WO2021203903A1 - 一种复合绝缘横担芯体的制备方法 - Google Patents

一种复合绝缘横担芯体的制备方法 Download PDF

Info

Publication number
WO2021203903A1
WO2021203903A1 PCT/CN2021/080174 CN2021080174W WO2021203903A1 WO 2021203903 A1 WO2021203903 A1 WO 2021203903A1 CN 2021080174 W CN2021080174 W CN 2021080174W WO 2021203903 A1 WO2021203903 A1 WO 2021203903A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
core
composite insulating
hollow organic
arm
Prior art date
Application number
PCT/CN2021/080174
Other languages
English (en)
French (fr)
Inventor
刘磊
刘云鹏
唐力
刘贺晨
王国利
李乐
解卓鹏
Original Assignee
南方电网科学研究院有限责任公司
华北电力大学(保定)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司, 华北电力大学(保定) filed Critical 南方电网科学研究院有限责任公司
Publication of WO2021203903A1 publication Critical patent/WO2021203903A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the invention relates to the technical field of manufacturing composite insulating cross-arm cores.
  • the currently used composite insulation cross arm uses polyurethane material as the inner core, and uses polyol (white material) and isocyanate (black material) to be weighed in different proportions, then mixed and poured into the mold for foaming, and the composite insulation crossarm is obtained after curing and molding.
  • the core body has the characteristics of both solid and hollow materials, and its weight is relatively light.
  • the heterogeneous interface between it and the cross-arm mandrel leads to the problem of poor interface adhesion of this type of cross-arm.
  • the problem of poor porosity causes defects such as high water absorption and easy hydrolysis. Under long-term external rain environment (especially high salt spray environment), it will accelerate cross-arm aging and reduce insulation strength.
  • the technical problem to be solved by the present invention is to provide a method for preparing a composite insulating cross-arm core, which has the characteristics of low parallel pore and through pore rate, high closed pore rate and low water absorption rate. So as to improve its corrosion resistance and anti-aging performance, in order to achieve the purpose of improving the internal insulation performance.
  • a method for preparing a composite insulating cross-arm core includes the following steps:
  • red material is any one of the following: triethylenediamine, dimethylaminoethyl ether, stannous octoate, pentamethyldiethylenetriamine; white material is E -51 type epoxy resin; silane coupling agent is ⁇ -aminopropyl triethoxysilane; defoaming agent is any one of the following: polyoxyethylene polyoxypropylene pentaerythritol ether, polyoxyethylene polyoxypropylene Alcoholamine ether, polyoxypropylene glyceryl ether, polyoxypropylene polyoxyethylene glyceryl ether, polydimethylsiloxane; dispersant is any one of the following: triethylenediamine, dimethylaminoethyl ether, stannous octoate, pentamethyldiethylenetriamine; white material is E -51 type epoxy resin; silane coupling agent is ⁇ -aminopropyl triethoxysilane; defoaming agent is any
  • modified hollow organic microbeads Preparation of modified hollow organic microbeads, the hollow organic microbeads weighed in step a and the silane coupling agent are mixed and stirred at a speed of 1000-1500r/min for 5min to obtain modified hollow organic microbeads;
  • step c Prepare the core filling initial material, mix the red material weighed in step a with the modified hollow organic microbeads obtained in step b, and then mix it with the white material weighed in step a Stir together uniformly, and then mix with the defoamer and dispersant weighed in step a, and stir for 1 to 2 minutes at a speed of 1000 to 1800 r/min to obtain the core filling initial material;
  • step d Prepare the core filling material, place the core filling material obtained in step c in a vacuum drying oven for 50 to 80 minutes and then take it out, and then stir it at a speed of 1000 to 1800 r/min for 50 to 80 seconds to make
  • the modified hollow organic microbeads are evenly distributed, and then they are placed in a vacuum drying box to vacuum until there are no bubbles overflowing on the surface, so as to obtain core filling materials;
  • the physical parameters of the hollow organic microbeads weighed in step a are: density 0.06 to 0.26 g/cm3, average particle size 1 to 100 ⁇ m, and wall thickness 0.14 to 1.24 ⁇ m.
