WO2021212837A1 - 电池的充电控制方法、装置、电池管理系统和介质 - Google Patents

电池的充电控制方法、装置、电池管理系统和介质 Download PDF

Info

Publication number
WO2021212837A1
WO2021212837A1 PCT/CN2020/132901 CN2020132901W WO2021212837A1 WO 2021212837 A1 WO2021212837 A1 WO 2021212837A1 CN 2020132901 W CN2020132901 W CN 2020132901W WO 2021212837 A1 WO2021212837 A1 WO 2021212837A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
value
capacity
parameter
Prior art date
Application number
PCT/CN2020/132901
Other languages
English (en)
French (fr)
Inventor
杜明树
李世超
吴维清
张伟
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020227018614A priority Critical patent/KR102510346B1/ko
Priority to ES20920763T priority patent/ES2957114T3/es
Priority to JP2022532592A priority patent/JP7210809B2/ja
Priority to EP20920763.8A priority patent/EP3919319B1/en
Publication of WO2021212837A1 publication Critical patent/WO2021212837A1/zh
Priority to US17/565,462 priority patent/US11437838B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • This application relates to the field of new energy, and in particular to a battery charging control method, device, battery management system and medium.
  • Lithium-ion batteries are widely used in electric vehicles and other fields due to their high energy density and cycle performance. However, lithium-ion batteries have different aging rates under different charging or discharging conditions.
  • the negative electrode potential of the lithium-ion battery drops. If the local potential of the negative electrode continues to be too low, it is likely that lithium ions cannot be diffused and inserted into the negative electrode in time after acquiring electrons on the surface of the negative electrode, causing negative lithium dendrites, even piercing the diaphragm and causing internal short circuits, causing increased battery aging and even safety issues.
  • the embodiments of the present application provide a battery charging control method, device, battery management system, and medium, which improve the safety of battery use.
  • an embodiment of the present application provides a battery charging control method, including:
  • the threshold value of the charging parameter is determined based on the actual capacity value of the battery and the accumulated mileage of the electric vehicle in which it is located;
  • the value of the charging parameter of the battery is obtained in real time
  • a control command to stop charging the battery is sent to stop charging.
  • an embodiment of the present application provides a battery charging control device, including:
  • the first obtaining module is used to obtain the threshold value and initial value of the charging parameter of the battery based on the received charging request; the threshold value of the charging parameter is determined based on the actual capacity value of the battery and the accumulated mileage of the electric vehicle in which it is located;
  • the first control command sending module is configured to send a control command to charge the battery if the initial value of the charging parameter is less than the threshold value of the charging parameter, so as to charge the battery;
  • the second obtaining module is used to obtain the value of the charging parameter of the battery in real time during the charging process of the battery;
  • the second control command sending module is configured to send a control command to stop charging the battery to stop charging if the acquired value of the charging parameter of the battery is greater than or equal to the threshold value of the charging parameter.
  • an embodiment of the present application provides a battery management system, including: a processor and a memory storing computer program instructions;
  • the battery charging control method as provided in the embodiment of the present application is implemented.
  • an embodiment of the present application provides a computer storage medium with computer program instructions stored on the computer storage medium.
  • the computer program instructions are executed by a processor, the battery charging control method as provided in the embodiments of the present application is implemented.
  • the battery charging control method, device, battery management system and medium provided in the embodiments of the present application dynamically determine the threshold value of the battery charging parameter according to the actual capacity value of the battery and the accumulated mileage of the electric vehicle in which the battery is located, so as to realize the battery-based charging
  • the aging state is used to dynamically calculate the threshold value of the charging parameter. In the process of charging the battery, if the obtained value of the charging parameter of the battery is greater than the threshold value of the newly calculated charging parameter, the charging of the battery is stopped.
  • FIG. 1 shows a schematic flowchart of an embodiment of a battery charging control method provided by the present application
  • Fig. 2 shows a schematic structural diagram of an embodiment of a battery charging control device provided by the present application
  • Fig. 3 shows a schematic structural diagram of an embodiment of the battery management system provided by the present application.
  • an embodiment of the present application provides a battery charging control method, which dynamically determines the threshold value of the battery charging parameter according to the actual capacity value of the battery and the accumulated mileage of the electric vehicle in which the battery is located, so as to dynamically determine the threshold value of the battery according to the aging state of the battery. Calculate the threshold of the charging parameter. In the process of charging the battery, if the obtained value of the charging parameter of the battery is greater than the threshold value of the newly calculated charging parameter, the charging of the battery is stopped. By considering the aging state of the battery to determine the threshold of the charging parameters of the battery, it is possible to prevent overcharging or thermal runaway when the battery is aging, and to improve the safety of battery use.
  • FIG. 1 shows a schematic flowchart of a battery charging control method 100 provided by an embodiment of the present application. As shown in FIG. 1, the battery charging control method 100 includes the following steps:
  • S110 Obtain a threshold value and an initial value of a charging parameter of the battery based on the received charging request.
  • the threshold of the charging parameter is determined based on the actual capacity value of the battery and the accumulated mileage of the electric vehicle where the battery is located.
  • the actual capacity value of the battery is a parameter used to characterize the aging state of the battery. In some embodiments, the actual capacity value of the battery may be determined based on the accumulated charge/discharge capacity value of the battery.
  • the accumulative charge/discharge capacity value of the battery can be any of the following values: the sum of the accumulative battery charge capacity value per charge and the battery recharge capacity, the accumulative battery discharge capacity per discharge Value, the sum of the cumulative battery charge capacity value per charge and the cumulative battery discharge capacity value per discharge.
  • the charge capacity of the battery refers to the capacity value of the battery charged under the specified conditions
  • the discharge capacity of the battery refers to the capacity value of the battery output measured under the specified conditions.
  • the accumulative charge/discharge capacity value of the battery may also be any one of the following values: The sum of the charge capacity value, the converted discharge capacity value of the accumulated battery cell, the converted charge capacity value of the accumulated battery cell, and the converted discharge capacity value of the accumulated battery cell.
  • the conversion coefficient corresponding to the charging temperature of the battery is determined based on the charging temperature of the battery and the corresponding relationship between the preset temperature and the conversion coefficient.
  • the conversion coefficient corresponding to the discharge temperature of the battery is based on the discharge temperature of the battery and the corresponding relationship between the preset temperature and the conversion coefficient.
  • the charging temperature of the battery is obtained during each charging of the battery. Then match the charging temperature of the battery with the temperature in the corresponding relationship between the preset temperature and the conversion coefficient, and use the conversion coefficient corresponding to the temperature matching the charging temperature of the battery in the corresponding relationship as the conversion corresponding to the charging temperature of the battery coefficient.
  • the discharge temperature of the battery is obtained during each discharge of the battery. Then match the discharge temperature of the battery with the temperature in the correspondence between the preset temperature and the conversion coefficient, and use the conversion coefficient corresponding to the temperature matching the discharge temperature of the battery in the correspondence as the conversion corresponding to the discharge temperature of the battery coefficient.
  • the discharge temperature of the battery will affect the discharge capacity of the battery, and the charge temperature of the battery will affect the charge capacity of the battery, in order to improve the accuracy of the cumulative charge/discharge capacity value of the battery, the charge capacity of the battery after temperature conversion can be used And/or discharge capacity to calculate the accumulative charge/discharge capacity value of the battery.
  • the battery management system may determine the actual capacity value of the battery based on the correspondence between the pre-calibrated charge/discharge capacity and the actual capacity, and the obtained accumulated charge/discharge capacity value of the battery.
  • the statistical method of the charge/discharge capacity in the correspondence between the pre-calibrated charge/discharge capacity and the actual capacity is the same as the statistical method of the accumulative charge/discharge capacity value of the battery.
  • the accumulative charge/discharge capacity of the battery is the sum of the accumulative charge capacity and recharge capacity of the battery each time it is charged
  • the corresponding relationship between the pre-calibrated charge/discharge capacity and the actual capacity is the charge capacity and Correspondence of actual capacity.
  • the corresponding relationship between the pre-calibrated charge/discharge capacity and the actual capacity is the corresponding relationship between the discharge capacity and the actual capacity.
  • the pre-calibrated charge/discharge capacity corresponds to the actual capacity
  • the relationship is the corresponding relationship between the charge and discharge capacity and the actual capacity.
  • Table 1 shows a schematic diagram of the correspondence between the pre-calibrated charge/discharge capacity and the actual capacity provided by an embodiment of the present application.
  • Ai is a different charge/discharge capacity value
  • Di is a different actual capacity value
  • i is an integer greater than or equal to 1 and less than or equal to 4. It should be noted that the number of charge/discharge capacities in Table 1 is only indicative, and the number of charge/discharge capacities in the first corresponding relationship can be adjusted according to actual needs.
  • the battery management system obtains the accumulated charge/discharge capacity value of the battery
  • the accumulated charge/discharge capacity value of the battery and the corresponding relationship between the pre-calibrated charge/discharge capacity and the actual capacity The charge/discharge capacity is matched to obtain the charge/discharge capacity matching the cumulative charge/discharge capacity value of the battery in the corresponding relationship, and the actual capacity corresponding to the charge/discharge capacity is used as the actual capacity value of the battery.
  • the actual capacity value of the battery can be quickly obtained by using the preset corresponding relationship between the charge/discharge capacity and the actual capacity, which improves the calculation efficiency of the threshold value of the charging parameter.
  • the charge/discharge capacity in the corresponding relationship between the pre-calibrated charge/discharge capacity and the actual capacity /Discharge capacity is also the capacity after temperature conversion.
  • the actual capacity value of the battery may also be determined based on the accumulated mileage of the electric vehicle and the preset second correspondence between the mileage and the capacity. For example, the battery management system first matches the cumulative mileage of the electric vehicle with each mileage in the preset second correspondence, and obtains the mileage that matches the cumulative mileage of the electric vehicle in the second correspondence. Then the battery management system uses the capacity corresponding to the mileage matched with the accumulated mileage of the electric vehicle in the preset second correspondence as the actual capacity value of the battery.
  • the specific method for obtaining the actual battery capacity is not limited here.
  • the battery charging control method can be applied to a battery management system. If the electric vehicle needs to be charged, the electric vehicle needs to be connected to the charging pile first. After the charging pile is connected to the electric vehicle, the charging pile will send a charging request to the battery management system to request to charge the battery pack in the electric vehicle.
