在平面上的正投影与色阻层103的正投影互不交叠,且在垂直于显示装置所在平面的方向上,第二黑矩阵111的高度小于色阻层103的高度。
设置第二黑矩阵111可以降低表面反射率,同时因各子像素区内的色阻层103位于第二黑矩阵111的开口区域,所以还可以避免降低透过率和开口率。
并且由图2可以看出,色阻层103通过On Cell的方式设置于第二无机封装层1083与第二保护盖板110之间。同样,为确保发光(EL)性能,色阻层 103需使用85℃的低温工艺制程。
一般地,在本公开实施例提供的上述显示装置为顶发射型OLED时,如图2所示,还可以包括:绝缘(OC)层112、隔垫物(PS)层113、像素界定(PDL)层114、平坦(PLN)层115、源漏极116、层间介质(ILD)层117、第一电容电极118、第一栅绝缘(GI1)层119、同层设置的栅极120和第二电容电极118’、第二栅绝缘(GI2)层121、有源层122(具体包括被栅极120遮挡的半导体区和位于半导体区两侧的导体化区)、柔性(PI)基底123、缓冲(PSA)层124、底膜基板125。
可选地,在本公开实施例提供的上述显示装置顶发射型OLED时,如图3所示,光源101包括位于各子像素区的蓝色电致发光器件,显示装置还可以包括:相对而置的显示基板301和第一彩膜基板302;具体地,显示基板301和第一彩膜基板302可通过封框胶303进行组装在一起;
显示基板301,包括:各蓝色电致发光器件;
第一彩膜基板302,包括:第一衬底基板3021,依次位于第一衬底基板3021上的色阻层103第三黑矩阵3022,以及位于色阻层103背离第一衬底基板3021一侧的光控制层102;
第三黑矩阵3022在第一衬底基板3021上的正投影边界与色阻层103的正投影边界相互重合,且在垂直于第一衬底基板3021的方向上,第三黑矩阵3022的高度与色阻层103的高度相同。
通过将各子像素区的色阻层103设置于第三黑矩阵3022的开口区域,使得相邻子像素区的色阻层103的侧面出射光线可被二者之间的第三黑矩阵3022遮挡,从而有效避免了红色子像素区R、绿色子像素区G和蓝色子像素区B的光串扰,提高了显示效果。
需要说明的是,如图3所示,此处蓝色电致发光器件的构成与上述蓝色电致发光器件相同,在此不做赘述;并且一般地,显示基板301还包括上述底膜基板125至封装层108这些膜层,在此也不再赘述。
可选地,在本公开实施例提供的上述显示装置中,如图3所示,还可以 包括:位于第三黑矩阵3022背离第一衬底基板一侧3021的第四黑矩阵3023;
第四黑矩阵3023在第一衬底基板3021上的正投影边界与光控制层102的正投影边界相互重合,且在垂直于第一衬底基板3021的方向上,第四黑矩阵3023的高度与光控制层102的高度相同。
光控制层102位于第四黑矩阵3023的开口区域,使得不同子像素区的光控制层102的侧面出射光线,可被第四黑矩阵3023有效阻挡,基于此,第四黑矩阵3023的设置可以进一步避免红色子像素区R、绿色子像素区G和蓝色子像素区B的光串扰,提高显示效果。
图3所示结构可应用于大尺寸顶发射OLED产品,光控制层102和色阻层103均在第一衬底基板3021上制作,光控制层102和色阻层103使用170℃或230℃高温工艺制程,其中230℃与现有彩膜(CF)制作工艺温度吻合。
可选地,在本公开实施例提供的上述显示装置为底发射型OLED时,如图4所示,光源101包括位于各子像素区的蓝色电致发光器件,显示装置还可以包括:位于色阻层103背离各蓝色电致发光器件所在层一侧的遮光层401,遮光层401在显示装置所在平面上的正投影与色阻层103的正投影互不交叠。
遮光层401的设置可以避免红色子像素区R、绿色子像素区G和蓝色子像素区B的光串扰,提高显示效果。并且一般地,如图4所示,本公开实施例提供的底发射型OLED还包括:有源层122(具体包括被栅极120遮挡的半导体区和位于半导体区两侧的导体化区),遮光层401完全覆盖有源层122,避免了外界光线对有源层122的干扰。此外,如图4所示,本公开实施例提供的底发射型OLED还包括:像素界定(PDL)层114、第一树脂(Resin1)层402、第一钝化(PVX1)层403、第二钝化(PVX2)层404、辅助源漏极116’(包括覆盖有源层122且与栅极120电连接以避免蓝色发光器件的光线照射有源层122的第一部分、以及电连接漏极与阳极1011的第二部分)、第二树脂(Resin2)层405、层间介质(ILD)层117、第二栅绝缘层121、缓冲(PSA)层124和柔性(PI)基底123。
本公开提供的上述底发射型OLED显示装置可以为大尺寸底发射OLED 产品,色转换结构1021和色阻层103均设置在驱动背板上,具体可使用230℃高温工艺制程形成色转换结构1021和色阻层103。230℃的高温会导致QD材料发光性能弱化,不适用于QD材料。
可选地,在本公开实施例提供的上述显示装置为LCD时,如图5所示,光源101为蓝色背光源,显示装置还包括:相对而置的阵列基板501和第二彩膜基板502,以及位于阵列基板501与第二彩膜基板502之间的液晶层503;
第二彩膜基板502,包括:第二衬底基板5021,依次位于第二衬底基板5021上的色阻层103和第五黑矩阵5022,以及位于色阻层103背离第二衬底基板5021一侧的光控制层102;
