WO2022266837A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2022266837A1
WO2022266837A1 PCT/CN2021/101490 CN2021101490W WO2022266837A1 WO 2022266837 A1 WO2022266837 A1 WO 2022266837A1 CN 2021101490 W CN2021101490 W CN 2021101490W WO 2022266837 A1 WO2022266837 A1 WO 2022266837A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
substrate
display panel
color conversion
Prior art date
Application number
PCT/CN2021/101490
Other languages
English (en)
French (fr)
Inventor
刘玉杰
杨松
石戈
梁蓬霞
方正
孙艳六
韩佳慧
吴谦
李鸿鹏
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/101490 priority Critical patent/WO2022266837A1/zh
Priority to US17/795,074 priority patent/US20240215372A1/en
Priority to CN202180001591.2A priority patent/CN115943751A/zh
Publication of WO2022266837A1 publication Critical patent/WO2022266837A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels

Definitions

  • the present application relates to the field of display technology, in particular to a display panel and a display device.
  • a display panel includes an organic luminescent material and a color conversion layer located above the organic luminescent material, and the color conversion layer includes a quantum dot material.
  • the display panel has the advantages of high resolution, high color gamut, high color purity, and no viewing angle dependence.
  • the distance between the light-emitting layer and the color conversion layer of the above-mentioned display panel is relatively large, and part of the light emitted by the sub-pixel will be incident on the area corresponding to the color conversion layer and the adjacent sub-pixel, resulting in color crossover between adjacent sub-pixels. Lowers the color gamut of the display panel.
  • a display panel includes:
  • the light-emitting layer comprising a plurality of light-emitting structures arranged at intervals;
  • An insulating material structure located on the side of the light-emitting layer away from the substrate; the insulating material structure includes alternately arranged organic layers and inorganic layers;
  • a color conversion layer located on the side of the insulating material structure away from the substrate, the color conversion layer includes a plurality of color conversion parts and a light shielding part located between the plurality of color conversion parts;
  • the orthographic projection of the auxiliary layer on the substrate covers the orthographic projection of the light-shielding portion on the substrate; the auxiliary layer and the adjacent organic layer and inorganic layer in the insulating material structure They are in direct contact with each other, and the refractive index of the auxiliary layer is lower than the refractive index of the organic layer in direct contact with it and the refractive index of the inorganic layer in direct contact with it.
  • the insulating material structure includes an encapsulation layer, the encapsulation layer includes at least two inorganic layers and at least one organic layer, and the auxiliary layer is located between the organic layer of the encapsulation layer and the organic layer. between the inorganic layers on the side close to the substrate.
  • the encapsulation layer includes a first inorganic layer, an encapsulation organic layer on the first inorganic layer, and a second inorganic layer on the encapsulation organic layer, the first inorganic layer and the encapsulation organic layer
  • the auxiliary layer is located between the first inorganic layer and the encapsulating organic layer.
  • the auxiliary layer is located between adjacent organic and inorganic layers in the insulating material structure, and the orthographic projection of the auxiliary layer on the substrate covers the color conversion layer.
  • the refractive index of the auxiliary layer is less than or equal to 1.4.
  • the organic layer in direct contact with the auxiliary layer is provided with a hollow, and the auxiliary layer is located in the hollow.
  • the organic layer in direct contact with the auxiliary layer is an adhesive layer, and the adhesive layer is in direct contact with the color conversion layer.
  • the orthographic projection of the auxiliary layer on the substrate coincides with the orthographic projection of the light shielding portion on the substrate.
  • the auxiliary layer has the same thickness as the adhesive layer.
  • the material of the auxiliary layer is nitrogen or inert gas.
  • the material of the auxiliary layer includes at least one of metal fluoride and substituted or unsubstituted polyacrylate.
  • the auxiliary layer includes a photonic crystal structure
  • the photonic crystal structure includes a plurality of columnar structures arranged in an array.
  • the first distance between the centers of two adjacent columnar structures ranges from 100nm to 300nm.
  • the minimum distance between two adjacent columnar structures is the second distance
  • the ratio of the difference between the first distance and the second distance to the first distance ranges from 0.2 to 0.8
  • the color conversion part corresponds to the light emitting structure one by one, and the orthographic projection of the color conversion part on the substrate covers the orthographic projection of the light emitting structure on the substrate.
  • the light-emitting color of each light-emitting structure of the light-emitting layer is blue;
  • the color conversion part includes a red color conversion part, a green color conversion part and a light-transmitting part, and the red color
  • the conversion part includes red quantum dots and light-scattering particles,
  • the green color conversion part includes green quantum dots and light-scattering particles, and
  • the light-transmitting part includes light-scattering particles.
  • the display panel further includes a filter layer located on the side of the color conversion layer away from the substrate, the filter layer includes a black matrix and a plurality of filter parts, and the plurality of filter The light part corresponds to the light emitting structure one by one, and the orthographic projection of the light shielding part on the substrate coincides with the orthographic projection of the black matrix on the substrate.
  • a display device is provided, and the display device includes the above-mentioned display panel.
  • the orthographic projection of the auxiliary layer on the substrate covers the orthographic projection of the light-shielding portion on the substrate, and the auxiliary layer is directly connected to the adjacent organic layer and inorganic layer in the insulating material structure.
  • the refractive index of the auxiliary layer is smaller than the refractive index of the organic layer in direct contact with it and the refractive index of the inorganic layer in direct contact with it, then in the light emitted by the light-emitting structure, at least part of the light with a larger exit angle is in the auxiliary layer and the Total reflection occurs at the interface between the film layers adjacent to the auxiliary layer and located on the side of the auxiliary layer close to the substrate, so that the light emitted by the light-emitting structure with a larger exit angle enters the color conversion part corresponding to the adjacent light-emitting structure
  • the reduced amount of light helps to avoid the problem of cross-color between adjacent light-emitting structures, improves the display brightness of the light-emitting structures, and improves the color gamut of the display panel.
  • FIG. 1 is a schematic perspective view of a three-dimensional structure of a display panel provided by an exemplary embodiment of the present application;
  • Fig. 2 is a schematic structural diagram of a display panel provided by an exemplary embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a display panel provided by another exemplary embodiment of the present application.
  • Fig. 4 is a cross-sectional view obtained by cutting the display panel shown in Fig. 2 or Fig. 3 along AA;
  • Fig. 5 is another cross-sectional view obtained by cutting the display panel shown in Fig. 2 or Fig. 3 along AA;
  • Fig. 6 is a comparison diagram of the relationship between the light intensity and the light wavelength of the light emitting structure emitting light and the quantum dot absorbing light provided by an exemplary embodiment of the present application;
  • Fig. 7 is a top view of a photonic crystal structure provided by an exemplary embodiment of the present application.
  • Fig. 8 is a sectional view obtained by cutting the photonic crystal structure shown in Fig. 7 along BB;
  • Fig. 9 is a graph showing the relationship between the light intensity of the blue light emitted by the light-emitting structure and the light-emitting angle provided by an exemplary embodiment of the present application;
  • FIG. 10 is a graph showing the relationship between the color gamut and light leakage ratio of a display panel provided by an exemplary embodiment of the present application.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the present application, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”
  • Embodiments of the present application provide a display panel and a display device.
  • the display panel and the display device in the embodiments of the present application will be described in detail below with reference to the accompanying drawings. In the case of no conflict, the features in the following embodiments may complement each other or be combined with each other.
  • the display panel includes a substrate 10 , a light emitting layer 20 , an insulating material structure 30 , a color conversion layer 40 and an auxiliary layer 60 .
  • the light emitting layer 20 is located on the substrate 10 , and the light emitting layer 20 includes a plurality of light emitting structures 201 arranged at intervals.
  • the insulating material structure 30 is located on a side of the light emitting layer 20 away from the substrate 10 .
  • the insulating material structure 30 includes alternately arranged organic layers and inorganic layers.
  • the color conversion layer 40 is located on the side of the insulating material structure 30 away from the substrate 10 , and the color conversion layer 40 includes a plurality of color conversion parts 41 and between the plurality of color conversion parts 41 .
  • Shading part 42 Shading part 42 .
  • the light shielding portion 42 is provided with a plurality of openings, and the color converting portion 41 is located in the openings of the light shielding portion 42 .
  • the orthographic projection of the auxiliary layer 60 on the substrate 10 covers the orthographic projection of the light shielding portion 42 on the substrate 10; the auxiliary layer 60 and the adjacent organic layers in the insulating material structure 30
  • the auxiliary layer 60 is in direct contact with the inorganic layer, and the refractive index of the auxiliary layer 60 is smaller than the refractive index of the organic layer directly contacting it and the refractive index of the inorganic layer directly contacting it.
  • the orthographic projection of the auxiliary layer 60 on the substrate 10 covers the orthographic projection of the light shielding portion 42 on the substrate 10, and the auxiliary layer 60 and the adjacent organic layers and inorganic layers in the insulating material structure 30 Layers are in direct contact with each other, and the refractive index of the auxiliary layer 60 is smaller than the refractive index of the organic layer in direct contact with it and the refractive index of the inorganic layer in direct contact with it, then in the light emitted by the light emitting structure 201, at least part of the light with a larger exit angle
  • the light is totally reflected at the interface between the auxiliary layer 60 and the film layer adjacent to the auxiliary layer and located on the side of the auxiliary layer close to the substrate, so that the light emitted by the light emitting structure 201 with a larger exit angle enters the adjacent
  • the light quantity of the color conversion part corresponding to the light emitting structure 201 is reduced, which helps to avoid the problem of cross-color between adjacent light emitting structures,
  • the adjacent organic layer and inorganic layer in the insulating material structure 30 means that the organic layer is in direct contact with the inorganic layer, or there are other film layers between the organic layer and the inorganic layer, but the film Layers do not belong to the insulating material structure 30 .
  • the insulating material structure 30 includes alternately arranged organic layers and inorganic layers, which means that one organic layer and one inorganic layer are alternately arranged in the insulating material structure 30, an inorganic layer is arranged between adjacent two organic layers, and adjacent An organic layer is arranged between the two inorganic layers.
  • the substrate 10 is a rigid substrate, and the material of the rigid substrate may be glass, metal or the like.
  • the substrate 10 can be a flexible substrate, and the material of the flexible substrate can include PI (polyimide), PET (polyethylene terephthalate) and PC (polycarbonate). one or more of .
