WO2021212762A1 - 一种三维成型材料及其制备方法和应用 - Google Patents

一种三维成型材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021212762A1
WO2021212762A1 PCT/CN2020/119647 CN2020119647W WO2021212762A1 WO 2021212762 A1 WO2021212762 A1 WO 2021212762A1 CN 2020119647 W CN2020119647 W CN 2020119647W WO 2021212762 A1 WO2021212762 A1 WO 2021212762A1
Authority
WO
WIPO (PCT)
Prior art keywords
monofunctional
molding material
dimensional molding
double bond
material according
Prior art date
Application number
PCT/CN2020/119647
Other languages
English (en)
French (fr)
Inventor
何兴帮
杨前程
余嘉
Original Assignee
珠海赛纳三维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海赛纳三维科技有限公司 filed Critical 珠海赛纳三维科技有限公司
Publication of WO2021212762A1 publication Critical patent/WO2021212762A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/02Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from isocyanates with formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • C08F283/008Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00 on to unsaturated polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • This application relates to a material, in particular to a three-dimensional molding material and a preparation method and application thereof, and belongs to the technical field of 3D printing.
  • Three-dimensional molding technology is also called rapid prototyping technology, or rapid prototyping manufacturing technology, or additive manufacturing technology. Its basic principle is to slice the 3D model based on slice software, and the data processor converts the sliced data of the model into layered printing data. Taking 3D inkjet printing as an example, the controller controls the print head to eject the three-dimensional molding material according to the layer printing data, controls the curing device to radiation cure the ejected molding material to form a layer, and then controls the Z-axis lifting mechanism to lower the layer thickness by one layer. The next layer is formed and superimposed layer by layer to form a 3D object. Three-dimensional molding materials are divided into model materials and supporting materials according to the role played in the three-dimensional molding process.
  • the present application provides a three-dimensional molding material, which not only has good printing smoothness, but also has the advantages of being less prone to arching and warping, and can achieve the purpose of greatly improving printing molding efficiency and reducing printing costs.
  • the present application also provides a method for preparing a three-dimensional molding material, which can safely and efficiently prepare a three-dimensional molding material with good printing fluency, low warpage, and difficult arching.
  • the present application also provides a three-dimensional object, which is printed using the aforementioned three-dimensional molding material as a raw material, and therefore has greater advantages in terms of appearance life and service life.
  • the first aspect of the application is to provide a three-dimensional molding material, which includes the following components according to mass numbers:
  • the monofunctional polyurethane oligomer contains a cyclic group, and the density of the urethane bond in the monofunctional polyurethane oligomer is 3.3 mol/Kg or more.
  • the above-mentioned monofunctional monomer refers to a monomer having one functional group capable of undergoing a condensation reaction
  • a polyfunctional compound refers to a compound having at least two functional groups capable of undergoing a condensation reaction
  • the monofunctional polyurethane oligomer in this application refers to a polyurethane oligomer with a functional group capable of condensation reaction and a molecular weight below 600g/mol.
  • the monofunctional polyurethane oligomer also includes a cyclic group and ammonia
  • the density of the ester bond is 3.3 mol/Kg or more.
  • this application does not make too many restrictions on cyclic groups, which can be cyclic groups formed by any atom, such as cyclopentyl, phenyl, 1,4-cyclohexadienyl, pyridyl, thiophene Base and so on.
  • the density of urethane bonds refers to the amount of urethane bonds per kilogram of monofunctional polyurethane oligomer.
  • the molecular weight of a certain monofunctional polyurethane oligomer X is 500 g/mol and a single molecule The structure contains 2 urethane bonds, and every 500 g of monofunctional polyurethane oligomer X contains 2 mol of urethane bonds, the urethane bond density of the monofunctional polyurethane oligomer X is 4 mol/Kg.
  • using the three-dimensional molding material to print 3D objects has the advantages of not being easy to warp and arching, and the thermal stability and mechanical properties can also meet the relevant requirements of users on objects.
  • the inventor believes that it may be that the hydrogen bonding effect of the monofunctional polyurethane oligomer with cyclic groups and a certain urethane bond density of the present application is more obvious, which is beneficial to ensure the stability of the material itself. Strengthen the adhesion between the printing layers, so that it has excellent printing performance.
  • the monofunctional polyurethane oligomer in the three-dimensional molding material is easily diluted by the monomer, so the printing accuracy can be improved under the premise of ensuring the fluency of inkjet printing, and a three-dimensional object that meets the required mechanical strength can be obtained.
  • the density of the urethane bond in the monofunctional polyurethane oligomer of the present application may further be 4 mol/Kg or more.
  • a monofunctional polyurethane oligomer with a cyclic group density of 1.5 mol/Kg or more can be selected to further ensure the stable performance of the three-dimensional molding material.
  • the density of cyclic groups refers to the amount of cyclic groups per kilogram of monofunctional polyurethane oligomer.
  • the molecular weight of a certain monofunctional polyurethane oligomer X is 500g/mol
  • there are 2 cyclic groups in a single molecular structure then every 500g of monofunctional polyurethane oligomer X contains 2mol of cyclic groups, then the density of cyclic groups of the monofunctional polyurethane oligomer X is 4mol /Kg.
  • a monofunctional polyurethane oligomer with a higher hydrogen bond density based on the molecular weight it is also possible to select a monofunctional polyurethane oligomer with a higher hydrogen bond density based on the molecular weight to further reduce the shrinkage of the printed layer.
  • a monofunctional polyurethane oligomer with a molecular weight of 500 g/mol or less can be selected.
  • a monofunctional double bond polyurethane oligomer can be selected as the monofunctional polyurethane oligomer to form a three-dimensional molding material.
  • the monofunctional double bond polyurethane oligomer refers to a monofunctional polyurethane oligomer containing double bonds.
  • the monofunctional double bond polyurethane oligomer is selected from at least one of monofunctional urethane acrylate oligomer, monofunctional allyl polyurethane oligomer, and monofunctional vinyl polyurethane oligomer. kind.
  • the monofunctional double bond polyurethane oligomer of the present application can be obtained commercially, or can be prepared in the following manner.
  • the preparation method of the monofunctional double bond polyurethane oligomer of the present application includes three specific embodiments, and each specific embodiment is separately introduced below.
  • it can be prepared from difunctional isocyanate monomers, monohydroxy single and double bond monomers, and monohydric alcohols as raw materials.
  • the molar ratio is 1:(0.9 ⁇ 1):(1 ⁇ 1.2). It can be understood that the preparation process is carried out under the action of a polymerization inhibitor, a catalyst and an antioxidant.
  • the monohydroxy single and double bond monomer, the first polymerization inhibitor, the first catalyst, and the first antioxidant are mixed and stirred to obtain a first mixture; the bifunctional isocyanate monomer is added to the reactor, and the temperature is raised to 20 with stirring.
  • At least one of the above-mentioned difunctional isocyanate monomer, monohydroxy single double bond monomer, and monohydric alcohol has a cyclic group.
  • the masses of the first polymerization inhibitor and the first catalyst account for 1 ⁇ -2 ⁇ and 0.4 ⁇ -1 ⁇ of the first mixture, respectively; the masses of the first polymerization inhibitor and the first catalyst account for the total mass in the reaction vessel, respectively.
  • Material monohydroxy single and double bond monomer, first polymerization inhibitor, first catalyst, first antioxidant, difunctional isocyanate monomer, monoalcohol, first polymerization inhibitor, total mass of first catalyst
  • quality 0.5 ⁇ -1.5 ⁇ and 0.5 ⁇ -1 ⁇
  • the mass of the first antioxidant accounts for 0.8 ⁇ -2 ⁇ of the total mass of the materials in the reaction vessel.
  • the detection method of the isocyanate group value (NCO value) in the reaction system can refer to the national standard GB/T 12009.4-2016.
  • NCO value isocyanate group value
  • M1 The above-mentioned first expected value M1 is determined according to Equation 1 below.
  • A is the amount of substances added with isocyanate groups (mol)
  • a is the amount of isocyanate substances consumed (mol)
  • Z is the total amount of materials in the reaction vessel (mol) at this time; a is based on the amount of substances added to the hydroxyl group. The amount is determined, for example, according to the added amount of the mono-hydroxy single-double bond monomer.
  • the temperature of the above-mentioned holding reaction is 55-70°C; the monoalcohol can be added dropwise gradually or added at once.
  • it can be prepared from difunctional isocyanate monomers, monohydroxy single and double bond monomers, monohydric alcohols and dihydric alcohols.
  • the molar ratio of the monomer, the monohydric alcohol, and the diol is 1:(0.9 ⁇ 0.95):(0.05 ⁇ 0.11):(1 ⁇ 1.1). It can be understood that the preparation process is carried out under the action of a polymerization inhibitor, a catalyst and an antioxidant.
  • the monohydroxy single and double bond monomers, the monohydric alcohol, the II polymerization inhibitor, the II catalyst, and the II antioxidant are mixed and stirred to obtain a second mixture;
  • the difunctional isocyanate monomer is added to the reactor and stirred After raising the temperature to 20°C to 40°C, add the second mixture dropwise to the reactor, and control the temperature of the reaction system during the dropping process to not be higher than 70°C, and the heating rate not higher than 2°C/min; heat the reaction system to The isocyanate group value in the reaction system is the second expected value to obtain the third mixture;
  • the diol, the IIa polymerization inhibitor, the IIa catalyst, and the IIa antioxidant are mixed and stirred to obtain the fourth mixture, at 60°C ⁇
  • the third mixture was added dropwise to the fourth mixture at 80°C, and then the temperature was kept at 80°C to 90°C until the isocyanate group value in the reaction system was 0.5% or less to obtain a monofunctional double bond polyurethane oligomer.
  • At least one of the above-mentioned difunctional isocyanate monomers, monohydroxy single and double bond monomers, monohydric alcohols, and dihydric alcohols has a cyclic group.
  • the masses of the II polymerization inhibitor, the II catalyst, and the II antioxidant respectively account for 1 ⁇ -2 ⁇ , 0.4 ⁇ -1 ⁇ and 0.8 ⁇ -2 ⁇ of the mass of the second mixture; the IIa polymerization inhibitor
  • the masses of the catalyst, the IIa catalyst, and the IIa antioxidant respectively account for 1 ⁇ -5 ⁇ , 0.8 ⁇ -4 ⁇ , and 1 ⁇ -4 ⁇ of the mass of the fourth mixture.