第五黑矩阵5022在第二衬底基板5021上的正投影与色阻层103的正投影部分交叠,且在垂直于第二衬底基板5021的方向上,第五黑矩阵5022的高度小于色阻层103的高度。
由于色阻层103位于各子像素区,通过将色阻层103设置在第五黑矩阵5022的开口区域,可采用第五黑矩阵5022阻止不同子像素区的色阻层103侧面出射光线照射至相邻子像素区,因此第五黑矩阵5022的设置可以避免红色子像素区R、绿色子像素区G和蓝色子像素区B的光串扰,提高显示效果。
可选地,在本公开实施例提供的上述LCD显示装置中,如图5所示,还可以包括:位于第五黑矩阵5022背离第二衬底基板5021一侧的第六黑矩阵5023;
第六黑矩阵5023在第二衬底基板5021上的正投影与光控制层102的正投影部分交叠,且第六黑矩阵5023背离第二衬底基板5021一侧的表面与光控制层102背离第二衬底基板5021一侧的表面平齐。
一般地,在本公开提供的LCD显示装置中,如图5所示,第二彩膜基板502还包括金属透射光栅(WGP)5024,由于色转换结构1021会使透过液晶层503的偏振光去偏振化,而金属透射光栅5024具有偏振作用,因此可使用内置金属透射光栅5024使得透过该金属透射光栅5024的光线形成偏振光,来解决色转换结构1021的去偏振化问题。第六黑矩阵5023的设置一方面可 以避免光串扰现象,另一方面还具有平坦化的作用,利于后续金属透射光栅5024的制作。进一步地,为保证后续金属透射光栅5024的刻蚀均一性,第二彩膜基板502还可以包括平坦保护层5025。具体地,平坦保护层5025一般使用多层OC材料,例如第一光固化OC材料/热固化OC材料/第二光固化OC材料(UOC/HOC/FOC)等高平坦性材料。
本公开提供的上述LCD显示装置中的色转换结构1021可使用170℃或230℃的高温工艺制程进行制作。170℃与现有QD产品的工艺温度吻合,230℃与现有彩膜基板工艺温度吻合,无需重新调试温度,简化了制作工艺。
此外,在本公开提供的LCD显示装置中,如图5所示,阵列基板501还可以包括隔垫物层113、像素电极5012、平坦层115、源漏极116、层间介质层117、栅极120、有源层122、与栅极120同层设置的公共电极5013和第三衬底基板5014。
应该理解的是,在本公开中,“同层”指的是采用同一成膜工艺形成用于形成特定图形的膜层,然后利用同一掩模板通过一次构图工艺形成的层结构。即一次构图工艺对应一道掩模板(mask,也称光罩)。根据特定图形的不同,一次构图工艺可能包括多次曝光、显或刻蚀工艺,而形成的层结构中的特定图形可以是连续的也可以是不连续的,这些特定图形还可能处于不同的高度或者具有不同的厚度。
基于同一发明构思,本公开实施例提供了一种显示装置的制作方法,由于该制作方法解决问题的原理与上述显示装置解决问题的原理相似,因此,本公开实施例提供的该制作方法的实施可以参见本公开实施例提供的上述显示装置的实施,重复之处不再赘述。
具体地,本公开实施例还提供的一种显示装置的制作方法,包括:
提供光源;
在光源出光侧形成光控制层;
显示装置具有多个相互独立的子像素区,光控制层,包括:位于各子像素区的色转换结构,色转换结构包括纳米多孔材料和至少分布于纳米多孔材 料中的色转换材料,色转换材料用于将光源发出的光转换为所在子像素区对应颜色的光。
可选地,在本公开实施例提供的上述制作方法中,形成光控制层,具体可以通过以下两种可能的方式进行实现:
其一,将纳米多孔材料和色转换材料混合,并采用混合后的材料形成光控制层;其二,形成纳米多孔材料层,并在纳米多孔材料层上形成包括色转换材料的光刻胶层后,对光刻胶层进行构图获得光控制层。
需要说明的是,在本公开实施例提供的上述制作方法中,形成各层结构涉及到的构图工艺,不仅可以包括沉积、光刻胶涂覆、掩模板掩模、曝光、显影、刻蚀、光刻胶剥离等部分或全部的工艺过程,还可以包括其他工艺过程,具体以实际制作过程中形成所需构图的图形为准,在此不做限定。例如,在显影之后和刻蚀之前还可以包括后烘工艺。
其中,沉积工艺可以为化学气相沉积法、等离子体增强化学气相沉积法或物理气相沉积法,在此不做限定;掩膜工艺中所用的掩膜板可以为半色调掩膜板(Half Tone Mask)、单缝衍射掩模板(Single Slit Mask)或灰色调掩模板(Gray Tone Mask),在此不做限定;刻蚀可以为干法刻蚀或者湿法刻蚀,在此不做限定。
以下将对图1至图5所示显示装置的制作过程进行详细介绍。
具体地,图1所示显示装置的制作过程如下:
第一步:首先制作Micro LED或mini LED的驱动背板104,包括一基板、依次形成于该基板上的缓冲层、低温多晶硅层、栅极绝缘层、栅极、层间绝缘层、源漏极层、平坦层和像素电极层。
第二步:在驱动背板104上通过巨量转移方式,将蓝色micro LED或micro LED芯片转移到驱动背板104上,进行绑定和上电极制作;该蓝色micro LED或micro LED芯片即为光源101。
第三步:对蓝色micro LED芯片进行保护,若为蓝色mini LED芯片,则可跳过此工艺。
