WO2021213027A1 - 一种可产氢的电子雾化装置 - Google Patents

一种可产氢的电子雾化装置 Download PDF

Info

Publication number
WO2021213027A1
WO2021213027A1 PCT/CN2021/079619 CN2021079619W WO2021213027A1 WO 2021213027 A1 WO2021213027 A1 WO 2021213027A1 CN 2021079619 W CN2021079619 W CN 2021079619W WO 2021213027 A1 WO2021213027 A1 WO 2021213027A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
powder
agent
particle size
parts
Prior art date
Application number
PCT/CN2021/079619
Other languages
English (en)
French (fr)
Inventor
周平乐
钟明伟
Original Assignee
杭州氢源素生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州氢源素生物科技有限公司 filed Critical 杭州氢源素生物科技有限公司
Publication of WO2021213027A1 publication Critical patent/WO2021213027A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to the technical field of atomizers, in particular to an electronic atomization device capable of producing hydrogen.
  • hydrogen is the smallest molecule in nature. In recent years, studies have found that hydrogen molecules have clear physiological effects. In 2007, Ohsawa of Japan Medical University reported in Nature Medicine that animals breathing 2% hydrogen gas can significantly improve the degree of cerebral ischemia/reperfusion injury. Dole et al. first reported that hydrogen has a physiological effect. After mice breathed in air mixed with hydrogen, it could effectively treat skin squamous cell cancer. The advantage of hydrogen is that its molecular weight is extremely small. At present, the most recognized is its selective antioxidant effect. Hydrogen easily penetrates biological membranes and diffuses to the cytoplasm, mitochondria, and nuclei, where reactive oxygen species are easily generated and DNA is easily damaged. . At the same time, hydrogen may also be a small molecule signal releasing substance, which is responsible for transmitting information in the body, so it has physiological activity.
  • Hydrogen inhalation is mainly inhaled through a ventilator, mask or nasal cannula.
  • the breathing hydrogen is a mixture of hydrogen and air.
  • concentration of inhaled hydrogen must be controlled below the minimum explosion limit of 4%.
  • medical hydrogen ventilators use high-pressure hydrogen cylinders as the hydrogen source, which is provided to patients after decompression. The equipment needs to be operated by professionals.
  • hydrogen is an explosive gas, the degree of danger is high.
  • the hydrogen cylinders and hydrogen ventilators are bulky and difficult to use The area shifted, which caused great troubles for doctors and patients. Therefore, it is particularly important to provide a safe, easy-to-operate, environmentally friendly, and healthy hydrogen supply device for patients and the general public.
  • the purpose of the present invention is to provide an electronic atomization device that can produce hydrogen, which uses the atomization process to generate hydrogen. A large amount of mixing, safe and easy to operate.
  • the electronic atomization device capable of producing hydrogen.
  • the electronic atomization device comprises an atomizer body, an atomizer container arranged in the atomizer body, and a hydrogen generator container arranged inside the outlet of the atomizer body,
  • the atomizing agent container is provided with an atomizing agent
  • the hydrogen generating agent container is provided with a hydrogen generating agent that can contact and react with the atomized atomizing agent to generate hydrogen gas.
  • the electronic atomization device also includes The power supply component in the atomizer body for driving the atomization of the atomizer. After atomization, the atomizer reacts with the hydrogen generator to produce hydrogen gas.
  • the hydrogen gas is inhaled into the human body together with the atomized atomizer, which is safe to operate and avoids the risk of mixing with a large amount of air.
  • the hydrogen generating agent includes at least one of metal powder, metal hydride powder and sodium borohydride powder
  • the atomizing agent includes water, glycerol, and propylene glycol.
  • Metal powder, metal hydride, and sodium borohydride react after contacting with water or alcohol to produce hydrogen gas. The reaction is mild.
  • the hydrogen generating agent also includes a neutralizer and an adsorbent; the weight parts of each component are: 10 to 90 parts of at least one of metal powder, metal hydride powder and sodium borohydride powder, medium 5 ⁇ 60 parts of neutralizer and 5 ⁇ 50 parts of adsorbent.
  • the metal powder is selected from at least one of magnesium, aluminum, and iron with a particle diameter of 0.5 to 1000 ⁇ m;
  • the metal hydride is selected from calcium hydride, lithium hydride, and lithium hydride with a particle diameter of 0.5 to 1000 ⁇ m.
  • At least one of sodium hydride Since the hydroxide produced by the reaction of metal hydride and water is not easily soluble in water, the middle part of the metal hydride particles will not easily participate in the reaction, making it difficult to improve the efficiency of hydrogen production by hydrolysis. After the metal hydride is made into powder, the specific surface area of the metal hydride in contact with water can be increased, and the middle part of the particles can also participate in the hydrogen production reaction, so the efficiency of hydrogen production by hydrolysis can be further improved.
  • the hydrogen generating agent further includes 2 to 5 parts of hydrophilic fumed silica with a particle size of 20-100 nm.
  • Hydrophilic fumed nano-silica has strong hydrophilic properties, can assist in trapping water vapor or water mist, enhance the water-trapping and wetting ability of hydrogen generators, and improve the reaction efficiency of hydrogen-containing compounds.
  • the activity of the hydroxyl groups on the surface of the hydrophilic fumed nano silica is low, which is not enough to react with the hydrogen-containing compound, and the stability of the hydrogen generator is ensured.
  • the hydrogen generating agent is prepared by the following process: firstly pulverize and mix the neutralizer and the adsorbent, then dry, cool, then pulverize and mix with the remaining materials before granulating.
  • the hydrogen generating agent of the present invention can be granulated after being mechanically crushed and uniformly ground in an air atmosphere, and the process is simple and safe.
  • the metal hydride or sodium borohydride is used after being treated by the following process: adding a hydrophilic gas phase with a particle size of 20-100nm to an acetone solution with a polyethylene glycol concentration of 10-40g/L The silica is uniformly dispersed, with a dispersion concentration of 10-25g/L, and then the metal hydride or sodium borohydride is dispersed in an acetone solution with a dispersion concentration of 50-450g/L. After standing, it is evaporated and dissolved, dried, and crushed for processing. The latter metal hydride or sodium borohydride.
  • polyethylene glycol has low reactivity and will not react with hydrogen-containing compounds, but polyethylene glycol has good hydrophilic properties, which helps to enhance the water replenishment capacity of hydrogen-containing compounds in water vapor and water mist. .
  • the inventors found that the stability of the hydrogen generator prepared from the hydrogen-containing compound after the above-mentioned process treatment is also significantly enhanced over a period of time. This may be because polyethylene glycol has a long-chain structure and is fully dissolved in acetone. The long-chain structure of polyethylene glycol wraps around the hydrophilic fumed nano-silica and hydrogen-containing compounds, and synergizes with the three-dimensional network structure of the hydrophilic fumed nano-silica.
  • the neutralizer is at least one of citric acid, oxalic acid, sodium carbonate, sodium bicarbonate, and phosphoric acid solid powder with a particle size of 1 to 500 ⁇ m. Neutralize the alkaline substances produced by the hydrogen production reaction, promote the progress of the reaction and provide a more neutral and safe environment for use.
  • the adsorption material is at least one of diatomaceous earth, molecular sieve, zeolite, activated carbon and foamed carbon solid powder with a particle size of 1 to 500 ⁇ m.
  • the adsorption material acts as a carrier and provides a reaction site, and adsorbs and removes the smell of hydrogen.