  • the battery management system After receiving the charging request, the battery management system obtains the threshold value and the initial value of the charging parameter of the battery.
  • the initial value of the charging parameter of the battery refers to the value of the charging parameter of the battery acquired for the first time after the battery management system receives the charging request.
  • the charging parameter may be at least one of the state of charge (SOC) and the charging voltage.
  • SOC state of charge
  • the charging voltage of the battery refers to the collected voltage difference between the two ends of the battery.
  • the charging SOC of the battery is calculated in real time by the SOC calculation module in the battery management system, and the specific calculation method is not limited here.
  • the threshold value of the charging parameter is calculated in real time by the battery management system.
  • the battery management system calculates the threshold value of the charging parameter every preset time interval.
  • the battery management system receives the charging request, it obtains the newly calculated threshold value of the charging parameter.
  • the battery charging control method 100 further includes the following steps:
  • the battery management system sends a non-charging control instruction to the charging pile to improve the safety of the battery and prevent overcharging or heat generation. Out of control and other issues.
  • the battery management system sends a control instruction for charging the battery to the charging pile. After the charging pile receives the control command to charge the battery, it starts to charge the battery.
  • the battery charging control method 100 further includes the following steps:
  • S140 If the acquired value of the charging parameter of the battery is greater than or equal to the threshold value of the charging parameter, send a control command to stop charging the battery to stop charging.
  • the battery management system obtains the value of the charging parameter in real time, and each time the value of the charging parameter of a battery is obtained, it is judged whether the obtained value of the charging parameter of the battery is greater than or equal to the threshold value of the charging parameter.
  • the battery management system does not operate, and the charging pile can continue to charge the battery.
  • the battery management system sends a control instruction to stop charging the battery to the charging pile. After the charging pile receives the control command to stop charging the battery sent by the battery management system, it stops charging the battery.
  • the threshold value of the charging parameter of the battery is dynamically determined according to the aging state of the battery, that is, the actual capacity value of the battery and the accumulated mileage of the electric vehicle in which the battery is located, instead of fixing the upper limit of the charging parameter. Taking into account the current aging state of the battery, the safety of the battery can be improved.
  • the threshold value of the charging parameter can be reduced to reduce the charging capacity of the battery, so as to extend the safety life of the battery and improve the battery.
  • the safety of use That is, as the actual capacity value of the battery and the mileage of the electric vehicle increase, the threshold value of the charging parameter is gradually reduced.
  • the battery management system calculates the threshold value of the charging parameter in real time.
  • the specific calculation method of the threshold value of the charging parameter of the battery is described in detail below.
  • the battery charging control method 100 may further include:
  • S101 Determine the upper limit of the chargeable capacity of the battery based on the actual capacity value of the battery and the accumulated mileage.
  • S101 may include the following steps:
  • A1. Determine the upper limit of the chargeable capacity of the battery based on the actual capacity value of the battery, the accumulated mileage and the preset third correspondence.
  • the third correspondence is the correspondence between the first capacity and the second parameter, and the second The parameters include the second capacity and mileage.
  • the battery management system matches the actual capacity value of the battery with each second capacity in the preset third correspondence relationship, and obtains the second capacity value that matches the actual capacity value of the battery in the correspondence relationship. Two capacity.
  • the battery management system matches the cumulative mileage of the electric vehicle with each mileage in the preset third correspondence relationship, and obtains the mileage that matches the cumulative mileage of the electric vehicle in the correspondence relationship.
  • the battery management system uses the second capacity that matches the actual capacity value of the battery in the third correspondence relationship and the first capacity that matches the mileage of the electric vehicle as the chargeable capacity of the battery. Limit.
  • the second capacity when the second capacity is constant, if the mileage is higher, the corresponding first capacity is smaller. In the third correspondence, if the mileage is constant, if the second capacity is lower, the corresponding first capacity is smaller. In other words, as the aging state of the battery becomes more serious, the upper limit of the chargeable capacity of the battery can be lowered, so as to avoid overcharging the battery and improve the safety of the battery.
  • S101 may include the following steps:
  • A2 Determine the actual state of health (SOH) of the battery based on the actual capacity value of the battery.
  • the actual SOH of the battery can be obtained based on the actual capacity value of the battery and the nominal capacity of the battery.
  • the ratio of the actual capacity of the battery to the nominal capacity of the battery is the actual SOH of the battery.
  • S101 can also include the following steps:
  • A3 according to the actual SOH and accumulated mileage, determine the upper limit of the battery's chargeable capacity.
  • the upper limit of the chargeable capacity of the battery can be determined according to the actual SOH of the battery, the mileage of the electric vehicle, and the preset fourth corresponding relationship.
  • the fourth correspondence is the correspondence between the capacity and the third parameter
  • the third parameter includes mileage and SOH.
  • Table 2 shows the preset fourth correspondence provided by an embodiment of the present application, that is, a schematic diagram of the correspondence between capacity and mileage c and SOH.
  • each value or value range in the first row in Table 2 represents a different mileage
  • Bt in the first column in Table 2 represents a different SOH.
  • t is an integer greater than or equal to 1 and less than or equal to 4.
  • Ejk represents a capacity value
  • j is an integer greater than or equal to
  • k is an integer greater than or equal to 1. That is, for any SOH and any c, the two correspond to a capacity value.
  • the number of SOH and mileage in Table 2 is only for illustration, and the number of SOH and mileage in the fourth correspondence can be adjusted according to actual needs.
  • the corresponding capacity value is smaller.
  • the corresponding capacity value is smaller. In other words, as the aging state of the battery becomes more serious, the upper limit of the chargeable capacity of the battery can be lowered, so as to avoid overcharging the battery and improve the safety of the battery.
  • the mileage c may also correspond to a mileage segment.
  • the obtained actual SOH can be matched with each SOH in the fourth correspondence in Table 2, and the SOH in the correspondence that matches the actual SOH of the battery can be found.
  • the absolute value of the difference between the actual SOH of the battery and a certain SOH in the corresponding relationship is less than or equal to the preset SOH difference threshold, it can be considered that the actual SOH of the battery matches the SOH in the corresponding relationship .
  • each mileage in the fourth correspondence in Table 2 is a mileage segment
  • the mileage segment into which the accumulated mileage of the electric vehicle falls is used as the matched mileage.
  • S1 is 10,000 kilometers
  • the accumulated mileage of an electric vehicle is 5000 kilometers
  • the mileage matched with the accumulated mileage of the electric vehicle in Table 2 is a mileage segment less than S1.
  • each mileage in the fourth corresponding relationship in Table 2 is a specific mileage value
  • the absolute value of the difference between the cumulative mileage of the electric vehicle and the corresponding relationship is less than the preset value.
  • the mileage of the mileage difference threshold is regarded as the mileage matched with the accumulated mileage of the electric vehicle.
  • each mileage in the fourth correspondence in Table 2 is a specific mileage value
  • the two mileage values in the correspondence relationship that are closest to the cumulative mileage of the electric vehicle As the cumulative mileage matched with the electric vehicle. For example, if S2 is 20,000 kilometers and S3 is 30,000 kilometers, when the accumulated mileage of an electric vehicle is 25,000 kilometers, then S2 and S3 are the mileages that match the accumulated mileage of the electric vehicle.
  • the mileage matched with the accumulated mileage of the electric vehicle is a mileage value or a mileage segment
  • the mileage matched with the accumulated mileage of the electric vehicle can be combined with the actual SOH of the battery.
  • the capacity value corresponding to the matched SOH is used as the upper limit of the battery's chargeable capacity.
  • the mileage that matches the accumulated mileage of the electric vehicle is the two nearest mileage values adjacent to the mileage value, it can be based on the two mileage values and the two mileage values respectively. Calculate the upper limit of the chargeable capacity of the battery with two capacity values corresponding to the SOH that matches the actual SOH of the battery.
  • the cumulative mileage S0 of the electric vehicle is greater than S2 and less than S3
  • the mileage matching the cumulative mileage S0 of the electric vehicle is S2 and S3.
  • the SOH that matches the actual SOH of the battery in Table 2 is 90%.
  • the capacity value corresponding to S2 and 90% is E23
  • the capacity value corresponding to S3 and 90% is E33.
  • the upper limit C0 of the chargeable battery capacity can be calculated based on the following formula:
  • the mileage may be a value or a mileage segment. If the mileage matched with the accumulated mileage of the electric vehicle is the two nearest mileage values adjacent to the mileage value, then based on the two mileage values and the two mileage values respectively and the second value matching the actual capacity value of the battery.
  • the two first capacity values corresponding to the two capacities are calculated to calculate the upper limit of the chargeable capacity of the battery. For the specific calculation method, please refer to formula (1), which will not be repeated here.
  • the battery charging control method 100 may further include:
  • S103 Determine the threshold value of the charging parameter of the battery based on the actual capacity value of the battery and the upper limit value of the chargeable capacity of the battery.
  • the charging parameter is the charging SOC
  • the threshold of the charging parameter includes the charging SOC threshold
  • S103 may include:
  • the ratio of the upper limit of the chargeable capacity to the actual capacity value is used as the charging SOC threshold of the battery.
  • a control command to stop charging the battery is sent to stop charging the battery and improve the safety of the battery.
  • the range of the threshold value of the charging SOC is [30%, 100%].
  • the charging parameter is the charging voltage
  • the threshold of the charging parameter includes the charging voltage threshold
  • step S103 not only includes S1301, but may also include:
  • S1303 Determine the charging voltage threshold of the battery based on the charging SOC threshold, the acquired current temperature of the battery, and the first correspondence.
  • the first correspondence is the correspondence between the voltage and the first parameter, and the first parameter includes temperature and SOC.
  • the first corresponding relationship can be obtained by the off-line calibration test of the battery during normal charging.
  • Table 3 shows a schematic diagram of the preset first correspondence provided by an embodiment of the present application.
  • Cq in the first row of Table 3 is a different SOC, and q is an integer greater than or equal to 1 and less than or equal to 4.
  • Tp in the first column of Table 3 represents different temperatures, and p is an integer greater than or equal to 1 and less than or equal to 5.
  • Ah in Table 3 represents different voltage values, and h is an integer greater than or equal to 1. For any SOC and any temperature, the two correspond to a voltage value. It should be noted that the number of SOCs and the number of temperatures in Table 3 are only indicative, and the number of SOCs and the number of temperatures in the first correspondence relationship can be adjusted according to actual requirements.
  • the voltage will gradually decrease as the SOC decreases, so as to reduce the charging cut-off voltage of the battery as the degree of aging becomes serious, so as to improve the safety of the battery.
  • the battery is a high nickel ternary lithium ion battery cathode material (NCM) battery