第四步:在芯片之间通过光刻工艺形成高反射挡墙106,挡墙106的膜厚大于芯片高度,且坡度角为85°~90°以上,表面反射率大于70%~100%。
第五步:在芯片上以光刻或者打印工艺依次形成红色子像素区R的色转换结构1021、绿色子像素区G的色转换结构1021、以及蓝色子像素区B的光散射结构1022,优选为光刻工艺,打印工艺容易导致高段差,造成表面不平影响出光效率。其中,色转换结构1021由纳米多孔材料、有机荧光染料、散射粒子和光刻胶混合后制作而成,光散射结构1022由散射粒子和光刻胶混合后制作而成。具体可以通过光刻工艺形成,也可以使用打印方式制作。色转换结构1021与光散射结构1022构成光控制层102。
第六步:在光控制层102上以光刻工艺形成透镜结构105,具体地,透镜结构105折射率为1.5~1.7,拱高h为1μm~2μm。
第七步:在第一保护盖板107上依次制作黑矩阵、色阻层103位于红色子像素区R内的第一部分、色阻层103位于绿色子像素区G内的第二部分、色阻层103位于蓝色子像素区B内的第三部分、以及OC绝缘层。具体地,各层均通过光刻工艺形成。
具体地,图2所示显示装置的制作过程如下:
第一步:首先制作驱动背板,包括提供一底膜基板125、于底膜基板125上依次形成缓冲层124、柔性基底123、低温多晶硅构成的有源层122、第二栅绝缘层121、同层设置的栅极120和第二电容电极118’、第一栅绝缘层119、第一电容电极118、层间介质层117、源漏极116、平坦层115、阳极1011和像素界定层114。
第二步:通过蒸镀方式在阳极1011所在层上形成蓝色OLED器件,包括空穴注入层、空穴传输层、电子阻挡层、蓝色发光层1012、空穴阻挡层、电子传输层、电子注入层和阴极1013,该蓝色OLED器件为顶发射器件,阴极1013采用半透金属,如Mg/Ag。
第三步:对蓝色OLED器件进行封装工艺,目前柔性OLED主流封装工艺为第一无机封装层1081/有机封装层1082/第二无机封装层1083这三层薄膜 构成的封装层108。第一无机封装层1081和第二无机封装层1083为氮化硅(SiN)或氧化硅(SiN),通过等离子化学气相沉积(PECVD)方式制作。有机封装层1082为有机材料,通过喷墨打印(IJP)方式打印制作。
第四步:在封装层108上进行低温COE(Color film on TFE)制程,COE的制作具体包括:依次形成黑矩阵、红色子像素区R的色转换结构1021、绿色子像素区G的色转换结构1021、蓝色子像素区B的光散射结构1022、色阻层103位于红色子像素区R内的第一部分、色阻层103位于绿色子像素区G内的第二部分、色阻层103位于蓝色子像素区B内的第三部分、以及绝缘层112。为确保EL性能,以上各层均需要使用85℃的低温工艺制程。其中,色转换结构1021由纳米多孔材料、有机荧光染料、散射粒子和光刻胶混合后制作而成,光散射结构1022由散射粒子和光刻胶混合后制作而成。具体可以通过光刻工艺形成,也可以使用打印方式制作。或者,先通过金属溅射以及刻蚀在红色子像素区R和绿色子像素区B形成一层孔径为30nm、周期为110nm纳米多孔金属结构,然后采用有机荧光染料、散射粒子和光刻胶的混合物制作色转换结构1021。色转换结构1021与光散射结构1022构成光控制层102。黑矩阵可以为由第一黑矩阵109构成的单层黑矩阵结构,也可以为由第一黑矩阵109和第二黑矩阵111构成的双层黑矩阵结构。具体地,在黑矩阵为双层黑矩阵结构时,在制作OC之前,依次制作第一黑矩阵109、光控制层102、色阻层103和第二黑矩阵111。第二黑矩阵111可以降低显示装置的表面反射率,但是第二黑矩阵111的线宽不能覆盖色阻层103,以避免降低透过率和开口率。另外,每个子像素区内色阻层103的面积必须大于色转换结构1021或光散射结构1022的面积,以避免漏光和色域下降。
具体地,图3所示显示装置的制作过程如下:
第一步:首先制作显示背板301,具体包括提供一底膜基板125、于底膜基板125上依次形成缓冲层124、柔性基底123、低温多晶硅构成的有源层122、第二栅绝缘层121、同层设置的栅极120和第二电容电极118’、第一栅绝缘层119、第一电容电极118、层间介质层117、源漏极116、平坦层115、阳极1011 和像素界定层114。
第二步:通过蒸镀方式在阳极1011所在层上形成蓝色OLED器件,包括空穴注入层、空穴传输层、电子阻挡层、蓝色发光层1012、空穴阻挡层、电子传输层、电子注入层和阴极1013,该蓝色OLED器件为顶发射器件,阴极1013采用半透金属,如Mg/Ag。
第三步:对蓝色OLED器件进行封装工艺,目前柔性OLED主流封装工艺为第一无机封装层1081/有机封装层1082/第二无机封装层1083这三层薄膜构成的封装层108。第一无机封装层1081和第二无机封装层1083为氮化硅(SiN)或氧化硅(SiN),通过等离子化学气相沉积(PECVD)方式制作。有机封装层1082为有机材料,通过喷墨打印(IJP)方式打印制作。