  • the atomizing agent also includes flavors and auxiliary preparations.
  • the auxiliary preparations are selected from at least one of nicotine, throat reliever, caramel, honey, and essential oils of traditional Chinese medicine; wherein the weight of each component is : 5-50 parts of water, 10 ⁇ 80 parts of glycerol, 0-40 parts of propylene glycol, 0-20 parts of flavors and 0-20 parts of auxiliary preparations.
  • the essential oils of traditional Chinese medicine are peppermint essential oil and wormwood essential oil.
  • the electronic atomization device of the present invention utilizes the contact reaction of the atomizer and the hydrogen generator to generate hydrogen gas, and can be inhaled into the human body with the atomizer in the atomized state, and is safe to use and easy to operate.
  • the hydrogen generating agent of the present invention can react in a mild state, and can eliminate the alkaline substances generated in the reaction in time.
  • the reaction efficiency is high, and the hydrogen conversion rate is as high as 90% or more.
  • the system is close to neutral and does not pollute the environment.
  • the obtained hydrogen is clean and has no peculiar smell, while the preparation method is simple and the process is simple, which is of great significance for promoting the application of hydrogen in medical and health care.
  • Fig. 1 is a schematic diagram of the structure of the electronic atomization device of the present invention.
  • Fig. 2 is a graph of hydrogen production curves of the hydrogen producing agent in Example 1 in contact with different reaction systems.
  • Fig. 3 is a graph showing hydrogen production curves of the hydrogen producing agent in Example 1 after being exposed to air for different periods of time.
  • the raw materials used in the present invention can be purchased from the market or commonly used in the field.
  • the methods in the following examples are conventional methods in the field.
  • the structure of the electronic atomization device of the present invention is as follows:
  • An electronic atomization device capable of producing hydrogen includes an atomizer body 1, a suction nozzle 2 is arranged at the outlet of the atomizer body, and the inner tail of the atomizer body to the outlet
  • a power supply assembly 6 an atomizing agent container 5, a pneumatic sensor switch 4, and a hydrogen generating agent container 3 are arranged in sequence.
  • the atomizing agent container is provided with an atomizing agent that can be atomized by the energy of the power supply assembly.
  • the atomizing agent in the atomizing agent container is atomized.
  • the pneumatic sensor switch senses the atomized atomizing agent and turns on. The atomizing agent and the hydrogen generating agent contact and react. The hydrogen gas is sucked into the human body from the mouthpiece.
  • the atomizing agent contains water, glycerol and propylene glycol
  • the hydrogen generator contains metal powder, metal hydride or sodium borohydride powder components that can react with water, glycerol, and propylene glycol.
  • the atomizer and hydrogen generator of the electronic atomization device of the present invention are shown in the following embodiments, but are not limited to the following embodiments.
  • the atomizing agent is 10g of water, 50g of glycerol, 35g of propylene glycol, 0.5g of throat soothing agent, 2.5g of peppermint essential oil and 2g of ice cooling agent; the above components are mixed and filled into an atomizing agent container.
  • the hydrogen generator includes 20 g of calcium hydride powder with a particle size of 70 ⁇ m, 45 g of citric acid with a particle size of 200 ⁇ m, and 35 g of diatomaceous earth with a particle size of 100 ⁇ m.
  • the preparation process of the hydrogen generator is as follows: Weigh the formula amount of calcium hydride, citric acid and diatomaceous earth, pulverize and mix the citric acid and diatomaceous earth uniformly, then dry at 60°C, cool and then mix and crush with calcium hydride, then The speed of 500rpm is mixed in the mixer for 10 minutes and then granulated.
  • Example 1 0.10 g of the hydrogen generator of Example 1 was in contact with 20 mL of pure water, 50wt% water+30wt% glycerol+20wt% propylene glycol, 20wt% water+50wt% glycerol+30wt% propylene glycol.
  • For the reaction first measure the volume of hydrogen produced, calculate the amount of hydrogen produced, and then draw the hydrogen production curve of hydrogen production-time, and obtain the hydrogen production curve (- ⁇ -) of the water mist reaction with water, and 50wt% water+30wt
  • the hydrogen production curve (- ⁇ -) of the water mist reaction formed by% glycerol + 20wt% propylene glycol (- ⁇ -) and the hydrogen production curve of the water mist reaction formed by 20wt% water + 50wt% glycerol + 30wt% propylene glycol (- ⁇ - ),as shown in picture 2.
  • the hydrogen generator can react with the water mist formed by the mixed solution of water, water and glycerol and propylene glycol, and the time to reach the maximum hydrogen production is rapid. At the same time, it can be seen that the reaction capacity of the water mist formed by the hydrogen generating agent and water is stronger than the water mist formed by the alcohol-containing solution, the reaction is rapid and the maximum hydrogen production is high.
  • the hydrogen generating agent of Example 1 was exposed for a period of time in a clean environment at 25°C and a relative humidity of 45%, and then 0.1g of the hydrogen generating agent and 20 mL of 50% water + 30% glycerine at a temperature of 20°C were taken.
  • the water mist reaction formed by alcohol + 20% propylene glycol draw the hydrogen production curve under different storage time: exposure to air for 0 days (- ⁇ -:), exposure to air for 2 months (- ⁇ -:), exposure to 4 months in the air (- ⁇ -), 6 months in the air (- ⁇ -), 8 months in the air (- ⁇ -), the results are shown in Figure 3.
  • the atomizing agent is 20g of water, 40g of glycerol, 25g of propylene glycol, 0.5g of throat soothing agent, 2.5g of wormwood essential oil and 2g of ice cooling agent; mix the above components and fill them into an atomizer container;
  • the hydrogen generator includes 20g calcium hydride powder with a particle size of 70 ⁇ m, 45g citric acid with a particle size of 200 ⁇ m and 35g molecular sieve with a particle size of 100 ⁇ m.
  • the molecular sieve has a structural formula of Na 2 O•3(Al 2 O 3 )•5(SiO 2 )•8(H 2 O).
  • the hydrogen generator is prepared by the following process: weigh the formula amount of calcium hydride, citric acid and molecular sieves, pulverize and mix the citric acid and molecular sieves, then dry at 60°C, cool and then mix and crush with calcium hydride, and then run at 500 rpm The speed is mixed in the mixer for 10 minutes and then granulated.
  • the hydrogen generating capacity and storage stability of the hydrogen generating agent prepared in this example are equivalent to those in Example 1.
  • the atomizing agent is 50g of water, 80g of glycerol, 40g of propylene glycol, 2g of essence, 0.5g of throat soothing agent, 2.5g of wormwood essential oil and 2g of caramel; mix the above components and fill it into an atomizer container. ;
  • the hydrogen generator includes 30 g of calcium hydride powder with a particle size of 70 ⁇ m, 55 g of citric acid with a particle size of 200 ⁇ m, and 15 g of diatomaceous earth with a particle size of 100 ⁇ m.
  • the hydrogen generator is prepared by the following process: weighing the formula amount of calcium hydride, citric acid and diatomaceous earth, pulverizing and mixing the citric acid and diatomaceous earth, drying at 60°C, cooling and then mixing and pulverizing with calcium hydride , And then mix in a mixer at 500rpm for 10min and then granulate.
  • the hydrogen generating capacity and storage stability of the hydrogen generating agent prepared in this example are equivalent to those in Example 1.
  • the atomizing agent is 50g of water, 80g of glycerol, 40g of propylene glycol, 2g of essence, 0.5g of throat soothing agent, 2.5g of wormwood essential oil and 2g of honey; mix the above components and fill it into an atomizer container;