  • step a weigh the raw materials and their parts by weight as follows: 24600 parts of red material; 26500 parts of white material; 1012.88 parts of hollow organic microbeads; 481 parts of silane coupling agent; 266 parts of defoamer; and 1395 parts of dispersant.
  • Polyurethane foam material has a low closed cell rate and high water absorption rate, and it will have serious interface problems when used as a cross-arm filler. From the scanning electron micrograph of the composite insulating cross-arm core prepared by the present invention (see Figure 1) and the scanning electron micrograph of the currently used composite insulating cross-arm core material (see Figure 3), it can be seen that the epoxy resin is combined with the hollow core. The organic microbeads reduce the inner packing density. In addition, because the organic microbeads have the characteristics of high closed cell ratio, controlled moisture absorption and improved structure, the filler provided by the present invention has better electrical characteristics. Compared with traditional polyurethane foaming, epoxy resin combined with hollow organic microbead material has higher dielectric strength and lower dielectric loss. In addition, it has excellent matrix performance and reliable matrix/filler interface bonding performance.
  • the leakage current value of the test piece made of the composite insulating cross-arm core material prepared by the present invention is stabilized at 19 ⁇ A after being pressurized to 12kv, which is nearly 4000 times lower than the leakage circuit value of the polyurethane test piece, and the test piece can be kept under 12kv for a long time. Maintain stability and good insulation effect.
  • the hollow organic microbeads and the silane coupling agent are mixed and stirred to obtain the modified hollow organic microbeads, so that the surface of the hollow organic microbeads is attached with a layer of liquid coupling film, and after curing, it is more compactly combined with the epoxy resin.
  • Figure 1 is a scanning electron micrograph of a composite insulating cross-arm core made according to embodiment 2;
  • Figure 2 is an image of the leakage current and time of the composite insulation cross-arm core material made in accordance with Example 2 after being boiled for 24 hours, where the diameter of the bottom surface of the test piece is 6cm, the height is 3cm, and the applied voltage is 12kv;
  • Figure 3 is a scanning electron micrograph of the currently used composite insulating cross-arm core material
  • Figure 4 is the current and time images of the current used composite insulation cross-arm core material after being boiled in water for 24 hours.
  • the bottom diameter of the test piece is 6cm
  • the height is 3cm
  • the applied voltage is 12kv.
  • a method for preparing a composite insulating cross-arm core includes the following steps:
  • red material is any one of the following: triethylenediamine, dimethylaminoethyl ether, stannous octoate, pentamethyldiethylenetriamine; white material is E -51 type epoxy resin; silane coupling agent is ⁇ -aminopropyl triethoxysilane; defoaming agent is any one of the following: polyoxyethylene polyoxypropylene pentaerythritol ether, polyoxyethylene polyoxypropylene Alcoholamine ether, polyoxypropylene glyceryl ether, polyoxypropylene polyoxyethylene glyceryl ether, polydimethylsiloxane; dispersant is any one of the following: triethylenediamine, dimethylaminoethyl ether, stannous octoate, pentamethyldiethylenetriamine; white material is E -51 type epoxy resin; silane coupling agent is ⁇ -aminopropyl triethoxysilane; defoaming agent is any
  • modified hollow organic microbeads Preparation of modified hollow organic microbeads, the hollow organic microbeads weighed in step a and the silane coupling agent are mixed and stirred at a speed of 1000-1500r/min for 5min to obtain modified hollow organic microbeads;
  • step c Prepare the core filling initial material, mix the red material weighed in step a with the modified hollow organic microbeads obtained in step b and stir evenly (the microbeads and the red material are in a fluid state after stirring, and the experiment
  • the chamber adopts double-head vacuum pouring.
  • step d Prepare the core filling material, place the core filling material obtained in step c in a vacuum drying oven for 50 to 80 minutes and then take it out, and then stir it at a speed of 1000 to 1800 r/min for 50 to 80 seconds to make
  • the modified hollow organic microbeads are evenly distributed, and then they are placed in a vacuum drying box to vacuum until there are no bubbles overflowing on the surface, so as to obtain core filling materials;
  • a composite insulating cross-arm core fill the core filling material obtained in step d into the preheated composite insulating cross-arm mold, cure at 65°C for more than 12 hours, and then remove the composite insulating cross-arm mold from The cured product is taken out, and the product is the composite insulating cross-arm core.
  • the physical parameters of the hollow organic microbeads weighed in step a are: density 0.06 to 0.26 g/cm3, average particle size 1 to 100 ⁇ m, and wall thickness 0.14 to 1.24 ⁇ m.
  • a method for preparing a composite insulating cross-arm core includes the following steps:
  • the material is triethylene diamine;
  • the white material is E-51 epoxy resin;
  • the silane coupling agent is ⁇ -aminopropyl triethoxy silane;
  • the antifoaming agent is polyoxyethylene polyoxypropylene pentaerythritol ether;
  • the dispersing agent is Fatty acids
  • modified hollow organic microbeads Preparation of modified hollow organic microbeads, the hollow organic microbeads weighed in step a and the silane coupling agent are mixed and stirred at a speed of 1000-1500r/min for 5min to obtain modified hollow organic microbeads;
  • step c Prepare the core filling initial material, mix the red material weighed in step a with the modified hollow organic microbeads obtained in step b and stir evenly (the microbeads and the red material are in a fluid state after stirring, and the experiment
  • the chamber adopts double-head vacuum pouring.
  • step d Prepare the core filling material, place the core filling material obtained in step c in a vacuum drying oven for 50 to 80 minutes and then take it out, and then stir it at a speed of 1000 to 1800 r/min for 50 to 80 seconds to make
  • the modified hollow organic microbeads are evenly distributed, and then they are placed in a vacuum drying box to vacuum until there are no bubbles overflowing on the surface, so as to obtain core filling materials;
  • the physical parameters of the hollow organic microbeads weighed in step a are: density 0.06 to 0.26 g/cm3, average particle size 1 to 100 ⁇ m, and wall thickness 0.14 to 1.24 ⁇ m.
  • a method for preparing a composite insulating cross-arm core includes the following steps:
  • the material is any one of the following: triethylenediamine, dimethylaminoethyl ether, stannous octoate, pentamethyldiethylenetriamine; white material is E-51 type epoxy resin; silane coupling agent is ⁇ -Aminopropyltriethoxysilane;
  • the defoaming agent is any one of the following: polyoxyethylene polyoxypropylene pentaerythritol ether, polyoxyethylene polyoxypropanolamine ether, polyoxypropylene glyceryl ether and polyoxyethylene Propylene polyoxyethylene glycerol ether, polydimethylsiloxane;
  • dispersant is any one of the following: fatty acids, ali
  • modified hollow organic microbeads Preparation of modified hollow organic microbeads, the hollow organic microbeads weighed in step a and the silane coupling agent are mixed and stirred at a speed of 1000-1500r/min for 5min to obtain modified hollow organic microbeads;
  • step c Prepare the core filling initial material, mix the red material weighed in step a with the modified hollow organic microbeads obtained in step b and stir evenly (the microbeads and the red material are in a fluid state after stirring, and the experiment
  • the chamber adopts double-head vacuum pouring.
  • step d Prepare the core filling material, place the core filling material obtained in step c in a vacuum drying oven for 50 to 80 minutes and then take it out, and then stir it at a speed of 1000 to 1800 r/min for 50 to 80 seconds to make
  • the modified hollow organic microbeads are evenly distributed, and then they are placed in a vacuum drying box to vacuum until there are no bubbles overflowing on the surface, so as to obtain core filling materials;
  • a composite insulating cross-arm core fill the core filling material obtained in step d in the preheated composite insulating cross-arm mold, cure at 100°C for more than 12 hours, and then remove the composite insulating cross-arm mold from The cured product is taken out, and the product is the composite insulating cross-arm core.
  • the physical parameters of the hollow organic microbeads weighed in step a are: density 0.06 to 0.26 g/cm3, average particle size 1 to 100 ⁇ m, and wall thickness 0.14 to 1.24 ⁇ m.