第四步:第一彩膜基板302的制作,具体包括:在第一衬底基板3021上依次形成黑矩阵、红色子像素区R的色转换结构1021、绿色子像素区G的色转换结构1021、蓝色子像素区B的光散射结构1022、色阻层103位于红色子像素区R内的第一部分、色阻层103位于绿色子像素区G内的第二部分、色阻层103位于蓝色子像素区B内的第三部分、以及绝缘保护层3024。以上各层可使用170℃或230℃的高温工艺制程,以与现有CF工艺吻合。其中,色转换结构1021由纳米多孔材料、有机荧光染料、散射粒子和光刻胶混合后制作而成,光散射结构1022由散射粒子和光刻胶混合后制作而成。具体可以通过光刻工艺形成,也可以使用打印方式制作。色转换结构1021与光散射结构1022构成光控制层102。黑矩阵可以为由第三黑矩阵3022构成的单层黑矩阵结构,也可以为由第三黑矩阵3022和第四黑矩阵3023构成的双层黑矩阵结构。具体地,在黑矩阵为双层黑矩阵结构时,在制作OC之前,依次制作第三黑矩阵3022、色阻层103、第四黑矩阵3023和光控制层102。第四黑矩阵3023可以降低像素串扰风险。另外,每个子像素区内色阻层103的面积必须大于色转换结构1021或光散射结构1022的面积,以避免漏光和色域下降。
第五步:将显示基板301与第一彩膜基板302对盒封装,两者之间可以使用填充(filler)材料(例如封框胶303)填充,也可以使用空气层。
具体地,图4所示显示装置的制作过程如下:
第一步:制作驱动背板,包括提供一柔性基板123,在柔性基板123上依次形成遮光层401、缓冲层124、有源层122、第二栅绝缘层121、栅极120、层间介质层117、源漏极116、色阻层103位于红色子像素区R内的第一部分、色阻层103位于绿色子像素区G内的第二部分、色阻层103位于蓝色子像素区B内的第三部分、红色子像素区R的色转换结构1021、绿色子像素区G的色转换结构1021、蓝色子像素区B的光散射结构1022、第二树脂层405、第二钝化层404、辅助源漏极116’、第一钝化层403、第一树脂层402、阳极1011、像素界定层114。其中,色转换结构1021由纳米多孔材料、有机荧光染料、散射粒子和光刻胶混合后制作而成,光散射结构1022由散射粒子和光刻胶混合后制作而成。具体可以通过光刻工艺形成,也可以使用打印方式制作。色转换结构1021与光散射结构1022构成光控制层102。另外,每个子像素区内色阻层103的面积必须大于色转换结构1021或光散射结构1022的面积,以避免漏光和色域下降。
第二步:通过蒸镀方式在阳极1011上形成蓝色OLED器件的其余组成部分,具体包括:依次位于阳极1011上方的空穴注入层、空穴传输层、电子阻挡层、蓝色发光层、空穴阻挡层、电子传输层、电子注入层和阴极,该蓝色OLED器件为底发射器件,阴极采用全反射金属,如Ag。
第三步:对蓝色OLED器件进行封装工艺,目前刚性OLED一般采用盖板封装方式,柔性OLED采用薄膜封装方式。
具体地,图5所示显示装置的制作过程如下:
第一步:制作阵列基板501,包括提供一第三衬底基板5014,在三衬底基板5014上依次形成同层设置的公共电极5013和栅极120、第二栅绝缘层121、有源层122、源漏极116、平坦层115、像素电极5012和隔垫物层113。
第二步:制作第二彩膜基板502:具体包括提供一第二衬底基板5021,在第二衬底基板5021上依次形成黑矩阵、色阻层103位于红色子像素区R内的第一部分、色阻层103位于绿色子像素区G内的第二部分、色阻层103位 于蓝色子像素区B内的第三部分、红色子像素区R的色转换结构1021、绿色子像素区G的色转换结构1021、蓝色子像素区B的光散射结构1022和平坦保护层5025。其中,色转换结构1021由纳米多孔材料、有机荧光染料、散射粒子和光刻胶混合后制作而成,光散射结构1022由散射粒子和光刻胶混合后制作而成。具体可以通过光刻工艺形成,也可以使用打印方式制作。色转换结构1021与光散射结构1022构成光控制层102。另外,每个子像素区内色阻层103的面积必须大于色转换结构1021或光散射结构1022的面积,以避免漏光和色域下降。黑矩阵可以为由第五黑矩阵5022构成的单层黑矩阵结构,也可以为由第五黑矩阵5022和第六黑矩阵5026构成的双层黑矩阵结构。具体地,在黑矩阵为双层黑矩阵结构时,在制作平坦保护层5025之前,依次制作第五黑矩阵5022、色阻层103、第六黑矩阵5023和光控制层102。第六黑矩阵5023利于后续金属透射光栅5024的制作。并且,为保证后续金属透射光栅5024的刻蚀均一性,平坦保护层5025一般使用多层OC材料,例如第一光固化OC材料/热固化OC材料/第二光固化OC材料等高平坦性材料。上述各层的工艺温度均为170℃或230℃。
第三步:在平坦保护层5025上沉积铝(Al)金属,对Al金属进行刻蚀形成宽60nm、间隙60nm、高120nm的金属透射光栅5024。
第四步:利用液晶滴加(ODF)方式将阵列基板501与第二彩膜基板502进行对盒,中间填充液晶层503。
