JP2019112679A - 鋼材、油井用鋼管、及び、鋼材の製造方法 - Google Patents
鋼材、油井用鋼管、及び、鋼材の製造方法 Download PDFInfo
- Publication number
- JP2019112679A JP2019112679A JP2017247554A JP2017247554A JP2019112679A JP 2019112679 A JP2019112679 A JP 2019112679A JP 2017247554 A JP2017247554 A JP 2017247554A JP 2017247554 A JP2017247554 A JP 2017247554A JP 2019112679 A JP2019112679 A JP 2019112679A
- Authority
- JP
- Japan
- Prior art keywords
- steel material
- steel
- content
- ssc resistance
- tempering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
図1は、固溶C量と、−40℃における吸収エネルギーと、耐SSC性との関係を示す図である。図1は次の方法で得られた。後で詳述する実施例のうち、固溶C量以外の条件が本実施形態の範囲を満たす鋼材について、得られた固溶C量(質量%)と、−40℃における吸収エネルギーE(−40℃)(J)と、後述する方法で決定した耐SSC性の評価結果とを用いて、図1を作成した。
<Mo>c=(<Fe>a+<Cr>a+<Mn>a)×<Mo>b/(<Fe>b+<Cr>b+<Mn>b) (1)
<Mo>d=<Mo>a−<Mo>c (2)
<C>a=(<Fe>a/55.85+<Cr>a/52+<Mn>a/53.94+<Mo>c/95.9)/3×12 (3)
<C>b=(<V>a/50.94+<Mo>d/95.9+<Nb>a/92.9)×12 (4)
(固溶C量)=<C>−(<C>a+<C>b) (5)
なお、本明細書において、セメンタイトとは、Fe含有量が50質量%以上の炭化物を意味する。
本実施形態による鋼材の化学組成は、次の元素を含有する。
炭素(C)は、焼入れ性を高め、鋼材の強度を高める。C含有量が0.15%以上であれば、他の元素含有量が本実施形態の範囲内であることを条件として、降伏強度を1069MPa超にすることができる。Cはさらに、製造工程中の焼戻し時において、炭化物の球状化を促進し、鋼材の耐SSC性を高める。炭化物が分散されればさらに、鋼材の強度が高まる。C含有量が低すぎれば、これらの効果が得られない。一方、C含有量が高すぎれば、鋼材の靭性が低下し、焼割れが発生しやすくなる。したがって、C含有量は0.15〜0.50%である。C含有量の好ましい下限は0.20%である。C含有量の好ましい上限は0.48%であり、より好ましくは0.45%であり、さらに好ましくは0.40%である。
シリコン(Si)は、鋼を脱酸する。Si含有量が低すぎれば、この効果が得られない。一方、Si含有量が高すぎれば、鋼材の耐SSC性が低下する。したがって、Si含有量は0.05〜1.00%である。Si含有量の好ましい下限は0.15%であり、より好ましくは0.20%である。Si含有量の好ましい上限は0.85%である。
マンガン(Mn)は、鋼を脱酸する。Mnはさらに、鋼材の焼入れ性を高める。Mn含有量が低すぎれば、これらの効果が得られない。一方、Mnは、P及びS等の不純物を旧γ粒界に偏析しやすくする。そのため、Mn含有量が高すぎる場合、鋼材の低温靭性が低下する。この場合さらに、鋼材の耐SSC性が低下する。したがって、Mn含有量は0.05〜1.00%である。Mn含有量の好ましい下限は0.25%であり、より好ましくは0.30%である。Mn含有量の好ましい上限は0.90%であり、より好ましくは0.80%である。
燐(P)は不純物である。すなわち、P含有量は0%超である。Pは、粒界に偏析して鋼材の低温靭性及び耐SSC性を低下する。したがって、P含有量は、0.025%以下である。P含有量の好ましい上限は0.020%であり、より好ましくは0.015%である。ただし、P含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、P含有量の好ましい下限は0.003%であり、より好ましくは0.005%超である。
硫黄(S)は不純物である。すなわち、S含有量は0%超である。Sは、粒界に偏析して鋼材の低温靭性及び耐SSC性を低下する。したがって、S含有量は0.0100%以下である。S含有量の好ましい上限は0.0050%であり、より好ましくは0.0030%である。S含有量はなるべく低い方が好ましい。ただし、S含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は、たとえば、0.0003%である。
アルミニウム(Al)は、鋼を脱酸する。Al含有量が低すぎれば、この効果が得られず、鋼材の耐SSC性が低下する。一方、Al含有量が高すぎれば、粗大な酸化物系介在物が生成して鋼材の耐SSC性が低下する。したがって、Al含有量は0.005〜0.100%である。Al含有量の好ましい下限は0.015%であり、より好ましくは0.020%である。Al含有量の好ましい上限は0.080%であり、より好ましくは0.060%である。本明細書にいう「Al」含有量は「酸可溶Al」、つまり、「sol.Al」の含有量を意味する。
クロム(Cr)は、鋼材の焼入れ性を高め、鋼材の強度を高める。Crはさらに、焼戻し軟化抵抗を高め、高温焼戻しを可能にする。その結果、鋼材の耐SSC性が高まる。Cr含有量が低すぎれば、これらの効果が得られない。一方、Cr含有量が高すぎれば、鋼材の低温靭性及び耐SSC性が低下する。したがって、Cr含有量は0.20〜1.50%である。Cr含有量の好ましい下限は0.25%であり、より好ましくは0.35%であり、さらに好ましくは0.40%である。Cr含有量の好ましい上限は1.30%である。
モリブデン(Mo)は、鋼材の焼入れ性を高める。Moはさらに、微細な炭化物を生成し、鋼材の焼戻し軟化抵抗を高める。その結果、Moは、高温焼戻しにより鋼材の耐SSC性を高める。Moはさらに、Pの粒界への偏析を抑制する。その結果、Moは鋼材の低温靭性及び耐SSC性を高める。Mo含有量が低すぎれば、これらの効果が得られない。一方、Mo含有量が高すぎれば、上記効果が飽和する。したがって、Mo含有量は0.25〜1.50%である。Mo含有量の好ましい下限は0.50%であり、より好ましくは0.60%である。Mo含有量の好ましい上限は1.30%であり、より好ましくは1.25%であり、さらに好ましくは1.10%である。
チタン(Ti)は窒化物を形成し、ピンニング効果により、鋼材の結晶粒を微細化する。これにより、鋼材の強度が高まる。Ti含有量が低すぎれば、この効果が得られない。一方、Ti含有量が高すぎれば、Ti窒化物が粗大化して鋼材の耐SSC性が低下する。したがって、Ti含有量は0.002〜0.050%である。Ti含有量の好ましい下限は0.003%であり、より好ましくは0.005%である。Ti含有量の好ましい上限は0.030%であり、より好ましくは0.020%である。
ボロン(B)は鋼材に固溶して、鋼材の焼入れ性を高め、鋼材の強度を高める。B含有量が低すぎれば、この効果が得られない。一方、B含有量が高すぎれば、粗大な窒化物が生成して、鋼材の耐SSC性が低下する。したがって、B含有量は0.0001〜0.0050%である。B含有量の好ましい下限は0.0003%であり、より好ましくは0.0007%である。B含有量の好ましい上限は0.0035%であり、より好ましくは0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0015%である。
窒素(N)は不可避に含有される。すなわち、N含有量は0%超である。Nは粗大な窒化物を形成して、鋼材の低温靭性及び耐SSC性を低下する。したがって、N含有量は0.0100%以下である。N含有量の好ましい上限は0.0050%であり、より好ましくは0.0045%である。N含有量はなるべく低い方が好ましい。ただし、若干量のTiを含有させて、微細窒化物の析出による結晶粒の微細化をさせる場合、Nを0.0020%以上含有させてもよい。
酸素(O)は不純物である。すなわち、O含有量は0%超である。Oは粗大な酸化物を形成し、鋼材の低温靭性及び耐食性を低下する。したがって、O含有量は0.0100%以下である。O含有量の好ましい上限は0.0050%であり、より好ましくは0.0030%であり、さらに好ましくは0.0020%である。O含有量はなるべく低い方が好ましい。ただし、O含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、O含有量の好ましい下限は、たとえば、0.0003%である。
上述の鋼材の化学組成はさらに、Feの一部に代えて、V及びNbからなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、鋼材の耐SSC性を高める。
バナジウム(V)は任意元素であり、含有されなくてもよい。すなわち、V含有量は0%であってもよい。Vが含有される場合、VはC又はNと結合して炭化物、窒化物又は炭窒化物等(以下、「炭窒化物等」という)を形成する。これらの炭窒化物等は、ピンニング効果により鋼材のサブ組織を微細化し、鋼材の耐SSC性を高める。Vはさらに、焼戻し時に微細な炭化物を形成する。微細な炭化物は鋼材の焼戻し軟化抵抗を高め、鋼材の強度を高める。Vはさらに、球状のMC型炭化物となるため、針状のM2C型炭化物の生成を抑制して、鋼材の耐SSC性を高める。Vが少しでも含有されれば、これらの効果がある程度得られる。しかしながら、V含有量が高すぎれば、鋼材の低温靭性が低下する。V含有量が高すぎればさらに、鋼材の耐SSC性が低下する場合がある。したがって、V含有量は0〜0.60%である。V含有量の好ましい下限は0%超であり、より好ましくは0.01%であり、さらに好ましくは0.02%である。V含有量の好ましい上限は0.40%であり、より好ましくは0.20%であり、さらに好ましくは0.10%であり、さらに好ましくは0.05%未満である。
ニオブ(Nb)は任意元素であり、含有されなくてもよい。すなわち、Nb含有量は0%であってもよい。Nbが含有される場合、Nbは炭窒化物等を形成する。これらの炭窒化物等はピンニング効果により鋼材のサブ組織を微細化し、鋼材の耐SSC性を高める。Nbはさらに、球状のMC型炭化物となるため、針状のM2C型炭化物の生成を抑制して、鋼材の耐SSC性を高める。Nbが少しでも含有されれば、これらの効果がある程度得られる。しかしながら、Nb含有量が高すぎれば、炭窒化物等が過剰に生成して、鋼材の低温靭性及び耐SSC性が低下する。したがって、Nb含有量は0〜0.030%である。Nb含有量の好ましい下限は0%超であり、より好ましくは0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.007%である。Nb含有量の好ましい上限は0.025%であり、より好ましくは0.020%である。
カルシウム(Ca)は任意元素であり、含有されなくてもよい。すなわち、Ca含有量は0%であってもよい。Caが含有される場合、Caは鋼材中の硫化物を微細化し、鋼材の耐SSC性を高める。Caが少しでも含有されれば、この効果がある程度得られる。しかしながら、Ca含有量が高すぎれば、鋼材中の酸化物が粗大化して、鋼材の低温靭性及び耐SSC性が低下する。したがって、Ca含有量は0〜0.0100%である。Ca含有量の好ましい下限は0%超であり、より好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%である。Ca含有量の好ましい上限は0.0040%であり、より好ましくは0.0025%である。
マグネシウム(Mg)は任意元素であり、含有されなくてもよい。すなわち、Mg含有量は0%であってもよい。Mgが含有される場合、Mgは鋼材中のSを硫化物として無害化し、鋼材の耐SSC性を高める。Mgが少しでも含有されれば、この効果がある程度得られる。しかしながら、Mg含有量が高すぎれば、鋼材中の酸化物が粗大化して、鋼材の低温靭性及び耐SSC性が低下する。したがって、Mg含有量は0〜0.0100%である。Mg含有量の好ましい下限は0%超であり、より好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%であり、さらに好ましくは0.0010%である。Mg含有量の好ましい上限は0.0040%であり、より好ましくは0.0025%であり、さらに好ましくは0.0020%である。
ジルコニウム(Zr)は任意元素であり、含有されなくてもよい。すなわち、Zr含有量は0%であってもよい。Zrが含有される場合、Zrは鋼材中の硫化物を微細化し、鋼材の耐SSC性を高める。Zrが少しでも含有されれば、この効果がある程度得られる。しかしながら、Zr含有量が高すぎれば、酸化物が粗大化して、鋼材の低温靭性及び耐SSC性が低下する。したがって、Zr含有量は0〜0.0100%である。Zr含有量の好ましい下限は0%超であり、より好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%である。Zr含有量の好ましい上限は0.0040%であり、より好ましくは0.0025%であり、さらに好ましくは0.0020%である。
コバルト(Co)は任意元素であり、含有されなくてもよい。すなわち、Co含有量は0%であってもよい。Coが含有される場合、Coは硫化水素環境中で保護性の腐食被膜を形成し、水素侵入を抑制する。これにより、鋼材の耐SSC性を高める。Coが少しでも含有されれば、この効果がある程度得られる。しかしながら、Co含有量が高すぎれば、鋼材の焼入れ性が低下して、鋼材の強度が低下する。したがって、Co含有量は0〜0.50%である。Co含有量の好ましい下限は0%超であり、より好ましくは0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。Co含有量の好ましい上限は0.45%であり、より好ましくは0.40%である。
タングステン(W)は任意元素であり、含有されなくてもよい。すなわち、W含有量は0%であってもよい。Wが含有される場合、Wは硫化水素環境中で保護性の腐食被膜を形成し、水素侵入を抑制する。これにより、鋼材の耐SSC性を高める。Wが少しでも含有されれば、この効果がある程度得られる。しかしながら、W含有量が高すぎれば、粗大な炭化物が生成して、鋼材の低温靭性及び耐SSC性が低下する。したがって、W含有量は0〜0.50%である。W含有量の好ましい下限は0%超であり、より好ましくは0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.05%である。W含有量の好ましい上限は0.45%であり、より好ましくは0.40%である。
ニッケル(Ni)は任意元素であり、含有されなくてもよい。すなわち、Ni含有量は0%であってもよい。Niが含有される場合、Niは鋼材の焼入れ性を高め、鋼材の強度を高める。Niはさらに、鋼材の低温靭性を高める。Niが少しでも含有されれば、これらの効果がある程度得られる。しかしながら、Ni含有量が高すぎれば、局部的な腐食を促進させ、鋼材の耐SSC性が低下する。したがって、Ni含有量は0〜0.10%である。Ni含有量の好ましい下限は0%超であり、より好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.05%である。Ni含有量の好ましい上限は0.09%であり、より好ましくは0.08%である。
銅(Cu)は任意元素であり、含有されなくてもよい。すなわち、Cu含有量は0%であってもよい。Cuが含有される場合、Cuは鋼材の焼入れ性を高め、鋼材の強度を高める。Cuが少しでも含有されれば、この効果がある程度得られる。しかしながら、Cu含有量が高すぎれば、鋼材の焼入れ性が高くなりすぎ、鋼材の耐SSC性が低下する。したがって、Cu含有量は0〜0.50%である。Cu含有量の好ましい下限は0%超であり、より好ましくは0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.05%である。Cu含有量の好ましい上限は0.35%であり、より好ましくは0.25%である。
希土類元素(REM)は任意元素であり、含有されなくてもよい。すなわち、REM含有量は0%であってもよい。REMが含有される場合、REMは鋼材中の硫化物を微細化し、鋼材の耐SSC性を高める。REMはさらに、鋼材中のPと結合して、結晶粒界におけるPの偏析を抑制する。そのため、Pの偏析に起因した、鋼材の低温靭性及び耐SSC性の低下が抑制される。REMが少しでも含有されれば、これらの効果がある程度得られる。しかしながら、REM含有量が高すぎれば、酸化物が粗大化して、鋼材の低温靭性及び耐SSC性が低下する。したがって、REM含有量は0〜0.0100%である。REM含有量の好ましい下限は0%超であり、より好ましくは0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%である。REM含有量の好ましい上限は0.0040%であり、より好ましくは0.0025%である。
本実施形態による鋼材は、固溶Cを0.010〜0.060質量%含有する。固溶C量が0.010質量%未満であれば、鋼材中に析出する炭化物が粗大になり、鋼材の低温靭性が低下する。固溶C量が0.010質量%未満であればさらに、転位の固定が十分でなく、鋼材の耐SSC性が低下する。一方、固溶C量が0.060質量%を超えれば、かえって鋼材の耐SSC性が低下する。固溶C量が0.060質量%を超えればさらに、鋼材の低温靭性が低下する場合がある。したがって、固溶C量は0.010〜0.060質量%である。固溶C量の好ましい下限は0.015質量%であり、より好ましくは0.020質量%である。固溶C量の好ましい上限は0.054質量%であり、より好ましくは0.050質量%である。
固溶C量は、鋼材中の炭化物中のC量(質量%)の、鋼材の化学組成のC含有量からの差分を意味する。鋼材中の炭化物中のC量は、鋼材に対して抽出残渣分析を実施して残渣として得られた炭化物(セメンタイト及びMC型炭化物)中のFe濃度<Fe>a、Cr濃度<Cr>a、Mn濃度<Mn>a、Mo濃度<Mo>a、V濃度<V>a、Nb濃度<Nb>aと、抽出レプリカ法により得られたレプリカ膜をTEM観察することにより特定されたセメンタイトに対してEDSによる点分析を実施して得られたセメンタイト中のFe濃度<Fe>b、Cr濃度<Cr>b、Mn濃度<Mn>b、Mo濃度<Mo>bとを用いて、式(1)〜式(5)により求める。
<Mo>c=(<Fe>a+<Cr>a+<Mn>a)×<Mo>b/(<Fe>b+<Cr>b+<Mn>b) (1)
<Mo>d=<Mo>a−<Mo>c (2)
<C>a=(<Fe>a/55.85+<Cr>a/52+<Mn>a/53.94+<Mo>c/95.9)/3×12 (3)
<C>b=(<V>a/50.94+<Mo>d/95.9+<Nb>a/92.9)×12 (4)
(固溶C量)=<C>−(<C>a+<C>b) (5)
なお、本明細書において、セメンタイトとは、Fe含有量が50質量%以上の炭化物を意味する。以下、固溶C量の算出方法を詳しく示す。
鋼材が板材である場合、板厚中央部から、鋼材が管材である場合、肉厚中央部から、切粉状の分析サンプルを採取する。酸素気流中燃焼−赤外線吸収法により、C含有量(質量%)を分析する。これを鋼材のC含有量(<C>)とする。
析出C量は、次の手順1〜手順4により算出する。具体的には、手順1で抽出残渣分析を実施する。手順2で透過電子顕微鏡(Transmission Electron Microscope:以下、「TEM」という)を用いた抽出レプリカ法、及び、エネルギー分散型X線分析法(Energy Dispersive X−ray Spectrometry:以下、「EDS」という)によりセメンタイト中の元素濃度分析(以下「EDS分析」という)を実施する。手順3でMo含有量を調整する。手順4で析出C量を算出する。
手順1では、鋼材中の炭化物を残渣として捕捉し、残渣中のFe、Cr、Mn、Mo、V、及び、Nb含有量を決定する。ここで、「炭化物」とは、セメンタイト(M3C型炭化物)及びMC型炭化物の総称である。具体的な手順は以下のとおりである。鋼材が板材である場合、板厚中央部から、6mm径で長さ50mmの円柱状試験片を採取する。鋼材が鋼管である場合、鋼管の肉厚中央部から、肉厚中心が横断面の中心になるように、6mm径で長さ50mmの円柱状試験片を採取する。採取した試験片表面を予備の電解研磨にて50μm程度研磨して新生面を得る。電解研磨した試験片を電解液10%アセチルアセトン+1%テトラアンモニウム+メタノールで電解する。電解後の電解液を0.2μmのフィルターを通して残渣を捕捉する。得られた残渣を酸分解し、ICP(誘導結合プラズマ)発光分析にてFe、Cr、Mn、Mo、V、Nb濃度を質量%単位で定量する。この濃度をそれぞれ<Fe>a、<Cr>a、<Mn>a、<Mo>a、<V>a、<Nb>aと定義する。
手順2では、セメンタイト中のFe、Cr、Mn、及び、Mo含有量を決定する。具体的な手順は以下のとおりである。鋼材が板材である場合板厚中央部から、鋼材が鋼管である場合肉厚中央部から、ミクロ試験片を切り出し、鏡面研磨にて表面を仕上げる。試験片を3%ナイタール腐食液に10分浸漬し、表面を腐食する。その表面をカーボン蒸着膜で覆う。蒸着膜で表面を覆った試験片を5%ナイタール腐食液に浸漬し、20分保持し、蒸着膜を剥離させる。剥離した蒸着膜をエタノールで洗浄した後、シートメッシュですくい取り、乾燥させる。この蒸着膜(レプリカ膜)を、TEMで観察し、20個のセメンタイトについてEDSによる点分析を行う。セメンタイト中の炭素を除く合金元素の合計を100%とした場合の、Fe、Cr、Mn、及びMo濃度を質量%単位で定量する。20個のセメンタイトについて濃度を定量し、それぞれの元素の算術平均値を<Fe>b、<Cr>b、<Mn>b、<Mo>bと定義する。
続いて、炭化物中のMo濃度を求める。ここで、Fe、Cr、Mn、及び、Moはセメンタイトに濃化する。一方、V、Nb、及び、MoはMC型炭化物に濃化する。すなわち、Moは、焼戻しによりセメンタイト及びMC型炭化物の両方に濃化する。したがって、Mo量については、セメンタイト及びMC型炭化物について個別に算出する。なお、Vはセメンタイトにもその一部が濃化する場合がある。しかしながら、Vのセメンタイトへの濃化量は、MC型炭化物への濃化量と比較して無視できるほど小さい。したがって、固溶C量を求める上で、VはMC型炭化物のみに濃化するとみなす。
<Mo>c=(<Fe>a+<Cr>a+<Mn>a)×<Mo>b/(<Fe>b+<Cr>b+<Mn>b) (1)
<Mo>d=<Mo>a−<Mo>c (2)
析出C量は、セメンタイトとして析出するC量(<C>a)とMC型炭化物として析出するC量(<C>b)の合計として、算出される。<C>a及び<C>bはそれぞれ、式(3)及び式(4)により、質量%単位で算出される。なお、式(3)は、セメンタイトの構造がM3C型(MはFe、Cr、Mn、Moを含む)であることから導かれた式である。
<C>a=(<Fe>a/55.85+<Cr>a/52+<Mn>a/53.94+<Mo>c/95.9)/3×12 (3)
<C>b=(<V>a/50.94+<Mo>d/95.9+<Nb>a/92.9)×12 (4)
固溶C量(以下、<C>cともいう)は、鋼材のC含有量(<C>)と、析出C量との差として、式(5)により質量%単位で算出する。
<C>c=<C>−(<C>a+<C>b) (5)
粒界偏析P量は、次の方法で算出できる。鋼材が板材である場合、板厚中央部から、鋼材が管材である場合、肉厚中央部から、試験片を採取する。試験片を液体窒素にて冷却し、真空中で破断する。結晶粒界で破断した面を10点特定し、オージェ電子分光分析を行い、P濃度を測定する。求めた10個のP濃度の平均値を、粒界偏析P量(mol.%)と定義する。
本実施形態による鋼材のミクロ組織は、主として焼戻しマルテンサイト及び焼戻しベイナイトからなる。より具体的には、ミクロ組織は体積率で90%以上の焼戻しマルテンサイト及び/又は焼戻しベイナイトからなる。すなわち、ミクロ組織は、焼戻しマルテンサイト及び焼戻しベイナイトの体積率の合計が90%以上である。ミクロ組織の残部はたとえば、残留オーステナイト等である。上述の化学組成を有する鋼材のミクロ組織が、焼戻しマルテンサイト及び焼戻しベイナイトの体積率の合計で90%以上を含有すれば、降伏強度が1069超〜1172MPa(155ksi級)、及び、降伏比が85%以上となる。好ましくは、降伏比は90%以上である。
本実施形態による鋼材は、旧オーステナイト結晶粒の結晶粒度番号が8.0以上である。旧γ粒の結晶粒度番号が8.0未満であれば、旧γ粒界にP等の不純物元素が偏析する。この場合、粒界偏析P量が3.0mol.%を超える。その結果、旧γ粒界が脆化し、鋼材の低温靭性が低下する。この場合さらに、鋼材の耐SSC性が低下する。したがって、本実施形態による鋼材は、旧γ粒の結晶粒度番号が8.0以上である。旧γ粒の結晶粒度番号の好ましい下限は8.5であり、より好ましくは9.0である。旧γ粒の結晶粒度番号の上限は特に定めないが、旧γ粒の結晶粒度番号の上限は、たとえば、16.0である。
本実施形態による鋼材の形状は特に限定されない。鋼材はたとえば鋼管、鋼板である。鋼材が油井用鋼管である場合、好ましい肉厚は9〜60mmである。本実施形態は特に、厚肉の油井用鋼管としての使用に適する。より具体的には、本実施形態による鋼材が15mm以上、さらに、20mm以上の厚肉の油井用鋼管であっても、優れた強度と、優れた低温靭性と、優れた耐SSC性とを示す。
本実施形態による鋼材の降伏強度YSは1069超〜1172MPa(155ksi級)であり、降伏比YRは85%以上である。本明細書でいう降伏強度YSは、引張試験で得られた0.2%伸び時の応力を意味する。要するに、本実施形態による鋼材の強度は155ksi級である。本実施形態による鋼材は、このような高強度であっても、上述の化学組成、固溶C量、及び、ミクロ組織を満たすことで、優れた低温靭性及び優れた耐SSC性を有する。
本実施形態による鋼材の低温靭性は、JIS Z 2242(2005)に準拠した方法で評価できる。試験片は、幅10mm、長さ55mmのVノッチ試験片を用いる。−40℃に冷却した試験片について、シャルピー衝撃試験を実施する。本実施形態による鋼材は、以上の条件で、−40℃における吸収エネルギーE(−40℃)が74.0J以上である。
本実施形態による鋼材の耐SSC性は、NACE TM0177−2005 Method Aに準拠した方法によって評価できる。試験浴は、0.003barのH2Sを封入した5%塩化ナトリウム+0.5%酢酸水溶液、及び、0.005barのH2Sを封入した5%塩化ナトリウム+0.5%酢酸水溶液とする。鋼材に対し、降伏応力の85%に相当する応力を負荷し、試験浴に浸漬する。本実施形態による鋼材は、以上の条件のいずれも、720時間以上破断しない。
本実施形態による鋼材の製造方法は、準備工程と、焼入れ工程と、焼戻し工程とを備える。準備工程は素材準備工程と、熱間加工工程とを含んでもよい。本実施形態では、鋼材の製造方法の一例として、油井用鋼管の製造方法を説明する。油井用鋼管の製造方法は、素管を準備する工程(準備工程)と、素管に対して焼入れ及び焼戻しを実施して、油井用鋼管とする工程(焼入れ工程及び焼戻し工程)とを備える。以下、各工程について詳述する。
準備工程は、上述の化学組成を有する中間鋼材を準備する。中間鋼材は、上記化学組成を有していれば、製造方法は特に限定されない。ここでいう中間鋼材は、最終製品が鋼板の場合は、板状の鋼材であり、最終製品が鋼管の場合は素管である。
素材準備工程では、上述の化学組成を有する溶鋼を用いて素材を製造する。具体的には、溶鋼を用いて連続鋳造法により鋳片(スラブ、ブルーム、又は、ビレット)を製造する。溶鋼を用いて造塊法によりインゴットを製造してもよい。必要に応じて、スラブ、ブルーム又はインゴットを分塊圧延して、ビレットを製造してもよい。以上の工程により素材(スラブ、ブルーム、又は、ビレット)を製造する。
熱間加工工程では、準備された素材を熱間加工して中間鋼材を製造する。鋼材が鋼管である場合、中間鋼材は素管に相当する。始めに、ビレットを加熱炉で加熱する。加熱温度は特に限定されないが、たとえば、1100〜1300℃である。加熱炉から抽出されたビレットに対して熱間加工を実施して、素管(継目無鋼管)を製造する。たとえば、熱間加工としてマンネスマン法を実施し、素管を製造する。この場合、穿孔機により丸ビレットを穿孔圧延する。穿孔圧延する場合、穿孔比は特に限定されないが、たとえば、1.0〜4.0である。穿孔圧延された丸ビレットをさらに、マンドレルミル、レデューサ、サイジングミル等により熱間圧延して素管にする。熱間加工工程での累積の減面率はたとえば、20〜70%である。
焼入れ工程は、準備された中間鋼材(素管)に対して、焼入れを実施する。本明細書において、「焼入れ」とは、A3点以上の中間鋼材を急冷することを意味する。好ましい焼入れ温度は800〜1000℃である。焼入れ温度とは、熱間加工後に直接焼入れを実施する場合、最終の熱間加工を実施する装置の出側に設置した測温計で測温された中間鋼材の表面温度に相当する。焼入れ温度とはさらに、熱間加工後に補熱した後、焼入れを実施する場合、補熱を実施する炉の温度に相当する。
焼戻し工程は、上述の焼入れ処理を実施した後、焼戻し処理を実施する。本明細書において、「焼戻し」とは、焼入れ後の中間鋼材を再加熱して、保持することを意味する。焼戻し温度は、鋼材の化学組成、及び得ようとする降伏強度YSに応じて適宜調整する。つまり、本実施形態の化学組成を有する中間鋼材(素管)に対して、焼戻し温度を調整して、鋼材の降伏強度YSを1069超〜1172MPa(155ksi級)に調整する。ここで、焼戻し温度とは、焼入れ後の中間鋼材を加熱して、保持する際の炉の温度に相当する。
焼戻し後の冷却は、従来は制御されていなかった。しかしながら、600℃から200℃の間は、Cの拡散が比較的早い温度域である。そのため、焼戻し後(つまり、上記焼戻し温度で上記保持時間保持した後)の鋼材の冷却速度が遅ければ、固溶していたCのほとんどが、温度低下中に再析出してくる。つまり固溶C量が、ほぼ0質量%になる。さらに、550℃から500℃の間は、Pの旧γ粒界への偏析が生じやすい温度域である。そのため、焼戻し後の冷却速度が遅ければさらに、旧γ粒界にP等の不純物元素が偏析する。つまり、粒界偏析P量が3.0mol.%を超える。そこで本実施形態においては、焼戻し後の中間鋼材(素管)を急冷する。
[YS及びTS試験]
引張試験はASTM E8に準拠して行った。上記の焼入れ及び焼戻し処理後の各試験番号の鋼板の板厚中央から、直径6.35mm、平行部長さ35mmの丸棒引張試験片を作製した。引張試験片の軸方向は、鋼板の圧延方向と平行であった。各丸棒試験片を用いて、常温(25℃)、大気中にて引張試験を実施して、各位置における降伏強度YS(MPa)及び引張強度TS(MPa)を得た。なお、本実施例では、引張試験で得られた0.2%伸び時の応力を、各試験番号のYSと定義した。また一様伸び中の最大応力をTSとした。このYSとTSの比(=YS/TS)を降伏比YR(%)とした。
各試験番号の鋼板のミクロ組織について、試験番号14を除き、YSが1069超〜1172MPa(155ksi級)、及び、YRが85%以上であったため、焼戻しマルテンサイト及び焼戻しベイナイトの体積率の合計は90%以上であると判断した。試験番号14では、フェライトが生成したものと考えられる。
各試験番号の鋼板について、上述の測定方法により、固溶C量(質量%)を測定及び算出した。なお、TEMは日本電子(株)製JEM−2010で、加速電圧は200kVとし、EDS点分析は照射電流2.56nA、各点で60秒の計測を行った。TEMによる観察領域は8μm×8μmとし、任意の10視野で観察した。固溶C量の計算において用いる、各元素の残渣量及びセメンタイト中の濃度は表3のとおりであった。
各試験番号の鋼板について、上述の測定方法により、粒界偏析P量(mol.%)を測定した。なお、オージェ電子分光分析装置はアルバック・ファイ(株)製PHI680を用いた。試験条件は、加速電圧は10kV、試料電流は10nAとした。
各鋼板を用いて、JIS Z 2242(2005)に準拠したシャルピー衝撃試験を実施し、低温靭性を評価した。具体的には、各鋼板の肉厚中央部から、幅10mm、長さ55mmのVノッチ試験片を5本ずつ採取した。試験片の長手方向は、板幅方向に平行であった。採取した試験片を−40℃に冷却し、JIS Z 2242(2005)に準拠したシャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。求めた吸収エネルギーの算術平均値を、吸収エネルギーE(−40℃)(J)と定義した。
各試験番号の鋼板を用いて、NACE TM0177−2005 Method Aに準拠した方法によって、耐SSC性を評価した。具体的には、各試験番号の鋼板の肉厚中央部から、径6.35mm、平行部の長さ25.4mmの丸棒試験片を3本採取した。試験片の長手方向は、圧延方向に平行であった。各試験片の軸方向に引張応力を負荷した。このとき、NACE TM0177−2005 Method Aに準拠して、各試験片に与えられる応力が、各鋼板の降伏応力(実測)の85%になるように、調整した。
表2に試験結果を示す。
Claims (9)
- 質量%で、
C:0.15〜0.50%、
Si:0.05〜1.00%、
Mn:0.05〜1.00%、
P:0.025%以下、
S:0.0100%以下、
Al:0.005〜0.100%、
Cr:0.20〜1.50%、
Mo:0.25〜1.50%、
Ti:0.002〜0.050%、
B:0.0001〜0.0050%、
N:0.0100%以下、
O:0.0100%以下、
V:0〜0.60%、
Nb:0〜0.030%、
Ca:0〜0.0100%、
Mg:0〜0.0100%、
Zr:0〜0.0100%、
Co:0〜0.50%、
W:0〜0.50%、
Ni:0〜0.10%、
Cu:0〜0.50%、及び、
希土類元素:0〜0.0100%を含有し、残部がFe及び不純物からなる化学組成を有し、
固溶Cを0.010〜0.060質量%含有し、
旧オーステナイト結晶粒の結晶粒度番号は8.0以上であり、
降伏強度が1069超〜1172MPaであり、降伏比が85%以上である、鋼材。 - 請求項1に記載の鋼材であって、
前記化学組成は、
V:0.01〜0.60%、及び、
Nb:0.002〜0.030%からなる群から選択される1種以上を含有する、鋼材。 - 請求項1又は請求項2に記載の鋼材であって、
前記化学組成は、
Ca:0.0001〜0.0100%、
Mg:0.0001〜0.0100%、及び、
Zr:0.0001〜0.0100%からなる群から選択される1種又は2種以上を含有する、鋼材。 - 請求項1〜請求項3のいずれか1項に記載の鋼材であって、
前記化学組成は、
Co:0.02〜0.50%、及び、
W:0.02〜0.50%からなる群から選択される1種以上を含有する、鋼材。 - 請求項1〜請求項4のいずれか1項に記載の鋼材であって、
前記化学組成は、
Ni:0.01〜0.10%、及び、
Cu:0.01〜0.50%からなる群から選択される1種以上を含有する、鋼材。 - 請求項1〜請求項5のいずれか1項に記載の鋼材であって、
前記化学組成は、
希土類元素:0.0001〜0.0100%を含有する、鋼材。 - 請求項1〜請求項6のいずれか1項に記載の化学組成を有し、
固溶Cを0.010〜0.060質量%含有し、
旧オーステナイト結晶粒の結晶粒度番号は8.0以上であり、
降伏強度が1069超〜1172MPaであり、降伏比が85%以上である、油井用鋼管。 - 請求項1〜請求項6のいずれか1項に記載の化学組成を有する中間鋼材を準備する準備工程と、
準備工程後、800〜1000℃の前記中間鋼材を、300℃/分以上の冷却速度で冷却する焼入れ工程と、
焼入れ後の前記中間鋼材を、580〜720℃で10〜180分保持した後、580℃から200℃の間の平均冷却速度を4〜300℃/秒で冷却する焼戻し工程とを備える、鋼材の製造方法。 - 請求項8に記載の鋼材の製造方法であって、
前記準備工程は、請求項1〜請求項6のいずれか1項に記載の化学組成を有する素材を準備する素材準備工程と、
前記素材を熱間加工して中間鋼材を製造する熱間加工工程とを含む、鋼材の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017247554A JP6947012B2 (ja) | 2017-12-25 | 2017-12-25 | 鋼材、油井用鋼管、及び、鋼材の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017247554A JP6947012B2 (ja) | 2017-12-25 | 2017-12-25 | 鋼材、油井用鋼管、及び、鋼材の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019112679A true JP2019112679A (ja) | 2019-07-11 |
JP6947012B2 JP6947012B2 (ja) | 2021-10-13 |
Family
ID=67223602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017247554A Active JP6947012B2 (ja) | 2017-12-25 | 2017-12-25 | 鋼材、油井用鋼管、及び、鋼材の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6947012B2 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021039431A1 (ja) * | 2019-08-27 | 2021-03-04 | ||
CN114086083A (zh) * | 2020-08-25 | 2022-02-25 | 宝山钢铁股份有限公司 | 一种1100MPa级抗硫高压气瓶钢、高压气瓶及其制造方法 |
CN114134420A (zh) * | 2021-11-25 | 2022-03-04 | 本钢板材股份有限公司 | 一种油气钻采防喷管用钢及生产方法 |
WO2022145065A1 (ja) * | 2020-12-28 | 2022-07-07 | 日本製鉄株式会社 | 鋼材 |
CN115725903A (zh) * | 2022-12-16 | 2023-03-03 | 燕山大学 | 一种高强高韧钻杆接头用钢及制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270355A (ja) * | 1985-05-24 | 1986-11-29 | Sumitomo Metal Ind Ltd | 耐遅れ破壊性の優れた高強度鋼 |
JPS62260017A (ja) * | 1986-05-02 | 1987-11-12 | Nippon Steel Corp | 低温靭性に優れた太径、高強度チエ−ンの製造方法 |
JP2000256783A (ja) * | 1999-03-11 | 2000-09-19 | Sumitomo Metal Ind Ltd | 靭性と耐硫化物応力腐食割れ性に優れる高強度油井用鋼およびその製造方法 |
JP2013104081A (ja) * | 2011-11-11 | 2013-05-30 | Kobe Steel Ltd | 耐遅れ破壊性に優れた高強度鋼板およびその製造方法 |
WO2015011917A1 (ja) * | 2013-07-26 | 2015-01-29 | 新日鐵住金株式会社 | 低合金油井用鋼管及びその製造方法 |
WO2016093161A1 (ja) * | 2014-12-12 | 2016-06-16 | 新日鐵住金株式会社 | 油井管用低合金鋼及び低合金鋼油井管の製造方法 |
JP2017166019A (ja) * | 2016-03-16 | 2017-09-21 | 新日鐵住金株式会社 | 高強度油井用低合金継目無鋼管及びその製造方法 |
WO2018139400A1 (ja) * | 2017-01-24 | 2018-08-02 | 新日鐵住金株式会社 | 鋼材、及び、鋼材の製造方法 |
-
2017
- 2017-12-25 JP JP2017247554A patent/JP6947012B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270355A (ja) * | 1985-05-24 | 1986-11-29 | Sumitomo Metal Ind Ltd | 耐遅れ破壊性の優れた高強度鋼 |
JPS62260017A (ja) * | 1986-05-02 | 1987-11-12 | Nippon Steel Corp | 低温靭性に優れた太径、高強度チエ−ンの製造方法 |
JP2000256783A (ja) * | 1999-03-11 | 2000-09-19 | Sumitomo Metal Ind Ltd | 靭性と耐硫化物応力腐食割れ性に優れる高強度油井用鋼およびその製造方法 |
JP2013104081A (ja) * | 2011-11-11 | 2013-05-30 | Kobe Steel Ltd | 耐遅れ破壊性に優れた高強度鋼板およびその製造方法 |
WO2015011917A1 (ja) * | 2013-07-26 | 2015-01-29 | 新日鐵住金株式会社 | 低合金油井用鋼管及びその製造方法 |
WO2016093161A1 (ja) * | 2014-12-12 | 2016-06-16 | 新日鐵住金株式会社 | 油井管用低合金鋼及び低合金鋼油井管の製造方法 |
JP2017166019A (ja) * | 2016-03-16 | 2017-09-21 | 新日鐵住金株式会社 | 高強度油井用低合金継目無鋼管及びその製造方法 |
WO2018139400A1 (ja) * | 2017-01-24 | 2018-08-02 | 新日鐵住金株式会社 | 鋼材、及び、鋼材の製造方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021039431A1 (ja) * | 2019-08-27 | 2021-03-04 | ||
WO2021039431A1 (ja) * | 2019-08-27 | 2021-03-04 | 日本製鉄株式会社 | サワー環境での使用に適した鋼材 |
JP7173362B2 (ja) | 2019-08-27 | 2022-11-16 | 日本製鉄株式会社 | サワー環境での使用に適した鋼材 |
CN114086083A (zh) * | 2020-08-25 | 2022-02-25 | 宝山钢铁股份有限公司 | 一种1100MPa级抗硫高压气瓶钢、高压气瓶及其制造方法 |
CN114086083B (zh) * | 2020-08-25 | 2023-01-20 | 宝山钢铁股份有限公司 | 一种1100MPa级抗硫高压气瓶钢、高压气瓶及其制造方法 |
WO2022145065A1 (ja) * | 2020-12-28 | 2022-07-07 | 日本製鉄株式会社 | 鋼材 |
CN114134420A (zh) * | 2021-11-25 | 2022-03-04 | 本钢板材股份有限公司 | 一种油气钻采防喷管用钢及生产方法 |
CN114134420B (zh) * | 2021-11-25 | 2022-09-13 | 本钢板材股份有限公司 | 一种油气钻采防喷管用钢及生产方法 |
CN115725903A (zh) * | 2022-12-16 | 2023-03-03 | 燕山大学 | 一种高强高韧钻杆接头用钢及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6947012B2 (ja) | 2021-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6798559B2 (ja) | 鋼材、油井用鋼管、及び、鋼材の製造方法 | |
JP6950518B2 (ja) | 鋼材、油井用鋼管、及び、鋼材の製造方法 | |
JP6947012B2 (ja) | 鋼材、油井用鋼管、及び、鋼材の製造方法 | |
JP6747524B2 (ja) | 鋼材、及び、鋼材の製造方法 | |
JP6950815B2 (ja) | サワー環境での使用に適した鋼材 | |
JP6901045B2 (ja) | 鋼管、及び、鋼管の製造方法 | |
JP6892008B2 (ja) | 鋼管、及び、鋼管の製造方法 | |
JP7088305B2 (ja) | 鋼材、及び、鋼材の製造方法 | |
JP6950519B2 (ja) | 鋼材、油井用鋼管、及び、鋼材の製造方法 | |
JP7078106B2 (ja) | サワー環境での使用に適した鋼材 | |
JP6950819B2 (ja) | サワー環境での使用に適した鋼材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210525 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210817 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210830 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6947012 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |