WO2021203663A1 - 一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用 - Google Patents

一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用 Download PDF

Info

Publication number
WO2021203663A1
WO2021203663A1 PCT/CN2020/121162 CN2020121162W WO2021203663A1 WO 2021203663 A1 WO2021203663 A1 WO 2021203663A1 CN 2020121162 W CN2020121162 W CN 2020121162W WO 2021203663 A1 WO2021203663 A1 WO 2021203663A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
units
electroluminescent
preparation
reaction
Prior art date
Application number
PCT/CN2020/121162
Other languages
English (en)
French (fr)
Inventor
郭婷
胡黎文
应磊
曹镛
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US17/995,878 priority Critical patent/US20230240127A1/en
Publication of WO2021203663A1 publication Critical patent/WO2021203663A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/22Luminous paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/149Side-chains having heteroaromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/16End groups
    • C08G2261/164End groups comprising organic end groups
    • C08G2261/1646End groups comprising organic end groups comprising aromatic or heteroaromatic end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3245Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and oxygen as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent
    • C08G2261/5222Luminescence fluorescent electrofluorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1475Heterocyclic containing nitrogen and oxygen as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the invention belongs to the technical field of organic optoelectronics, and specifically relates to a class of electroluminescent polymers based on phenanthroimidazole units, and a preparation method and application thereof.
  • OLEDs Organic Light-Emitting Diodes
  • OLEDs have the unique advantages of rapid response, wide viewing angle, rich color, light and thin, self-luminous, bendable, rollable and even foldable, and are known as the most promising third-generation display.
  • Technology has huge application prospects in electronic products such as smart phones, TVs, tablet computers, VR (virtual reality, head-mounted display devices) and wearable smart devices.
  • the luminescent material determines the preparation method and performance of the device. During the operation of the device, electrons and holes recombine to produce excitons.
  • the internal quantum efficiency of fluorescent material devices using only 25% of singlet excitons is theoretically lower than 25%. If the other 75% of triplet excitons can be If used, the luminous efficiency of fluorescent materials can be greatly improved. It is an effective way to use triplet excitons to reverse intersystem crossing.
  • Professor Ma Yuguang has proposed the theory of local hybrid charge transfer state to guide the design of fluorescent materials with high exciton utilization. Among them, the phenanthrimidazole unit is proved to be a classic structure for constructing electroluminescent materials.
  • the luminescent material has a relatively balanced electron/hole injection/transport performance, which fundamentally improves exciton recombination. probability.
  • the research on electroluminescent polymers with local hybrid charge transfer state properties is still in its infancy, no matter the material The types and numbers are extremely scarce, and the performance needs to be improved.
  • the design of electroluminescent polymers based on phenanthroimidazole units can prepare large-area flexible devices through a solution processing process.
  • the design concept of local hybrid charge transfer states is adopted to synthesize high-performance polymers to meet market demand.
  • the primary objective of the present invention is to provide a class of electroluminescent polymers based on phenanthroimidazole units.
  • This type of electroluminescent polymer has excellent solubility and thermal stability. It can be prepared by solution processing to make electroluminescent devices. It also has the performance of local hybrid charge transfer state and can obtain efficient and stable electroluminescent polymerization. It has huge application potential.
  • Another object of the present invention is to provide a method for preparing the electroluminescent polymer based on phenanthroimidazole units.
  • Another object of the present invention is to provide the application of the electroluminescent polymer based on phenanthroimidazole units in the preparation of the light-emitting layer of an organic electroluminescent device.
  • a class of electroluminescent polymers based on phenanthrimidazole units has the chemical structural formula shown below:
  • R is relatively independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, and a linear, branched or cyclic alkenyl group having 2 to 20 carbon atoms has 2 One of the linear, branched, or cyclic alkynyl groups of ⁇ 20 carbon atoms; preferably an octyl group.
  • x satisfies 0.001 ⁇ x ⁇ 0.50; preferably 0.05 ⁇ x ⁇ 0.20;
  • n 2 ⁇ 300.
  • the solvent is at least one of toluene, tetrahydrofuran, chloroform and chlorobenzene;
  • the molar ratio of the polymer monomers M1, M2 and M3 used is x: 0.5: (0.5-x); wherein the range of x is 0.001 ⁇ x ⁇ 0.50, preferably 0.05 ⁇ x ⁇ 0.20; the solvent and the organic base are four
  • the volume ratio of the ethyl ammonium hydroxide aqueous solution (20% by mass) is 15 to 3:1; the ratio of the molar amount of tetraethyl ammonium hydroxide to the total molar amount of polymerized monomer is 1 to 5:1.
  • the catalyst is a system of palladium acetate and tricyclohexylphosphorus, and the amount of the catalyst is 5 ⁇ to 5% of the total molar amount of reacted monomers, and the molar ratio of palladium acetate to tricyclohexylphosphorus is 1:2;
  • the amount of phenylboronic acid is 5-30% of the total molar amount of reacted monomers; the amount of bromobenzene is 2-20 times the molar amount of phenylboronic acid; the purification means that the obtained reaction solution is cooled to room temperature
  • the reaction solution was poured into methanol for precipitation, filtration, and drying to obtain a crude product.
  • the crude product was dissolved in toluene and separated by column chromatography. After concentration, it was added to methanol for precipitation, filtration, and drying, followed by methanol, Acetone and tetrahydrofuran are extracted to remove small molecules, and then added to methanol for precipitation.
  • the dried solid is the purified electroluminescent polymer based on phenanthrimidazole units.
  • the above-mentioned electroluminescent polymer based on phenanthrimidazole units has good solubility and is soluble in common organic solvents.
  • the preparation of the light-emitting layer of the electroluminescent device includes the following steps: dissolving the electroluminescent polymer based on the phenanthrimidazole unit in an organic solvent, and then forming a film by spin coating, inkjet printing or printing.
  • the organic solvents include toluene, chlorobenzene, xylene, tetrahydrofuran or chloroform. 15-50mg/mL can be dissolved in toluene at room temperature.
  • the electroluminescent polymer based on phenanthrimidazole units of the present invention has the following advantages and beneficial effects:
  • the electroluminescent polymer monomer based on the phenanthroimidazole unit of the present invention has cheap raw materials, simple synthesis route, convenient purification, easy to study the relationship between structure and performance, and is beneficial to industrialized scale-up production.
  • the electroluminescent polymer based on phenanthroimidazole units of the present invention has excellent thermal stability and solubility, and can be prepared by solution processing technology for electroluminescent devices, which is conducive to the preparation of large-area flexible display devices, and is expected to be commercialized ⁇ Application.
  • the electroluminescent polymer based on the phenanthrimidazole unit of the present invention has the luminescence performance of the local hybrid charge transfer state, and the singlet exciton utilization rate is high, which is beneficial to the improvement of the electroluminescence performance.
  • Figure 1 shows the thermal weight loss curve of polymer PPO-PI5.
  • Figure 2 shows the cyclic voltammetry curve of polymer PPO-PI5.
  • Figure 3 shows the low-temperature fluorescence spectrum and low-temperature phosphorescence spectrum of polymer PPO-PI5 in toluene solvent.