本公开实施例提供的上述显示装置,包括:多个相互独立的子像素区;光源,光源发出的光照射各子像素区;光控制层,位于光源的出光侧,光控制层包括:位于子像素区的色转换结构,色转换结构包括纳米多孔材料和至少分布于纳米多孔材料中的色转换材料,色转换材料用于将光源发出的光转换为所在子像素区对应颜色的光。由于纳米多孔材料尺寸在10nm~100nm之间,其微观尺寸较小,比表面积较大,光会在纳米孔内部具有强烈的散射效应,在传播过程中的有效光径将被大大增强,因此当色转换材料分布在多孔材料中时,能够提高色转换材料对光源出射光线的吸收率,大幅度提高色转 换材料的色转换效率。同时大部分纳米多孔材料的表面增强效应,也能够增强荧光激发特性,提高色转换材料的光效。并且,可以理解的是,因为色转换材料的色转换效率被大幅提高,所以较低膜厚下的光控制层即可达到较高的光效,从而降低荧光材料的膜厚,节省成本。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (16)

  1. 一种显示装置,其中,包括:
    多个相互独立的子像素区;
    光源,所述光源发出的光照射各所述子像素区;
    光控制层,位于所述光源的出光侧,所述光控制层包括:位于所述子像素区的色转换结构,所述色转换结构包括纳米多孔材料和至少分布于所述纳米多孔材料中的色转换材料,所述色转换材料用于将所述光源发出的光转换为所在所述子像素区对应颜色的光。
  2. 如权利要求1所述的显示装置,其中,所述色转换材料还位于所述纳米多孔材料所在层背离所述光源的一侧。
  3. 如权利要求1所述的显示装置,其中,所述子像素区,包括:蓝色子像素区、红色子像素区和绿色子像素区;
    所述色转换结构具体位于所述红色子像素区和所述绿色子像素区,所述色转换材料包括:位于所述红色子像素区的红色有机荧光染料,以及位于所述绿色子像素区的绿色有机荧光染料;
    所述光控制层,还包括:位于所述蓝色子像素区的光散射结构。
  4. 如权利要求3所述的显示装置,其中,还包括:位于所述光控制层背离所述光源一侧且位于各所述子像素区的色阻层,所述光控制层在各所述子像素区的正投影位于所述色阻层在各所述子像素区的正投影内。
  5. 如权利要求4所述的显示装置,其中,还包括:驱动背板和透镜结构;
    所述光源位于所述驱动背板之上,所述光源包括多个蓝色二极管芯片,所述色转换结构和所述光散射结构包覆所述蓝色二极管芯片,所述透镜结构位于所述光控制层与所述色阻层之间。
  6. 如权利要求5所述的显示装置,其中,所述透镜结构的折射率为1.5~1.7,所述透镜结构分别与所述色转换结构、所述色阻层接触的表面之间的最大距离为1μm~2μm。
  7. 如权利要求5所述的显示装置,其中,还包括:位于相邻所述色转换结构和/或光散射结构之间的挡墙;
    所述挡墙的坡度角为85°~90°,所述挡墙的表面反射率70%~100%,且在垂直于所述驱动背板所在平面的方向上所述挡墙的高度大于所述蓝色二极管芯片的高度。
  8. 如权利要求4所述的显示装置,其中,所述光源包括位于各所述子像素区的蓝色电致发光器件,所述显示装置还包括:位于各所述蓝色电致发光器件所在层与所述光控制层之间的封装层,以及位于所述封装层与所述光控制层之间的第一黑矩阵;
    所述第一黑矩阵在所述显示装置所在平面上的正投影与所述光控制层的正投影部分交叠,且在垂直于所述显示装置所在平面的方向上,所述第一黑矩阵的高度小于所述光控制层的高度。
  9. 如权利要求8所述的显示装置,其中,还包括:位于所述第一黑矩阵背离所述封装层一侧的第二黑矩阵;
    所述第二黑矩阵在所述显示装置所在平面上的正投影与所述色阻层的正投影互不交叠,且在垂直于所述显示装置所在平面的方向上,所述第二黑矩阵的高度小于所述色阻层的高度。
  10. 如权利要求4所述的显示装置,其中,所述光源包括位于各所述子像素区的蓝色电致发光器件,所述显示装置还包括:相对而置的显示基板和第一彩膜基板;
    所述显示基板,包括:各所述蓝色电致发光器件;
    所述第一彩膜基板,包括:第一衬底基板,位于所述第一衬底基板上的所述色阻层和第三黑矩阵,以及位于所述色阻层背离所述第一衬底基板一侧的所述光控制层;
    所述第三黑矩阵在所述第一衬底基板上的正投影边界与所述色阻层的正投影边界相互重合,且在垂直于所述第一衬底基板的方向上,所述第三黑矩阵的高度与所述色阻层的高度相同。
  11. 如权利要求10所述的显示装置,其中,还包括:位于所述第三黑矩阵背离所述第一衬底基板一侧的第四黑矩阵;
    所述第四黑矩阵在所述第一衬底基板上的正投影边界与所述光控制层的正投影边界相互重合,且在垂直于所述第一衬底基板的方向上,所述第四黑矩阵的高度与所述光控制层的高度相同。
  12. 如权利要求4所述的显示装置,其中,所述光源为蓝色背光源,所述显示装置还包括:相对而置的阵列基板和第二彩膜基板,以及位于所述阵列基板与所述第二彩膜基板之间的液晶层;
    所述第二彩膜基板,包括:第二衬底基板,依次位于所述第二衬底基板上的所述色阻层和第五黑矩阵,以及位于所述色阻层背离所述第二衬底基板一侧的所述光控制层;
    所述第五黑矩阵在所述第二衬底基板上的正投影与所述色阻层的正投影部分交叠,且在垂直于所述第二衬底基板的方向上,所述第五黑矩阵的高度小于所述色阻层的高度。
  13. 如权利要求12所述的显示装置,其中,还包括:位于所述第五黑矩阵背离所述第二衬底基板一侧的第六黑矩阵;
    所述第六黑矩阵在所述第二衬底基板上的正投影与所述光控制层的正投影部分交叠,且所述第六黑矩阵背离所述第二衬底基板一侧的表面与所述光控制层背离所述第二衬底基板一侧的表面平齐。