  • the detection method of the isocyanate group value in the reaction system can refer to the national standard GB/T 12009.4-2016, by detecting the isocyanate group value of the system to judge whether the reaction of the hydroxyl group in the system is complete or almost complete, and the isocyanate group value The smaller the value, the less the hydroxyl residue in the system.
  • the above-mentioned second expected value M2 is determined according to Equation 2 below.
  • A is the amount of substances added with isocyanate groups (mol)
  • a is the amount of isocyanate substances consumed (mol)
  • Z is the total amount of materials in the reaction vessel (mol) at this time; a is based on the amount of substances added to the hydroxyl group.
  • the amount is determined, for example, in accordance with the added amount of monohydroxy, single and double bond monomers and monohydric alcohols.
  • the temperature of the holding reaction for obtaining the third mixture is 55-70°C.
  • the difunctional isocyanate monomer, the monohydroxy single double bond monomer and the diol are added in batches, and the temperature during the reaction is controlled while adding A small amount of monohydric alcohol can significantly improve the purity of monofunctional double bond polyurethane oligomers and reduce the formation of non-monofunctional polyurethane oligomers. Therefore, when the monofunctional double bond polyurethane oligomer obtained by the above preparation method is used for inkjet printing in a three-dimensional molding material, the interlayer adhesion of the molding layer is improved, and the separation of the molding layer is inhibited.
  • it can be prepared using isocyanate ethyl acrylate and monohydric alcohol as raw materials, wherein the molar ratio of isocyanate ethyl acrylate to monohydric alcohol is 1: (1 to 1.1). It can be understood that the preparation process is carried out under the action of a polymerization inhibitor, a catalyst and an antioxidant.
  • the monoalcohol, the third polymerization inhibitor, the third catalyst, and the third antioxidant are mixed and stirred to obtain a fifth mixture and the temperature is increased to 40°C to 70°C, and ethyl isocyanate acrylate is added dropwise to the fifth mixture, and During the dropping process, the temperature of the reaction system is not higher than 70°C, and the heating rate is not higher than 2°C/min; the isocyanate group value in the reaction system is kept to 0.5% or less, and the monofunctional double bond polyurethane is low. Polymer.
  • the above-mentioned monohydric alcohol has a cyclic group.
  • benzyl alcohol cyclohexanol, 4-hydroxy- ⁇ , ⁇ ,4-trimethylcyclohexanemethanol and the like.
  • the masses of the III polymerization inhibitor, the III catalyst, and the III antioxidant respectively account for 1 ⁇ -4 ⁇ , 0.8 ⁇ -2 ⁇ , and 1 ⁇ -4 ⁇ of the total materials in the reaction vessel.
  • the detection method of the isocyanate group value in the reaction system can refer to the national standard GB/T 12009.4-2016, by detecting the isocyanate group value of the system to judge whether the reaction of the hydroxyl group in the system is complete or almost complete, and the isocyanate group value The smaller the value, the less the hydroxyl residue in the system.
  • the temperature of the above-mentioned holding reaction is 70-90°C.
  • the polymerization inhibitor mainly prevents the polymerization reaction of free radicals during the synthesis process
  • the main function of the catalyst is to promote and increase the reaction rate of the hydroxyl group and the isocyanate group
  • the main function of the antioxidant is to prevent the synthesis process. Oxidation behavior.
  • the first polymerization inhibitor, the second polymerization inhibitor, the first a polymerization inhibitor, the second a polymerization inhibitor, and the third polymerization inhibitor are independently selected from phenol, quinone or nitrite polymerization inhibitors. At least one of hydroquinone, hydroquinone, p-hydroxyanisole, 2-tert-butyl hydroquinone, 2,5-di-tert-butyl hydroquinone, tris(N- At least one of the nitroso-N-phenylhydroxylamine) aluminum salt (polymerization inhibitor 510), etc., since the nitrite-based polymerization inhibitor has a relatively small effect on the reaction rate of the system during the photocuring reaction, it is preferred to Nitrate type polymerization inhibitor.
  • the I catalyst, the II catalyst, the Ia catalyst, the IIa catalyst, and the III catalyst are each independently selected from at least one of organic amines, organic tins and organic bismuth catalysts, such as dibutyltin dilaurate, caprylic acid At least one of stannous and bismuth carboxylate.
  • the first antioxidant, the second antioxidant, the IIa antioxidant, and the third antioxidant are each independently selected from at least one of hindered phenolic antioxidants, phosphites, or thioesters.
  • Hindered phenolic antioxidants such as antioxidant BHT, antioxidant 1010, antioxidant 1076, antioxidant 1098, etc.
  • phosphite antioxidants such as antioxidant 168, antioxidant 626, and antioxidant TP80 Etc.
  • Thioesters such as antioxidant DLTP, antioxidant DSTP and so on.
  • the raw material with a cyclic group is a difunctional isocyanate monomer.
  • the bifunctional isocyanate monomer with a cyclic group is selected from isophorone diisocyanate (IPDI), toluene diisocyanate (TDI), 4,4 ⁇ -diphenylmethane diisocyanate (MDI) , Xylylene diisocyanate (XDI), naphthalene-1,5-diisocyanate (NDI), methylcyclohexyl diisocyanate (HTDI), dicyclohexyl toluene diisocyanate (HMDI), tetramethylphthalene At least one of methyl diisocyanate (TMXDI), preferably toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), 4,4 ⁇ -diphenylmethane diisocyanate
  • isocyanate monomers containing cyclic groups to prepare monofunctional double bond polyurethane oligomers is more conducive to three-dimensional molding materials to inhibit the separation of molding layers and improve the adhesion effect between layers.
  • the monohydroxy single double bond monomer is selected from one of monohydroxy monoacrylate, monohydroxy monoallyl ether, and monohydroxy monovinyl ether.
  • the monohydroxy monoacrylate is at least selected from the group consisting of hydroxyethyl acrylate, hydroxypropyl acrylate, 4-hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and hydroxybutyl methacrylate.
  • the monohydroxy monoacrylate is preferably an acrylate with a double bond and a lower molecular weight, specifically refers to an acrylate with a double bond with a molecular weight of 158 g/mol or less.
  • it may be preferably hydroxyethyl acrylate and hydroxypropyl acrylate. At least one of.
  • the monohydroxy monoallyl ether is selected from at least one of ethylene glycol monoallyl ether, propylene glycol monoallyl ether, butylene glycol monoallyl ether, and polyethylene glycol monoallyl ether.
  • the polyethylene glycol monoallyl ether is a polyethylene glycol monoallyl ether with a molecular weight of 300 g/mol or less.
  • the monohydroxy monovinyl ether is selected from at least one of ethylene glycol monovinyl ether, diethylene glycol vinyl ether, propylene glycol monovinyl ether, 4-hydroxybutyl vinyl ether and the like.
  • the monohydric alcohol is selected from compounds containing one hydroxyl group, such as methanol, absolute ethanol, n-propanol, isopropanol, n-butanol, isobutanol, benzyl alcohol, cyclohexanol, ethyl alcohol, etc.
  • the difference in activity specifically refers to the same molecule
  • the diols By limiting the diols to preferably small molecule diols with different activities, the probability of forming difunctional polyurethane oligomers can be further reduced.
  • the monofunctional monomer used in this application is selected from monofunctional acrylate monomers, specifically selected from 4-tert-butylcyclohexyl acrylate, dicyclopentenyl acrylate, dicyclopentenyl ethoxy acrylate, 2-benzene Oxyethyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, o-phenylphenoxyethyl acrylate, 2-(p-cumyl-phenoxy)-ethacrylic acid Ester, cyclotrimethylolpropane methylal acrylate, 2-(1,2-cyclohexanedicarboxyimide)ethyl acrylate, 2-(4-cyclohexene-1,2-dicarboxyl (Imide) ethyl acrylate, isobornyl acrylate, benzyl acrylate, dicyclopentyl methacrylate, isobornyl methacrylate, benzyl methacrylate, acrylo
  • the polyfunctional compound used in this application is selected from at least one of polyfunctional resins and polyfunctional monomers.
  • the polyfunctional resin is selected from polyfunctional resins with a double bond density of 3.33 mol/Kg or less, and more recently, it can be selected from polyfunctional resins with a double bond density of 2.5 mol/Kg or less.
  • the functional resin can be at least one of epoxy or modified epoxy acrylate, polyester acrylate, urethane acrylate, etc. Some of the specific trade names listed are: Changxing 6113 polyurethane acrylate, Corning 6008 polyurethane acrylate Wait.
  • the multifunctional monomer can be selected from multifunctional monomers with a double bond density of 3.33 mol/Kg or less.
  • the multifunctional monomer can be ethoxylated bisphenol A diacrylate, polyethylene glycol (600) At least one of diacrylate, ethoxylated bisphenol A dimethacrylate, polyethylene glycol (600) dimethacrylate, and the like.
  • the multifunctional monomer can also be selected from multifunctional monomers with a double bond density greater than 3.33 mol/Kg. In this case, the mass fraction of the multifunctional monomer in the three-dimensional molding material must not exceed 5%.
  • double bond density refers to the amount of double bonds contained in the polyfunctional resin or polyfunctional monomer per kilogram.
  • the photoinitiator of the present application can be a free radical photoinitiator or a cationic photoinitiator.
  • the free radical photoinitiator can be selected from benzoin ether, benzoin ⁇ , ⁇ -dimethylbenzyl ketal, ⁇ , ⁇ -diethoxyacetophenone, 2-hydroxy-2methyl-phenylacetone-1 , 1-hydroxy-cyclohexyl phenyl ketone (184), 2-isopropyl thioxanthone, 2-hydroxy-2-methyl-p-hydroxyethyl ether phenyl acetone-1, 2-methyl -1-[4-Methylthiophenyl]-2-morpholinyl-1-propanone, [2-benzyl-2-dimethylamino-1-(4-morpholinphenyl)butanone-1] , Benzoyl formate, trimethylbenzoyl-diphenyl phosphine oxide (TPO), 2,4,6-trimethylphenyl acy
  • the cationic photoinitiator can be selected from iodonium salts, sulfonium salts and iron aromatic hydrocarbon types, such as BASF Irgacure 250, Irgacure 270, Irgacure PAG290, Irgacure 261, etc., Dow Chemical's UV1 6974, UV1 6976 and the like.