  • the hydrogen generating agent includes 20 g of sodium borohydride powder with a particle size of 70 ⁇ m, 45 g of citric acid with a particle size of 200 ⁇ m, and 35 g of diatomaceous earth with a particle size of 100 ⁇ m.
  • the hydrogen generator is prepared by the following process: weighing the formula amount of calcium hydride, citric acid and diatomaceous earth, pulverizing and mixing the citric acid and diatomaceous earth, drying at 60°C, cooling and then mixing with sodium borohydride powder Mix and pulverize, then mix in a mixer at a speed of 500 rpm for 10 minutes and then granulate.
  • the storage stability of the hydrogen generating agent prepared in this example is equivalent to that of Example 1.
  • the hydrogen generating rate at the beginning of the reaction is relatively lower than that of Example 1, but the hydrogen generating capacity in a longer reaction time can reach and exceed Example 1.
  • the atomizing agent is 50g of water, 80g of glycerol, 40g of propylene glycol, 10g of essence, 0.5g of throat soothing agent, 5g of wormwood essential oil and 5g of honey; mix the above components and fill it into an atomizer container;
  • Hydrogen generators include calcium hydride powder with a mass of 35 g and a particle size of 0.5 ⁇ m; citric acid powder with a mass of 30 g and a particle size of 1 ⁇ m; diatomite powder with a mass of 45 g and a particle size of 500 ⁇ m;
  • the atomizing agent is the same as in Example 1;
  • Hydrogen generators include calcium hydride powder with a mass of 90 g and a particle size of 300 ⁇ m; citric acid powder with a mass of 60 g and a particle size of 500 ⁇ m; diatomite powder with a mass of 50 g and a particle size of 500 ⁇ m;
  • the atomizing agent is the same as in Example 1;
  • the hydrogen generator includes calcium hydride powder with a mass of 10 g and a particle size of 0.5 ⁇ m; a citric acid powder with a mass of 5 g and a particle size of 1 ⁇ m; and diatomaceous earth powder with a mass of 5 g and a particle size of 1 ⁇ m.
  • the atomizing agent is the same as in Example 1;
  • the hydrogen generator includes 10 g of magnesium metal powder with a particle size of 0.5 ⁇ m; a mass of citric acid powder of 5 g with a particle size of 1 ⁇ m; and a diatomaceous earth powder with a mass of 5 g and a particle size of 1 ⁇ m.
  • the atomizing agent is the same as in Example 1;
  • the hydrogen generator includes 10 g of metallic iron powder with a particle size of 0.5 ⁇ m; a mass of citric acid powder of 5 g with a particle size of 1 ⁇ m; and a diatomaceous earth powder with a mass of 5 g and a particle size of 1 ⁇ m.
  • the atomizing agent is the same as in Example 1;
  • the hydrogen generator includes 10 g of metal aluminum powder with a particle size of 0.5 ⁇ m; a mass of citric acid powder of 5 g with a particle size of 1 ⁇ m; and a diatomaceous earth powder with a mass of 5 g and a particle size of 1 ⁇ m.
  • the atomizing agent is the same as in Example 1;
  • the hydrogen generator includes 20 g of calcium hydride powder with a particle size of 70 ⁇ m, 45 g of citric acid with a particle size of 200 ⁇ m, 35 g of diatomaceous earth with a particle size of 100 ⁇ m, and 2 g of hydrophilic fumed nano silica with a particle size of 20 nm.
  • the hydrogen generator is prepared by the following process: weighing the formula amount of calcium hydride, citric acid and diatomaceous earth, firstly pulverize and mix the citric acid and diatomaceous earth, then dry at 60°C, and then combine the calcium hydride powder and hydrophilic
  • the natural gas phase nano silica is mixed uniformly, the two materials are cooled and mixed and crushed, and then mixed in a mixer at a speed of 500 rpm for 10 minutes, and then granulated.
  • Example 1 Compared with Example 1, the hydrogen production rate of the hydrogen production agent prepared in this example was equivalent, the maximum hydrogen production was increased by 2%, and the hydrogen production capacity after being exposed to the air for 8 months decreased by 13.5%.
  • the atomizing agent is the same as in Example 11;
  • the difference between the hydrogen generator and Example 11 is that the hydrophilic fumed nano silica has a particle size of 100 nm and a mass of 5 g.
  • the hydrogen production capacity of the hydrogen production agent is equivalent to that of Example 11.
  • the atomizing agent is the same as in Example 1;
  • the hydrogen generator includes 20g of calcium hydride powder with a particle size of 70 ⁇ m, 45g of citric acid with a particle size of 200 ⁇ m and 35g of diatomaceous earth with a particle size of 100 ⁇ m; the calcium hydride powder is used after the following process: Hydrophilic fumed nano silica is dispersed in acetone solution with polyethylene glycol concentration of 10g/L, dispersion concentration is 12.5g/L, ultrasonic dispersion is uniform, ultrasonic power is 45w, ultrasonic time is 90 minutes, and then calcium hydride powder Ultrasound is uniformly dispersed in the acetone solution, the dispersion concentration is 50g/L, the solvent is evaporated after being allowed to stand at room temperature for 24 hours, and then dried and broken to obtain treated calcium hydride.
  • the hydrogen generator is prepared by the following process: weighing the formula amount of calcium hydride, citric acid and diatomaceous earth, pulverizing and mixing the citric acid and diatomaceous earth, drying at 60°C, cooling and then mixing with the treated hydrogenation Calcium is mixed and crushed, then mixed in a mixer at 500 rpm for 10 minutes, and then granulated.
  • the hydrogen production rate of the hydrogen generator obtained in this example is equivalent to that of Example 1.
  • the maximum hydrogen production is increased by 3.5%, and the hydrogen production capacity after 8 months of storage is reduced by 9.3%.
  • the atomizing agent is the same as in Example 13;
  • the difference between the hydrogen generator and Example 13 is that the concentration of polyethylene glycol in acetone solution during the treatment of calcium hydride powder is 40g/L, the dispersion concentration of calcium hydride powder is 25g/L, and the dispersion of calcium hydride powder is 25g/L. The concentration is 100g/L.
  • the hydrogen production rate of the hydrogen generator obtained in this example is equivalent to that of Example 1.
  • the maximum hydrogen production is increased by 3.7%, and the hydrogen production capacity after 8 months of storage is reduced by 8.8%.
  • the atomizing agent is the same as in Example 13;
  • the difference between the hydrogen generating agent and Example 13 is that the mass of calcium hydride powder used is 25g, the concentration of polyethylene glycol in acetone solution in calcium hydride powder treatment is 20g/L, and the dispersion concentration of calcium hydride powder is 10g/L. L. The dispersion concentration of calcium hydride powder is 40 g/L.
  • the hydrogen production rate of the hydrogen generator obtained in this example is equivalent to that of Example 1.
  • the maximum hydrogen production is increased by 3.8%, and the hydrogen production capacity after 8 months of storage is reduced by 8.5%.
  • the atomizing agent is the same as in Example 13;
  • the hydrogen generator is different from Example 13 in that the adsorbent material used is molecular sieve Na 2 O•3(Al 2 O 3 )•5(SiO 2 )•8(H 2 O).
  • the hydrogen production rate of the hydrogen generating agent prepared in this example is equivalent to that of Example 1, the maximum hydrogen production is increased by 3.0%, and the hydrogen production capacity after being placed for 8 months is reduced by 11.3%.
  • This embodiment uses molecular sieve as the adsorption material to improve the stability of storage compared with diatomaceous earth.
  • the inventor speculates that the possible reason is that the surface of diatomaceous earth also contains hydroxyl groups, and the treated calcium hydride has the affinity
  • the hydroxyl groups of the aqueous gas phase nano-silica and polyethylene glycol form hydrogen bonds with the hydroxyl groups on the surface of diatomaceous earth, which improves the stability of the entire hydrogen generator system.
  • the inventors further used activated carbon, zeolite, foamed carbon, etc. as the adsorption material to improve the storage stability of the hydrogen generating agent under the same conditions, which is also weaker than that of Example 13.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