  • the display substrate further includes a pixel driving circuit layer located between the substrate 10 and the light emitting layer 20 .
  • the pixel driving circuit layer includes a pixel driving circuit for driving the light emitting structure.
  • the pixel circuit includes a thin film transistor 90 .
  • the thin film transistor 90 includes an active layer 91 , a gate electrode 92 located on a side of the active layer 91 away from the substrate 10 , a first electrode 93 and a second electrode 94 .
  • One of the first electrode 93 and the second electrode 94 is a source electrode, and the other is a drain electrode.
  • the pixel driving circuit may also include a capacitor (not shown).
  • the pixel driving circuit layer also includes a gate insulating layer 81 , an interlayer dielectric layer 82 and a planarization layer 83 .
  • the gate insulating layer 81 is located between the active layer 91 and the gate electrode 92 .
  • the interlayer dielectric layer 82 is located on the side of the gate electrode 92 facing away from the substrate 10, and the first electrode 93 and the second electrode 94 are electrically connected to the active layer 91 through the through holes penetrating the gate insulating layer 81 and the interlayer dielectric layer 82 .
  • the planarization layer 83 is located on the side of the first pole 93 and the second pole 94 facing away from the substrate 10 , covering the exposed interlayer dielectric layer 82 .
  • the light-emitting layer 20 includes a plurality of light-emitting structures 201 arranged at intervals, and the light-emitting colors of the light-emitting structures 201 in the light-emitting layer 20 may be the same, for example, the light-emitting colors of the light-emitting structures 201 in the light-emitting layer 20 may all be blue. color.
  • the light of the same color emitted by the light-emitting layer 20 is converted into light of multiple colors when passing through the color conversion layer, so as to realize the color display of the display panel.
  • the light emitting structure 201 is located on a side of the planarization layer 83 away from the substrate 10 .
  • the light emitting structure 201 includes a first electrode 21, an organic luminescent material layer 22 located on the side of the first electrode 21 away from the substrate 10, and a second electrode 23 located on the side of the organic luminescent material layer 22 away from the substrate 10, the first electrode 21
  • the second electrode 23 is in direct contact with the organic light-emitting material layer 22 respectively.
  • the first electrode 21 may be an anode, and the second electrode 23 may be a cathode.
  • the second electrode 23 of each light emitting structure 201 may be a whole-surface electrode connected in one piece.
  • the first electrode 21 is electrically connected to the first electrode 93 of the thin film transistor 90 through the through hole penetrating the planarization layer 83 .
  • the display panel 100 is a top emission structure
  • the first electrode 21 is a reflective electrode
  • the second electrode 23 is a light-transmitting electrode.
  • the display panel 100 further includes a pixel defining layer 84, and the pixel defining layer 84 is provided with a plurality of pixel openings.
  • the pixel openings may be in one-to-one correspondence with the light emitting structures 201 .
  • the first electrode 21 is located under the pixel defining layer 84 , and the pixel opening exposes a part of the first electrode 21 of the corresponding light emitting structure 201 .
  • At least part of the organic light emitting material layer 22 of the light emitting structure 201 is located in the corresponding pixel opening.
  • the color conversion layer 40 includes a plurality of color conversion portions 41 .
  • the color conversion part 41 includes a red color conversion part R, a green color conversion part G and a light-transmitting part B.
  • the red color conversion part R converts the blue light emitted by the light-emitting structure 201 into red light
  • the green color conversion part G converts the blue light emitted by the light-emitting structure 201 into green light
  • the light-transmitting part B can pass through the light-emitting structure 201 Emitting blue light.
  • Fig. 2 and Fig. 3 are only two exemplary arrangements of a plurality of color conversion parts 41, in other embodiments, the arrangement of a plurality of color conversion parts 41 of the color conversion layer 40 may be different from Fig. 2 and Fig. 3.
  • the color conversion part 41 corresponds to the light emitting structure 201 one by one, and the orthographic projection of the color conversion part 41 on the substrate 10 covers the light emitting structure 201 on the substrate 10 Orthographic projection on . With such an arrangement, more of the light emitted by the light emitting structure 201 is incident on the corresponding color converting portion 41 , which helps to improve the utilization rate of the light.
  • the orthographic projection of the color conversion part 41 on the substrate 10 covers the orthographic projection of the light emitting structure 201 on the substrate 10, which means that the color conversion part 41 is on the substrate
  • the area of the orthographic projection on the substrate 10 is larger than the area of the orthographic projection of the corresponding light emitting structure 201 on the substrate 10, or, the orthographic projection of the color conversion part 41 on the substrate 10 is the same as that of the corresponding light emitting structure 201 on the substrate 10.
  • the orthographic projections on base 10 roughly coincide.
  • the area of the orthographic projection of the color conversion part 41 on the substrate 10 is larger than the area of the orthographic projection of the corresponding light emitting structure 201 on the substrate 10, so that more light in the light emitted by the light emitting structure 201 It can enter the corresponding color conversion part 41 .
  • the red color conversion part includes red quantum dots and light-scattering particles, and the light-scattering particles are dispersed in green quantum dots;
  • the green color conversion part includes green quantum dots and light-scattering particles, and the light Scattering particles are dispersed in the green quantum dots;
  • the light-transmitting part includes a light-transmitting material and light-scattering particles dispersed in the light-transmitting material.
  • the light transmittance of the transparent material may be relatively high, for example greater than 80%.
  • the red quantum dots can convert the blue light emitted by the light emitting structure 201 into red light
  • the green quantum dots can convert the blue light emitted by the light emitting structure 201 into green light.
  • the light transmitting portion does not change the color of incident light.
  • each of the color conversion parts includes a plurality of light scattering particles, and the plurality of light scattering particles in the color conversion part are evenly distributed. In this way, the uniformity of the display brightness of the display panel can be further improved.
  • the display panel 100 further includes a filter layer 70 located on the side of the color conversion layer 40 away from the substrate 10, the filter layer 70 includes a black matrix 72 and a plurality of filter parts 71 , the black matrix 72 is located between adjacent filter parts 71 .
  • the plurality of filter parts 71 correspond to the light emitting structures 201 one by one, and the orthographic projection of the light shielding part 42 on the substrate 10 coincides with the orthographic projection of the black matrix 72 on the substrate 10 .
  • the width of the cross section of the light shielding portion 42 in the longitudinal direction (in the film layer stacking direction of the display panel) near the substrate is greater than the width of the side away from the substrate, and the orthographic projection of the light shielding portion 42 on the substrate 10 is the same as that of the black matrix 72.
  • the coincidence of the orthographic projection on the substrate 10 means that the width of the cross section of the light shielding portion 42 near the substrate in the longitudinal direction is approximately the same as the width of the corresponding black matrix 72 in the cross section of the longitudinal direction.
  • the plurality of filter parts 71 of the filter layer 70 include a red filter part, a green filter part and a blue filter part.
  • the orthographic projection of the red filter part on the substrate 10 roughly coincides with the orthographic projection of the red color conversion part on the substrate 10
  • the orthographic projection of the green filter part on the substrate 10 coincides with the green color conversion part.
  • the orthographic projection of the blue filter part on the substrate 10 roughly coincides
  • the orthographic projection of the blue filter part on the substrate 10 roughly coincides with the orthographic projection of the light-transmitting part on the substrate 10 .
  • the red filter part can filter out the non-red light in the incident light
  • the green filter part can filter out the non-green light in the incident light
  • the blue filter part can filter out the non-blue light in the incident light Colored light is filtered out. Therefore, the arrangement of the filter layer 70 can improve the purity of the outgoing light.
  • FIG. 6 is a comparison diagram of the relation curves of the light intensity and the wavelength of the light emitted by the light-emitting structure and light absorbed by the quantum dots.
  • curve a represents the relationship between the intensity of blue light emitted by the light-emitting structure and the wavelength of light
  • curve b represents the relationship between the intensity of blue light absorbed by green quantum dots and the wavelength of light
  • curve c represents the intensity of blue light absorbed by red quantum dots The relationship curve with the wavelength of light. It can be seen from FIG.
  • the setting of the filter layer 70 can filter out the blue light that cannot be absorbed by the quantum dots, and improve the purity of the outgoing light.
  • the insulating material structure 30 includes an encapsulation layer 35 , and the encapsulation layer 35 includes at least two inorganic layers and at least one organic layer.
  • the inorganic layers and organic layers of the encapsulation layer 35 are alternately arranged, and the film layer with the smallest distance from the substrate in the encapsulation layer is the inorganic layer, and the film layer with the largest distance from the substrate is the inorganic layer.
  • the material of the inorganic layer may be silicon oxide, silicon nitride or silicon oxynitride.
  • the material of the organic layer is, for example, acrylic material, and the organic layer can wrap the particles on the surface of the inorganic layer on the side of the organic layer close to the substrate, so as to avoid the risk of film breakage in the subsequently formed inorganic layer.
  • the insulating material structure 30 further includes an adhesive layer 34 on a side of the encapsulation layer 35 away from the substrate 10 and a substrate 50 on a side of the filter layer 70 away from the substrate 10 .
  • the substrate 50 is a substrate with high light transmittance.
  • Each film layer of the display panel can be divided into a display module and a color conversion module.
  • the display module includes a substrate 10, a pixel driving circuit layer, a light-emitting layer 20, and an encapsulation layer 35.
  • the color conversion module includes a substrate 50, a filter layer 70 . Color converting layer 40 and bonding layer 34 .
  • the auxiliary layer 60 can be located in the display module or in the color conversion module.
  • the display module and the color conversion module are firstly formed.
  • the preparation process of the display template is: sequentially forming the pixel driving circuit layer, the light emitting layer 20 and the encapsulation layer 35 on the substrate 10; the preparation process of the color conversion module is: forming the filter layer 70 and the color conversion layer on the substrate 50 40 and bonding layer 34.
  • the auxiliary layer 60 is formed during the process of manufacturing the display module, or formed during the process of manufacturing the color conversion module. Afterwards, the color conversion module and the display template are boxed, so that the two are bonded together through the adhesive layer 34 .
  • the light shielding part 42 is formed first, and then the color conversion part is formed.
  • the forming process of the light-shielding portion 42 is as follows: firstly, an entire surface of the light-shielding material layer is formed, and then the light-shielding material layer is etched to form the light-shielding portion 42 .