  • Figure 4 is a graph showing the fluorescence lifetime of a toluene solution of polymer PPO-PI5 under deoxygenation.
  • Figure 5 is a graph showing the relationship between the Stokes shift of the polymer PPO-PI5 in different solvents and the solvent polarizability.
  • compound M2 467.0 mg, 0.50 mmol
  • compound M3 376.8 mg, 0.45 mmol
  • compound M1 38.1 mg, 0.05 mmol
  • the obtained polymer was tested, the number average molecular weight Mn of GPC test was 84,000, the weight average molecular weight Mw was 185,000, and the molecular weight distribution index PDI was 2.2.
  • the fluorescence quantum yields of the polymer PPO-PI5 in the thin film state were 55%, respectively.
  • compound M2 467.0 mg, 0.50 mmol
  • compound M3 360.0 mg, 0.43 mmol
  • compound M1 53.4 mg, 0.07 mmol
  • the obtained polymer was tested, the number average molecular weight Mn was 77,000, the weight average molecular weight Mw was 177,000, and the molecular weight distribution index PDI was 2.3 according to the GPC test.
  • the fluorescence quantum yields of the polymer PPO-PI7 in the thin film state were 59%, respectively.
  • compound M2 467.0 mg, 0.50 mmol
  • compound M3 334.9 mg, 0.40 mmol
  • compound M1 76.3 mg, 0.10 mmol
  • the obtained polymer was tested, and the number average molecular weight Mn was 58,000 by GPC, the weight average molecular weight Mw was 133,000, and the molecular weight distribution index PDI was 2.3.
  • the fluorescence quantum yields of the polymer PPO-PI10 in the thin film state were 62%, respectively.
  • compound M2 467.0 mg, 0.50 mmol
  • compound M3 318.2 mg, 0.38 mmol
  • compound M1 91.6 mg, 0.12 mmol
  • the obtained polymer was tested, the number average molecular weight Mn of GPC test was 62,000, the weight average molecular weight Mw was 149,000, and the molecular weight distribution index PDI was 2.4.
  • the fluorescence quantum yields of the polymer PPO-PI12 in the film state were 65%, respectively.
  • compound M2 467.0 mg, 0.50 mmol
  • compound M3 293.1 mg, 0.35 mmol
  • compound M1 114.5 mg, 0.15 mmol
  • the obtained polymer was tested, and the number average molecular weight Mn was 58,000 by GPC, the weight average molecular weight Mw was 133,000, and the molecular weight distribution index PDI was 2.3.
  • the fluorescence quantum yields of the polymer PPO-PI15 in the thin film state are respectively 70%.
  • compound M2 467.0 mg, 0.50 mmol
  • compound M3 251.2 mg, 0.30 mmol
  • compound M1 152.6 mg, 0.20 mmol
  • the obtained polymer was tested, and the number average molecular weight Mn was 58,000 by GPC, the weight average molecular weight Mw was 133,000, and the molecular weight distribution index PDI was 2.3.
  • the fluorescence quantum yields of the polymer PPO-PI20 in the film state were 76% respectively.
  • compound M2 467.0mg, 0.50mmol
  • compound M1 381.5mg, 0.50mmol
  • 8mL of toluene was added for complete dissolution, and then palladium acetate (2.80mg, 12.45 ⁇ mol) was added.
  • the obtained polymer was tested, and the number average molecular weight Mn according to GPC test was 32,000, the weight average molecular weight Mw was 76800, and the molecular weight distribution index PDI was 2.4.
  • the fluorescence quantum yields of the polymer PPO-PI50 in the thin film state were 42%, respectively.
  • the thermal weight loss curve of polymer PPO-PI5 is shown in Figure 1.
  • the temperature is 435°C
  • the mass of the polymer PPO-PI5 is reduced by 5%
  • its decomposition temperature is as high as 435°C. This indicates that the polymer PPO-PI5 has excellent thermal stability, which is conducive to its application in the preparation of electroluminescent devices.
  • the superior thermal stability is attributed to the large planar rigid structure of the phenanthrimidazole unit.
  • the polymer PPO-PI5 has excellent solubility in common organic solvents such as dichloromethane, chloroform, tetrahydrofuran and chlorobenzene. They are respectively 50 mg/mL, 55 mg/mL, 70 mg/mL, and 80 mg/mL. Therefore, electroluminescent devices using polymer PPO-PI5 as the light-emitting layer material can be prepared by solution spin coating.
  • the fluorescence quantum yields of polymer PPO-PI5 in dichloromethane, chloroform, tetrahydrofuran and toluene solvents were 76%, 84%, 85%, 88%, respectively. This higher fluorescence quantum yield indicates that the polymer PPO-PI5 has strong fluorescence and is suitable for the light-emitting layer of electroluminescent devices.
  • the electrochemical performance of polymer PPO-PI5 was measured by cyclic voltammetry on CHI 800A electrochemical workstation.
  • the platinum wire electrode, graphite electrode and calomel electrode are auxiliary electrode, working electrode and reference electrode, respectively.
  • 0.1mol/L tetrabutylammonium hexafluorophosphate and anhydrous acetonitrile were used as electrolyte, and the standard sample was ferrocene.
  • the toluene solution of the polymer was used to form a film on the surface of the working electrode, and its cyclic voltammetry characteristics were measured in an argon atmosphere for testing, as shown in Figure 2.
  • the oxidation potential and reduction potential of polymer PPO-PI5 are 1.04V and -1.80V, respectively.
  • the redox potential of ferrocene is 0.38eV. Under vacuum, the redox potential of ferrocene is -4.8eV.
  • E HOMO –e(E ox +4.80–E fer )(eV)
  • E LUMO –e(E red +4.80–E fer )(eV)
  • the energy level is -5.46eV
  • the lowest unoccupied orbit (LUMO) energy level is -2.62eV.
  • Fluorolog-3 JobinYvon type fluorescence spectrometer was used to measure the photoluminescence spectrum of polymer PPO-PI5.
  • the toluene solution of polymer PPO-PI5 was frozen to 77K with liquid nitrogen, and then its fluorescence spectrum and phosphorescence spectrum at 77K temperature were tested.
  • the S1 energy level is obtained from the 77K fluorescence spectrum of the polymer's toluene solution, which is 2.91eV; the T1 energy level is obtained from the polymer's toluene solution 77K phosphorescence spectrum, which is 2.48eV, and the singlet triplet energy level difference is 0.43eV ( ⁇ E ST ⁇ 0.5eV).
  • the single triplet energy level data of polymer PPO-PIs in toluene solution at 77K temperature is shown in Table 1. From Table 1, it can be seen that the series of polymers all have a small singlet triplet energy level difference ( ⁇ E ST ⁇ 0.5eV) polymer, can realize triplet excitons through the anti-gap;
  • the effective area of the device is 0.1 cm 2 . Measure the thickness of the organic layer with a quartz crystal monitoring thickness meter. After the device is prepared, epoxy resin and thin-layer glass are polarized and encapsulated in ultraviolet light.
  • the device structure is (ITO/PEDOT:PSS/Emitter(60nm)/TPBI(20nm)/CsF(1.5nm)/Al(110nm)).