  • the auxiliary agent of the present application is selected from at least one of a polymerization inhibitor, a leveling agent, a defoaming agent, a coloring agent, and a dispersing agent.
  • the mass fraction of the polymerization inhibitor in the three-dimensional molding material is 0.1-1%
  • the mass fraction of the leveling agent in the three-dimensional molding material is 0.01-3%
  • the mass fraction of the defoaming agent in the three-dimensional molding material is 0.01-3%
  • the mass fraction of the colorant in the three-dimensional molding material is 0-5%
  • the mass fraction of the dispersant in the three-dimensional molding material is 0-5%.
  • the function of the polymerization inhibitor in the three-dimensional molding material is mainly to prevent the free radicals in the composition from polymerizing, and to improve the storage stability of the three-dimensional molding material.
  • the selection of the polymerization inhibitor is the same as the selection of the aforementioned preparation of the monofunctional double bond polyurethane oligomer, and will not be repeated here.
  • the leveling agent is mainly used to improve the fluidity of the three-dimensional molding material and the wettability of the substrate, while adjusting the surface tension of the three-dimensional molding material to enable normal printing.
  • the leveling agent used in this application can meet the above performance requirements, there is no restriction on which leveling agent to choose.
  • the main function of the defoamer is to inhibit, reduce, and eliminate the bubbles in the three-dimensional molding material.
  • the defoamer used can achieve the above effects, there is no restriction on which defoamer can be selected.
  • TEGO Airex 920 TEGO Airex 921, TEGO Airex 986, TEGO Foamex 810, TEGO Foamex N, etc.
  • the main function of the dispersant is to improve and improve the dispersion stability of the colorant. As long as the performance of the dispersant used in this application meets the above performance requirements, there is no restriction on which dispersant to choose.
  • the three-dimensional molding material in the present application may or may not contain a colorant.
  • the three-dimensional molding material is transparent, and the printed objects have higher transparency.
  • the colorant can be a pigment or a dye.
  • the pigment is preferably a colorant.
  • the pigment can be specifically selected from CIPigment White 6, CIPigment Red 3, CIPigment Red 5, CIPigment Red 7, CIPigment Red 9, CIPigment Red 12, CIPigment Red 13, CIPigment Red 21, CIPigment Red 31, CIPigment Red 49:1, CIPigment Red 58:1, CIPigment Red 175; CIPigment Yellow 63, CIPigment Yellow 3 , CIPigment Yellow 12, CIPigment Yellow 16, CIPigment Yellow 83; CIPigment Blue 1, CIPigment Blue 10, CIPigment Blue B, Phthalocyanine Blue BX, Phthalocyanine Blue BS, CIPigment Blue 61:1, etc. Or multiple.
  • the three-dimensional molding material of the present application has excellent printing characteristics, is suitable for printing of 3D objects, and is particularly suitable for inkjet printing of 3D objects.
  • 3D printing When performing 3D printing, the separation and arching of the molding layer can be suppressed, the adhesion between the molding layers is high, and the thermal stability and mechanical strength of the three-dimensional molding material are good, which is conducive to obtaining high-quality products at low cost.
  • Three-dimensional printed objects Three-dimensional printed objects.
  • the smooth performance of the three-dimensional molding material is good, even if printing is performed at a low temperature, there will be no clogging of the print head, which prolongs the service life of the printer and reduces the maintenance cost of the printer.
  • the second aspect of the present application provides a method for preparing the three-dimensional molding material of the first aspect, which includes the following steps:
  • the preparation of the three-dimensional molding material of the present application needs to be carried out in an environment outside the initiation wavelength range of the photoinitiator, so as to prevent the light in the environment from inducing the polymerization reaction of the components in the three-dimensional molding material.
  • the stirring speed in step 1) is lower than the stirring speed in step 2).
  • the stirring speed in step 1) is 400 r/min to 1000 r/min
  • the stirring speed in step 2) is 1000 r/min to 2500 r/min.
  • the second system can be filtered by N (N ⁇ 2) level filtration.
  • N (N ⁇ 2) level filtration the pore size of the filter membrane used in the Nth level of filtration is smaller than that of the N-1 level.
  • the pore size of the filter membrane used in the filtration, and the pore size of the filter membrane used in the Nth level of filtration is smaller than the pore size of the print nozzle.
  • a two-stage filtration method can be used.
  • the first-stage filtration uses a glass fiber membrane with a pore size of 0.45 ⁇ m to filter the second system, and the collected filtrate uses a polypropylene membrane with a pore size of 0.22 ⁇ m (referred to as PP membrane).
  • PP membrane polypropylene membrane with a pore size of 0.22 ⁇ m
  • the degassing treatment time is not higher than 5h, and preferably, the degassing time is controlled at 1 to 3h.
  • the operation mode of the degassing treatment is selected from one of reduced pressure degassing, normal pressure degassing and heating degassing.
  • the preparation method of the present application is simple and easy to operate, which not only facilitates the formation of stable three-dimensional molding materials, but also facilitates the injection of three-dimensional molding materials, thereby making the use of three-dimensional molding materials more convenient.
  • the third aspect of the present application is to provide a three-dimensional object, which is obtained by 3D printing using the three-dimensional molding material of the aforementioned first aspect.
  • the three-dimensional object is obtained by 3D printing with the aforementioned three-dimensional molding material, the three-dimensional object is not prone to deformation, warping and arching, and has greater advantages in terms of appearance life and service life.
  • the preparation method includes the following steps:
  • the reaction is terminated, and the monofunctional double bond urethane acrylate is obtained, named PUA-1;
  • the molecular structure of the bond urethane acrylate is shown in the following structural formula I, the molecular weight is 428.53 g/mol, and the urethane bond density is 4.67 mol/Kg.
  • the preparation method includes the following steps:
  • the temperature is lowered to terminate the reaction, and the monofunctional double bond urethane acrylate is obtained, which is PUM-1;
  • the molecular structure of the functional double bond polyurethane acrylate is shown in the following structural formula II, the molecular weight is 386.49 g/mol, and the urethane bond density is 5.17 mol/Kg.
  • the preparation method includes the following steps:
  • TKI toluene diisocyanate
  • the temperature is lowered to terminate the reaction, and the monofunctional double bond polyurethane oligomer is obtained, named PUP-1;
  • the molecular structure of the functional double bond polyurethane acrylate is shown in the following structural formula III, the molecular weight is 352.22 g/mol, and the urethane bond density is 5.678 mol/Kg.
  • the preparation method includes the following steps:
  • the NCO value is measured to be lower than 0.5% to terminate the reaction, and the monofunctional double bond urethane acrylate is obtained, named PUX-1; the single functional double bond urethane acrylate
  • the ester molecular structure is shown in the following structural formula IV, the molecular weight is 241.282 g/mol, and the urethane bond density is 4.13 mol/Kg.
  • the three-dimensional molding material of this embodiment includes the components shown in Table 1 according to the mass fraction:
  • the preparation method includes:
  • the three-dimensional molding material of this embodiment includes the components shown in Table 2 according to the mass fraction:
  • the preparation method is basically the same as that in Example 5, wherein the dispersant BYK108 is added before the color paste, and the air bubbles in the filtrate are removed by degassing under normal pressure for 3 hours to finally obtain a three-dimensional molding material.
  • the three-dimensional molding material of this embodiment includes the components shown in Table 3 according to the mass fraction:
  • the preparation method is the same as that in Example 6.
  • the three-dimensional molding material of this embodiment includes the components shown in Table 4 according to the mass fraction:
  • the preparation method is basically the same as that in Example 5. Heating and degassing for 3 hours is used to remove bubbles in the filtrate, and finally a three-dimensional molding material is obtained.
  • the three-dimensional molding material of this embodiment includes the components shown in Table 5 according to the mass fraction:
  • the preparation method is the same as that in Example 5.
  • the three-dimensional molding material of this comparative example includes the components shown in Table 6 according to the mass fraction:
  • the preparation method is the same as that in Example 5.
  • the three-dimensional molding material of this comparative example includes the components shown in Table 7 according to the mass fraction:
  • the preparation method is the same as that in Example 6.
  • the three-dimensional molding material of this comparative example includes the components shown in Table 8 according to the mass fraction:
  • the preparation method is the same as that in Example 6.
  • the molding material of the present application has good fluency when the ejection temperature is 55°C. Even if the monofunctional double bond polyurethane oligomer occupies as high as 50% in the composition, it still has good printing fluency .
  • the three-dimensional molding material of this application has no arching phenomenon during the printing process, and there is no arching phenomenon after being placed for 2 hours, and the height difference from the target is not more than 0.1mm, obviously, the adhesion between layers is strong in the three-dimensional object molding of the present application, and the three-dimensional molding material of the present application improves the printing effect and printing accuracy of the object.
