WO2021210655A1 - 鋼材 - Google Patents

鋼材 Download PDF

Info

Publication number
WO2021210655A1
WO2021210655A1 PCT/JP2021/015628 JP2021015628W WO2021210655A1 WO 2021210655 A1 WO2021210655 A1 WO 2021210655A1 JP 2021015628 W JP2021015628 W JP 2021015628W WO 2021210655 A1 WO2021210655 A1 WO 2021210655A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
content
less
steel
low temperature
Prior art date
Application number
PCT/JP2021/015628
Other languages
English (en)
French (fr)
Inventor
桂一 近藤
勇次 荒井
圭一 中村
大江 太郎
武典 倉本
洋輔 竹田
裕紀 神谷
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to EP21788859.3A priority Critical patent/EP4137598A4/en
Priority to CN202180042238.9A priority patent/CN115917026A/zh
Priority to US17/995,368 priority patent/US20230203631A1/en
Priority to MX2022012813A priority patent/MX2022012813A/es
Priority to JP2022515439A priority patent/JP7445173B2/ja
Priority to BR112022020096A priority patent/BR112022020096A2/pt
Publication of WO2021210655A1 publication Critical patent/WO2021210655A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys

Definitions

  • This disclosure relates to steel materials, and more specifically to steel materials used in oil wells.
  • oil wells and gas wells Due to the deepening of oil wells and gas wells (hereinafter, oil wells and gas wells are collectively referred to as "oil wells"), high strength is required for steel materials for oil wells represented by steel pipes for oil wells. ..
  • steel materials for oil wells steel pipes for oil wells of 80 ksi class (yield strength is less than 80 to 95 ksi, that is, less than 552 to 655 MPa) and 95 ksi class (yield strength is less than 95 to 110 ksi, that is, less than 655 to 758 MPa). Is widely used.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2017-2369 proposes a seamless steel pipe having a yield strength of 125 ksi or more and excellent low temperature toughness.
  • the seamless steel pipe disclosed in Patent Document 1 has a mass% of C: 0.21 to 0.35%, Si: 0.10 to 0.50%, Mn: 0.05 to 1.00%, P.
  • the number of specific sulfide-based inclusions having a major axis of 1 ⁇ m or more is 5000/100 ⁇ m 2 or less, and the average aspect ratio of the specific sulfide-based inclusions is It is 3.4 or less. Further, the yield strength of this seamless steel pipe is 862 MPa or more.
  • the grain size number of the old austenite grains is set to 7.0 or more, and the crystal grains are refined to improve low temperature toughness.
  • the heating temperature of the material before hot working is set to 1100 ° C. or lower, and the rotation speed of the inclined roll during drilling and rolling is slowed down to suppress the processing heat generation during drilling and rolling.
  • the crystal grains are kept fine.
  • the strength and low temperature toughness of the seamless steel pipe are further enhanced by grain refinement and precipitation strengthening by precipitates such as Ti precipitate, V precipitate, and Nb precipitate.
  • An object of the present disclosure is to provide a steel material having high yield strength and excellent low temperature toughness.
  • the steel materials according to this disclosure are By mass% C: 0.15 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.05 to less than 0.80%, P: 0.030% or less, S: 0.0100% or less, Al: 0.100% or less, Cr: 0.30 to 1.50%, Mo: 0.25 to 2.00%, Ti: 0.001 to 0.015%, N: 0.0100% or less, O: 0.0050% or less, V: 0 to 0.05%, Nb: 0 to 0.010%, B: 0 to less than 0.0005%, Ca: 0-0.0100%, Mg: 0 to 0.0100%, Rare earth elements: 0-0.0100%, Ni: 0 to 0.50%, Cu: 0 to 0.50%, and The rest consists of Fe and impurities
  • the grain size number of the former austenite grains is less than 7.0, Assuming that the content of each element is within the above range, the formulas (1) to (4) are satisfied.
  • Yield strength is 896 MPa or more
  • the absorbed energy at ⁇ 10 ° C. is 95 J or more.
  • (10 ⁇ Ti + 1.2 ⁇ V + 30 ⁇ Nb) / Mo ⁇ 0.205
  • the content of the corresponding element is substituted in mass% for each element symbol, and the crystal grain size number is substituted for "GN".
  • the steel material according to the present disclosure has high yield strength and excellent low temperature toughness.
  • FIG. 1 is a schematic view (plan view) of a rotary hearth type heating furnace, which is an example of a continuous heating furnace.
  • the present inventors have studied a steel material having excellent low-temperature toughness while increasing the strength of the steel material.
  • precipitation by precipitates such as Ti precipitates, V precipitates, and Nb precipitates is required in order to obtain high strength of 862 MPa or more (125 ksi or more).
  • the strength of the steel material was increased. Therefore, the present inventors first examined means for increasing the strength of the steel material by precipitation strengthening and further increasing the low temperature toughness.
  • Inclusions are a factor that reduces the low temperature toughness of steel materials.
  • Elements that form inclusions include Mn, Ti, and B.
  • the V precipitate and the Nb precipitate increase the strength of the steel material by strengthening the precipitation. Therefore, the present inventors considered to suppress the formation of inclusions by lowering the contents of Mn, Ti and B, and further increase the strength of the steel material by strengthening the precipitation of V and Nb.
  • the present inventors adopt a strengthening mechanism by improving hardenability as the main strengthening mechanism of steel materials, instead of the conventional strengthening mechanism by precipitation strengthening. I thought.
  • the content of the element that easily forms inclusions and precipitates can be suppressed while containing the element that enhances hardenability.
  • the present inventors examined a chemical composition suitable for the above-mentioned technical idea.
  • the chemical composition is C: 0.15 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.05 to less than 0.80%, P: 0.030 in mass%.
  • % Or less S: 0.0100% or less, Al: 0.100% or less, Cr: 0.30 to 1.50%, Mo: 0.25 to 2.00%, Ti: 0.001 to 0.015 %, N: 0.0100% or less, O: 0.0050% or less, V: 0 to 0.05%, Nb: 0 to 0.010%, B: 0 to less than 0.0005%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, rare earth element (REM): 0 to 0.0100%, Ni: 0 to 0.50%, Cu: 0 to 0.50%, and the balance is Fe.
  • the present inventors have considered that a steel material composed of impurities and impurities may have both high strength and excellent low temperature toughness.
  • the strengthening mechanism by improving hardenability is adopted as the main strengthening mechanism of the steel material.
  • the coarser the steel material the higher the hardenability. Therefore, the present inventors have considered that in the steel material of the present embodiment, the crystal grains are intentionally made into coarse grains to increase the strength of the steel material, instead of making the crystal grains into fine grains as in the conventional steel material.
  • the present inventors considered that the strength may be increased.
  • F1 is an index of hardenability of steel materials.
  • the element that improves hardenability hereinafter, also referred to as the hardenability improving element
  • C, Mn, Cu, Ni, Cr, Mo, V and B in F1 are all hardenability improving elements.
  • the (7.0 / GN) 0.45 term in F1 indicates the contribution of the old austenite grain size to hardenability.
  • the hardenability of the steel material is insufficient even if the content of each element in the chemical composition is within the range of this embodiment and the formulas (2) to (4) are satisfied. doing. In this case, the yield strength of the steel material cannot be sufficiently increased. If the content of each element in the chemical composition of the steel material is within the range of this embodiment and F1 is 0.678 or more, the chemical composition satisfies the formulas (2) to (4) described later. As a premise, the strength of the steel material can be sufficiently increased. Specifically, the yield strength of the steel material can be 896 MPa (130 ksi) or more.
  • F2 is an index of low temperature toughness of steel materials.
  • all of Mn, Ti, V, Nb and B tend to form inclusions or precipitates.
  • these elements are also referred to as inclusion / precipitate forming elements.
  • inclusions and / or precipitates When these elements form inclusions and / or precipitates, cracks are likely to occur if the old austenite grains are coarse. On the other hand, if the old austenite grains are fine grains, the growth of cracks is likely to be suppressed.
  • Mn, Ti, V, Nb and B in F2 are all inclusion / precipitate forming elements.
  • the (7.0 / GN) 0.45 term in F2 indicates the contribution of the former austenite grain size to cold toughness.
  • F2 exceeds 0.240, the content of each element in the chemical composition is within the above range, and even if the formulas (1), (3) and (4) are satisfied, Mn and Ti in the steel material. , V, Nb and B-containing inclusions and / or precipitates are overproduced. Therefore, when the yield strength of the steel material in which the content of each element in the chemical composition is within the range of the present embodiment is set to 896 MPa (130 ksi) or more, the low temperature toughness of the steel material is lowered. Specifically, the absorbed energy at ⁇ 10 ° C. is less than 95J.
  • F3 is an index of a precipitation strengthening mechanism that is supplementarily utilized as a strengthening mechanism in a steel material in which the content of each element in the chemical composition is within the range of the present embodiment.
  • the strengthening mechanism by improving hardenability is the main strengthening mechanism by satisfying the formula (1).
  • the yield strength of 896 MPa (130 ksi) or more may not be stably obtained only by the hardenability strengthening mechanism.
  • a precipitation strengthening mechanism by Ti, V and Nb is supplementarily adopted.
  • the precipitation strengthening mechanism can be used as an auxiliary in addition to the hardenability strengthening mechanism. Therefore, on the premise that the content of each element in the chemical composition is within the range of this embodiment and the formulas (1), (2) and (4) are satisfied, the strength of the steel material can be sufficiently increased. can. Specifically, the yield strength of the steel material is 896 MPa (130 ksi) or more.
  • F4 is an index showing the degree of contribution of Mo to the improvement of low temperature toughness.
  • the strength of the steel material is increased by adopting the strengthening mechanism by improving hardenability as the main strengthening mechanism.
  • the low temperature toughness of the steel material is enhanced by reducing inclusions and precipitates as much as possible.
  • the precipitation strengthening mechanism by Ti, V and Nb is supplementarily adopted.
  • the precipitates of Ti, V and Nb increase, the low temperature toughness of the steel material in which the content of each element in the chemical composition is within the above range decreases.
  • Mo not only enhances the strength of the steel material by improving hardenability, but also solid-solves and strengthens the steel material.
  • the solid solution strengthening by Mo can suppress the decrease in low temperature toughness due to Ti, V and Nb precipitates. Therefore, in the present embodiment, the ratio of the Mo content to the content of Ti, V and Nb is increased. When F4 is 0.205 or less, the ratio of Mo content to Ti, V and Nb content is high. In this case, even if the precipitation strengthening mechanism is used as an auxiliary, the decrease in low temperature toughness can be suppressed. Therefore, on the premise that the content of each element in the chemical composition is within the range of this embodiment and the formulas (1) to (3) are also satisfied, the strength of the steel material can be sufficiently increased and is excellent. Low temperature toughness is also obtained.
  • the steel material of the present embodiment is strengthened by improving hardenability in place of the precipitation strengthening mechanism actively adopted as the main strengthening mechanism of the conventional steel material in order not only to increase the strength but also to increase the low temperature toughness.
  • Adopt a mechanism Furthermore, in order to make the strengthening mechanism by improving hardenability work more strongly, the old austenite grains are intentionally made coarse grains. Further, in order to achieve both high strength and excellent low temperature toughness, the hardenability improving element, inclusion / precipitate forming element, and former austenite grain size are adjusted so as to satisfy the formulas (1) to (4). do.
  • the steel material of the present embodiment can have a yield strength of 896 MPa or more and an absorption energy of 95 J or more at ⁇ 10 ° C.
  • the steel material of this embodiment is completed by the above technical idea and has the following configuration.
  • Yield strength is 896 MPa or more, Absorption energy at -10 ° C is 95J or more.
  • Steel material ⁇ C + Mn / 5 + (Cu + Ni) / 15+ (Cr + Mo + V) / 5 + 10 ⁇ B ⁇ ⁇ (7.0 / GN) 0.45 ⁇ 0.678 (1) ⁇ Mn / 5.5 + 10 ⁇ Ti + 1.2 ⁇ V + 15 ⁇ Nb + 200 ⁇ B ⁇ ⁇ (7.0 / GN) 0.45 ⁇ 0.240 (2) 10 ⁇ Ti + V + 10 ⁇ Nb ⁇ 0.015 (3) (10 ⁇ Ti + 1.2 ⁇ V + 30 ⁇ Nb) / Mo ⁇ 0.205 (4)
  • the content of the corresponding element is substituted in mass% for each element symbol, and the crystal grain size number is substituted for "GN".
  • the steel material according to any one of [1] to [3].
  • the steel material is a steel pipe for oil wells. Steel material.
  • C 0.15 to 0.45% Carbon (C) enhances hardenability and enhances the strength of steel materials. If the C content is less than 0.15%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the C content exceeds 0.45%, the strength of the steel material becomes too high even if the content of other elements is within the range of the present embodiment, and as a result, the low temperature toughness of the steel material decreases. Therefore, the C content is 0.15 to 0.45%.
  • the lower limit of the C content is preferably 0.17%, more preferably 0.20%, still more preferably 0.22%, still more preferably 0.24%.
  • the preferred upper limit of the C content is 0.40%, more preferably 0.36%, still more preferably 0.34%, still more preferably 0.32%, still more preferably 0.30. %.
  • Si 0.05 to 1.00% Silicon (Si) deoxidizes steel. If the Si content is less than 0.05%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Si content exceeds 1.00%, the low temperature toughness of the steel material is lowered even if the content of other elements is within the range of the present embodiment. Therefore, the Si content is 0.05 to 1.00%.
  • the preferable lower limit of the Si content is 0.10%, more preferably 0.13%, still more preferably 0.15%, still more preferably 0.17%, still more preferably 0.20. %.
  • the preferred upper limit of the Si content is 0.85%, more preferably 0.70%, still more preferably 0.60%, still more preferably 0.50%, still more preferably 0.40. %.
  • Mn 0.05 to less than 0.80%
  • Manganese (Mn) deoxidizes steel. Mn further enhances the hardenability of the steel material and enhances the strength of the steel material. If the Mn content is less than 0.05%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mn content is 0.80% or more, Mn segregates at the grain boundaries together with impurities such as P and S. Furthermore, an excessive amount of coarse Mn sulfide is produced. In this case, the low temperature toughness of the steel material is lowered even if the content of other elements is within the range of the present embodiment. Therefore, the Mn content is less than 0.05 to 0.80%.
  • the preferable lower limit of the Mn content is 0.15%, more preferably 0.25%, still more preferably 0.30%, still more preferably 0.35%, still more preferably 0.40. %.
  • the preferred upper limit of the Mn content is 0.79%, more preferably 0.78%, still more preferably 0.75%, still more preferably 0.70%, still more preferably 0.65. %.
  • Phosphorus (P) is an impurity that is inevitably contained. That is, the P content is more than 0%. If the P content exceeds 0.030%, even if the content of other elements is within the range of the present embodiment, P segregates at the grain boundaries and the low temperature toughness of the steel material is lowered. Therefore, the P content is 0.030% or less.
  • the preferred upper limit of the P content is 0.025%, more preferably 0.020%, still more preferably 0.015%.
  • the P content is preferably as low as possible. However, excessive reduction of P content significantly increases manufacturing costs. Therefore, when industrial production is taken into consideration, the preferable lower limit of the P content is 0.001%, and more preferably 0.003%.
  • S 0.0100% or less Sulfur (S) is an impurity that is inevitably contained. That is, the S content is more than 0%. If the S content exceeds 0.0100%, even if the content of other elements is within the range of the present embodiment, S segregates at the grain boundaries and the low temperature toughness of the steel material decreases. Therefore, the S content is 0.0100% or less.
  • the preferred upper limit of the S content is 0.0080%, more preferably 0.0070%, still more preferably 0.0060%, still more preferably 0.0050%, still more preferably 0.0045. %.
  • the S content is preferably as low as possible. However, excessive reduction of S content significantly increases manufacturing costs. Therefore, when industrial production is taken into consideration, the preferable lower limit of the S content is 0.0001%, and more preferably 0.0003%.
  • Al 0.100% or less
  • Aluminum (Al) is inevitably contained. That is, the Al content is more than 0%. Al deoxidizes the steel. If Al is contained even in a small amount, the above effect can be obtained to some extent. However, if the Al content exceeds 0.100%, coarse oxide-based inclusions are formed even if the other element content is within the range of the present embodiment. In this case, the low temperature toughness of the steel material decreases. Therefore, the Al content is 0.100% or less.
  • the lower limit of the Al content is preferably 0.001%, more preferably 0.005%, still more preferably 0.010%, still more preferably 0.020%.
  • the preferred upper limit of the Al content is 0.080%, more preferably 0.070%, still more preferably 0.060%, still more preferably 0.050%.
  • the "Al” content as used herein means "acid-soluble Al", that is, the content of "sol.Al”.
  • Chromium (Cr) enhances the hardenability of steel materials. Cr further increases temper softening resistance. Therefore, Cr increases the strength of the steel material. If the Cr content is less than 0.30%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cr content exceeds 1.50%, the low temperature toughness of the steel material decreases even if the content of other elements is within the range of this embodiment. Therefore, the Cr content is 0.30 to 1.50%.
  • the lower limit of the Cr content is preferably 0.40%, more preferably 0.45%, still more preferably 0.50%, still more preferably 0.60%.
  • the preferred upper limit of the Cr content is 1.40%, more preferably 1.30%, still more preferably 1.20%.
  • Mo 0.25 to 2.00% Molybdenum (Mo) enhances the hardenability of steel materials. Mo further dissolves in the steel to strengthen the steel. If the steel material is strengthened by the solid solution Mo, the decrease in low temperature toughness caused by the V precipitate, Nb precipitate and Ti precipitate can be suppressed. Therefore, Mo can increase the strength of the steel material while suppressing the decrease in low temperature toughness. If the Mo content is less than 0.25%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mo content exceeds 2.00%, the low temperature toughness of the steel material is rather lowered even if the content of other elements is within the range of the present embodiment. Therefore, the Mo content is 0.25 to 2.00%. The preferred lower limit of the Mo content is 0.28%, more preferably 0.30%, and even more preferably 0.35%. The preferred upper limit of the Mo content is 1.50%, more preferably 1.25%, still more preferably 1.00%, still more preferably 0.80%.
  • Ti 0.001 to 0.015% Titanium (Ti) forms precipitates (nitrides) and strengthens the precipitation to increase the strength of the steel material. If the Ti content is less than 0.001%, the above effect cannot be sufficiently obtained. On the other hand, if the Ti content exceeds 0.015%, coarse inclusions are formed and an excessively large amount of Ti precipitates are formed even if the content of other elements is within the range of the present embodiment. In this case, the low temperature toughness of the steel material is significantly reduced. Therefore, the Ti content is 0.001 to 0.015%.
  • the lower limit of the Ti content is preferably 0.002%, more preferably 0.003%, still more preferably 0.004%, still more preferably 0.005%.
  • the preferred upper limit of the Ti content is 0.012%, more preferably 0.010%, still more preferably 0.009%, still more preferably 0.008%.
  • N 0.0100% or less Nitrogen (N) is an impurity that is inevitably contained. That is, the N content is more than 0%. If the N content exceeds 0.0100%, N forms a coarse nitride even if the content of other elements is within the range of this embodiment. In this case, the low temperature toughness of the steel material decreases. Therefore, the N content is 0.0100% or less.
  • the preferred upper limit of the N content is 0.0080%, more preferably 0.0070%, still more preferably 0.0060%, still more preferably 0.0055%.
  • the N content is preferably as low as possible. However, excessive reduction of N content significantly increases manufacturing costs. Therefore, when industrial production is taken into consideration, the preferable lower limit of the N content is 0.0001%, and more preferably 0.0010%.
  • Oxygen (O) is an impurity that is inevitably contained. That is, the O content is more than 0%. If the O content exceeds 0.0050%, O forms a coarse oxide and the low temperature toughness of the steel material is lowered even if the content of other elements is within the range of the present embodiment. Therefore, the O content is 0.0050% or less.
  • the preferred upper limit of the O content is 0.0040%, more preferably 0.0030%, still more preferably 0.0025%.
  • the O content is preferably as low as possible. However, excessive reduction of the O content significantly increases the manufacturing cost. Therefore, when industrial production is taken into consideration, the preferable lower limit of the O content is 0.0001%, and more preferably 0.0003%.
  • the rest of the chemical composition of the steel material according to this embodiment consists of Fe and impurities.
  • the impurities are those mixed from ore, scrap, or the manufacturing environment as a raw material when the steel material is industrially manufactured, and are allowed as long as they do not adversely affect the steel material according to the present embodiment. Means what is done.
  • the steel material of the present embodiment may further contain one or more selected from the group consisting of V and Nb instead of a part of Fe. These elements are arbitrary elements, and all of them form precipitates and increase the strength of the steel material by strengthening the precipitation.
  • V 0 to 0.05%
  • Vanadium (V) is an optional element and may not be contained. That is, the V content may be 0%. When contained, that is, when the V content is greater than 0%, V improves hardenability. V further forms a precipitate (carbide). The V-precipitate enhances the strength of the steel material by strengthening the precipitation. However, in the chemical composition of the present embodiment, when the yield strength of the steel material is increased to 896 MPa or more (130 ksi or more), if the V content exceeds 0.05%, the content of other elements is within the range of the present embodiment. Even so, the V precipitate significantly reduces the low temperature toughness of the steel material. Therefore, the V content is 0 to 0.05%.
  • the preferable lower limit of the V content is 0.01%.
  • the preferred upper limit of the V content is 0.04, more preferably 0.03%, still more preferably 0.02%.
  • Niobium (Nb) is an optional element and may not be contained. That is, the Nb content may be 0%. When it is contained, that is, when the Nb content is more than 0%, Nb forms a precipitate (carbonitride). The Nb precipitate enhances the strength of the steel material by strengthening the precipitation. However, in the chemical composition of the present embodiment, when the yield strength of the steel material is increased to 896 MPa or more (130 ksi or more), if the Nb content exceeds 0.010%, the content of other elements is within the range of the present embodiment. Even so, the Nb precipitates significantly reduce the low temperature toughness of the steel material. Therefore, the Nb content is 0 to 0.010%. The preferred lower limit of the Nb content is 0.001%, more preferably 0.002%. The preferred upper limit of the Nb content is 0.009%, more preferably 0.008%.
  • the steel material of the present embodiment may further contain B instead of a part of Fe.
  • B 0 to less than 0.0005%
  • Boron (B) is an optional element and may not be contained. That is, the B content may be 0%. When it is contained, that is, when the B content is more than 0%, B dissolves in the steel material to enhance the hardenability of the steel material and enhance the strength of the steel material. If B is contained even in a small amount, the above effect can be obtained to some extent.
  • the yield strength of the steel material is increased to 896 MPa or more (130 ksi or more)
  • the B content is 0.0005% or more
  • the content of other elements is within the range of the present embodiment. Even inside, the B inclusions formed in the steel material reduce the low temperature toughness of the steel material. Therefore, the B content is less than 0-0.0005%.
  • the preferred upper limit of the B content is 0.0004%, more preferably 0.0003%.
  • the preferable lower limit of the B content is 0.0001%.
  • the steel material of the present embodiment may further contain one or more selected from the group consisting of Ca, Mg and rare earth elements (REM) instead of a part of Fe. All of these elements refine Mn sulfide in the steel material to enhance the low temperature toughness of the steel material.
  • REM rare earth elements
  • Ca 0-0.0100% Calcium (Ca) is an optional element and may not be contained. That is, the Ca content may be 0%. When it is contained, that is, when the Ca content is more than 0%, Ca refines the Mn sulfide in the steel material and enhances the low temperature toughness of the steel material. If even a small amount of Ca is contained, the above effect can be obtained to some extent. However, if the Ca content exceeds 0.0100%, even if the content of other elements is within the range of the present embodiment, the oxide in the steel material becomes coarse and the low temperature toughness of the steel material is rather lowered. Therefore, the Ca content is 0 to 0.0100%.
  • the preferable lower limit of the Ca content is 0.0001%, more preferably 0.0003%, still more preferably 0.0006%, still more preferably 0.0010%.
  • the preferred upper limit of the Ca content is 0.0060%, more preferably 0.0050%, still more preferably 0.0040%, still more preferably 0.0025%, still more preferably 0.0020. %.
  • Mg 0 to 0.0100%
  • Magnesium (Mg) is an optional element and may not be contained. That is, the Mg content may be 0%. When it is contained, that is, when the Mg content is more than 0%, Mg refines Mn sulfide in the steel material and enhances the low temperature toughness of the steel material. If even a small amount of Mg is contained, the above effect can be obtained to some extent. However, if the Mg content exceeds 0.0100%, even if the content of other elements is within the range of the present embodiment, the oxide in the steel material becomes coarse and the low temperature toughness of the steel material is rather lowered. Therefore, the Mg content is 0 to 0.0100%.
  • the preferable lower limit of the Mg content is 0.0001%, more preferably 0.0003%, still more preferably 0.0006%, still more preferably 0.0010%.
  • the preferred upper limit of the Mg content is 0.0060%, more preferably 0.0050%, still more preferably 0.0040%, 0.0025%, still more preferably 0.0020%. ..
  • Rare earth element 0-0.0100%
  • Rare earth elements are optional elements and may not be contained. That is, the REM content may be 0%. When it is contained, that is, when the REM content is more than 0%, the REM refines the Mn sulfide in the steel material and enhances the low temperature toughness of the steel material. If even a small amount of REM is contained, the above effect can be obtained to some extent. However, if the REM content exceeds 0.0100%, even if the content of other elements is within the range of the present embodiment, the oxide in the steel material becomes coarse and the low temperature toughness of the steel material is rather lowered. Therefore, the REM content is 0-0.0100%.
  • the preferred lower limit of the REM content is 0.0001%, more preferably 0.0003%, even more preferably 0.0006%, still more preferably 0.0010%.
  • the preferred upper limit of the REM content is 0.0060%, more preferably 0.0050%, even more preferably 0.0040%, even more preferably 0.0025%, still more preferably 0.0020. %.
  • the REM in the present specification refers to lutetium (Sc) having an atomic number of 21, yttrium (Y) having an atomic number of 39, and lanthanum (La) to having an atomic number of 71, which are lanthanoids. It is one or more elements selected from the group consisting of lutetium (Lu). Further, the REM content in the present specification is the total content of these elements.
  • the chemical composition of the above-mentioned steel material may further contain one or more selected from the group consisting of Ni and Cu instead of a part of Fe. All of these elements are optional elements and enhance the hardenability of steel.
  • Nickel (Ni) is an optional element and may not be contained. That is, the Ni content may be 0%. When it is contained, that is, when the Ni content is more than 0%, Ni enhances the hardenability of the steel material and enhances the strength of the steel material. If even a small amount of Ni is contained, the above effect can be obtained to some extent. However, if the Ni content exceeds 0.50%, even if the content of other elements is within the range of the present embodiment, local corrosion is promoted and the corrosion resistance of the steel material is lowered. Therefore, the Ni content is 0 to 0.50%.
  • the lower limit of the Ni content is preferably 0.01%, more preferably 0.02%.
  • the preferred upper limit of the Ni content is 0.40%, more preferably 0.30%, still more preferably 0.20%, still more preferably 0.10%, still more preferably 0.08. %, More preferably 0.06%.
  • Cu 0 to 0.50%
  • Copper (Cu) is an optional element and may not be contained. That is, the Cu content may be 0%. When it is contained, that is, when the Cu content is more than 0%, Cu enhances the hardenability of the steel material and enhances the strength of the steel material. If even a small amount of Cu is contained, the above effect can be obtained to some extent. However, if the Cu content exceeds 0.50%, the hardenability of the steel material becomes too high and the low temperature toughness of the steel material decreases even if the content of other elements is within the range of the present embodiment. Therefore, the Cu content is 0 to 0.50%.
  • the lower limit of the Cu content is preferably 0.01%, more preferably 0.02%.
  • the preferred upper limit of the Cu content is 0.40%, more preferably 0.30%, still more preferably 0.20%, still more preferably 0.10%, still more preferably 0.08. %, More preferably 0.06%.
  • the crystal grain size number of the former austenite grains is less than 7.0.
  • the strengthening mechanism by improving hardenability is adopted as the main strengthening mechanism.
  • the hardenability of steel materials is higher when the grains are coarse.
  • the crystal grain size number of the former austenite grains is 7.0 or more, sufficient hardenability cannot be obtained.
  • the strength of the steel material is insufficient, and the yield strength of the steel material becomes less than 896 MPa (130 ksi).
  • the crystal grain size number of the former austenite grains is less than 7.0, it is assumed that the content of each element in the chemical composition is within the range of this embodiment and the formulas (1) to (4) are satisfied. Hardenability of steel materials is sufficiently high. Therefore, the strength of the steel material is sufficiently increased, and specifically, the yield strength of the steel material is 896 MPa (130 ksi) or more.
  • the lower limit of the crystal grain size number of the old austenite grains is not limited. Considering industrial production, the lower limit of the crystal grain size number of the former austenite grains is, for example, 2.0, for example, 2.5, for example, 3.0, for example, 3.5, for example. 4.0.
  • the crystal grain size number of the old austenite grains of the steel material of the present embodiment can be obtained by the following method.
  • a test piece is collected from the steel material so that the cross section perpendicular to the longitudinal direction (rolling direction) of the steel material is the surface to be inspected. If the steel material is a steel plate, take a test piece from the center of the plate thickness. If the steel material is a steel pipe, take a test piece from the center of the wall thickness.
  • the collected test piece is embedded in resin and the surface to be inspected is mirror-polished.
  • the old austenite grain boundaries are made to appear on the surface to be inspected after mirror polishing by the Behcet-Beaujard method in which the surface to be inspected is corroded with a saturated aqueous solution of picric acid.
  • the crystal grain size number of the old austenite grains is measured according to ASTM E112-13 using the surface to be inspected in which the old austenite grain boundaries are exposed.
  • F1 ⁇ C + Mn / 5 + (Cu + Ni) / 15+ (Cr + Mo + V) / 5 + 10 ⁇ B ⁇ ⁇ (7.0 / GN) 0.45.
  • F1 is an index of hardenability of steel materials. The hardenability-enhancing element and the size of the old austenite grains synergistically affect the hardenability. C, Mn, Cu, Ni, Cr, Mo, V and B in F1 are all hardenability improving elements.
  • the (7.0 / GN) 0.45 term in F1 indicates the contribution of the old austenite grain size to hardenability.
  • the hardenability of the steel material is insufficient even if the content of each element in the chemical composition is within the range of this embodiment and the formulas (2) to (4) are satisfied. doing. In this case, the yield strength of the steel material cannot be sufficiently increased. If the content of each element in the chemical composition of the steel material is within the range of this embodiment and F1 is 0.678 or more, the chemical composition satisfies the formulas (2) to (4) described later. As a premise, the strength of the steel material can be sufficiently increased. Specifically, the yield strength of the steel material can be 896 MPa (130 ksi) or more.
  • the preferable lower limit of F1 is 0.680, more preferably 0.685, still more preferably 0.690, and even more preferably 0.695.
  • the upper limit of F1 is not particularly limited.
  • the upper limit of F1 is, for example, 2.445.
  • the F1 value is a value obtained by rounding off the fourth decimal place.
  • F2 ⁇ Mn / 5.5 + 10 ⁇ Ti + 1.2 ⁇ V + 15 ⁇ Nb + 200 ⁇ B ⁇ ⁇ (7.0 / GN) 0.45.
  • F2 is an index of low temperature toughness of steel materials.
  • Mn, Ti, V, Nb and B are inclusion / precipitate forming elements. When the content of each element in the chemical composition is within the range of the present embodiment, these inclusions / precipitate-forming elements are inclusions (Mn inclusions, Ti inclusions, B inclusions) or precipitates (Ti). Precipitates, V precipitates, Nb precipitates) are likely to be formed. Specifically, Mn and B tend to form inclusions. V and Nb tend to form precipitates.
  • Ti tends to form inclusions and precipitates.
  • the yield strength of the steel material in which the content of each element in the chemical composition is within the range of the present embodiment is 896 MPa (130 ksi) or more, both of these inclusions and precipitates significantly reduce the low temperature toughness of the steel material. ..
  • the size of the old austenite grains also affects the low temperature toughness of the steel material. Specifically, if the old austenite grains are coarse, cracks generated from inclusions and precipitates are likely to grow. On the other hand, if the old austenite grains are fine, the growth of cracks can be suppressed. Therefore, inclusions and precipitates and the size of the former austenite granules synergistically affect cold toughness.
  • F2 exceeds 0.240, the content of each element in the chemical composition is within the range of this embodiment, and even if the formulas (1), (3) and (4) are satisfied, Mn in the steel material. , Ti, V, Nb and B-containing inclusions and / or precipitates in excess. Alternatively, the austenite granules are too large for the amount of inclusions and / or precipitates produced. Therefore, when the yield strength of the steel material is set to 896 MPa (130 ksi) or more, the low temperature toughness of the steel material is lowered.
  • the formation of inclusions and / or precipitates containing Mn, Ti, V, Nb and B can be sufficiently suppressed in the steel material, and the formation of inclusions and precipitates can be sufficiently suppressed.
  • the size of the old austenite grains is also appropriate for the amount. Therefore, assuming that the content of each element in the chemical composition is within the range of this embodiment and satisfies the formulas (1), (3) and (4), the yield strength of the steel material is 896 MPa. Even if it is (130 ksi) or more, excellent low temperature toughness can be obtained.
  • the preferred upper limit of F2 is 0.235, more preferably 0.230, even more preferably 0.225, even more preferably 0.220, even more preferably 0.215, even more preferably. It is 0.210, more preferably 0.200.
  • the lower limit of F2 is not particularly limited.
  • the lower limit of F2 is, for example, 0.019.
  • the F2 value is a value obtained by rounding off the fourth decimal place.
  • F3 10 ⁇ Ti + V + 10 ⁇ Nb.
  • F3 is an index of precipitation strengthening which is supplementarily adopted as a strengthening mechanism in a steel material in which the content of each element in the chemical composition is within the range of the present embodiment.
  • a strengthening mechanism for improving hardenability is adopted as the main strengthening mechanism of the steel material.
  • the content of each element in the chemical composition is within the range of the present embodiment, and the hardenability of the steel material is enhanced by satisfying the formula (1) to increase the strength of the steel material.
  • a high yield strength of 896 MPa (130 ksi) or more may not be stably obtained only by the strengthening mechanism by improving hardenability. ..
  • the strengthening mechanism by improving hardenability is adopted as the main strengthening mechanism, and the precipitation strengthening mechanism by Ti, V and Nb is also adopted as the auxiliary strengthening mechanism.
  • the content of each element in the chemical composition is within the range of this embodiment, and the formulas (1) and (2) ) And formula (4), the strength of the steel material is insufficient.
  • the yield strength of the steel material is less than 896 MPa (130 ksi).
  • the yield strength of the steel material is sufficiently increased on the premise that the content of each element in the chemical composition is within the range of the present embodiment and the formulas (1), (2) and (4) are satisfied. Specifically, the yield strength of the steel material is 896 MPa (130 ksi) or more.
  • the preferred lower limit of F3 is 0.020, more preferably 0.025, even more preferably 0.030, even more preferably 0.035, even more preferably 0.040, even more preferably. It is 0.045.
  • the upper limit of F3 is not particularly limited. If the content of each element in the chemical composition is within the range of this embodiment, the upper limit of F3 is, for example, 0.300.
  • the preferred upper limit of F3 is 0.290, more preferably 0.260, still more preferably 0.240, still more preferably 0.220.
  • the F3 value is a value obtained by rounding off the fourth decimal place.
  • the strengthening mechanism is adopted as the main strengthening mechanism of the steel material by improving the hardenability, and the low temperature toughness of the steel material is improved by reducing inclusions and precipitates as much as possible. Increase.
  • the precipitation strengthening mechanism by the precipitates of Ti, V and Nb is supplementarily adopted.
  • the low temperature toughness of the steel material whose content of each element in the chemical composition is within the range of this embodiment will decrease.
  • Mo not only enhances the strength of the steel material by improving the hardenability, but also strengthens the steel material by solid solution.
  • the solid solution strengthening by Mo can suppress the decrease in low temperature toughness due to Ti, V and Nb precipitates. Therefore, in the present embodiment, the ratio of the Mo content to the Ti, V and Nb contents is increased. If F4 exceeds 0.205, the ratio of Mo content to Ti, V and Nb content is low.
  • the content of each element in the chemical composition is within the range of the present embodiment, and by satisfying the formulas (1) to (3), the yield strength of the steel material is sufficiently high, and the yield strength of the steel material is 896 MPa. Although it is (130 ksi) or more, sufficient low temperature toughness cannot be obtained.
  • F4 is 0.205 or less, the ratio of Mo content to Ti, V and Nb content is high.
  • the yield strength of the steel material is sufficiently increased to obtain the yield strength of the steel material. Is 896 MPa (130 ksi) or more, and excellent low temperature toughness can be obtained.
  • the preferred upper limit of F4 is 0.202, more preferably 0.200, even more preferably 0.198, even more preferably 0.195, even more preferably 0.190, even more preferably. It is 0.185, more preferably 0.180, and even more preferably 0.175.
  • the lower limit of F4 is not particularly limited. If the content of each element in the chemical composition is within the range of this embodiment, the lower limit of F4 is, for example, 0.005.
  • a more preferable lower limit of F4 is 0.010, and even more preferably 0.012.
  • the F4 value is a value obtained by rounding off the fourth decimal place.
  • the steel material of the present embodiment having the above structure has a chemical composition in which the content of each element in the chemical composition is within the range of the present embodiment, the crystal grain size number of the former austenite grains is less than 7.0, and the chemical composition.
  • the yield strength is high.
  • the steel material of the present embodiment has a yield strength of 896 MPa (130 ksi) or more.
  • the yield strength referred to in the present specification means the stress at 0.65% total elongation (0.65% proof stress) obtained in the tensile test.
  • the preferable lower limit of the yield strength is 900 MPa, more preferably 910 MPa, still more preferably 920 MPa.
  • the upper limit of the yield strength is not particularly limited.
  • the upper limit of the yield strength is, for example, 1103 MPa (160 ksi), for example, 1090 MPa, for example, 1069 MPa (155 ksi).
  • the yield strength of the steel material of this embodiment can be obtained by the following method. Perform a tensile test by a method conforming to ASTM E8 / E8M (2013). Specifically, a round bar test piece is collected from a steel material. When the steel material is a steel plate, a round bar test piece is collected from the center of the plate thickness. If the steel material is a steel pipe, collect a round bar test piece from the center of the wall thickness. For example, the diameter of the parallel portion of the round bar test piece is 6.35 mm, and the length of the parallel portion is 25.4 mm. The axial direction of the round bar test piece is parallel to the longitudinal direction (rolling direction) of the steel material. A tensile test was carried out in the air at room temperature (25 ° C.) using a round bar test piece, and the obtained 0.65% full elongation stress (0.65% proof stress) was obtained as the yield strength (MPa). Is defined as.
  • the content of each element in the chemical composition is within the range of the present embodiment, the crystal grain size number of the former austenite grains is less than 7.0, and the content of each element in the chemical composition is contained.
  • the steel material according to the present embodiment has an absorption energy of 95 J or more at ⁇ 10 ° C. More specifically, the absorbed energy at ⁇ 10 ° C. according to ASTM E23 (2016) is 95 J or more.
  • the preferable lower limit of the absorbed energy at ⁇ 10 ° C. is 96 J, more preferably 98 J, and further preferably 100 J.
  • the upper limit of the absorbed energy at ⁇ 10 ° C. is not particularly limited.
  • the upper limit of the absorbed energy is, for example, 200 J, for example, 180 J, and for example, 160 J.
  • the absorbed energy at -10 ° C can be obtained by the following method.
  • a Charpy impact test based on ASTM E23 (2016) is carried out on the steel material of the present embodiment to evaluate the low temperature toughness. Specifically, a V-notch test piece is collected from a steel material. When the steel material is a steel plate, a V-notch test piece is collected from the central portion of the plate thickness. When the steel material is a steel pipe, a V-notch test piece is collected from the central part of the wall thickness.
  • the V-notch test piece is manufactured in accordance with API specification 5CT (10th edition). Using a V-notch test piece, a Charpy impact test is carried out at ⁇ 10 ° C. at ⁇ 10 ° C. at -10 ° C.
  • the obtained absorbed energy is divided by the reduction rate (Redox factor) described in API specification 5CT (10th edition), and the absorbed energy is absorbed by the full-sized test piece. Convert to energy.
  • the arithmetic mean value of the absorbed energy of the three V-notch test pieces is defined as the absorbed energy E (J) at ⁇ 10 ° C.
  • the absorbed energy E (J) at ⁇ 10 ° C. is rounded off to the first decimal place of the obtained numerical value.
  • the microstructure of the steel material according to this embodiment mainly consists of martensite and / or bainite. More specifically, in the microstructure, the total area ratio of martensite and bainite is 90% or more.
  • the rest of the microstructure consists of, for example, ferrite and / or pearlite.
  • the rest of the microstructure may contain retained austenite in addition to ferrite and / or pearlite, but the area of retained austenite is negligibly small compared to the area of martensite, bainite, ferrite and pearlite.
  • the yield strength of the steel material is 896 MPa or more (provided that the other provisions of the present embodiment are satisfied. 130 ksi or more). That is, in the present embodiment, the content of each element in the chemical composition is within the above range, the crystal grain size number of the bainite grains is less than 7.0, and the formulas (1) to (4) are satisfied. If the yield strength of the steel material is 896 MPa or more, it can be determined that the total area ratio of martensite and bainite is 90% or more in the microstructure.
  • the steel material is a steel plate
  • a test piece having an observation surface including the rolling direction and the plate thickness direction is produced from the central portion of the plate thickness.
  • the steel material is a steel pipe
  • a test piece having an observation surface including the pipe axis direction and the wall thickness (tube diameter) direction from the central portion of the wall thickness is produced.
  • the test piece After polishing the observation surface of the test piece to a mirror surface, the test piece is immersed in a nital corrosive solution for 10 seconds to reveal the structure by etching.
  • the etched observation surface is observed in 10 fields with a secondary electron image using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the visual field area is, for example, 0.01 mm 2 (magnification 1000 times).
  • martensite and bainite are identified based on contrast. Martensite and bainite and other phases (ferrite, pearlite) can be easily distinguished by a person skilled in the art by contrast. In this embodiment, since the total area ratio of martensite and bainite is obtained, it is not necessary to distinguish between martensite and bainite.
  • the total area ratio (%) of the specified martensite and bainite Obtain the total area ratio (%) of the specified martensite and bainite.
  • the arithmetic mean value of the total area ratio (%) of martensite and bainite obtained in all viewpoints is defined as the total area ratio (%) of martensite and bainite.
  • Mn sulfide is defined as follows. In element concentration analysis by energy dispersive X-ray spectroscopy (hereinafter, also referred to as "EDS"), when quantified with all detected elements (excluding C), in mass% An inclusion in which the Mn content is detected in an amount of 20% or more and the S content is detected in an S content of 10% or more is defined as “Mn sulfide”. In the present embodiment, Mn sulfide having a circle equivalent diameter of 5.0 ⁇ m or more is further defined as “coarse Mn sulfide”.
  • the content of each element in the chemical composition is within the range of the present embodiment, the crystal grain size number of the former austenite grains is less than 7.0, and the formulas (1) to (4) are expressed.
  • the preferable number density of coarse Mn sulfides is 10 pieces / 100 mm 2 or less.
  • the yield strength of the steel material can be set to 896 MPa or more, and the absorbed energy at ⁇ 10 ° C. can be set to 100 J or more.
  • the number density of coarse Mn sulfide can be determined by the following method. Specifically, when the steel material is a steel plate, a test piece is produced from the central portion of the plate thickness. When the steel material is a steel pipe, a test piece is prepared from the central part of the wall thickness. When the steel material is a steel plate, the test piece is filled with resin so that the surface including the rolling direction and the plate thickness direction of the produced test piece becomes the observation surface. When the steel material is a steel pipe, the test piece is filled with resin so that the surface including the pipe axis direction and the wall thickness (tube diameter) direction is the observation surface among the produced test pieces. Polish the observation surface of the resin-filled test piece. Of the observed surfaces after polishing, any 10 visual fields are observed. The area of each field of view is, for example, 100 mm 2 .
  • each field of view determines the number of Mn sulfides having a circle-equivalent diameter of 5.0 ⁇ m or more. Specifically, first, inclusions in each visual field are specified from the contrast. Element concentration analysis (EDS analysis) is performed for each of the identified inclusions. When quantified with all the detected elements (excluding C), inclusions in which Mn content of 20% or more is detected in mass% and S content is detected in 10% or more are defined as "Mn sulfide”. Identify as "thing”.
  • the total number of Mn sulfides (coarse Mn sulfides) having a circle-equivalent diameter of 5.0 ⁇ m or more is determined.
  • the number density of coarse Mn sulfides (pieces / 100 mm 2 ) is determined based on the total number of coarse Mn sulfides and the total area of 10 fields of view.
  • the first decimal place of the obtained numerical value is rounded off.
  • the number density of coarse Mn sulfide can be measured by using an apparatus (SEM-EDS apparatus) in which a scanning electron microscope is provided with a composition analysis function.
  • the preferable upper limit of the number density of the coarse Mn sulfide is 9 pieces / 100 mm 2 , and more preferably 8 pieces / 100 mm 2 .
  • the shape of the steel material according to this embodiment is not particularly limited.
  • the steel material is, for example, a steel pipe or a steel plate.
  • the steel material is, for example, a steel pipe for an oil well.
  • Steel pipes for oil wells are, for example, casings, tubing, drill pipes and the like used for drilling oil wells or gas wells, collecting crude oil or natural gas, and the like.
  • the steel pipe for oil wells may be a welded steel pipe or a seamless steel pipe.
  • the steel material of the present embodiment is a seamless steel pipe for oil wells.
  • a seamless steel pipe for an oil well means that the steel pipe for an oil well is a seamless steel pipe.
  • a method for manufacturing a steel material according to this embodiment will be described.
  • a method for manufacturing a steel pipe will be described as an example of the steel material according to the present embodiment.
  • the method for producing a steel material according to the present embodiment is not limited to the production method described below. That is, even with other manufacturing methods, the manufacturing method is not particularly limited as long as the steel material having the above-mentioned structure can be manufactured.
  • An example of the method for producing a steel material according to the present embodiment is a process of preparing a material (material preparation process), a process of heating the prepared material (heating process), and hot working on the heated material. It includes a step (hot working step) and a step of performing quenching and tempering of the steel material after hot working (heat treatment step).
  • step hot working step
  • step treatment step a step of performing quenching and tempering of the steel material after hot working
  • molten steel in which the content of each element in the chemical composition is within the range of the present embodiment and which satisfies the formulas (1) to (4) when it becomes a steel material is manufactured by a well-known steelmaking method.
  • slabs are produced by a continuous casting method.
  • the slab is a slab, bloom, or billet.
  • the ingot may be manufactured by the ingot method using the molten steel. If desired, slabs, blooms or ingots may be hot worked to produce billets.
  • the material (slab, bloom, or billet) is manufactured by the above manufacturing process.
  • the material prepared in the material preparation step is charged into a continuous heating furnace and heated.
  • the heating furnace may be a rotary hearth type heating furnace or a walking beam type heating furnace.
  • a rotary hearth type heating furnace will be used as an example of the continuous heating furnace.
  • FIG. 1 is a schematic view (plan view) of a rotary hearth type heating furnace, which is an example of a continuous heating furnace.
  • the heating furnace 10 includes a furnace body 13 having a charging port 11 and an extraction port 12.
  • Billet B1 which is a material to be heated, is charged into the heating furnace 10 from the charging port 11.
  • the billet B1 is heated while moving in the heating furnace 10.
  • the billet B1 loaded from the inlet 11 moves clockwise.
  • the billet B1 heated while moving reaches the extraction port 12, the billet B1 is extracted from the extraction port 12 to the outside.
  • the furnace body 13 is divided into a pre-tropical Z1, a heating zone Z2, and an even-tropical Z3 in this order from the inlet 11 toward the extraction port 12.
  • the pre-tropical Z1 is a section (zone) having the inlet 11, and the furnace temperature is the lowest among the three sections (pre-tropical Z1, heating zone Z2, and average tropical Z3).
  • the heating zone Z2 is a section arranged between the pre-tropical Z1 and the uniform tropical Z3.
  • the average tropical zone Z3 is a section following the heating zone Z2 and has an extraction port 12 at the rear end.
  • the heating zone Z2 and the solitary tropical Z3 are kept at substantially the same temperature.
  • the temperature of the tropics Z3 is slightly higher than the temperature of the heating zone Z2, the temperature difference between the tropics Z3 and the heating zone Z2 is 20 ° C. or less.
  • Each section is provided with one or more burners. In each section, the temperature is adjusted by a burner.
  • the temperatures and staying times of the pre-tropical Z1, the heating zone Z2, and the average tropical Z3 are as follows.
  • the temperature inside the furnace T1 in the pre-tropical Z1 is 820 to 1300 ° C., which is lower than the temperature T2 in the furnace in the heating zone Z2 and the average tropical Z3.
  • the staying time t1 of the material in the pre-tropical Z1 is set to 45 minutes or more.
  • the staying time t1 means the time (minutes) from when the material enters the pre-tropical zone Z1 from the inlet 11 until the material is discharged into the heating zone Z2.
  • Pre-tropical Z1 mainly plays a role of raising the temperature of the material at room temperature.
  • the staying time t1 in the pre-tropical Z1 is 50 minutes or more, and more preferably 55 minutes or more.
  • the upper limit of the staying time t1 is not particularly limited. However, in consideration of productivity, the preferable upper limit of the staying time t1 is 300 minutes.
  • the in-core temperature T2 in the heating zone Z2 and the soaking tropics Z3 is 1100 to 1380 ° C., which is higher than the in-core temperature in the pre-tropical Z1.
  • the furnace temperature T2 is an arithmetic mean value of the furnace temperature of the heating zone Z2 and the furnace temperature of the solitary tropics Z3.
  • the total stay time t2 (minutes) in the heating zone Z2 and the average tropical zone Z3 is set to 50 minutes or more, more preferably 55 minutes or more.
  • the total stay time t2 means the time (minutes) from when the material enters the heating zone Z2 until it is discharged to the outside from the extraction port 12.
  • the upper limit of the total staying time t2 is not particularly limited. However, in consideration of productivity, the preferable upper limit of the total stay time t2 is 600 minutes.
  • the furnace temperature T2 and the total residence time t2 of the heating zone Z2 and the solitary tropical Z3 satisfy the following formula (A). 1420 ⁇ (t2 / 60) 0.5 ⁇ (T2 + 273) (A)
  • the total residence time t2 (minutes) of the material is substituted for "t2" in the formula (A)
  • the furnace temperature T2 is substituted for "T2".
  • the preferable lower limit of FA is 1500, more preferably 1550, further preferably 1600, further preferably 1650, and even more preferably 1700.
  • the upper limit of FA is not particularly limited. However, considering the equipment load and the manufacturing intensity, the upper limit of FA is preferably 4500, more preferably 4400, still more preferably 4300, still more preferably 4200.
  • the lower limit of the total furnace time in the pre-tropical Z1, the heating zone Z2 and the average tropical Z3 is 95 minutes, more preferably 120 minutes, still more preferably 140 minutes, still more preferably 150 minutes. Yes, more preferably 160 minutes.
  • the preferred upper limit of the total furnace time is 900 minutes, more preferably 800 minutes, still more preferably 750 minutes.
  • the pre-tropical Z1, the heating zone Z2, and the uniform tropical Z3 are evenly divided in the furnace body 13. However, the pre-tropical Z1, the heating zone Z2 and the average tropical Z3 do not have to be evenly divided.
  • the material heated under the above conditions by the heating step is hot-worked.
  • the heated material is hot-worked to produce an intermediate steel material (bare pipe).
  • hot rolling by the Mannesmann-Mandrel method is carried out to manufacture a raw pipe.
  • the billet is drilled and rolled by a drilling machine.
  • the drilling ratio is not particularly limited, but is, for example, 1.0 to 4.0.
  • the billet after perforation rolling is stretch-rolled using a mandrel mill. Further, if necessary, the billet after stretch rolling is subjected to constant diameter rolling using a reducer or a sizing mill.
  • a bare tube is manufactured by the above steps.
  • Hot extrusion may be performed as hot processing.
  • the Eugene-Sejurne method or the Erhard pushbench method may be carried out to manufacture the raw pipe.
  • the working time is 15 minutes or less.
  • the processing time means the time from the extraction of the material from the heating furnace to the completion of the final hot processing.
  • Mn sulfide may grow coarsely or Mn sulfide may be newly generated during hot processing. Can be suppressed.
  • the number density of Mn sulfides having a circle-equivalent diameter of 5 ⁇ m or more is 10 pieces / 100 mm 2 or less.
  • a more preferable upper limit of the processing time is 14 minutes, and even more preferably 13 minutes.
  • the lower limit of the processing time is not particularly limited, but is, for example, 5 minutes.
  • Heat treatment process In the heat treatment step, a quenching step and a tempering step are carried out on the intermediate steel material (bare pipe) after hot working.
  • in-line quenching In the quenching process, "in-line quenching" or “offline quenching” is carried out.
  • the intermediate steel material (bare pipe) manufactured by hot working is not cooled to room temperature, but is directly hardened after hot working, or after hot working and before being cooled to room temperature.
  • the process of performing quenching after reheating (reheating) the intermediate steel material (bare pipe) is called “in-line quenching”.
  • quenching can be performed immediately after hot working on the production line.
  • offline quenching the process of cooling the intermediate steel material (bare pipe) after hot working to room temperature and then quenching using a heat treatment furnace.
  • the quenching temperature in in-line quenching is 800 to 1100 ° C.
  • the "quenching temperature” corresponds to the surface temperature of the intermediate steel material measured by a thermometer installed on the outlet side of the device for performing the final hot working when the quenching is performed directly after the hot working. do.
  • the "quenching temperature” corresponds to the temperature of the reheating furnace or the heat treatment furnace.
  • in-line quenching may be carried out by quenching the intermediate steel material at 800 to 1100 ° C. after hot working. Further, the intermediate steel material after hot working, which has not been cooled to room temperature (intermediate steel material having a temperature of 400 ° C. or higher), is used in a heating or heat treatment furnace installed on the production line. It may be heated to 800 to 1100 ° C. and then rapidly cooled.
  • the preferred upper limit of the quenching temperature in in-line quenching is 1050 ° C, more preferably 1000 ° C, still more preferably 980 ° C.
  • the preferred lower limit of the quenching temperature in in-line quenching is 850 ° C, more preferably 900 ° C.
  • the holding time at the quenching temperature is, for example, 5 to 45 minutes.
  • the quenching method is, for example, quenching the raw pipe from the quenching temperature.
  • the quenching method may be a well-known method.
  • the quenching method is, for example, a method of immersing the raw pipe in a water tank to cool it, or a method of cooling the raw pipe by shower water cooling or mist cooling.
  • the quenching temperature in the offline quenching is 930 to 1100 ° C. Further, the holding time at the quenching temperature is 10 to 125 minutes.
  • the crystal grain size number of the old austenite grains may be 7.0 or more even if the content of each element in the chemical composition is within the range of the present embodiment. If the quenching temperature is 930 to 1100 ° C. and the holding time at the quenching temperature is 10 to 125 minutes, the austenite grains can be coarsened at the time of quenching. As a result, the crystal grain size number of the old austenite grains can be set to less than 7.0 on the premise that the retention time described later is satisfied.
  • the preferred lower limit of the quenching temperature in the offline quenching is 940 ° C, more preferably 950 ° C.
  • the preferred upper limit of the quenching temperature in the offline quenching is 1050 ° C.
  • the tempering process In the tempering process, the intermediate steel material after the quenching process is tempered. In the present embodiment, precipitates that contribute to precipitation strengthening are generated in the steel material during the tempering process. As a result, the strength of the steel material is sufficiently increased by auxiliary adopting the precipitation strengthening mechanism as well as the strengthening mechanism by improving the hardenability. Specifically, the yield strength of the steel material is set to 896 MPa (130 ksi) or more. Furthermore, by setting appropriate tempering conditions, strain in the steel material is reduced and low temperature toughness is enhanced. The absorbed energy E (J) at ⁇ 10 ° C. is set to 95 J or more.
  • the tempering parameter TMP defined by the following equation is set in the range of 17,000 to 17950.
  • TMP (Tempering temperature (° C.) +273) x (20 + log (holding time (minutes) / 60))
  • the tempering parameter TMP When the tempering parameter TMP is less than 17,000, the effect of tempering is not sufficiently obtained, and the strain introduced into the steel material in the quenching process is not sufficiently removed. In this case, even if the content of each element in the chemical composition is within the range of the present embodiment, the crystal particle size number of the former austenite grains is less than 7.0, and the formulas (1) to (4) are satisfied. The absorbed energy E (J) at ⁇ 10 ° C. becomes less than 95J. On the other hand, if the tempering parameter TMP exceeds 17950, sufficient strength cannot be obtained.
  • the crystal grain size number of the former austenite grains is less than 7.0, and the formulas (1) to (4) are satisfied.
  • the yield strength is less than 896 MPa (130 ksi).
  • the tempering parameter TMP is 17,000 to 17950, excessive strain introduced by quenching can be appropriately removed while appropriately generating precipitates that contribute to precipitation strengthening.
  • the content of each element in the chemical composition is within the range of the present embodiment, the crystal grain size number of the former austenite grains is less than 7.0, and the formulas (1) to (4) are satisfied.
  • the yield strength of the steel material is 896 MPa (130 ksi) or more, and the absorbed energy E (J) at ⁇ 10 ° C. is 95 J or more.
  • the tempering temperature in the tempering process is 600 to 720 ° C. Further, the holding time at the tempering temperature is 10 to 90 minutes. That is, in the tempering step, the tempering temperature is set to 600 to 720 ° C., the holding time at the tempering temperature is set to 10 to 90 minutes, and the tempering parameter TMP is set to 17000 to 17950.
  • the preferred lower limit of the tempering temperature is 605 ° C, more preferably 610 ° C.
  • the preferred upper limit of the tempering temperature is 700 ° C., more preferably 680 ° C., and even more preferably 660 ° C.
  • the preferred lower limit of the tempering parameter TMP is 17050, more preferably 17100, and even more preferably 17130.
  • the preferred upper limit of the tempering parameter TMP is 17940, more preferably 17920, still more preferably 17910.
  • the steel material according to the present embodiment can be manufactured.
  • a method for manufacturing a steel pipe has been described as an example.
  • the steel material according to this embodiment may be a steel plate.
  • An example of a steel sheet manufacturing method also includes, for example, a material preparation step, a heating step, a hot working step, and a heat treatment step, as in the above-mentioned manufacturing method.
  • the manufacturing method is not particularly limited as long as the steel material having the above-mentioned structure can be manufactured.
  • the effect of the steel material of the present embodiment will be described more specifically by way of examples.
  • the conditions in the following examples are one condition example adopted for confirming the feasibility and effect of the steel material of the present embodiment. Therefore, the steel material of the present embodiment is not limited to this one condition example.
  • a molten steel having the chemical composition shown in Table 1 was produced.
  • the blank in Table 1 means that the corresponding element was not contained.
  • test number 1 it means that the V content was "0"% as a result of rounding to the third decimal place.
  • the Nb content was "0"% as a result of rounding to the fourth decimal place. The same applies to the contents of other elements.
  • Billets were manufactured by the continuous casting method using the above molten steel.
  • the billets of each test number produced were heated in a rotary hearth type continuous heating furnace.
  • the time from when the battery is charged into the inlet 11 to when it is discharged from the extraction port 12 of the tropical zone Z3) is "Temperature T1 (° C.)", “Stay time t1 (minutes)", and "Temperature” in Table 2.
  • processing time at each test number was as shown in the "processing time (minutes)” column in Table 2. Specifically, “ ⁇ 15” in the “machining time (minutes)” column indicates that the machining time was 15 minutes or less. “> 15” indicates that the processing time exceeds 15 minutes.
  • the billet after heating was hot-rolled (hot-worked) by the Mannesmann-mandrel method to manufacture raw pipes (seamless steel pipes) with each test number.
  • tempering was performed on the raw pipes of each test number. Specifically, for the raw pipes of each test number, the tempering temperature (° C) described in “Tempering (° C)” in the “Tempering” column of Table 2 is used, and the tempering time (tempering time (minutes)) described in the "hours (minutes)” column. Tempering was carried out to hold only minutes).
  • the temperature of the heating furnace and the heat treatment furnace used for heating the quenching was defined as the quenching temperature (° C.). Further, the temperature of the heat treatment furnace used for tempering was defined as the tempering temperature (° C.).
  • the microstructure of the steel material (seamless steel pipe) of each test number was observed by the following method, and the total area ratio (%) of martensite and bainite was determined.
  • a test piece having an observation surface including the pipe axis direction and the wall thickness (tube diameter) direction from the central portion of the wall thickness of the steel material was prepared. After polishing the observation surface of the test piece to a mirror surface, the test piece was immersed in a nital corrosive solution for 10 seconds to reveal the structure by etching. The etched observation surface was observed in 10 fields with a secondary electron image using SEM. The field of view was 0.01 mm 2 (magnification 1000 times).
  • crystal grain size numbers of the former austenite grains of the steel material (seamless steel pipe) of each test number were obtained by the following method.
  • a test piece was sampled from the central portion of the steel material (seamless steel pipe) so that the cross section perpendicular to the longitudinal direction (rolling direction) of the steel material was the surface to be inspected.
  • the collected test piece was embedded in resin, and the surface to be inspected was mirror-polished.
  • Former austenite grain boundaries were revealed on the surface to be inspected after mirror polishing by the Behcet-Behaujard method in which the surface to be inspected was corroded with a saturated aqueous solution of picric acid.
  • the crystal grain size numbers of the former austenite grains were measured according to ASTM E112-13.
  • the obtained crystal particle size numbers are shown in the "old ⁇ particle size number” column in Table 2.
  • the F1 to F4 values of each test number are shown in the "F1" to "F4" columns to the right of the "old ⁇ particle size number” column in Table 2.
  • Mn sulfide number density measurement test The number density (pieces / 100 mm 2 ) of Mn sulfides in the steel materials of each test number was determined by the following method.
  • a test piece was prepared from the central part of the wall thickness of the steel material (seamless steel pipe).
  • the test pieces were resin-filled so that the surface including the tube axis direction and the wall thickness (tube diameter) direction became the observation surface.
  • the observation surface of the resin-filled test piece was polished. Of the observed surfaces after polishing, any 10 visual fields were observed.
  • the area of each field of view was 100 mm 2 .
  • the Mn sulfide in the field of view was identified by the method described above.
  • the total number of Mn sulfides (coarse Mn sulfides) having a circle-equivalent diameter of 5.0 ⁇ m or more was determined.
  • the number density of coarse Mn sulfides (pieces / 100 mm 2 ) was determined based on the total number of coarse Mn sulfides obtained and the total area of 10 fields of view.
  • the number densities of the obtained coarse Mn sulfides are shown in the “Coarse Mn sulfide number density (pieces / 100 mm 2 )” column of Table 2.
  • yield strength measurement test The yield strength of the steel material of each test number was determined by the following method. Tensile tests were performed by a method according to ASTM E8 / E8M (2013). Round bar test pieces were collected from the central part of the wall thickness of the steel material (seamless steel pipe) of each test number. The size of the round bar test piece was that the diameter of the parallel portion was 6.35 mm and the length of the parallel portion was 25.4 mm. The axial direction of the round bar test piece was parallel to the longitudinal direction (rolling direction) of the steel material (seamless steel pipe).
  • a tensile test was carried out in the air at room temperature (25 ° C.) using a round bar test piece, and the obtained stress at 0.65% total elongation was defined as the yield strength (MPa).
  • the obtained yield strength (MPa) is shown in the “YS (MPa)” column of Table 2, and the yield strength (ksi) is shown in the “YS (ksi)” column of Table 2.
  • test numbers 1 to 23 in the heating step, the FA in the heating zone Z2 and the solitary tropical Z3 was 1420 or more, and the processing time was 15 minutes or less. On the other hand, in test number 24, FA was less than 1420. In test number 25, the processing time exceeded 15 minutes. Therefore, in test numbers 1 to 23, the number density of Mn sulfides was 10 pieces / 100 mm 2 or less, and the number density of Mn sulfides was lower than that of test numbers 24 and 25. As a result, the absorbed energy of test numbers 1 to 23 at ⁇ 10 ° C. was 100 J or more, which was even higher than that of test numbers 24 and 25.
  • test numbers 26 and 27 F1 did not satisfy the formula (1). Therefore, the strength was low. Specifically, the yield strength was less than 896 MPa (130 ksi).
  • Test number 30 did not contain Ti. Therefore, the strength was low. Specifically, the yield strength was less than 896 MPa (130 ksi).
  • the Mn content was too high. Therefore, the low temperature toughness was low. Specifically, the absorbed energy at ⁇ 10 ° C. was less than 95 J.
  • the Mn content was too high.
  • the V content was too high. Therefore, the low temperature toughness was low. Specifically, the absorbed energy at ⁇ 10 ° C. was less than 95 J.
  • the Ti content was too high. Therefore, the low temperature toughness was low. Specifically, the absorbed energy at ⁇ 10 ° C. was less than 95 J.
  • test number 40 the B content was too high. Therefore, the low temperature toughness was low. Specifically, the absorbed energy at ⁇ 10 ° C. was less than 95 J.
  • the tempering parameter TMP was too low. Therefore, the low temperature toughness was low. Specifically, the absorbed energy at ⁇ 10 ° C. was less than 95 J.
  • the tempering parameter TMP was too high. Therefore, the strength was low. Specifically, the yield strength was less than 896 MPa (130 ksi).
  • test numbers 45 and 46 quenching was carried out offline, but the quenching temperature was less than 930 ° C. Therefore, the crystal grain size number of the old austenite grains was 7.0 or more, and F1 did not satisfy the formula (1). Therefore, the strength was low. Specifically, the yield strength was less than 896 MPa (130 ksi).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

高強度及び優れた低温靱性を有する鋼材を提供する。本開示による鋼材は、質量%で、C:0.15~0.45%、Si:0.05~1.00%、Mn:0.05~0.80%未満、P:0.030%以下、S:0.0100%以下、Al:0.100%以下、Cr:0.30~1.50%、Mo:0.25~2.00%、Ti:0.001~0.015%、N:0.0100%以下、O:0.0050%以下、V:0~0.05%、Nb:0~0.010%、B:0~0.0005%未満、Ca:0~0.0100%、Mg:0~0.0100%、希土類元素:0~0.0100%、及び、残部がFe及び不純物からなり、旧オーステナイト粒の結晶粒度番号が7.0未満であり、明細書に記載の式(1)~式(4)を満たし、降伏強度が896MPa以上であり、-10℃における吸収エネルギーが95J以上である。

Description

鋼材
 本開示は、鋼材に関し、さらに詳しくは、油井用途の鋼材に関する。
 油井やガス井(以下、油井及びガス井を総称して、単に「油井」という)の深井戸化により、油井用鋼管に代表される油井用途の鋼材には、高強度化が要求されている。現在、油井用途の鋼材として、80ksi級(降伏強度が80~95ksi未満、つまり、552~655MPa未満)や、95ksi級(降伏強度が95~110ksi未満、つまり、655~758MPa未満)の油井用鋼管が広く利用されている。しかしながら、最近では、110ksi級(降伏強度が110~125ksi未満、つまり、758~862MPa未満)の鋼材や、125ksi(862MPa)以上の降伏強度を有する鋼材も求められ始めている。
 最近ではさらに、油井開発が寒冷地でも行われている。このような寒冷地の深井戸に使用される油井用鋼管には、高い強度だけでなく、優れた低温靱性も求められる。
 特許文献1(特開2017-2369号公報)は、125ksi以上の降伏強度を有し、優れた低温靱性を有する継目無鋼管を提案する。特許文献1に開示された継目無鋼管は、質量%で、C:0.21~0.35%、Si:0.10~0.50%、Mn:0.05~1.00%、P:0.025%以下、S:0.010%以下、Al:0.005~0.100%、N:0.010%以下、Cr:0.10~1.30%、Mo:0.05~1.00%、Ti:0.002~0.040%、V:0~0.30%、Nb:0~0.050%、及び、B:0~0.0050%を含有し、さらに、Ca:0.0010~0.0060%、及び、希土類元素:0.0010~0.0060%からなる群から選択される1種又は2種を含有し、残部がFe及び不純物からなる。この継目無鋼管の旧オーステナイト粒の結晶粒度番号は7.0以上である。さらに、この継目無鋼管中の硫化物系介在物のうち、長径が1μm以上の特定硫化物系介在物の個数は5000個/100μm以下であり、特定硫化物系介在物の平均アスペクト比は3.4以下である。さらに、この継目無鋼管の降伏強度は862MPa以上である。
 特許文献1に開示された継目無鋼管では、旧オーステナイト粒の結晶粒度番号を7.0以上とし、結晶粒を微細化することにより、低温靱性を高める。具体的には、製造工程において、熱間加工前の素材の加熱温度を1100℃以下とし、さらに、穿孔圧延中の傾斜ロールの回転速度を遅くして、穿孔圧延中の加工発熱を抑制する。これにより、結晶粒を微細に維持する。特許文献1の継目無鋼管ではさらに、Ti析出物やV析出物、Nb析出物等の析出物による結晶粒微細化及び析出強化により、継目無鋼管の強度及び低温靱性を高めている。
特開2017-2369号公報
 しかしながら、特許文献1に記載の技術以外の技術によって、高い強度及び優れた低温靱性を有する鋼材が得られてもよい。
 本開示の目的は、高い降伏強度を有し、かつ、優れた低温靱性を有する鋼材を提供することである。
 本開示による鋼材は、
 質量%で、
 C:0.15~0.45%、
 Si:0.05~1.00%、
 Mn:0.05~0.80%未満、
 P:0.030%以下、
 S:0.0100%以下、
 Al:0.100%以下、
 Cr:0.30~1.50%、
 Mo:0.25~2.00%、
 Ti:0.001~0.015%、
 N:0.0100%以下、
 O:0.0050%以下、
 V:0~0.05%、
 Nb:0~0.010%、
 B:0~0.0005%未満、
 Ca:0~0.0100%、
 Mg:0~0.0100%、
 希土類元素:0~0.0100%、
 Ni:0~0.50%、
 Cu:0~0.50%、及び、
 残部がFe及び不純物からなり、
 旧オーステナイト粒の結晶粒度番号が7.0未満であり、
 各元素含有量が上述の範囲内であることを前提として、式(1)~式(4)を満たし、
 降伏強度が896MPa以上であり、
 -10℃における吸収エネルギーが95J以上である。
 {C+Mn/5+(Cu+Ni)/15+(Cr+Mo+V)/5+10×B}×(7.0/GN)0.45≧0.678 (1)
 {Mn/5.5+10×Ti+1.2×V+15×Nb+200×B}×(7.0/GN)0.45≦0.240 (2)
 10×Ti+V+10×Nb≧0.015 (3)
 (10×Ti+1.2×V+30×Nb)/Mo≦0.205 (4)
 ここで、各元素記号には、対応する元素の含有量が質量%で代入され、「GN」には前記結晶粒度番号が代入される。
 本開示による鋼材は、高い降伏強度を有し、かつ、優れた低温靱性を有する。
図1は、連続式の加熱炉の一例である、ロータリーハース型の加熱炉の模式図(平面図)である。
 本発明者らは、鋼材の強度を高めつつ、かつ、優れた低温靱性を有する鋼材の検討を行った。従前の油井用途の鋼材では、特許文献1にも記載されているとおり、862MPa以上(125ksi以上)の高強度を得るために、Ti析出物やV析出物、Nb析出物等の析出物による析出強化により、鋼材の強度を高めていた。そこで、本発明者らは、初めに、析出強化により鋼材の強度を高めつつ、さらに、低温靱性も高める手段を検討した。
 介在物は、鋼材の低温靱性を低下する要因となる。介在物を生成する元素として、Mn、Ti、及びBがある。一方、上述のとおり、V析出物及びNb析出物は析出強化により鋼材の強度を高める。そこで、本発明者らは、Mn、Ti及びBの含有量を低くすることにより介在物の生成を抑制し、さらに、V及びNbの析出強化により、鋼材の強度を高めることを考えた。
 しかしながら、さらなる検討を行った結果、単に介在物を形成する元素の含有量を低減しただけでは、高強度と優れた低温靱性との両立が困難であった。具体的には、高い強度は得られるものの、優れた低温靱性が十分に得られなかった。そこで、本発明者らは、低温靱性が十分に得られない要因についてさらに検討を行った。その結果、0℃未満の寒冷環境における低温靱性を低下する要因は、介在物だけでなく、析出物も含まれることが判明した。そのため、従来の鋼材のように、析出物による析出強化機構を、鋼材の強度を高めるための主たる強化機構として採用した場合、0℃未満の寒冷環境における低温靱性を十分に高めることには限界があると本発明者らは考えた。
 そこで、本発明者らは、高い強度及び優れた低温靱性を両立させるために、従来のような析出強化による強化機構に替えて、焼入れ性向上による強化機構を鋼材の主たる強化機構に採用することを考えた。この場合、化学組成の観点からは、焼入れ性を高める元素を含有しつつ、介在物及び析出物を形成しやすい元素の含有量を抑制できる方が好ましい。
 そこで、本発明者らは、上述の技術思想に適した化学組成を検討した。その結果、化学組成が、質量%で、C:0.15~0.45%、Si:0.05~1.00%、Mn:0.05~0.80%未満、P:0.030%以下、S:0.0100%以下、Al:0.100%以下、Cr:0.30~1.50%、Mo:0.25~2.00%、Ti:0.001~0.015%、N:0.0100%以下、O:0.0050%以下、V:0~0.05%、Nb:0~0.010%、B:0~0.0005%未満、Ca:0~0.0100%、Mg:0~0.0100%、希土類元素(REM):0~0.0100%、Ni:0~0.50%、Cu:0~0.50%、及び、残部がFe及び不純物からなる鋼材であれば、高い強度と優れた低温靱性とを両立できる可能性があると本発明者らは考えた。
 上述のとおり、本実施形態の鋼材では、焼入れ性向上による強化機構を鋼材の主たる強化機構に採用する。ところで、鋼材が粗粒であるほど、焼入れ性は高まる。そこで、本実施形態の鋼材では、従前の鋼材のように結晶粒を細粒にするのではなく、結晶粒を敢えて粗粒にして、鋼材の強度を高めることを本発明者らは考えた。検討の結果、化学組成中の各元素含有量が上述の範囲内である場合、鋼材の旧オーステナイト粒の結晶粒度番号が7.0未満であれば、鋼材の焼入れ性をさらに高めることができ、強度が高まる可能性があると本発明者らは考えた。
 そこで、以上の要件を前提として、上述の化学組成を有する鋼材において高い強度と優れた低温靱性との両立を図るため、(1)上述の化学組成における、焼入れ性向上元素と結晶粒サイズとの関係、(2)介在物及び析出物を形成する元素と結晶粒サイズとの関係、(3)析出強化機構の補助的活用、(4)Moによる固溶強化機構の補助的活用、について、さらに詳細に検討を行った。その結果、化学組成中の各元素含有量が上述の範囲内であることを前提として、さらに、式(1)~式(4)を満たせば、十分に高い強度と優れた低温靱性との両立が可能であることを、本発明者らは見出した。
 {C+Mn/5+(Cu+Ni)/15+(Cr+Mo+V)/5+10×B}×(7.0/GN)0.45≧0.678 (1)
 {Mn/5.5+10×Ti+1.2×V+15×Nb+200×B}×(7.0/GN)0.45≦0.240 (2)
 10×Ti+V+10×Nb≧0.015 (3)
 (10×Ti+1.2×V+30×Nb)/Mo≦0.205 (4)
 ここで、各元素記号には、対応する元素の含有量が質量%で代入され、「GN」には旧オーステナイト粒の結晶粒度番号が代入される。以下、式(1)~式(4)について説明する。
 式(1)について、F1={C+Mn/5+(Cu+Ni)/15+(Cr+Mo+V)/5+10×B}×(7.0/GN)0.45と定義する。F1は、鋼材の焼入れ性の指標である。上述のとおり、焼入れ性を向上する元素(以下、焼入れ性向上元素ともいう)と、旧オーステナイト粒のサイズとは、焼入れ性に相乗的に影響する。F1中のC、Mn、Cu、Ni、Cr、Mo、V及びBはいずれも、焼入れ性向上元素である。さらに、F1中の(7.0/GN)0.45の項は、焼入れ性に対する旧オーステナイト粒サイズの寄与度を示す。
 F1が0.678未満であれば、化学組成中の各元素含有量が本実施形態の範囲内であり、かつ、式(2)~式(4)を満たしても、鋼材の焼入れ性が不足している。この場合、鋼材の降伏強度を十分に高くすることができない。鋼材の化学組成中の各元素含有量が本実施形態の範囲内であり、かつ、F1が0.678以上であれば、化学組成が後述の式(2)~式(4)を満たすことを前提として、鋼材の強度を十分に高めることができる。具体的には、鋼材の降伏強度を896MPa(130ksi)以上にすることができる。
 式(2)について、F2={Mn/5.5+10×Ti+1.2×V+15×Nb+200×B}×(7.0/GN)0.45と定義する。F2は、鋼材の低温靱性の指標である。上述のとおり、化学組成中の各元素含有量が本実施形態の範囲内である場合、Mn、Ti、V、Nb及びBはいずれも、介在物又は析出物を形成しやすい。以下、これらの元素を介在物・析出物形成元素ともいう。これらの元素が介在物及び/又は析出物を形成した場合、旧オーステナイト粒が粗大であれば、き裂が発生しやすい。一方、旧オーステナイト粒が細粒であれば、き裂の進展が抑制されやすい。したがって、介在物・析出物形成元素と旧オーステナイト粒の結晶粒度番号とは低温靱性に相乗的に影響する。F2中のMn、Ti、V、Nb及びBはいずれも、介在物・析出物形成元素である。さらにF2中の(7.0/GN)0.45の項は、低温靱性に対する旧オーステナイト粒サイズの寄与度を示す。
 F2が0.240を超えれば、化学組成中の各元素含有量が上述の範囲内であり、式(1)、式(3)及び式(4)を満たしても、鋼材において、Mn、Ti、V、Nb及びBを含む介在物及び/又は析出物が過剰に生成する。そのため、化学組成中の各元素含有量が本実施形態の範囲内である鋼材の降伏強度を896MPa(130ksi)以上とした場合に、鋼材の低温靱性が低下する。具体的には、-10℃での吸収エネルギーが95J未満になる。F2が0.240以下であれば、鋼材において、Mn、Ti、V、Nb及びBを含む介在物及び/又は析出物の生成を十分に抑制できる。そのため、化学組成中の各元素含有量が上述の範囲内であり、式(1)、式(3)及び式(4)を満たすことを前提として、鋼材の強度を十分に高めつつ、優れた低温靭性をも得られる。
 式(3)について、F3=10×Ti+V+10×Nbと定義する。F3は、化学組成中の各元素含有量が本実施形態の範囲内である鋼材において、強化機構として補助的に活用する析出強化機構の指標である。本実施形態の鋼材では、原則として、式(1)を満たすことにより、焼入れ性向上による強化機構を主たる強化機構とする。しかしながら、化学組成中の各元素含有量が上述の範囲内である鋼材では、焼入れ性強化機構だけでは、896MPa(130ksi)以上の降伏強度を安定して得られない場合がある。そこで、本実施形態では、焼入れ性強化機構に加えて、Ti、V及びNbによる析出強化機構を補助的に採用する。F3が0.015以上であれば、焼入れ性強化機構に加えて、析出強化機構を補助的に活用できる。そのため、化学組成中の各元素含有量が本実施形態の範囲内であり、式(1)、式(2)及び式(4)を満たすことを前提として、鋼材の強度を十分に高めることができる。具体的には、鋼材の降伏強度が896MPa(130ksi)以上となる。
 式(4)について、F4=(10×Ti+1.2×V+30×Nb)/Moと定義する。F4は、Moによる低温靱性向上の寄与度合いを示す指標である。上述のとおり、本実施形態の鋼材では、焼入れ性向上による強化機構を主たる強化機構に採用することにより、鋼材の強度を高める。さらに、介在物及び析出物をなるべく低減することにより、鋼材の低温靱性を高める。しかしながら、焼入れ性向上による強化機構のみで鋼材の強度を高めるだけでは、896MPa(130ksi)以上の十分に高い降伏強度を安定して得られない場合がある。そこで、式(3)に規定のとおり、焼入れ性向上による強化機構に加えて、Ti、V及びNbによる析出強化機構を補助的に採用する。しかしながら、Ti、V及びNbの析出物が増加すれば、化学組成中の各元素含有量が上述の範囲内である鋼材の低温靱性が低下してしまう。
 ここで、Moは、焼入れ性向上により鋼材の強度を高めるだけでなく、鋼材を固溶強化する。Moによる固溶強化は、Ti、V及びNb析出物による低温靭性の低下を抑制することができる。そこで、本実施形態では、Ti、V及びNbの含有量に対するMo含有量の割合を高める。F4が0.205以下であれば、Ti、V及びNbの含有量に対するMo含有量の割合が高い。この場合、析出強化機構を補助的に活用しても、低温靭性の低下を抑制できる。そのため、化学組成中の各元素含有量が本実施形態の範囲内であり、式(1)~式(3)も満たすことを前提として、鋼材の強度を十分に高めることができ、かつ、優れた低温靱性も得られる。
 以上のとおり、本実施形態の鋼材は、強度を高めるだけでなく、低温靱性も高めるために、従来の鋼材が主たる強化機構として積極的に採用する析出強化機構に替えて、焼入れ性向上による強化機構を採用する。さらに、焼入れ性向上による強化機構をさらに強く作用させるために、旧オーステナイト粒を敢えて粗粒とする。さらに、高い強度と優れた低温靱性とを両立させるために、焼入れ性向上元素、介在物・析出物形成元素、及び、旧オーステナイト粒サイズが式(1)~式(4)を満たすように調整する。以上の構成を有することにより、本実施形態の鋼材では、降伏強度を896MPa以上としつつ、-10℃における吸収エネルギーを95J以上とすることができる。
 本実施形態の鋼材は、以上の技術思想により完成したものであり、次の構成を有する。
 [1]
 質量%で、
 C:0.15~0.45%、
 Si:0.05~1.00%、
 Mn:0.05~0.80%未満、
 P:0.030%以下、
 S:0.0100%以下、
 Al:0.100%以下、
 Cr:0.30~1.50%、
 Mo:0.25~2.00%、
 Ti:0.001~0.015%、
 N:0.0100%以下、
 O:0.0050%以下、
 V:0~0.05%、
 Nb:0~0.010%、
 B:0~0.0005%未満、
 Ca:0~0.0100%、
 Mg:0~0.0100%、
 希土類元素:0~0.0100%、
 Ni:0~0.50%、
 Cu:0~0.50%、及び、
 残部がFe及び不純物からなり、
 旧オーステナイト粒の結晶粒度番号が7.0未満であり、
 各元素含有量が上述の範囲内であることを前提として、式(1)~式(4)を満たし、
 降伏強度が896MPa以上であり、
 -10℃における吸収エネルギーが95J以上である、
 鋼材。
 {C+Mn/5+(Cu+Ni)/15+(Cr+Mo+V)/5+10×B}×(7.0/GN)0.45≧0.678 (1)
 {Mn/5.5+10×Ti+1.2×V+15×Nb+200×B}×(7.0/GN)0.45≦0.240 (2)
 10×Ti+V+10×Nb≧0.015 (3)
 (10×Ti+1.2×V+30×Nb)/Mo≦0.205 (4)
 ここで、各元素記号には、対応する元素の含有量が質量%で代入され、「GN」には前記結晶粒度番号が代入される。
 [2]
 [1]に記載の鋼材であって、
 円相当径が5.0μm以上のMn硫化物の個数密度が10個/100mm以下であり、
 -10℃における吸収エネルギーが100J以上である、
 鋼材。
 [3]
 [1]又は[2]に記載の鋼材であって、
 V:0.01~0.05%、
 Nb:0.001~0.010%、
 B:0.0001~0.0005%未満、
 Ca:0.0001~0.0100%、
 Mg:0.0001~0.0100%、
 希土類元素:0.0001~0.0100%、
 Ni:0.01~0.50%、及び、
 Cu:0.01~0.50%、からなる群から選択される1種以上を含有する、
 鋼材。
 [4]
 [1]~[3]のいずれか1項に記載の鋼材であって、
 前記鋼材は油井用鋼管である、
 鋼材。
 以下、本実施形態による鋼材について詳述する。元素に関する「%」は、特に断りがない限り、質量%を意味する。
 [化学組成]
 本実施形態による鋼材の化学組成は、次の元素を含有する。
 C:0.15~0.45%
 炭素(C)は、焼入れ性を高め、鋼材の強度を高める。C含有量が0.15%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、C含有量が0.45%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎ、その結果、鋼材の低温靱性が低下する。したがって、C含有量は0.15~0.45%である。C含有量の好ましい下限は0.17%であり、さらに好ましくは0.20%であり、さらに好ましくは0.22%であり、さらに好ましくは0.24%である。C含有量の好ましい上限は0.40%であり、さらに好ましくは0.36%であり、さらに好ましくは0.34%であり、さらに好ましくは0.32%であり、さらに好ましくは0.30%である。
 Si:0.05~1.00%
 シリコン(Si)は、鋼を脱酸する。Si含有量が0.05%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Si含有量が1.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の低温靱性が低下する。したがって、Si含有量は0.05~1.00%である。Si含有量の好ましい下限は0.10%であり、さらに好ましくは0.13%であり、さらに好ましくは0.15%であり、さらに好ましくは0.17%であり、さらに好ましくは0.20%である。Si含有量の好ましい上限は0.85%であり、さらに好ましくは0.70%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%であり、さらに好ましくは0.40%である。
 Mn:0.05~0.80%未満
 マンガン(Mn)は、鋼を脱酸する。Mnはさらに、鋼材の焼入れ性を高め、鋼材の強度を高める。Mn含有量が0.05%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mn含有量が0.80%以上であれば、Mnは、P及びS等の不純物とともに、粒界に偏析する。さらに、粗大なMn硫化物が過剰に多く生成する。この場合、他の元素含有量が本実施形態の範囲内であっても、鋼材の低温靱性が低下する。したがって、Mn含有量は0.05~0.80%未満である。Mn含有量の好ましい下限は0.15%であり、さらに好ましくは0.25%であり、さらに好ましくは0.30%であり、さらに好ましくは0.35%であり、さらに好ましくは0.40%である。Mn含有量の好ましい上限は0.79%であり、さらに好ましくは0.78%であり、さらに好ましくは0.75%であり、さらに好ましくは0.70%であり、さらに好ましくは0.65%である。
 P:0.030%以下
 燐(P)は不可避に含有される不純物である。すなわち、P含有量は0%超である。P含有量が0.030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Pが粒界に偏析して、鋼材の低温靱性が低下する。したがって、P含有量は0.030%以下である。P含有量の好ましい上限は0.025%であり、さらに好ましくは0.020%であり、さらに好ましくは0.015%である。P含有量はなるべく低い方が好ましい。しかしながら、P含有量の過剰な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%である。
 S:0.0100%以下
 硫黄(S)は不可避に含有される不純物である。すなわち、S含有量は0%超である。S含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Sが粒界に偏析して、鋼材の低温靱性が低下する。したがって、S含有量は0.0100%以下である。S含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0070%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0045%である。S含有量はなるべく低い方が好ましい。しかしながら、S含有量の過剰な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%である。
 Al:0.100%以下
 アルミニウム(Al)は不可避に含有される。つまり、Al含有量は0%超である。Alは鋼を脱酸する。Alが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Al含有量が0.100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物系介在物が生成する。この場合、鋼材の低温靱性が低下する。したがって、Al含有量は0.100%以下である。Al含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%であり、さらに好ましくは0.020%である。Al含有量の好ましい上限は0.080%であり、さらに好ましくは0.070%であり、さらに好ましくは0.060%であり、さらに好ましくは0.050%である。本明細書にいう「Al」含有量は「酸可溶Al」、つまり、「sol.Al」の含有量を意味する。
 Cr:0.30~1.50%
 クロム(Cr)は、鋼材の焼入れ性を高める。Crはさらに、焼戻し軟化抵抗を高める。そのため、Crは鋼材の強度を高める。Cr含有量が0.30%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Cr含有量が1.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の低温靱性が低下する。したがって、Cr含有量は0.30~1.50%である。Cr含有量の好ましい下限は0.40%であり、さらに好ましくは0.45%であり、さらに好ましくは0.50%であり、さらに好ましくは0.60%である。Cr含有量の好ましい上限は1.40%であり、さらに好ましくは1.30%であり、さらに好ましくは1.20%である。
 Mo:0.25~2.00%
 モリブデン(Mo)は、鋼材の焼入れ性を高める。Moはさらに、鋼材中に固溶して鋼材を強化する。固溶Moにより鋼材が強化されれば、V析出物、Nb析出物及びTi析出物に起因した低温靭性の低下を抑制することができる。したがって、Moは、低温靱性の低下を抑制しつつ、鋼材の強度を高めることができる。Mo含有量が0.25%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。一方、Mo含有量が2.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の低温靱性がかえって低下する。したがって、Mo含有量は0.25~2.00%である。Mo含有量の好ましい下限は0.28%であり、さらに好ましくは0.30%であり、さらに好ましくは0.35%である。Mo含有量の好ましい上限は1.50%であり、さらに好ましくは1.25%であり、さらに好ましくは1.00%であり、さらに好ましくは0.80%である。
 Ti:0.001~0.015%
 チタン(Ti)は、析出物(窒化物)を形成して、析出強化により鋼材の強度を高める。Ti含有量が0.001%未満であれば、上記効果が十分に得られない。一方、Ti含有量が0.015%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な介在物が生成し、Ti析出物が過剰に多く生成する。この場合、鋼材の低温靱性が顕著に低下する。したがって、Ti含有量は0.001~0.015%である。Ti含有量の好ましい下限は0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.004%であり、さらに好ましくは0.005%である。Ti含有量の好ましい上限は0.012%であり、さらに好ましくは0.010%であり、さらに好ましくは0.009%であり、さらに好ましくは0.008%である。
 N:0.0100%以下
 窒素(N)は、不可避に含有される不純物である。つまり、N含有量は0%超である。N含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Nは粗大な窒化物を形成する。この場合、鋼材の低温靱性が低下する。したがって、N含有量は0.0100%以下である。N含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0070%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0055%である。N含有量はなるべく低い方が好ましい。しかしながら、N含有量の過剰な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、N含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0010%である。
 O:0.0050%以下
 酸素(O)は不可避に含有される不純物である。つまり、O含有量は0%超である。O含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Oは粗大な酸化物を形成し、鋼材の低温靱性が低下する。したがって、O含有量は0.0050%以下である。O含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0025%である。O含有量はなるべく低い方が好ましい。ただし、O含有量の過剰な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、O含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%である。
 本実施形態による鋼材の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は製造環境などから混入されるものであって、本実施形態による鋼材に悪影響を与えない範囲で許容されるものを意味する。
 [任意元素について]
 [第1群]
 本実施形態の鋼材はさらに、Feの一部に代えて、V及びNbからなる群から選択される1種以上を含有してもよい。これらの元素は任意元素であり、いずれも、析出物を形成し、析出強化により鋼材の強度を高める。
 V:0~0.05%
 バナジウム(V)は、任意元素であり、含有されなくてもよい。つまり、V含有量は0%であってもよい。含有される場合、つまり、V含有量が0%超である場合、Vは、焼入れ性を向上する。Vはさらに、析出物(炭化物)を形成する。V析出物は、析出強化により鋼材の強度を高める。しかしながら、本実施形態の化学組成において、鋼材の降伏強度を896MPa以上(130ksi以上)に高めた場合、V含有量が0.05%を超えれば、他の元素含有量が本実施形態の範囲内であっても、V析出物が鋼材の低温靱性を顕著に低下する。したがって、V含有量は0~0.05%である。V含有量の好ましい下限は0.01%である。V含有量の好ましい上限は0.04であり、さらに好ましくは0.03%であり、さらに好ましくは0.02%である。
 Nb:0~0.010%
 ニオブ(Nb)は、任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。含有される場合、つまり、Nb含有量が0%超である場合、Nbは、析出物(炭窒化物)を形成する。Nb析出物は、析出強化により鋼材の強度を高める。しかしながら、本実施形態の化学組成において、鋼材の降伏強度を896MPa以上(130ksi以上)に高めた場合、Nb含有量が0.010%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Nb析出物が鋼材の低温靱性を顕著に低下する。したがって、Nb含有量は0~0.010%である。Nb含有量の好ましい下限は0.001%であり、さらに好ましくは0.002%である。Nb含有量の好ましい上限は0.009%であり、さらに好ましくは0.008%である。
 [第2群]
 本実施形態の鋼材はさらに、Feの一部に代えて、Bを含有してもよい。
 B:0~0.0005%未満
 ボロン(B)は任意元素であり、含有されなくてもよい。つまり、B含有量は0%であってもよい。含有される場合、つまり、B含有量が0%超である場合、Bは鋼材に固溶して鋼材の焼入れ性を高め、鋼材の強度を高める。Bが少しでも含有されれば、上記効果がある程度得られる。しかしながら、本実施形態の化学組成において、鋼材の降伏強度を896MPa以上(130ksi以上)に高めた場合、B含有量が0.0005%以上であれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中に生成するB介在物が鋼材の低温靱性を低下する。したがって、B含有量は0~0.0005%未満である。B含有量の好ましい上限は0.0004%であり、さらに好ましくは0.0003%である。B含有量の好ましい下限は0.0001%である。
 [第3群]
 本実施形態の鋼材はさらに、Feの一部に代えて、Ca、Mg及び希土類元素(REM)からなる群から選択される1種以上を含有してもよい。これらの元素はいずれも、鋼材中のMn硫化物を微細化して鋼材の低温靭性を高める。
 Ca:0~0.0100%
 カルシウム(Ca)は任意元素であり、含有されなくてもよい。つまり、Ca含有量は0%であってもよい。含有される場合、つまり、Ca含有量が0%超である場合、Caは、鋼材中のMn硫化物を微細化し、鋼材の低温靱性を高める。Caが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ca含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化して、鋼材の低温靱性がかえって低下する。したがって、Ca含有量は0~0.0100%である。Ca含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%であり、さらに好ましくは0.0010%である。Ca含有量の好ましい上限は0.0060%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%である。
 Mg:0~0.0100%
 マグネシウム(Mg)は任意元素であり、含有されなくてもよい。つまり、Mg含有量は0%であってもよい。含有される場合、つまり、Mg含有量が0%超である場合、Mgは鋼材中のMn硫化物を微細化し、鋼材の低温靭性を高める。Mgが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Mg含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化して、鋼材の低温靭性がかえって低下する。したがって、Mg含有量は0~0.0100%である。Mg含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%であり、さらに好ましくは0.0010%である。Mg含有量の好ましい上限は0.0060%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0040%であり、0.0025%であり、さらに好ましくは0.0020%である。
 希土類元素(REM):0~0.0100%
 希土類元素(REM)は任意元素であり、含有されなくてもよい。すなわち、REM含有量は0%であってもよい。含有される場合、つまり、REM含有量が0%超である場合、REMは鋼材中のMn硫化物を微細化し、鋼材の低温靭性を高める。REMが少しでも含有されれば、上記効果がある程度得られる。しかしながら、REM含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化して、鋼材の低温靭性がかえって低下する。したがって、REM含有量は0~0.0100%である。REM含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%であり、さらに好ましくは0.0010%である。REM含有量の好ましい上限は0.0060%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%である。
 なお、本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及び、ランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)からなる群から選択される1種以上の元素である。また、本明細書におけるREM含有量とは、これら元素の合計含有量である。
 [第4群]
 上述の鋼材の化学組成はさらに、Feの一部に代えて、Ni及びCuからなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、鋼の焼入れ性を高める。
 Ni:0~0.50%
 ニッケル(Ni)は任意元素であり、含有されなくてもよい。すなわち、Ni含有量は0%であってもよい。含有される場合、つまり、Ni含有量が0%超である場合、Niは鋼材の焼入れ性を高め、鋼材の強度を高める。Niが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Ni含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、局部的な腐食を促進させ、鋼材の耐食性が低下する。したがって、Ni含有量は0~0.50%である。Ni含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%である。Ni含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%であり、さらに好ましくは0.10%であり、さらに好ましくは0.08%であり、さらに好ましくは0.06%である。
 Cu:0~0.50%
 銅(Cu)は任意元素であり、含有されなくてもよい。すなわち、Cu含有量は0%であってもよい。含有される場合、つまり、Cu含有量が0%超である場合、Cuは鋼材の焼入れ性を高め、鋼材の強度を高める。Cuが少しでも含有されれば、上記効果がある程度得られる。しかしながら、Cu含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の焼入れ性が高くなりすぎ、鋼材の低温靱性が低下する。したがって、Cu含有量は0~0.50%である。Cu含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%である。Cu含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%であり、さらに好ましくは0.10%であり、さらに好ましくは0.08%であり、さらに好ましくは0.06%である。
 [旧オーステナイト粒の結晶粒度番号について]
 本実施形態による鋼材のミクロ組織において、旧オーステナイト粒の結晶粒度番号は7.0未満である。
 上述のとおり、本実施形態の鋼材では、焼入れ性向上による強化機構を主たる強化機構に採用する。鋼材の焼入れ性は、粗粒である方が高まる。化学組成中の各元素含有量が本実施形態の範囲内である鋼材において、旧オーステナイト粒の結晶粒度番号が7.0以上である場合、十分な焼入れ性が得られない。この場合、鋼材の強度が不足し、鋼材の降伏強度が896MPa(130ksi)未満になる。
 旧オーステナイト粒の結晶粒度番号が7.0未満であれば、化学組成中の各元素含有量が本実施形態の範囲内であり、式(1)~式(4)を満たすことを前提として、鋼材の焼入れ性が十分に高くなる。そのため、鋼材の強度が十分に高まり、具体的には、鋼材の降伏強度が896MPa(130ksi)以上になる。
 旧オーステナイト粒の結晶粒度番号の下限は限定されない。工業生産を考慮すれば、旧オーステナイト粒の結晶粒度番号の下限は例えば、2.0であり、例えば、2.5であり、例えば、3.0であり、例えば、3.5であり、例えば、4.0である。
 本実施形態の鋼材の旧オーステナイト粒の結晶粒度番号は、次の方法で求めることができる。鋼材の長手方向(圧延方向)と垂直な断面が被検面となるように、鋼材から試験片を採取する。鋼材が鋼板である場合、板厚中央部から試験片を採取する。鋼材が鋼管である場合、肉厚中央部から試験片を採取する。採取した試験片を樹脂に埋め込み、被検面を鏡面研磨する。鏡面研磨後の被検面に対して、ピクリン酸飽和水溶液で腐食するBechet-Beaujard法により、旧オーステナイト粒界を現出させる。旧オーステナイト粒界を現出させた被検面を用いて、ASTM E112-13に準拠して、旧オーステナイト粒の結晶粒度番号を測定する。
 [パラメータ式について]
 本実施形態の鋼材の化学組成は、各元素が上述の本実施形態の範囲内であることを前提として、さらに、次の式(1)~式(4)を満たす。
 {C+Mn/5+(Cu+Ni)/15+(Cr+Mo+V)/5+10×B}×(7.0/GN)0.45≧0.678 (1)
 {Mn/5.5+10×Ti+1.2×V+15×Nb+200×B}×(7.0/GN)0.45≦0.240 (2)
 10×Ti+V+10×Nb≧0.015 (3)
 (10×Ti+1.2×V+30×Nb)/Mo≦0.205 (4)
 ここで、各元素記号には、対応する元素の含有量が質量%で代入され、「GN」には旧オーステナイト粒の結晶粒度番号が代入される。
 以下、式(1)~式(4)の各々について説明する。
 [式(1)について]
 F1={C+Mn/5+(Cu+Ni)/15+(Cr+Mo+V)/5+10×B}×(7.0/GN)0.45と定義する。F1は、鋼材の焼入れ性の指標である。焼入れ性向上元素と、旧オーステナイト粒のサイズとは、焼入れ性に相乗的に影響する。F1中のC、Mn、Cu、Ni、Cr、Mo、V及びBはいずれも、焼入れ性向上元素である。さらに、F1中の(7.0/GN)0.45の項は、焼入れ性への旧オーステナイト粒サイズの寄与度を示す。
 F1が0.678未満であれば、化学組成中の各元素含有量が本実施形態の範囲内であり、かつ、式(2)~式(4)を満たしても、鋼材の焼入れ性が不足している。この場合、鋼材の降伏強度を十分に高くすることができない。鋼材の化学組成中の各元素含有量が本実施形態の範囲内であり、かつ、F1が0.678以上であれば、化学組成が後述の式(2)~式(4)を満たすことを前提として、鋼材の強度を十分に高めることができる。具体的には、鋼材の降伏強度を896MPa(130ksi)以上にすることができる。
 F1の好ましい下限は0.680であり、さらに好ましくは0.685であり、さらに好ましくは0.690であり、さらに好ましくは0.695である。F1の上限は特に限定されない。F1の上限は例えば、2.445である。なお、F1値は、小数第4位を四捨五入して得られた値である。
 [式(2)について]
 F2={Mn/5.5+10×Ti+1.2×V+15×Nb+200×B}×(7.0/GN)0.45と定義する。F2は、鋼材の低温靱性の指標である。Mn、Ti、V、Nb及びBは、介在物・析出物形成元素である。化学組成中の各元素含有量が本実施形態の範囲内である場合、これらの介在物・析出物形成元素は、介在物(Mn介在物、Ti介在物、B介在物)又は析出物(Ti析出物、V析出物、Nb析出物)を形成しやすい。具体的には、Mn、及び、Bは介在物を形成しやすい。V及びNbは析出物を形成しやすい。Tiは介在物及び析出物を形成しやすい。化学組成中の各元素含有量が本実施形態の範囲内である鋼材の降伏強度を896MPa(130ksi)以上にする場合、これらの介在物及び析出物は共に、鋼材の低温靱性を顕著に低下させる。
 さらに、旧オーステナイト粒のサイズも鋼材の低温靱性に影響を与える。具体的には、旧オーステナイト粒が粗大であれば、介在物及び析出物を起点として発生したき裂が進展しやすい。一方、旧オーステナイト粒が微細であれば、き裂の進展を抑制できる。したがって、介在物及び析出物と、旧オーステナイト粒のサイズとは、低温靱性に相乗的に影響する。
 F2が0.240を超えれば、化学組成中の各元素含有量が本実施形態の範囲内であり、式(1)、式(3)及び式(4)を満たしても、鋼材において、Mn、Ti、V、Nb及びBを含む介在物及び/又は析出物が過剰に多く生成する。又は、介在物及び/又は析出物の生成量に対して、旧オーステナイト粒が大きすぎる。そのため、鋼材の降伏強度を896MPa(130ksi)以上にした場合に、鋼材の低温靱性が低下する。
 F2が0.240以下であれば、鋼材において、Mn、Ti、V、Nb及びBを含む介在物及び/又は析出物の生成を十分に抑制できており、かつ、介在物及び析出物の生成量に対して、旧オーステナイト粒のサイズも適切である。そのため、化学組成中の各元素含有量が本実施形態の範囲内であって、かつ、式(1)、式(3)及び式(4)を満たすことを前提として、鋼材の降伏強度を896MPa(130ksi)以上にしても、優れた低温靱性が得られる。
 F2の好ましい上限は0.235であり、さらに好ましくは0.230であり、さらに好ましくは0.225であり、さらに好ましくは0.220であり、さらに好ましくは0.215であり、さらに好ましくは0.210であり、さらに好ましくは0.200である。F2の下限は特に限定されない。F2の下限は例えば、0.019である。なお、F2値は、小数第4位を四捨五入して得られた値である。
 [式(3)について]
 F3=10×Ti+V+10×Nbと定義する。F3は、化学組成中の各元素含有量が本実施形態の範囲内である鋼材において、強化機構として補助的に採用する析出強化の指標である。本実施形態の鋼材では、上述のとおり、焼入れ性向上による強化機構を鋼材の主たる強化機構に採用する。具体的には、化学組成中の各元素含有量が本実施形態の範囲内とし、かつ、式(1)を満たすことにより鋼材の焼入れ性を高めて、鋼材の強度を高める。しかしながら、化学組成中の各元素含有量が本実施形態の範囲内である鋼材では、焼入れ性向上による強化機構だけでは、896MPa(130ksi)以上の高い降伏強度を安定して得られない場合がある。
 そこで、本実施形態では、焼入れ性向上による強化機構を主たる強化機構として採用しつつ、Ti、V及びNbによる析出強化機構も補助的な強化機構として採用する。具体的には、Ti、V及びNbで構成されるF3が0.015未満であれば、化学組成中の各元素含有量が本実施形態の範囲内であり、式(1)、式(2)及び式(4)を満たしても、鋼材の強度が不足する。この場合、鋼材の降伏強度が896MPa(130ksi)未満になる。
 F3が0.015以上であれば、Ti、V及びNbによる析出強化を補助的に活用できる。そのため、化学組成中の各元素含有量が本実施形態の範囲内であり、式(1)、式(2)及び式(4)を満たすことを前提として、鋼材の降伏強度が十分に高まる。具体的には、鋼材の降伏強度が896MPa(130ksi)以上となる。
 F3の好ましい下限は0.020であり、さらに好ましくは0.025であり、さらに好ましくは0.030であり、さらに好ましくは0.035であり、さらに好ましくは0.040であり、さらに好ましくは0.045である。F3の上限は特に限定されない。化学組成の各元素含有量が本実施形態の範囲内であれば、F3の上限値は例えば、0.300である。F3の好ましい上限は0.290であり、さらに好ましくは0.260であり、さらに好ましくは0.240、さらに好ましくは0.220である。なお、F3値は小数第4位を四捨五入して得られた値である。
 [式(4)について]
 F4=(10×Ti+1.2×V+30×Nb)/Moと定義する。F4は、Moの低温靭性向上の寄与度合いを示す指標である。
 上述のとおり、本実施形態の鋼材では、焼入れ性向上により強化機構を鋼材の主たる強化機構に採用して鋼材の強度を高めつつ、介在物及び析出物をなるべく低減することにより鋼材の低温靱性を高める。しかしながら、焼入れ性向上による強化機構のみで鋼材の強度を高めるだけでは896MPa(130ksi)以上の高い降伏強度を安定して得られない場合がある。そこで、焼入れ性向上による強化機構とともに、Ti、V及びNbの析出物による析出強化機構を補助的に採用する。
 しかしながら、Ti、V及びNbの析出物が増加すれば、化学組成中の各元素含有量が本実施形態の範囲内である鋼材の低温靱性が低下してしまう。一方で、Moは焼入れ性向上により鋼材の強度を高めるだけでなく、鋼材を固溶強化する。Moによる固溶強化は、Ti、V及びNb析出物による低温靭性の低下を抑制することができる。そこで、本実施形態では、Ti、V及びNb含有量に対するMo含有量の割合を高める。F4が0.205を超えれば、Ti、V及びNbの含有量に対するMo含有量の割合が低い。この場合、化学組成中の各元素含有量が本実施形態の範囲内であり、式(1)~(3)を満たすことにより、鋼材の降伏強度が十分に高くなり、鋼材の降伏強度が896MPa(130ksi)以上となるものの、十分な低温靱性が得られない。
 F4が0.205以下であれば、Ti、V及びNbの含有量に対するMo含有量の割合が高い。この場合、化学組成中の各元素含有量が本実施形態の範囲内であり、式(1)~式(3)を満たすことを前提として、鋼材の降伏強度を十分に高めて鋼材の降伏強度を896MPa(130ksi)以上としつつ、優れた低温靱性も得られる。
 F4の好ましい上限は0.202であり、さらに好ましくは0.200であり、さらに好ましくは0.198であり、さらに好ましくは0.195であり、さらに好ましくは0.190であり、さらに好ましくは0.185であり、さらに好ましくは0.180であり、さらに好ましくは0.175である。F4の下限は特に限定されない。化学組成の各元素含有量が本実施形態の範囲内であれば、F4の下限は例えば0.005である。F4のさらに好ましい下限は0.010であり、さらに好ましくは0.012である。なお、F4値は小数第4位を四捨五入して得られた値である。
 [鋼材の降伏強度について]
 以上の構成を有する本実施形態の鋼材は、化学組成中の各元素含有量が本実施形態の範囲内であって、旧オーステナイト粒の結晶粒度番号が7.0未満であり、かつ、化学組成中の各元素含有量が本実施形態の範囲内であることを前提として式(1)~式(4)を満たすことにより、高い降伏強度を有する。具体的には、本実施形態の鋼材は、896MPa(130ksi)以上の降伏強度を有する。本明細書でいう降伏強度は、引張試験で得られた0.65%全伸び時の応力(0.65%耐力)を意味する。
 降伏強度の好ましい下限は900MPaであり、さらに好ましくは910MPaであり、さらに好ましくは920MPaである。降伏強度の上限は特に限定されない。降伏強度の上限は例えば、1103MPa(160ksi)であり、例えば、1090MPaであり、例えば、1069MPa(155ksi)である。
 本実施形態の鋼材の降伏強度は次の方法で求めることができる。ASTM E8/E8M(2013)に準拠した方法で、引張試験を行う。具体的には、鋼材から、丸棒試験片を採取する。鋼材が鋼板である場合、板厚中央部から丸棒試験片を採取する。鋼材が鋼管である場合、肉厚中央部から丸棒試験片を採取する。例えば、丸棒試験片の平行部の直径は6.35mmであり、平行部の長さは25.4mmである。なお、丸棒試験片の軸方向は、鋼材の長手方向(圧延方向)と平行である。丸棒試験片を用いて、常温(25℃)、大気中にて引張試験を実施して、得られた0.65%全伸び時の応力(0.65%耐力)を降伏強度(MPa)と定義する。
 [鋼材の低温靱性について]
 本実施形態による鋼材は、化学組成中の各元素含有量が本実施形態の範囲内であって、旧オーステナイト粒の結晶粒度番号が7.0未満であり、かつ、化学組成中の各元素含有量が本実施形態の範囲内であることを前提として式(1)~式(4)を満たすことにより、上述の高い降伏強度と、優れた低温靱性とを両立できる。具体的には、本実施形態による鋼材では、-10℃における吸収エネルギーが95J以上である。より具体的には、ASTM E23(2018)に準拠した、-10℃における吸収エネルギーが95J以上である。
 -10℃における吸収エネルギーの好ましい下限は96Jであり、さらに好ましくは98Jであり、さらに好ましくは100Jである。-10℃における吸収エネルギーの上限は特に限定されない。吸収エネルギーの上限は例えば200Jであり、例えば、180Jであり、例えば160Jである。
 -10℃における吸収エネルギーは次の方法で求めることができる。本実施形態の鋼材に対して、ASTM E23(2018)に準拠したシャルピー衝撃試験を実施して、低温靭性を評価する。具体的には、鋼材からVノッチ試験片を採取する。鋼材が鋼板である場合、板厚中央部からVノッチ試験片を採取する。鋼材が鋼管である場合、肉厚中央部からVノッチ試験片を採取する。Vノッチ試験片は、API仕様書5CT(第10版)に準拠して作製する。Vノッチ試験片を用いて、ASTM E23(2018)に準拠して、-10℃において3本/セットでシャルピー衝撃試験を実施して吸収エネルギーを測定する。サブサイズの試験片を用いて測定した場合、得られた吸収エネルギーをAPI仕様書5CT(第10版)に記載された低減率(Reduction factor)で除して、フルサイズの試験片での吸収エネルギーに換算する。3本のVノッチ試験片の吸収エネルギーの算術平均値を、-10℃における吸収エネルギーE(J)と定義する。なお、-10℃における吸収エネルギーE(J)は、得られた数値の小数第1位を四捨五入する。
 [ミクロ組織]
 本実施形態による鋼材のミクロ組織は、主としてマルテンサイト及び/又はベイナイトからなる。より具体的には、ミクロ組織において、マルテンサイト及びベイナイトの総面積率は90%以上である。ミクロ組織の残部は例えば、フェライト及び/又はパーライトからなる。ミクロ組織の残部はフェライト及び/又はパーライト以外に、残留オーステナイトが含まれる場合があるが、マルテンサイト、ベイナイト、フェライト及びパーライトの面積と比較して、残留オーステナイトの面積は無視できるほど小さい。上述の化学組成を有する鋼材のミクロ組織において、マルテンサイト及びベイナイトの総面積率が90%以上であれば、本実施形態の他の規定を満たすことを条件に、鋼材の降伏強度が896MPa以上(130ksi以上)となる。すなわち、本実施形態では、化学組成中の各元素含有量が上述の範囲内であって、旧オーステナイト粒の結晶粒度番号が7.0未満であり、式(1)~式(4)を満たし、かつ、鋼材の降伏強度が896MPa以上であれば、ミクロ組織において、マルテンサイト及びベイナイトの総面積率が90%以上であると判断できる。
 マルテンサイト及びベイナイトの総面積率を観察により求める場合、以下の方法で求めることができる。鋼材が鋼板である場合、板厚中央部から圧延方向及び板厚方向を含む観察面を有する試験片を作製する。鋼材が鋼管である場合、肉厚中央部から管軸方向及び肉厚(管径)方向を含む観察面を有する試験片を作製する。
 試験片の観察面を鏡面に研磨した後、ナイタール腐食液に10秒浸漬して、エッチングによる組織現出を行う。エッチングした観察面を、走査電子顕微鏡(SEM:Scanning Electron Microscope)を用いて、二次電子像にて10視野観察する。視野面積は、例えば、0.01mm(倍率1000倍)である。各視野において、コントラストに基づいて、マルテンサイト及びベイナイトを特定する。マルテンサイト及びベイナイトと、他の相(フェライト、パーライト)とは、当業者であれば、コントラストにより容易に区別できる。なお、本実施形態では、マルテンサイト及びベイナイトの総面積率を求めるため、マルテンサイトとベイナイトとを区別する必要はない。
 特定したマルテンサイト及びベイナイトの総面積率(%)を求める。本実施形態では、全ての視野で求めた、マルテンサイト及びベイナイトの総面積率(%)の算術平均値を、マルテンサイト及びベイナイトの総面積率(%)と定義する。
 [Mn硫化物の好ましい個数密度]
 本実施形態において、Mn硫化物は次のとおり定義される。エネルギー分散型X線分析法(Energy Dispersive X-ray Spectrometry:以下、「EDS」ともいう)による元素濃度分析において、検出されたすべての元素(ただしCを除く)で定量した場合に、質量%でMn含有量が20%以上検出され、かつ、S含有量が10%以上検出される介在物を、「Mn硫化物」と定義する。本実施形態ではさらに、円相当径が5.0μm以上のMn硫化物を「粗大Mn硫化物」と定義する。
 本実施形態の鋼材において、化学組成中の各元素含有量が本実施形態の範囲内であり、旧オーステナイト粒の結晶粒度番号が7.0未満であり、式(1)~式(4)を満たすことを前提として、粗大Mn硫化物の好ましい個数密度は10個/100mm以下である。この場合、鋼材の降伏強度を896MPa以上としつつ、-10℃での吸収エネルギーを100J以上とすることができる。
 粗大Mn硫化物の個数密度は、次の方法で求めることができる。具体的には、鋼材が鋼板である場合、板厚中央部から試験片を作製する。鋼材が鋼管である場合、肉厚中央部から試験片を作製する。鋼材が鋼板である場合、作製した試験片のうち、圧延方向及び板厚方向を含む面が観察面となるように、試験片を樹脂埋めする。鋼材が鋼管である場合、作製した試験片のうち、管軸方向及び肉厚(管径)方向を含む面が観察面となるように、試験片を樹脂埋めする。樹脂埋めされた試験片の観察面を研磨する。研磨後の観察面のうち、任意の10視野を観察する。各視野の面積は、例えば、100mmとする。
 各視野において、円相当径が5.0μm以上のMn硫化物の個数を求める。具体的には、まず各視野における介在物をコントラストから特定する。特定した各介在物について、元素濃度分析(EDS分析)を実施する。検出されたすべての元素(ただしCを除く)で定量した場合に、質量%でMn含有量が20%以上検出され、かつ、S含有量が10%以上検出される介在物を、「Mn硫化物」と特定する。
 10視野で特定されたMn硫化物のうち、円相当径が5.0μm以上のMn硫化物(粗大Mn硫化物)の総個数を求める。粗大Mn硫化物の総個数と、10視野の総面積とに基づいて、粗大Mn硫化物の個数密度(個/100mm)を求める。本実施形態では、粗大Mn硫化物の個数密度(個/100mm)を求めるときに、得られた数値の小数第1位を四捨五入する。なお、粗大Mn硫化物の個数密度の測定は、走査電子顕微鏡に組成分析機能を付与された装置(SEM-EDS装置)を用いて行うことができる。
 粗大Mn硫化物の個数密度の好ましい上限は9個/100mmであり、さらに好ましくは8個/100mmである。
 [鋼材の形状]
 本実施形態による鋼材の形状は特に限定されない。鋼材は例えば鋼管、鋼板である。鋼材は例えば、油井用鋼管である。油井用鋼管は例えば、油井又はガス井の掘削、原油又は天然ガスの採取等に用いられるケーシング、チュービング、ドリルパイプ等である。
 油井用鋼管は、溶接鋼管であってもよいし、継目無鋼管であってもよい。好ましくは、本実施形態の鋼材は、油井用継目無鋼管である。油井用継目無鋼管は、油井用鋼管が継目無鋼管であることを意味する。
 [製造方法]
 本実施形態による鋼材の製造方法を説明する。以下の説明では、本実施形態による鋼材の一例として、鋼管の製造方法を説明する。しかしながら、本実施形態による鋼材の製造方法は、以下に説明する製造方法に限定されない。つまり、他の製造方法であっても、上述の構成を有する鋼材を製造できれば、製造方法は特に限定されない。
 本実施形態による鋼材の製造方法の一例は、素材を準備する工程(素材準備工程)と、準備した素材を加熱する工程(加熱工程)と、加熱された素材に対して熱間加工を実施する工程(熱間加工工程)と、熱間加工後の鋼材に対して焼入れ及び焼戻しを実施する工程(熱処理工程)とを含む。以下、各工程について詳述する。
 [素材準備工程]
 素材準備工程では、化学組成中の各元素含有量が本実施形態の範囲内であり、鋼材になったときに式(1)~式(4)を満たす溶鋼を周知の製鋼方法により製造する。製造された溶鋼を用いて、連続鋳造法により鋳片を製造する。ここで、鋳片とは、スラブ、ブルーム、又はビレットである。鋳片に代えて、上記溶鋼を用いて造塊法によりインゴットを製造してもよい。必要に応じて、スラブ、ブルーム又はインゴットを熱間加工して、ビレットを製造してもよい。以上の製造工程により、素材(スラブ、ブルーム、又は、ビレット)を製造する。
 [加熱工程]
 加熱工程では、素材準備工程で準備した素材を、連続式の加熱炉に装入して加熱する。加熱炉は、ロータリーハース型の加熱炉であってもよいし、ウォーキングビーム型の加熱炉であってもよい。以降の説明では、連続式加熱炉の一例として、ロータリーハース型の加熱炉を用いて説明する。
 図1は、連続式の加熱炉の一例である、ロータリーハース型の加熱炉の模式図(平面図)である。図1を参照して、加熱炉10は、装入口11と、抽出口12とを有する炉本体13を備える。加熱炉10には、加熱の対象となる素材であるビレットB1が装入口11から装入される。図1において、ビレットB1は、加熱炉10内を移動しながら加熱される。図1では、装入口11から装入されたビレットB1が時計回りに移動する。移動しながら加熱されたビレットB1が抽出口12まで到達すると、ビレットB1が抽出口12から外部に抽出される。
 炉本体13は、装入口11から抽出口12に向かって順に、予熱帯Z1、加熱帯Z2、及び、均熱帯Z3に区分される。予熱帯Z1は、装入口11を有する区間(ゾーン)であり、3つの区間(予熱帯Z1、加熱帯Z2、及び均熱帯Z3)のうち、最も炉内温度が低い。加熱帯Z2は、予熱帯Z1と均熱帯Z3との間に配置されている区間である。均熱帯Z3は、加熱帯Z2に続く区間であり、後端に抽出口12を有する。加熱帯Z2及び均熱帯Z3はほぼ同じ温度に保持されている。具体的には、均熱帯Z3の温度の方が加熱帯Z2の温度よりも若干高いものの、均熱帯Z3と加熱帯Z2との温度差は20℃以下である。各区間にはそれぞれ1又は複数のバーナーが設けられている。各区間では、バーナーにより、温度が調整されている。
 本実施形態では、予熱帯Z1、加熱帯Z2及び均熱帯Z3の温度及び滞在時間を、次のとおりとする。
 [予熱帯Z1]
 予熱帯Z1では、予熱帯Z1での炉内温度T1を820~1300℃であって、加熱帯Z2及び均熱帯Z3での炉内温度T2よりも低い温度とする。さらに、予熱帯Z1での素材の滞在時間t1を45分以上とする。滞在時間t1は、素材が装入口11から予熱帯Z1に進入してから素材が加熱帯Z2に排出されるまでの時間(分)を意味する。予熱帯Z1は主として、常温の素材の温度を高める役割を担う。好ましくは、予熱帯Z1での滞在時間t1を50分以上とし、さらに好ましくは55分以上とする。滞在時間t1の上限は特に限定されない。しかしながら、生産性を考慮すれば、滞在時間t1の好ましい上限は300分である。
 [加熱帯Z2及び均熱帯Z3]
 加熱帯Z2及び均熱帯Z3では、加熱帯Z2及び均熱帯Z3での炉内温度T2を1100~1380℃であって、予熱帯Z1での炉内温度よりも高い温度とする。ここで、炉内温度T2は、加熱帯Z2の炉内温度と均熱帯Z3の炉内温度との算術平均値とする。さらに、加熱帯Z2及び均熱帯Z3での総滞在時間t2(分)を50分以上とし、さらに好ましくは55分以上とする。ここで、総滞在時間t2は、素材が加熱帯Z2に進入してから、抽出口12から外部に排出されるまでの時間(分)を意味する。総滞在時間t2の上限は特に限定されない。しかしながら、生産性を考慮すれば、総滞在時間t2の好ましい上限は600分である。
 [加熱帯Z2及び均熱帯Z3での好ましい条件]
 好ましくは、加熱帯Z2及び均熱帯Z3の炉内温度T2及び総滞在時間t2は次の式(A)を満たす。
 1420≦(t2/60)0.5×(T2+273) (A)
 ここで、式(A)中の「t2」には素材の総滞在時間t2(分)が代入され、「T2」には炉内温度T2(℃)が代入される。
 FA=(t2/60)0.5×(T2+273)と定義する。FAが1420以上であれば、素材中のMnが素材全体に十分に拡散する。この場合、素材中のMn硫化物の一部が溶解する。さらに、粗大なMn硫化物の形成が抑制される。その結果、円相当径が5μm以上のMn硫化物の個数密度が10個/100mm以下となる。
 FAの好ましい下限は1500であり、さらに好ましくは1550であり、さらに好ましくは1600であり、さらに好ましくは1650であり、さらに好ましくは1700である。FAの上限は特に限定されない。しかしながら、設備負荷及び製造原単位を考慮すれば、FAの好ましい上限は4500であり、さらに好ましくは4400であり、さらに好ましくは4300であり、さらに好ましくは4200である。
 なお、予熱帯Z1、加熱帯Z2及び均熱帯Z3での総在炉時間の好ましい下限は95分であり、さらに好ましくは120分であり、さらに好ましくは140分であり、さらに好ましくは150分であり、さらに好ましくは160分である。総在炉時間の好ましい上限は900分であり、さらに好ましくは800分であり、さらに好ましくは750分である。
 なお、図1では、炉本体13内で予熱帯Z1、加熱帯Z2及び均熱帯Z3が均等に区分されている。しかしながら、予熱帯Z1、加熱帯Z2及び均熱帯Z3は均等に区分されていなくてもよい。
 [熱間加工工程]
 熱間加工工程では、加熱工程により上記条件で加熱された素材を熱間加工する。最終製品が鋼管である場合、加熱された素材に対して熱間加工を実施して、中間鋼材(素管)を製造する。例えば、熱間加工としてマンネスマン-マンドレル方式による熱間圧延を実施し、素管を製造する。この場合、穿孔機によりビレットを穿孔圧延する。穿孔圧延する場合、穿孔比は特に限定されないが、例えば、1.0~4.0である。穿孔圧延後のビレットに対して、マンドレルミルを用いた延伸圧延を実施する。さらに、必要に応じて、延伸圧延後のビレットに対して、レデューサ又はサイジングミルを用いた定径圧延を実施する。以上の工程により、素管を製造する。
 熱間加工として熱間押出を実施してもよい。例えば、ユジーン・セジュルネ法、又は、エルハルトプッシュベンチ法を実施して、素管を製造してもよい。
 [好ましい加工時間]
 好ましくは、本実施形態による熱間加工工程では、加工時間は15分以下である。ここで、加工時間(分)とは、素材が加熱炉から抽出されてから、最終の熱間加工が終了するまでの時間を意味する。加工時間を15分以下とすれば、上述の式(A)を満たすことを前提として、熱間加工中にMn硫化物が粗大に成長したり、Mn硫化物が新たに生成したりするのを抑制できる。その結果、円相当径が5μm以上のMn硫化物の個数密度が10個/100mm以下となる。
 加工時間のさらに好ましい上限は14分であり、さらに好ましくは13分である。加工時間の下限は特に限定されないが、例えば、5分である。
 [熱処理工程]
 熱処理工程では、熱間加工後の中間鋼材(素管)に対して焼入れ工程及び焼戻し工程を実施する。
 [焼入れ工程]
 焼入れ工程は、「インライン焼入れ」又は「オフライン焼入れ」を実施する。ここで、熱間加工により製造された中間鋼材(素管)を、常温まで冷却せずに、熱間加工後に直接焼入れを実施したり、熱間加工後であって常温まで冷却される前の中間鋼材(素管)を補熱(再加熱)した後、焼入れを実施する処理を「インライン焼入れ」と称する。インライン焼入れの場合、製造ライン上で熱間加工後に速やかに焼入れを実施できる。一方、熱間加工後の中間鋼材(素管)を常温まで冷却した後、熱処理炉を用いて焼入れする処理を「オフライン焼入れ」と称する。以下、インライン焼入れ、及びオフライン焼入れについて説明する。
 [インライン焼入れ]
 インライン焼入れでの焼入れ温度は800~1100℃である。本明細書において「焼入れ温度」とは、熱間加工後に直接焼入れを実施する場合、最終の熱間加工を実施する装置の出側に設置した温度計で測定された中間鋼材の表面温度に相当する。熱間加工後に補熱炉又は熱処理炉を用いて焼入れを実施する場合、「焼入れ温度」は、補熱炉又は熱処理炉の温度に相当する。
 インライン焼入れでは、上述のとおり、熱間加工後に800~1100℃の中間鋼材を急冷することによって実施されてもよい。また、熱間加工後の中間鋼材であって、常温まで冷却される前の中間鋼材(温度が400℃以上の中間鋼材)を、製造ライン上に設置された補熱炉又は熱処理炉を用いて800~1100℃まで加熱してから急冷してもよい。インライン焼入れでの焼入れ温度の好ましい上限は1050℃であり、さらに好ましくは1000℃であり、さらに好ましくは980℃である。インライン焼入れでの焼入れ温度の好ましい下限は850℃であり、さらに好ましくは900℃である。
 熱間加工後に補熱炉又は熱処理炉を用いてインライン焼入れを実施する場合、焼入れ温度での保持時間は例えば、5~45分である。
 焼入れ方法は例えば、焼入れ温度から素管を急冷する。急冷方法は周知の方法でよい。急冷方法は例えば、素管を水槽に浸漬して冷却する方法や、素管をシャワー水冷又はミスト冷却により冷却する方法である。
 [オフライン焼入れ]
 オフライン焼入れでの焼入れ温度は930~1100℃である。さらに、焼入れ温度での保持時間は10~125分である。
 オフラインで焼入れを実施する場合、逆変態により結晶粒が微細化する。そのため、焼入れ温度が低すぎれば、化学組成の各元素含有量が本実施形態の範囲内であっても、旧オーステナイト粒の結晶粒度番号が7.0以上となる場合がある。焼入れ温度が930~1100℃であり、かつ、焼入れ温度での保持時間が10~125分であれば、焼入れ時にオーステナイト粒を粗大にすることができる。その結果、後述の保持時間を満たすことを前提として、旧オーステナイト粒の結晶粒度番号を7.0未満にすることができる。オフライン焼入れでの焼入れ温度の好ましい下限は940℃であり、さらに好ましくは950℃である。オフライン焼入れでの焼入れ温度の好ましい上限は1050℃である。
 [焼戻し工程]
 焼戻し工程では、焼入れ工程後の中間鋼材に対して、焼戻しを実施する。本実施形態では、焼戻し工程時に鋼材中に析出強化に寄与する析出物を生成する。これにより、焼入れ性向上による強化機構とともに、析出強化機構を補助的に採用して、鋼材の強度を十分に高める。具体的には、鋼材の降伏強度を896MPa(130ksi)以上にする。さらに、適切な焼戻し条件とすることにより、鋼材中の歪みを低減して、低温靱性を高める。-10℃における吸収エネルギーE(J)を95J以上にする。
 具体的には、焼戻し工程では、次式で定義される焼戻しパラメータTMPを17000~17950の範囲内とする。
 TMP=(焼戻し温度(℃)+273)×(20+log(保持時間(分)/60))
 焼戻しパラメータTMPが17000未満である場合、焼戻しの効果が十分に得られず、焼入れ工程で鋼材中に導入された歪みが十分に除去されない。この場合、化学組成中の各元素含有量が本実施形態の範囲内であり、旧オーステナイト粒の結晶粒度番号が7.0未満であり、式(1)~式(4)を満たしても、-10℃における吸収エネルギーE(J)が95J未満になる。一方、焼戻しパラメータTMPが17950を超えれば、十分な強度が得られなくなる。その結果、化学組成中の各元素含有量が本実施形態の範囲内であり、旧オーステナイト粒の結晶粒度番号が7.0未満であり、式(1)~式(4)を満たしても、降伏強度が896MPa(130ksi)未満となる。
 焼戻しパラメータTMPが17000~17950であれば、析出強化に寄与する析出物を適切に生成しつつ、焼入れで導入された過剰な歪みを適切に除去できる。その結果、化学組成中の各元素含有量が本実施形態の範囲内であり、旧オーステナイト粒の結晶粒度番号が7.0未満であり、式(1)~式(4)を満たすことを前提として、十分に高い強度が得られ、かつ、優れた低温靭性が得られる。具体的には、鋼材の降伏強度が896MPa(130ksi)以上となり、-10℃における吸収エネルギーE(J)が95J以上となる。
 焼戻し工程における焼戻し温度は600~720℃である。さらに、焼戻し温度での保持時間は10~90分である。つまり、焼戻し工程では、焼戻し温度を600~720℃とし、焼戻し温度での保持時間を10~90分として、さらに、焼戻しパラメータTMPを17000~17950とする。
 焼戻し温度の好ましい下限は605℃であり、さらに好ましくは610℃である。焼戻し温度の好ましい上限は700℃であり、さらに好ましくは680℃であり、さらに好ましくは660℃である。焼戻しパラメータTMPの好ましい下限は17050であり、さらに好ましくは17100であり、さらに好ましくは17130である。焼戻しパラメータTMPの好ましい上限は17940であり、さらに好ましくは17920であり、さらに好ましくは17910である。
 以上の製造工程により、本実施形態による鋼材を製造することができる。なお、上述の製造方法では、一例として鋼管の製造方法を説明した。しかしながら、本実施形態による鋼材は、鋼板であってもよい。鋼板の製造方法の一例も、上述の製造方法と同様に、例えば、素材準備工程と、加熱工程と、熱間加工工程と、熱処理工程とを備える。なお、他の製造方法であっても、上述の構成を有する鋼材を製造できれば、製造方法は特に限定されない。
 実施例により本実施形態の鋼材の効果をさらに具体的に説明する。以下の実施例での条件は、本実施形態の鋼材の実施可能性及び効果を確認するために採用した一条件例である。したがって、本実施形態の鋼材はこの一条件例に限定されない。
 表1に示す化学組成を有する、溶鋼を製造した。なお、表1中の空白は、対応する元素が含有されていなかったことを意味する。例えば、試験番号1の場合、V含有量は、小数第3位で四捨五入した結果、「0」%であったことを意味する。また、Nb含有量は、小数第4位で四捨五入した結果、「0」%であったことを意味する。他の元素含有量も同様である。
Figure JPOXMLDOC01-appb-T000001
 上記溶鋼を用いて、連続鋳造法によってビレットを製造した。製造した各試験番号のビレットをロータリーハース型の連続式の加熱炉で加熱した。予熱帯Z1での炉内温度T1、滞在時間t1、加熱帯Z2及び均熱帯Z3での炉内温度T2、総滞在時間t2、FA値、及び、加熱炉の在炉時間(ビレットが予熱帯Z1の装入口11に装入されてから均熱帯Z3の抽出口12から排出されるまでの時間)は、表2中の「温度T1(℃)」、「滞在時間t1(分)」、「温度T2(℃)」、「総滞在時間t2(分)」、「FA」、及び、「加熱炉在炉時間(分)」欄に示すとおりであった。さらに、各試験番号での加工時間は、表2中の「加工時間(分)」欄に示すとおりであった。具体的には、「加工時間(分)」欄の「≦15」は、加工時間が15分以下であったことを示す。「>15」は加工時間が15分を超えたことを示す。
Figure JPOXMLDOC01-appb-T000002
 加熱後のビレットに対して、マンネスマン-マンドレル方式による熱間圧延(熱間加工)を実施して、各試験番号の素管(継目無鋼管)を製造した。
 製造された各試験番号の素管に対して、インライン、又はオフラインで焼入れを実施した。インライン焼入れの場合(表2中の「焼入れ種類」欄で「インライン」と表記)、熱間加工後の素管を常温まで冷却することなく、熱間加工後であって400℃以上の素管を補熱炉に装入した。そして、表2の「焼入れ」欄の「温度(℃)」欄に記載の焼入れ温度(℃)で、「時間(分)」欄に記載の保持時間(分)保持し、その後、水冷した。一方、オフライン焼入れの場合(表2中の「焼入れ種類」欄で「オフライン」と表記)、熱間加工後の素管を常温まで冷却した。冷却後、熱処理炉に装入した。そして、表2の「焼入れ」欄の「温度(℃)」欄に記載の焼入れ温度(℃)で、「時間(分)」欄に記載の保持時間(分)保持し、その後、水冷した。
 焼入れ後、各試験番号の素管について、焼戻しを実施した。具体的には、各試験番号の素管について、表2の「焼戻し」欄の「温度(℃)」に記載の焼戻し温度(℃)で、「時間(分)」欄に記載の焼戻し時間(分)だけ保持する焼戻しを実施した。なお、焼戻しパラメータTMP(=(焼戻し温度(℃)+273)×(20+log(焼戻し時間(分)/60)))を表2の「TMP」欄に示す。
 なお、本実施例では、焼入れの加熱に用いた補熱炉及び熱処理炉の温度を焼入れ温度(℃)とした。さらに、焼戻しに用いた熱処理炉の温度を焼戻し温度(℃)とした。
 以上の製造工程により、鋼材である継目無鋼管を製造した。
 [評価試験]
 各試験番号の鋼材(継目無鋼管)に対して、次の評価試験を実施した。
 [ミクロ組織観察試験]
 各試験番号の鋼材(継目無鋼管)のミクロ組織を次の方法で観察し、マルテンサイト及びベイナイトの総面積率(%)を求めた。鋼材の肉厚中央部から管軸方向及び肉厚(管径)方向を含む観察面を有する試験片を作製した。試験片の観察面を鏡面に研磨した後、ナイタール腐食液に10秒浸漬して、エッチングによる組織現出を行った。エッチングした観察面を、SEMを用いて、二次電子像にて10視野観察した。視野面積は0.01mm(倍率1000倍)とした。各視野において、コントラストからマルテンサイト及びベイナイトを特定し、特定したマルテンサイト及びベイナイトの総面積率(%)を求めた。10視野で求めたマルテンサイト及びベイナイトの総面積率(%)の算術平均値を、マルテンサイト及びベイナイトの総面積率(%)と定義した。測定の結果、いずれの試験番号においても、マルテンサイト及びベイナイトの総面積率は90%以上であった。
 [旧オーステナイト粒の結晶粒度番号決定試験]
 各試験番号の鋼材(継目無鋼管)の旧オーステナイト粒の結晶粒度番号を、次の方法で求めた。鋼材の長手方向(圧延方向)と垂直な断面が被検面となるように、鋼材(継目無鋼管)の肉厚中央部から試験片を採取した。採取した試験片を樹脂に埋め込み、被検面を鏡面研磨した。鏡面研磨後の被検面に対して、ピクリン酸飽和水溶液で腐食するBechet-Beaujard法により、旧オーステナイト粒界を現出させた。ASTM E112-13に準拠して、旧オーステナイト粒の結晶粒度番号を測定した。得られた結晶粒度番号を表2中の「旧γ粒度番号」欄に示す。なお、表2の「旧γ粒度番号」欄の右隣の「F1」~「F4」欄に、各試験番号のF1~F4値を示す。
 [Mn硫化物の個数密度測定試験]
 各試験番号の鋼材のMn硫化物の個数密度(個/100mm)を次の方法で求めた。鋼材(継目無鋼管)の肉厚中央部から試験片を作製した。作製した試験片のうち、管軸方向及び肉厚(管径)方向を含む面が観察面となるように、試験片を樹脂埋めした。樹脂埋めされた試験片の観察面を研磨した。研磨後の観察面のうち、任意の10視野を観察した。各視野の面積は、100mmとした。上述の方法により、視野中のMn硫化物を特定した。10視野で特定したMn硫化物のうち、円相当径が5.0μm以上のMn硫化物(粗大Mn硫化物)の総個数を求めた。求めた粗大Mn硫化物の総個数と、10視野の総面積とに基づいて、粗大Mn硫化物の個数密度(個/100mm)を求めた。得られた粗大Mn硫化物の個数密度を、表2の「粗大Mn硫化物個数密度(個/100mm)」欄に示す。
 [降伏強度測定試験]
 各試験番号の鋼材の降伏強度を、次の方法で求めた。ASTM E8/E8M(2013)に準拠した方法で、引張試験を行った。各試験番号の鋼材(継目無鋼管)の肉厚中央部から丸棒試験片を採取した。丸棒試験片の大きさは、平行部直径が6.35mmであり、平行部長さが25.4mmであった。丸棒試験片の軸方向は、鋼材(継目無鋼管)の長手方向(圧延方向)と平行であった。丸棒試験片を用いて、常温(25℃)、大気中にて引張試験を実施して、得られた0.65%全伸び時の応力を降伏強度(MPa)と定義した。得られた降伏強度(MPa)を表2の「YS(MPa)」欄に示し、降伏強度(ksi)を表2の「YS(ksi)」欄に示す。
 [低温靱性評価試験]
 各試験番号の鋼材の-10℃における吸収エネルギーを次の方法で求めた。各試験番号の鋼材に対して、ASTM E23(2018)に準拠したシャルピー衝撃試験を実施した。具体的には、各試験番号の鋼材(継目無鋼管)の肉厚中央部から、API仕様書5CT(第10版)に準拠して、フルサイズのVノッチ試験片を採取した。Vノッチ試験片の長さ方向は、鋼材(継目無鋼管)の長手方向(圧延方向)に対して垂直とした。Vノッチ試験片は、ASTM E23(2018)に準拠して作製した。Vノッチ試験片を用いて、ASTM E23(2018)に準拠して、-10℃において3本/セットでシャルピー衝撃試験を実施して吸収エネルギーを測定した。3本の試験片の吸収エネルギーの算術平均値を、-10℃における吸収エネルギー(J)と定義した。得られた吸収エネルギーを表2の「吸収エネルギー(J)」欄に示す。
 [評価結果]
 表1及び表2を参照して、試験番号1~25の化学組成中の各元素含有量は適切であった。さらに、旧オーステナイト粒の結晶粒度番号が7.0未満であった。さらに、F1~F4が式(1)~式(4)を満たした。その結果、十分に高い強度及び優れた低温靭性が得られた。具体的には、降伏強度は896MPa(130ksi)以上であり、かつ、-10℃における吸収エネルギーは95J以上であった。
 さらに、試験番号1~23では、加熱工程において、加熱帯Z2及び均熱帯Z3でのFAが1420以上であり、さらに、加工時間は15分以下であった。一方、試験番号24では、FAが1420未満であった。試験番号25では加工時間が15分を超えた。そのため、試験番号1~23では、Mn硫化物の個数密度が10個/100mm以下であり、Mn硫化物の個数密度が試験番号24及び25よりも少なかった。その結果、試験番号1~23の-10℃における吸収エネルギーは100J以上であり、試験番号24及び25よりもさらに高かった。
 一方、試験番号26及び27では、F1が式(1)を満たさなかった。そのため、強度が低かった。具体的には、降伏強度が896MPa(130ksi)未満であった。
 試験番号28及び29では、F2が式(2)を満たさなかった。そのため、低温靭性が低かった。具体的には、-10℃における吸収エネルギーが95J未満であった。
 試験番号30では、Tiを含有しなかった。そのため、強度が低かった。具体的には、降伏強度が896MPa(130ksi)未満であった。
 試験番号31では、F3が式(3)を満たさなかった。そのため、強度が低かった。具体的には、降伏強度が896MPa(130ksi)未満であった。
 試験番号32及び33では、F4が式(4)を満たさなかった。そのため、低温靭性が低かった。具体的には、-10℃における吸収エネルギーが95J未満であった。
 試験番号34では、Mn含有量が高すぎた。そのため、低温靭性が低かった。具体的には、-10℃における吸収エネルギーが95J未満であった。
 試験番号35~37では、Mn含有量が高すぎた。さらに、V含有量が高すぎた。そのため、低温靭性が低かった。具体的には、-10℃における吸収エネルギーが95J未満であった。
 試験番号38及び41では、F2が式(2)を満たさず、F4が式(4)を満たさなかった。そのため、低温靭性が低かった。具体的には、-10℃における吸収エネルギーが95J未満であった。
 試験番号39では、Ti含有量が高すぎた。そのため、低温靭性が低かった。具体的には、-10℃における吸収エネルギーが95J未満であった。
 試験番号40では、B含有量が高すぎた。そのため、低温靭性が低かった。具体的には、-10℃における吸収エネルギーが95J未満であった。
 試験番号42及び43では、焼戻しパラメータTMPが低すぎた。そのため、低温靭性が低かった。具体的には、-10℃における吸収エネルギーは95J未満であった。
 試験番号44では、焼戻しパラメータTMPが高すぎた。そのため、強度が低かった。具体的には、降伏強度が896MPa(130ksi)未満であった。
 試験番号45及び46では、オフラインで焼入れを実施したものの、焼入れ温度が930℃未満であった。そのため、旧オーステナイト粒の結晶粒度番号が7.0以上であり、F1が式(1)を満たさなかった。そのため、強度が低かった。具体的には、降伏強度が896MPa(130ksi)未満であった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。

Claims (4)

  1.  質量%で、
     C:0.15~0.45%、
     Si:0.05~1.00%、
     Mn:0.05~0.80%未満、
     P:0.030%以下、
     S:0.0100%以下、
     Al:0.100%以下、
     Cr:0.30~1.50%、
     Mo:0.25~2.00%、
     Ti:0.001~0.015%、
     N:0.0100%以下、
     O:0.0050%以下、
     V:0~0.05%、
     Nb:0~0.010%、
     B:0~0.0005%未満、
     Ca:0~0.0100%、
     Mg:0~0.0100%、
     希土類元素:0~0.0100%、
     Ni:0~0.50%、
     Cu:0~0.50%、及び、
     残部がFe及び不純物からなり、
     旧オーステナイト粒の結晶粒度番号が7.0未満であり、
     各元素含有量が上述の範囲内であることを前提として、式(1)~式(4)を満たし、
     降伏強度が896MPa以上であり、
     -10℃における吸収エネルギーが95J以上である、
     鋼材。
     {C+Mn/5+(Cu+Ni)/15+(Cr+Mo+V)/5+10×B}×(7.0/GN)0.45≧0.678 (1)
     {Mn/5.5+10×Ti+1.2×V+15×Nb+200×B}×(7.0/GN)0.45≦0.240 (2)
     10×Ti+V+10×Nb≧0.015 (3)
     (10×Ti+1.2×V+30×Nb)/Mo≦0.205 (4)
     ここで、各元素記号には、対応する元素の含有量が質量%で代入され、「GN」には前記結晶粒度番号が代入される。
  2.  請求項1に記載の鋼材であって、
     円相当径が5.0μm以上のMn硫化物の個数密度が10個/100mm以下であり、
     -10℃における吸収エネルギーが100J以上である、
     鋼材。
  3.  請求項1又は請求項2に記載の鋼材であって、
     V:0.01~0.05%、
     Nb:0.001~0.010%、
     B:0.0001~0.0005%未満、
     Ca:0.0001~0.0100%、
     Mg:0.0001~0.0100%、
     希土類元素:0.0001~0.0100%、
     Ni:0.01~0.50%、及び、
     Cu:0.01~0.50%、からなる群から選択される1種以上を含有する、
     鋼材。
  4.  請求項1~請求項3のいずれか1項に記載の鋼材であって、
     前記鋼材は油井用鋼管である、
     鋼材。
PCT/JP2021/015628 2020-04-15 2021-04-15 鋼材 WO2021210655A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21788859.3A EP4137598A4 (en) 2020-04-15 2021-04-15 STEEL MATERIAL
CN202180042238.9A CN115917026A (zh) 2020-04-15 2021-04-15 钢材
US17/995,368 US20230203631A1 (en) 2020-04-15 2021-04-15 Steel material
MX2022012813A MX2022012813A (es) 2020-04-15 2021-04-15 Material de acero.
JP2022515439A JP7445173B2 (ja) 2020-04-15 2021-04-15 鋼材
BR112022020096A BR112022020096A2 (pt) 2020-04-15 2021-04-15 Material de aço

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020073017 2020-04-15
JP2020-073017 2020-04-15

Publications (1)

Publication Number Publication Date
WO2021210655A1 true WO2021210655A1 (ja) 2021-10-21

Family

ID=78083631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015628 WO2021210655A1 (ja) 2020-04-15 2021-04-15 鋼材

Country Status (7)

Country Link
US (1) US20230203631A1 (ja)
EP (1) EP4137598A4 (ja)
JP (1) JP7445173B2 (ja)
CN (1) CN115917026A (ja)
BR (1) BR112022020096A2 (ja)
MX (1) MX2022012813A (ja)
WO (1) WO2021210655A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224116A (ja) * 1982-06-21 1983-12-26 Kawasaki Steel Corp 耐硫化物応力腐食割れ性にすぐれた継目無鋼管の製造方法
JP2000017389A (ja) * 1998-06-29 2000-01-18 Sumitomo Metal Ind Ltd 靭性に優れたCr−Mo系低合金鋼継目無鋼管およびその継目無鋼管用Cr−Mo系低合金鋼
JP2003041341A (ja) * 2001-08-02 2003-02-13 Sumitomo Metal Ind Ltd 高靱性を有する鋼材およびそれを用いた鋼管の製造方法
JP2006037147A (ja) * 2004-07-26 2006-02-09 Sumitomo Metal Ind Ltd 油井管用鋼材
JP2017002369A (ja) 2015-06-12 2017-01-05 新日鐵住金株式会社 継目無鋼管及びその製造方法
JP2018168425A (ja) * 2017-03-30 2018-11-01 新日鐵住金株式会社 低合金油井用継目無鋼管

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2371982B1 (en) * 2008-11-26 2018-10-31 Nippon Steel & Sumitomo Metal Corporation Seamless steel pipe and method for manufacturing same
JP5594329B2 (ja) * 2012-07-23 2014-09-24 Jfeスチール株式会社 低温靱性に優れたNi含有厚鋼板
JP6330758B2 (ja) * 2015-08-19 2018-05-30 Jfeスチール株式会社 成形性に優れた温間成形用薄鋼板およびその温間成形方法
US11066718B2 (en) * 2016-01-13 2021-07-20 Nippon Steel Corporation Method of manufacturing stainless pipe for oil wells and stainless steel pipe for oil wells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224116A (ja) * 1982-06-21 1983-12-26 Kawasaki Steel Corp 耐硫化物応力腐食割れ性にすぐれた継目無鋼管の製造方法
JP2000017389A (ja) * 1998-06-29 2000-01-18 Sumitomo Metal Ind Ltd 靭性に優れたCr−Mo系低合金鋼継目無鋼管およびその継目無鋼管用Cr−Mo系低合金鋼
JP2003041341A (ja) * 2001-08-02 2003-02-13 Sumitomo Metal Ind Ltd 高靱性を有する鋼材およびそれを用いた鋼管の製造方法
JP2006037147A (ja) * 2004-07-26 2006-02-09 Sumitomo Metal Ind Ltd 油井管用鋼材
JP2017002369A (ja) 2015-06-12 2017-01-05 新日鐵住金株式会社 継目無鋼管及びその製造方法
JP2018168425A (ja) * 2017-03-30 2018-11-01 新日鐵住金株式会社 低合金油井用継目無鋼管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4137598A4

Also Published As

Publication number Publication date
MX2022012813A (es) 2022-11-14
JPWO2021210655A1 (ja) 2021-10-21
EP4137598A1 (en) 2023-02-22
BR112022020096A2 (pt) 2022-11-29
US20230203631A1 (en) 2023-06-29
CN115917026A (zh) 2023-04-04
EP4137598A4 (en) 2023-09-13
JP7445173B2 (ja) 2024-03-07

Similar Documents

Publication Publication Date Title
JP5971435B1 (ja) 油井用高強度継目無鋼管およびその製造方法
JP6677310B2 (ja) 鋼材及び油井用鋼管
JP6369547B2 (ja) 低合金油井用鋼管
JP6160785B2 (ja) 油井管用低合金鋼及び低合金鋼油井管の製造方法
AU2017338464A1 (en) Steel material, oil-well steel pipe, and method for producing steel material
WO2014068794A1 (ja) 耐硫化物応力割れ性に優れた低合金油井管用鋼及び低合金油井管用鋼の製造方法
JP7173405B2 (ja) マルテンサイト系ステンレス鋼材
WO2016035316A1 (ja) 厚肉油井用鋼管及びその製造方法
WO2016059763A1 (ja) 低合金油井用鋼管
JPWO2015190377A1 (ja) 低合金油井用鋼管
JP5971436B1 (ja) 油井用高強度継目無鋼管およびその製造方法
WO2021210564A1 (ja) マルテンサイト系ステンレス鋼材、及び、マルテンサイト系ステンレス鋼材の製造方法
JP2019112679A (ja) 鋼材、油井用鋼管、及び、鋼材の製造方法
JP2019112680A (ja) 鋼材、油井用鋼管、及び、鋼材の製造方法
JP7173404B2 (ja) マルテンサイト系ステンレス鋼材
JP6394809B2 (ja) ラインパイプ用鋼管及びその製造方法
WO2017122405A1 (ja) 油井用ステンレス鋼管の製造方法及び油井用ステンレス鋼管
WO2021039431A1 (ja) サワー環境での使用に適した鋼材
JP7239086B1 (ja) マルテンサイト系ステンレス鋼管
WO2021210655A1 (ja) 鋼材
JP7428952B1 (ja) マルテンサイト系ステンレス鋼材
JP2019112681A (ja) 鋼材、油井用鋼管、及び、鋼材の製造方法
JP7488503B1 (ja) マルテンサイト系ステンレス鋼材
JP7364993B1 (ja) 鋼材
WO2023204294A1 (ja) 鋼材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515439

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022020096

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021788859

Country of ref document: EP

Effective date: 20221115

ENP Entry into the national phase

Ref document number: 112022020096

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221004