提供一种可产氢的电子雾化装置,包括雾化器本体、设于雾化器本体内的雾化剂容器、制氢剂容器和电源组件,在雾化剂容器内设有雾化剂,在制氢剂容器内设有制氢剂;制氢剂包括金属粉、金属氢化物粉和硼氢化钠粉中的至少一种和中和剂、吸附材料。利用雾化剂雾化与制氢剂接触反应产生氢气,可以随雾化状态的雾化剂吸入人体,使用安全、操作简便。而且反应效率高,氢气转化率高达90%以上,反应后体系接近中性对环境无污染,制得的氢气清洁无异味,同时制备方法简洁,工艺简单,对促进氢气在医疗保健方面应用具有重要意义。

Description

一种可产氢的电子雾化装置 技术领域
本发明涉及雾化器技术领域,具体涉及一种可产氢的电子雾化装置。
背景技术
众所周知,氢是自然界中最小的分子。近年研究发现,氢分子具有明确的生理效应。2007年日本医科大学Ohsawa 在Nature Medicine 报道,动物呼吸2%浓度的氢气即能显著改善脑缺血/再灌注损伤的程度。Dole等最早报道了氢气具有生理作用,小鼠呼吸了空气混合氢气后,可有效治疗皮肤鳞状细胞癌症状。氢气的优点在于其分子量极小,目前认可度最高的是其选择性抗氧化效果,氢气易穿透生物膜并扩散到细胞质、线粒体、细胞核这些活性氧容易产生和脱氧核糖核酸易损伤的主要部位。同时,氢气也有可能是一种小分子信号释放物质,负责在机体内传递信息,因此具有生理活性。
但是目前的制氢技术如活化金属或活化纳米铝粉水解制氢、电解水制氢等方法均存在制氢效率低、工艺复杂、成本高等问题,从而限制了氢技术应用的普及性。中国专利CN108751128A,专利名称一种物理球磨金属粉末制取氢能源的方法,公开了以铝粉或镁粉为原料与水反应制备氢气,由于铝粉或镁粉在反应中产生氢氧化铝或氢氧化镁钝化层会阻止反应进行,因此通过球磨去除铝粉或镁粉表面的氧化层或氢氧化层来提高铝粉或镁粉的反应效率,该方法虽然相对现有活化金属制氢相对提升了制氢效率,但是制备成本上升,工艺也更加复杂。
目前临床上常用的摄氢途径有四种:氢气吸入、注射氢气生理盐水、饮用氢水和通过扩散直接摄入分子氢。氢气吸入主要是通过呼吸机、面罩或鼻套管吸入。其中呼吸入用氢气为氢气和空气的混合气体,由于氢气易发生爆炸,因此吸入氢气的浓度必须控制在爆炸的最低限4%以下。目前医用氢气呼吸机采用高压氢气瓶作为氢气源,减压后提供给患者使用,设备需要专业人士操作,而且由于氢气是爆炸性气体,危险程度较高,氢气瓶和氢气呼吸机较笨重,难以大范围区域转移,因而为医生和患者带来了较大困扰。因此,为病患及普通大众提供一种安全易操作、绿色环保、有益健康的氢气供应装置显得尤为重要。
技术问题
为提供一种安全易操纵的氢气供应装置,本发明的目的在于提供一种可产氢的电子雾化装置,利用雾化过程产生氢气,氢气与雾化组分共同吸入人体,避免了与空气的大量混合,安全易操作。
技术解决方案
本发明提供如下的技术方案:
一种可产氢的电子雾化装置,所述电子雾化装置包括雾化器本体、设于雾化器本体内的雾化剂容器、设于雾化器本体出口内侧的制氢剂容器,在雾化剂容器内设有雾化剂,在制氢剂容器内设有可与雾化状态的雾化剂接触发生反应而产生氢气的制氢剂,所述电子雾化装置还包括设于雾化器本体内用于驱动雾化剂雾化的电源组件。雾化剂雾化后与制氢剂发生反应,产生氢气,氢气与雾化状态的雾化剂一同吸入人体,操作安全,避免了与大量的空气混合接触的风险。
作为本发明的改进,所述制氢剂包括金属粉、金属氢化物粉和硼氢化钠粉中的至少一种,所述雾化剂包括水、丙三醇、丙二醇。金属粉、金属氢化物、硼氢化钠等于水或醇接触后发生反应,产生氢气,反应温和。
作为本发明的改进,所述制氢剂还包括中和剂、吸附材料;各组分重量份为:金属粉、金属氢化物粉和硼氢化钠粉中的至少一种10~90份、中和剂5~60份和吸附材料5~50份。
作为本发明的改进,所述金属粉选自粒径为0.5~1000μm的镁、铝、铁中的至少一种;所述金属氢化物选自粒径为0.5~1000μm的氢化钙、氢化锂、氢化钠中的至少一种。由于金属氢化物与水反应后生成的氢氧化物不易溶于水,会导致金属氢化物颗粒中间的部分不易参与反应,使得水解制氢的效率提升困难。将金属氢化物制成粉末后,能够增大金属氢化物与水接触的比表面积,同时颗粒中间的部分也能参与制氢反应,因此能够进一步提高水解制氢的效率。
作为本发明的改进,所述制氢剂还包括粒径为20~100nm的亲水性气相二氧化硅2~5份。亲水性气相纳米二氧化硅具有极强的亲水性能,可以辅助捕集水蒸汽或水雾,增强制氢剂的捕水和润湿能力,提供含氢化合物的反应效率。同时亲水性气相纳米二氧化硅表面的羟基的活性低,不足以与含氢化合物反应,保证了制氢剂的稳定性。
作为本发明的改进:所述制氢剂经以下过程制备:先将中和剂和吸附材料粉碎混匀后烘干,冷却后再与余下物料粉碎混匀后造粒。本发明的制氢剂在空气气氛中机械破碎研磨均匀后造粒即可,工艺简单、安全。
作为本发明的改进,所述金属氢化物或硼氢化钠经以下过程处理后使用:在聚乙二醇浓度为10~40g/L的丙酮溶液中加入粒径为20~100nm的亲水性气相二氧化硅分散均匀,分散浓度为10~25g/L,然后将金属氢化物或硼氢化钠分散在丙酮溶液中,分散浓度为50~450g/L,静置后蒸发溶解并干燥、破碎得到处理后的金属氢化物或硼氢化钠。聚乙二醇中含有的羟基反应活性低不会与含氢化合物发生反应,但是聚乙二醇具有很好的亲水性能,有助于增强含氢化合物在水蒸气、水雾中的补水能力。同时发明人发现经过上述过程处理后的含氢化合物制备的制氢剂的放置一段时间内的稳定性也有明显的增强,这可能是因为聚乙二醇具有长链结构并在丙酮中充分溶解,聚乙二醇的长链结构缠绕亲水性气相纳米二氧化硅和含氢化合物,并与亲水性气相纳米二氧化硅的三维网状结构发生协同作用,在大量水蒸气、水雾存在下起到聚水、积水(成湖)效果,促进含氢化合物的反应;在干燥空气环境中则与亲水性气相纳米二氧化硅共同起到缚水作用,阻止含氢化合物与水蒸汽的接触反应。但是随放置时间增加,聚水、积水增多,当吸水达到一定程度后增加了含氢化合物与水蒸汽的接触机会,导致超过适宜的放置时间后的稳定性降低,制氢效果下降。