  • Example 6 By comparing the experimental results of Example 6 and Comparative Example 3, it can be seen that the synthesis process of the monofunctional polyurethane oligomer has a greater effect on the monofunctional polyurethane oligomer in the molding material composition. Influence, this application can significantly improve the purity of the monofunctional double bond polyurethane oligomer by adding difunctional isocyanate monomers, monohydroxy single double bond monomers, and monohydric alcohols in stages, and reacting in a specified environment. , So that the three-dimensional molding material of the present application has more excellent printing performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

一种三维成型材料按照质量分数包括以下组分:单官能度聚氨酯低聚物5-50%、单官能度单体35-85%、多官能度化合物0-30%、光引发剂0.5-8%以及助剂0.2-5%;其中,所述单官能度聚氨酯低聚物含有环状基团,且所述单官能度聚氨酯低聚物中氨酯键的密度为3.3mol/Kg以上。该三维成型材料不仅打印流畅性佳,更具有收缩率低、低翘曲、不易拱起的优势,能够达到大幅改善打印成型效率、降低打印成本的目的。

Description

一种三维成型材料及其制备方法和应用
本申请要求于2020年4月22日提交中国专利局、申请号为202010323339.0、申请名称为“一种三维成型材料及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种材料,尤其涉及一种三维成型材料及其制备方法和应用,属于3D打印技术领域。
背景技术
三维成型技术又称为快速成型技术,或快速原型制造技术,或加式制造技术,其基本原理都是基于切片软件对3D模型进行切片,数据处理器将模型的切片数据转换成层打印数据,以3D喷墨打印为例,控制器根据层打印数据控制打印头喷射三维成型材料,控制固化装置对已喷射的成型材料进行辐射固化形成层,之后控制Z轴升降机构下降一个层厚的距离进行下一层的成型,并逐层叠加形成3D物体。三维成型材料根据三维成型过程中所起的作用分为模型材料和支撑材料。
3D喷墨打印过程中,对三维成型材料的光敏性、粘度、收缩率、层间附着力以及力学性能等有较高的要求,通常使用的三维成型材料的粘度过高从而经常导致三维成型材料难以流畅的从打印头喷孔喷出,甚至堵塞打印头喷孔损坏打印头。为了降低三维成型材料粘度,现有技术中通常在三维成型材料中添加大量的低粘度的光固化单体,然而在保证了打印流畅性的前提下,喷墨打印形成的层却容易发生起翘、拱起等不良现象,从而导致打印终止而需要重新进行打印,不仅降低了目标物体的成型效率,更提高了目标物体的打印成本。
发明内容
针对上述缺陷,本申请提供一种三维成型材料,该三维成型材料不仅打 印流畅性佳,更具有不易拱起和翘曲的优势,能够达到大幅改善打印成型效率、降低打印成本的目的。
本申请还提供一种三维成型材料的制备方法,该方法能够安全高效的制备得到打印流畅性佳、低翘曲、不易拱起的三维成型材料。
本申请还提供一种三维物体,该三维物体以前述三维成型材料为原料打印得到,因此在外观寿命和使用寿命方面具有较大优势。
本申请第一方面是提供一种三维成型材料,按照质量数包括以下组分:
单官能度聚氨酯低聚物5-50%、单官能度单体35-85%、多官能度化合物0-30%、光引发剂0.5-8%以及助剂0.2-5%;其中,所述单官能度聚氨酯低聚物含有环状基团,且所述单官能度聚氨酯低聚物中氨酯键的密度为3.3mol/Kg以上。
上述单官能度单体是指具有一个能够发生缩合反应的官能团的单体,多官能度化合物是指具有至少两个能够发生缩合反应的官能团的化合物。
此外,本申请提及的数值范围中,“以上”、“以下”均指包括本数的范围。
本申请的单官能度聚氨酯低聚物是指具有一个能够发生缩合反应的官能团且分子量为600g/mol以下的聚氨酯低聚物,该单官能度聚氨酯低聚物中还包括环状基团且氨酯键的密度为3.3mol/Kg以上。具体地,本申请对环状基团不做过多限制,可以是任意个原子形成的环状基团,例如环戊基、苯基、1,4-环己二烯基、吡啶基、噻吩基等。此外,氨酯键的密度是指每千克单官能度聚氨酯低聚物中含有的氨酯键的物质的量,例如,某一单官能度聚氨酯低聚物X的分子量是500g/mol且单个分子结构中含有2个氨酯键,则每500g单官能度聚氨酯低聚物X中含有2mol氨酯键,则该单官能度聚氨酯低聚物X的氨酯键密度为4mol/Kg。
根据本申请提供的上述技术方案,利用该三维成型材料进行3D物体打印,具有不易翘曲、不易拱起的优势,且热稳定性和机械性能也能够满足用户对物体的相关要求。发明人基于此现象进行分析,认为可能是本申请的具有环状基团和一定氨酯键密度的单官能度聚氨酯低聚物的氢键作用更加明显,因此有利于保证材料自身的稳定性,强化了打印层间的附着力,使其具有优异 的打印性能。此外,三维成型材料中的单官能度聚氨酯低聚物极易被单体稀释,因此在保证喷墨打印流畅性的前提下还能提高打印精度,得到满足需求机械强度的三维物体。
在一种实施方式中,本申请的单官能度聚氨酯低聚物中氨酯键的密度可以进一步为4mol/Kg以上。
在具体实施过程中,可以选择环状基团密度为1.5mol/Kg以上的单官能度聚氨酯低聚物,从而进一步保证三维成型材料的稳定性能。能够理解,环状基团的密度是指每千克单官能度聚氨酯低聚物中含有的环状基团的物质的量,例如,某一单官能度聚氨酯低聚物X的分子量是500g/mol且单个分子结构中含有2个环状基团,则每500g单官能度聚氨酯低聚物X中含有2mol环状基团,则该单官能度聚氨酯低聚物X的环状基团密度为4mol/Kg。
此外,还可以分子量为基准选择氢键密度更高的单官能度聚氨酯低聚物,从而进一步降低打印层的收缩率。具体地,可以选择分子量为500g/mol以下的单官能度聚氨酯低聚物。
以前述为基础,在本申请实施过程中,可以选择单官能度双键聚氨酯低聚物作为单官能度聚氨酯低聚物形成三维成型材料。其中,单官能度双键聚氨酯低聚物是指含有双键的单官能度聚氨酯低聚物。具体地,单官能度双键聚氨酯低聚物选自单官能度聚氨酯丙烯酸酯低聚物、单官能度烯丙基型聚氨酯低聚物、单官能度乙烯基型聚氨酯低聚物中的至少一种。
本申请的单官能度双键聚氨酯低聚物可以通过市售获得,也可以按照下述方式进行制备获得。
本申请的单官能度双键聚氨酯低聚物制备方法包括三种具体实施方式,以下分别对每种具体实施方式进行介绍。
在一种实施方式中,可以以双官能度异氰酸酯单体、单羟基单双键单体以及一元醇为原料制备,其中,双官能度异氰酸酯单体、单羟基单双键单体以及一元醇的摩尔比为1:(0.9~1):(1~1.2)。能够理解的是,该制备过程是在阻聚剂、催化剂以及抗氧剂作用下进行的。
具体地,将单羟基单双键单体、第I阻聚剂、第I催化剂、第I抗氧剂混合搅拌得到第一混合物;将双官能度异氰酸酯单体加入反应器中,搅拌升温 至20℃~40℃后,向反应器滴加第一混合物,并控制滴加过程中反应体系的温度不高于70℃,升温速率不高于2℃/min;保温反应体系至反应体系中的异氰酸酯基团值为第一预期值后,加入一元醇、第Ia阻聚剂、第Ia催化剂,并在60℃~100℃反应至反应体系中的异氰酸酯基团值为0.5%以下,得到单官能度双键聚氨酯低聚物。
能够理解,上述双官能度异氰酸酯单体、单羟基单双键单体、一元醇中的至少一种具有环状基团。
可选地,第I阻聚剂、第I催化剂的质量分别占第一混合物的1‰-2‰和0.4‰-1‰;第Ia阻聚剂和第Ia催化剂的质量分别占反应容器内总物料(单羟基单双键单体、第I阻聚剂、第I催化剂、第I抗氧剂、双官能度异氰酸酯单体、一元醇、第Ia阻聚剂、第Ia催化剂的总质量)质量的0.5‰-1.5‰和0.5‰-1‰;第I抗氧剂的质量占反应容器内总物料质量的0.8‰~2‰。
其中,反应体系中的异氰酸酯基团值(NCO值)的检测方法可以参考国标GB/T 12009.4-2016,通过检测体系的异氰酸酯基团值来判断体系中的羟基是否反应完全或基本反应完全,异氰酸酯基团值越小,说明体系中的羟基残留越少。上述第一预期值M1按照下述式1确定。
M1=((A-a)×42)/Z*100%     式1
其中,A为加入异氰酸酯基团的物质的量(mol),a为消耗异氰酸酯物质的量(mol),Z为此时反应容器中总的物料量(mol);a根据加入的羟基的物质的量来确定,例如按照单羟基单双键单体的加入量。
上述保温反应的温度为55-70℃;一元醇可逐步滴加也可一次性加入。
上述单官能度双键聚氨酯低聚物的制备方法中,通过将双官能度异氰酸酯单体、单羟基单双键的单体和一元醇分批次加入,并控制反应过程中的温度,可以显著提高单官能度双键聚氨酯低聚物的纯度,减少非单官能度聚氨酯低聚物的形成。因此,利用上述制备方法得到的单官能度双键聚氨酯低聚物用于三维成型材料中进行喷墨打印时,能有效改善成型层的层间附着力,抑制成型层的分离。
在另一种实施方式中,可以以双官能度异氰酸酯单体、单羟基单双键单体、一元醇以及二元醇为原料制备,其中,双官能度异氰酸酯单体、单羟基单双键单体、一元醇以及二元醇的摩尔比为1:(0.9~0.95):(0.05~0.11): (1~1.1)。能够理解的是,该制备过程是在阻聚剂、催化剂以及抗氧剂作用下进行的。