  • the electroluminescent devices obtained were subjected to photoelectric performance tests, and the test results are shown in Table 2.
  • the luminescence performance of the obtained electroluminescent device was characterized. It can be seen from the table that the maximum lumen efficiency of the device prepared with polymer PPO-PIs as the light-emitting layer is 17.17cd/A, and the external quantum efficiency is 8.56%, which is higher than the theoretical value of 5%, which also shows that the polymer of this system has high excitation
  • the maximum lumen efficiency of the comparative polymer PPO-PI50 is only 6.29cd/A, and the external quantum efficiency is only 2.25%.
  • the polymer protected by the present invention has excellent photoelectric properties, and has the characteristics of a localized hybrid charge transfer state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用。所述的基于菲并咪唑单元的电致发光聚合物的结构如式(I)所示,其侧链含有菲并咪唑单元。该电致发光单元(1)具有局域杂化电荷转移态性能,可以通过反隙间窜跃来有效利用三线态激子来提高激子的利用率,提高器件电致发光性能;(2)菲并咪唑单元共轭程度大、刚性强,不仅可以提高材料的热稳定性,而且可以增加材料的辐射跃迁速率,提高其发光效率;(3)聚合物原料便宜,合成路线简单,提纯便利,有利于工业化放大生产。该聚合物具有良好的溶解性,可采用溶液加工工艺,制备大面积柔性显示器件。在有机电子显示领域有巨大的发展潜力和前景。

Description

一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用 技术领域
本发明属于有机光电技术领域,具体涉及一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用。
背景技术
有机发光二极管(OrganicLight-EmittingDiodes,OLEDs)具有响应迅速、视角宽广、色彩丰富、体积轻薄、自体发光及可弯曲、可卷曲甚至可折叠等独特优点,被称为是最有潜力的第三代显示技术,在智能手机、电视、平板电脑、VR(虚拟现实、头戴式显示设备)及可穿戴智能设备等电子产品具有巨大的应用前景。
在OLED器件中,发光材料决定了器件的制备方式及性能。在器件工作过程中,电子和空穴复合产生激子,仅利用25%的单线态激子的荧光材料器件的内量子效率在理论上低于25%,若另75%的三线态激子能被利用,则能大大提高荧光材料的发光效率。利用三线态激子反系间窜越是一种有效的途径。目前马於光教授提出了局域杂化电荷转移态的理论来指导设计具有高激子利用率的荧光材料。其中,菲并咪唑单元被证实是一种构筑电致发光材料的经典结构,它有大的共轭刚性结构,不仅可以提高材料的热稳定性,而且可以增加材料的辐射跃迁速率,提高其发光效率。同时,咪唑环上两个N原子分别显现富电子和缺电子两种状态,赋予其双极性的特性,发光材料具有较平衡的电子/空穴注入/传输性能,从根本上提高激子复合几率。目前关于基于菲并咪唑单元的发光材料的研究很多,但大多集中于小分子化合物的研究,关于具有局域杂化电荷转移态性能的电致发光聚合物的研究还处于起步阶段,无论是材料的种类还是数量都及其稀少,性能也有待提升。
设计基于菲并咪唑单元的电致发光聚合物,可通过溶液加工的工艺制备大面积柔性器件,采用局域杂化电荷转移态的设计理念,合成高性能的聚合物以满足市场化需求。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一类基于菲并咪唑单元的电致发光聚合物。该类电致发光聚合物具有优异的溶解性、热稳定性,可采用溶液加工的制备工艺制作电致发光器件,同时具有局域杂化电荷转移态性能,可获得高效稳定的电致发光聚合物,具有巨大的应用潜力。
本发明的另一目的在于提供所述的一类基于菲并咪唑单元的电致发光聚合物的制备方法。
本发明的再一目的在于提供所述的一类基于菲并咪唑单元的电致发光聚合物在制备有机电致发光器件的发光层的应用。
本发明目的通过以下技术方案实现:
一类基于菲并咪唑单元的电致发光聚合物,具有如下所示的化学结构式:
Figure PCTCN2020121162-appb-000001
式中,R相对独立地为具有1~20个碳原子的直链、支化或者环状的烷基,具有2~20个碳原子的直链、支化或者环状的烯基,具有2~20个碳原子的直链、支化或者环状的炔基中的一种;优选为辛基。
x满足0.001≤x<0.50;优选0.05≤x≤0.20;
n为2~300。
一种上述基于菲并咪唑单元的电致发光聚合物的制备方法,具体制备路线如下:
Figure PCTCN2020121162-appb-000002
在惰性气体保护下,将聚合单体M1、M2与M3溶解在溶剂中,然后加入催化剂和有机碱四乙基氢氧化铵,加热至80~100℃发生Suzuki聚合反应,反应时间为24~48h;再加入苯硼酸,保温继续反应12~24h;再加入溴苯继续保温反应12~24h,反应结束后将所得反应液纯化即得目标产物。
所述的溶剂为甲苯、四氢呋喃、三氯甲烷、氯苯中的至少一种;
所用的聚合单体M1、M2与M3的摩尔比为x:0.5:(0.5-x);其中x的范围为0.001≤x<0.50,优选0.05≤x≤0.20;所述的溶剂与有机碱四乙基氢氧化铵水溶液(质量分数为20%)的体积比为15~3:1;四乙基氢氧化铵的摩尔量与聚合单体的摩尔总量之比为1~5:1。
所述的催化剂为醋酸钯和三环己基磷体系,且催化剂的用量为反应单体摩尔总量的5‰~5%,醋酸钯和三环己基磷的摩尔比为1:2;
所述的苯硼酸的用量为反应单体摩尔总量的5~30%;所述的溴苯的用量为苯硼酸摩尔量的2~20倍;所述的纯化指所得反应液冷却至室温后,将反应液倒入甲醇中沉析、过滤、干燥得粗产物,再将粗产物溶于甲苯中,柱层析分离,浓缩后再次加入到甲醇中沉淀、过滤、干燥,然后依次用甲醇、丙酮、四氢呋喃抽提,除去小分子,再加入到甲醇中沉析,干燥后的固体即为纯化后的基于菲并咪唑单元的电致发光聚合物。
上述的基于菲并咪唑单元的电致发光聚合物在制备发光二极管的发光层中的应用。
上述的基于菲并咪唑单元的电致发光聚合物具有良好的溶解性,可溶于常见的有机溶剂。
所述的制备电致发光器件的发光层包括以下步骤:将基于菲并咪唑单元的电致发光聚合物用有机溶剂溶解,再通过旋涂、喷墨打印或印刷成膜。其中有机溶剂包括甲苯、氯苯、二甲苯、四氢呋喃或氯仿。室温下甲苯中可溶解15~50mg/mL。
本发明的基于菲并咪唑单元的电致发光聚合物相对于现有技术,具有如下的优点及有益效果:
1)本发明的基于菲并咪唑单元的电致发光聚合物单体原料便宜,合成路线简单,提纯便利,便于研究结构与性能关系,有利于工业化放大生产。
2)本发明的基于菲并咪唑单元的电致发光聚合物具有优异的热稳定性和溶解性,可通过溶液加工的工艺制备电致发光器件,有利于制备大面积柔性显示器件,有望实现商业化应用。
3)本发明的基于菲并咪唑单元的电致发光聚合物具有局域杂化电荷转移态发光性能,单线态激子利用率高,有利于电致发光性能的提高。
附图说明
图1为聚合物PPO-PI5的热失重曲线。
图2为聚合物PPO-PI5的循环伏安曲线图。
图3为聚合物PPO-PI5在甲苯溶剂中的低温荧光光谱图和低温磷光光谱图。
图4为聚合物PPO-PI5的甲苯溶液在脱氧情况下的荧光寿命图。
图5为聚合物PPO-PI5在不同溶剂中的斯托克斯位移与溶剂极化率的关系图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
(1)2-(4-溴苯基)-1-(4-叔丁基苯基)-1H-菲并[9,10-d]咪唑的制备
在氩气气氛下,9,10-菲醌(10.8g,20mmol)、4-叔丁基苯胺(14.9g,100mmol)、对溴苯甲醛(3.68g,20mmol)、乙酸胺(6.16g,80mmol)溶于150mL乙酸中,120℃反应12小时。停止反应后,用水淬灭反应,浓缩溶剂,用二氯甲烷进行萃取并用无水硫酸镁进行干燥,再通过硅胶柱层析提纯,石油醚和二氯甲烷混合溶剂(体积比4:1)为淋洗剂,得到白色固体,产率82%。 1HNMR、 13CNMR、MS和元素分析结果表明所得到的化合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000003
(2)10-(4-(1-(4-(叔丁基)苯基)-1H-菲并[9,10-d]咪唑-2-基]苯基)-10H-吩噁嗪的制备
在氩气气氛下,向250mL两口烧瓶中,将化合物2-(4-溴苯基)-1-(4-叔丁基苯基)-1H-菲并[9,10-d]咪唑(5.20g,10mmol)和吩噁嗪(2.75g,15mmol)溶于甲苯中,在催化剂醋酸钯(Pd(OAc) 2)(0.22g,1.0mmol)和叔丁基醇钠(5.61g,50mmol)作用下发生反应,90℃反应8小时,停止反应后,用水淬灭反应,用二氯甲烷进行萃取并用无水硫酸镁进行干燥,再通过硅胶柱层析提纯,石油醚和二氯甲烷混合溶剂(体积比1:1)为淋洗剂,得到白色固体,产率92%。 1HNMR、 13CNMR、MS和元素分析结果表明所得到的化合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000004
(3)3,7-二溴-10-(4-(1-(4-(叔丁基)苯基)-1H-菲并[9,10-d]咪唑-2-基]苯基)-10H-吩噁嗪(M1)的制备
将10-(4-(1-(4-(叔丁基)苯基)-1H-菲并[9,10-d]咪唑-2-基]苯基)-10H-吩噁嗪(3.04g,5.0mmol)溶于10mL四氢呋喃中,在避光条件下,加入N-溴代琥珀酰亚胺(NBS,2.23g,12.5mmol),25℃反应8小时,停止反应后,用水淬灭反应,用二氯甲烷进行萃取并用无水硫酸镁进行干燥,再用甲醇/四氢呋喃进行重结晶,得到白色固体,产率83%。 1HNMR、 13CNMR、MS和元素分析结果表明所得到的化合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000005
(4)9,9-二辛基-9,10-二氢吖啶的制备
在惰性气体保护下,将2-氨基苯甲酸甲酯(Cas号:35708-19-1)(3.18g,14mmol)溶解于80mL精制的无水THF中,逐滴滴加1.0mol·L -1正辛基溴化镁(30.8mL,30.8mmol),升温至80℃加热回流,反应16h。冷却至室温,将反应混合物倒入水中,用乙酸乙酯萃取,收集有机层并浓缩,得白色粗品。再将粗品(4.64g,10mmol)溶于80mL无水二氯甲烷中,并往反应液中滴加入3.0mL的三氟化硼乙醚溶液,常温下搅拌2小时后,停止反应,用水淬灭反应,用二氯甲烷进行萃取并 用无水硫酸镁进行干燥,溶液浓缩后得土黄色固体,通过硅胶柱层析提纯,石油醚/二氯甲烷的混合溶剂(3/1,v/v)为淋洗剂,得到白色固体,产率75%。 1HNMR、 13CNMR、MS和元素分析结果表明所得到的化合物为目标产物。制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000006
(5)2-(4-(叔丁基)苯基)-5-(4-氟苯基)-1,3,4-噁二唑的制备
将7.68g 4-叔丁苯甲酰肼(Cas号:43100-38-5)、4.04g三乙胺和200ml氯仿加入反应瓶内,0℃搅拌,缓慢滴加含6.32g对氟苯基酰氯的氯仿溶液20ml。3h后停止反应,旋蒸除掉氯仿,并用石油醚洗涤三次,干燥。再将6.3g粗品和15ml二氯亚砜加入反应瓶,70℃温度下反应18h。停止反应后,将反应液倒入冰水中,抽滤,滤渣用乙醇重结晶,得4.5g白色晶体,产率76%。 1HNMR、 13CNMR、MS和元素分析结果表明所得到的化合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000007
(6)2-(4-(叔丁基)苯基)-5-(4-(9,9-二辛基-9,10-二氢吖啶-10-基)苯基)-1,3,4-噁二唑的制备
在氩气气氛下,向250mL两口烧瓶中,将化合物9,9-二辛基-9,10-二氢吖啶(4.05g,10mmol)和2-(4-(叔丁基)苯基)-5-(4-氟苯基)-1,3,4-噁二唑(4.44g,15mmol)溶于甲苯中,在催化剂醋酸钯(Pd(OAc) 2)(0.22g,1.0mmol)和叔丁基醇钠(5.61g,50mmol)作用下发生反应,90℃反应8小时,停止反应后,用水淬灭反应,用二氯甲烷进行萃取并用无水硫酸镁进行干燥,再通过硅胶柱 层析提纯,石油醚和二氯甲烷混合溶剂(体积比1:1)为淋洗剂,得到白色固体,产率76%。 1HNMR、 13CNMR、MS和元素分析结果表明所得到的化合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000008
(7)2-(4-(叔丁基)苯基)-5-(4-(2,7-二溴-9,9-二辛基-9,10-二氢吖啶-10-基)苯基)-1,3,4-噁二唑(M3)的制备
将2-(4-(叔丁基)苯基)-5-(4-(9,9-二辛基-9,10-二氢吖啶-10-基)苯基)-1,3,4-噁二唑(3.41g,5.0mmol)溶于10mL四氢呋喃中,在避光条件下,加入N-溴代琥珀酰亚胺(NBS,2.23g,12.5mmol),25℃反应8小时,停止反应后,用水淬灭反应,用二氯甲烷进行萃取并用无水硫酸镁进行干燥,再用甲醇/四氢呋喃进行重结晶,得到白色固体,产率83%。 1HNMR、 13CNMR、MS和元素分析结果表明所得到的化合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000009
(8)2-(4-(叔丁基)苯基)-5-(4-(9,9-二辛基-2,7-双(4,4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)吖啶-10-基)苯基)-1,3,4-噁二唑(M2)的制备
在氩气气氛下,2-(4-(叔丁基)苯基)-5-(4-(2,7-二溴-9,9-二辛基-9,10-二氢吖啶-10-基)苯基)-1,3,4-噁二唑(4.19g,5.0mmol)、连频哪醇硼酸酯(3.18g,12.5mmol)、乙酸钾(2.45g,25mmol)、[1,1'-双(二苯基膦基)二茂铁]二氯化钯(Pd(dppf)Cl 2)(183mg,0.25mmol)溶在100ml二氧六环溶液中,90℃反应24小时,停止反应后,用水淬灭反应,用二氯甲烷进行萃取并用无水硫酸镁进行干燥,溶液 浓缩后得土黄色液体,通过硅胶柱层析提纯,石油醚和二氯甲烷混合溶剂(体积比1:2)为淋洗剂,得到白色固体,产率82%。 1HNMR、 13CNMR、MS和元素分析结果表明所得到的化合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000010
(9)聚合物PPO-PI5的制备
在氩气氛围下,将化合物M2(467.0mg,0.50mmol),化合物M3(376.8mg,0.45mmol)和化合物M1(38.1mg,0.05mmol)加入50mL两口瓶内,再加入8mL甲苯进行完全溶解,再加入醋酸钯(2.80mg,12.45μmol)和三环己基膦(6.98mg,24.90μmol),然后加入2mL四乙基氢氧化铵水溶液(质量分数为20%),升温至80℃,反应24小时;然后加入30mg苯硼酸进行封端,12小时后,再用0.30mL溴苯进行封端;继续反应12小时之后,停止反应,待温度降至室温,将产物滴加在300mL甲醇中沉析,过滤,再将粗产物溶于20mL的甲苯中,以200~300目硅胶为固定相,用甲苯为洗脱剂进行柱层析,溶剂浓缩,再次在甲醇中沉析出来,搅拌,过滤,真空干燥后得到聚合物固体;最后再依次用甲醇、丙酮、四氢呋喃各抽提24小时,除去小分子;将浓缩后的四氢呋喃溶液滴入甲醇中沉析,真空干燥后得到的纤维状固体共轭聚合物PPO-PI5。 1HNMR、GPC和元素分析结果表明所得到的化合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000011
对得到的聚合物进行检测,GPC测试数均分子量Mn为84000,重均分子量Mw为185000,分子量分布指数PDI为2.2。聚合物PPO-PI5在薄膜状态的荧光量子产率分别55%。
(10)聚合物PPO-PI7的制备
在氩气氛围下,将化合物M2(467.0mg,0.50mmol),化合物M3(360.0mg,0.43mmol)和化合物M1(53.4mg,0.07mmol)加入50mL两口瓶内,再加入8mL甲苯进行完全溶解,再加入醋酸钯(2.80mg,12.45μmol)和三环己基膦(6.98mg,24.90μmol),然后加入2mL四乙基氢氧化铵水溶液(质量分数为20%),升温至80℃,反应24小时;然后加入30mg苯硼酸进行封端,12小时后,再用0.30mL溴苯进行封端;继续反应12小时之后,停止反应,待温度降至室温,将产物滴加在300mL甲醇中沉析,过滤,再将粗产物溶于20mL的甲苯中,以200~300目硅胶为固定相,用甲苯为洗脱剂进行柱层析,溶剂浓缩,再次在甲醇中沉析出来,搅拌,过滤,真空干燥后得到聚合物固体;最后再依次用甲醇、丙酮、四氢呋喃各抽提24小时,除去小分子;将浓缩后的四氢呋喃溶液滴入甲醇中沉析,真空干燥后得到的纤维状固体共轭聚合物PPO-PI7。 1HNMR、GPC和元素分析结果表明所得到的化合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000012
对得到的聚合物进行检测,GPC测试数均分子量Mn为77000,重均分子量Mw为177000,分子量分布指数PDI为2.3。聚合物PPO-PI7在薄膜状态的荧光量子产率分别59%。
(11)聚合物PPO-PI10的制备
在氩气氛围下,将化合物M2(467.0mg,0.50mmol),化合物M3(334.9mg,0.40mmol)和化合物M1(76.3mg,0.10mmol)加入50mL两口瓶内,再加入8mL甲苯进行完全溶解,再加入醋酸钯(2.80mg,12.45μmol)和三环己基膦(6.98mg,24.90μmol),然后加入2mL四乙基氢氧化铵水溶液(质量分数为20%),升温至80℃,反应24小时;然后加入30mg苯硼酸进行封端,12小时后,再用0.30mL溴苯进行封端;继续反应12小时之后,停止反应,待温度降至室温,将产物滴加在300mL甲醇中沉析,过滤,再将粗产物溶于20mL的甲苯中,以200~300目硅胶为固定相,用甲苯为洗脱剂进行柱层析,溶剂浓缩,再次在甲醇中沉析出来,搅拌,过滤,真空干燥后得到聚合物固体;最后再依次用甲醇、丙酮、四氢呋喃各抽提24小时,除去小分子;将浓缩后的四氢呋喃溶液滴入甲醇中沉析,真空干燥后得到的纤维状固体共轭聚合物PPO-PI10。 1HNMR、GPC和元素分析结果表明所得到的化合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000013
对得到的聚合物进行检测,GPC测试数均分子量Mn为58000,重均分子量Mw为133000,分子量分布指数PDI为2.3。聚合物PPO-PI10在薄膜状态的荧光量子产率分别62%。
(12)聚合物PPO-PI12的制备
在氩气氛围下,将化合物M2(467.0mg,0.50mmol),化合物M3(318.2mg,0.38mmol)和化合物M1(91.6mg,0.12mmol)加入50mL两口瓶内,再加入8mL甲苯进行完全溶解,再加入醋酸钯(2.80mg,12.45μmol)和三环己基膦(6.98mg,24.90μmol),然后加入2mL四乙基氢氧化铵水溶液(质量分数为20%),升温至80℃,反应24小时;然后加入30mg苯硼酸进行封端,12小时后,再用0.30mL溴苯进行封端;继续反应12小时之后,停止反应,待温度降至室温,将产物滴加在300mL甲醇中沉析,过滤,再将粗产物溶于20mL的甲苯中,以200~300目硅胶为固定相,用甲苯为洗脱剂进行柱层析,溶剂浓缩,再次在甲醇中沉析出来,搅拌,过滤,真空干燥后得到聚合物固体;最后再依次用甲醇、丙酮、四氢呋喃各抽提24小时,除去小分子;将浓缩后的四氢呋喃溶液滴入甲醇中沉析,真空干燥后得到的纤维状固体共轭聚合物PPO-PI12。 1HNMR、GPC和元素分析结果表明所得到的化合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000014
对得到的聚合物进行检测,GPC测试数均分子量Mn为62000,重均分子量Mw为149000,分子量分布指数PDI为2.4。聚合物PPO-PI12在薄膜状态的荧光量子产率分别65%。
(13)聚合物PPO-PI15的制备
在氩气氛围下,将化合物M2(467.0mg,0.50mmol),化合物M3(293.1mg,0.35mmol)和化合物M1(114.5mg,0.15mmol)加入50mL两口瓶内,再加入8mL甲苯进行完全溶解,再加入醋酸钯(2.80mg,12.45μmol)和三环己基膦(6.98mg,24.90μmol),然后加入2mL四乙基氢氧化铵水溶液(质量分数为20%),升温至80℃,反应24小时;然后加入30mg苯硼酸进行封端,12小时后,再用0.30mL 溴苯进行封端;继续反应12小时之后,停止反应,待温度降至室温,将产物滴加在300mL甲醇中沉析,过滤,再将粗产物溶于20mL的甲苯中,以200~300目硅胶为固定相,用甲苯为洗脱剂进行柱层析,溶剂浓缩,再次在甲醇中沉析出来,搅拌,过滤,真空干燥后得到聚合物固体;最后再依次用甲醇、丙酮、四氢呋喃各抽提24小时,除去小分子;将浓缩后的四氢呋喃溶液滴入甲醇中沉析,真空干燥后得到的纤维状固体共轭聚合物PPO-PI15。 1HNMR、GPC和元素分析结果表明所得到的化合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000015
对得到的聚合物进行检测,GPC测试数均分子量Mn为58000,重均分子量Mw为133000,分子量分布指数PDI为2.3。聚合物PPO-PI15在薄膜状态的荧光量子产率分别70%。
(14)聚合物PPO-PI20的制备
在氩气氛围下,将化合物M2(467.0mg,0.50mmol),化合物M3(251.2mg,0.30mmol)和化合物M1(152.6mg,0.20mmol)加入50mL两口瓶内,再加入8mL甲苯进行完全溶解,再加入醋酸钯(2.80mg,12.45μmol)和三环己基膦(6.98mg,24.90μmol),然后加入2mL四乙基氢氧化铵水溶液(质量分数为20%),升温至80℃,反应24小时;然后加入30mg苯硼酸进行封端,12小时后,再用0.30mL溴苯进行封端;继续反应12小时之后,停止反应,待温度降至室温,将产物滴加在300mL甲醇中沉析,过滤,再将粗产物溶于20mL的甲苯中,以200~300目硅胶为固定相,用甲苯为洗脱剂进行柱层析,溶剂浓缩,再次在甲醇中沉析出来,搅拌,过滤,真空干燥后得到聚合物固体;最后再依次用甲醇、丙酮、四氢呋喃各抽提24小时,除去小分子;将浓缩后的四氢呋喃溶液滴入甲醇中沉 析,真空干燥后得到的纤维状固体共轭聚合物PPO-PI20。 1HNMR、GPC和元素分析结果表明所得到的化合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000016
对得到的聚合物进行检测,GPC测试数均分子量Mn为58000,重均分子量Mw为133000,分子量分布指数PDI为2.3。聚合物PPO-PI20在薄膜状态的荧光量子产率分别76%。
(15)对比聚合物PPO-PI50的制备
在氩气氛围下,将化合物M2(467.0mg,0.50mmol)和化合物M1(381.5mg,0.50mmol)加入50mL两口瓶内,再加入8mL甲苯进行完全溶解,再加入醋酸钯(2.80mg,12.45μmol)和三环己基膦(6.98mg,24.90μmol),然后加入2mL四乙基氢氧化铵水溶液(质量分数为20%),升温至80℃,反应24小时;然后加入30mg苯硼酸进行封端,12小时后,再用0.30mL溴苯进行封端;继续反应12小时之后,停止反应,待温度降至室温,将产物滴加在300mL甲醇中沉析,过滤,再将粗产物溶于20mL的甲苯中,以200~300目硅胶为固定相,用甲苯为洗脱剂进行柱层析,溶剂浓缩,再次在甲醇中沉析出来,搅拌,过滤,真空干燥后得到聚合物固体;最后再依次用甲醇、丙酮、四氢呋喃各抽提24小时,除去小分子;将浓缩后的四氢呋喃溶液滴入甲醇中沉析,真空干燥后得到的纤维状固体共轭聚合物PPO-PI50。 1HNMR、GPC和元素分析结果表明所得到的化合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2020121162-appb-000017
对得到的聚合物进行检测,GPC测试数均分子量Mn为32000,重均分子量Mw为76800,分子量分布指数PDI为2.4。聚合物PPO-PI50在薄膜状态的荧光量子产率分别42%。
聚合物PPO-PI5的热失重曲线如图1所示。当温度为435℃时,聚合物PPO-PI5的质量减少5%时,即其分解温度高达435℃。这表明聚合物PPO-PI5具有优异的热稳定性,有利于将其应用于电致发光器件的制备。较优异的热稳定性归因于菲并咪唑单元的大平面刚性结构。此外,由于油溶性基团正辛基和叔丁基的修饰作用,聚合物PPO-PI5在常用有机溶剂如二氯甲烷、三氯甲烷、四氢呋喃和氯苯中具有较优异的溶解性,其溶解度分别为50mg/mL、55mg/mL、70mg/mL、80mg/mL,因此可以通过溶液旋涂法制备以聚合物PPO-PI5为发光层材料的电致发光器件。
此外,聚合物PPO-PI5在二氯甲烷、三氯甲烷、四氢呋喃和甲苯溶剂中的荧光量子产率分别76%、84%、85%、88%,这较高的荧光量子产率说明聚合物PPO-PI5具有较强的荧光性,适合用于电致发光器件的发光层。
采用CHI 800A电化学工作站上用循环伏安法测定聚合物PPO-PI5的电化学性能。铂丝电极、石墨电极和甘汞电极分别为辅助电极、工作电极和参比电极。0.1mol/L的六氟磷酸四丁基铵的无水乙腈作为电解质,标样为二茂铁。利用聚合物的甲苯溶液在工作电极表面成膜,在氩气环境下测定其循环伏安特性进行测试,如图2所示。聚合物PPO-PI5的氧化电势和还原电势分别为1.04V和 –1.80V,二茂铁的氧化还原电位为0.38eV,在真空状态下,二茂铁的氧化还原电势是–4.8eV,根据经验公式E HOMO=–e(E ox+4.80–E fer)(eV)和E LUMO=–e(E red+4.80–E fer)(eV),所以聚合物PPO-PI5的最高占据轨道(HOMO)能级为–5.46eV,最低未占有轨道(LUMO)能级为–2.62eV。
采用Fluorolog-3 JobinYvon型荧光光谱仪用来测定聚合物PPO-PI5的光致发光光谱。用液氮将聚合物PPO-PI5的甲苯溶液冷冻至77K,再测试其在77K温度条件下的荧光光谱和磷光光谱。如图3所示。S1能级由聚合物的甲苯溶液77K荧光光谱得到,为2.91eV;T1能级由聚合物的甲苯溶液77K磷光光谱得到,为2.48eV,单重态三重态能级差为0.43eV(ΔE ST≤0.5eV)。77K温度下聚合物PPO-PIs在甲苯溶液中的单三线态能级数据如表1所示,从表1可以看出,该系列的聚合物均具有较小单重态三重态能级差(ΔE ST≤0.5eV)的聚合物,能实现三线态激子的反隙间穿越;
表1 77K温度下聚合物PPO-PIs在甲苯溶液中的单三线态能级数据
项目 单线态能级(eV) 三线态能级(eV) 寿命
PPO-PI5 2.91 2.48 3.68ms
PPO-PI7 2.91 2.48 3.61ms
PPO-PI10 2.91 2.48 3.03ms
PPO-PI12 2.91 2.49 2.46ms
PPO-PI15 2.92 2.48 2.19ms
PPO-PI20 2.92 2.49 1.77ms
PPO-PI50 2.92 2.50 9.14ns
进一步论证这一结论,采用Hamamatsu公司的C11367型荧光寿命光谱仪采集聚合物PPO-PI5在脱氧情况下甲苯溶液中的荧光寿命数据,见图4。聚合物PPO-PI5的甲苯溶液经过脱氧处理后,荧光寿命长达3.68ms,这较长的荧光寿命论证了聚合物PPO-PI5在激发状态下,确实有三线态激子反隙间穿越到单线态能级,进而延长了聚合物PPO-PI5的荧光寿命。除对比聚合物PPO-PI50(寿命为9.14ns)外,该系列其他聚合物的荧光寿命均在毫秒级别。
聚合物PPO-PI5在不同极性溶剂中的斯托克斯位移与溶剂极化率的关系曲线如图5所示。当极化率f≤0.15时,曲线的斜率较小,这说明聚合物PPO-PI5在低极性(极化率f≤0.15)溶剂中表现出典型的局域激发态发光特征,而在中等极性溶剂(f=0.147)中,分子激发态中的电荷转移(CT)成分开始凸显出来,而当极化率f≥0.2时,曲线的斜率较大,这说明聚合物PPO-PI5在高极性(f≥0.2)溶剂中表现出典型的电荷转移发光性质。这表明聚合物PPO-PI5的分子激发态是局域和电荷转移态共存的,证实了聚合物PPO-PI5的局域电荷转移杂化态的存在,在低极性下会显现局域发光特性,而在高极性下则会显现CT态发光特征。
实施例2
有机电致发光器件的制备:
1)ITO导电玻璃的清洗。将ITO玻璃基片放置在洗片架上,使用超声器超声清洗,洗涤液使用顺序为丙酮、异丙醇、洗洁精、去离子水和异丙醇,其目的是充分除掉ITO玻璃基片表面可能残留的污渍如光刻胶等,及改善界面接触。然后在真空烘箱中烘干;
2)将ITO置于氧等离子体刻蚀仪中,使用氧等离子体(O 2 Plasma)进行二十分钟的轰击,彻底清除ITO玻璃基片表面可能的残存有机物;
3)在ITO上旋涂40nm厚的空穴注入层PEDOT:PSS(BaytronP4083),然后80℃下在真空烘箱中干燥12小时;
4)在氮气氛围的手套箱中,在PEDOT:PSS层上旋涂一层80nm厚的发光聚合物薄膜后,在加热台上80℃温度下加热退火20分钟,以除去残留溶剂及改善发光层膜的形貌;
5)在真空蒸镀仓中在低于3×10 -4Pa的真空度下在有机物薄膜上先蒸镀一层20nm厚的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBI),再蒸镀一层1.5nm厚的氟化铯(CsF),有助于电子注入。然后在CsF上蒸镀一层110nm厚的铝阴极 (Al),其中氟化铯和铝层是经过掩膜板进行真空沉积的。
器件的有效面积为0.1cm 2。用石英晶体监控厚度仪测定有机层的厚度。器件制备后用环氧树脂和薄层玻璃在紫外光中极性固化和封装。器件结构为(ITO/PEDOT:PSS/Emitter(60nm)/TPBI(20nm)/CsF(1.5nm)/Al(110nm))。
对得到的电致发光器件分别进行光电性能测试,测试结果如表2所示。
表2电致发光聚合物的电致发光性能数据
Figure PCTCN2020121162-appb-000018
对得到的电致发光器件进行发光性能表征。从表中可知,以聚合物PPO-PIs为发光层制备器件的最大流明效率为17.17cd/A,外量子效率为8.56%,高于5%的理论值,也说明该体系聚合物具有高激子利用的优势,而对比聚合物PPO-PI50的最大流明效率仅为6.29cd/A,外量子效率仅为2.25%。相对之下,本发明保护的聚合物具有优异的光电性能,以及具有局域杂化电荷转移态的特征。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

  1. 一类基于菲并咪唑单元的电致发光聚合物,其特征在于具有如下所示的化学结构式:
    Figure PCTCN2020121162-appb-100001
    式中,R相对独立地为具有1~20个碳原子的直链、支化或者环状的烷基,具有2~20个碳原子的直链、支化或者环状的烯基,具有2~20个碳原子的直链、支化或者环状的炔基中的一种;
    x满足0.001≤x<0.50;
    n为2~300。
  2. 根据权利要求1所述的基于菲并咪唑单元的电致发光聚合物,其特征在于:
    所述的结构式中的R为辛基;0.05≤x≤0.20。
  3. 一种根据权利要求1或2所述的基于菲并咪唑单元的电致发光聚合物的制备方法,其特征在于,包括如下步骤:
    在惰性气体保护下,将聚合单体M1、M2与M3溶解在溶剂中,然后加入催化剂和有机碱四乙基氢氧化铵,加热至80~100℃发生Suzuki聚合反应,反应时间为24~48h;再加入苯硼酸,保温继续反应12~24h;再加入溴苯继续保温反应12~24h,反应结束后将所得反应液纯化即得目标产物;
    其中聚合单体M1、M2与M3的结构如下所示:
    Figure PCTCN2020121162-appb-100002
  4. 根据权利要求3所述的基于菲并咪唑单元的电致发光聚合物的制备方法,其特征在于:
    所述的溶剂为甲苯、四氢呋喃、三氯甲烷、氯苯中的至少一种;所述的溶剂与有机碱四乙基氢氧化铵水溶液的体积比为15~3:1,其中四乙基氢氧化铵水溶液的质量分数为20%;
    所述的催化剂为醋酸钯和三环己基磷体系;所述的催化剂的用量为反应单体摩尔总量的5‰~5%,醋酸钯和三环己基磷的摩尔比为1:2;四乙基氢氧化铵的摩尔量与聚合单体的摩尔总量之比为1~5:1。
  5. 根据权利要求3所述的基于菲并咪唑单元的电致发光聚合物的制备方法,其特征在于:
    所用的聚合单体M1、M2与M3的摩尔比为x:0.5:(0.5-x);其中x的范围为0.001≤x<0.50;
    所述的苯硼酸的用量为反应单体摩尔总量的5~30%;所述的溴苯的用量为苯硼酸摩尔量的2~20倍。
  6. 权利要求1或2所述的基于菲并咪唑单元的电致发光聚合物在制备发光二极管的发光层中的应用。
  7. 根据权利要求6所述的基于菲并咪唑单元的电致发光聚合物在制备发光二极管的发光层中的应用,其特征在于制备电致发光器件的发光层包括以下步 骤:将基于菲并咪唑单元的电致发光聚合物用有机溶剂溶解,再通过旋涂、喷墨打印或印刷成膜。
  8. 根据权利要求7所述的基于菲并咪唑单元的电致发光聚合物在制备发光二极管的发光层中的应用,其特征在于:
    所述的有机溶剂为甲苯、氯苯、二甲苯、四氢呋喃、氯仿中的至少一种。
PCT/CN2020/121162 2020-04-10 2020-10-15 一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用 WO2021203663A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/995,878 US20230240127A1 (en) 2020-04-10 2020-10-15 Electroluminescent polymer based on phenanthroimidazole units, preparation method therefor, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010279534.8 2020-04-10
CN202010279534.8A CN111454435B (zh) 2020-04-10 2020-04-10 一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2021203663A1 true WO2021203663A1 (zh) 2021-10-14

Family

ID=71675024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121162 WO2021203663A1 (zh) 2020-04-10 2020-10-15 一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用

Country Status (3)

Country Link
US (1) US20230240127A1 (zh)
CN (1) CN111454435B (zh)
WO (1) WO2021203663A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111454435B (zh) * 2020-04-10 2021-05-14 华南理工大学 一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用
CN112679732B (zh) * 2020-12-28 2021-10-26 华南理工大学 一类发光聚合物及其无金属催化剂聚合方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009092671A2 (en) * 2008-01-25 2009-07-30 Basf Se Organic light emitting systems
CN107759777A (zh) * 2017-11-20 2018-03-06 华南协同创新研究院 一种电致发光聚合物及其制备方法与应用
CN107805249A (zh) * 2017-10-25 2018-03-16 长春海谱润斯科技有限公司 一种菲并咪唑衍生物及其有机发光器件
CN108559063A (zh) * 2018-03-08 2018-09-21 华南协同创新研究院 一类含极性取代基团稠环结构的电致发光聚合物及其制备与应用
CN108912309A (zh) * 2016-02-28 2018-11-30 华南理工大学 一种单分子激基复合物白光聚合物及其制备方法与应用
CN109096426A (zh) * 2018-07-26 2018-12-28 华南协同创新研究院 一类主体聚合物材料及其制备方法和应用
CN111454435A (zh) * 2020-04-10 2020-07-28 华南理工大学 一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201105482D0 (en) * 2011-03-31 2011-05-18 Imp Innovations Ltd Polymers
JP2014108941A (ja) * 2012-11-30 2014-06-12 Samsung Display Co Ltd アミン誘導体、有機発光材料及びそれを用いた有機エレクトロルミネッセンス素子
CN104650041B (zh) * 2013-11-20 2017-05-10 中国科学院宁波材料技术与工程研究所 一种含氟菲并咪唑类衍生物及其合成方法和应用
TWI640513B (zh) * 2017-03-08 2018-11-11 國立清華大學 咪唑雜菲化合物以及包含其的有機發光二極體
CN109824870B (zh) * 2017-11-23 2021-07-27 东莞华工协同创新科技发展有限公司 一类基于硫氧芴并噻吩单元的电致发光聚合物及其制法与应用
CN108822040B (zh) * 2018-06-08 2021-09-14 吉林大学 一种基于菲并咪唑的有机橙光小分子、制备方法及其在电致发光器件中的应用
CN109705041B (zh) * 2019-01-29 2022-06-14 广东工业大学 一种三苯胺取代-乙烯基修饰的菲并咪唑类化合物及其制备方法和作为电致发光器件的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009092671A2 (en) * 2008-01-25 2009-07-30 Basf Se Organic light emitting systems
CN108912309A (zh) * 2016-02-28 2018-11-30 华南理工大学 一种单分子激基复合物白光聚合物及其制备方法与应用
CN107805249A (zh) * 2017-10-25 2018-03-16 长春海谱润斯科技有限公司 一种菲并咪唑衍生物及其有机发光器件
CN107759777A (zh) * 2017-11-20 2018-03-06 华南协同创新研究院 一种电致发光聚合物及其制备方法与应用
CN108559063A (zh) * 2018-03-08 2018-09-21 华南协同创新研究院 一类含极性取代基团稠环结构的电致发光聚合物及其制备与应用
CN109096426A (zh) * 2018-07-26 2018-12-28 华南协同创新研究院 一类主体聚合物材料及其制备方法和应用
CN111454435A (zh) * 2020-04-10 2020-07-28 华南理工大学 一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用

Also Published As

Publication number Publication date
CN111454435A (zh) 2020-07-28
US20230240127A1 (en) 2023-07-27
CN111454435B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
US7910687B2 (en) Conjugated polymers containing arylamine units, the representation thereof and the use of the same
TWI443127B (zh) 聚合體,有機電致發光元件用組成物,利用其等之有機電致發光元件,太陽電池元件,有機el顯示裝置及有機el照明
JP5560379B2 (ja) イソインジゴユニットを含有する共役ポリマー、その作製方法、及び、その使用方法
US20060284140A1 (en) Novel materials for electroluminescence
EP3121165B1 (en) Monoamine compound, charge transport material, composition for charge transport film, organic electroluminescent element, organic el display device, and organic el lighting
JP2019108350A (ja) 金属錯体および有機発光素子
Wang et al. A solution-processable deep red molecular emitter for non-doped organic red-light-emitting diodes
Zhao et al. Stable and efficient deep-blue terfluorenes functionalized with carbazole dendrons for solution-processed organic light-emitting diodes
WO2021203663A1 (zh) 一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用
WO2021017214A1 (zh) 一类电致发光聚合物及其制备方法与应用
CN109467681B (zh) 一种高分子热活化延迟荧光材料及其制备方法
Zhao et al. Formation of poly (9, 9-dioctylfluorene) β-phase by incorporating aromatic moiety in side chain
CN109096426B (zh) 一类主体聚合物材料及其制备方法和应用
CN107759777B (zh) 一种电致发光聚合物及其制备方法与应用
Ren et al. Synthesis of ring-structured polysiloxane as host materials for blue phosphorescent device
CN110511177B (zh) 一种d-a型tadf材料及其制备方法和应用
CN100422220C (zh) 受阻胺封端的共轭分子材料及其制备方法和应用
Ren et al. Ladder polysilsesquioxane for wide-band semiconductors: synthesis, optical properties and doped electrophosphorescent device
CN108586712B (zh) 一种电致发光单体、电致发光聚合物及其制备方法和应用
CN109020978B (zh) 一类星型荧光分子及其制备方法与应用
CN112661887B (zh) 高激子利用率非共轭型电致发光聚合物及其制备方法与应用
CN108503800B (zh) 一类含s,s-二氧-二苯并噻吩大环单元的聚合物及制备方法与应用
CN108276558B (zh) 一类电致发光聚合物及其制备方法与应用
Yang et al. Pure blue light-emitting fluorene-based conjugated polymer with excellent thermal, photophysical, and electroluminescent properties
CN112679732B (zh) 一类发光聚合物及其无金属催化剂聚合方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20929898

Country of ref document: EP

Kind code of ref document: A1