作为本发明的改进,所述中和剂为粒径1~500μm的柠檬酸、草酸、碳酸钠、碳酸氢钠、磷酸固体粉末中的至少一种。中和产氢反应产生的碱性物质,促进反应的进行并提供更加中性、安全的使用环境。
作为本发明的改进,所述吸附材料为粒径1~500μm的硅藻土、分子筛、沸石、活性炭和泡沫碳固体粉末中的至少一种。吸附材料起到载体并提供反应场所的作用,并吸附去除氢气中的味道。
作为本发明的改进,所述雾化剂还包括香精和辅助制剂,辅助制剂选自烟碱、润喉剂、焦糖、蜂蜜、中药精油中的至少一种;其中各组分的重量份为:水5~50份、丙三醇10~80份、丙二醇0~40份、香精0~20份和辅助制剂0~20份。其中中药精油为薄荷精油、艾草精油。
有益效果
本发明的有益效果如下:
本发明的电子雾化装置利用雾化剂与制氢剂接触反应产生氢气,可以随雾化状态的雾化剂吸入人体,使用安全、操作简便。而且本发明的制氢剂可在温和状态下反应,并能够及时消除反应中产生的碱性物质,反应效率高,氢气转化率高达90%以上,反应后体系接近中性对环境无污染,制得的氢气清洁无异味,同时制备方法简洁,工艺简单,对促进氢气在医疗保健方面应用具有重要意义。
附图说明
图1是本发明的电子雾化装置的结构示意图。
图2是实施例1中的制氢剂与不同反应体系接触的制氢曲线图。
图3是实施例1中的制氢剂暴露在空气不同时间后的制氢曲线图。
图1中:1、雾化器本体,2、吸嘴,3、制氢剂容器,4、气动感应开关,5、雾化剂容器,6、电源组件。
图2中:
-▲-:与水形成的水雾反应;
-●-:与50wt%水+30wt%丙三醇+20wt%丙二醇形成的水雾反应;
-■-:与20wt%水+50wt%丙三醇+30wt%丙二醇形成的水雾反应。
图3中:
-■-:暴露在空气中0天;
-●-:暴露在空气中2个月;
-▲-:暴露在空气中4个月;
-◄-:暴露在空气中6个月;
-♦-:暴露在空气中8个月。
本发明的实施方式
下面就本发明的具体实施方式作进一步说明。
如无特别说明,本发明中所采用的原料均可从市场上购得或是本领域常用的,如无特别说明,下述实施例中的方法均为本领域的常规方法。
本发明的电子雾化装置的结构如下:
一种可产氢的电子雾化装置,如图1所示,包括雾化器本体1,在雾化器本体的出口处设有吸嘴2,在雾化器本体的内的尾部至出口处依次设有电源组件6、雾化剂容器5、气动感应开关4、制氢剂容器3,其中雾化剂容器内设有可在电源组件的能量驱动下雾化的雾化剂,在制氢剂容器内设有制氢剂,启动电源组件后,雾化剂容器内的雾化剂雾化,气动感应开关感应到雾化的雾化剂后打开,雾化剂与制氢剂接触反应产生氢气,从吸嘴处吸入人体。
其中雾化剂中有水、丙三醇和丙二醇,制氢剂含有可与水、丙三醇、丙二醇反应的金属粉、金属氢化物或硼氢化钠粉组分。
本发明的电子雾化装置的雾化剂和制氢剂见以下实施例,但不局限于以下实施例。
实施例1
雾化剂为水10g、丙三醇50g、丙二醇35g、润喉剂0.5g、薄荷精油2.5g和冰凉剂2g;将上述组分混匀后灌装入雾化剂容器即可。
制氢剂包括粒径70μm的氢化钙粉末20g、粒径为200μm的柠檬酸45g和粒径为100μm的硅藻土35g。该制氢剂制备过程为:称取配方量的氢化钙、柠檬酸和硅藻土,先将柠檬酸和硅藻土粉碎混匀后60℃烘干,冷却后再与氢化钙混合粉碎,然后500rpm的转速在混料机中混匀10min后造粒即可。
(1)实施例1中的制氢剂的制氢能力测试
将实施例1的制氢剂0.10g分别与20mL的纯水、50wt%水+30wt%丙三醇+20wt%丙二醇、20wt%水+50wt%丙三醇+30wt%丙二醇形成的水雾发生接触反应,先测量产生氢气的体积,计算产氢量,然后绘制产氢量-时间的产氢曲线,得到与水形成的水雾反应的产氢曲线(-▲-)、与50wt%水+30wt%丙三醇+20wt%丙二醇形成的水雾反应的产氢曲线(-●-)、与20wt%水+50wt%丙三醇+30wt%丙二醇形成的水雾反应的产氢曲线(-■-),如图2所示。
从图2中可以看出,制氢剂可以与水、水和丙三醇、丙二醇的混合溶液形成的水雾发生反应,而且达到最大产氢量的时间迅速。同时可以看出,制氢剂与水形成的水雾的反应能力强于含醇的溶液形成的水雾,反应迅速且最大产氢量高。
(2)实施例1中的制氢剂的放置稳定性测试
将实施例1的制氢剂在25℃、相对湿度为45%的清洁环境中暴露放置一段时间,然后取0.1g的制氢剂与20mL、温度为20℃的50%水+30%丙三醇+20%丙二醇形成的水雾反应,绘制不同放置时间下的产氢曲线:暴露在空气中0天(-■-:)、暴露在空气中2个月(-●-:)、暴露在空气中4个月(-▲-)、暴露在空气中6个月(-◄-)、暴露在空气中8个月(-♦-),结果见图3所示。
从图中可以看出,随放置时间的增加,最大的产氢量逐渐降低,暴露2个月、4个月、6个月和8个月的最大的产氢量相对下降约2.6%、8.5%、12.0%和15.4%,因此暴露在空气中放置8个月后的制氢能力仍保持八成以上,具有较高的水解制氢效率。
实施例2
雾化剂为水20g、丙三醇40g、丙二醇25g、润喉剂0.5g、艾草精油2.5g和冰凉剂2g;将上述组分混匀后灌装入雾化剂容器即可;
制氢剂包括粒径为70μm的氢化钙粉末20g、粒径为200μm的柠檬酸45g和粒径为100μm的分子筛35g,分子筛的结构式为Na 2O•3(Al 2O 3)•5(SiO 2)•8(H 2O)。该制氢剂经以下过程制得:称取配方量的氢化钙、柠檬酸和分子筛,先将柠檬酸和分子筛粉碎混匀后60℃烘干,冷却后再与氢化钙混合粉碎,然后500rpm的转速在混料机中混匀10min后造粒即可。
该实施例制备的制氢剂的制氢能力和放置稳定性与实施例1相当。
实施例3