具体地,将单羟基单双键单体、一元醇、第II阻聚剂、第II催化剂、第II抗氧剂混合搅拌得到第二混合物;将双官能度异氰酸酯单体加入反应器中,搅拌升温度至20℃~40℃后,向反应器中滴加第二混合物,并控制滴加过程中反应体系的温度不高于70℃,升温速率不高于2℃/min;保温反应体系至反应体系中的异氰酸酯基团值为第二预期值,得到第三混合物;将二元醇、第IIa阻聚剂、第IIa催化剂、第IIa抗氧剂混合搅拌得到第四混合物,在60℃~80℃下向第四混合物中滴加第三混合物,随后在80℃~90℃保温至反应体系中的异氰酸酯基团值为0.5%以下,得到单官能度双键聚氨酯低聚物。
能够理解,上述双官能度异氰酸酯单体、单羟基单双键单体、一元醇以及二元醇中的至少一种具有环状基团。
可选地,第II阻聚剂、第II催化剂、第II抗氧剂的质量分别占第二混合物质量的1‰-2‰、0.4‰-1‰和0.8‰-2‰;第IIa阻聚剂、第IIa催化剂、第IIa抗氧剂的质量分别占第四混合物质量的1‰-5‰、0.8‰-4‰、1‰-4‰。
其中,反应体系中的异氰酸酯基团值的检测方法可以参考国标GB/T 12009.4-2016,通过检测体系的异氰酸酯基团值来判断体系中的羟基的是否反应完全或基本反应完全,异氰酸酯基团值越小,说明体系中的羟基残留越少。上述第二预期值M2按照下述式2确定。
M2=((A-a)×42)/Z*100%     式2
其中,A为加入异氰酸酯基团的物质的量(mol),a为消耗异氰酸酯物质的量(mol),Z为此时反应容器中总的物料量(mol);a根据加入的羟基的物质的量来确定,例如按照单羟基单双键单体和一元醇的加入量。
上述得到第三混合物的保温反应的温度为55-70℃。
上述单官能度双键聚氨酯低聚物的制备方法中,通过将双官能度异氰酸酯单体、单羟基单双键单体和二元醇分批次加入,并控制反应过程中的温度,同时加入少量的一元醇,可以显著提高单官能度双键聚氨酯低聚物的纯度,减少非单官能度聚氨酯低聚物的形成。因此,利用上述制备方法得到的单官能度双键聚氨酯低聚物用于三维成型材料中进行喷墨打印时,改善成型层的层间附着力,抑制成型层的分离。
在另一种实施方式中,可以以异氰酸酯丙烯酸乙酯以及一元醇为原料制备,其中,异氰酸酯丙烯酸乙酯、一元醇的摩尔比为1:(1~1.1)。能够理解的是,该制备过程是在阻聚剂、催化剂以及抗氧剂作用下进行的。
具体地,将一元醇、第III阻聚剂、第III催化剂、第III抗氧剂混合搅拌得到第五混合物并升温至40℃~70℃,向第五混合物中滴加异氰酸酯丙烯酸乙酯,并控制滴加过程中反应体系的温度不高于70℃,升温速率不高于2℃/min;保温反应体系至反应体系中的异氰酸酯基团值为0.5%以下,得到单官能度双键聚氨酯低聚物。
能够理解,上述一元醇具有环状基团。例如苯甲醇、环己醇、4-羟基-α,α,4-三甲基环己烷甲醇等。
可选地,第III阻聚剂、第III催化剂、第III抗氧剂的质量分别占反应容器内总物料的1‰-4‰、0.8‰-2‰和1‰-4‰。
其中,反应体系中的异氰酸酯基团值的检测方法可以参考国标GB/T 12009.4-2016,通过检测体系的异氰酸酯基团值来判断体系中的羟基的是否反应完全或基本反应完全,异氰酸酯基团值越小,说明体系中的羟基残留越少。
上述保温反应的温度为70-90℃。
在上述三种实施方式中,阻聚剂主要是阻止合成过程中自由基发生聚合反应,催化剂的主要作用是促进提高羟基与异氰酸酯基团的反应速率,抗氧剂的主要作用是阻止合成过程的氧化行为。
具体地,第I阻聚剂、第II阻聚剂、第Ia阻聚剂、第IIa阻聚剂、第III阻聚剂分别独立地选自酚类、醌类或亚硝酸盐类阻聚剂中的至少一种,例如对苯二酚、对苯二醌、对羟基苯甲醚、2-叔丁基对苯二酚、2,5-二叔丁基对苯二酚、三(N-亚硝基-N-苯基羟胺)铝盐(阻聚剂510)等中的至少一种,由于亚硝酸盐类阻聚剂在光固化反应过程中对体系反应速率影响比较小,因此优选亚硝酸盐类阻聚剂。
第I催化剂、第II催化剂、第Ia催化剂、第IIa催化剂、第III催化剂分别独立地选自有机胺类、有机锡类和有机铋类催化剂中的至少一种,例如二月桂酸二丁基锡、辛酸亚锡、羧酸铋中的至少一种。
第I抗氧剂、第II抗氧剂、第IIa抗氧剂和第III抗氧剂分别独立地选自受阻酚类抗氧剂、亚磷酸酯类或硫代酯类中的至少一种。受阻酚类抗氧剂如 抗氧剂BHT、抗氧剂1010、抗氧剂1076、抗氧剂1098等;亚磷酸酯类抗氧剂如抗氧剂168、抗氧剂626、抗氧剂TP80等;硫代酯类如抗氧剂DLTP、抗氧剂DSTP等。
在上述前两种实施方式中,可以优选带有环状基团的原料为双官能度异氰酸酯单体。示例性地,带有环状基团的双官能度异氰酸酯单体选自异氟尔酮二异氰酸酯(IPDI)、甲苯二异氰酸酯(TDI)、4,4`-二苯基甲烷二异氰酸酯(MDI)、苯二亚甲基二异氰酸酯(XDI)、萘-1,5-二异氰酸酯(NDI)、甲基环己基二异氰酸酯(HTDI)、二环己基甲苯二异氰酸酯(HMDI)、四甲基苯二亚甲基二异氰酸酯(TMXDI)中的至少一种,优选甲苯二异氰酸酯(TDI)、异氟尔酮二异氰酸酯(IPDI)、4,4`-二苯基甲烷二异氰酸酯(MDI)、二环己基甲苯二异氰酸酯(HMDI)中的至少一种。
选用含有环状基团的异氰酸酯单体制备单官能度双键聚氨酯低聚物,更有利于三维成型材料抑制成型层的分离、提高层间附着效果。
在上述前两种实施方式中,单羟基单双键单体选自单羟基单丙烯酸酯、单羟基单烯丙基醚、单羟基单乙烯基醚中的一种。
其中,单羟基单丙烯酸酯选自丙烯酸羟乙酯、丙烯酸羟丙酯、4-丙烯酸羟丁酯、甲基丙烯酸羟乙酯、甲基丙烯酸羟丙酯、甲基丙烯酸羟丁酯等中的至少一种。进一步地,单羟基单丙烯酸酯优选具有双键且分子量较低的丙烯酸酯,具体是指分子量为158g/mol以下的具有双键的丙烯酸酯,例如可以优选丙烯酸羟乙酯、丙烯酸羟丙酯中的至少一种。
单羟基单烯丙基醚选自乙二醇单烯丙基醚、丙二醇单烯丙基醚、丁二醇单烯丙基醚、聚乙二醇单烯丙基醚中的至少一种。进一步地,聚乙二醇单烯丙基醚是分子量为300g/mol以下的聚乙二醇单烯丙基醚。
单羟基单乙烯基醚选自乙二醇单乙烯基醚,二乙二醇乙烯基醚、丙二醇单乙烯基醚、4-羟丁基乙烯基醚等中的至少一种。
在上述前两种实施方式中,一元醇选自含有一个羟基的化合物,如甲醇、无水乙醇、正丙醇、异丙醇、正丁醇、异丁醇、苯甲醇、环己醇、乙二醇单甲醚、乙二醇单丁醚、丙二醇单甲醚、丙二醇单丁醚等中的至少一种;二元醇优选具有活性差异的小分子二醇,活性差异具体是指同一分子上有两个羟基,两个羟基与异氰酸酯基团反应活性有差异,如1,2-丙二醇、1,2-丁二醇, 1,3-丁二醇,三甲基戊二醇等。通过限定二元醇优选具有活性差异的小分子二醇,可以进一步降低形成双官能度聚氨酯低聚物的概率。
本申请所使用的单官能度单体选自单官能度丙烯酸酯单体,具体选自4-叔丁基环己基丙烯酸酯、双环戊烯基丙烯酸酯、双环戊烯基乙氧化丙烯酸酯、2-苯氧基乙基丙烯酸酯、3,3,5-三甲基环己基丙烯酸酯、邻苯基苯氧基乙基丙烯酸酯、2-(对-异丙苯基-苯氧基)-乙基丙烯酸酯、环三羟甲基丙烷甲缩醛丙烯酸酯、2-(1,2-环己烷二羧基酰亚胺)乙基丙烯酸酯、2-(4-环己烯-1,2-二羧基酰亚胺)乙基丙烯酸酯、丙烯酸异冰片酯、苄基丙烯酸酯、双环戊烷基甲基丙烯酸酯、甲基丙烯酸异冰片酯、苄基甲基丙烯酸酯、丙烯酰吗啉、丙烯酸羟乙酯、丙烯酸羟丙酯、丙烯酸羟丁酯、己内酯改性丙烯酸羟乙酯、丙烯酸月桂酯、C8-C10丙烯酸酯、乙氧基乙氧基乙基丙烯酸酯等中的至少一种。
本申请所使用的多官能度化合物选自多官能度树脂、多官能度单体中的至少一种。
进一步地,多官能度树脂选自双键密度为3.33mol/Kg以下的多官能度树脂,更近一步地可以选自双键密度为2.5mol/Kg以下的多官能度树脂,具体地,多官能度树脂可以是环氧或改性环氧丙烯酸酯、聚酯丙烯酸酯、聚氨酯丙烯酸酯等中的至少一种,列举的部分具体商品名为:长兴6113聚氨酯丙烯酸酯、科宁6008聚氨酯丙烯酸酯等。通过限定多官能度树脂的双键密度,能避免多官能度树脂在光固化反应过程中双键反应形成局部交联密度过高的体型结构,导致成型层收缩过大而引起拱起翘曲的缺陷。
多官能度单体可以选自双键密度为3.33mol/Kg以下的多官能度单体,具体地,多官能度单体可以是乙氧化双酚A二丙烯酸酯、聚乙二醇(600)二丙烯酸酯、乙氧化双酚A二甲基丙烯酸酯、聚乙二醇(600)二甲基丙烯酸酯等中的至少一种。
此外,多官能度单体还可以选自双键密度大于3.33mol/Kg的多官能度单体,此时,多官能度单体在三维成型材料中的质量分数不得超过5%。
能够理解,双键密度是指每千克多官能度树脂或多官能度单体中含有的双键的物质的量。
本申请的光引发剂可以为自由基光引发剂或阳离子型光引发剂。自由基光引发剂可以选自安息香乙醚、安息香α,α-二甲基苯偶酰缩酮、α,α-二乙 氧基苯乙酮、2-羟基-2甲基-苯基丙酮-1、1-羟基-环己基苯基甲酮(184)、2-异丙基硫杂蒽酮、2-羟基-2-甲基-对羟乙基醚基苯基丙酮-1、2-甲基-1-[4-甲硫基苯基]-2-吗琳基-1-丙酮、[2-苄基-2-二甲氨基-1-(4-吗啉苯基)丁酮-1]、苯甲酰甲酸酯、三甲基苯甲酰基-二苯基氧化膦(TPO)、2,4,6-三甲基苯基酰基-乙氧基-苯基氧化膦、2,4,6-三甲基苯基酰基-二苯基氧化膦、苯基双(2,4,6-三甲基苯甲酰基)氧化膦和4-对甲苯巯基二苯甲酮等中的一种或多种。阳离子光引发剂可以选自碘鎓盐、硫鎓盐和铁芳烃型,如巴斯夫Irgacure 250、Irgacure 270、Irgacure PAG290、Irgacure 261等,陶氏化学的UV1 6974、UV1 6976等。
本申请的助剂选自阻聚剂、流平剂、消泡剂、着色剂、分散剂中的至少一种。
可选地,阻聚剂在三维成型材料中的质量分数为0.1-1%,流平剂在三维成型材料中的质量分数为0.01-3%,消泡剂在三维成型材料中的质量分数为0.01-3%,着色剂在三维成型材料中的质量分数为0-5%,分散剂在三维成型材料中的质量分数为0-5%。