  • the side of the light-shielding portion 42 shrinks inwardly near the side of the substrate, so that the size of the light-shielding portion 42 in the transverse direction (perpendicular to the film layer stacking direction) is changed from close to From one side of the base plate to the side away from the base plate, the size increases gradually.
  • the auxiliary layer 60 is located between adjacent organic layers and inorganic layers in the insulating material structure 30, and the orthographic projection of the auxiliary layer 60 on the substrate 10 covers the color conversion Layer 40. With this arrangement, the auxiliary layer 60 does not need to be patterned, which helps to simplify the manufacturing process.
  • the auxiliary layer 60 is located between the organic layer of the encapsulation layer 35 and the inorganic layer located on the side of the organic layer close to the substrate 10 . Since the refractive index of the organic layer is smaller than that of the inorganic layer, if the light is directly incident on the interface between the inorganic layer and the adjacent organic layer from the inorganic layer, the outgoing angle of the light increases, and the transverse direction of the light (parallel to the substrate) The extension direction of the bottom) increases the transmission distance, which will lead to an increase in the cross-color degree of the display panel.
  • the auxiliary layer 60 is arranged between the organic layer and the inorganic layer on the side of the organic layer close to the substrate 10, and among the light emitted from the inorganic layer, part of the light with a relatively large exit angle occurs at the interface between the inorganic layer and the auxiliary layer.
  • Total reflection means that part of the light with a relatively large exit angle has undergone total reflection before entering the organic layer, which can reduce the amount of light entering the organic layer, thereby reducing the amount of light that crosses colors.
  • the encapsulation layer 35 may include one organic layer or two or more organic layers.
  • the encapsulation layer 35 includes two or more organic layers, one of the organic layers is provided with an auxiliary layer 60 on a side close to the substrate, or each organic layer is provided with an auxiliary layer 60 on a side close to the substrate.
  • the encapsulation layer 35 includes three film layers, namely the first inorganic layer 31, the encapsulation organic layer 32 located on the side of the first inorganic layer 31 away from the substrate 10, and the encapsulation organic layer 32 located on the side of the first inorganic layer 31 away from the substrate 10. 32 is the second inorganic layer 33 on the side away from the substrate 10 .
  • the first inorganic layer 31 is in direct contact with the light emitting structure 201
  • the auxiliary layer 60 is located between the first inorganic layer 31 and the packaging organic layer 32 .
  • the light emitted by the light emitting structure 201 with a larger angle is totally reflected at the interface between the first inorganic layer 31 and the auxiliary layer 60, and does not enter into the encapsulating organic layer with a lower refractive index and a larger thickness.
  • which can reduce the lateral transmission distance of light with a larger exit angle, more effectively avoid cross-coloring of adjacent light-emitting structures, and improve the color gamut of the display panel;
  • reducing the width of the light-shielding portion 42 and the black matrix 72 can increase the aperture ratio of the pixel opening and increase the effective display area of the display panel.
  • the material of the first inorganic layer 31 is silicon oxynitride
  • the material of the second inorganic layer 33 is silicon nitride
  • the refractive index of the auxiliary layer 60 is less than or equal to 1.4. Such an arrangement can effectively reduce the degree of cross-color between adjacent light-emitting structures 201 .
  • the refractive index of the auxiliary layer 60 may also be slightly greater than 1.4, for example, the refractive index of the auxiliary layer 60 may range from 1.35 to 1.45.
  • the material of the auxiliary layer 60 includes at least one of metal fluoride and substituted or unsubstituted polyacrylate.
  • the refractive index of the auxiliary layer 60 can be made smaller, effectively avoiding cross-color between adjacent light-emitting structures.
  • the metal fluoride is, for example, magnesium fluoride.
  • Substituted or unsubstituted polyacrylates are, for example, poly(1,1,1,3,3,3-hexafluoroisopropyl acrylate) (refractive index 1.375), poly(2,2,3,3,4, 4,4-heptafluorobutyl acrylate) (refractive index 1.377), poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate) (refractive index 1.383), poly( 2,2,3,3,3-pentafluoropropyl acrylate) (refractive index 1.389), poly(1,1,1,3,3,3-hexafluoroisopropyl methacrylate) (refractive index 1.390), poly(2,2,3,4,4,4-hexafluorobutyl acrylate) (refractive index 1.394), etc.
  • the thickness of the auxiliary layer 60 ranges from 5 nm to 20 nm.
  • the thickness of the auxiliary layer 60 is, for example, 5 nm, 10 nm, 15 nm, 20 nm, or the like.
  • the thickness of the auxiliary layer 60 ranges from 2 ⁇ m to 4 ⁇ m.
  • the thickness of the auxiliary layer 60 is, for example, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, or the like.
  • the material of the auxiliary layer 60 includes a photonic crystal structure
  • the photonic crystal structure includes a plurality of columnar structures 61 arranged in an array.
  • a plurality of columnar structures 61 are arranged periodically. The distance between the centers of two adjacent columnar structures 61 is a first distance, and the minimum distance between two adjacent columnar structures is a second distance.
  • the duty cycle of the photonic crystal structure can be calculated by the following formula (1):
  • f represents the duty ratio of the photonic crystal
  • d 1 represents the first distance
  • d 2 represents the second distance
  • the equivalent refractive index of the photonic crystal structure can be calculated by the following formula (2):
  • n represents the equivalent refractive index of the photonic crystal structure
  • ⁇ 1 represents the dielectric constant of the columnar structures 61
  • ⁇ 2 represents the dielectric constant of the gas between adjacent columnar structures 61 .
  • the gas between adjacent columnar structures 61 is, for example, nitrogen or air, with a dielectric constant of about 1.
  • the first distance between the centers of two adjacent columnar structures 61 ranges from 100 nm to 300 nm. Such setting can avoid the first distance between the centers of two adjacent columnar structures 61 being too small, resulting in greater difficulty in manufacturing the process, and can also avoid the first distance between the centers of two adjacent columnar structures 61 being too small. Large, causing light to diffract when passing through the photonic crystal structure.
  • the first distance between the centers of two adjacent columnar structures 61 is, for example, 100 nm, 150 nm, 200 nm, 250 nm, 300 nm and so on.
  • the difference between the first distance and the second distance at different positions of the photonic crystal structure is relatively small, so that the equivalent refractive indices at different positions of the photonic crystal structure are relatively close.
  • the ratio of the difference between the first distance and the second distance to the first distance ranges from 0.2 to 0.8. In this way, the distribution of the multiple columnar structures in the photonic crystal structure is relatively uniform, and the difference in equivalent refractive index at different positions of the photonic crystal structure is small, which is more helpful to improve the uniformity of display brightness in different regions of the display panel. In some exemplary embodiments, the ratio of the difference between the first distance and the second distance to the first distance is 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and so on.
  • the material of the columnar structure 61 is SiOx, its refractive index is about 1.5, the duty cycle of the photonic crystal structure is 0.5, and the equivalent refractive index of the photonic crystal structure is calculated by using the above calculation formula (2) is 1.27. It can be seen that the equivalent refractive index of the photonic crystal structure is small, which can reduce the cross-color degree of the adjacent light-emitting structures 201 .
  • the insulating material structure 30 includes a first inorganic layer 31, an encapsulating organic layer 32, a second inorganic layer 33, and an adhesive layer 34 that are sequentially stacked, and the auxiliary layer 60 is located on the first inorganic layer. between layer 31 and encapsulating organic layer 32 .
  • the distance between two adjacent pixel openings away from the side of the substrate 10 is W 1
  • the width of the side of the light shielding portion 42 facing the substrate 10 is W 2
  • one edge of the pixel opening away from the side of the substrate 10 is the corresponding
  • the distance between the edges of the light shielding portion 42 facing away from the pixel opening is W 3 , wherein the light shielding portion 42 corresponding to the pixel opening refers to the light shielding portion adjacent to the color conversion portion corresponding to the pixel opening and close to the edge of the pixel opening.
  • the minimum incident angle of the light entering the first inorganic layer 31 is the minimum series color angle
  • the minimum cross-color angle is ⁇ 1
  • the incident angle of the light incident on the packaging organic layer 32 is ⁇ 2
  • the incident angle of the light incident on the second inorganic layer 33 is ⁇ 3
  • the incident angle of the light incident on the bonding layer 34 The incident angle is ⁇ 4
  • the refractive index, thickness and incident angle of each film layer, as well as W 1 , W 2 , and W 3 satisfy the following relational formula (3) and formula (4):
  • the critical angle of total reflection is 56°, that is, among the light rays emitted from the edge of the light emitting structure, the light rays emitted from the first inorganic layer 31 have an angle greater than 56°. No light can exit from the first inorganic layer 31 .
  • the range of the exit angle of the light entering the encapsulating organic layer 32 becomes 0°-90°, and part of the light exiting from the encapsulating organic layer 32 finally enters the adjacent light-emitting structure In the color conversion part corresponding to 201, the cross-color of the adjacent light-emitting structure is caused. Even if the width of the light-shielding part 42 is increased, some light will still enter the adjacent light-emitting structure 201, and increasing the width of the light-shielding part 42 will This results in a decrease in the pixel aperture ratio. Therefore, the method of increasing the width of the light-shielding portion is not used to solve the problem of color crossing between adjacent light emitting structures 201 .
  • an auxiliary layer 60 is provided between the first inorganic layer 31 and the encapsulation organic layer 32, and the relationship between the refractive index of the first inorganic layer 31, the encapsulation organic layer 32 and the auxiliary layer 60 and the incident angle of light Satisfy the following relationship (5):
  • ⁇ 5 represents the incident angle of light incident on the auxiliary layer 60
  • n 5 represents the refractive index of the auxiliary layer 60 .
  • the refractive index of the auxiliary layer 60 determines the maximum outgoing angle of the light incident to the encapsulating organic layer 32 . Due to the small refractive index of the auxiliary layer 60, the maximum exit angle of the light that can enter the encapsulation organic layer 32 is small, that is, the setting of the auxiliary layer 60 can reduce the light exit angle from the first inorganic layer 31 Larger light rays are locked in the interface between the first inorganic layer 31 and the auxiliary layer 60 as much as possible, so as to prevent these light rays from entering the corresponding color conversion portion of the adjacent light emitting structure 201 .
  • the material of the auxiliary layer 60 is MgF 2 , the refractive index is 1.38, and the critical angle of total reflection of the light incident on the auxiliary layer 60 is 50°, that is, it exits from the first inorganic layer 31 Any light with an exit angle greater than 50° cannot exit the first inorganic layer 31 .