  14. 如权利要求4所述的显示装置,其中,所述光源包括位于各所述子像素区的蓝色电致发光器件,所述显示装置还包括:位于所述色阻层背离各所述蓝色电致发光器件所在层一侧的遮光层,所述遮光层在所述显示装置所在平面上的正投影与所述色阻层的正投影互不交叠。
  15. 一种显示装置的制作方法,其中,包括:
    提供光源;
    在所述光源出光侧形成光控制层;
    所述显示装置具有多个相互独立的子像素区,所述光控制层,包括:位 于各所述子像素区的色转换结构,所述色转换结构包括纳米多孔材料和至少分布于所述纳米多孔材料中的色转换材料,所述色转换材料用于将所述光源发出的光转换为所在所述子像素区对应颜色的光。
  16. 如权利要求15所述的制作方法,其中,形成光控制层,具体包括:
    将纳米多孔材料和色转换材料混合,并采用混合后的材料形成光控制层;或者,形成纳米多孔材料层,并在纳米多孔材料层上形成包括色转换材料的光刻胶层后,对所述光刻胶层进行构图获得所述光控制层。
PCT/CN2021/079691 2020-04-21 2021-03-09 显示装置及其制作方法 WO2021213033A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/628,516 US11832495B2 (en) 2020-04-21 2021-03-09 Display apparatus and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010318261.3A CN111505866B (zh) 2020-04-21 2020-04-21 显示装置及其制作方法
CN202010318261.3 2020-04-21

Publications (1)

Publication Number Publication Date
WO2021213033A1 true WO2021213033A1 (zh) 2021-10-28

Family

ID=71867582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079691 WO2021213033A1 (zh) 2020-04-21 2021-03-09 显示装置及其制作方法

Country Status (3)

Country Link
US (1) US11832495B2 (zh)
CN (1) CN111505866B (zh)
WO (1) WO2021213033A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114994975A (zh) * 2022-08-03 2022-09-02 惠科股份有限公司 阵列基板及其制作方法、显示面板

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505866B (zh) * 2020-04-21 2022-04-12 京东方科技集团股份有限公司 显示装置及其制作方法
WO2022032568A1 (zh) * 2020-08-13 2022-02-17 重庆康佳光电技术研究院有限公司 芯片转移组件及其制作方法、芯片转移方法及显示背板
CN111900193A (zh) * 2020-09-02 2020-11-06 深圳市华星光电半导体显示技术有限公司 显示器件及其制作方法
CN112363344B (zh) * 2020-11-06 2022-10-25 京东方科技集团股份有限公司 显示基板及显示面板
CN112382733A (zh) * 2020-11-16 2021-02-19 京东方科技集团股份有限公司 一种柔性显示面板、柔性显示装置以及制作方法
CN112614957B (zh) * 2020-12-07 2023-07-18 厦门天马微电子有限公司 一种显示面板和显示装置
CN112820761B (zh) * 2020-12-31 2022-10-21 长沙惠科光电有限公司 Oled显示器
CN113299847B (zh) * 2021-04-22 2022-08-12 福州大学 显示像素的平整化保护封装结构及制作方法
CN115331542A (zh) * 2021-05-11 2022-11-11 群创光电股份有限公司 光学基板及其制作方法
CN113241361B (zh) * 2021-05-28 2023-02-03 武汉华星光电半导体显示技术有限公司 Oled显示面板
CN113782572B (zh) * 2021-09-09 2023-10-17 深圳市华星光电半导体显示技术有限公司 彩膜基板及其制备方法、显示面板
CN114141934B (zh) * 2021-11-22 2023-12-05 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
EP4336542A1 (en) * 2021-12-30 2024-03-13 BOE Technology Group Co., Ltd. Display panel and color film substrate