具体地,阻聚剂在三维成型材料中的作用主要是阻止组合物中的自由基发生聚合反应,提高三维成型材料的贮存稳定性。阻聚剂的选择与前述制备单官能度双键聚氨酯低聚物的选择相同,此处不再赘述。
流平剂主要用于提高三维成型材料的流动性以及对基材的润湿性能,同时调整三维成型材料的表面张力使其能够正常打印。本申请中只要所用流平剂能满足上述性能要求,具体选择哪种流平剂不受限制,目前市售的产品较多,可以是毕克公司的BYK333、BYK377、BYK1798、BYK-UV3530、BYK-UV3575、BYK-UV3535等,迪高公司的TEGO wet 500、TEGO wet 270、TEGO Glide 450、TEGO RAD 2010、TEGO RAD 2011、TEGO RAD 2100、TEGO RAD 2200等。
消泡剂的主要作用是抑制、降低、消除三维成型材料中的气泡,本申请中只要所用消泡剂能达到上述效果具体选择哪种消泡剂不受限制,目前市售的产品较多,可以是毕克公司的BYK055、BYK088、BYK020、BYK025等,迪高公司的TEGO Airex 920、TEGO Airex 921、TEGO Airex 986、TEGO Foamex 810、TEGO Foamex N等,埃夫卡公司的Efka 7081、Efka7082等。
分散剂的主要作用是用于提高和改善着色剂的分散稳定性。本申请中只要所用分散剂性能满足上述性能要求,具体选择哪种分散剂不受限制,目前市售的产品较多,可以是BYK102、BYK106、BYK108、BYK110、BYK111、BYK180,迪高Dispers 655、Dispers675、Dispers 710、Dispers 630、Dispers 670等。
另外,本申请中三维成型材料可以含有着色剂,也可以不含有着色剂。当不含有着色剂时,三维成型材料为透明色,打印出的物体具有较高的透明度。当含有着色剂时,着色剂可以是颜料或染料,本申请中优选颜料为着色剂,颜料具体可以选自C.I.Pigment White 6、C.I.Pigment Red 3、C.I.Pigment Red 5、C.I.Pigment Red 7、C.I.Pigment Red 9、C.I.Pigment Red 12、C.I.Pigment Red 13、C.I.Pigment Red 21、C.I.Pigment Red 31、C.I.Pigment Red 49:1、C.I.Pigment Red 58:1、C.I.PigmentRed 175;C.I.Pigment Yellow 63、C.I.Pigment Yellow 3、C.I.Pigment Yellow 12、C.I.Pigment Yellow 16、C.I.Pigment Yellow 83;C.I.Pigment Blue 1、C.I.Pigment Blue 10、C.I.Pigment Blue B、Phthalocyanine Blue BX、Phthalocyanine Blue BS、C.I.Pigment Blue 61:1等中的一种或多种。
本申请的三维成型材料具有优异的打印特性,适用于3D物体的打印,特别适合用于3D物体的喷墨打印。在进行3D打印时,能够抑制成型层的分离和拱起现象,成型层的层间附着力高,并且该三维成型材料的热稳定性和机械强度表现良好,有利于以低成本得到高品质的三维打印物体。此外,该三维成型材料的流畅性能佳,即使在低温下进行打印,也不会发生打印头堵塞的现象,延长了打印机的使用寿命,降低了打印机的维护成本。
本申请第二方面是提供一种第一方面的三维成型材料的制备方法,包括以下步骤:
1)将单官能度单体、引发剂、助剂混合搅拌,得到第一体系;
2)搅拌下,向所述第一体系加入多官能度化合物和60-90℃的单官能度聚氨酯低聚物,得到第二体系;
3)对所述第二体系进行过滤处理,收集滤液,得到所述三维成型材料。
可以理解,本申请的三维成型材料的制备需要在光引发剂的引发波长范围之外的环境下进行,从而避免环境中的光诱发三维成型材料中的成分发生聚合反应。
在上述制备过程中,步骤1)中的搅拌速度小于步骤2)中的搅拌速度。具体的,步骤1)中的搅拌速度为400r/min~1000r/min,步骤2)中的搅拌速度为1000r/min~2500r/min。
为了避免不溶物导致的三维成型材料的打印困难,可以采用N(N≥2)级过滤的方式对第二体系进行过滤,其中,第N级过滤所采用的滤膜孔径小于第N-1级过滤所采用的滤膜孔径,且第N级过滤所采用的滤膜孔径小于打印喷头的孔径。在一种具体实施方式中可以采用二级过滤的方式,第一级过滤采用孔径为0.45μm的玻璃纤维膜对第二体系过滤,收集的滤液采用孔径为0.22μm的聚丙烯膜(简称PP膜)进行第二级过滤,收集的滤液即为三维成型材料。
进一步地,在过滤之后,还包括对收集的滤液进行脱气处理。一般的,脱气处理的时间不高于5h,优选的,将脱气时间控制在1~3h。脱气处理的操作方式选自减压脱气、常压脱气和加热脱气中的一种。通过对滤液进行脱气处理,能够使三维成型材料在使用过程中具有优异的流畅性,不会因为三维成型材料中气泡的干扰而引起打印断线,最终影响3D物体的成型精度。
本申请的制备方法简单易操作,不仅有利于形成稳定的三维成型材料,还有利于三维成型材料的喷射,从而使三维成型材料的使用更加方便。
本申请的第三个方面是提供一种三维物体,该三维物体采用前述第一方面的三维成型材料进行3D打印得到。
由于该三维物体是以前述三维成型材料进行3D打印得到,因此该三维物体不易发生变形、翘曲和拱起的现象,在外观寿命和使用寿命方面具有较大优势。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请的实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1制备单官能度双键聚氨酯丙烯酸酯PUA-1
制备方法包括以下步骤:
称取104.51g丙烯酸羟乙酯、0.44g对羟基苯甲醚(阻聚剂)、0.44g抗氧剂1010、0.150g二月桂酸二丁基锡(催化剂)于容器中,搅拌至对羟基苯甲醚完全溶解备用,得到丙烯酸羟乙酯混合物。
称取222.29g异氟尔酮二异氰酸酯,加入反应烧瓶中,搅拌,加热升温至30℃-40℃之间,利用蠕动泵向反应烧瓶中恒量滴加丙烯酸羟乙酯混合物,滴加过程中控制滴加速度,保持升温速度为1℃/min左右,且最高温度不超过70℃,大约1.5h滴加完成,在60℃-70℃保温。
保温30min后,当NCO值不大于第一预期值14.10%后,加入108.144g丙二醇单甲醚、0.36g对羟基苯甲醚,待温度稳定后,低于65℃的情况下加入0.36g二月桂酸二丁基锡,待自动升温停止后在80℃-90℃保温2h,当NCO值小于或等于0.5%终止反应,得到单官能度双键聚氨酯丙烯酸酯,命名为PUA-1;该单官能度双键聚氨酯丙烯酸酯分子结构如下结构式I所示,分子量为428.53g/mol,氨酯键密度为4.67mol/Kg。
Figure PCTCN2020119647-appb-000001
实施例2制备单官能度双键聚氨酯丙烯酸酯PUM-1
制备方法包括以下步骤:
称取79.30g乙二醇单乙烯基醚、5.06g无水乙醇、0.32g对羟基苯甲醚、0.42g抗氧剂168、0.15g二月桂酸二丁基锡于容器中,搅拌至材料完全溶解备用,得到乙二醇单乙烯基醚混合物。
称取222.29g异氟尔酮二异氰酸酯,加入反应烧瓶中,搅拌,加热升温至30℃-40℃,利用蠕动泵向反应烧瓶中恒量滴加乙二醇单乙烯基醚混合物,滴加过程中控制滴加速度,保持升温速度为1.5℃/min左右,且最高温度不超过70℃,大约1.5h滴加完成,在65℃保温;保温30min后,当NCO的值不大 于13.52%后,降温备用,定为第II组合物。
向另一反应器中加入83.70g丙二醇、0.27g对羟基苯甲醚、0.31g抗氧剂168,0.32g二月桂酸二丁基锡,开启搅拌并升温至60℃-70℃,滴加第II组合物,2h内滴加完成。滴加完成后,待温度稳定后,逐步升温至90℃-95℃,保温2h,当NCO值低于0.5%降温终止反应,得到单官能度双键聚氨酯丙烯酸酯,为PUM-1;该单官能度双键聚氨酯丙烯酸酯分子结构如下结构式II所示,分子量为386.49g/mol,氨酯键密度为5.17mol/Kg。
Figure PCTCN2020119647-appb-000002
实施例3制备单官能度双键聚氨酯丙烯酸酯PUP-1
制备方法包括以下步骤:
称取91.92g乙二醇单烯丙基醚、0.32g对羟基苯甲醚(阻聚剂)、0.42g抗氧剂1010、0.16g二月桂酸二丁基锡(催化剂)于容器中,搅拌至完全溶解备用,为乙二醇单烯丙基醚混合物。
称取174.15g甲苯二异氰酸酯(TDI),加入反应烧瓶中,20℃-30℃搅拌,利用蠕动泵向反应烧瓶中恒量滴加乙二醇单烯丙基醚混合物,滴加过程中控制滴加速度,保持升温速度为约1℃/min左右,且最高温度不超过60℃,大约1.5h滴加完成,升温至60℃保温。
在60℃保温30min后,测量NCO的值不大于14.66%后,加入91.31g乙二醇单甲醚、0.32g对羟基苯甲醚,待温度稳定后,低于65℃的情况下加入0.30g二月桂酸二丁基锡,待自动升温停止后在70℃-80℃保温2h,当NCO值低于0.5%降温终止反应,得到单官能度双键聚氨酯低聚物,命名为PUP-1;该单官能度双键聚氨酯丙烯酸酯分子结构如下结构式III所示,分子量为352.22g/mol,氨酯键密度为5.678mol/Kg。
Figure PCTCN2020119647-appb-000003
实施例4制备单官能度双键聚氨酯丙烯酸酯PUX-1
制备方法包括以下步骤:
称取100.16g环己醇、0.3g对羟基苯甲醚、0.3g抗氧剂BHT、0.25g二月桂酸二丁基锡于反应器中,开启搅拌,升温至60℃。利用蠕动泵恒量滴加141.12g异氰酸酯丙烯酸乙酯于反应器中,滴加过程中控制滴加速度,保持升温速度为约1℃/min左右,且最高温度不超过70℃。滴加完成后,待温度稳定后升温至90℃保温2h,测量NCO值低于0.5%终止反应,得到单官能度双键聚氨酯丙烯酸酯,命名为PUX-1;该单官能度双键聚氨酯丙烯酸酯分子结构如下结构式IV所示,分子量为241.282g/mol,氨酯键密度为4.13mol/Kg。
Figure PCTCN2020119647-appb-000004
实施例5
本实施例的三维成型材料按照质量分数包括表1所示组分:
表1
Figure PCTCN2020119647-appb-000005
Figure PCTCN2020119647-appb-000006
制备方法包括:
1、将单官能度聚氨酯丙烯酸酯低聚物加热至70℃左右;
2、将丙烯酸异冰片酯、丙烯酰吗啉、光引发剂、阻聚剂、流平剂、消泡剂按配方依次加料,搅拌20min至光引发剂和阻聚剂完全溶解,搅拌速度为600r/min,得到第一体系;
3、向第一体系中加入聚氨酯丙烯酸酯和热的单官能度聚氨酯丙烯酸酯低聚物,搅拌30min,搅拌速度为1500r/min,得到第二体系。
4、采用0.45μm的玻璃纤维膜对第二体系进行第一级过滤,随后采用0.22μm的PP膜对第一级过滤的滤液进行第二级过滤,收集滤液并在0.1MPa的真空度下减压抽滤2h以除去滤液中的气泡,最终得到三维成型材料。
实施例6
本实施例的三维成型材料按照质量分数包括表2所示组分:
表2
Figure PCTCN2020119647-appb-000007
Figure PCTCN2020119647-appb-000008
制备方法与实施例5中的方法基本相同,其中分散剂BYK108在色浆前加入,采用常压脱气3h以除去滤液中的气泡,最终得到三维成型材料。
实施例7
本实施例的三维成型材料按照质量分数包括表3所示组分:
表3
Figure PCTCN2020119647-appb-000009
制备方法与实施例6中的方法相同。
实施例8
本实施例的三维成型材料按照质量分数包括表4所示组分:
表4
Figure PCTCN2020119647-appb-000010
Figure PCTCN2020119647-appb-000011
制备方法与实施例5中的方法基本相同,采用加热脱气3h以除去滤液中的气泡,最终得到三维成型材料。
实施例9
本实施例的三维成型材料按照质量分数包括表5所示组分:
表5
Figure PCTCN2020119647-appb-000012
制备方法与实施例5中的方法相同。
对比例1
本对比例的三维成型材料按照质量分数包括表6所示组分:
表6
Figure PCTCN2020119647-appb-000013
Figure PCTCN2020119647-appb-000014
制备方法与实施例5中的方法相同。
对比例2
本对比例的三维成型材料按照质量分数包括表7所示组分:
表7
Figure PCTCN2020119647-appb-000015
制备方法与实施例6中的方法相同。
对比例3
本对比例的三维成型材料按照质量分数包括表8所示组分:
表8
Figure PCTCN2020119647-appb-000016
制备方法与实施例6中的方法相同。
试验例
1、流畅性检测
使用赛纳J501喷墨打印机,分别采用实施例5-9以及对比例1-3中的三维成型材料打印50mm*50mm测试块70层,然后用红色A4纸接墨观察是否流畅。
结果见表9。
2、拱起测试
使用赛纳J501喷墨打印机,分别采用实施例5-9以及对比例1-3中的三维成型材料打印70层铺底层,层高设置36μm/每层,之后打印200mm*100mm*36mm测试块,观察打印过程中有无撞机和翘曲现象。打印完成后,将测试块放置2h,之后将测试块置于平台上观察测试块是否平整或拱起,并测量测试块实际高度与目标高度的差值。
结果见表9。
表9
Figure PCTCN2020119647-appb-000017
根据表9可知:
1、本申请的成型材料在喷射温度为55℃时,具有好的流畅性,即使单官能度双键聚氨酯低聚物在组合物中的占比高达50%,依然具有很好的打印流畅性。
2、在满足用户对物体的打印流畅性和机械性能要求的前提下,使用本申请的三维成型材料在打印过程中没有拱起现象,放置2h后仍然没有拱起现象,与目标高度差不超过0.1mm,很明显,本申请三维物体成型中层间附着力强,本申请的三维成型材料提高了物体的打印效果和打印精度。
3、通过实施例6与对比例3的实验结果比较,可以看出单官能度聚氨酯低聚物的合成工艺对单官能度聚氨酯低聚物在成型材料组合物中所起到的作用有较大影响,本申请通过将双官能度异氰酸酯单体、单羟基单双键的单体、一元醇分次加入,在指定的环境下进行反应,可以显著提高单官能度双键聚氨酯低聚物的纯度,从而使本申请的三维成型材料具有更为优异的打印性能。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (28)

  1. 一种三维成型材料,其中,按照质量分数包括以下组分:
    单官能度聚氨酯低聚物5-50%、单官能度单体35-85%、多官能度化合物0-30%、光引发剂0.5-8%以及助剂0.2-5%;
    其中,所述单官能度聚氨酯低聚物含有环状基团,且所述单官能度聚氨酯低聚物中氨酯键的密度为3.3mol/Kg以上。
  2. 根据权利要求1所述的三维成型材料,其中,所述单官能度聚氨酯低聚物中氨酯键的密度为4mol/Kg以上。
  3. 根据权利要求1或2所述的三维成型材料,其中,所述单官能度聚氨酯低聚物中的所述环状基团的密度为1.5mol/Kg以上。
  4. 根据权利要求1-3任一项所述的三维成型材料,其中,所述单官能度聚氨酯低聚物的分子量为600g/mol以下。
  5. 根据权利要求4所述的三维成型材料,其中,所述单官能度聚氨酯低聚物的分子量为500g/mol以下。
  6. 根据权利要求1-5任一项所述的三维成型材料,其中,所述单官能度聚氨酯低聚物为单官能度双键聚氨酯低聚物。
  7. 根据权利要求6所述的三维成型材料,其中,所述单官能度双键聚氨酯低聚物选自单官能度聚氨酯丙烯酸酯低聚物、单官能度烯丙基型聚氨酯低聚物、单官能度乙烯基型聚氨酯低聚物中的至少一种。
  8. 根据权利要求6-7任一项所述的三维成型材料,其中,所述单官能度双键聚氨酯低聚物通过包括以下过程的方法制备得到:
    双官能度异氰酸酯单体、单羟基单双键单体以及一元醇按照1:(0.9~1):(1~1.2)的摩尔比反应,得到所述单官能度双键聚氨酯低聚物。
  9. 根据权利要求6-7任一项所述的三维成型材料,其中,所述单官能度双键聚氨酯低聚物通过包括以下过程的方法制备得到:
    双官能度异氰酸酯单体、单羟基单双键单体、一元醇以及二元醇按照1:(0.9~0.95):(0.05~0.11):(1~1.1)的摩尔比反应,得到所述单官能度双键聚氨酯低聚物。
  10. 根据权利要求6-7任一项所述的三维成型材料,其中,所述单官能度双键聚氨酯低聚物通过包括以下过程的方法制备得到:
    异氰酸酯丙烯酸乙酯、一元醇按照1:(1~1.1)的摩尔比反应,得到所述单官能度双键聚氨酯低聚物。
  11. 根据权利要求8所述的三维成型材料,其中,所述单官能度双键聚氨酯低聚物通过包括以下过程的方法制备得到:
    将所述单羟基单双键单体、第I阻聚剂、第I催化剂、第I抗氧剂混合搅拌得到第一混合物;
    将所述双官能度异氰酸酯单体加入反应器中,搅拌升温至20℃~40℃后,向所述反应器滴加所述第一混合物,并控制滴加过程中反应体系的温度不高于70℃,升温速率不高于2℃/min;
    保温反应体系至所述反应体系中的异氰酸酯基团值为第一预期值后,加入所述一元醇、第Ia阻聚剂、第Ia催化剂,并在60℃~100℃反应至所述反应体系中的异氰酸酯基团值为0.5%以下,得到所述单官能度双键聚氨酯低聚物。
  12. 根据权利要求9所述的三维成型材料,其中,所述单官能度双键聚氨酯低聚物通过包括以下过程的方法制备得到:
    将所述单羟基单双键单体、一元醇、第II阻聚剂、第II催化剂、第II抗氧剂混合搅拌得到第二混合物;
    将所述双官能度异氰酸酯单体加入反应器中,搅拌升温度至20℃~40℃后,向所述反应器中滴加所述第二混合物,并控制滴加过程中反应体系的温度不高于70℃,升温速率不高于2℃/min;保温反应体系至所述反应体系中的异氰酸酯基团值为第二预期值,得到第三混合物;
    将所述二元醇、第IIa阻聚剂、第IIa催化剂、第IIa抗氧剂混合搅拌得到第四混合物,在60℃~80℃下向所述第四混合物中滴加所述第三混合物,随后在80℃~90℃保温至反应体系中的异氰酸酯基团值为0.5%以下,得到所述单官能度双键聚氨酯低聚物。
  13. 根据权利要求10所述的三维成型材料,其中,所述单官能度双键聚氨酯低聚物通过包括以下过程的方法制备得到:
    将所述一元醇、第III阻聚剂、第III抗氧剂、第III催化剂混合搅拌得到第五混合物并升温至40℃~70℃,向所述第五混合物中滴加所述异氰酸酯丙烯酸乙酯,并控制滴加过程中反应体系的温度不高于70℃,升温速 率不高于2℃/min;保温反应体系至所述反应体系中的异氰酸酯基团值为0.5%以下,得到所述单官能度双键聚氨酯低聚物;其中所述一元醇含有环状基团。
  14. 根据权利要求8、9、11、12任一项所述的三维成型材料,其中,所述双官能度异氰酸酯单体含有环状基团。
  15. 根据权利要求8、9、11、12、14任一项所述的三维成型材料,其中,所述单羟基单双键单体选自单羟基单丙烯酸酯、单羟基单烯丙基醚、单羟基单乙烯基醚中的一种。
  16. 根据权利要求15所述的三维成型材料,其中,所述单羟基单丙烯酸酯选自丙烯酸羟乙酯、丙烯酸羟丙酯、4-丙烯酸羟丁酯、甲基丙烯酸羟乙酯、甲基丙烯酸羟丙酯、甲基丙烯酸羟丁酯中的至少一种。
  17. 根据权利要求15所述的三维成型材料,其中,所述单羟基单烯丙基醚选自乙二醇单烯丙基醚、丙二醇单烯丙基醚、丁二醇单烯丙基醚、聚乙二醇单烯丙基醚中的至少一种。
  18. 根据权利要求15所述的三维成型材料,其中,所述单羟基单乙烯基醚选自乙二醇单乙烯基醚,二乙二醇乙烯基醚、丙二醇单乙烯基醚、4-羟丁基乙烯基醚中的至少一种。
  19. 根据权利要求1所述的三维成型材料,其中,所述单官能度单体选自单官能度丙烯酸酯单体。
  20. 根据权利要求1所述的三维成型材料,其中,所述多官能度化合物选自多官能度树脂和/或多官能度单体。
  21. 根据权利要求20所述的三维成型材料,其中,所述多官能度树脂的双键密度为3.33mol/Kg以下。
  22. 根据权利要求21所述的三维成型材料,其中,所述多官能度树脂的双键密度为2.5mol/Kg以下。
  23. 根据权利要求20所述的三维成型材料,其中,所述多官能度单体的双键密度为3.33mol/Kg以下。
  24. 根据权利要求20所述的三维成型材料,其中,所述多官能度单体的双键密度大于3.33mol/Kg,且所述多官能度单体在所述三维成型材料中的质量分数不超过5%。
  25. 一种权利要求1-24任一项所述的三维成型材料的制备方法,其中,包括以下步骤:
    1)将单官能度单体、引发剂、助剂混合搅拌,得到第一体系;
    2)搅拌下,向所述第一体系加入多官能度化合物和60-90℃的单官能度聚氨酯低聚物,得到第二体系;
    3)对所述第二体系进行过滤处理,收集滤液,得到所述三维成型材料。
  26. 根据权利要求25所述的三维成型材料的制备方法,其中,所述过滤处理包括对所述第二体系进行N级过滤,且第N级过滤的滤孔孔径小于打印喷头的孔径,N≥2。
  27. 根据权利要求25所述的三维成型材料的制备方法,其中,还包括对所述滤液进行脱气处理。
  28. 一种三维物体,其中,所述三维物体采用权利要求1-24任一项所述的三维成型材料进行3D打印得到。
PCT/CN2020/119647 2020-04-22 2020-09-30 一种三维成型材料及其制备方法和应用 WO2021212762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010323339.0A CN111393567A (zh) 2020-04-22 2020-04-22 一种三维成型材料及其制备方法和应用
CN202010323339.0 2020-04-22

Publications (1)

Publication Number Publication Date
WO2021212762A1 true WO2021212762A1 (zh) 2021-10-28

Family

ID=71427998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119647 WO2021212762A1 (zh) 2020-04-22 2020-09-30 一种三维成型材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111393567A (zh)
WO (1) WO2021212762A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393567A (zh) * 2020-04-22 2020-07-10 珠海赛纳三维科技有限公司 一种三维成型材料及其制备方法和应用
CN111978479B (zh) * 2020-08-11 2021-11-12 珠海赛纳三维科技有限公司 三维成型用材料、三维物体及其切片层
CN112812241A (zh) * 2021-01-22 2021-05-18 中科三维成型技术(深圳)有限公司 一种活性受控的光固化3d打印树脂及其制备方法和应用
CN115141322B (zh) * 2022-06-28 2024-02-27 珠海赛纳三维科技有限公司 三维打印材料及三维物体、三维物体打印方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101142252A (zh) * 2005-03-15 2008-03-12 昭和电工株式会社 包含(甲基)丙烯酰基的芳族异氰酸酯化合物及其制备方法
CN105008326A (zh) * 2013-02-25 2015-10-28 株式会社自动网络技术研究所 高灵敏度(甲基)丙烯酸酯和自由基固化材料
CN105273124A (zh) * 2014-06-20 2016-01-27 株式会社其恩斯 在喷墨立体平版印刷中用于形成光加工模型的造型材料和光加工模型的制造方法
JP2017141337A (ja) * 2016-02-09 2017-08-17 日華化学株式会社 粘着剤組成物、粘着剤及び粘着材
CN109562596A (zh) * 2016-08-10 2019-04-02 阿科玛法国公司 含有环状结构基元、氨基甲酸酯/脲基连接单元和可自由基聚合的官能团的化合物
CN111393567A (zh) * 2020-04-22 2020-07-10 珠海赛纳三维科技有限公司 一种三维成型材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101142252A (zh) * 2005-03-15 2008-03-12 昭和电工株式会社 包含(甲基)丙烯酰基的芳族异氰酸酯化合物及其制备方法
CN105008326A (zh) * 2013-02-25 2015-10-28 株式会社自动网络技术研究所 高灵敏度(甲基)丙烯酸酯和自由基固化材料
CN105273124A (zh) * 2014-06-20 2016-01-27 株式会社其恩斯 在喷墨立体平版印刷中用于形成光加工模型的造型材料和光加工模型的制造方法
JP2017141337A (ja) * 2016-02-09 2017-08-17 日華化学株式会社 粘着剤組成物、粘着剤及び粘着材
CN109562596A (zh) * 2016-08-10 2019-04-02 阿科玛法国公司 含有环状结构基元、氨基甲酸酯/脲基连接单元和可自由基聚合的官能团的化合物
CN111393567A (zh) * 2020-04-22 2020-07-10 珠海赛纳三维科技有限公司 一种三维成型材料及其制备方法和应用

Also Published As

Publication number Publication date
CN111393567A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2021212762A1 (zh) 一种三维成型材料及其制备方法和应用
WO2022041885A1 (zh) 一种3d打印用弹性材料及其制备方法、打印方法及装置
KR100828061B1 (ko) 저 점도, 방사선 경화성 폴리에스테르 우레탄 올리고머를포함하는 잉크 및 기타 조성물
CN109608589B (zh) 一种3d打印用双重固化树脂材料及其制备方法
CN102786839B (zh) 玻璃保护油墨及其制备方法
CN102099427B (zh) 辐射可固化的印刷油墨或印刷调墨油
WO2012060204A1 (ja) インクジェット光造形法における、光造形品形成用モデル材、光造形品の光造形時の形状支持用サポート材および光造形品の製造方法
CN108383974A (zh) 一种紫外光固化高强度聚氨酯丙烯酸酯树脂及其制备方法
US8008391B2 (en) Aqueous pigment dispersion and aqueous pigment ink for inkjet recording
CN113321925B (zh) 3d打印用组合物及其制备方法、3d打印方法、装置
JP2016006179A (ja) 高伸度熱成形用インクジェットインク
KR20090008380A (ko) 비수성 잉크젯 잉크, 잉크젯 기록용 잉크 조성물, 및 컬러 필터 기판
CN113214114B (zh) 3d物体打印用活性基团封闭型二异氰酸酯、组合物以及3d物体的打印方法和装置
WO2022033114A1 (zh) 三维成型用材料、三维物体及其切片层
WO2022033113A1 (zh) 三维成型用材料、三维物体及其切片层
WO2022258030A1 (zh) 一种3d打印用组合物、3d打印方法、装置
CN110198827B (zh) 模型材料油墨组、支撑材料组合物、油墨组、立体造型物和立体造型物的制造方法
WO2024001603A1 (zh) 三维打印材料及三维物体、三维物体打印方法
CN109293824B (zh) 单官能丙烯酸酯树脂及其制备方法和支撑材料组合物及其制备方法和应用
CN115044008B (zh) 一种亲水型阳离子光固化树脂及其制备方法和应用
CN113603850B (zh) 一种高耐磨亲水树脂、一种高耐磨无溶剂防雾涂料及其制备方法和应用
CN114989670A (zh) 一种绝缘性喷印油墨及其制备方法
KR101284153B1 (ko) 컬러필터용 잉크젯 잉크에 이용되는 아크릴계 바인더 수지
JP3073070B2 (ja) 高いガラス転移温度を有する型内硬化成形物の製造方法及び該製造方法によって得られる高いガラス転移温度を有する型内硬化成形物
KR101254206B1 (ko) 하이드록시기를 가지는 컬러필터용 아크릴계 바인더 수지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931855

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20931855

Country of ref document: EP

Kind code of ref document: A1