  • NCM nickel ternary lithium ion battery cathode material
  • the charge SOC threshold is matched with each SOC in the correspondence relationship in Table 3, and the SOC that matches the charge SOC threshold in the correspondence relationship in Table 3 is found.
  • the SOC whose absolute value of the difference from the charging SOC threshold is less than or equal to the preset SOC threshold may be the SOC matching the charging SOC threshold.
  • the current temperature of the battery is matched with each temperature in the corresponding relationship in mark 3, and the temperature in the corresponding relationship in Table 3 that matches the current temperature of the battery is found.
  • the temperature whose difference with the current temperature of the battery is less than or equal to the preset temperature threshold can be regarded as the temperature matching the current temperature of the battery.
  • the voltage value corresponding to the temperature matching the current temperature of the battery and the SOC matching the charging SOC threshold in Table 3 is used as the charging cut-off voltage of the battery.
  • a control command to stop charging the battery is sent to improve the safety of the battery and increase the service life of the battery.
  • the charging parameter includes a charging voltage and a charging SOC
  • the threshold of the charging parameter includes a charging SOC threshold and a charging voltage threshold
  • S103 may also include S1031 to S1303.
  • S1031 to S1303.
  • a control command to stop charging the battery is sent to improve the battery's Use safety and improve battery life.
  • the actual capacity of the battery can be determined to be 70Ah. Based on the actual capacity value of the battery and the nominal capacity of the battery, it can be concluded that the actual SOH of the battery is 70%.
  • the upper limit of the battery's chargeable capacity can be determined to be 55Ah.
  • the charging voltage threshold of the battery may be determined to be 3.9V.
  • the battery charging is stopped.
  • the charging SOC threshold of the battery shows a gradually decreasing trend, and the charging of the battery is terminated.
  • the voltage also shows a gradual decrease trend.
  • Fig. 2 shows a schematic structural diagram of a battery charging control device provided according to an embodiment of the present application.
  • the battery charging control device 200 includes:
  • the first obtaining module 210 is configured to obtain the threshold value and the initial value of the charging parameter of the battery based on the received charging request.
  • the threshold of the charging parameter is determined based on the actual capacity value of the battery and the accumulated mileage of the electric vehicle in which it is located.
  • the first control command sending module 220 is configured to send a control command to charge the battery if the initial value of the charging parameter is less than the threshold value of the charging parameter, so as to charge the battery;
  • the second obtaining module 230 is used to obtain the value of the charging parameter of the battery in real time during the charging process of the battery;
  • the second control command sending module 240 is configured to send a control command to stop charging the battery if the acquired value of the charging parameter of the battery is greater than the threshold value of the charging parameter, so as to stop charging.
  • the battery charging control device 200 may further include:
  • the upper limit value determination module of the rechargeable capacity is used to determine the upper limit value of the rechargeable capacity of the battery based on the actual capacity value of the battery and the accumulated mileage.
  • the charging parameter threshold determination module is used to determine the threshold of the charging parameter based on the actual capacity value and the upper limit of the chargeable capacity.
  • the charging parameter may be the charging state of charge SOC.
  • the threshold of the charging parameter includes the charging SOC threshold, and the charging parameter threshold determination module is used to: compare the upper limit of the chargeable capacity with the actual The ratio of the capacity value is used as the charging SOC threshold of the battery.
  • the charging parameter may be the charging voltage. Accordingly, the threshold of the charging parameter includes the charging voltage threshold, and the charging parameter threshold determination module can be used for:
  • the ratio of the upper limit of the chargeable capacity to the actual capacity value is used as the charging SOC threshold of the battery
  • the charging voltage threshold of the battery is determined based on the charging SOC threshold, the acquired current temperature of the battery, and the preset first correspondence.
  • the first correspondence is the correspondence between the voltage and the first parameter, and the first parameter includes temperature and SOC.
  • the charging parameter includes the charging voltage and the charging SOC.
  • the threshold of the charging parameter may include the charging SOC threshold and the charging voltage threshold, and the charging parameter threshold determination module can be used for:
  • the ratio of the upper limit of the chargeable capacity to the actual capacity value is used as the charging SOC threshold of the battery
  • the charging voltage threshold of the battery is determined based on the charging SOC threshold, the acquired current temperature of the battery, and the preset first correspondence.
  • the first correspondence is the correspondence between the voltage and the first parameter.
  • the first parameter includes temperature and SOC.
  • the actual capacity value may be determined based on the accumulated charge/discharge capacity value of the battery, and the accumulated charge/discharge capacity value of the battery may be any one of the following values:
  • the converted charge capacity value of the battery is the product of the charge capacity value of the battery and the conversion coefficient corresponding to the charge temperature of the battery
  • the converted discharge capacity value of the battery is the discharge capacity value of the battery corresponding to the discharge temperature of the battery The product of the conversion coefficient
  • the conversion coefficient corresponding to the charging temperature of the battery is determined based on the charging temperature of the battery and the corresponding relationship between the preset temperature and the conversion coefficient
  • the conversion coefficient corresponding to the discharge temperature of the battery is based on the discharge temperature of the battery and the preset temperature and the conversion coefficient. The corresponding relationship is determined.
  • the actual capacity value is determined based on the accumulated mileage and the preset second correspondence relationship, and the second correspondence relationship is the correspondence relationship between the mileage and the capacity.
  • the module for determining the upper limit value of the chargeable capacity can be used for:
  • the third correspondence is the correspondence between the first capacity and the second parameter.
  • the second parameter includes Second capacity and mileage.
  • the module for determining the upper limit value of the chargeable capacity may include:
  • the actual SOH determination unit is used to determine the actual health SOH of the battery based on the actual capacity value of the battery.
  • the upper limit value determining unit of the chargeable capacity is used to determine the upper limit value of the battery chargeable capacity according to the actual SOH and the accumulated mileage.
  • the unit for determining the upper limit value of the chargeable capacity can be used for:
  • the fourth correspondence is the correspondence between the capacity and the third parameter, and the third parameter includes the mileage and SOH.
  • the threshold value of the charging parameter of the battery is dynamically determined according to the actual capacity value of the battery and the accumulated mileage of the electric vehicle in which the battery is located, so as to dynamically calculate the threshold value of the charging parameter according to the aging state of the battery.
  • the process of charging the battery if the obtained value of the charging parameter of the battery is greater than the threshold value according to the newly calculated charging parameter, the charging of the battery is stopped.
  • FIG. 3 is a schematic diagram showing a hardware structure 300 of a battery management system according to an embodiment of the invention.
  • the battery management system 300 in this embodiment includes: a processor 301, a memory 302, a communication interface 303, and a bus 310.
  • the processor 301, memory 302, and communication interface 303 are connected through the bus 310 and complete mutual communication. Communication.
  • the aforementioned processor 301 may include a central processing unit (CPU) or a specific integrated circuit (ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present application.
  • CPU central processing unit
  • ASIC specific integrated circuit
  • the memory 302 may include mass storage for data or instructions.
  • the memory 302 may include an HDD, a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a universal serial bus (USB) drive, or a combination of two or more of these.
  • the storage 302 may include removable or non-removable (or fixed) media.
  • the memory 302 may be internal or external to the battery management system 300.
  • the memory 302 is a non-volatile solid state memory.
  • the memory 302 includes read-only memory (ROM).
  • the ROM can be mask-programmed ROM, programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), electrically rewritable ROM (EAROM) or flash memory or A combination of two or more of these.
  • the communication interface 303 is mainly used to implement communication between various modules, devices, units and/or devices in the embodiments of the present application.
  • the bus 310 includes hardware, software, or both, and couples the components of the battery management system 300 to each other.
  • the bus may include accelerated graphics port (AGP) or other graphics bus, enhanced industry standard architecture (EISA) bus, front side bus (FSB), hypertransport (HT) interconnect, industry standard architecture (ISA) Bus, unlimited bandwidth interconnect, low pin count (LPC) bus, memory bus, microchannel architecture (MCA) bus, peripheral component interconnect (PCI) bus, PCI-Express (PCI-X) bus, serial advanced technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of these.
  • the bus 310 may include one or more buses.
  • the battery management system 300 shown in FIG. 3 may be implemented as including: a processor 301, a memory 302, a communication interface 303, and a bus 310.
  • the processor 301, the memory 302, and the communication interface 303 are connected through the bus 310 and complete communication with each other.
  • the memory 302 is used to store program code; the processor 301 runs a program corresponding to the executable program code by reading the executable program code stored in the memory 302, so as to execute the battery charging control in any embodiment of the present application Method, thereby realizing the battery charging control method and device described in conjunction with FIG. 1 to FIG. 2.
  • An embodiment of the present application also provides a computer storage medium, which stores computer program instructions; when the computer program instructions are executed by a processor, the battery charging control method of any embodiment provided in the present application is implemented.
  • Examples of computer storage media include non-transitory computer storage media such as electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, and hard disks.
  • the functional blocks shown in the above structural block diagram can be implemented as hardware, software, firmware, or a combination thereof.
  • hardware When implemented in hardware, it can be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, and so on.
  • ASIC application specific integrated circuit
  • the elements of this application are programs or code segments used to perform required tasks.
  • the program or code segment may be stored in a machine-readable medium, or transmitted on a transmission medium or communication link through a data signal carried in a carrier wave.
  • "Machine-readable medium" may include any medium that can store or transmit information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and so on.
  • the code segment can be downloaded via a computer network such as the Internet, an intranet, and so on.
  • These programs or code segments can be provided to the processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device to produce a machine that enables instructions executed by the processor of the computer or other programmable data processing device Implementation of the functions/actions specified in one or more blocks of the flowcharts and/or block diagrams.
  • a processor can be, but is not limited to, a general-purpose processor, a dedicated processor, a special application processor, or a field programmable logic circuit.
  • the exemplary embodiments mentioned in the present invention describe some methods or systems based on a series of steps or devices.
  • the present invention is not limited to the order of the above steps, that is, the steps may be performed in the order mentioned in the embodiments, or may be different from the order in the embodiments, or several steps may be performed at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medical Informatics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