雾化剂为水50g、丙三醇80g、丙二醇40g、香精2g、润喉剂0.5g、艾草精油2.5g和焦糖2g;将上述组分混匀后灌装入雾化剂容器即可;
制氢剂包括粒径为70μm的氢化钙粉末30g、粒径在200μm的柠檬酸55g和粒径在100μm的硅藻土15g。该制氢剂经以下过程制得:称取配方量的氢化钙、柠檬酸和硅藻土,先将柠檬酸和硅藻土粉碎混匀后60℃烘干,冷却后再与氢化钙混合粉碎,然后500rpm的转速在混料机中混匀10min后造粒即可。
该实施例制备的制氢剂的制氢能力和放置稳定性与实施例1相当。
实施例4
雾化剂为水50g、丙三醇80g、丙二醇40g、香精2g、润喉剂0.5g、艾草精油2.5g和蜂蜜2g;将上述组分混匀后灌装入雾化剂容器即可;
制氢剂包括粒径70μm的硼氢化钠粉末20g、粒径200μm的柠檬酸45g和粒径100μm的硅藻土35g。该制氢剂经以下过程制得:称取配方量的氢化钙、柠檬酸和硅藻土,先将柠檬酸和硅藻土粉碎混匀后60℃烘干,冷却后再与硼氢化钠粉末混合粉碎,然后500rpm的转速在混料机中混匀10min后造粒即可。
该实施例制备的制氢剂的放置稳定性与实施例1相当,开始反应的制氢速率与实施例1相比相对有所降低,但是在更长反应时间内的制氢能力可以达到并超过实施例1。
实施例5
雾化剂为水50g、丙三醇80g、丙二醇40g、香精10g、润喉剂0.5g、艾草精油5g和蜂蜜5g;将上述组分混匀后灌装入雾化剂容器即可;
制氢剂包括氢化钙粉末质量35g、粒径0.5μm;柠檬酸粉末质量30g、粒径1μm;硅藻土粉末质量45g、粒径500μm;按实施例1的方法混合造粒。
实施例6
雾化剂与实施例1相同;
制氢剂包括氢化钙粉末质量90g、粒径300μm;柠檬酸粉末质量60g、粒径500μm;硅藻土粉末质量50g、粒径500μm;按实施例1的方法混合造粒。
实施例7
雾化剂与实施例1相同;
制氢剂包括氢化钙粉末质量10g、粒径0.5μm;柠檬酸粉末质量5g、粒径1μm;硅藻土粉末质量5g、粒径1μm,按实施例1的方法混合造粒。
实施例8
雾化剂与实施例1相同;
制氢剂包括金属镁粉10g、粒径0.5μm;柠檬酸粉末质量5g、粒径1μm;硅藻土粉末质量5g、粒径1μm,按实施例1的方法混合造粒。
实施例9
雾化剂与实施例1相同;
制氢剂包括金属铁粉10g、粒径0.5μm;柠檬酸粉末质量5g、粒径1μm;硅藻土粉末质量5g、粒径1μm,按实施例1的方法混合造粒。
实施例10
雾化剂与实施例1相同;
制氢剂包括金属铝粉10g、粒径0.5μm;柠檬酸粉末质量5g、粒径1μm;硅藻土粉末质量5g、粒径1μm,按实施例1的方法混合造粒。
实施例11
雾化剂与实施例1相同;
制氢剂包括粒径为70μm的氢化钙粉末20g、粒径为200μm的柠檬酸45g和粒径为100μm的硅藻土35g、粒径为20nm的亲水性气相纳米二氧化硅2g。该制氢剂经以下过程制得:称取配方量的氢化钙、柠檬酸和硅藻土,先将柠檬酸和硅藻土粉碎混匀后60℃烘干,然后将氢化钙粉末和亲水性气相纳米二氧化硅混合均匀,将两次物料冷却后混合粉碎,然后500rpm的转速在混料机中混匀10min后造粒。
该实施例制备的制氢剂与实施例1相比,制氢速率相当,最大的产氢量提高2%,暴露在空气中放置8个月后的制氢能力下降13.5%。
实施例12
雾化剂与实施例11相同;
制氢剂与实施例11的不同之处在于,亲水性气相纳米二氧化硅的粒径为100nm、质量为5g。
该制氢剂的制氢能力与实施例11相当。
实施例13
雾化剂与实施例1相同;
制氢剂包括粒径为70μm的氢化钙粉末20g、粒径为200μm的柠檬酸45g和粒径为100μm的硅藻土35g;其中氢化钙粉末经以下过程处理后使用:将粒径为20nm的亲水性气相纳米二氧化硅分散在聚乙二醇浓度为10g/L的丙酮溶液中,分散浓度12.5g/L,超声分散均匀,超声功率为45w,超声时间90分钟,然后将氢化钙粉末超声均匀分散在该丙酮溶液中,分散浓度为50g/L,在室温下静置24小时后蒸发溶剂,并干燥、破碎得到处理后的氢化钙。该制氢剂经以下过程制得:称取配方量的氢化钙、柠檬酸和硅藻土,先将柠檬酸和硅藻土粉碎混匀后60℃烘干,冷却后再与处理后的氢化钙混合粉碎,然后500rpm的转速在混料机中混匀10min后造粒。
该实施例所得制氢剂的产氢速率与实施例1相当,最大的产氢量提升3.5%,放置8个月后的产氢能力下降9.3%。
实施例14
雾化剂与实施例13相同;
制氢剂与实施例13的不同之处在于,氢化钙粉末处理过程中的聚乙二醇的丙酮溶液的浓度为40g/L、氢化钙粉末的分散浓度为25g/L、氢化钙粉末的分散浓度为100g/L。
该实施例所得制氢剂的产氢速率与实施例1相当,最大的产氢量提升3.7%,放置8个月后的产氢能力下降8.8%。
实施例15
雾化剂与实施例13相同;
制氢剂与实施例13的不同之处在于,所用氢化钙粉末质量为25g,氢化钙粉末处理中的聚乙二醇的丙酮溶液的浓度为20g/L、氢化钙粉末的分散浓度为10g/L、氢化钙粉末的分散浓度为40g/L。
该实施例所得制氢剂的产氢速率与实施例1相当,最大的产氢量提升3.8%,放置8个月后的产氢能力下降8.5%。
实施例16
雾化剂与实施例13相同;
制氢剂与实施例13的不同之处在所用吸附材料为分子筛Na 2O•3(Al 2O 3)•5(SiO 2)•8(H 2O)。
该实施例制备的制氢剂的产氢速率与实施例1相当,最大产氢量提升3.0%,放置8个月后的产氢能力下降11.3%。
该实施例以分子筛作为吸附材料后的放置稳定性提升能力与以硅藻土相比有所减弱,发明人推测可能原因是硅藻土的表面也含有羟基,处理后的氢化钙所具备的亲水性气相纳米二氧化硅和聚乙二醇的羟基与硅藻土的表面的羟基形成氢键,提高了整个制氢剂体系的稳定性。同时发明人进一步的同样条件下以活性炭、沸石、泡沫碳等作为吸附材料后的制氢剂的放置稳定性的提升效果亦弱于实施例13。