WO2023220993A1 (zh) * 2022-05-18 2023-11-23 京东方科技集团股份有限公司 发光芯片及其制备方法、发光基板、显示装置
CN114973982B (zh) * 2022-05-31 2023-10-13 Tcl华星光电技术有限公司 显示面板和拼接面板
CN117410421A (zh) * 2022-07-05 2024-01-16 群创光电股份有限公司 电子装置
CN115148112A (zh) * 2022-07-20 2022-10-04 Tcl华星光电技术有限公司 拼接显示装置
CN118103765A (zh) * 2022-09-28 2024-05-28 京东方科技集团股份有限公司 显示面板和显示设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377226A (zh) * 2013-08-14 2015-02-25 业鑫科技顾问股份有限公司 显示面板
CN104932136A (zh) * 2015-07-01 2015-09-23 合肥鑫晟光电科技有限公司 彩膜基板及其制作方法、显示面板和显示装置
CN105204104A (zh) * 2015-10-30 2015-12-30 京东方科技集团股份有限公司 滤光片及其制作方法、显示基板及显示装置
CN107037630A (zh) * 2017-06-23 2017-08-11 京东方科技集团股份有限公司 彩膜基板及其制备方法和显示装置
CN109669301A (zh) * 2019-03-01 2019-04-23 惠科股份有限公司 量子点彩膜基板和显示装置
CN110211986A (zh) * 2018-02-28 2019-09-06 夏普株式会社 显示元件以及显示装置
US20190377223A1 (en) * 2018-06-08 2019-12-12 Samsung Display Co., Ltd. Display device
CN110808260A (zh) * 2018-08-06 2020-02-18 三星显示有限公司 显示装置
CN111505866A (zh) * 2020-04-21 2020-08-07 京东方科技集团股份有限公司 显示装置及其制作方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8294040B2 (en) * 2006-02-20 2012-10-23 Daicel Chemical Industries, Ltd. Porous film and multilayer assembly using the same
CN202633384U (zh) * 2012-04-26 2012-12-26 刘晓博 用于led照明的反射荧光面
CN104536198A (zh) * 2015-02-03 2015-04-22 京东方科技集团股份有限公司 一种显示基板、显示面板和显示装置
CN205067782U (zh) * 2015-10-30 2016-03-02 京东方科技集团股份有限公司 滤光片、显示基板及显示装置
US11112685B2 (en) * 2017-06-02 2021-09-07 Nexdot Color conversion layer and display apparatus having the same
US20200152841A1 (en) 2017-07-31 2020-05-14 Yale University Nanoporous micro-led devices and methods for making
CN108192418A (zh) * 2017-12-27 2018-06-22 深圳市华星光电技术有限公司 一种量子点墨水制备方法、量子点彩膜基板及其制备方法
KR102619610B1 (ko) * 2018-09-28 2023-12-28 엘지디스플레이 주식회사 자체발광 표시장치
KR102612713B1 (ko) * 2018-12-10 2023-12-12 삼성디스플레이 주식회사 표시 장치
US20210191198A1 (en) * 2019-12-18 2021-06-24 Moleculed Ltd. Assistant dyes for color conversion in lcd displays
KR20210131504A (ko) * 2020-04-23 2021-11-03 삼성디스플레이 주식회사 표시 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377226A (zh) * 2013-08-14 2015-02-25 业鑫科技顾问股份有限公司 显示面板
CN104932136A (zh) * 2015-07-01 2015-09-23 合肥鑫晟光电科技有限公司 彩膜基板及其制作方法、显示面板和显示装置
CN105204104A (zh) * 2015-10-30 2015-12-30 京东方科技集团股份有限公司 滤光片及其制作方法、显示基板及显示装置
CN107037630A (zh) * 2017-06-23 2017-08-11 京东方科技集团股份有限公司 彩膜基板及其制备方法和显示装置
CN110211986A (zh) * 2018-02-28 2019-09-06 夏普株式会社 显示元件以及显示装置
US20190377223A1 (en) * 2018-06-08 2019-12-12 Samsung Display Co., Ltd. Display device
CN110808260A (zh) * 2018-08-06 2020-02-18 三星显示有限公司 显示装置
CN109669301A (zh) * 2019-03-01 2019-04-23 惠科股份有限公司 量子点彩膜基板和显示装置
CN111505866A (zh) * 2020-04-21 2020-08-07 京东方科技集团股份有限公司 显示装置及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114994975A (zh) * 2022-08-03 2022-09-02 惠科股份有限公司 阵列基板及其制作方法、显示面板
CN114994975B (zh) * 2022-08-03 2023-02-21 惠科股份有限公司 阵列基板及其制作方法、显示面板

Also Published As

Publication number Publication date
US20220278174A1 (en) 2022-09-01
CN111505866B (zh) 2022-04-12
CN111505866A (zh) 2020-08-07
US11832495B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2021213033A1 (zh) 显示装置及其制作方法
US11910688B2 (en) Organic light emitting diode display substrate having band gap layer, manufacturing method thereof, and display device
US9064822B2 (en) Organic electroluminescent device and method of manufacturing the same
US11362148B2 (en) Quantum dot display panel and manufacturing method thereof
KR102478491B1 (ko) 유기발광다이오드 표시장치 및 그의 제조 방법
TWI670549B (zh) 顯示單元結構及使用量子棒之顯示元件
US20090206733A1 (en) Organic light emitting diode display and method of manufacturing the same
CN111933670B (zh) 一种显示基板及其制备方法、显示装置
KR101362641B1 (ko) 다색 발광 유기 el 표시 장치 및 그 제조 방법
WO2015096391A1 (zh) 阵列基板及其制作方法、显示装置
TWI685702B (zh) 顯示裝置
WO2022083304A1 (zh) 显示面板及其制备方法、显示装置
US11917894B2 (en) Method for preparing organic electroluminescent device, and organic electroluminescent device and display apparatus
WO2022267201A1 (zh) 显示面板及显示面板制作方法
CN112310143A (zh) 量子点微led显示器件及其制备方法
US11296143B2 (en) Display panel and display device
WO2022094973A1 (zh) 显示面板及显示装置
JP4729754B2 (ja) 複数の有機el発光素子を利用した表示装置
WO2020098722A1 (zh) 一种全彩化显示模块及其制作方法
KR20200035883A (ko) 컬러 필터 기판 및 컬러 필터층을 포함하는 디스플레이 장치
WO2023123113A1 (zh) 显示基板、显示装置及显示基板的制备方法
WO2023286166A1 (ja) 表示装置及び表示装置の製造方法
TWI788241B (zh) 發光裝置
WO2022261904A1 (zh) 一种显示面板及其制作方法、显示装置
WO2022266837A1 (zh) 显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21793434

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21793434

Country of ref document: EP

Kind code of ref document: A1