一种电池的充电控制方法(100)、装置、电池管理系统和介质。该方法包括:基于接收的充电请求,获取电池的充电参数的阈值和初始值(S110);充电参数的阈值是基于电池的实际容量值和所在的电动汽车的累计行驶里程确定的;若充电参数的初始值小于充电参数的阈值,发送对电池进行充电的控制命令,以对电池进行充电(S120);在电池的充电过程中,实时获取电池的充电参数的数值(S130);若获取的电池的充电参数的数值大于或等于充电参数的阈值,则发送停止对电池充电的控制命令,以停止充电(S140)。

Description

电池的充电控制方法、装置、电池管理系统和介质
相关申请的交叉引用
本申请要求享有于2020年04月23日提交的名称为“电池的充电控制方法、装置、电池管理系统和介质”的中国专利申请202010328925.4的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及新能源领域,尤其涉及一种电池的充电控制方法、装置、电池管理系统和介质。
背景技术
锂离子电池由于其高能量密度和循环性能等优点,被广泛应用于电动汽车等领域。然而,锂离子电池在不同的充电或放电工况下,具有不同的老化速率。
在充电过程中,锂离子电池负极电位下降。若负极局部电位持续过低,则很可能导致锂离子在负极表面获取电子后无法及时扩散嵌入负极,造成负极锂枝晶,甚至刺穿隔膜造成内短路,引发电池老化加剧甚至导致安全问题。
当电池长期使用达到质保甚至设计寿命后,电池参数在严重老化后发生变异,例如阻抗增加,锂离子损失等,导致电池发生析锂以及热失控等安全风险。因此,急需提供一种充电方法以提高电池使用的安全性。
发明内容
本申请实施例提供一种电池的充电控制方法、装置、电池管理系统和介质,提高了电池使用的安全性。
第一方面,本申请实施例提供一种电池的充电控制方法,包括:
基于接收的充电请求,获取电池的充电参数的阈值和初始值;充电参数的阈值是基于电池的实际容量值和所在的电动汽车的累计行驶里程确定的;
若充电参数的初始值小于充电参数的阈值,发送对电池进行充电的控制命令,以对电池进行充电;
在电池的充电过程中,实时获取电池的充电参数的数值;
若获取的电池的充电参数的数值大于或等于充电参数的阈值,则发送停止对电池充电的控制命令,以停止充电。
第二方面,本申请实施例提供一种电池的充电控制装置,包括:
第一获取模块,用于基于接收的充电请求,获取电池的充电参数的阈值和初始值;充电参数的阈值是基于电池的实际容量值和所在的电动汽车的累计行驶里程确定的;
第一控制命令发送模块,用于若充电参数的初始值小于充电参数的阈值,发送对电池进行充电的控制命令,以对电池进行充电;
第二获取模块,用于在电池的充电过程中,实时获取电池的充电参数的数值;
第二控制命令发送模块,用于若获取的电池的充电参数的数值大于或等于充电参数的阈值,则发送停止对电池充电的控制命令,以停止充电。
第三方面,本申请实施例提供一种电池管理系统,包括:处理器以及存储有计算机程序指令的存储器;
处理器执行计算机程序指令时实现如本申请实施例提供的电池的充电控制方法。
第四方面,本申请实施例提供一种计算机存储介质,计算机存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现如本申请实施例提供的电池的充电控制方法。
本申请实施例提供的电池的充电控制方法、装置、电池管理系统和介质,根据电池的实际容量值和电池所在的电动汽车的累计行驶里程动态确定电池的充电参数的阈值,以实现依据电池的老化状态来动态计算充电参数的阈值。在对电池充电的过程中,若获取的电池的充电参数的数值大于最新计算的充电参数的阈值时,则停止对电池充电。通过考虑电池的老化状态来确定电池的充电参数的阈值,可以防止在电池老化状态时出现过充或热失控等情况,提高了电池使用的安全性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本申请提供的电池的充电控制方法的一个实施例的流程示意图;
图2示出本申请提供的电池的充电控制装置的一个实施例的结构示 意图;
图3示出本申请提供的电池管理系统的一个实施例的结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
目前在对电池的充电过程中,通常根据充电参数是否达到一个预设的固定上限,来判断是否停止对电池充电。在电动汽车处于超期服役的情况下,若仍利用充电参数的固定上限来判断是否停止对电池充电,则会导致电池存在过充或热失控等安全风险。
基于此,本申请实施例提供一种电池的充电控制方法,根据电池的实际容量值和电池所在的电动汽车的累计行驶里程动态确定电池的充电参数的阈值,以实现依据电池的老化状态来动态计算充电参数的阈值。在对电池充电的过程中,若获取的电池的充电参数的数值大于最新计算的充电参数的阈值时,则停止对电池充电。通过考虑电池的老化状态来确定电池的充电参数的阈值,可以防止在电池老化状态时出现过充或热失控等情 况,提高了电池使用的安全性。
图1示出本申请实施例提供的电池的充电控制方法100的流程示意图。如图1所示,电池的充电控制方法100包括以下步骤:
S110,基于接收的充电请求,获取电池的充电参数的阈值和初始值。充电参数的阈值是基于电池的实际容量值和电池所在的电动汽车的累计行驶里程确定的。
在本申请的一些实施例中,电池的实际容量值是一个用来表征电池的老化状态的一个参数。在一些实施例中,电池的实际容量值可以基于电池的累计充/放电容量值确定。
作为一个示例,电池的累计充/放电容量值可以为以下任意一个值:累计的电池每次充电时的充电容量值和电池的回充容量的和值、累计的电池每次放电时的放电容量值、累计的电池每次充电时的充电容量值和累计的电池每次放电时的放电容量值的和值。电池的充电容量是指在规定条件下测得的电池充入的容量值,电池的放电容量是指在规定条件下测得的电池输出的容量值。
在本申请的一些实施例中,为了提高对电池的累计充/放电容量值累计的准确性,电池的累计充/放电容量值还可以为以下任意一个值:累计的电芯的经折算后的充电容量值、累计的电芯的经折算后的放电容量值、累计的电芯的经折算后的充电容量值和累计的电芯的经折算后的放电容量值的和值。电池的充电温度对应的折算系数基于电池的充电温度和预设的温度与折算系数的对应关系确定,电池的放电温度对应的折算系数基于电池的放电温度和预设的温度与折算系数的对应关系确定。
也就是说,在电池的每次充电过程中获取电池的充电温度。然后将电池的充电温度与预设的温度与折算系数的对应关系中的温度进行匹配,并将该对应关系中与电池的充电温度匹配的温度所对应的折算系数作为电池的充电温度对应的折算系数。
相类似的,在电池的每次放电过程中获取电池的放电温度。然后将电池的放电温度与预设的温度与折算系数的对应关系中的温度进行匹配,并将该对应关系中与电池的放电温度匹配的温度所对应的折算系数作为电 池的放电温度对应的折算系数。
由于电池的放电温度会影响电池的放电容量,电池的充电温度会影响电池的充电容量,为了提高对电池的累计充/放电容量值累计的准确性,可以利用电池的经温度折算后的充电容量和/或放电容量来计算电池的累计充/放电容量值。
作为一个具体示例,电池管理系统可以基于预先标定的充/放电容量与实际容量的对应关系,以及获取的电池的累计充/放电容量值确定电池的实际容量值。
需要说明的是,预先标定的充/放电容量与实际容量的对应关系中充/放电容量的统计方式与电池的累计充/放电容量值的统计方式相同。
作为一个示例,若电池的累计充/放电容量值为累计的电池每次充电时的充电容量和回充容量的和值,则预先标定的充/放电容量与实际容量的对应关系为充电容量与实际容量的对应关系。
若电池的累计充/放电容量值为累计的电池每次放电时的放电容量,则预先标定的充/放电容量与实际容量的对应关系为放电容量与实际容量的对应关系。
若电池的累计充/放电容量值为累计的电池每次放电时的放电容量值和累计的电池每次充电时的充电容量值的和值,则预先标定的充/放电容量与实际容量的对应关系为充放电容量与实际容量的对应关系。
表1示出本申请一实施例提供的预先标定的充/放电容量与实际容量的对应关系的示意图。
      表1
充/放电容量/Ah 实际容量/Ah
A1 D1
A2 D2
A3 D3
A4 D4
其中,Ai为不同的充/放电容量值,Di为不同的实际容量值,i为大于等于1且小于等于4的整数。需要说明的是,表1中关于充/放电容量的个数仅是示意,对于第一对应关系中充/放电容量的个数可根据实际需求进行调整。
在预先标定的充/放电容量与实际容量的对应关系中,随着充/放电容量的增加,即随着电池的充放电次数的增加,实际容量呈现出递减趋势。对于表1中的对应关系可以根据历史记录的充/放电容量数据和实际容量值预先进行线下标定。
在本申请的实施例中,当电池管理系统获取电池的累计充/放电容量值之后,将电池的累计充/放电容量值与预先标定的充/放电容量与实际容量的对应关系中的每个充/放电容量进行匹配,得到在该对应关系中与电池的累计充/放电容量值匹配的充/放电容量,并将该充/放电容量对应的实际容量作为电池的实际容量值。
通过利用预设的充/放电容量与实际容量的对应关系可以快速地得到电池的实际容量值,提高了对充电参数的阈值的计算效率。
需要说明的是,当电池的累计充/放电容量值是利用经温度折算后的充电容量和/或放电容量进行计算的情况下,预先标定的充/放电容量与实际容量的对应关系中的充/放电容量也是经温度折算后的容量。
在本申请的一些实施例中,电池的实际容量值也可以基于电动汽车的累计行驶里程以及预设的行驶里程和容量的第二对应关系确定。例如,电池管理系统先将电动汽车的累计行驶里程与预设的第二对应关系中的每个行驶里程进行匹配,得到在该第二对应关系中与电动汽车的累计行驶里程匹配的行驶里程。然后电池管理系统将在预设的第二对应关系中与电动汽车的累计行驶里程匹配的行驶里程对应的容量作为电池的实际容量值。对于电池的实际容量的具体获取方法,在此并不限定。
在本申请的实施例中,电池的充电控制方法可以应用于电池管理系统。若电动汽车需要充电,则需要先将电动汽车与充电桩连接。当充电桩与电动汽车连接之后,充电桩会向电池管理系统发送充电请求,以请求对电动汽车中的电池组进行充电。
电池管理系统接收到充电请求之后,获取电池的充电参数的阈值和初始值。
在本申请的实施例中,电池的充电参数的初始值是指电池管理系统接收到充电请求之后第一次获取的电池的充电参数的数值。
在本申请的实施例中,充电参数可以为充电荷电状态(State of Charge,SOC)和充电电压中的至少一种。需要说明的是,电池的充电电压是指采集的电池两端电压的压差。电池的充电SOC是由电池管理系统中的SOC计算模块实时计算的,具体计算方法在此不限定。