Claims (10)

  1. 一种可产氢的电子雾化装置,其特征在于,所述电子雾化装置包括雾化器本体、设于雾化器本体内的雾化剂容器、设于雾化器本体出口内侧的制氢剂容器,在雾化剂容器内设有雾化剂,在制氢剂容器内设有可与雾化状态的雾化剂接触发生反应而产生氢气的制氢剂,所述电子雾化装置还包括用于驱动雾化剂雾化的电源组件。
  2. 根据权利要求1所述的可产氢的电子雾化装置,其特征在于,所述制氢剂包括金属粉、金属氢化物粉和硼氢化钠粉中的至少一种,所述雾化剂包括水、丙三醇、丙二醇。
  3. 根据权利要求2所述的可产氢的电子雾化装置,其特征在于,所述制氢剂还包括中和剂、吸附材料;其中各组分的重量份为:金属粉、金属氢化物粉和硼氢化钠粉中的至少一种10~90份、中和剂5~60份和吸附材料5~50份。
  4. 根据权利要求2或3所述的可产氢的电子雾化装置,其特征在于,所述金属粉选自粒径为0.5~1000μm的镁、铝、铁中的至少一种;所述金属氢化物选自粒径为0.5~1000μm的氢化钙、氢化锂、氢化钠中的至少一种。
  5. 根据权利要求2或3所述的可产氢的电子雾化装置,其特征在于,所述制氢剂还包括粒径为20~100nm的亲水性气相二氧化硅2~5份。
  6. 根据权利要求2或3所述的可产氢的电子雾化装置,其特征在于,所述制氢剂经以下过程制备:先将中和剂和吸附材料粉碎混匀后烘干,冷却后再与余下物料粉碎混匀后造粒。
  7. 根据权利要求2或3所述的可产氢发热保温的夹心面膜,其特征在于,所述金属氢化物或硼氢化钠经以下过程处理后使用:在聚乙二醇浓度为10~40g/L的丙酮溶液中加入粒径为20~100nm的亲水性气相二氧化硅分散均匀,分散浓度为10~25g/L,然后将金属氢化物或硼氢化钠分散在丙酮溶液中,分散浓度为50~450g/ L,静置后蒸发溶解并干燥、破碎得到处理后的金属氢化物或硼氢化钠。
  8. 根据权利要求3所述的可产氢的电子雾化装置,其特征在于,所述中和剂为粒径1~500μm的柠檬酸、草酸、碳酸钠、碳酸氢钠、磷酸固体粉末中的至少一种。
  9. 根据权利要求3所述的可产氢的电子雾化装置,其特征在于,所述吸附材料为粒径1~500μm的硅藻土、分子筛、沸石、活性炭和泡沫碳固体粉末中的至少一种。
  10. 根据权利要求1或2所述的可产氢的电子雾化装置,其特征在于,所述雾化剂还包括香精和辅助制剂,辅助制剂选自烟碱、润喉剂、焦糖、蜂蜜、冰凉剂、中药精油中的至少一种;其中各组分的重量份为:水5~50份、丙三醇10~80份、丙二醇0~40份、香精0~20份和辅助制剂0~20份。
PCT/CN2021/079619 2020-04-21 2021-03-09 一种可产氢的电子雾化装置 WO2021213027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010314667.4A CN111410169B (zh) 2020-04-21 2020-04-21 一种可产氢的电子雾化装置
CN202010314667.4 2020-04-21

Publications (1)

Publication Number Publication Date
WO2021213027A1 true WO2021213027A1 (zh) 2021-10-28

Family

ID=71486997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079619 WO2021213027A1 (zh) 2020-04-21 2021-03-09 一种可产氢的电子雾化装置

Country Status (2)

Country Link
CN (1) CN111410169B (zh)
WO (1) WO2021213027A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116036438A (zh) * 2023-02-21 2023-05-02 广东朝野医疗科技有限公司 一种氧氢一体机的氢气精确计量控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410169B (zh) * 2020-04-21 2021-09-24 杭州氢源素生物科技有限公司 一种可产氢的电子雾化装置
CN113274595B (zh) * 2021-05-25 2022-03-25 福建智恒氢启健康科技有限公司 一种新型雾化器
CN115872357B (zh) * 2023-02-24 2023-05-26 四川卡文智氢新能源有限公司 一种改性铝水解制氢材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594069A (zh) * 2004-06-25 2005-03-16 肖光杰 一种金属和水纳米化制氢工艺
WO2006011462A1 (ja) * 2004-07-27 2006-02-02 Uchiya Thermostat Co., Ltd. 水素製造方法
CN101142302A (zh) * 2005-02-25 2008-03-12 法商Bic公司 制氢燃料电池盒
CN106890072A (zh) * 2017-04-18 2017-06-27 深圳氢爱天下健康科技控股有限公司 具有磁感开关的富氢美肤仪
CN109665491A (zh) * 2018-12-29 2019-04-23 杭州氢源素生物科技有限公司 一种镁粉制氢材料及其制备方法
CN208877238U (zh) * 2018-04-02 2019-05-21 徐圣 一种健肤仪
CN111410169A (zh) * 2020-04-21 2020-07-14 杭州氢源素生物科技有限公司 一种可产氢的电子雾化装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175689A (zh) * 2005-07-20 2008-05-07 日立麦克赛尔株式会社 氢产生材料及氢产生材料的制造方法
CN101607695A (zh) * 2008-06-20 2009-12-23 吴佶伟 一种制氢方法及制氢装置
CN105197885A (zh) * 2014-06-26 2015-12-30 唐莉娟 一种新型的纳米制氢方法
CN109019508A (zh) * 2018-09-13 2018-12-18 安徽合巢氢产业应用技术研究院有限公司 化学制氢的供氢装置及以化学制氢为氢源的纳米溶氢水机
CN109019510A (zh) * 2018-09-25 2018-12-18 上海涛川能源科技有限公司 一种制氢方法
CN208916818U (zh) * 2018-09-25 2019-05-31 上海涛川能源科技有限公司 一种铁粉制氢反应炉及装置
CN109806469A (zh) * 2019-02-26 2019-05-28 西安交通大学医学院第一附属医院 一种医用富氢雾化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594069A (zh) * 2004-06-25 2005-03-16 肖光杰 一种金属和水纳米化制氢工艺
WO2006011462A1 (ja) * 2004-07-27 2006-02-02 Uchiya Thermostat Co., Ltd. 水素製造方法
CN101142302A (zh) * 2005-02-25 2008-03-12 法商Bic公司 制氢燃料电池盒
CN106890072A (zh) * 2017-04-18 2017-06-27 深圳氢爱天下健康科技控股有限公司 具有磁感开关的富氢美肤仪
CN208877238U (zh) * 2018-04-02 2019-05-21 徐圣 一种健肤仪
CN109665491A (zh) * 2018-12-29 2019-04-23 杭州氢源素生物科技有限公司 一种镁粉制氢材料及其制备方法
CN111410169A (zh) * 2020-04-21 2020-07-14 杭州氢源素生物科技有限公司 一种可产氢的电子雾化装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116036438A (zh) * 2023-02-21 2023-05-02 广东朝野医疗科技有限公司 一种氧氢一体机的氢气精确计量控制方法

Also Published As

Publication number Publication date
CN111410169A (zh) 2020-07-14
CN111410169B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2021213027A1 (zh) 一种可产氢的电子雾化装置
WO2021213029A1 (zh) 一种利用含氢化合物的可水解制氢材料
CN105107524B (zh) 一种常温催化甲醛分解的纳米复合材料及其制备方法
CN108836949B (zh) Ce6嵌入型红细胞膜包裹普鲁士蓝纳米颗粒的制备方法
CN106975496B (zh) 抑菌催化还原多孔材料及其制备和在生产还原水上的应用
Zhang et al. New approaches for hydrogen therapy of various diseases
CN108078912B (zh) 一种可长期保存的外泌体修复凝胶及其制备方法
CN113694024B (zh) 一种生理性海水鼻腔喷雾器
MXPA01006399A (es) Agua que contiene fullerences y metodo para producir la misma..
Liao et al. Synergistic Enzyme‐Mimetic Catalysis‐Based Non‐Thermal Sonocavitation and Sonodynamic Therapy for Efficient Hypoxia Relief and Cancer Ablation
WO2021213028A1 (zh) 一种可产氢发热保温的夹心面膜
JP4675566B2 (ja) 吸入器
CN114668841B (zh) 一种可激活的纳米光敏剂及其制备方法和应用
CN110201167A (zh) 光照释放氧气的载酶硒化铋纳米粒子的制备方法
CN110732310A (zh) 一种防毒面具环保型无铬碳及其制备方法
CN113384781B (zh) 一种egcg雾化系统
JP3951284B2 (ja) 透析用固形製剤およびその製造方法
JPH08508504A (ja) 抗酸化剤アルキルアリール・ポリエーテルアルコール・ポリマー類
CN109330764B (zh) 一种氢分子发热消炎贴及其使用方法
WO2004078185A1 (ja) 二酸化炭素の経皮経粘膜吸収方法および美容方法、並びに治療方法
CN113546206A (zh) 一种能释放远红外线、生物电、负氧离子液的制作方法
CN106176513A (zh) 纳米功效性旅游化妆水
CN105997744A (zh) 纳米旅游化妆水
JPH08109137A (ja) カプセル剤、薬物貯蔵庫薄形シート、袋状の剤形とそれぞれの製造方法及び袋状の剤形の投与方法
Song et al. Combined chemo-photothermal therapy of oral carcinoma based on doxorubicin-loaded gold flower nanocomposites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792801

Country of ref document: EP

Kind code of ref document: A1