  • the auxiliary layer 60 can reduce the exit angle of the light emitted from the first inorganic layer 31 , helping to reduce the degree of cross-color between adjacent light emitting structures 201 .
  • FIG. 9 is a graph showing the relationship between the light intensity of the blue light emitted by the light-emitting structure and the light-emitting angle. It can be seen from FIG. 9 that the intensity of the light with a light emitting angle between 50° and 56° is relatively high, and the setting of the auxiliary layer 60 can prevent this part of light from entering the color conversion part corresponding to the adjacent light emitting structure, effectively The degree of cross-color between adjacent light-emitting structures 201 is reduced.
  • the light leakage ratio refers to the ratio of the total energy of the light emitted by the light emitting structure incident to the adjacent light emitting structure to the total energy of the light emitted by the light emitting structure. It can be seen from Figure 10 that in order to improve the color gamut of the device, it is necessary to reduce the light leakage ratio. By reducing the total energy of the light emitted by the light emitting structure incident on the color conversion portion corresponding to the adjacent light emitting structure, the proportion of light leakage can be reduced. In the embodiment shown in FIG. 4 , by setting the auxiliary layer, the proportion of light leakage can be effectively reduced and the color gamut of the device can be improved.
  • the display panel includes an auxiliary layer 60, and the auxiliary layer 60 is located between the first inorganic layer 31 and the encapsulating organic layer 32, the material of the auxiliary layer 60 is MgF2, the refractive index is 1.38, and the auxiliary layer 60 is incident on the auxiliary layer
  • the critical angle of total reflection for a ray of 60° is 50°.
  • Min cross color angle Width of light-shielding part/ ⁇ m cross color ratio 25° 9.2 twenty four% 35° 14.9 11% 45° 25.6 5.5%
  • the critical angle of total reflection of light incident on the encapsulating organic layer 32 is 56°.
  • the width of the light-shielding portion is different, the cross-color angle, the cross-color ratio of the display panel and the width of the light-shielding portion 42 are shown in Table 2 below.
  • cross color angle Width of light-shielding part/ ⁇ m cross color ratio 25° 9.2 29% 35° 14.9 19% 45° 25.6 12%
  • the organic layer in direct contact with the auxiliary layer 60 is provided with a hollow, and the auxiliary layer 60 is located in the hollow.
  • the auxiliary layer 60 includes a plurality of auxiliary parts 62, and each auxiliary part 62 is located in the hollow of the organic layer. In this way, the auxiliary layer 60 will not increase the thickness of the display panel.
  • the organic layer directly in contact with the auxiliary layer 60 is an adhesive layer 34 , and the adhesive layer 34 is in direct contact with the color conversion layer 40 .
  • the adhesive layer 34 is provided with a hollow, and a plurality of auxiliary portions 62 of the auxiliary layer are disposed in the hollow of the adhesive layer.
  • the orthographic projection of the auxiliary layer 60 on the substrate 10 coincides with the orthographic projection of the light shielding portion 42 on the substrate 10 .
  • the orthographic projection of the auxiliary layer 60 on the substrate 10 coincides with the orthographic projection of the shading portion 42 on the substrate 10 , which means that the orthographic projection of the auxiliary layer 60 on the substrate 10 and the orthographic projection of the shading portion 42 on the substrate 10 The projections roughly coincide.
  • the width of the side of the light shielding portion 42 close to the substrate 10 is greater than the width of the side of the light shielding portion 42 facing away from the substrate 10 , and the width of the side of the light shielding portion 42 close to the substrate 10 is equal to the orthographic projection of the auxiliary layer 60 on the substrate 10 .
  • Such setting can avoid that the area of the orthographic projection of the auxiliary layer 60 on the substrate 10 is smaller than the area of the orthographic projection of the light shielding portion 42 on the substrate 10, so that part of the light emitted by a part of the light-emitting structure enters into the corresponding adjacent light-emitting structure. color conversion part, resulting in color crossover; and avoiding that the area of the orthographic projection of the auxiliary layer 60 on the substrate 10 is larger than the area of the orthographic projection of the light-shielding portion 42 on the substrate 10, resulting in a decrease in the effective light-emitting area of the display panel .
  • the auxiliary layer 60 has the same thickness as the adhesive layer 34 . In other embodiments, the thickness of the auxiliary layer 60 and the thickness of the adhesive layer 34 may be different.
  • the auxiliary layer 60 is made of nitrogen or inert gas.
  • the color conversion module and the display module are prepared, when the color conversion module and the display module are bonded together, in order to protect the color conversion module and the display module and prevent the intrusion of water and oxygen in the air, generally in nitrogen Or the color conversion module and the display module are bonded together under an inert gas environment.
  • nitrogen or inert gas will enter the hollow of the adhesive layer 34 to obtain the auxiliary layer 60 .
  • the preparation of the auxiliary layer 60 will not complicate the process, and the refraction of nitrogen or inert gas is low, which is more helpful to reduce the degree of cross-color of the display panel.
  • the material of the auxiliary layer includes at least one of metal fluoride and substituted or unsubstituted polyacrylate.
  • the auxiliary layer can be formed first, and then the adhesive layer can be formed; or the adhesive layer can be formed first, and then the auxiliary layer can be formed.
  • the minimum incident angle of the light entering the first inorganic layer 31 is the minimum color cross angle
  • the minimum cross color angle is the minimum cross color angle
  • the color angle is ⁇ 1
  • the incident angle of the light incident on the encapsulating organic layer 32 is ⁇ 2
  • the incident angle of the light incident on the second inorganic layer 33 is ⁇ 3
  • the incident angle of the light incident on the auxiliary layer 60 is ⁇ 5
  • the first inorganic layer 31 has a refractive index of n 1 and a thickness of d 1
  • the encapsulation organic layer 32 has a refractive index of n 2 and a thickness of d 2
  • the second inorganic layer 33 has a refractive index of n 4 and a thickness of d 3
  • the refractive index of the auxiliary layer 60 is n 5
  • the distance between two adjacent pixel openings facing away from the side of the substrate 10 is W 1
  • the width of the side of the light shielding portion 42 facing the substrate 10 is W 2
  • the pixel openings are away from The distance between an edge on one side of the substrate 10 and the edge of the corresponding light-shielding portion 42 away from
  • the outgoing angle of the light emitted from the edge of the light emitting structure is in the range of 33.7° ⁇ 56°, cross-color between adjacent light emitting structures can be avoided.
  • the angle of light incident on the encapsulating organic layer 32 through the first inorganic layer 31 ranges from 0° to 90°. Therefore, no matter how large the width of the light-shielding portion is, cross-coloring of adjacent light-emitting structures cannot be prevented.
  • ⁇ 1 is less than a certain value, the cross-color of adjacent light-emitting structures has little influence on the color gamut of the display panel.
  • the color gamut of the display panel when the value of the color gamut of the display panel is within ⁇ 5% of the value of the ideal display panel color gamut, it is considered that the color gamut of the display panel meets the requirements.
  • the ideal display panel refers to a display panel with no color crossover between adjacent light-emitting structures.
  • Embodiments of the present application further provide a display device, which includes the display panel described in any one of the above embodiments.
  • the display device further includes a driver and a power supply circuit
  • the driver is used to provide a driving signal for driving the light emitting structure to emit light
  • the power supply circuit is used to supply power to the display panel.
  • the display device further includes a casing, and the display panel is disposed in the casing.
  • the display device provided in the embodiment of the present application may be, for example, any device with a display function, such as a mobile phone, a tablet computer, a television, a notebook computer, and a vehicle-mounted device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

显示面板及显示装置。所述显示面板包括衬底、位于所述衬底上的发光层、绝缘材料结构、颜色转换层及辅助层。所述发光层包括多个间隔排布的发光结构。所述绝缘材料结构位于所述发光层背离所述衬底的一侧;所述绝缘材料结构包括交替设置的有机层及无机层。所述颜色转换层位于所述绝缘材料结构背离所述衬底的一侧,所述颜色转换层包括多个颜色转换部及与位于多个所述颜色转换部之间的遮光部。所述辅助层在所述衬底上的正投影覆盖所述遮光部在所述衬底上的正投影;所述辅助层与所述绝缘材料结构中的相邻有机层与无机层分别直接接触,且所述辅助层的折射率均小于与其直接接触的有机层的折射率及与其直接接触的无机层的折射率。

Description

显示面板及显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板及显示装置。
背景技术
一种显示面板包括有机发光材料及位于有机发光材料上方的颜色转换层,颜色转换层包括量子点材料。该显示面板具有高分辨率、高色域、高色纯度及不具有视角依赖性等优势。
但是上述显示面板的发光层与颜色转换层之间的距离较大,子像素发出的光线部分会入射到颜色转换层与相邻子像素对应的区域中,导致相邻的子像素发生串色,降低显示面板的色域。
发明内容
根据本申请实施例的第一方面,提供了一种显示面板。所述显示面板包括:
衬底;
位于所述衬底上的发光层,所述发光层包括多个间隔排布的发光结构;
绝缘材料结构,位于所述发光层背离所述衬底的一侧;所述绝缘材料结构包括交替设置的有机层及无机层;
颜色转换层,位于所述绝缘材料结构背离所述衬底的一侧,所述颜色转换层包括多个颜色转换部及与位于多个所述颜色转换部之间的遮光部;
辅助层,所述辅助层在所述衬底上的正投影覆盖所述遮光部在所述衬底上的正投影;所述辅助层与所述绝缘材料结构中的相邻有机层与无机层分别直接接触,且所述辅助层的折射率均小于与其直接接触的有机层的折射率 及与其直接接触的无机层的折射率。
在一个实施例中,所述绝缘材料结构包括封装层,所述封装层包括至少两个无机层和至少一个有机层,所述辅助层位于所述封装层的所述有机层与设置在该有机层靠近所述衬底一侧的无机层之间。
在一个实施例中,所述封装层包括第一无机层、位于所述第一无机层上的封装有机层及位于所述封装有机层上的第二无机层,所述第一无机层与所述发光结构直接接触,所述辅助层位于所述第一无机层与所述封装有机层之间。
在一个实施例中,所述辅助层位于所述绝缘材料结构中的相邻有机层与无机层之间,所述辅助层在所述衬底上的正投影覆盖所述颜色转换层。
在一个实施例中,所述辅助层的折射率小于或等于1.4。
在一个实施例中,与所述辅助层直接接触的有机层设有镂空,所述辅助层位于所述镂空内。
在一个实施例中,与所述辅助层直接接触的有机层为粘结层,所述粘结层与所述颜色转换层直接接触。
在一个实施例中,所述辅助层在所述衬底上的正投影与所述遮光部在所述衬底上的正投影重合。
在一个实施例中,所述辅助层的厚度与所述粘结层的厚度相同。
在一个实施例中,所述辅助层的材料为氮气或惰性气体。
在一个实施例中,所述辅助层的材料包括金属氟化物、以及取代或未取代的聚丙烯酸酯的至少一种。
在一个实施例中,所述辅助层包括光子晶体结构,所述光子晶体结构包括多个阵列排布的柱状结构。
在一个实施例中,相邻两个所述柱状结构的中心之间的第一距离的范 围为100nm~300nm。
在一个实施例中,相邻两个柱状结构之间的最小距离为第二距离,所述第一距离和所述第二距离的差值与所述第一距离的比值范围为0.2~0.8。
在一个实施例中,所述颜色转换部与所述发光结构一一对应,所述颜色转换部在所述衬底上的正投影覆盖所述发光结构在所述衬底上的正投影。
在一个实施例中,所述发光层的各个所述发光结构的发光颜色为蓝色;所述颜色转换部包括红色的颜色转换部、绿色的颜色转换部及透光部,所述红色的颜色转换部包括红色的量子点和光散射粒子,所述绿色的颜色转换部包括绿色的量子点和光散射粒子,所述透光部包括光散射粒子。
在一个实施例中,所述显示面板还包括位于所述颜色转换层背离所述衬底一侧的滤光层,所述滤光层包括黑矩阵和多个滤光部,所述多个滤光部与所述发光结构一一对应,所述遮光部在所述衬底上的正投影与所述黑矩阵在所述衬底上的正投影重合。
根据本申请实施例的第二方面,提供了一种显示装置,所述显示装置包括上述的显示面板。
本申请实施例所达到的主要技术效果是:
本申请实施例提供的显示面板及显示装置,辅助层在衬底上的正投影覆盖遮光部在衬底上的正投影,且辅助层与绝缘材料结构中的相邻有机层与无机层分别直接接触,且辅助层的折射率均小于与其直接接触的有机层的折射率及与其直接接触的无机层的折射率,则发光结构发出的光线中,至少部分出射角度较大的光线在辅助层及与辅助层相邻且位于辅助层靠近衬底一侧的膜层之间的界面处发生全反射,从而使发光结构发出的较大出射角度的光线中进入到相邻发光结构对应的颜色转换部的光线的量减小,有助于避免相邻发光结构之间的串色问题,提升发光结构的显示亮度,提升显示面板的色域。
附图说明
图1是本申请一示例性实施例提供的显示面板的立体结构示意图;
图2是本申请一示例性实施例提供的显示面板的结构示意图;
图3是本申请另一示例性实施例提供的显示面板的结构示意图;
图4是图2或图3所示的显示面板沿AA剖开得到的一种剖视图;
图5是图2或图3所示的显示面板沿AA剖开得到的另一种剖视图;
图6是本申请一示例性实施例提供的发光结构发射光线与量子点吸收光线的光线强度与光线波长的关系曲线的对比图;
图7是本申请一示例性实施例提供的光子晶体结构的俯视图;
图8是图7所示的光子晶体结构沿BB剖开得到的剖视图;
图9是本申请一示例性实施例提供的发光结构发出的蓝光的光线强度与发光角度的关系曲线图;
图10是本申请一示例性实施例提供的显示面板的色域与漏光比例的关系曲线图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施例并不代表与本申请相一致的所有实施例。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解, 本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本申请实施例提供了一种显示面板及显示装置。下面结合附图,对本申请实施例中的显示面板及显示装置进行详细说明。在不冲突的情况下,下述的实施例中的特征可以相互补充或相互组合。
本申请实施例提供了一种显示面板。参见图1至图5,所述显示面板包括衬底10、发光层20、绝缘材料结构30、颜色转换层40及辅助层60。
其中,发光层20位于所述衬底10上,所述发光层20包括多个间隔排布的发光结构201。所述绝缘材料结构30位于所述发光层20背离所述衬底10的一侧。所述绝缘材料结构30包括交替设置的有机层及无机层。所述颜色转换层40位于所述绝缘材料结构30背离所述衬底10的一侧,所述颜色转换层40包括多个颜色转换部41及与位于多个所述颜色转换部41之间的遮光部42。遮光部42设有多个开孔,颜色转换部41位于遮光部42的开孔内。
所述辅助层60在所述衬底10上的正投影覆盖所述遮光部42在所述衬底10上的正投影;所述辅助层60与所述绝缘材料结构30中的相邻有机层与无机层分别直接接触,且所述辅助层60的折射率均小于与其直接接触的有机层的折射率及与其直接接触的无机层的折射率。
本申请实施例提供的显示面板,辅助层60在衬底10上的正投影覆盖遮光部42在衬底10上的正投影,且辅助层60与绝缘材料结构30中的相邻 有机层与无机层分别直接接触,且辅助层60的折射率均小于与其直接接触的有机层的折射率及与其直接接触的无机层的折射率,则发光结构201发出的光线中,至少部分出射角度较大的光线在辅助层60及与辅助层相邻且位于辅助层靠近衬底一侧的膜层之间的界面处发生全反射,从而使发光结构201发出的较大出射角度的光线中进入到相邻发光结构201对应的颜色转换部的光线的量减小,有助于避免相邻发光结构之间的串色问题,提升发光结构的显示亮度,提升显示面板的色域。
在本申请实施例中,绝缘材料结构30中相邻的有机层和无机层指的是,该有机层与无机层直接接触,或者该有机层与无机层之间有其他膜层,但该膜层不属于绝缘材料结构30。绝缘材料结构30包括交替设置的有机层及无机层指的是,绝缘材料结构30中一层有机层与一层无机层交替设置,相邻两个有机层之间设有一个无机层,相邻两个无机层之间设有一个有机层。
在一个实施例中,衬底10为刚性衬底,刚性衬底的材料可以是玻璃、金属等。在其他实施例中,衬底10可以是柔性衬底,柔性衬底的材料可以包括PI(聚酰亚胺)、PET(聚对苯二甲酸乙二醇酯)及PC(聚碳酸酯)中的一种或多种。
在一个实施例中,显示基板还包括位于衬底10与发光层20之间的像素驱动电路层。像素驱动电路层包括用于驱动发光结构的像素驱动电路。像素电路包括薄膜晶体管90。薄膜晶体管90包括有源层91、位于有源层91背离衬底10一侧的栅电极92、第一极93和第二极94。第一极93和第二极94中的一个为源电极,另一个为漏电极。像素驱动电路还可包括电容(未图示)。
像素驱动电路层还包括栅极绝缘层81、层间介质层82和平坦化层83。栅极绝缘层81位于有源层91与栅电极92之间。层间介质层82位于栅电极92背离衬底10的一侧,第一极93与第二极94通过穿透栅极绝缘层81与层间介质层82的通孔与有源层91电连接。平坦化层83位于第一极93及第二极94背离衬底10的一侧,覆盖露出的层间介质层82。
在一个实施例中,发光层20包括多个间隔排布的发光结构201,发光层20的各个发光结构201的发光颜色可相同,例如发光层20的各发光结构201的发光颜色可均为蓝色。发光层20发出的相同颜色的光线在经过颜色转换层时转换为多种颜色的光线,从而实现显示面板的彩色显示。
在一个实施例中,发光结构201位于平坦化层83背离衬底10的一侧。发光结构201包括第一电极21、位于第一电极21背离衬底10一侧的有机发光材料层22、及位于有机发光材料层22背离衬底10一侧的第二电极23,第一电极21与第二电极23分别与有机发光材料层22直接接触。第一电极21可以是阳极,第二电极23可以是阴极。各个发光结构201的第二电极23可为连成一片的整面的电极。第一电极21通过穿透平坦化层83的通孔与薄膜晶体管90的第一极93电连接。
在一些实施例中,显示面板100为顶发光结构,第一电极21为反射电极,第二电极23为透光电极。
在一个实施例中,显示面板100还包括像素限定层84,像素限定层84设有多个像素开口。像素开口可与发光结构201一一对应。第一电极21位于像素限定层84下方,像素开口暴露对应的发光结构201的第一电极21的一部分。发光结构201的有机发光材料层22的至少部分位于对应的像素开口内。