在本申请的实施例中,考虑到随着电动汽车的使用时间的增加,电池的老化状态在不断变化,因此充电参数的阈值是由电池管理系统实时计算的。作为一个示例,电池管理系统每隔预设时间间隔计算一次充电参数的阈值。当电池管理系统接收到充电请求后,则获取最新计算的充电参数的阈值。
电池的充电控制方法100还包括以下步骤:
S120,若充电参数的初始值小于充电参数的阈值,发送对电池进行充电的控制命令,以对电池进行充电。
在本申请的实施例中,若充电参数的初始值大于或等于充电参数的阈值,则电池管理系统向充电桩发送不充电的控制指令,以提高电池的使用安全性,防止产生过充或热失控等问题。
若充电参数的初始值小于充电参数的阈值,则代表可以对电池进行充电,则电池管理系统向充电桩发送对电池充电的控制指令。充电桩接收到对电池进行充电的控制指令后,对电池开始充电。
电池的充电控制方法100还包括以下步骤:
S130,在电池的充电过程中,实时获取电池的充电参数的数值。
S140,若获取的电池的充电参数的数值大于或等于充电参数的阈值,则发送停止对电池充电的控制命令,以停止充电。
在电池的充电过程中,电池管理系统实时获取充电参数的数值,每获取一个电池的充电参数的数值,则判断获取的电池的充电参数的数值是否大于或等于充电参数的阈值。
若获取的电池的充电参数的数值小于充电参数的阈值,则电池管理系统不动作,充电桩可以继续对电池进行充电。
若获取的电池的充电参数的数值大于或等于充电参数的阈值,则电池管理系统向充电桩发送停止对电池充电的控制指令。充电桩接收到电池 管理系统发送的停止对电池充电的控制指令之后,则停止对电池进行充电。
在本申请的实施例中,通过根据电池的老化状态,即电池的实际容量值和电池所在的电动汽车的累计行驶里程,动态确定电池的充电参数的阈值,而不是固定充电参数的上限,充分考虑了电池目前的老化状态,可以提高电池使用的安全性。
值得一提的是,在一些实施例中,随着电池的老化状态的严重程度的增加,可以通过减小充电参数的阈值,以减少电池的充入容量,实现延长电池的安全寿命,提高电池的使用安全性。也就是说,随着电池的实际容量值和电动汽车的行驶里程的增加,逐渐降低充电参数的阈值。
在本申请的实施例中,在S110之前,电池管理系统在实时计算充电参数的阈值。下面详细介绍电池的充电参数的阈值的具体计算方法。
在本申请的实施例中,在S110之前,电池的充电控制方法100还可以包括:
S101,基于电池的实际容量值和累计行驶里程,确定电池的可充入容量上限值。
在本申请的一些实施例中,S101可以包括以下步骤:
A1,基于电池的实际容量值、累计行驶里程以及预设的第三对应关系,确定电池的可充入容量上限值,第三对应关系为第一容量与第二参数的对应关系,第二参数包括第二容量和行驶里程。
在本申请的实施例中,电池管理系统将电池的实际容量值与预设的第三对应关系中的每个第二容量进行匹配,得到在该对应关系中与电池的实际容量值匹配的第二容量。
电池管理系统将电动汽车的累计行驶里程与预设的第三对应关系中的每个行驶里程进行匹配,得到在该对应关系中与电动汽车的累计行驶里程匹配的行驶里程。
最后,电池管理系统将在第三对应关系中与电池的实际容量值匹配的第二容量和与电动汽车的累计行驶里程匹配的行驶里程共同对应的第一容量,作为电池的可充入容量上限值。
在预设的第三对应关系中,在第二容量一定的情况下,若行驶里程越高,对应的第一容量越小。在第三对应关系中,在行驶里程一定的情况下,则若第二容量越低,对应的第一容量越小。也就是说,随着电池老化状态逐步严重,则可以降低电池的可充入容量上限值,从而实现避免对电池进行过充,提高了电池的使用的安全性。
在本申请的一些实施例中,考虑到电池的规格可能有所不同,为了提高本申请实施例提供的电池的充电控制方法的适用性,S101可以包括以下步骤:
A2,基于电池的实际容量值,确定电池的实际健康度(State Of Health,SOH)。
在本申请的实施例中,基于电池的实际容量值和电池的标称容量可以得到电池的实际SOH。电池的实际容量值与电池的标称容量的比值即为电池的实际SOH。
在A2之后,S101还可以包括以下步骤:
A3,根据实际SOH和累计行驶里程,确定电池的可充入容量上限值。
在本申请的一些实施例中,可根据电池的实际SOH、电动汽车的行驶里程以及预设第四对应关系,确定电池的可充入容量上限值。其中,第四对应关系为容量与第三参数的对应关系,第三参数包括行驶里程和SOH。表2示出本申请一实施例提供的预设的第四对应关系,即容量与行驶里程c和SOH的对应关系的示意图。
                          表2
Figure PCTCN2020132901-appb-000001
其中,对于容量与行驶里程c和SOH的对应关系可以通过线下标定 测试获得。如表2所示,表2中的第1行中的每个数值或数值范围代表不同的行驶里程,表2中的第1列中的Bt代表不同的SOH。t为大于等于1且小于等于4的整数。Ejk代表一个容量值,j为大于等于0的整数,k为大于等于1的整数。即对于任意一个SOH,以及任意一个c,两者对应一个容量值。需要说明的是,表2中关于SOH的个数和行驶里程的个数仅是示意,对于第四对应关系中SOH的个数和行驶里程的个数可根据实际需求进行调整。
在预设的第四对应关系中,在SOH一定的情况下,则若行驶里程越高,对应的容量值越小。在预设的第四对应关系中,在行驶里程一定的情况下,则若SOH越低,对应的容量值越小。也就是说,随着电池老化状态逐步严重,则可以降低电池的可充入容量上限值,从而实现避免对电池进行过充,提高了电池的使用的安全性。
在另一些实施例中,在预设的第四对应关系中,行驶里程c也可以对应一个里程段。
在本申请的实施例中,可以将获取的实际SOH与表2中的第四对应关系中的每个SOH进行匹配,找到该对应关系中与电池的实际SOH匹配的SOH。作为一个示例,若电池的实际SOH与对应关系中的某个SOH之间的差值的绝对值小于等于预设SOH差值阈值,则可以认为电池的实际SOH与对应关系中的该SOH相匹配。
然后,将获取的电动汽车累计行驶里程与表2中的第四对应关系中的每个行驶里程进行匹配。
在一个示例中,若表2中的第四对应关系中的每个行驶里程为一个里程段,则电动汽车的累计行驶里程落入的里程段作为与其匹配的行驶里程。如表2所示,若S1为10000千米,在电动汽车累计行驶里程为5000千米的情况下,则在表2中与电动汽车累计行驶里程匹配的行驶里程为小于S1的里程段。
在另一个示例中,若表2中的第四对应关系中的每个行驶里程为一个具体的里程值,则将该对应关系中与电动汽车的累计行驶里程的差值的绝对值小于预设里程差值阈值的行驶里程,作为与电动汽车的累计行驶里 程匹配的行驶里程。
在又一个示例中,若表2中的第四对应关系中的每个行驶里程为一个具体的里程值,则将该对应关系中与电动汽车的累计行驶里程相邻最近的前后两个里程值,作为与电动汽车的累计匹配的行驶里程。例如,若S2为20000千米,S3为30000千米,在电动汽车累计行驶里程为25000千米的情况下,则S2和S3为与电动汽车的累计行驶里程匹配的里程。
最后,基于表2中的第四对应关系中与电池的实际SOH匹配的SOH以及与电动汽车的累计行驶里程匹配的行驶里程共同对应的容量值,得出电池的可充入容量上限值。
在本申请的一些实施例中,若与电动汽车的累计行驶里程匹配的里程为一个行驶里程值或一个行驶里程段,则可以将与电动汽车的累计行驶里程匹配的里程和与电池的实际SOH匹配的SOH共同对应的容量值作为电池的可充入容量上限值。
在本申请的一些实施例中,若与电动汽车的累计行驶里程匹配的里程为与该里程值相邻最近的前后两个里程值,则可以基于这两个里程值以及这两个里程值分别和与电池的实际SOH匹配的SOH共同对应的两个容量值,计算电池的可充入容量上限值。
作为一个示例,若电动汽车的累计行驶里程S0大于S2且小于S3,则与电动汽车的累计行驶里程S0匹配的行驶里程为S2和S3。若在表2中与电池的实际SOH匹配的SOH为90%。则在表2中S2和90%共同对应的容量值为E23,在表2中S3和90%共同对应的容量值为E33。则基于下述公式可以计算电池的可充入容量上限值C0:
Figure PCTCN2020132901-appb-000002
需要说明的是,在预设的第一容量与第二容量和行驶里程的对应关系中,行驶里程可以为一个值,也可以为一个里程段。若与电动汽车的累计行驶里程匹配的里程为与该里程值相邻最近的前后两个里程值,则基于这两个里程值以及这两个里程值分别和与电池的实际容量值匹配的第二容量共同对应的两个第一容量值,计算电池的可充入容量上限值。具体计算方法,可参考公式(1),在此不再赘述。
在S101之后,电池的充电控制方法100还可以包括:
S103,基于电池的实际容量值和电池的可充入容量上限值,确定电池的充电参数的阈值。
在本申请的一些实施例中,充电参数为充电SOC,则相应地,充电参数的阈值包括充电SOC阈值。
其中,S103可以包括:
S1301,将可充入容量上限值与实际容量值的比值,作为电池的充电SOC阈值。
在获取的电池的充电SOC大于或等于充电SOC阈值的情况下,则发送停止对电池充电的控制命令,以停止对电池进行充电,提高电池的安全性。
在本申请的一些实施例中,充电SOC的阈值的范围为[30%,100%]。
在本申请的另一些实施例中,充电参数为充电电压,则相应地,充电参数的阈值包括充电电压阈值。
在这种情况下,步骤S103不仅包括S1301,还可以包括:
S1303,基于充电SOC阈值、获取的电池的当前温度以及第一对应关系,确定电池的充电电压阈值,第一对应关系为电压与第一参数的对应关系,第一参数包括温度和SOC。
第一对应关系可以通过电池在正常充电时线下标定测试获得。
作为一个示例,表3示出本申请一实施例提供的预设的第一对应关系的示意图。
                       表3
Figure PCTCN2020132901-appb-000003
如表3所示,表3中的第1行中的Cq为不同的SOC,q为大于等于1且小于等于4的整数。表3中的第1列中的Tp代表不同的温度,p为大于等于1且小于等于5的整数。表3中的Ah代表不同的电压值,h为大于等于1的整数。对于任意一个SOC,以及任意一个温度,两者对应一个电压值。需要说明的是,表3中关于SOC的个数和温度的个数仅是示意,对于第一对应关系中SOC的个数和温度的个数可根据实际需求进行调整。
在第一对应关系中,若温度一定,随着SOC的降低,电压呈现逐步降低趋势,从而实现随着老化程度的严重,降低电池的充电截止电压,以提高电池的使用安全性。
