WO2021205879A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2021205879A1
WO2021205879A1 PCT/JP2021/012245 JP2021012245W WO2021205879A1 WO 2021205879 A1 WO2021205879 A1 WO 2021205879A1 JP 2021012245 W JP2021012245 W JP 2021012245W WO 2021205879 A1 WO2021205879 A1 WO 2021205879A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
region
semiconductor device
insulating film
internal circuit
Prior art date
Application number
PCT/JP2021/012245
Other languages
English (en)
French (fr)
Inventor
忠男 幸
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2022514390A priority Critical patent/JPWO2021205879A1/ja
Priority to US17/912,013 priority patent/US20230131034A1/en
Priority to DE112021002218.0T priority patent/DE112021002218T5/de
Priority to CN202180027411.8A priority patent/CN115428150A/zh
Publication of WO2021205879A1 publication Critical patent/WO2021205879A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5228Resistive arrangements or effects of, or between, wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0288Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using passive elements as protective elements, e.g. resistors, capacitors, inductors, spark-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • H01L27/027Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements specially adapted to provide an electrical current path other than the field effect induced current path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • H01L27/027Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements specially adapted to provide an electrical current path other than the field effect induced current path
    • H01L27/0274Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements specially adapted to provide an electrical current path other than the field effect induced current path involving a parasitic bipolar transistor triggered by the electrical biasing of the gate electrode of the field effect transistor, e.g. gate coupled transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0292Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using a specific configuration of the conducting means connecting the protective devices, e.g. ESD buses

Definitions

  • This disclosure relates to semiconductor devices.
  • Patent Document 1 is a document that provides a problem of electrostatic discharge (ESD destruction).
  • Patent Document 1 includes a first FET and a two-terminal electrostatic protection circuit connected between the first gate and the first source of the first FET, and the two-terminal electrostatic protection circuit is the first. It is located on the side that is biased in the opposite direction when a voltage lower than the potential of the first source is applied to the gate of the first FET, and is more than the reverse withstand voltage between the first gate and the first source of the first FET. It is located on the side that is biased in the forward direction when a voltage lower than the potential of the first source is applied to the first diode and the first diode having a low reverse withstand voltage, and is opposite to the first diode.
  • a second diode connected in series and a resistor connected in series with a diode pair consisting of a first diode and a second diode and formed using the same channel layer as the first FET.
  • a field effect transistor with an electrostatic protection diode.
  • the semiconductor device includes a semiconductor layer, a first region of a first conductive type formed on the semiconductor layer and connected to a ground potential, and a second conductive type formed on the semiconductor layer.
  • FIG. 1 is a schematic plan view of a semiconductor device according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing an example of a circuit diagram of the first circuit of FIG.
  • FIG. 3 is a schematic plan view of the resistance element of FIG.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. 7A to 7C are diagrams for explaining variations in the planar shape of each resistor.
  • FIG. 8 is a diagram showing a modified example of the resistance element.
  • the semiconductor device includes a semiconductor layer, a first region of a first conductive type formed on the semiconductor layer and connected to a ground potential, and a second conductive type formed on the semiconductor layer.
  • the first wiring is electrically branched on the side closer to the signal terminal than the resistance element, and is connected to the second region via the second wiring.
  • the potential difference between the first resistor and the first region becomes the voltage value of the first resistor with respect to the ground potential. Therefore, when a relatively high voltage is applied to the signal terminal, the voltage applied to the insulating film between the first resistor and the first region becomes large, and the possibility of dielectric breakdown of the insulating film increases.
  • the first resistor faces the second region (terminal potential or potential substantially the same as the terminal potential)
  • the first resistance faces the first region (ground potential)
  • the voltage applied to the insulating film can be reduced.
  • the possibility of dielectric breakdown of the insulating film can be reduced, and the reliability of the semiconductor device can be improved.
  • the first resistor may include a plurality of first resistors connected in series or in parallel with each other.
  • the voltage applied to the entire plurality of first resistors can be distributed to each first resistor, so that the amount of heat generated in each first resistor can be reduced.
  • the temperature rise from the first resistance can be suppressed, and the reliability of the semiconductor device can be improved.
  • the resistance element is formed on the side closer to the internal circuit than the plurality of first resistors, and faces the first region with the insulating film interposed therebetween. It may include resistance.
  • the potential at the end of the plurality of first resistors on the internal circuit side is lower than the terminal potential due to the voltage drop due to the plurality of first resistors, and is closer to the ground potential.
  • the second potential difference with the potential of (ground potential) is compared.
  • the second potential difference is smaller than the first potential difference (second potential difference ⁇ first potential difference)
  • the second resistor is provided at a position facing the first region on the downstream side (internal circuit side) of the resistance element. The possibility of dielectric breakdown of the insulating film can be reduced.
  • the semiconductor device may further include a ground terminal that provides the ground potential and a ground wiring connected to the ground terminal.
  • the signal terminal includes a first pad formed on the surface of the semiconductor device, and the ground terminal includes a second pad formed on the surface of the semiconductor device. It may be included.
  • the semiconductor device may further include a protection element connected between the first wiring and the ground wiring.
  • the protection element is connected to the first wiring on the side closer to the signal terminal than the connection portion between the first wiring and the second wiring. It may include a protective element.
  • the protection element may include a second protection element connected to the first wiring on the side closer to the internal circuit than the resistance element.
  • the resistance element may include a polysilicon resistor.
  • the insulating film may include an oxide film.
  • the second wiring may include vias that penetrate the insulating film in the thickness direction and are connected to the second region.
  • the semiconductor layer includes the first conductive type substrate and an epitaxial layer formed on the substrate, and the first region and the second region are It may be formed on the epitaxial layer.
  • FIG. 1 is a schematic plan view of the semiconductor device 1 according to the embodiment of the present disclosure.
  • the semiconductor device 1 includes, for example, a semiconductor chip having a rectangular shape in a plan view.
  • the semiconductor device 1 is formed in a rectangular parallelepiped shape.
  • the planar shape of the semiconductor device 1 may be a square shape as shown in FIG. 1 or a rectangular shape.
  • the semiconductor device 1 includes a substrate 2 forming its outer shape, a plurality of circuits 3 to 6 formed on the substrate 2, and a plurality of pads 7 electrically connected to the plurality of circuits 3 to 6.
  • the outermost surface of the substrate 2 is covered with, for example, a surface protective film 8 made of silicon oxide (SiO 2).
  • the plurality of circuits 3 to 6 include the first circuit 3, the second circuit 4, the third circuit 5, and the fourth circuit 6 in this embodiment.
  • the plurality of circuits 3 to 6 may be any of known electronic circuits (digital circuits, analog circuits) such as switching circuits, rectifying circuits, smoothing circuits, and power supply circuits.
  • the plurality of circuits 3 to 6 are formed by using a semiconductor portion of the substrate 2, an insulating film formed on the substrate 2, a conductive member (for example, electrodes, wiring, vias, etc.) formed on the substrate 2, and the like.
  • the element may be included. Examples of such an element include an active element such as a diode and a transistor, and a passive element such as a capacitor, an inductor and a resistor.
  • the first circuit 3 includes a resistance element 9 and an internal circuit 10.
  • the plurality of circuits 3 to 6 are arranged in the central portion of the substrate 2 in a plan view.
  • the plurality of circuits 3 to 6 may occupy the same space or different spaces on the substrate 2.
  • the plurality of circuits 3 to 6 may be circuits that are electrically connected to each other or may be circuits that are electrically separated from each other.
  • the plurality of pads 7 are exposed from the pad openings 11 formed in the surface protective film 8.
  • a plurality of wirings may be formed on the substrate 2, and each portion of the plurality of wirings exposed from the pad openings 11 may be the pads 7.
  • the plurality of pads 7 are formed on the peripheral edge of the substrate 2 in a plan view.
  • the plurality of pads 7 are arranged along the end face of the substrate 2 in this embodiment. More specifically, a plurality of pads 7 are arranged along each of the four end faces 2A, 2B, 2C, and 2D of the substrate 2, and the plurality of pads 7 are arranged in a square ring as a whole.
  • the plurality of circuits 3 to 6 are surrounded by a plurality of pads 7.
  • the plurality of pads 7 may include a first pad 7A and a second pad 7B.
  • the first pad 7A may be, for example, an input terminal that supplies an input signal to the internal circuit 10.
  • the first pad 7A may be electrically connected to the resistance element 9 and the internal circuit 10 of the first circuit 3 by, for example, the first wiring 12.
  • the resistance element 9 is provided on the upstream side (the side close to the first pad 7A), and the internal circuit 10 is provided on the downstream side (the side far from the first pad 7A).
  • the second pad 7B may be a ground terminal that provides a ground potential to the internal circuit 10.
  • the second pad 7B may be electrically connected to the internal circuit 10 of the first circuit 3 by, for example, the ground wiring 13.
  • the first pad 7A is arranged closer to the resistance element 9 than the second pad 7B.
  • the distance from the peripheral edge 14 of the occupied area of the first circuit 3 including the resistance element 9 (the area surrounded by the broken line in FIG. 1) to the first pad 7A is from the peripheral edge 14 of the first circuit 3 to the second pad. It may be shorter than the distance to 7B.
  • the first pad 7A is provided in a region sandwiched between the peripheral edge 14 of the first circuit 3 and the end faces 2A to 2D (end face 2A in this embodiment) of the substrate 2, while the second pad 7A is provided.
  • the pad 7B is located in a region not sandwiched between the peripheral edge 14 of the first circuit 3 and the end faces 2A to 2D of the substrate 2 (in this embodiment, a region sandwiched between the peripheral edge 15 of the second circuit 4 and the end face 2B). It is provided. As a result, the ground wiring 13 may be formed so as to cross the second circuit 4. Further, the ground wiring 13 may be formed so as to cover the second circuit 4.
  • FIG. 2 is a diagram showing an example of a circuit diagram of the first circuit 3 of FIG.
  • the first circuit 3 is, for example, a switching circuit that controls an inverter and has an internal circuit 10.
  • the internal circuit 10 may be, for example, a CMOSFET (Complementary Metal Oxide Semiconductor Field Effect Transistor) in which the p-channel MOSFET 16 and the n-channel MOSFET 17 are used in a complementary manner.
  • CMOSFET Complementary Metal Oxide Semiconductor Field Effect Transistor
  • the drain side of the p-channel MOSFET 16 and the n-channel MOSFET 17 are connected to form an output terminal 18, and the output terminal 18 is connected to a load 19.
  • the source side of the p-channel MOSFET 16 is a Vdd (power supply voltage) terminal 20.
  • the gates of the p-channel MOSFET 16 and the n-channel MOSFET 17 are common gate terminals 21 (input terminals).
  • the source side of the n-channel MOSFET 17 is a ground terminal 22 and is connected to the ground wiring 13.
  • the first wiring 12 connects the first pad 7A and the internal circuit 10. More specifically, the first wiring 12 is connected to the gate terminal 21 of the internal circuit 10. A control input signal for determining whether to enable or disable the gate output of the internal circuit 10 is supplied from the first pad 7A.
  • the first circuit 3 may further include a protective element 23 connected between the first wiring 12 and the ground wiring 13.