Abstract

一种复合绝缘横担芯体的制备方法,包括以下步骤:a.称取原料,称取下述重量份原料:红料21125~28125份;白料25000~28000份;空心有机微珠925.5~1100.26份;硅烷偶联剂461.5~500.5份;消泡剂231.5~300.5份;分散剂1265~1525份;b.制备改性空心有机微珠,c.制备芯体填充初料;d.制备芯体填充原料;e.制备复合绝缘横担芯体。该复合绝缘横担芯体的并孔和通孔率低、闭孔率高,吸水率低,从而提高其耐腐蚀、抗老化性能,以达到提高内绝缘性能的目的。

Description

一种复合绝缘横担芯体的制备方法 技术领域
本发明涉及复合绝缘横担芯体制作技术领域。
背景技术
目前所使用的复合绝缘横担采用聚氨酯材质作为内芯,采用多元醇(白料)和异氰酸酯(黑料)按不同的比例称量,再混合倒进模具发泡,固化成型后得到复合绝缘横担芯体,兼具固体和空心材料的特点,质量较轻,但因其与横担芯棒的异质界面导致该类型横担的界面粘接不良的问题,另外存在充气泡不均、闭孔率差的问题,造成其吸水率高、易水解等缺陷,在外界长期的雨水环境下(尤其是高盐雾环境)会加速横担老化、降低绝缘强度。
因此,设计一种新型内填充材料以及其界面粘接工艺来解决现有内填充型横担的内绝缘界面高吸水率的问题就显得尤为重要了。
发明内容
本发明要解决的技术问题是提供一种复合绝缘横担芯体的制备方法,它具有并孔和通孔率低、闭孔率高,吸水率低的特点。从而提高其耐腐蚀、抗老化性能,以达到提高内绝缘性能目的。
为解决上述技术问题,本发明所采取的技术方案是:
一种复合绝缘横担芯体的制备方法,包括以下步骤:
a.称取原料,称取下述重量份原料:红料21125~28125份;白料25000~28000份;空心有机微珠925.5~1100.26份;硅烷偶联剂461.5~500.5份;消泡剂231.5~300.5份;分散剂1265~1525份;红料为下述中的任意一种:三乙烯二胺、二甲氨基乙基醚、辛酸亚锡、五甲基二乙烯三胺;白料为E-51型环氧树脂;硅烷偶联剂为γ―氨丙基三乙氧基硅烷;消泡剂为下述中的任意一种:聚氧乙烯聚氧丙烯季戊四醇醚、聚氧乙烯聚氧丙醇胺醚、聚氧丙烯甘油醚和聚氧丙烯聚氧乙烯甘油醚、聚二甲基硅氧烷;分散剂为下述中的任意一种:脂肪酸类、脂肪族酰胺类或酯类;
b.制备改性空心有机微珠,将步骤a中所称取的空心有机微珠和硅烷偶联剂混合后在转速为1000~1500r/min下搅拌5min,得到改性空心有机微珠;
c.制备芯体填充初料,将步骤a中所称取的红料与步骤b中所获取的改性空心有机微珠混合搅拌均匀,之后再与步骤a中所称取的白料混合在一起搅拌均匀,之后再与步骤a中所称取的消泡剂和分散剂混合后,在转速为1000~1800r/min下搅拌1~2min,得到芯体填充初料;
d.制备芯体填充原料,将步骤c中所得到的芯体填充初料静置于真空干燥箱50~80min后取出,再将其在转速为1000~1800r/min下搅拌50~80s,使改性空心有机微珠分布均匀,之后将其置于真空干燥箱抽真空至表面无气泡溢出,从而获取芯体填充原料;
e.制备复合绝缘横担芯体,将步骤d中所获得的芯体填充原料填充于预热后的复合绝缘横担模具中,在65~100℃下固化12小时以上,之后从复合绝缘横担模具中取出固化 成型的产品,产品即为复合绝缘横担芯体。
本发明进一步改进在于:
步骤a中所称取的空心有机微珠物理参数为:密度0.06~0.26g/cm3、平均粒径1~100μm、壁厚0.14~1.24μm。
在步骤a中,称取原料及其重量份为:红料24600份;白料26500份;空心有机微珠1012.88份;硅烷偶联剂481份;消泡剂266份;分散剂1395份。
采用上述技术方案所产生的有益效果在于:
聚氨酯发泡材料的闭孔率低、吸水率高,作为横担填充材料时会存在较严重的界面问题。由采用本发明制备的复合绝缘横担芯体的扫描电镜图(参见图1)和目前所采用的复合绝缘横担芯体材质扫描电镜图(参见图3)可以看出,环氧树脂结合空心有机微珠降低了内填充密度,另外由于有机微珠具有高闭孔率、控制吸湿性和提高结构强特点使得本发明提供的填料具有更好的电学特性。与传统聚氨酯发泡相比,环氧树脂结合空心有机微珠材料具有较高的介电强度和较低的介电损耗,另外具有优异的基体性能和可靠的基体/填料界面粘结性能。
由采用本发明制备的复合绝缘横担芯体材质泄漏电流图(参见图2)和目前所采用的复合绝缘横担芯体材质电流图(参见图4)可以得出,现有复合绝缘横担芯体材质(聚氨酯)试件在20s左右加压至12kv,此时泄漏电流已高达80000μA,试件只经过8s左右的稳定便开始击穿放电,绝缘效果较差。而采用本发明制备的复合绝缘横担芯体材质的试件加压至12kv后的泄漏电流值稳定在19μA,较聚氨酯试件的泄漏电路值低了接近4000倍,试件能在12kv下长期保持稳定,绝缘效果好。
空心有机微珠和硅烷偶联剂混合搅拌后得到的改性空心有机微珠使得空心有机微珠表面附上一层液体偶联膜,固化后使之与环氧树脂结合更紧凑。
它具有并孔和通孔率低、闭孔率高,吸水率低的特点。从而提高其耐腐蚀、抗老化性能,以达到提高内绝缘性能目的。
附图说明
图1是按照实施例2所做出的复合绝缘横担芯体扫描电镜图;
图2是按照实施例2所做出的复合绝缘横担芯体材质水煮24h后的泄漏电流与时间图像,其中试件底面直径为6cm,高度3cm,施加电压为12kv;
图3是目前所采用的复合绝缘横担芯体材质扫描电镜图;
图4是目前所采用的复合绝缘横担芯体材质水煮24h后的泄漏电流与时间图像,其中试件底面直径为6cm,高度3cm,施加电压为12kv。
具体实施方式
下面将结合附图和具体实施例对本发明进行进一步详细说明。
实施例1
一种复合绝缘横担芯体的制备方法,包括以下步骤:
a.称取原料,称取下述重量份原料:红料21125~28125份;白料25000~28000份;空心有机微珠925.5~1100.26份;硅烷偶联剂461.5~500.5份;消泡剂231.5~300.5份;分 散剂1265~1525份;红料为下述中的任意一种:三乙烯二胺、二甲氨基乙基醚、辛酸亚锡、五甲基二乙烯三胺;白料为E-51型环氧树脂;硅烷偶联剂为γ―氨丙基三乙氧基硅烷;消泡剂为下述中的任意一种:聚氧乙烯聚氧丙烯季戊四醇醚、聚氧乙烯聚氧丙醇胺醚、聚氧丙烯甘油醚和聚氧丙烯聚氧乙烯甘油醚、聚二甲基硅氧烷;分散剂为下述中的任意一种:脂肪酸类、脂肪族酰胺类或酯类;
b.制备改性空心有机微珠,将步骤a中所称取的空心有机微珠和硅烷偶联剂混合后在转速为1000~1500r/min下搅拌5min,得到改性空心有机微珠;
c.制备芯体填充初料,将步骤a中所称取的红料与步骤b中所获取的改性空心有机微珠混合搅拌均匀(微珠与红料搅拌后呈流体状即可,实验室采用双头真空浇筑,由于红料粘稠,与微珠搅拌结合后粘度太大,对搅拌与浇筑都有不利影响),之后再与步骤a中所称取的白料混合在一起搅拌均匀(由于白料较为粘稠,所以后加),之后再与步骤a中所称取的消泡剂和分散剂混合后,在转速为1000~1800r/min下搅拌1~2min,得到芯体填充初料;
d.制备芯体填充原料,将步骤c中所得到的芯体填充初料静置于真空干燥箱50~80min后取出,再将其在转速为1000~1800r/min下搅拌50~80s,使改性空心有机微珠分布均匀,之后将其置于真空干燥箱抽真空至表面无气泡溢出,从而获取芯体填充原料;
e.制备复合绝缘横担芯体,将步骤d中所获得的芯体填充原料填充于预热后的复合绝缘横担模具中,在65℃下固化12小时以上,之后从复合绝缘横担模具中取出固化成型的产品,产品即为复合绝缘横担芯体。
步骤a中所称取的空心有机微珠物理参数为:密度0.06~0.26g/cm3、平均粒径1~100μm、壁厚0.14~1.24μm。
实施例2
一种复合绝缘横担芯体的制备方法,包括以下步骤:
a.称取原料,称取下述重量份原料:红料24600份;白料26500份;空心有机微珠1012.88份;硅烷偶联剂481份;消泡剂266份;分散剂1395份;红料为三乙烯二胺;白料为E-51型环氧树脂;硅烷偶联剂为γ―氨丙基三乙氧基硅烷;消泡剂为聚氧乙烯聚氧丙烯季戊四醇醚;分散剂为脂肪酸类;
b.制备改性空心有机微珠,将步骤a中所称取的空心有机微珠和硅烷偶联剂混合后在转速为1000~1500r/min下搅拌5min,得到改性空心有机微珠;
c.制备芯体填充初料,将步骤a中所称取的红料与步骤b中所获取的改性空心有机微珠混合搅拌均匀(微珠与红料搅拌后呈流体状即可,实验室采用双头真空浇筑,由于红料粘稠,与微珠搅拌结合后粘度太大,对搅拌与浇筑都有不利影响),之后再与步骤a中所称取的白料混合在一起搅拌均匀(由于白料较为粘稠,所以后加),之后再与步骤a中所称取的消泡剂和分散剂混合后,在转速为1000~1800r/min下搅拌1~2min,得到芯体填充初料;
d.制备芯体填充原料,将步骤c中所得到的芯体填充初料静置于真空干燥箱50~80min后取出,再将其在转速为1000~1800r/min下搅拌50~80s,使改性空心有机微珠分布均匀,之后将其置于真空干燥箱抽真空至表面无气泡溢出,从而获取芯体填充原料;
e.制备复合绝缘横担芯体,将步骤d中所获得的芯体填充原料填充于预热后的复合绝缘横担模具中,在80℃下固化12小时以上,之后从复合绝缘横担模具中取出固化成型的产品,产品即为复合绝缘横担芯体。
步骤a中所称取的空心有机微珠物理参数为:密度0.06~0.26g/cm3、平均粒径1~100μm、壁厚0.14~1.24μm。
实施例3
一种复合绝缘横担芯体的制备方法,包括以下步骤:
a.称取原料,称取下述重量份原料:红料28125份;白料28000份;空心有机微珠100.26份;硅烷偶联剂500.5份;消泡剂300.5份;分散剂1525份;红料为下述中的任意一种:三乙烯二胺、二甲氨基乙基醚、辛酸亚锡、五甲基二乙烯三胺;白料为E-51型环氧树脂;硅烷偶联剂为γ―氨丙基三乙氧基硅烷;消泡剂为下述中的任意一种:聚氧乙烯聚氧丙烯季戊四醇醚、聚氧乙烯聚氧丙醇胺醚、聚氧丙烯甘油醚和聚氧丙烯聚氧乙烯甘油醚、聚二甲基硅氧烷;分散剂为下述中的任意一种:脂肪酸类、脂肪族酰胺类或酯类;
b.制备改性空心有机微珠,将步骤a中所称取的空心有机微珠和硅烷偶联剂混合后在转速为1000~1500r/min下搅拌5min,得到改性空心有机微珠;
c.制备芯体填充初料,将步骤a中所称取的红料与步骤b中所获取的改性空心有机微珠混合搅拌均匀(微珠与红料搅拌后呈流体状即可,实验室采用双头真空浇筑,由于红料粘稠,与微珠搅拌结合后粘度太大,对搅拌与浇筑都有不利影响),之后再与步骤a中所称取的白料混合在一起搅拌均匀(由于白料较为粘稠,所以后加),之后再与步骤a中所称取的消泡剂和分散剂混合后,在转速为1000~1800r/min下搅拌1~2min,得到芯体填充初料;
d.制备芯体填充原料,将步骤c中所得到的芯体填充初料静置于真空干燥箱50~80min后取出,再将其在转速为1000~1800r/min下搅拌50~80s,使改性空心有机微珠分布均匀,之后将其置于真空干燥箱抽真空至表面无气泡溢出,从而获取芯体填充原料;
e.制备复合绝缘横担芯体,将步骤d中所获得的芯体填充原料填充于预热后的复合绝缘横担模具中,在100℃下固化12小时以上,之后从复合绝缘横担模具中取出固化成型的产品,产品即为复合绝缘横担芯体。
步骤a中所称取的空心有机微珠物理参数为:密度0.06~0.26g/cm3、平均粒径1~100μm、壁厚0.14~1.24μm。

Claims (3)

  1. 一种复合绝缘横担芯体的制备方法,其特征在于,所述方法包括以下步骤:
    a.称取原料,称取下述重量份原料:红料21125~28125份;白料25000~28000份;空心有机微珠925.5~1100.26份;硅烷偶联剂461.5~500.5份;消泡剂231.5~300.5份;分散剂1265~1525份;所述红料为下述中的任意一种:三乙烯二胺、二甲氨基乙基醚、辛酸亚锡、五甲基二乙烯三胺;所述白料为E-51型环氧树脂;所述硅烷偶联剂为γ―氨丙基三乙氧基硅烷;所述消泡剂为下述中的任意一种:聚氧乙烯聚氧丙烯季戊四醇醚、聚氧乙烯聚氧丙醇胺醚、聚氧丙烯甘油醚和聚氧丙烯聚氧乙烯甘油醚、聚二甲基硅氧烷;所述分散剂为下述中的任意一种:脂肪酸类、脂肪族酰胺类或酯类;
    b.制备改性空心有机微珠,将步骤a中所称取的空心有机微珠和硅烷偶联剂混合后在转速为1000~1500r/min下搅拌5min,得到改性空心有机微珠;
    c.制备芯体填充初料,将步骤a中所称取的红料与步骤b中所获取的改性空心有机微珠混合搅拌均匀,之后再与步骤a中所称取的白料混合在一起搅拌均匀,之后再与步骤a中所称取的消泡剂和分散剂混合后,在转速为1000~1800r/min下搅拌1~2min,得到芯体填充初料;
    d.制备芯体填充原料,将步骤c中所得到的芯体填充初料静置于真空干燥箱50~80min后取出,再将其在转速为1000~1800r/min下搅拌50~80s,使改性空心有机微珠分布均匀,之后将其置于真空干燥箱抽真空至表面无气泡溢出,从而获取芯体填充原料;
    e.制备复合绝缘横担芯体,将步骤d中所获得的芯体填充原料填充于预热后的复合绝缘横担模具中,在65~100℃下固化12小时以上,之后从复合绝缘横担模具中取出固化成型的产品,所述产品即为复合绝缘横担芯体。
  2. 根据权利要求1所述的一种复合绝缘横担芯体的制备方法,其特征在于:所述步骤a中所称取的空心有机微珠物理参数为:密度0.06~0.26g/cm3、平均粒径1~100μm、壁厚0.14~1.24μm。
  3. 根据权利要求1或2所述的一种复合绝缘横担芯体的制备方法,其特征在于:在所述步骤a中,称取所述原料及其重量份为:红料24600份;白料26500份;空心有机微珠1012.88份;硅烷偶联剂481份;消泡剂266份;分散剂1395份。
PCT/CN2021/080174 2020-04-07 2021-03-11 一种复合绝缘横担芯体的制备方法 WO2021203903A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010264017.3 2020-04-07
CN202010264017.3A CN111303589A (zh) 2020-04-07 2020-04-07 一种复合绝缘横担芯体的制备方法

Publications (1)

Publication Number Publication Date
WO2021203903A1 true WO2021203903A1 (zh) 2021-10-14

Family

ID=71146259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080174 WO2021203903A1 (zh) 2020-04-07 2021-03-11 一种复合绝缘横担芯体的制备方法

Country Status (2)

Country Link
CN (1) CN111303589A (zh)
WO (1) WO2021203903A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111303589A (zh) * 2020-04-07 2020-06-19 华北电力大学(保定) 一种复合绝缘横担芯体的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1718632A (zh) * 2005-07-27 2006-01-11 武汉理工大学 一种空心微珠增强环氧树脂复合材料及其制备方法
CN101456963A (zh) * 2009-01-04 2009-06-17 武汉理工大学 一种微球复合泡沫材料的制备方法
US20110101284A1 (en) * 2008-02-11 2011-05-05 Director General, Defence Research & Development Organization Electrically conducting syntactic foam and a process for preparing the same
CN108117635A (zh) * 2017-12-27 2018-06-05 成都锦汇科技有限公司 一种环氧树脂复合泡孔材料及其制备方法
CN110330632A (zh) * 2019-07-16 2019-10-15 华北电力大学(保定) 一种用于复合绝缘横担的芯体填充材料的制备方法
CN111303589A (zh) * 2020-04-07 2020-06-19 华北电力大学(保定) 一种复合绝缘横担芯体的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072950A (zh) * 2014-07-17 2014-10-01 天津中材工程研究中心有限公司 一种常温固化的固体浮力材料的原料配方及其制备方法
CN109651764B (zh) * 2018-12-26 2021-03-30 天津中材工程研究中心有限公司 一种微珠复配的固体浮力材料及其制备方法
CN110591291A (zh) * 2019-09-27 2019-12-20 福建师范大学 一种偶联剂改性的低吸水率固体浮力材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1718632A (zh) * 2005-07-27 2006-01-11 武汉理工大学 一种空心微珠增强环氧树脂复合材料及其制备方法
US20110101284A1 (en) * 2008-02-11 2011-05-05 Director General, Defence Research & Development Organization Electrically conducting syntactic foam and a process for preparing the same
CN101456963A (zh) * 2009-01-04 2009-06-17 武汉理工大学 一种微球复合泡沫材料的制备方法
CN108117635A (zh) * 2017-12-27 2018-06-05 成都锦汇科技有限公司 一种环氧树脂复合泡孔材料及其制备方法
CN110330632A (zh) * 2019-07-16 2019-10-15 华北电力大学(保定) 一种用于复合绝缘横担的芯体填充材料的制备方法
CN111303589A (zh) * 2020-04-07 2020-06-19 华北电力大学(保定) 一种复合绝缘横担芯体的制备方法

Also Published As

Publication number Publication date
CN111303589A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2021203903A1 (zh) 一种复合绝缘横担芯体的制备方法
CN101430954B (zh) 一种复合绝缘子硅橡胶护套的制备方法
CN101847508A (zh) 环氧树脂真空浇注方法
CN107316743B (zh) 一种干式电力电子电容器的浇注工艺
CN100448641C (zh) 硅橡胶互感器的生产方法
CN101270220B (zh) 聚合物基轻质耐压浮力材料的制备方法及设备
CN102585443A (zh) 轻质高强浮力材料及其制备方法
CN106893261A (zh) 一种轻质高强多孔金属复合阻尼材料及其制备方法
CN112374798B (zh) 一种耐磨抗冲击环氧砂浆修补材料的制备方法
CN107973925A (zh) 环氧玻璃布绝缘筒的制备方法
CN110256848A (zh) 一种电磁复合材料及其制备方法
CN115637103A (zh) 轻质烧蚀隔热涂料、涂层及其制备方法
CN103642173A (zh) 空心玻璃微珠复合材料的制备方法
CN110698815A (zh) 一种高强度固体浮力材料及其制备方法
CN102504203B (zh) 用于灌封dg4铁芯线圈的灌封材料的配制及灌封方法
CN112029288A (zh) 一种硫化硅橡胶的制备方法
CN110330632A (zh) 一种用于复合绝缘横担的芯体填充材料的制备方法
CN112126116A (zh) 一种吸波聚氨酯海绵/硬质泡沫复合材料及制备方法
CN106065281A (zh) 瓷芯复合绝缘子用室温硫化硅橡胶及其制备方法
CN116444945A (zh) 一种高导热中空氮化硼微球复合聚合物材料及其制备方法
CN110172165A (zh) 一种二氧化硅填充聚四氟乙烯分散液的制备方法
CN112126114B (zh) 一种吸波蜂窝/硬质泡沫复合材料及制备方法
CN110330629A (zh) 一种用于复合绝缘横担的内芯填充材料的制备方法
WO2019100543A1 (zh) 一种环氧树脂船底模型的建模方法及塑模船托架装置
CN111326298B (zh) 一种内填充轻质特高压复合绝缘横担

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785485

Country of ref document: EP

Kind code of ref document: A1