作为一个示例,若电池为高镍三元锂离子电池正极材料(NCM)电池,则表3中每个电压值的范围均位于[3.6V,4.3V]。
当获取电池的充电SOC阈值之后,将该充电SOC阈值与表3中的对应关系中的每个SOC进行匹配,查找到表3的对应关系中与充电SOC阈值匹配的SOC。作为一个示例,在预设的第一对应关系中,与充电SOC阈值的差值的绝对值小于等于预设SOC阈值的SOC可以为与充电SOC阈值匹配的SOC。
当获取电池的当前温度之后,将电池的当前温度与标3中的对应关系中的每个温度进行匹配,查找到表3中的对应关系中与电池的当前温度匹配的温度。作为一个示例,在预设的第一对应关系中,与电池的当前温度的差值小于等于预设温度阈值的温度即可以为与电池的当前温度匹配的温度。
接着,将表3中与电池的当前温度匹配的温度和与充电SOC阈值匹配的SOC共同对应的电压值作为电池的充电截止电压。
在获取的电池的充电电压大于或等于充电电压阈值的情况下,则发送停止对电池充电的控制命令,以提高电池的使用安全性,提高电池的使用寿命。
在本申请的又一些实施例中,充电参数包括充电电压和充电SOC,则相应地,充电参数的阈值包括充电SOC阈值和充电电压阈值。
在这种情况下,S103也可以包括S1031~S1303,具体实现方式可 参见上述叙述,在此不再赘述。
在此种应用场景下,在获取的电池的充电电压大于或等于充电电压阈值,且获取的充电SOC大于或等于充电SOC阈值的情况下,则发送停止对电池充电的控制命令,以提高电池的使用安全性,提高电池的使用寿命。
下面以标称容量为100Ah,质保为3年30万公里运营车质保的电池为例,介绍本申请实施例提供的电池的充电控制方法的具体实现过程。
若统计电池从出厂至今的累计充电容量为150000Ah,则根据预设的充电容量与实际容量的对应关系,可以确定电池的实际容量值为70Ah。基于电池的实际容量值和电池的标称容量,可以得出电池的实际SOH为70%。
若电动汽车的累计行驶里程为35万公里,根据预设的容量值与行驶里程和SOH的对应关系,可以确定电池的可充入容量上限值为55Ah。
基于电池的实际SOH和电池的可充入容量上限值可以计算出电池的充电SOC阈值=55Ah/70Ah=78.6%。
在一些示例性实施例中,根据电池的充电SOC阈值和电池的当前温度,以及预设的第一对应关系,可以确定电池的充电电压阈值为3.9V。
在电池的充电过程中,若SOC模块计算得到的SOC达到充电SOC阈值78.6%,和/或在电池的电压达到3.9伏,则停止对电池充电。
在本申请实施例中,从电池出厂开始至电池的最终寿命期间,随着电池的老化状态逐渐严重,为了提高电池的使用安全性,电池的充电SOC阈值呈现逐渐降低的趋势,电池的充电截止电压也呈现逐渐降低的趋势。
图2示出了根据本申请一实施例提供的电池的充电控制装置的结构示意图。如图2所示,电池的充电控制装置200包括:
第一获取模块210,用于基于接收的充电请求,获取电池的充电参数的阈值和初始值。充电参数的阈值是基于电池的实际容量值和所在的电动汽车的累计行驶里程确定的。
第一控制命令发送模块220,用于若充电参数的初始值小于充电 参数的阈值,发送对电池进行充电的控制命令,以对电池进行充电;
第二获取模块230,用于在电池的充电过程中,实时获取电池的充电参数的数值;
第二控制命令发送模块240,用于若获取的电池的充电参数的数值大于充电参数的阈值,则发送停止对电池充电的控制命令,以停止充电。
在本申请的实施例中,电池的充电控制装置200还可以包括:
可充入容量上限值确定模块,用于基于电池的实际容量值和累计行驶里程,确定电池的可充入容量上限值。
充电参数阈值确定模块,用于基于实际容量值和可充入容量上限值,确定充电参数的阈值。
在本申请的实施例中,充电参数可以为充电荷电状态SOC,相应地,充电参数的阈值包括充电SOC阈值,则充电参数阈值确定模块,用于:将可充入容量上限值与实际容量值的比值,作为电池的充电SOC阈值。
在本申请的实施例中,充电参数可以为充电电压,相应地,充电参数的阈值包括充电电压阈值,则充电参数阈值确定模块,可以用于:
将可充入容量上限值与实际容量值的比值,作为电池的充电SOC阈值;
基于充电SOC阈值、获取的电池的当前温度以及预设的第一对应关系,确定电池的充电电压阈值,第一对应关系为电压与第一参数的对应关系,第一参数包括温度和SOC。
在本申请的实施例中,充电参数包括充电电压和充电SOC,相应地,充电参数的阈值可以包括充电SOC阈值和充电电压阈值,则充电参数阈值确定模块,可以用于:
将可充入容量上限值与实际容量值的比值,作为电池的充电SOC阈值;
基于充电SOC阈值、获取的电池的当前温度以及预设的第一对应关系,确定电池的充电电压阈值,第一对应关系为电压与第一参数的对应 关系,第一参数包括温度和SOC。
在本申请的实施例中,实际容量值可以基于电池的累计充/放电容量值确定,电池的累计充/放电容量值可以为以下任意一个值:
累计的电池的经折算后的充电容量值、放电容量值、充电容量值和放电容量值的和值;
其中,电池的经折算后的充电容量值为电池的充电容量值与电池的充电温度对应的折算系数的乘积,电池的经折算后的放电容量值为电池的放电容量值与电池的放电温度对应的折算系数的乘积;
其中,电池的充电温度对应的折算系数基于电池的充电温度和预设的温度与折算系数的对应关系确定,电池的放电温度对应的折算系数基于电池的放电温度和预设的温度与折算系数的对应关系确定。
在本申请的实施例中,实际容量值基于累计行驶里程以及预设的第二对应关系确定,第二对应关系为行驶里程和容量的对应关系。
在本申请的实施例中,可充入容量上限值确定模块,可以用于:
基于电池的实际容量值、累计行驶里程以及预设的第三对应关系,确定电池的可充入容量上限值,第三对应关系为第一容量与第二参数的对应关系,第二参数包括第二容量和行驶里程。
在本申请的实施例中,可充入容量上限值确定模块,可以包括:
实际SOH确定单元,用于基于电池的实际容量值,确定电池的实际健康度SOH。
可充入容量上限值确定单元,用于根据实际SOH和累计行驶里程,确定电池的可充入容量上限值。
在本申请的实施例中,可充入容量上限值确定单元,可以用于:
根据实际SOH、累计行驶里程以及预设的第四对应关系,确定电池的可充入容量上限值,第四对应关系为容量与第三参数的对应关系,第三参数包括行驶里程和SOH。
在本申请的实施例中,根据电池的实际容量值和电池所在的电动汽车的累计行驶里程动态确定电池的充电参数的阈值,以实现依据电池的老化状态来动态计算充电参数的阈值。在对电池充电的过程中,若获取的 电池的充电参数的数值大于根据最新计算的充电参数的阈值时,则停止对电池充电。通过考虑电池的老化状态来确定电池的充电参数的阈值,提高了电池使用的安全性。
根据本申请实施例的电池的充电控制装置的其他细节与以上结合图1描述的根据本申请实施例的方法类似,在此不再赘述。
结合图1至图2描述的根据本申请实施例的电池的充电控制方法和装置可以由电池的电池管理系统来实现。图3是示出根据发明实施例的电池管理系统的硬件结构300示意图。
如图3所示,本实施例中的电池管理系统300包括:处理器301、存储器302、通信接口303和总线310,处理器301、存储器302、通信接口303通过总线310连接并完成相互间的通信。
具体地,上述处理器301可以包括中央处理器(CPU),或者特定集成电路(ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器302可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器302可包括HDD、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器302可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器302可在电池管理系统300的内部或外部。在特定实施例中,存储器302是非易失性固态存储器。在特定实施例中,存储器302包括只读存储器(ROM)。在合适的情况下,该ROM可以是掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些的组合。
通信接口303,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线310包括硬件、软件或两者,将电池管理系统300的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT) 互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线310可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
也就是说,图3所示的电池管理系统300可以被实现为包括:处理器301、存储器302、通信接口303和总线310。处理器301、存储器302和通信接口303通过总线310连接并完成相互间的通信。存储器302用于存储程序代码;处理器301通过读取存储器302中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于执行本申请任一实施例中的电池的充电控制方法,从而实现结合图1至图2描述的电池的充电控制方法和装置。
本申请实施例还提供一种计算机存储介质,该计算机存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现本申请提供的任意实施例的电池的充电控制方法。计算机存储介质的例子包括非暂态计算机存储介质,如电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质 或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。这些程序或者代码段可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。
需要说明的是,本发明中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本发明不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
以上所述,仅为本发明的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。
以上,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。

Claims (13)

  1. 一种电池的充电控制方法,包括:
    基于接收的充电请求,获取电池的充电参数的阈值和初始值;所述充电参数的阈值是基于所述电池的实际容量值和所在的电动汽车的累计行驶里程确定的;
    若所述充电参数的初始值小于所述充电参数的阈值,发送对所述电池进行充电的控制命令,以对所述电池进行充电;
    在所述电池的充电过程中,实时获取所述电池的充电参数的数值;
    若获取的所述电池的充电参数的数值大于或等于所述充电参数的阈值,则发送停止对所述电池充电的控制命令,以停止充电。
  2. 根据权利要求1所述的方法,其中,在所述基于接收的充电请求,获取电池的充电参数的阈值和初始值之前,所述方法还包括:
    基于所述电池的实际容量值和所述累计行驶里程,确定所述电池的可充入容量上限值;
    基于所述实际容量值和所述可充入容量上限值,确定所述充电参数的阈值。
  3. 根据权利要求2所述的方法,其中,所述充电参数为充电荷电状态SOC,所述充电参数的阈值包括充电SOC阈值;
    其中,所述基于所述实际容量值和所述可充入容量上限值,确定所述电池的充电参数的阈值,包括:
    将所述可充入容量上限值与所述实际容量值的比值,作为所述电池的充电SOC阈值。
  4. 根据权利要求2所述的方法,其中,所述充电参数为充电电压,相应地,所述充电参数的阈值包括充电电压阈值;
    其中,所述基于所述实际容量值和所述可充入容量上限值,确定所述充电参数的阈值,包括:
    将所述可充入容量上限值与所述实际容量值的比值,作为所述电池的充电SOC阈值;
    基于所述充电SOC阈值、获取的所述电池的当前温度以及预设的第一对应关系,确定所述电池的充电电压阈值,
    第一对应关系为电压与第一参数的对应关系,所述第一参数包括温度和SOC。
  5. 根据权利要求2所述的方法,其中,所述充电参数包括充电电压和充电SOC,所述充电参数的阈值包括充电SOC阈值和充电电压阈值;
    其中,所述基于所述实际容量值和所述可充入容量上限值,确定所述充电参数的阈值,包括:
    将所述可充入容量上限值与所述实际容量值的比值,作为所述电池的充电SOC阈值;
    基于所述充电SOC阈值、获取的所述电池的当前温度以及预设的第一对应关系,确定所述电池的充电电压阈值,
    第一对应关系为电压与第一参数的对应关系,所述第一参数包括温度和SOC。
  6. 根据权利要求1所述的方法,其中,所述实际容量值基于所述电池的累计充/放电容量值确定,
    所述电池的累计充/放电容量值为以下任意一个值:
    累计的所述电池的折算后的充电容量值、放电容量值、充电容量值与放电容量值的和值,
    所述电池的折算后的充电容量值为所述电池的充电容量值与所述电池的充电温度对应的折算系数的乘积,所述电池的充电温度对应的折算系数基于所述电池的充电温度和预设的温度与折算系数的对应关系确定;
    所述电池的折算后的放电容量值为所述电池的放电容量值与所述电池的放电温度对应的折算系数的乘积,所述电池的放电温度对应的折算系数基于所述电池的放电温度和所述预设的温度与折算系数的对应关系确定。
  7. 根据权利要求1所述的方法,其中,所述实际容量值基于所述累计行驶里程以及预设的第二对应关系确定,
    所述第二对应关系为行驶里程和容量的对应关系。
  8. 根据权利要求2所述的方法,其中,所述基于所述电池的实际容量值和所述累计行驶里程,确定所述电池的可充入容量上限值,包括:
    基于所述电池的实际容量值、所述累计行驶里程,以及预设的第三对应关系,确定所述电池的可充入容量上限值,
    所述第三对应关系为第一容量与第二参数的对应关系,所述第二参数包括第二容量和行驶里程。
  9. 根据权利要求2所述的方法,其中,所述基于所述电池的实际容量值和所述累计行驶里程,确定所述电池的可充入容量上限值,包括:
    基于所述电池的实际容量值,确定所述电池的实际健康度SOH;
    根据所述实际SOH和所述累计行驶里程,确定所述电池的可充入容量上限值。
  10. 根据权利要求9所述的方法,其中,所述根据所述实际SOH和所述累计行驶里程,确定所述电池的可充入容量上限值,包括:
    根据所述实际SOH、所述累计行驶里程以及预设的第四对应关系,确定所述电池的可充入容量上限值,
    所述第四对应关系为容量与第三参数的对应关系,所述第三参数包括行驶里程和SOH。
  11. 一种电池的充电控制装置,包括:
    第一获取模块,用于基于接收的充电请求,获取电池的充电参数的阈值和初始值,所述充电参数的阈值是基于所述电池的实际容量值和所在的电动汽车的累计行驶里程确定的;
    第一控制命令发送模块,用于若所述充电参数的初始值小于所述充电参数的阈值,发送对所述电池进行充电的控制命令,以对所述电池进行充电;
    第二获取模块,用于在所述电池的充电过程中,实时获取所述电池的充电参数的数值;
    第二控制命令发送模块,用于若获取的所述电池的充电参数的数值大于或等于所述充电参数的阈值,则发送停止对所述电池充电的控制命令,以停止充电。
  12. 一种电池管理系统,包括:处理器以及存储有计算机程序指令的存储器,
    所述处理器执行所述计算机程序指令时实现如权利要求1-10任意一项所述的电池的充电控制方法。
  13. 一种计算机存储介质,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如权利要求1-10任意一项所述的电池的充电控制方法。
PCT/CN2020/132901 2020-04-23 2020-11-30 电池的充电控制方法、装置、电池管理系统和介质 WO2021212837A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227018614A KR102510346B1 (ko) 2020-04-23 2020-11-30 전지의 충전 제어 방법, 장치, 전지 관리 시스템 및 매체
ES20920763T ES2957114T3 (es) 2020-04-23 2020-11-30 Método y aparato de control de carga de baterías y sistema de gestión de baterías y medio
JP2022532592A JP7210809B2 (ja) 2020-04-23 2020-11-30 電池の充電制御方法、装置、電池管理システム及び媒体
EP20920763.8A EP3919319B1 (en) 2020-04-23 2020-11-30 Battery charging control method and device, and battery management system and medium
US17/565,462 US11437838B2 (en) 2020-04-23 2021-12-30 Battery charging control method and apparatus, battery management system, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010328925.4 2020-04-23
CN202010328925.4A CN113547955B (zh) 2020-04-23 2020-04-23 电池的充电控制方法、装置、电池管理系统和介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/565,462 Continuation US11437838B2 (en) 2020-04-23 2021-12-30 Battery charging control method and apparatus, battery management system, and medium

Publications (1)

Publication Number Publication Date
WO2021212837A1 true WO2021212837A1 (zh) 2021-10-28

Family

ID=78101158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132901 WO2021212837A1 (zh) 2020-04-23 2020-11-30 电池的充电控制方法、装置、电池管理系统和介质

Country Status (7)

Country Link
US (1) US11437838B2 (zh)
EP (1) EP3919319B1 (zh)
JP (1) JP7210809B2 (zh)
KR (1) KR102510346B1 (zh)
CN (1) CN113547955B (zh)
ES (1) ES2957114T3 (zh)
WO (1) WO2021212837A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021077271A1 (zh) * 2019-10-21 2021-04-29 宁德新能源科技有限公司 充电方法、电子装置以及存储介质
JP7456900B2 (ja) * 2020-09-15 2024-03-27 本田技研工業株式会社 電力管理装置および電力管理システム
SE545706C2 (en) * 2022-03-29 2023-12-12 Scania Cv Ab Method for charging a maintenance battery by a propulsion battery
DE102022203773A1 (de) * 2022-04-14 2023-10-19 Andreas Stihl Ag & Co. Kg Verfahren und System zum Bestimmen mindestens eines Nutzungsparameters für mindestens einen Akkupack zum Nutzen einer Ladegeräteinrichtung zum Aufladen von benutzeraustauschbaren Akkupacks zum Antrieb mindestens eines mobilen Geräts
CN115257449A (zh) * 2022-08-08 2022-11-01 中联重科股份有限公司 一种搅拌车充电控制方法及系统
CN116315185B (zh) * 2023-05-12 2023-10-20 荣耀终端有限公司 电子设备及电池管理方法
CN117674365A (zh) * 2023-12-14 2024-03-08 深圳市助尔达电子科技有限公司 一种电池寿命周期管理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752892A (zh) * 2010-02-10 2010-06-23 江西伏沃特蓄电池有限公司 一种蓄电池的快速充电方法
US20110156641A1 (en) * 2009-12-31 2011-06-30 Tesla Motors, Inc. State of charge range
CN103730702A (zh) * 2012-10-12 2014-04-16 北汽福田汽车股份有限公司 一种电动汽车的车载锂电池充电方法
CN107379977A (zh) * 2016-05-16 2017-11-24 现代自动车株式会社 车辆系统及其电池充电方法
CN108099860A (zh) * 2017-12-28 2018-06-01 浙江硕维新能源技术有限公司 一种电动汽车充更换电站系统及其控制方法
CN109195828A (zh) * 2016-05-25 2019-01-11 福特全球技术公司 用于对电动车辆充电的方法和设备
CN110518300A (zh) * 2019-08-18 2019-11-29 浙江万马新能源有限公司 一种利用大数据监控动力电池技术