在一个实施例中,颜色转换层40包括多个颜色转换部41。参见图2及图3,所述颜色转换部41包括红色的颜色转换部R、绿色的颜色转换部G及透光部B。红色的颜色转换部R将发光结构201发出的蓝色光线转换为红色光线,绿色的颜色转换部G将发光结构201发出的蓝色光线转换为绿色光线,透光部B可透过发光结构201发出的蓝色的光线。图2及图3仅为多个颜色转换部41的两种示例性排布方式,在其他实施例中,颜色转换层40的多个颜色转换部41的排布方式可不同于图2及图3。
在一个实施例中,所述颜色转换部41与所述发光结构201一一对应, 所述颜色转换部41在所述衬底10上的正投影覆盖所述发光结构201在所述衬底10上的正投影。如此设置,发光结构201发出的光线中入射至对应的颜色转换部41的量较多,有助于提升光线的利用率。
其中,所述颜色转换部41在所述衬底10上的正投影覆盖所述发光结构201在所述衬底10上的正投影,指的是,所述颜色转换部41在所述衬底10上的正投影的面积大于对应的发光结构201在衬底10上的正投影的面积,或者,所述颜色转换部41在所述衬底10上的正投影与对应的发光结构201在衬底10上的正投影大致重合。优选的,所述颜色转换部41在所述衬底10上的正投影的面积大于对应的发光结构201在衬底10上的正投影的面积,以使发光结构201发出的光线中更多光线可入射至对应的颜色转换部41。
在一个实施例中,所述红色的颜色转换部包括红色的量子点和光散射粒子,光散射粒子分散在绿色的量子点中;所述绿色的颜色转换部包括绿色的量子点和光散射粒子,光散射粒子分散在绿色的量子点中;所述透光部包括透光材料及分散在透光材料中的光散射粒子。透明材料的透光率可较高,例如可大于80%。红色的量子点可将发光结构201发出的蓝色光线转换为红色光线,绿色的量子点可将发光结构201发出的蓝色光线转换为绿色光线。透光部不改变入射的光的颜色。通过设置颜色转换部包括光散射粒子,可使得光线通过颜色转换部出射时分布更加均匀,有利于提升显示面板显示亮度的均匀性。
进一步地,各所述颜色转换部包括多个光散射粒子,颜色转换部的多个光散射粒子均匀分布。如此,可进一步提升显示面板显示亮度的均匀性。
在一个实施例中,所述显示面板100还包括位于所述颜色转换层40背离所述衬底10一侧的滤光层70,所述滤光层70包括黑矩阵72和多个滤光部71,黑矩阵72位于相邻滤光部71之间。所述多个滤光部71与所述发光结构201一一对应,所述遮光部42在所述衬底10上的正投影与所述黑矩阵72在所述衬底10上的正投影重合。遮光部42在纵向上(显示面板的膜层叠层方 向上)的截面靠近衬底一侧的宽度大于背离衬底一侧的宽度,遮光部42在衬底10上的正投影与黑矩阵72在衬底10上的正投影重合指的是,遮光部42在纵向上的截面靠近衬底一侧的宽度与对应的黑矩阵72在在纵向上的截面的宽度大致相同。如此设置,通过颜色转换部41出射的光线几乎可全部通过对应的滤光部71出射。
在一些实施例中,所述滤光层70的多个滤光部71包括红色的滤光部、绿色的滤光部和蓝色的滤光部。其中,红色的滤光部在衬底10上的正投影与红色的颜色转换部在衬底10上的正投影大致重合,绿色的滤光部在衬底10上的正投影与绿色的颜色转换部在衬底10上的正投影大致重合,蓝色的滤光部在衬底10上的正投影与透光部在衬底10上的正投影大致重合。红色的滤光部可将入射的光线中非红色的光线滤除,绿色的滤光部可将入射的光线中非绿色的光线滤除,蓝色的滤光部可将入射的光线中非蓝色的光线滤除。因而,滤光层70的设置可提升出射的光线的纯度。
图6为发光结构发射光线与量子点吸收光线的光线强度与光线波长的关系曲线的对比图。其中,曲线a代表发光结构发出的蓝光光强与光线波长的关系曲线,曲线b代表绿色的量子点吸收的蓝光光强与光线波长的关系曲线,曲线c代表红色的量子点吸收的蓝光光强与光线波长的关系曲线。由图6可以看出,发光结构发出的蓝光光强大于绿色的量子点吸收的强度,且发光结构发出的蓝光光强大于红色的量子点吸收的强度。滤光层70的设置,可将不能被量子点吸收的蓝光滤除,提升出射的光线的纯度。
在一个实施例中,再次参见图4及图5,所述绝缘材料结构30包括封装层35,所述封装层35包括至少两个无机层和至少一个有机层。封装层35的无机层及有机层交替排布,且封装层中与衬底距离最小的膜层为无机层,与衬底距离最大的膜层为无机层。无机层的材料可以是氧化硅、氮化硅或氮氧化硅。有机层的材料例如为丙烯酸类材料,有机层可包裹位于该有机层靠近衬底一侧的无机层表面的颗粒,避免后续形成的无机层出现破膜风险。
在一个实施例中,所述绝缘材料结构30还包括位于封装层35背离衬底10一侧的粘结层34及位于滤光层70背离衬底10一侧的基板50。基板50为透光率较大的基板。
显示面板的各个膜层可分为显示模组和颜色转换模组,显示模组包括衬底10、像素驱动电路层、发光层20及封装层35,颜色转换模组包括基板50、滤光层70、颜色转换层40和粘结层34。辅助层60可位于显示模组,也可位于颜色转换模组。
在制备显示面板的过程中,首先形成显示模组和颜色转换模组。显示模板的制备过程为:在衬底10上依次形成像素驱动电路层、发光层20及封装层35;颜色转换模组的制备过程为:在基板50上依次形成滤光层70、颜色转换层40和粘结层34。辅助层60在制备显示模组的过程中形成,或者在制备颜色转换模组的过程中形成。之后,将颜色转换模组与显示模板进行对盒,使二者通过粘结层34粘结在一起。
在制备颜色转换模组的过程中,在形成颜色转换层40时,首先形成遮光部42,随后再形成颜色转换部。其中,遮光部42的形成过程如下:首先形成整面的遮光材料层,随后对遮光材料层进行刻蚀,形成遮光部42。由于对遮光材料层的厚度较大,在刻蚀的过程中,遮光部42的侧面靠近基板的一侧向内收缩,使得遮光部42在横向(垂直于膜层叠层方向)上的尺寸由靠近所述基板的一侧至背离基板的一侧逐渐增大。
在一个实施例中,所述辅助层60位于所述绝缘材料结构30中的相邻有机层与无机层之间,所述辅助层60在所述衬底10上的正投影覆盖所述颜色转换层40。如此设置,辅助层60无需进行图形化处理,有助于简化制备工艺。
在一个实施例中,所述辅助层60位于所述封装层35的所述有机层与位于该有机层靠近所述衬底10一侧的无机层之间。由于有机层的折射率小于 无机层的折射率,若光线由无机层直接入射至该无机层与相邻的有机层之间的界面时,光线的出射角度增大,光线的横向(平行于衬底的延伸方向)传输距离增大,会导致显示面板的串色程度增大。将辅助层60设置在有机层及该有机层靠近衬底10一侧的无机层之间,从无机层出射的光线中,部分较大出射角度的光线在无机层与辅助层之间的界面发生全反射,也即是部分出射角度较大的光线入射至有机层之前已经发生全反射,可减小进入到有机层中的光线的量,进而可减小发生串色的光线的量。
在一个实施例中,封装层35可包括一个有机层或两个及两个以上有机层。封装层35包括两个及两个以上有机层时,其中一个有机层靠近衬底一侧设有辅助层60,或者各有机层靠近衬底的一侧均设有辅助层60。
在一个实施例中,再次参见图4,封装层35包括三个膜层,分别为第一无机层31、位于第一无机层31背离衬底10一侧的封装有机层32及位于封装有机层32背离衬底10一侧的第二无机层33。所述第一无机层31与发光结构201直接接触,所述辅助层60位于第一无机层31与封装有机层32之间。如此设置,发光结构201发出的较大角度的出射光在第一无机层31与辅助层60之间的界面发生全反射,而不会进入到折射率较低且厚度较大的封装有机层中,这样可以缩小出射角度较大的光线的横向传输距离,更有效地避免相邻发光结构的串色,提升显示面板的色域;由于出射角度较大的光线的横向传输距离缩小,则可在保证相邻发光结构的串色程度一致的前提下,减小遮光部42与黑矩阵72的宽度,进而可增大像素开口的开口率,增大显示面板的有效显示面积。
在一个示例性实施例中,第一无机层31的材料为氮氧化硅,第二无机层33的材料为氮化硅。
在一个实施例中,所述辅助层60的折射率小于或等于1.4。如此设置,可有效减小相邻发光结构201的串色程度。在一些实施例中,辅助层60的折射率也可略大于1.4,例如辅助层60的折射率的范围可为1.35~1.45。
在一些实施例中,所述辅助层60的材料包括金属氟化物、以及取代或未取代的聚丙烯酸酯的至少一种。辅助层60的材料为上述材料时,可使得辅助层60的折射率较小,有效避免相邻发光结构之间的串色。金属氟化物例如为氟化镁。取代或未取代的聚丙烯酸酯例如为聚(丙烯酸1,1,1,3,3,3-六氟异丙脂)(折射率为1.375)、聚(2,2,3,3,4,4,4-七氟丁基丙烯酸酯)(折射率为1.377)、聚(2,2,3,3,4,4,4-七氟丁基甲基丙烯酸酯)(折射率为1.383)、聚(2,2,3,3,3-五氟丙基丙烯酸酯)(折射率为1.389)、聚(1,1,1,3,3,3-六氟异丙基甲基丙烯酸酯)(折射率为1.390)、聚(2,2,3,4,4,4-六氟丁基丙烯酸酯)(折射率为1.394)等。
进一步地,所述辅助层60的材料为金属氟化物时,所述辅助层60的厚度范围为5nm~20nm。辅助层60的厚度例如为5nm、10nm、15nm、20nm等。
进一步地,所述辅助层60的材料为取代或未取代的聚丙烯酸酯时,所述辅助层60的厚度范围为2μm~4μm。辅助层60的厚度例如为2μm、2.5μm、3μm、3.5μm、4μm等。
在另一实施例中,参见图7及图8,所述辅助层60的材料包括光子晶体结构,所述光子晶体结构包括多个阵列排布的柱状结构61。多个柱状结构61呈周期性排布。相邻两个柱状结构61的中心之间的距离为第一距离,相邻两个柱状结构之间的最小距离为第二距离。
光子晶体结构的占空比可采用如下公式(1)计算:
f=(d 1-d 2)/d 1      (1)
其中,f代表光子晶体的占空比,d 1代表第一距离,d 2代表第二距离。
光子晶体结构的等效折射率可采用如下公式(2)计算:
Figure PCTCN2021101490-appb-000001
其中,n代表光子晶体结构的等效折射率,ε 1代表柱状结构61的介电常数,ε 2代表相邻柱状结构61之间的气体的介电常数。相邻柱状结构61之间的气体例如为氮气或者空气,其介电常数约为1。
在一些实施例中,相邻两个所述柱状结构61的中心之间的第一距离的范围为100nm~300nm。如此设置,既可避免相邻两个柱状结构61的中心之间的第一距离太小,导致工艺制作难度较大,也可避免相邻两个柱状结构61的中心之间的第一距离太大,导致光线通过光子晶体结构时产生衍射。在一些示例性实施例中,相邻两个柱状结构61的中心之间的第一距离例如为100nm、150nm、200nm、250nm、300nm等。
在一些实施例中,光子晶体结构不同位置处的第一距离与第二距离相差较小,以使得光子晶体结构不同位置处的等效折射率比较接近。
在一些实施例中,所述第一距离和所述第二距离的差值与所述第一距离的比值范围为0.2~0.8。如此设置,光子晶体结构中多个柱状结构的分布比较均匀,光子晶体结构不同位置的等效折射率差别较小,更有助于提升显示面板不同区域显示亮度的均匀性。在一些示例性实施例中,所述第一距离和所述第二距离的差值与所述第一距离的比值为0.2、0.3、0.4、0.5、0.6、0.7、0.8等。
在一个示例性实施例中,柱状结构61的材料为SiOx,其折射率约为1.5,光子晶体结构的占空比为0.5,采用上述计算公式(2)计算得到光子晶体结构的等效折射率为1.27。可知,光子晶体结构的等效折射率较小,可减小相邻发光结构201的串色程度。
在一个实施例中,参见图4,所述绝缘材料结构30包括依次叠加设置的第一无机层31、封装有机层32、第二无机层33及粘结层34,辅助层60位于第一无机层31与封装有机层32之间。
在一个示例性实施例中,第一无机层31的折射率n 1=1.8,厚度d 1=1μm; 封装有机层32的折射率n 2=1.5,厚度d 2=8μm;第二无机层33的折射率n 3=1.9,厚度d 3=0.6μm;粘结层34的折射率n 4=1.5,厚度d 4=8μm。相邻两个像素开口背离衬底10的一侧之前的距离为W 1,遮光部42朝向衬底10的一侧的宽度为W 2,像素开口背离衬底10一侧的一个边缘与对应的遮光部42背离该像素开口的边缘之间的距离为W 3,其中像素开口对应的遮光部42指的是与像素开口对应的颜色转换部相邻且靠近像素开口的该边缘的遮光部。
若绝缘材料结构30中不设置辅助层60,发光结构201的边缘发出的光线进入到相邻发光结构201对应的颜色转换部时,该光线入射至第一无机层31的最小入射角度为最小串色角度,最小串色角度为θ 1,该光线入射至封装有机层32的入射角度为θ 2,该光线入射至第二无机层33的入射角度为θ 3,该光线入射至粘结层34的入射角度为θ 4,各膜层的折射率、厚度和入射角度、及W 1、W 2、W 3满足如下关系式(3)及公式(4):
n 1sinθ 1=n 2sinθ 2=n 3sinθ 3=n 4sinθ 4      (3)
Figure PCTCN2021101490-appb-000002
由上述公式(4)可知,在W 1、d 1、d 2、d 3及d 4一定时,θ 1越小,W 2越小,也即是遮光部42朝向衬底10的一侧的宽度越小,显示面板的像素开口率越大。
发光结构201发出的光线在出射过程中,部分光线在第一无机层31与封装有机层32之间的界面发生全反射。通过上述公式(3)及公式(4)计算得到全反射临界角为56°,也即是发光结构的边缘部分发出的光线中,从第一无机层31出射的光线中出射角度大于56°的光线均不能从第一无机层31出射。但是由于封装无机层32的折射率较低,进入到封装有机层32中的光线的出射角度的范围变为0°~90°,从封装有机层32出射的部分光线最终进入到相邻发光结构201对应的颜色转换部中,造成相邻发光结构的串色,即使增大遮光部42的宽度,仍会有部分光线进入到相邻发光结构201中,并且,增 大遮光部42的宽度会导致像素开口率减小。因此不采用增大遮光部的宽度方式来解决相邻发光结构201串色的问题。
图4所示的实施例中,第一无机层31与封装有机层32之间设有辅助层60,第一无机层31、封装有机层32及辅助层60的折射率与光线入射角的关系满足如下关系式(5):
n 1sinθ 1=n 2sinθ 2=n 5sinθ 5         (5)
其中,θ 5代表光线入射至辅助层60的入射角度,n 5代表辅助层60的折射率。
当θ 5=90°时,由公式(5)可推导得到如下公式(6)及公式(7):
Figure PCTCN2021101490-appb-000003
Figure PCTCN2021101490-appb-000004
由公式(6)及公式(7)可知,辅助层60的折射率决定了能够入射至封装有机层32的光线的最大出射角度。由于辅助层60的折射率较小,使得能够入射至封装有机层32的光线的最大出射角度较小,也即是,辅助层60的设置可将从第一无机层31出射的光线中出射角度较大的光线尽可能多地锁在第一无机层31与辅助层60的界面内,避免这些光线进入到相邻发光结构201对应的颜色转换部中。
在一个示例性实施例中,所述辅助层60的材料为MgF 2,折射率为1.38,入射至辅助层60的光线的全反射临界角为50°,也即是从第一无机层31出射的光线中出射角度大于50°均不能从第一无机层31出射。与不设置辅助层60的方案相比,辅助层60可减小第一无机层31出射的光线的出射角度,有助于减小相邻发光结构201之间的串色程度。
图9为发光结构发出的蓝光的光线强度与发光角度的关系曲线图。从 图9可以看出,发光角度介于50°与56°之间的光线的强度较大,辅助层60的设置,可防止这部分光线入射到相邻的发光结构对应的颜色转换部,有效降低相邻发光结构201之间的串色程度。
通过仿真分析不同漏光比例下器件色域的变化,得到图10所示的曲线。其中漏光比例指的是发光结构发出的光线中入射至相邻发光结构的总能量与发光结构出射的光线的总能量的比值。由图10可知,为了提升器件色域,需要降低漏光比例。通过降低发光结构发出的光线中入射至相邻发光结构对应的颜色转换部的总能量,可降低漏光比例。图4所示的实施例中,通过设置辅助层,可有效减小漏光比例,提升器件色域。
在一个示例性实施例中,显示面板包括辅助层60,且辅助层60位于第一无机层31与封装有机层32之间,辅助层60的材料为MgF2,折射率为1.38,入射至辅助层60的光线的全反射临界角为50°。在遮光部的宽度不同时,显示面板的最小串色角度、串色比例(发光结构发出的光线中发生串色的光线的量与其发出光线的总量的比值)及遮光部42的宽度如下表1所示。
表1
最小串色角度 遮光部的宽度/μm 串色比例
25° 9.2 24%
35° 14.9 11%
45° 25.6 5.5%
若显示面板中未设置辅助层60,封装有机层32的折射率为1.5,则入射至封装有机层32的光线的全反射临界角为56°。在遮光部的宽度不同时,显示面板的串色角度、串色比例及遮光部42的宽度如下表2所示。
表2
串色角度 遮光部的宽度/μm 串色比例
25° 9.2 29%
35° 14.9 19%
45° 25.6 12%
对比表1及表2可以看出,通过设置辅助层60,可有效降低串色比例,因而可提升器件色域。
在再一个实施例中,参见图5,与所述辅助层60与直接接触的有机层设有镂空,所述辅助层60位于所述镂空内。所述辅助层60包括多个辅助部62,各辅助部62位于该有机层的镂空内。如此设置,辅助层60的不会使得显示面板的厚度增大。
在一些实施例中,与所述辅助层60直接接触的有机层为粘结层34,所述粘结层34与所述颜色转换层40直接接触。粘结层34设有镂空,辅助层的多个辅助部62设置在粘结层的镂空内。
在一个实施例中,所述辅助层60在所述衬底10上的正投影与所述遮光部42在所述衬底10上的正投影重合。辅助层60在衬底10上的正投影与遮光部42在衬底10上的正投影重合,指的是辅助层60在衬底10上的正投影与遮光部42在衬底10上的正投影大致重合。遮光部42靠近衬底10一侧的宽度大于遮光部42背离衬底10一侧的宽度,遮光部42靠近衬底10一侧的宽度等于辅助层60在衬底10上的正投影。如此设置,既可避免辅助层60在衬底10上的正投影的面积小于遮光部42在衬底10上的正投影的面积,而导致一部分发光结构发出的部分光线进入到相邻发光结构对应的颜色转换部,导致串色;又可避免辅助层60在衬底10上的正投影的面积大于遮光部42在衬底10上的正投影的面积,而导致显示面板的有效发光面积减小。
在一个实施例中,所述辅助层60的厚度和所述粘结层34的厚度相同。 在其他实施例中,辅助层60的厚度与粘结层34的厚度可不同。
在一个实施例中,所述辅助层60的材料为氮气或惰性气体。在制备得到颜色转换模组与显示模组后,将颜色转换模组与显示模组粘结在一起时,为了保护颜色转换模组与显示模组,防止空气中的水氧入侵,一般在氮气或惰性气体环境下将颜色转换模组与显示模组粘结在一起,在该过程中氮气或惰性气体会进入到粘结层34的镂空内,从而得到辅助层60。如此,辅助层60的制备不会使得工艺复杂,并且氮气或惰性气体的折射较低,更有助于降低显示面板的串色程度。
在另一些实施例中,所述辅助层的材料包括金属氟化物、以及取代或未取代的聚丙烯酸酯的至少一种。在制备颜色转换模组的过程中,形成滤光层70后,可先形成辅助层,再形成粘结层;也可先形成粘结层,再形成辅助层。
在一个示例性实施例中,发光结构201的边缘发出的光线进入到相邻发光结构201对应的颜色转换部时,该光线入射至第一无机层31的最小入射角度最小串色角度,最小串色角度为θ 1,该光线入射至封装有机层32的入射角度为θ 2,该光线入射至第二无机层33的入射角度为θ 3,该光线入射至辅助层60的入射角度为θ 5;第一无机层31的折射率为n 1,厚度为d 1;封装有机层32的折射率为n 2,厚度为d 2;第二无机层33的折射率为n 4,厚度为d 3;辅助层60的折射率为n 5;相邻两个像素开口背离衬底10的一侧之前的距离为W 1,遮光部42朝向衬底10的一侧的宽度为W 2,像素开口背离衬底10一侧的一个边缘与对应的遮光部42背离该像素开口的边缘之间的距离为W 3,其中像素开口对应的遮光部42指的是与像素开口对应的颜色转换部相邻且靠近像素开口的该边缘的遮光部。光线在入射至辅助层60时发生全反射,各膜层的折射率和厚度及光线的入射角度及满足如下关系式(8)及公式(9):
n 1sinθ 1=n 2sinθ 2=n 3sinθ 3=n 5sinθ 5    (8)
Figure PCTCN2021101490-appb-000005
第一无机层31的折射率n1=1.8,封装有机层32的折射率n2=1.5,θ 2=90°时,由公式(8)可以计算出,θ 1=56°。也即是,发光结构发出的光线中,出光角度大于56°的光会在第一无机层31与封装有机层32之间的界面发生全发射。
第二无机层33的折射率n 3=1.9,辅助层60为氮气时其折射率n 5=1,由公式(8)可以计算出,可计算出光线在第二无机层33与辅助层60之间的界面发生全反射的临界角度为31.7°,也即是θ 5=31.7°。θ 5=31.7°时,由公式(8)计算得到θ 1=33.7°。
因此,当发光结构的边缘出射的光线的出射角度在33.7°~56°的范围内时,可避免相邻发光结构之间的串色。但通过第一无机层31入射至封装有机层32的光线的角度的范围变为0°~90°。因此,无论遮光部的宽度多大,都无法防止相邻发光结构的串色。但在θ 1小于一定值时,相邻发光结构的串色对显示面板的色域影响较小。例如显示面板的色域的值在理想显示面板色域的值的±5%范围内时,认为显示面板的色域满足要求。其中理想显示面板指的是相邻发光结构之前完全不串色的显示面板。
当W 1=11.2μm,W 2=20μm时,通过对不同结构的显示面板进行仿真,得到的结果如表3所示。
表3
Figure PCTCN2021101490-appb-000006
通过表3可以看出,通过在粘结层的镂空内设置辅助部,可在不损失蓝光的前提下显示降低相邻像素之间的串色程度,有效提升显示面板的色域,使显示面板的色域满足要求。
本申请实施例还提了一种显示装置,所述显示装置包括上述任一实施例所述的显示面板。
在一个实施例中,所述显示装置还包括驱动器及电源电路,驱动器用于提供驱动所述发光结构发光的驱动信号,电源电路用于为所述显示面板供电。
在一个实施例中,所述显示装置还包括壳体,所述显示面板设置在所述壳体内。
本申请实施例提供的显示装置例如可以为手机、平板电脑、电视机、笔记本电脑、车载设备等任何具有显示功能的设备。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精 确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (18)

  1. 一种显示面板,其特征在于,所述显示面板包括:
    衬底;
    位于所述衬底上的发光层,所述发光层包括多个间隔排布的发光结构;
    绝缘材料结构,位于所述发光层背离所述衬底的一侧;所述绝缘材料结构包括交替设置的有机层及无机层;
    颜色转换层,位于所述绝缘材料结构背离所述衬底的一侧,所述颜色转换层包括多个颜色转换部及与位于多个所述颜色转换部之间的遮光部;
    辅助层,所述辅助层在所述衬底上的正投影覆盖所述遮光部在所述衬底上的正投影;所述辅助层与所述绝缘材料结构中的相邻有机层与无机层分别直接接触,且所述辅助层的折射率均小于与其直接接触的有机层的折射率及与其直接接触的无机层的折射率。
  2. 根据权利要求1所述的显示面板,其特征在于,所述绝缘材料结构包括封装层,所述封装层包括至少两个无机层和至少一个有机层,所述辅助层位于所述封装层的所述有机层与设置在该有机层靠近所述衬底一侧的无机层之间。
  3. 根据权利要求2所述的显示面板,其特征在于,所述封装层包括第一无机层、位于所述第一无机层上的封装有机层及位于所述封装有机层上的第二无机层,所述第一无机层与所述发光结构直接接触,所述辅助层位于所述第一无机层与所述封装有机层之间。
  4. 根据权利要求1所述的显示面板,其特征在于,所述辅助层位于所述绝缘材料结构中的相邻有机层与无机层之间,所述辅助层在所述衬底上的正投影覆盖所述颜色转换层。
  5. 根据权利要求1至4任一项所述的显示面板,其特征在于,所述 辅助层的折射率小于或等于1.4。
  6. 根据权利要求1所述的显示面板,其特征在于,与所述辅助层直接接触的有机层设有镂空,所述辅助层位于所述镂空内。
  7. 根据权利要求6所述的显示面板,其特征在于,与所述辅助层直接接触的有机层为粘结层,所述粘结层与所述颜色转换层直接接触。
  8. 根据权利要求6所述的显示面板,其特征在于,所述辅助层在所述衬底上的正投影与所述遮光部在所述衬底上的正投影重合。
  9. 根据权利要求7所述的显示面板,其特征在于,所述辅助层的厚度与所述粘结层的厚度相同。
  10. 根据权利要求6至9任一项所述的显示面板,其特征在于,所述辅助层的材料为氮气或惰性气体。
  11. 根据权利要求1至9任一项所述的显示面板,其特征在于,所述辅助层的材料包括金属氟化物、以及取代或未取代的聚丙烯酸酯的至少一种。
  12. 根据权利要求1至9任一项所述的显示面板,其特征在于,所述辅助层包括光子晶体结构,所述光子晶体结构包括多个阵列排布的柱状结构。
  13. 根据权利要求12所述的显示面板,其特征在于,相邻两个所述柱状结构的中心之间的第一距离的范围为100nm~300nm。
  14. 根据权利要求13所述的显示面板,其特征在于,相邻两个柱状结构之间的最小距离为第二距离,所述第一距离和所述第二距离的差值与所述第一距离的比值范围为0.2~0.8。
  15. 根据权利要求1至14任一项所述的显示面板,其特征在于,所述颜色转换部与所述发光结构一一对应,所述颜色转换部在所述衬底上的正投影覆盖所述发光结构在所述衬底上的正投影。
  16. 根据权利要求15所述的显示面板,其特征在于,所述发光层的各个所述发光结构的发光颜色为蓝色;所述颜色转换部包括红色的颜色 转换部、绿色的颜色转换部及透光部,所述红色的颜色转换部包括红色的量子点和光散射粒子,所述绿色的颜色转换部包括绿色的量子点和光散射粒子,所述透光部包括光散射粒子。
  17. 根据权利要求1至16任一项所述的显示面板,其特征在于,所述显示面板还包括位于所述颜色转换层背离所述衬底一侧的滤光层,所述滤光层包括黑矩阵和多个滤光部,所述多个滤光部与所述发光结构一一对应,所述遮光部在所述衬底上的正投影与所述黑矩阵在所述衬底上的正投影重合。
  18. 一种显示装置,其特征在于,所述显示装置包括权利要求1至17任一项所述的显示面板。
PCT/CN2021/101490 2021-06-22 2021-06-22 显示面板及显示装置 WO2022266837A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/101490 WO2022266837A1 (zh) 2021-06-22 2021-06-22 显示面板及显示装置
US17/795,074 US20240215372A1 (en) 2021-06-22 2021-06-22 Display panels and display apparatuses
CN202180001591.2A CN115943751A (zh) 2021-06-22 2021-06-22 显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101490 WO2022266837A1 (zh) 2021-06-22 2021-06-22 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2022266837A1 true WO2022266837A1 (zh) 2022-12-29

Family

ID=84543828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101490 WO2022266837A1 (zh) 2021-06-22 2021-06-22 显示面板及显示装置

Country Status (3)

Country Link
US (1) US20240215372A1 (zh)
CN (1) CN115943751A (zh)
WO (1) WO2022266837A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024181643A1 (ko) * 2023-03-02 2024-09-06 삼성전자주식회사 디스플레이 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070267973A1 (en) * 2006-05-16 2007-11-22 Min Chul Suh Organic light emitting display device and method for manufacturing the same
CN106129266A (zh) * 2015-05-06 2016-11-16 三星显示有限公司 有机发光二极管显示器
CN107591493A (zh) * 2016-07-06 2018-01-16 三星显示有限公司 有机发光二极管显示装置
CN107845735A (zh) * 2016-09-20 2018-03-27 三星显示有限公司 包括薄膜包封层的有机发光二极管显示装置
CN112002728A (zh) * 2019-05-27 2020-11-27 三星显示有限公司 显示装置
CN112736210A (zh) * 2020-12-29 2021-04-30 湖北长江新型显示产业创新中心有限公司 一种显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070267973A1 (en) * 2006-05-16 2007-11-22 Min Chul Suh Organic light emitting display device and method for manufacturing the same
CN106129266A (zh) * 2015-05-06 2016-11-16 三星显示有限公司 有机发光二极管显示器
CN107591493A (zh) * 2016-07-06 2018-01-16 三星显示有限公司 有机发光二极管显示装置
CN107845735A (zh) * 2016-09-20 2018-03-27 三星显示有限公司 包括薄膜包封层的有机发光二极管显示装置
CN112002728A (zh) * 2019-05-27 2020-11-27 三星显示有限公司 显示装置
CN112736210A (zh) * 2020-12-29 2021-04-30 湖北长江新型显示产业创新中心有限公司 一种显示面板及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024181643A1 (ko) * 2023-03-02 2024-09-06 삼성전자주식회사 디스플레이 장치

Also Published As

Publication number Publication date
CN115943751A (zh) 2023-04-07
US20240215372A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
US11832495B2 (en) Display apparatus and manufacturing method therefor
US20220165993A1 (en) Display panel with a display function layer and display device
CN113629208B (zh) 显示面板及显示装置
CN110459581B (zh) 显示面板及显示装置
TWI605288B (zh) 畫素結構與具有此畫素結構的顯示面板
US9170453B2 (en) Liquid crystal display panel including photo conversion layer and liquid crystal display device
WO2023108724A1 (zh) 显示面板及电子装置
CN114846615B (zh) 显示面板及显示装置
KR20220012995A (ko) 색상 변환 어셈블리, 표시 패널 및 표시 장치
US20240040883A1 (en) Display panel
US20240027820A1 (en) Color film substrate, display panel and display device
WO2022266837A1 (zh) 显示面板及显示装置
US11957022B2 (en) Display panel having intra-substrate filler configuration, method of manufacturing such a display panel, and display device
US10185186B2 (en) Ultra-thin liquid crystal display
US11994763B2 (en) Display panel and method of providing the same
US11616213B2 (en) Display panel and display device having light extraction structure
US20230418111A1 (en) Liquid crystal display panel
CN111025742B (zh) 一种显示面板及显示装置
US20240053635A1 (en) Display panel and display device
WO2024026925A1 (zh) 一种液晶显示面板
US10527888B2 (en) Liquid crystal display panel and liquid crystal display device
CN115036342A (zh) 一种显示基板、显示面板
KR20170027264A (ko) 박막 트랜지스터 및 표시 장치
CN108717241A (zh) 一种彩色滤光片、显示面板及显示装置
WO2022236841A1 (zh) 滤色器结构及其制备方法、显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17795074

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.05.2024)