  • the protection element 23 may be referred to as an ESD (Electro-Static Discharge) protection element that protects the internal circuit 10 from a surge voltage such as static electricity that enters from an external terminal such as the first pad 7A.
  • the protection element 23 may have, for example, a plurality of terminals, one of the plurality of terminals may be connected to the first wiring 12, and the other terminal may be connected to the ground wiring 13.
  • the protection element 23 may include a protection transistor 24 as an example of the first protection element of the present disclosure and a protection diode 25 as an example of the second protection element of the present disclosure.
  • the protection transistor 24 is formed of a p-channel MOSFET.
  • the source-side terminal 26 of the protection transistor 24 is connected to the first wiring 12, and the drain-side terminal 27 is connected to the ground wiring 13.
  • the protection diode 25 is formed of a constant voltage diode.
  • the terminal 28 on the cathode side of the protection diode 25 is connected to the first wiring 12, and the terminal 29 on the anode side is connected to the ground wiring 13.
  • the protection element 23 is not limited to the protection transistor 24 and the protection diode 25 shown in FIG. 2, and known protection elements can be used. Further, the number of the protective elements 23 does not have to be two as shown in FIG. 2, and may be one or three or more. Further, in FIG. 2, since the protection transistor 24 is provided on the upstream side of the current (the side closer to the pad 7 (external terminal)) than the protection diode 25, the protection transistor 24 is provided as a primary protection element (primary clamp). )), And the protection diode 25 may be referred to as a secondary protection element (secondary clamp).
  • the resistance element 9 is interposed in the middle of the first wiring 12.
  • the resistance element 9 is a connection portion 30 (first connection portion) between the protection transistor 24 and the first wiring 12 and a connection portion 31 (second connection portion) between the protection diode 25 and the first wiring 12. It is provided between and. That is, the resistance element 9 is provided on the downstream side (the side close to the internal circuit 10) of the protection transistor 24. Further, the resistance element 9 is provided on the upstream side (the side far from the internal circuit 10) of the protection diode 25. In this embodiment, the resistance element 9 is provided on the downstream side of the protection transistor 24 and on the upstream side of the protection diode 25.
  • the resistance element 9 includes the first resistance 32 and the second resistance 33 in this order from the upstream side to the downstream side (from the external terminal toward the internal circuit 10).
  • FIG. 3 is a schematic plan view of the resistance element 9 of FIG.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. 7A to 7C are diagrams for explaining variations in the planar shape of each resistance element 9.
  • the semiconductor device 1 includes the substrate 2, further includes a field insulating film 34, a resistance element 9, an interlayer insulating film 35, a first wiring 12, and vias as an example of the second wiring of the present disclosure. Including 36 and.
  • the substrate 2 includes a base substrate 37 and an epitaxial layer 38 formed on the base substrate 37.
  • the base substrate 37 has a front surface 39 and a back surface 40.
  • the surface 39 is a surface in contact with the epitaxial layer 38.
  • the entire surface of the back surface 40 is exposed to the outside of the semiconductor device 1.
  • the base substrate 37 is made of a silicon (Si) substrate in this embodiment, it may be a substrate made of another material (for example, silicon carbide (SiC) or the like).
  • the base substrate 37 is p-shaped in this embodiment.
  • the base substrate 37 has, for example, an impurity concentration of 1 ⁇ 10 14 cm -3 to 5 ⁇ 10 18 cm -3.
  • the thickness of the base substrate 37 is, for example, 500 ⁇ m to 800 ⁇ m before grinding.
  • the epitaxial layer 38 is in contact with the base substrate 37 and is laminated on the base substrate 37.
  • the epitaxial layer 38 has a front surface 41 and a back surface 42.
  • the surface 41 is a surface on which various functional elements of the semiconductor device 1 are formed, and may be referred to as an element main surface, for example.
  • the back surface 42 is a surface in contact with the surface 39 of the base substrate 37.
  • the epitaxial layer 38 is made of the same material (silicon (Si)) as the base substrate 37 in this embodiment.
  • the epitaxial layer 38 has a conductive type opposite to that of the base substrate 37, and is an n type in this embodiment.
  • the epitaxial layer 38 has, for example, an impurity concentration of 5 ⁇ 10 14 cm -3 to 1 ⁇ 10 17 cm -3.
  • the thickness of the epitaxial layer 38 is, for example, 3 ⁇ m to 20 ⁇ m.
  • the epitaxial layer 38 is formed with a p-type element separation well 43 as an example of the first region of the present disclosure.
  • the p-type element separation well 43 is formed so as to reach the base substrate 37 from the surface 41 of the epitaxial layer 38.
  • the bottom of the p-type element separation well 43 may coincide with the depth position of the boundary between the base substrate 37 and the epitaxial layer 38, or may coincide with the depth position of the boundary between the base substrate 37 and the epitaxial layer 38, or in the thickness direction of the base substrate 37. It may be located in the middle. That is, the depth of the p-type element separation well 43 may be larger than the thickness of the epitaxial layer 38.
  • the portion of the epitaxial layer 38 surrounded by the p-type element separation well 43 is an n-type region 44 as an example of the second region of the present disclosure.
  • the side portion of the n-type region 44 is partitioned by the p-type element separation well 43, and the bottom portion thereof is partitioned by the p-type base substrate 37.
  • the other region of the first circuit 3 may be surrounded by the p-type element separation well 43 to form an n-type region similar to the n-type region 44.
  • the p-channel MOSFET 16 of the internal circuit 10 CMOSFET
  • the n-channel MOSFET 17 may be formed in the p-type element separation well 43 in the vicinity of the p-channel MOSFET 16.
  • an LSI such as a diode or a transistor is formed in the region.
  • a functional element may be formed.
  • an n-type embedded region 45 is formed at the boundary between the base substrate 37 and the epitaxial layer 38.
  • the n-type embedded region 45 is formed so as to straddle the boundary between the base substrate 37 and the epitaxial layer 38.
  • the n-type embedded region 45 is formed in the direction along the surface 41 of the epitaxial layer 38, away from the boundary between the p-type element separation well 43 and the n-type region 44.
  • the n-type embedded region 45 may have an n-type impurity concentration that exceeds the impurity concentration of the epitaxial layer 38.
  • the impurity concentration of the n-type embedded region 45 may be 1 ⁇ 10 16 cm -3 to 1 ⁇ 10 20 cm -3 .
  • the field insulating film 34 is formed on the surface 41 of the epitaxial layer 38.
  • the field insulating film 34 covers the p-type element separation well 43 and the n-type region 44.
  • the field insulating film 34 has a first opening 46 that exposes a part of the p-type element separation well 43 and a second opening 47 that exposes a part of the n-type region 44.
  • the second opening 47 is formed, for example, in a circular shape in a plan view.
  • the field insulating film 34 is formed of silicon oxide (SiO 2 ), more specifically, a LOCOS (LOCal Oxidation of Silicon) oxide film in this embodiment, but is made of another insulating material (for example, silicon nitride (SiN)). Etc.) may be formed from. Further, the field insulating film 34 may be formed of a plurality of materials, for example, a laminated structure of silicon oxide and silicon nitride.
  • the thickness of the field insulating film 34 may be gradually reduced at each peripheral edge of the first opening 46 and the second opening 47.
  • the portion where the thickness of the field insulating film 34 changes in this way may be referred to as, for example, the first bird's beak portion 48 surrounding the first opening 46 and the second bird's beak portion 49 surrounding the second opening 47.
  • the surface 41 (first surface 50) of the portion of the epitaxial layer 38 surrounded by the first bird's beak portion 48 and the surface 41 (second surface 51) of the portion of the epitaxial layer 38 surrounded by the second bird's beak portion 49 are epitaxial. It is located higher than the surface 41 of the other region of the layer 38.
  • the p-type element separation well 43 includes a p + type contact portion 52 (first contact portion).
  • the p + type contact portion 52 is formed on the surface 41 of the epitaxial layer 38 and is exposed from the first opening 46.
  • the p + type contact portion 52 is formed from the first surface 50 of the epitaxial layer 38 to a position deeper than the bottom portion (surface 41) of the field insulating film 34. Further, the p + type contact portion 52 is formed so as to be in contact with the first bird's beak portion 48 of the field insulating film 34.
  • the p + type contact portion 52 is formed in a substantially bottle shape, for example, in a cross-sectional view, the upper portion is thin and the lower portion is bulged.
  • the p + type contact portion 52 may have a p-type impurity concentration that exceeds the impurity concentration of the p-type element separation well 43.
  • the impurity concentration of the p + type contact portion 52 may be 1 ⁇ 10 16 cm -3 to 1 ⁇ 10 20 cm -3 .
  • the n-type region 44 includes an n + -type contact portion 53 (second contact portion).
  • the n + type contact portion 53 is formed on the surface 41 of the epitaxial layer 38 and is exposed from the second opening 47. That is, as shown in FIG. 3, the n + type contact portion 53 is formed in an annular shape in a plan view. Further, the n + type contact portion 53 is formed so as to be separated inward from the boundary between the p-type element separation well 43 and the n-type region 44.
  • the n + type contact portion 53 is formed from the second surface 51 of the epitaxial layer 38 to a position deeper than the bottom portion (surface 41) of the field insulating film 34. Further, the n + type contact portion 53 is formed so as to be in contact with the second bird's beak portion 49 of the field insulating film 34. As a result, the n + type contact portion 53 is formed in a substantially bottle shape, for example, in a cross-sectional view, the upper portion is thin and the lower portion is bulged.
  • the n + type contact portion 53 may have an n-type impurity concentration that exceeds the impurity concentration of the n-type region 44.
  • the impurity concentration of the n + type contact portion 53 may be 1 ⁇ 10 16 cm -3 to 1 ⁇ 10 20 cm -3 .
  • the resistance element 9 is formed on the field insulating film 34.
  • the resistance element 9 is formed of a polysilicon resistor, and specifically, it may be a polysilicon resistor doped with a p-type impurity.
  • the resistance element 9 may be made of a material different from polysilicon as long as it is a material that satisfies the function as a resistor.
  • the resistance element 9 includes the first resistance 32 and the second resistance 33.
  • the first resistor 32 is formed closer to the first pad 7A than the second resistor 33, and faces the n-type region 44 with the field insulating film 34 interposed therebetween.
  • a plurality of first resistors 32 are formed. More specifically, as shown in FIG. 3, a plurality of first resistors 32 are arranged in a stripe shape on the field insulating film 34. As shown in FIG. 5, first contact portions 54 in which p-type impurities are heavily doped are formed at both ends of each first resistor 32. Further, the resistance values of the plurality of first resistors 32 may be different from each other or may be the same.
  • the second resistor 33 is formed closer to the internal circuit 10 than the first resistor 32, and faces the p-type element separation well 43 with the field insulating film 34 interposed therebetween.
  • a plurality of second resistors 33 are formed. More specifically, as shown in FIG. 3, a plurality of second resistors 33 are arranged in a stripe shape on the field insulating film 34. As shown in FIG. 6, second contact portions 55 in which p-type impurities are heavily doped are formed at both ends of each of the second resistors 33. Further, the resistance values of the plurality of second resistors 33 may be different from each other or may be the same.
  • the overall resistance value of the second resistor 33 may be higher or lower than the overall resistance value of the first resistor 32, but for the following reasons, the resistances of the first resistor 32 and the second resistor 33 The values are preferably the same.
  • the protection diode 25 fixes the element-side wiring 60 to a potential close to the ground potential. Since the connection wiring 58 faces both the n-type region 44 close to the terminal potential and the p-type element separation well 43 close to the ground potential across the field insulating film 34, the voltage applied to each field insulating film 34 is evenly distributed. In order to do so, it is preferable that the connection wiring 58 has an intermediate potential between the terminal potential and the ground potential. Therefore, it is preferable that the resistance values of the first resistor 32 and the second resistor 33 are the same.
  • each resistance element 9 may be formed in a linear shape as shown in FIGS. 7A and 7B, or may be formed in a curved shape as shown in FIG. 7C.
  • a plurality of vias 61 (described later) may be connected to each end of the resistance element 9.
  • the interlayer insulating film 35 is formed on the substrate 2 so as to cover the resistance element 9.
  • the interlayer insulating film 35 is formed of silicon oxide (SiO 2 ) in this embodiment, it may be formed of another insulating material (for example, silicon nitride (SiN) or the like).
  • the first wiring 12 is formed on the interlayer insulating film 35.
  • the first wiring 12 is made of aluminum (Al) in this embodiment.
  • the first wiring 12 connects a plurality of first resistors 32 and a plurality of second resistors 33 in series.
  • the first wiring 12 can be distinguished for each connection target.
  • the first wiring 12 includes the terminal side wiring 56, the first wiring 57, the connection wiring 58, the second wiring 59, and the like in order from the upstream side to the downstream side (from the first pad 7A toward the internal circuit 10).
  • the element side wiring 60 may be included.
  • the terminal side wiring 56 may be wiring extending from the resistance element 9 to the first pad 7A.
  • the terminal-side wiring 56 is connected to the end of the first resistor 32 on the side closest to the first pad 7A of the first resistors 32.
  • the first wiring 57 may be a wiring that connects a plurality of first resistors 32 in series or in parallel with each other.
  • the first wiring 57 may be referred to as a first series wiring when a plurality of first resistors 32 are connected in series with each other, and may be referred to as a first parallel wiring when a plurality of first resistors 32 are connected in parallel with each other. good.
  • the first wiring 57 alternately connects one end and the other end of a plurality of striped first resistors 32, whereby the first wiring 57 and the first resistance 32 are connected as shown in FIG.
  • the wiring path including the above is formed in a zigzag shape in a plan view.
  • connection wiring 58 may be a wiring that connects the first resistor 32 and the second resistor 33.
  • the connection wiring 58 straddles between the n-type region 44 and the p-type element separation well 43. In other words, the connection wiring 58 crosses the boundary between the n-type region 44 and the p-type element separation well 43 above the substrate 2.
  • the second wiring 59 may be a wiring that connects a plurality of second resistors 33 in series or in parallel with each other.
  • the second wiring 59 may be referred to as a second series wiring when a plurality of second resistors 33 are connected in series with each other, and may be referred to as a second parallel wiring when a plurality of second resistors 33 are connected in parallel with each other. good.
  • the second wiring 59 alternately connects one end and the other end of the plurality of striped second resistors 33, whereby the second wiring 59 and the second resistor 33 are connected as shown in FIG.
  • the wiring path including the above is formed in a zigzag shape in a plan view.
  • the element-side wiring 60 may be wiring extending from the resistance element 9 to the internal circuit 10.
  • the element-side wiring 60 is connected to the end of the second resistor 33 on the side closest to the internal circuit 10 of the second resistor 33.
  • Each wiring 56 to 60 and the resistance element 9 are connected by a via 61.
  • the via 61 extends the interlayer insulating film 35 in the thickness direction to connect the wirings 56 to 60 and the resistance element 9.
  • the via 61 is made of tungsten (W) in this embodiment, it may be made of another conductive material (for example, aluminum (Al), copper (Cu), etc.).
  • the via 61 is connected to the first contact portion 54 of the first resistance 32 and the second contact portion 55 of the second resistance 33.
  • the via 36 connects the first wiring 12 and the n-type region 44.
  • the via 36 is connected to the first wiring 12 on the side closer to the first pad 7A than the resistance element 9. More specifically, the via 36 extends from the terminal side wiring 56 in the interlayer insulating film 35 in the thickness direction and is connected to the n + type contact portion 53.
  • the via 36 is made of tungsten (W) in this embodiment, it may be made of another conductive material (for example, aluminum (Al), copper (Cu), etc.).
  • the semiconductor device 1 further includes a via 62 that connects the ground wiring 13 and the p-type element separation well 43. More specifically, the via 62 extends from the ground wiring 13 in the interlayer insulating film 35 in the thickness direction and is connected to the p + type contact portion 52. As a result, the p-type element separation well 43 and the base substrate 37 are connected to the ground potential.
  • the via 62 is made of tungsten (W) in this embodiment, it may be made of another conductive material (for example, aluminum (Al), copper (Cu), etc.).
  • the vias 36, 61, and 62 are referred to as "vias” from the viewpoint of being members that penetrate the interlayer insulating film 35 in the thickness direction, but from the viewpoint of connecting different conductive members, “wiring” and “connection” are used. It may be referred to as a "member”.
  • a multilayer wiring structure including an interlayer insulating film and wiring may be further formed on the interlayer insulating film 35, or a surface protective film 8 may be directly formed.
  • the first wiring 12 is electrically branched on the side closer to the first pad 7A than the resistance element 9, and is connected to the n-type region 44 via the via 36 (second wiring). ing.
  • the potential difference between the first resistor 32 facing the field insulating film 34 and the n-type region 44 can be reduced.
  • the potentials of the first resistor 32 and the n-type region 44 can be made substantially the same, although some errors due to the voltage drop due to the wiring resistance of the first wiring 12 and the via 36 can be expected.
  • the potential difference between the resistance element 9 and the p-type element separation well 43 is the resistance element with respect to the ground potential.
  • the voltage value is 9. Therefore, when a relatively high voltage (for example, a voltage exceeding 1000 V due to static electricity or the like) is applied to the first pad 7A, the voltage applied to the field insulating film 34 between the resistance element 9 and the p-type element separation well 43. Increases, and the possibility that the field insulating film 34 undergoes dielectric breakdown increases.
  • the first resistor 32 faces the n-type region 44 (terminal potential or potential substantially the same as the terminal potential), all of the resistance elements 9 are p-type element separation wells 43 (ground potential). ), The voltage applied to the field insulating film 34 can be reduced. As a result, the possibility of dielectric breakdown of the field insulating film 34 can be reduced, so that the reliability of the semiconductor device 1 can be improved.
  • first resistors 32 are formed so as to be connected in series or in parallel with each other. Therefore, since the voltage applied to the entire plurality of first resistors 32 can be dispersed in each of the first resistors 32, the amount of heat generated in each of the first resistors 32 can be reduced. As a result, the temperature rise from the first resistor 32 can be suppressed, and the reliability of the semiconductor device 1 can be improved. This is effective because the first resistor 32 is covered with the interlayer insulating film 35 and heat is likely to be trapped between the field insulating film 34 and the interlayer insulating film 35.
  • a second resistor 33 is provided in addition to the first resistor 32.
  • the potential at the end of the plurality of first resistors 32 on the internal circuit 10 side is lower than the terminal potential due to the voltage drop due to the plurality of first resistors 32, and is closer to the ground potential.
  • the potential of the n-type region 44 (the terminal potential or the potential substantially the same as the terminal potential) and the end of the first resistance 32 on the internal circuit 10 side (in FIG. 3, of the four first resistances 32, one on the paper surface).
  • the first potential difference between the potential of the first resistance 32) on the top and the second potential difference between the potential at the end and the potential (ground potential) of the p-type element separation well 43 are compared.
  • the second resistor 33 is provided at a position facing the p-type element separation well 43 on the downstream side of the first resistor 32.
  • the possibility of dielectric breakdown of the field insulating film 34 (on the internal circuit 10 side) can be further reduced.
  • the resistance element 9 may be only the first resistance 32. That is, all of the resistance elements 9 may face the n-type region 44 with the field insulating film 34 interposed therebetween.
  • the position of the first wiring 12 is on the interlayer insulating film 35 covering the resistance element 9, but the position is not limited to this.
  • the first wiring 12 may be formed on any of the interlayer insulating films of the multilayer wiring structure.
  • the field insulating film 34 may be interposed between the resistance element 9 and the substrate 2, or another insulating film may be interposed in addition to the field insulating film 34. good.
  • the internal circuit 10 may be, for example, an input circuit of a CMOS inverter as shown in FIG. 2, an output circuit of a CMOS inverter, an input circuit of a differential amplifier using a bipolar transistor, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

半導体装置は、半導体層と、前記半導体層に形成され、グランド電位に接続される第1導電型の第1領域と、前記半導体層に形成された第2導電型の第2領域と、前記半導体層上に形成され、前記第1領域および前記第2領域を覆う絶縁膜と、内部回路と、前記内部回路を駆動する、または前記内部回路から駆動される信号端子と、前記内部回路と前記信号端子とを接続する第1配線と、前記絶縁膜上に形成され、かつ前記第1配線の途中に介在する抵抗素子であって、前記絶縁膜を挟んで前記第2領域に対向する第1抵抗を含む抵抗素子と、前記抵抗素子よりも前記信号端子に近い側で前記第1配線に接続され、前記第1配線と前記第2領域とを接続する第2配線とを含む。

Description

半導体装置
 本開示は、半導体装置に関する。
 静電破壊(ESD破壊)の課題を提供する文献として、たとえば、特許文献1がある。
 特許文献1は、第1のFETと、第1のFETの第1のゲートと第1のソースとの間に接続された2端子静電気保護回路とを備え、2端子静電気保護回路は、第1のゲートに第1のソースの電位よりも低い電圧を印加したときに逆方向にバイアスされる側に位置し、第1のFETの第1のゲートと第1のソース間の逆方向耐圧よりも低い逆方向耐圧を有する第1のダイオードと、第1のゲートに前記第1のソースの電位よりも低い電圧を印加したときに順方向にバイアスされる側に位置し、第1のダイオードと逆直列に接続された第2のダイオードと、第1のダイオードと第2のダイオードで構成されるダイオード対と直列に接続され、第1のFETと同じチャネル層を用いて形成された抵抗とを含む、静電保護ダイオード付き電界効果トランジスタを開示している。
特開2017-143127号公報
 本開示の一実施形態に係る半導体装置は、半導体層と、前記半導体層に形成され、グランド電位に接続される第1導電型の第1領域と、前記半導体層に形成された第2導電型の第2領域と、前記半導体層上に形成され、前記第1領域および前記第2領域を覆う絶縁膜と、内部回路と、前記内部回路を駆動する、または前記内部回路から駆動される信号端子と、前記内部回路と前記信号端子とを接続する第1配線と、前記絶縁膜上に形成され、かつ前記第1配線の途中に介在する抵抗素子であって、前記絶縁膜を挟んで前記第2領域に対向する第1抵抗を含む抵抗素子と、前記抵抗素子よりも前記信号端子に近い側で前記第1配線に接続され、前記第1配線と前記第2領域とを接続する第2配線とを含んでいてもよい。
図1は、本開示の一実施形態に係る半導体装置の模式的な平面図である。 図2は、図1の第1回路の回路図の一例を示す図である。 図3は、図2の抵抗素子の模式的な平面図である。 図4は、図3のIV-IV線に沿う断面図である。 図5は、図3のV-V線に沿う断面図である。 図6は、図3のVI-VI線に沿う断面図である。 図7A~図7Cは、各抵抗の平面形状のバリエーションを説明するための図である。 図8は、前記抵抗素子の変形例を示す図である。
<本開示の実施形態>
 まず、本開示の実施形態を列記して説明する。
 本開示の一実施形態に係る半導体装置は、半導体層と、前記半導体層に形成され、グランド電位に接続される第1導電型の第1領域と、前記半導体層に形成された第2導電型の第2領域と、前記半導体層上に形成され、前記第1領域および前記第2領域を覆う絶縁膜と、内部回路と、前記内部回路を駆動する、または前記内部回路から駆動される信号端子と、前記内部回路と前記信号端子とを接続する第1配線と、前記絶縁膜上に形成され、かつ前記第1配線の途中に介在する抵抗素子であって、前記絶縁膜を挟んで前記第2領域に対向する第1抵抗を含む抵抗素子と、前記抵抗素子よりも前記信号端子に近い側で前記第1配線に接続され、前記第1配線と前記第2領域とを接続する第2配線とを含んでいてもよい。
 この構成によれば、抵抗素子よりも信号端子に近い側で第1配線が電気的に分岐し、第2配線を介して第2領域に接続されている。これにより、信号端子に電圧が加えられたとき、絶縁膜を挟んで対向する第1抵抗と第2領域との間の電位差を小さくすることができる。言い換えれば、第1配線および第2配線の配線抵抗等による電圧降下に起因する多少の誤差は見込まれるが、第1抵抗および第2領域の電位を、ほぼ同じにすることができる。
 逆に、第1抵抗が第1領域(グランド電位)に対向していると、第1抵抗と第1領域との間の電位差が、グランド電位に対する第1抵抗の電圧値になる。そのため、信号端子に比較的高い電圧が加えられると、第1抵抗と第1領域との間の絶縁膜に加わる電圧が大きくなり、絶縁膜が絶縁破壊する可能性が高まる。
 これに対して、第1抵抗が第2領域(端子電位または端子電位とほぼ同じ電位)に対向している構成であれば、第1抵抗が第1領域(グランド電位)に対向する構成に比べて、絶縁膜に加わる電圧を小さくすることができる。その結果、絶縁膜の絶縁破壊の可能性を低くすることができるので、半導体装置の信頼性を高めることができる。
 本開示の一実施形態に係る半導体装置では、前記第1抵抗は、互いに直列または並列に接続された複数の第1抵抗を含んでいてもよい。
 この構成によれば、複数の第1抵抗全体に加わる電圧を各第1抵抗に分散させることができるので、各第1抵抗における発熱量を小さくすることができる。その結果、第1抵抗からの温度上昇を抑えることができ、半導体装置の信頼性を高めることができる。
 本開示の一実施形態に係る半導体装置では、前記抵抗素子は、前記複数の第1抵抗よりも前記内部回路に近い側に形成され、前記絶縁膜を挟んで前記第1領域に対向する第2抵抗を含んでいてもよい。
 この構成によれば、複数の第1抵抗の内部回路側の端部の電位は、複数の第1抵抗による電圧降下によって端子電位に比べて低くなっており、よりグランド電位に近づいている。ここで、第2領域の電位(端子電位または端子電位とほぼ同じ電位)と第1抵抗の内部回路側の端部の電位との間の第1電位差と、当該端部の電位と第1領域の電位(グランド電位)との間の第2電位差を比較する。この場合、第2電位差が第1電位差より小さければ(第2電位差<第1電位差)、第1領域に対向する位置に第2抵抗を設けることによって、抵抗素子の下流側(内部回路側)における絶縁膜の絶縁破壊の可能性を、より低くすることができる。
 本開示の一実施形態に係る半導体装置は、前記グランド電位を提供するグランド端子と、前記グランド端子に接続されたグランド配線とをさらに含んでいてもよい。
 本開示の一実施形態に係る半導体装置では、前記信号端子は、前記半導体装置の表面に形成された第1パッドを含み、前記グランド端子は、前記半導体装置の表面に形成された第2パッドを含んでいてもよい。
 本開示の一実施形態に係る半導体装置は、前記第1配線と前記グランド配線との間に接続された保護素子をさらに含んでいてもよい。
 本開示の一実施形態に係る半導体装置では、前記保護素子は、前記第1配線と前記第2配線との接続部よりも前記信号端子に近い側で、前記第1配線に接続された第1保護素子を含んでいてもよい。
 本開示の一実施形態に係る半導体装置では、前記保護素子は、前記抵抗素子よりも前記内部回路に近い側で、前記第1配線に接続された第2保護素子を含んでいてもよい。
 本開示の一実施形態に係る半導体装置では、前記抵抗素子は、ポリシリコン抵抗を含んでいてもよい。
 本開示の一実施形態に係る半導体装置では、前記絶縁膜は、酸化膜を含んでいてもよい。
 本開示の一実施形態に係る半導体装置では、前記第2配線は、前記絶縁膜を厚さ方向に貫通して前記第2領域に接続されたビアを含んでいてもよい。
 本開示の一実施形態に係る半導体装置では、前記半導体層は、前記第1導電型の基板と、前記基板上に形成されたエピタキシャル層とを含み、前記第1領域および前記第2領域は、前記エピタキシャル層に形成されていてもよい。
<本開示の実施形態の詳細な説明>
 次に、本開示の実施形態を、添付図面を参照して詳細に説明する。
 図1は、本開示の一実施形態に係る半導体装置1の模式的な平面図である。
 半導体装置1は、たとえば、平面視四角形状を有する半導体チップを含む。半導体装置1は、この実施形態では、直方体形状に形成されている。半導体装置1の平面形状は、図1に示すような正方形状であってもよいし、長方形状であってもよい。
 半導体装置1は、その外形を形成する基板2と、基板2上に形成された複数の回路3~6と、複数の回路3~6と電気的に接続された複数のパッド7を含む。基板2の最表面は、たとえば、酸化シリコン(SiO)からなる表面保護膜8で覆われている。
 複数の回路3~6は、この実施形態では、第1回路3、第2回路4、第3回路5および第4回路6を含む。複数の回路3~6は、たとえば、スイッチング回路、整流回路、平滑回路、電源回路等の公知の電子回路(デジタル回路、アナログ回路)のいずれかであってもよい。複数の回路3~6は、基板2の半導体部分、基板2上に形成された絶縁膜、基板2上に形成され導電部材(たとえば、電極、配線、ビア等)等を利用して形成された素子を含んでいてもよい。そのような素子としては、たとえば、ダイオード、トランジスタ等の能動素子、キャパシタ、インダクタ、抵抗等の受動素子が挙げられる。この実施形態では、第1回路3は、抵抗素子9と、内部回路10とを含んでいる。
 また、複数の回路3~6は、平面視において、基板2の中央部に配置されている。複数の回路3~6は、基板2において、互いに同じスペースを占有していてもよいし、異なるスペースを占有していてもよい。また、複数の回路3~6は、互いに電気的に接続された回路であってもよいし、互いに電気的に分離された回路であってもよい。
 複数のパッド7は、表面保護膜8に形成されたパッド開口11から露出している。たとえば、基板2上に複数の配線(図示せず)が形成されており、当該複数の配線のパッド開口11から露出した各部分がパッド7であってもよい。複数のパッド7は、平面視において、基板2の周縁部に形成されている。複数のパッド7は、この実施形態では、基板2の端面に沿って配列されている。より具体的には、基板2の4つの端面2A,2B,2C,2Dのそれぞれに沿って複数のパッド7が配列され、全体として、複数のパッド7が四角環状に配列されている。複数の回路3~6は、複数のパッド7に取り囲まれている。
 複数のパッド7は、第1パッド7Aと、第2パッド7Bとを含んでいてもよい。
 第1パッド7Aは、たとえば、内部回路10に入力信号を供給する入力端子であってもよい。第1パッド7Aは、たとえば、第1配線12によって第1回路3の抵抗素子9および内部回路10に電気的に接続されていてもよい。第1配線12においては、抵抗素子9が上流側(第1パッド7Aに近い側)に設けられ、内部回路10が下流側(第1パッド7Aから遠い側)に設けられている。
 第2パッド7Bは、内部回路10にグランド電位を提供するグランド端子であってもよい。第2パッド7Bは、たとえば、グランド配線13によって第1回路3の内部回路10に電気的に接続されていてもよい。
 この実施形態では、第1パッド7Aは、第2パッド7Bよりも抵抗素子9の近くに配置されている。たとえば、抵抗素子9を含む第1回路3の占有エリア(図1の破線で囲まれたエリア)の周縁14から第1パッド7Aまでの距離が、当該第1回路3の周縁14から第2パッド7Bまでの距離よりも短くてもよい。他の言い方では、第1パッド7Aは、第1回路3の周縁14と基板2の端面2A~2D(この実施形態では、端面2A)とで挟まれた領域に設けられている一方、第2パッド7Bは、第1回路3の周縁14と基板2の端面2A~2Dとで挟まれていない領域(この実施形態では、第2回路4の周縁15と端面2Bとで挟まれた領域)に設けられている。これにより、グランド配線13は、第2回路4に横断するように形成されていてもよい。また、グランド配線13は、第2回路4を覆うように形成されていてもよい。
 図2は、図1の第1回路3の回路図の一例を示す図である。
 図2を参照して、第1回路3は、たとえば、インバータ制御を行うスイッチング回路であり、内部回路10を有している。内部回路10は、たとえば、pチャネルMOSFET16とnチャネルMOSFET17とを相補的に利用するCMOSFET(Complementary Metal Oxide Semiconductor Field Effect Transistor)であってもよい。
 pチャネルMOSFET16とnチャネルMOSFET17のドレイン側が接続されて出力端子18とされ、当該出力端子18が負荷19に接続されている。pチャネルMOSFET16のソース側は、Vdd(電源電圧)端子20とされている。また、pチャネルMOSFET16およびnチャネルMOSFET17のゲートは共通のゲート端子21(入力端子)とされている。また、nチャネルMOSFET17のソース側は、グランド端子22とされ、グランド配線13に接続されている。
 第1配線12は、第1パッド7Aと内部回路10とを接続している。より具体的には、第1配線12は、内部回路10のゲート端子21に接続されている。第1パッド7Aから、内部回路10のゲート出力を有効にするか無効にするかを決定する制御入力信号が供給される。
 第1回路3は、第1配線12とグランド配線13との間に接続された保護素子23をさらに含んでいてもよい。保護素子23は、たとえば、第1パッド7A等の外部端子から侵入する静電気等のサージ電圧から内部回路10を保護するESD(Electro-Static Discharge)保護素子と称してもよい。保護素子23は、たとえば、複数の端子を有しており、複数の端子の1つが第1配線12に接続され、その他の1つの端子がグランド配線13に接続されていてもよい。
 保護素子23は、本開示の第1保護素子の一例としての保護トランジスタ24と、本開示の第2保護素子の一例としての保護ダイオード25とを含んでいてもよい。
 保護トランジスタ24は、この実施形態では、pチャネルMOSFETで形成されている。保護トランジスタ24のソース側の端子26が第1配線12に接続され、ドレイン側の端子27がグランド配線13に接続されている。
 保護ダイオード25は、この実施形態では、定電圧ダイオードで形成されている。保護ダイオード25のカソード側の端子28が第1配線12に接続され、アノード側の端子29がグランド配線13に接続されている。
 なお、保護素子23は、図2に示す保護トランジスタ24および保護ダイオード25に限らず、公知の保護素子を使用することができる。また、保護素子23の数も、図2に示すように2つである必要はなく、1つであってもよいし、3つ以上であってもよい。また、図2では、保護トランジスタ24が保護ダイオード25よりも電流の上流側(パッド7(外部端子)に近い側)に設けられているため、保護トランジスタ24を一次保護素子(プライマリクランプ(Primary Clamp))と称し、保護ダイオード25を二次保護素子(セカンダリクランプ(Secondary Clump))と称してもよい。
 抵抗素子9は、第1配線12の途中に介在している。この実施形態では、抵抗素子9は、保護トランジスタ24と第1配線12との接続部30(第1接続部)と、保護ダイオード25と第1配線12との接続部31(第2接続部)との間に設けられている。つまり、抵抗素子9は、保護トランジスタ24の下流側(内部回路10に近い側)に設けられている。また、抵抗素子9は、保護ダイオード25の上流側(内部回路10から遠い側)に設けられている。この実施形態では、抵抗素子9は、保護トランジスタ24の下流側であり、かつ保護ダイオード25の上流側に設けられている。
 抵抗素子9は、この実施形態では、上流側から下流側に向かって(外部端子から内部回路10に向かって)順に、第1抵抗32および第2抵抗33を含んでいる。
 図3は、図2の抵抗素子9の模式的な平面図である。図4は、図3のIV-IV線に沿う断面図である。図5は、図3のV-V線に沿う断面図である。図6は、図3のVI-VI線に沿う断面図である。図7A~図7Cは、各抵抗素子9の平面形状のバリエーションを説明するための図である。
 次に、主として図2の抵抗素子9の具体的な構成を説明する。
 前述したように、半導体装置1は、基板2を含み、さらにフィールド絶縁膜34と、抵抗素子9と、層間絶縁膜35と、第1配線12と、本開示の第2配線の一例としてのビア36とを含む。
 基板2は、ベース基板37と、ベース基板37上に形成されたエピタキシャル層38とを含む。
 ベース基板37は、表面39および裏面40を有している。表面39は、エピタキシャル層38に接する面である。裏面40は、その全面が、半導体装置1の外部に露出している。
 ベース基板37は、この実施形態ではシリコン(Si)基板で形成されているが、他の素材(たとえば、炭化シリコン(SiC)等)で形成された基板であってもよい。ベース基板37は、この実施形態ではp型である。ベース基板37は、たとえば、1×1014cm-3~5×1018cm-3の不純物濃度を有している。また、ベース基板37の厚さは、たとえば、研削前で500μm~800μmである。
 エピタキシャル層38は、ベース基板37に接しており、かつベース基板37に積層されている。エピタキシャル層38は、表面41および裏面42を有している。表面41は、半導体装置1の各種機能素子が形成される面であり、たとえば、素子主面と称してもよい。裏面42は、ベース基板37の表面39に接する面である。
 エピタキシャル層38は、この実施形態ではベース基板37と同じ材料(シリコン(Si))で形成されている。エピタキシャル層38は、ベース基板37と反対の導電型を有しており、この実施形態ではn型である。エピタキシャル層38は、たとえば、5×1014cm-3~1×1017cm-3の不純物濃度を有している。また、エピタキシャル層38の厚さは、たとえば、3μm~20μmである。
 エピタキシャル層38には、本開示の第1領域の一例としてのp型素子分離ウェル43が形成されている。p型素子分離ウェル43は、エピタキシャル層38の表面41からベース基板37に達するように形成されている。p型素子分離ウェル43の底部は、図4~図6に示すように、ベース基板37とエピタキシャル層38との境界の深さ位置に一致していてもよいし、ベース基板37の厚さ方向途中に位置していてもよい。つまり、p型素子分離ウェル43の深さは、エピタキシャル層38の厚さよりも大きくてもよい。
 このp型素子分離ウェル43によって取り囲まれたエピタキシャル層38の部分は、本開示の第2領域の一例としてのn型領域44である。n型領域44は、その側部がp型素子分離ウェル43によって区画され、その底部がp型のベース基板37によって区画されている。
 なお、図示は省略するが、第1回路3の他の領域にもp型素子分離ウェル43によって取り囲まれ、n型領域44と同様のn型領域が形成されていてもよい。そして、内部回路10(CMOSFET)のpチャネルMOSFET16が当該n型領域に形成され、nチャネルMOSFET17が、pチャネルMOSFET16の近傍のp型素子分離ウェル43に形成されていてもよい。また、第2~第4回路4~6の領域のそれぞれにおいても、p型素子分離ウェル43によって取り囲まれたn型領域が1つないし複数形成され、当該領域にダイオード、トランジスタ等、LSIを構成する機能素子が形成されていてもよい。
 n型領域44において、ベース基板37とエピタキシャル層38との境界には、n型埋込領域45が形成されている。n型埋込領域45は、ベース基板37とエピタキシャル層38との境界に跨って形成されている。n型埋込領域45は、エピタキシャル層38の表面41に沿う方向において、p型素子分離ウェル43とn型領域44との境界から内側に離れて形成されている。n型埋込領域45は、エピタキシャル層38の不純物濃度を超えるn型不純物濃度を有していてもよい。たとえば、n型埋込領域45の不純物濃度は、1×1016cm-3~1×1020cm-3であってもよい。
 フィールド絶縁膜34は、エピタキシャル層38の表面41に形成されている。フィールド絶縁膜34は、p型素子分離ウェル43およびn型領域44を覆っている。フィールド絶縁膜34は、p型素子分離ウェル43の一部を露出させる第1開口46と、n型領域44の一部を露出させる第2開口47とを有している。第2開口47は、たとえば、平面視環状に形成されている。
 フィールド絶縁膜34は、この実施形態では酸化シリコン(SiO)、より具体的にはLOCOS(LOCal Oxidation of Silicon)酸化膜から形成されているが、他の絶縁材料(たとえば、窒化シリコン(SiN)等)から形成されていてもよい。また、フィールド絶縁膜34は、複数の材料、たとえば、酸化シリコンと窒化シリコンとの積層構造で形成されていてもよい。
 また、フィールド絶縁膜34は、LOCOS酸化膜で形成される場合、第1開口46および第2開口47の各周縁部において、厚さが徐々に薄くなっていてもよい。このようにフィールド絶縁膜34の厚さが変化する部分を、たとえば、第1開口46を取り囲む第1バーズビーク部48および第2開口47を取り囲む第2バーズビーク部49と称してもよい。第1バーズビーク部48で囲まれたエピタキシャル層38の部分の表面41(第1表面50)および第2バーズビーク部49で囲まれたエピタキシャル層38の部分の表面41(第2表面51)は、エピタキシャル層38の他の領域の表面41に比べて高い位置となっている。
 p型素子分離ウェル43は、p型コンタクト部52(第1コンタクト部)を含む。p型コンタクト部52は、エピタキシャル層38の表面41に形成されており、第1開口46から露出している。p型コンタクト部52は、エピタキシャル層38の第1表面50からフィールド絶縁膜34の底部(表面41)よりも深い位置まで形成されている。また、p型コンタクト部52は、フィールド絶縁膜34の第1バーズビーク部48に沿うように(接するように)形成されている。これにより、p型コンタクト部52は、たとえば、断面視において、上部が細く下部が膨らんだ略ボトル状に形成されている。
 p型コンタクト部52は、p型素子分離ウェル43の不純物濃度を超えるp型不純物濃度を有していてもよい。たとえば、p型コンタクト部52の不純物濃度は、1×1016cm-3~1×1020cm-3であってもよい。
 n型領域44は、n型コンタクト部53(第2コンタクト部)を含む。n型コンタクト部53は、エピタキシャル層38の表面41に形成されており、第2開口47から露出している。つまり、n型コンタクト部53は、図3に示すように、平面視で環状に形成されている。また、n型コンタクト部53は、p型素子分離ウェル43とn型領域44との境界から内側に離れて形成されている。
 n型コンタクト部53は、エピタキシャル層38の第2表面51からフィールド絶縁膜34の底部(表面41)よりも深い位置まで形成されている。また、n型コンタクト部53は、フィールド絶縁膜34の第2バーズビーク部49に沿うように(接するように)形成されている。これにより、n型コンタクト部53は、たとえば、断面視において、上部が細く下部が膨らんだ略ボトル状に形成されている。
 n型コンタクト部53は、n型領域44の不純物濃度を超えるn型不純物濃度を有していてもよい。たとえば、n型コンタクト部53の不純物濃度は、1×1016cm-3~1×1020cm-3であってもよい。
 抵抗素子9は、フィールド絶縁膜34上に形成されている。抵抗素子9は、この実施形態では、ポリシリコン抵抗で形成されており、具体的には、p型不純物がドーピングされたポリシリコン抵抗であってもよい。抵抗素子9は、抵抗としての機能を満足する材料であれば、ポリシリコンとは異なる材料で形成されていてもよい。
 抵抗素子9は、前述のように、第1抵抗32および第2抵抗33を含む。
 第1抵抗32は、第2抵抗33よりも第1パッド7Aに近い側に形成されており、フィールド絶縁膜34を挟んでn型領域44に対向している。第1抵抗32は、複数形成されている。より具体的には、図3に示すように、フィールド絶縁膜34上に、複数本の第1抵抗32がストライプ状に配列されている。各第1抵抗32の両端部には、図5に示すように、高濃度にp型不純物がドーピングされた第1コンタクト部54が形成されている。また、複数の第1抵抗32の抵抗値は、互いに異なっていてもよいし、同じであってもよい。
 第2抵抗33は、第1抵抗32よりも内部回路10に近い側に形成されており、フィールド絶縁膜34を挟んでp型素子分離ウェル43に対向している。第2抵抗33は、複数形成されている。より具体的には、図3に示すように、フィールド絶縁膜34上に、複数本の第2抵抗33がストライプ状に配列されている。各第2抵抗33の両端部には、図6に示すように、高濃度にp型不純物がドーピングされた第2コンタクト部55が形成されている。また、複数の第2抵抗33の抵抗値は、互いに異なっていてもよいし、同じであってもよい。また、第2抵抗33の全体の抵抗値は、第1抵抗32の全体の抵抗値よりも高くても、低くてもよいが、次の理由から、第1抵抗32と第2抵抗33の抵抗値は同じであることが好ましい。たとえば、保護ダイオード25によって素子側配線60はグランド電位に近い電位に固定される。接続配線58は、フィールド絶縁膜34を挟んで端子電位に近いn型領域44とグランド電位に近いp型素子分離ウェル43の両方に対向するため、それぞれのフィールド絶縁膜34にかかる電圧を均等にするためには、接続配線58が端子電位とグランド電位の中間電位であることが好ましい。したがって、第1抵抗32と第2抵抗33の抵抗値は同じであることが好ましい。
 また、各抵抗素子9は、図7Aおよび図7Bに示すように、直線状に形成されていてもよいし、図7Cに示すように、曲線状に形成されていてもよい。図7Bのように、比較的幅広な抵抗素子9の場合、抵抗素子9の各端部に、複数のビア61(後述)が接続されていてもよい。
 層間絶縁膜35は、抵抗素子9を覆うように基板2上に形成されている。層間絶縁膜35は、この実施形態では酸化シリコン(SiO)から形成されているが、他の絶縁材料(たとえば、窒化シリコン(SiN)等)から形成されていてもよい。
 第1配線12は、層間絶縁膜35上に形成されている。第1配線12は、この実施形態ではアルミニウム(Al)で形成されている。第1配線12は、複数の第1抵抗32および複数の第2抵抗33を直列に接続している。
 第1配線12は、接続対象ごとに区別可能である。たとえば、第1配線12は、上流側から下流側に向かって(第1パッド7Aから内部回路10に向かって)順に、端子側配線56、第1配線57、接続配線58、第2配線59および素子側配線60を含んでいてもよい。
 端子側配線56は、抵抗素子9から第1パッド7Aに延びる配線であってもよい。端子側配線56は、第1抵抗32のうち最も第1パッド7Aに近い側の第1抵抗32の端部に接続されている。
 第1配線57は、複数の第1抵抗32を互いに直列または並列に接続する配線であってもよい。第1配線57は、複数の第1抵抗32を互いに直列に接続する場合は第1直列配線と称してよく、複数の第1抵抗32を互いに並列に接続する場合は第1並列配線と称してよい。第1配線57は、ストライプ状の複数の第1抵抗32の一端部および他端部同士を交互に接続しており、これにより、図3に示すように、第1配線57および第1抵抗32を含む配線経路は、平面視ジグザグ状に形成されている。
 接続配線58は、第1抵抗32と第2抵抗33とを接続する配線であってもよい。接続配線58は、n型領域44とp型素子分離ウェル43との間を跨っている。言い換えれば、接続配線58は、基板2の上方においてn型領域44とp型素子分離ウェル43との境界を横切っている。
 第2配線59は、複数の第2抵抗33を互いに直列または並列に接続する配線であってもよい。第2配線59は、複数の第2抵抗33を互いに直列に接続する場合は第2直列配線と称してよく、複数の第2抵抗33を互いに並列に接続する場合は第2並列配線と称してよい。第2配線59は、ストライプ状の複数の第2抵抗33の一端部および他端部同士を交互に接続しており、これにより、図3に示すように、第2配線59および第2抵抗33を含む配線経路は、平面視ジグザグ状に形成されている。
 素子側配線60は、抵抗素子9から内部回路10に延びる配線であってもよい。素子側配線60は、第2抵抗33のうち最も内部回路10に近い側の第2抵抗33の端部に接続されている。
 各配線56~60と抵抗素子9(第1抵抗32および第2抵抗33)とは、ビア61によって接続されている。ビア61は、層間絶縁膜35を厚さ方向に延び、各配線56~60と抵抗素子9とを接続している。ビア61は、この実施形態では、タングステン(W)で形成されているが、他の導電材料(たとえば、アルミニウム(Al)、銅(Cu)等)で形成されていてもよい。また、抵抗素子9に対しては、ビア61は、第1抵抗32の第1コンタクト部54および第2抵抗33の第2コンタクト部55に接続されている。
 ビア36は、第1配線12とn型領域44と接続する。ビア36は、抵抗素子9よりも第1パッド7Aに近い側で第1配線12に接続されている。より具体的には、ビア36は、端子側配線56から層間絶縁膜35を厚さ方向に延び、n型コンタクト部53に接続されている。ビア36は、この実施形態では、タングステン(W)で形成されているが、他の導電材料(たとえば、アルミニウム(Al)、銅(Cu)等)で形成されていてもよい。
 半導体装置1は、さらに、グランド配線13とp型素子分離ウェル43とを接続するビア62を含む。より具体的には、ビア62は、グランド配線13から層間絶縁膜35を厚さ方向に延び、p型コンタクト部52に接続されている。これにより、p型素子分離ウェル43およびベース基板37は、グランド電位に接続される。ビア62は、この実施形態では、タングステン(W)で形成されているが、他の導電材料(たとえば、アルミニウム(Al)、銅(Cu)等)で形成されていてもよい。
 なお、ビア36,61,62は、層間絶縁膜35を厚さ方向に貫通する部材である観点から「ビア」と称しているが、異なる導電部材を接続する観点から、「配線」や「接続部材」と称してもよい。
 そして、層間絶縁膜35上には、さらに層間絶縁膜および配線を含む多層配線構造が形成されていてもよいし、表面保護膜8が直接形成されていてもよい。
 以上、半導体装置1によれば、抵抗素子9よりも第1パッド7Aに近い側で第1配線12が電気的に分岐し、ビア36(第2配線)を介してn型領域44に接続されている。これにより、第1パッド7Aに電圧が加えられたとき、フィールド絶縁膜34を挟んで対向する第1抵抗32とn型領域44との間の電位差を小さくすることができる。言い換えれば、第1配線12およびビア36の配線抵抗等による電圧降下に起因する多少の誤差は見込まれるが、第1抵抗32およびn型領域44の電位を、ほぼ同じにすることができる。
 逆に、抵抗素子9の全てがp型素子分離ウェル43等のグランド電位の領域に対向していると、抵抗素子9とp型素子分離ウェル43との間の電位差が、グランド電位に対する抵抗素子9の電圧値になる。そのため、第1パッド7Aに比較的高い電圧(たとえば、静電気等に起因する1000Vを超える電圧)が加えられると、抵抗素子9とp型素子分離ウェル43との間のフィールド絶縁膜34に加わる電圧が大きくなり、フィールド絶縁膜34が絶縁破壊する可能性が高まる。
 これに対して、第1抵抗32がn型領域44(端子電位または端子電位とほぼ同じ電位)に対向している構成であれば、抵抗素子9の全部がp型素子分離ウェル43(グランド電位)に対向する構成に比べて、フィールド絶縁膜34に加わる電圧を小さくすることができる。その結果、フィールド絶縁膜34の絶縁破壊の可能性を低くすることができるので、半導体装置1の信頼性を高めることができる。
 しかも、第1抵抗32が、互いに直列または並列に接続されるように複数形成されている。そのため、複数の第1抵抗32の全体に加わる電圧を各第1抵抗32に分散させることができるので、各第1抵抗32における発熱量を小さくすることができる。その結果、第1抵抗32からの温度上昇を抑えることができ、半導体装置1の信頼性を高めることができる。第1抵抗32が層間絶縁膜35に覆われ、フィールド絶縁膜34と層間絶縁膜35との間に熱が籠りやすいので、効果的である。
 また、半導体装置1では、第1抵抗32に加えて、第2抵抗33が設けられている。複数の第1抵抗32の内部回路10側の端部の電位は、複数の第1抵抗32による電圧降下によって端子電位に比べて低くなっており、よりグランド電位に近づいている。ここで、n型領域44の電位(端子電位または端子電位とほぼ同じ電位)と第1抵抗32の内部回路10側の端部(図3では、4本の第1抵抗32のうち、紙面一番上の第1抵抗32)の電位との間の第1電位差と、当該端部の電位とp型素子分離ウェル43の電位(グランド電位)との間の第2電位差を比較する。この場合、第2電位差が第1電位差より小さければ(第2電位差<第1電位差)、p型素子分離ウェル43に対向する位置に第2抵抗33を設けることによって、第1抵抗32の下流側(内部回路10側)におけるフィールド絶縁膜34の絶縁破壊の可能性を、より低くすることができる。
 以上、本開示の実施形態について説明したが、本開示は他の形態で実施することもできる。
 たとえば、図8に示すように、抵抗素子9は、第1抵抗32のみであってもよい。つまり、抵抗素子9の全部が、フィールド絶縁膜34を挟んでn型領域44に対向していてもよい。
 また、前述の実施形態では、第1配線12の位置は、抵抗素子9を覆う層間絶縁膜35上であったが、これに限らない。たとえば、層間絶縁膜35上にさらに多層配線構造が形成される場合、当該多層配線構造のいずれかの層間絶縁膜上に第1配線12が形成されていてもよい。
 また、抵抗素子9と基板2との間には、前述のようにフィールド絶縁膜34のみが介在されていてもよいし、フィールド絶縁膜34の他に、別の絶縁膜が介在されていてもよい。
 また、内部回路10は、たとえば図2のようなCMOSインバータの入力回路や、CMOSインバータの出力回路、またはバイポーラトランジスタを用いた差動アンプの入力回路などであってもよい。
 その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
 本出願は、2020年4月8日に日本国特許庁に提出された特願2020-069913号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
 1 半導体装置
 2 基板
 7 パッド
  7A 第1パッド
  7B 第2パッド
 9 抵抗素子
 10 内部回路
 12 第1配線
 13 グランド配線
 23 保護素子
 24 保護トランジスタ
 25 保護ダイオード
 30 接続部
 32 第1抵抗
 33 第2抵抗
 34 フィールド絶縁膜
 36 ビア
 37 ベース基板
 38 エピタキシャル層
 43 p型素子分離ウェル
 44 n型領域

Claims (12)

  1.  半導体層と、
     前記半導体層に形成され、グランド電位に接続される第1導電型の第1領域と、
     前記半導体層に形成された第2導電型の第2領域と、
     前記半導体層上に形成され、前記第1領域および前記第2領域を覆う絶縁膜と、
     内部回路と、
     前記内部回路を駆動する、または前記内部回路から駆動される信号端子と、
     前記内部回路と前記信号端子とを接続する第1配線と、
     前記絶縁膜上に形成され、かつ前記第1配線の途中に介在する抵抗素子であって、前記絶縁膜を挟んで前記第2領域に対向する第1抵抗を含む抵抗素子と、
     前記抵抗素子よりも前記信号端子に近い側で前記第1配線に接続され、前記第1配線と前記第2領域とを接続する第2配線とを含む、半導体装置。
  2.  前記第1抵抗は、互いに直列または並列に接続された複数の第1抵抗を含む、請求項1に記載の半導体装置。
  3.  前記抵抗素子は、前記複数の第1抵抗よりも前記内部回路に近い側に形成され、前記絶縁膜を挟んで前記第1領域に対向する第2抵抗を含む、請求項2に記載の半導体装置。
  4.  前記グランド電位を提供するグランド端子と、
     前記グランド端子に接続されたグランド配線とをさらに含む、請求項1~3のいずれか一項に記載の半導体装置。
  5.  前記信号端子は、前記半導体装置の表面に形成された第1パッドを含み、
     前記グランド端子は、前記半導体装置の表面に形成された第2パッドを含む、請求項4に記載の半導体装置。
  6.  前記第1配線と前記グランド配線との間に接続された保護素子をさらに含む、請求項4または5に記載の半導体装置。
  7.  前記保護素子は、前記第1配線と前記第2配線との接続部よりも前記信号端子に近い側で、前記第1配線に接続された第1保護素子を含む、請求項6に記載の半導体装置。
  8.  前記保護素子は、前記抵抗素子よりも前記内部回路に近い側で、前記第1配線に接続された第2保護素子を含む、請求項7に記載の半導体装置。
  9.  前記抵抗素子は、ポリシリコン抵抗を含む、請求項1~8のいずれか一項に記載の半導体装置。
  10.  前記絶縁膜は、酸化膜を含む、請求項1~9のいずれか一項に記載の半導体装置。
  11.  前記第2配線は、前記絶縁膜を厚さ方向に貫通して前記第2領域に接続されたビアを含む、請求項1~10のいずれか一項に記載の半導体装置。
  12.  前記半導体層は、前記第1導電型の基板と、前記基板上に形成されたエピタキシャル層とを含み、
     前記第1領域および前記第2領域は、前記エピタキシャル層に形成されている、請求項1~11のいずれか一項に記載の半導体装置。
PCT/JP2021/012245 2020-04-08 2021-03-24 半導体装置 WO2021205879A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022514390A JPWO2021205879A1 (ja) 2020-04-08 2021-03-24
US17/912,013 US20230131034A1 (en) 2020-04-08 2021-03-24 Semiconductor device
DE112021002218.0T DE112021002218T5 (de) 2020-04-08 2021-03-24 Halbleiterbauelement
CN202180027411.8A CN115428150A (zh) 2020-04-08 2021-03-24 半导体器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020069913 2020-04-08
JP2020-069913 2020-04-08

Publications (1)

Publication Number Publication Date
WO2021205879A1 true WO2021205879A1 (ja) 2021-10-14

Family

ID=78023023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012245 WO2021205879A1 (ja) 2020-04-08 2021-03-24 半導体装置

Country Status (5)

Country Link
US (1) US20230131034A1 (ja)
JP (1) JPWO2021205879A1 (ja)
CN (1) CN115428150A (ja)
DE (1) DE112021002218T5 (ja)
WO (1) WO2021205879A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258056A (ja) * 1987-04-15 1988-10-25 Seiko Instr & Electronics Ltd 半導体装置
JPH01286460A (ja) * 1988-05-13 1989-11-17 Nec Corp 半導体集積回路の保護装置
JPH03139877A (ja) * 1989-10-26 1991-06-14 Nissan Motor Co Ltd 半導体装置
JPH06151716A (ja) * 1992-11-11 1994-05-31 Hitachi Ltd 半導体集積回路装置
JPH09270492A (ja) * 1996-03-29 1997-10-14 Mitsubishi Electric Corp 入力/出力保護回路
JPH10223842A (ja) * 1997-02-12 1998-08-21 Sanyo Electric Co Ltd 半導体集積回路およびその製造方法
JP2016027622A (ja) * 2014-06-27 2016-02-18 株式会社東芝 半導体装置
JP2016195198A (ja) * 2015-04-01 2016-11-17 セイコーエプソン株式会社 半導体集積回路装置及び電子機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597357B2 (ja) 2016-02-09 2019-10-30 三菱電機株式会社 保護ダイオード付き電界効果トランジスタ
JP2020069913A (ja) 2018-10-31 2020-05-07 ダイムラー・アクチェンゲゼルシャフトDaimler AG 運転操作補助装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258056A (ja) * 1987-04-15 1988-10-25 Seiko Instr & Electronics Ltd 半導体装置
JPH01286460A (ja) * 1988-05-13 1989-11-17 Nec Corp 半導体集積回路の保護装置
JPH03139877A (ja) * 1989-10-26 1991-06-14 Nissan Motor Co Ltd 半導体装置
JPH06151716A (ja) * 1992-11-11 1994-05-31 Hitachi Ltd 半導体集積回路装置
JPH09270492A (ja) * 1996-03-29 1997-10-14 Mitsubishi Electric Corp 入力/出力保護回路
JPH10223842A (ja) * 1997-02-12 1998-08-21 Sanyo Electric Co Ltd 半導体集積回路およびその製造方法
JP2016027622A (ja) * 2014-06-27 2016-02-18 株式会社東芝 半導体装置
JP2016195198A (ja) * 2015-04-01 2016-11-17 セイコーエプソン株式会社 半導体集積回路装置及び電子機器

Also Published As

Publication number Publication date
DE112021002218T5 (de) 2023-03-09
CN115428150A (zh) 2022-12-02
US20230131034A1 (en) 2023-04-27
JPWO2021205879A1 (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
US7183612B2 (en) Semiconductor device having an electrostatic discharge protecting element
US6587320B1 (en) Apparatus for current ballasting ESD sensitive devices
US8067789B2 (en) Semiconductor integrated circuit device
JP3717227B2 (ja) 入力/出力保護回路
CN108962886B (zh) 半导体装置
KR101862900B1 (ko) 반도체 장치
JP7293592B2 (ja) 半導体素子及び半導体装置
US7800180B2 (en) Semiconductor electrostatic protection device
JP7135636B2 (ja) 半導体装置
CN1127142C (zh) 半导体器件
US10615076B2 (en) Semiconductor chip having on-chip noise protection circuit
WO2021205879A1 (ja) 半導体装置
JP2906749B2 (ja) 半導体装置のゲート保護装置
JP4995364B2 (ja) 半導体集積回路装置
JP3237612B2 (ja) 半導体装置
EP1190450B1 (en) Electrostatic discharge protection of integrated circuits
JP2007287919A (ja) 温度検出機能付き半導体装置
JP2611639B2 (ja) 半導体装置
JP2009038099A (ja) 半導体装置
US6597021B2 (en) Protection circuit and semiconductor device
JPH0518466B2 (ja)
JP7052972B2 (ja) 半導体集積回路
JP3082714B2 (ja) 半導体装置
JP5864216B2 (ja) 半導体装置
JP3134443B2 (ja) 半導体入力保護装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514390

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21784322

Country of ref document: EP

Kind code of ref document: A1