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515087A (en) * 1993-12-02 1996-05-07 Hewlett-Packard Company Remaining battery capacity determination method and apparatus
JP3161215B2 (ja) * 1994-03-15 2001-04-25 日産自動車株式会社 2次電池の充放電制御装置
JPH09191505A (ja) * 1995-12-28 1997-07-22 Yazaki Corp 電気自動車の走行可能距離算出装置
KR101065551B1 (ko) * 2010-01-08 2011-09-19 주식회사 엘지화학 배터리의 용량 추정 장치 및 방법
JP5782803B2 (ja) * 2010-06-03 2015-09-24 日産自動車株式会社 電池の充電装置および電池の充電方法
US8332096B2 (en) * 2010-06-17 2012-12-11 GM Global Technology Operations LLC Method and a system for providing a driving-range forecast for a vehicle
CN102299529B (zh) * 2010-06-25 2014-04-02 凹凸电子(武汉)有限公司 电池组管理系统、电动车及管理电池组的方法
KR101154308B1 (ko) * 2010-12-03 2012-06-13 기아자동차주식회사 전기자동차의 잔존주행거리 추정 방법
JP2013222642A (ja) * 2012-04-18 2013-10-28 Sanyo Electric Co Ltd 充放電制御装置、充電器、バッテリ、移動体、及び電子機器
CN103107575B (zh) * 2013-01-18 2015-07-29 华为终端有限公司 充电方法、移动设备、充电设备与充电系统
KR101800287B1 (ko) * 2013-01-21 2017-11-23 주식회사 케이티 쉐어링 전기차 반납 관리 방법 및 이를 제공하기 위한 쉐어링 전기차 관리 시스템
US10393813B2 (en) 2013-08-27 2019-08-27 The Regents Of The University Of Michigan On-board state of health monitoring of batteries using incremental capacity analysis
EP3188340B1 (en) * 2014-08-29 2024-01-24 Nissan Motor Co., Ltd. Secondary battery charging system and charging method
KR101684092B1 (ko) * 2015-04-08 2016-12-07 현대자동차주식회사 열화도 산출 장치 및 방법
US10005372B2 (en) * 2016-02-23 2018-06-26 Ford Global Technologies, Llc Virtual assessment of battery state of health in electrified vehicles
CN108336431B (zh) * 2017-01-19 2020-07-14 宁德时代新能源科技股份有限公司 电池模组的充电控制方法、装置和系统
KR102405005B1 (ko) * 2017-04-14 2022-06-07 삼성전자주식회사 배터리의 상태에 따라 충전 파라미터를 변경하는 전자 장치 및 그 전자 장치의 제어 방법
US10343673B2 (en) * 2017-06-27 2019-07-09 Gm Global Technology Operations Llc. Method and apparatus for controlling a hybrid powertrain system
CN107359378B (zh) 2017-06-30 2019-08-09 宁德时代新能源科技股份有限公司 电池充电方法、装置和设备
CN107359376B (zh) 2017-06-30 2020-06-23 宁德时代新能源科技股份有限公司 电池充电方法、装置和设备
CN108297877B (zh) * 2017-10-10 2019-08-13 腾讯科技(深圳)有限公司 车辆控制方法、系统及装置
CN109671997B (zh) * 2017-10-13 2021-10-19 神讯电脑(昆山)有限公司 电子装置与充电方法
US11391597B2 (en) * 2018-06-18 2022-07-19 Chargeway Inc. Displaying charging options for an electric vehicle
CN110896356B (zh) * 2018-09-12 2021-02-02 宁德时代新能源科技股份有限公司 电池管理系统及系统中的通信方法
CN110896233B (zh) * 2018-09-12 2021-07-30 宁德时代新能源科技股份有限公司 电池管理系统
US10852340B2 (en) * 2018-11-20 2020-12-01 GM Global Technology Operations LLC Vehicle electronics high-resistance fault detection and isolation
CN110970688B (zh) * 2018-11-30 2020-12-29 宁德时代新能源科技股份有限公司 电池加热系统和方法
CN111251928B (zh) * 2018-11-30 2021-11-23 宁德时代新能源科技股份有限公司 充电方法、装置、设备、介质、电池管理系统和充电桩
CN111257752B (zh) * 2018-11-30 2021-02-26 宁德时代新能源科技股份有限公司 剩余充电时间估算方法、装置、系统和存储介质
CN111376790A (zh) * 2018-12-28 2020-07-07 观致汽车有限公司 用于确定车辆的行驶里程的方法、装置、设备和介质
CN112706657B (zh) * 2018-12-29 2022-12-23 宁德时代新能源科技股份有限公司 控制方法、电池管理模块、电机控制器及介质
CN110046753B (zh) * 2019-03-29 2020-08-28 江苏大学 一种电动汽车充电站最优建设数量和选址方案规划方法
CN112531850B (zh) * 2019-04-24 2022-08-02 宁德时代新能源科技股份有限公司 电池组均衡控制方法、装置、设备和介质
CN110988689B (zh) * 2019-04-25 2021-05-25 宁德时代新能源科技股份有限公司 电池可恢复衰减容量的恢复方法、装置和系统
CN110988690B (zh) * 2019-04-25 2021-03-09 宁德时代新能源科技股份有限公司 电池健康状态修正方法、装置、管理系统以及存储介质
JP7308069B2 (ja) * 2019-04-25 2023-07-13 河村電器産業株式会社 車両充電装置
CN110988702B (zh) * 2019-04-25 2021-04-02 宁德时代新能源科技股份有限公司 电池可用容量确定方法、装置、管理系统以及存储介质
CN110967644B (zh) * 2019-05-16 2021-01-29 宁德时代新能源科技股份有限公司 电池组soc的修正方法、电池管理系统以及车辆
CN113075555A (zh) * 2019-05-24 2021-07-06 宁德时代新能源科技股份有限公司 Soc修正方法和装置、电池管理系统和存储介质
CN110967636B (zh) * 2019-06-24 2020-12-11 宁德时代新能源科技股份有限公司 电池的荷电状态修正方法、装置、系统和存储介质
CN110967647B (zh) * 2019-06-24 2020-11-17 宁德时代新能源科技股份有限公司 荷电状态修正方法及装置
CN110516300A (zh) 2019-07-19 2019-11-29 中国地质大学(武汉) 一种基于有限元分析的直线永磁电机涡流损耗计算方法
US11334081B2 (en) * 2020-03-20 2022-05-17 Ford Global Technologies, Llc Vehicle anomalous-condition response during autonomous driving
CN113994523B (zh) * 2020-03-30 2024-04-12 宁德时代新能源科技股份有限公司 电池包温度控制方法及装置、电池管理系统及存储介质
KR20220062224A (ko) * 2020-11-06 2022-05-16 현대자동차주식회사 차량 배터리 관리 시스템 및 방법
CN112528786B (zh) * 2020-11-30 2023-10-31 北京百度网讯科技有限公司 车辆跟踪方法、装置及电子设备
CN113830012B (zh) * 2021-08-31 2023-08-15 北京车和家信息技术有限公司 车辆高油耗原因诊断方法、装置、设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110156641A1 (en) * 2009-12-31 2011-06-30 Tesla Motors, Inc. State of charge range
CN101752892A (zh) * 2010-02-10 2010-06-23 江西伏沃特蓄电池有限公司 一种蓄电池的快速充电方法
CN103730702A (zh) * 2012-10-12 2014-04-16 北汽福田汽车股份有限公司 一种电动汽车的车载锂电池充电方法
CN107379977A (zh) * 2016-05-16 2017-11-24 现代自动车株式会社 车辆系统及其电池充电方法
CN109195828A (zh) * 2016-05-25 2019-01-11 福特全球技术公司 用于对电动车辆充电的方法和设备
CN108099860A (zh) * 2017-12-28 2018-06-01 浙江硕维新能源技术有限公司 一种电动汽车充更换电站系统及其控制方法
CN110518300A (zh) * 2019-08-18 2019-11-29 浙江万马新能源有限公司 一种利用大数据监控动力电池技术

Also Published As

Publication number Publication date
US11437838B2 (en) 2022-09-06
KR20220086696A (ko) 2022-06-23
KR102510346B1 (ko) 2023-03-16
ES2957114T3 (es) 2024-01-11
CN113547955A (zh) 2021-10-26
CN113547955B (zh) 2023-06-16
EP3919319A1 (en) 2021-12-08
JP2022552426A (ja) 2022-12-15
JP7210809B2 (ja) 2023-01-23
EP3919319B1 (en) 2023-08-23
US20220123578A1 (en) 2022-04-21
EP3919319A4 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
WO2021212837A1 (zh) 电池的充电控制方法、装置、电池管理系统和介质
CN107710545B (zh) 预测电池充电极限的方法和使用该方法对电池迅速充电的方法和设备
CN110679056B (zh) 电池充电管理设备和方法
US10147983B2 (en) Secondary battery system
US20090184685A1 (en) Battery pack and method of charging the same
WO2020259039A1 (zh) 荷电状态修正方法及装置
US20220140620A1 (en) Apparatus and method for balancing battery packs connected in parallel
CN112952225A (zh) 一种电池系统的soc修正方法及其装置
CN114069077A (zh) 电化学装置管理方法、电子设备及电池系统
US20210119461A1 (en) Electronic device and method for charging battery
CN114270204B (zh) 用于诊断电池状态的设备和方法、包括该设备的电池组
CN113030756A (zh) 一种电池健康度评估方法
CN115803935A (zh) 电池管理设备和方法
KR102619695B1 (ko) 배터리 제어 장치 및 배터리 제어 방법
CN113991773A (zh) 充电方法及相关设备
EP4366120A1 (en) Battery charging method, and charging apparatus
JP2019178884A (ja) 状態推定装置及び状態推定方法
EP4366028A1 (en) Battery discharging method and apparatus
KR20230117193A (ko) 파워 배터리의 충전 방법 및 배터리 관리 시스템
KR20220054105A (ko) 배터리 관리 장치 및 방법
CN116135591A (zh) 电池控制方法、装置、设备及介质
KR20230119958A (ko) 배터리 관리 장치 및 방법
CN117129891A (zh) 电池的荷电状态估算方法、装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020920763

Country of ref document: EP

Effective date: 20210901

ENP Entry into the national phase

Ref document number: 2022532592

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20227018614

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE