WO2021200871A1 - 半硬化物複合体及びその製造方法、硬化物複合体及びその製造方法、並びに多孔質体に含浸させて用いられる熱硬化性組成物 - Google Patents

半硬化物複合体及びその製造方法、硬化物複合体及びその製造方法、並びに多孔質体に含浸させて用いられる熱硬化性組成物 Download PDF

Info

Publication number
WO2021200871A1
WO2021200871A1 PCT/JP2021/013397 JP2021013397W WO2021200871A1 WO 2021200871 A1 WO2021200871 A1 WO 2021200871A1 JP 2021013397 W JP2021013397 W JP 2021013397W WO 2021200871 A1 WO2021200871 A1 WO 2021200871A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
thermosetting composition
cured product
porous body
semi
Prior art date
Application number
PCT/JP2021/013397
Other languages
English (en)
French (fr)
Inventor
絵梨 金子
麻菜 大木
紗緒梨 井之上
幸治 辻
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022512245A priority Critical patent/JPWO2021200871A1/ja
Priority to CN202180023020.9A priority patent/CN115315470A/zh
Priority to EP21780239.6A priority patent/EP4130114A4/en
Priority to US17/907,462 priority patent/US20230122917A1/en
Publication of WO2021200871A1 publication Critical patent/WO2021200871A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4853Epoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4223Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/681Metal alcoholates, phenolates or carboxylates
    • C08G59/682Alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body

Definitions

  • the present invention relates to a semi-cured product composite and a method for producing the same, a cured product composite and a method for producing the same, and a thermosetting composition used by impregnating a porous body.
  • the above-mentioned composite is used by being adhered to an adherend such as an electronic component, it is desirable that a highly adhesive state can be maintained for a long time because it is excellent in handleability.
  • the resin is in a semi-cured state, and when it is in a predetermined viscosity range, it is in a state of excellent adhesiveness.
  • it is difficult to keep the resin in a desired viscosity range because a rapid increase in viscosity is likely to occur in the semi-cured resin.
  • One aspect of the present invention is to hold the semi-cured product in a desired viscosity range in the semi-cured product composite in which the porous body is impregnated with the semi-cured product of the thermosetting composition.
  • the present inventors hold a semi-cured product of a thermosetting composition containing a predetermined amount of an epoxy compound and a cyanate compound in a desired viscosity range (for example, a viscosity range having excellent adhesiveness) without a rapid increase in viscosity. Found to be done. As a result, it was found that the semi-cured product composite obtained by impregnating the porous body with the semi-cured product of this curable composition can maintain a highly adhesive state, and completed the present invention.
  • a desired viscosity range for example, a viscosity range having excellent adhesiveness
  • thermosetting composition impregnated in the porous body, wherein the thermosetting composition is an epoxy compound.
  • thermosetting composition is an epoxy compound.
  • a semi-cured product composite containing a cyanate compound and having an equivalent ratio of an epoxy group of an epoxy compound to a cyanato group of the cyanate compound of 1.0 or more in a thermosetting composition.
  • the cyanate compound can be added to the complex to increase its heat resistance, but on the other hand, a rapid increase in viscosity of the semi-cured resin is likely to occur.
  • the cyanate compound and the epoxy compound are contained in a predetermined balance, so that a rapid increase in viscosity of the semi-cured product can be suppressed.
  • Another aspect of the present invention is a step of impregnating a porous body with a thermosetting composition containing an epoxy compound and a cyanate compound, and a reaction of the cyanate compound with the porous body impregnated with the thermosetting composition.
  • a method for producing a semi-cured product composite which comprises a step of heating at a temperature of T1 and a thermosetting composition in which the equivalent ratio of the epoxy group of the epoxy compound to the cyanato group is 1.0 or more. ..
  • thermosetting composition is an epoxy compound
  • a cured product composite containing a cyanate compound and having an equivalent ratio of an epoxy group of an epoxy compound to a cyanato group of 1.0 or more in a thermosetting composition.
  • thermosetting composition containing an epoxy compound and a cyanate compound, and a reaction of the cyanate compound with the porous body impregnated with the thermosetting composition.
  • the equivalent ratio of the epoxy group of the epoxy compound to the cyanato group is 1.0 or more.
  • a method for producing a cured product composite is provided.
  • thermosetting composition used by impregnating a porous body, wherein the thermosetting composition contains an epoxy compound and a cyanate compound, and the cyanato group of the cyanate compound is opposed to the thermosetting composition.
  • the thermosetting composition in which the epoxy group equivalent ratio of the epoxy compound is 1.0 or more.
  • the semi-cured product can be held in a desired viscosity range in the semi-cured product composite in which the porous body is impregnated with the semi-cured product of the thermosetting composition.
  • thermosetting composition which concerns on Example and Comparative Example.
  • the semi-cured product composite includes a porous body and a semi-cured product of a thermosetting composition impregnated in the porous body.
  • the porous body has a structure in which a plurality of fine pores (hereinafter, also referred to as "pores") are formed. At least a part of the pores in the porous body may be connected to each other to form continuous pores.
  • the porous body may be formed of an inorganic compound, and is preferably formed of a sintered body of an inorganic compound.
  • the sintered body of the inorganic compound may be a sintered body of an insulating material.
  • the insulator in the sintered body of the insulator preferably contains a non-oxide such as a carbide, a nitride, diamond, and graphite, and more preferably contains a nitride.
  • the carbide may be silicon carbide or the like.
  • the nitride may contain at least one nitride selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride, and preferably contains boron nitride.
  • the porous body may be preferably formed of a sintered body of an insulating material containing boron nitride, and more preferably formed of a boron nitride sintered body.
  • the boron nitride sintered body may be one obtained by sintering primary particles of boron nitride.
  • the boron nitride either amorphous boron nitride or hexagonal boron nitride can be used.
  • the thermal conductivity of the porous body may be, for example, 30 W / (m ⁇ K) or more, 50 W / (m ⁇ K) or more, or 60 W / (m ⁇ K) or more.
  • the thermal conductivity of the porous body is measured by a laser flash method on a sample in which the porous body is formed to have a length of 10 mm, a width of 10 mm, and a thickness of 1 mm.
  • the average pore diameter of the pores in the porous body may be, for example, 0.5 ⁇ m or more, and is preferably 0.6 ⁇ m or more, more preferably 0, from the viewpoint that the thermosetting composition can be suitably filled in the pores. It is 0.8 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the average pore diameter of the pores is preferably 3.5 ⁇ m or less, 3.0 ⁇ m or less, 2.5 ⁇ m or less, 2.0 ⁇ m or less, or 1.5 ⁇ m or less from the viewpoint of improving the insulating property of the semi-cured composite. be.
  • the average pore size of the pores in the porous body is such that the cumulative pore volume is the total pore volume in the pore size distribution (horizontal axis: pore diameter, vertical axis: cumulative pore volume) measured using a mercury porosimeter. It is defined as a pore size that reaches 50%.
  • a mercury porosimeter a mercury porosimeter manufactured by Shimadzu Corporation can be used, and the measurement is performed by pressurizing while increasing the pressure from 0.03 atm to 4000 atm.
  • the ratio of pores to the porous body is preferably based on the total volume of the porous body from the viewpoint of preferably improving the strength of the semi-cured product composite by filling with the thermosetting composition. Is 10% by volume or more, 20% by volume or more, or 30% by volume or more, preferably 70% by volume or less, more preferably 60% by volume, from the viewpoint of improving the insulating property and thermal conductivity of the semi-cured composite. Hereinafter, it is more preferably 50% by volume or less.
  • the proportion of the porous body in the semi-cured product composite is preferably 30% by volume or more, more preferably 40% by volume or more, still more preferably 40% by volume or more, from the viewpoint of improving the insulating property and thermal conductivity of the semi-cured product composite. It is 50% by volume or more.
  • the proportion of the porous body in the semi-cured product composite may be, for example, 90% by volume or less, 80% by volume or less, 70% by volume or less, or 60% by volume or less.
  • thermosetting composition contains an epoxy compound and a cyanate compound as a thermosetting compound.
  • an epoxy compound having a desired viscosity as a semi-cured product or an epoxy compound having a viscosity suitable for impregnation when impregnating a porous body may be appropriately selected.
  • the epoxy compound include 1,6-bis (2,3-epoxypropan-1-yloxy) naphthalene, bisphenol A type epoxy resin, bisphenol F type epoxy resin, dicyclopentadiene type epoxy resin and the like.
  • 1,6-bis (2,3-epoxypropane-1-yloxy) naphthalene is commercially available, for example, as HP-4032D (trade name, manufactured by DIC Corporation).
  • EP-4000L, EP4088L, EP3950 (above, ADEKA Corporation, trade name), EXA-850CRP (DIC Corporation, trade name), jER807, jER152, YX8000, YX8800 (above, Mitsubishi Chemical Corporation, trade name) is used.
  • an epoxy compound having a vinyl group can also be used.
  • the epoxy compound having a vinyl group include TEPIC-FL, TEPIC-VL (above, manufactured by Nissan Chemical Industries, Ltd., trade name), MA-DGIC, DA-MGIC (above, manufactured by Shikoku Chemicals Corporation, trade name). Etc. are commercially available.
  • the content of the epoxy compound is preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, preferably 85% by mass or less, more preferably 85% by mass or more, based on the total amount of the thermosetting composition. Is 75% by mass or less, more preferably 70% by mass or less.
  • cyanate compound examples include dimethylmethylenebis (1,4-phenylene) biscyanate and bis (4-cyanatephenyl) methane.
  • Dimethylmethylenebis (1,4-phenylene) biscyanate is commercially available, for example, as TA-CN (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name).
  • the content of the cyanate compound is preferably 5% by mass or more, more preferably 8% by mass or more, still more preferably 10% by mass or more, and preferably 51% by mass or less, more preferably 51% by mass or more, based on the total amount of the thermosetting composition. Is 40% by mass or less, more preferably 30% by mass or less.
  • the equivalent ratio of the epoxy group of the epoxy compound to the cyanato group of the cyanate compound contained in the thermosetting composition is 1.0 or more.
  • the corresponding amount ratio is preferably 1.5 or more, more preferably 2.0 or more, still more preferably 2.5 or more, from the viewpoint of facilitating impregnation with the thermosetting composition, and the semi-cured product composite.
  • From the viewpoint of improving heat resistance preferably 6.0 or less, 5.5 or less, 5.0 or less, 4.5 or less, 4.0 or less, 3.5 or less, or 3.0 or less. be.
  • thermosetting composition may further contain other compounds having thermosetting properties other than the epoxy compound and the cyanate compound.
  • thermosetting composition may further contain a curing agent in addition to the epoxy compound and the cyanate compound from the viewpoint of making it easier to maintain the semi-cured state of the desired viscosity.
  • the thermosetting composition contains a curing agent of an epoxy compound.
  • the curing agent for the epoxy compound is a compound that forms a crosslinked structure with the epoxy compound (cures the epoxy compound).
  • the epoxy compound curing agent preferably contains at least one selected from the group consisting of benzoxazine compounds, ester compounds, and phenol compounds.
  • benzoxazine compound examples include bisphenol F-type benzoxazine compounds.
  • the bisphenol F-type benzoxazine compound is commercially available, for example, as FA-type benzoxazine (manufactured by Shikoku Chemicals Corporation, trade name).
  • ester compound examples include diphenyl phthalate and benzyl 2-ethylhexyl phthalate.
  • the ester compound may be an active ester compound.
  • the active ester compound is a compound having one or more ester bonds in the structure and having aromatic rings bonded to both sides of the ester bond.
  • phenol compound examples include phenol, cresol, bisphenol A, bisphenol F, phenol novolac resin, cresol novolac resin, dicyclopentadiene-modified phenol resin, terpene-modified phenol resin, triphenol methane-type resin, and phenol aralkyl resin (phenylene skeleton, biphenylene skeleton). , Etc.), naphthol aralkyl resin, allylphenol resin and the like. These may be used alone or in admixture of two or more.
  • Phenolic compounds are commercially available, for example, as TD2131, VH4150 (manufactured by DIC Corporation, trade name), MEHC-7851M, MEHC-7500, MEH8005, MEH8000H (manufactured by Meiwa Kasei Co., Ltd., trade name).
  • the content of the curing agent is preferably 0.1% by mass or more, more preferably 5% by mass or more, and further, based on the total amount of the thermosetting composition. It is preferably 7% by mass or more, preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less.
  • the thermosetting composition may further contain a curing accelerator in addition to the above-mentioned compounds.
  • the curing accelerator contains a component (catalytic type curing agent) that functions as a catalyst for the curing reaction.
  • a component catalytic type curing agent
  • the reaction between the epoxy compound and the cyanate compound, the self-polymerization reaction of the epoxy compound, and / or the reaction between the epoxy compound and the curing agent of the epoxy compound are promoted, which will be described later. It can be facilitated, and the semi-cured product can be easily maintained in a semi-cured state having a desired viscosity.
  • Such a component examples include an organometallic salt, a phosphorus compound, an imidazole derivative, an amine compound, a cationic polymerization initiator and the like.
  • an organometallic salt examples include an organometallic salt, a phosphorus compound, an imidazole derivative, an amine compound, a cationic polymerization initiator and the like.
  • the curing agent these may be used alone or in combination of two or more.
  • Organic metal salts include organic bis (2,4-pentandionato) zinc (II), zinc octylate, zinc naphthenate, cobalt naphthenate, copper naphthenate, iron acetylacetone, nickel octylate, manganese octylate and the like. Examples include metal salts.
  • Phosphorus compounds include tetraphenylphosphonium tetra-p-tolylbolate, tetraphenylphosphonium tetraphenylborate, triphenylphosphine, tri-p-tolylphosphine, tris (4-chlorophenyl) phosphine, and tris (2,6-dimethoxyphenyl).
  • Examples thereof include phosphine, triphenylphosphine triphenylborane, tetraphenylphosphonium disianamide, tetraphenylphosphonium tetra (4-methylphenyl) borate and the like.
  • imidazole derivative examples include 1- (1-cyanomethyl) -2-ethyl-4-methyl-1H-imidazole, 2-ethyl-4-methylimidazole, 2-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenyl.
  • Amine compounds include dicyandiamide, triethylamine, tributylamine, tri-n-octylamine, 1,4-diazabicyclo [2.2.2] octane, 1,8-diazabicyclo [5.4.0] undec-7-ene. , Benzyldimethylamine, 4-methyl-N, N-dimethylbenzylamine, 2,4,6-tris (dimethylaminomethyl) phenol, 4-dimethylaminopyridine and the like.
  • Examples of the cationic polymerization initiator include benzylsulfonium salt, benzylammonium salt, benzylpyridinium salt, benzylphosphonium salt, hydrazinium salt, carboxylic acid ester compound, sulfonic acid ester compound, amineimide, antimony chloride-acetyl complex chloride, and diallyliodonium salt. Examples thereof include dibenzyloxy copper.
  • the content of the above-mentioned curing accelerator is 0.001 part by mass or more, 0.01 part by mass or more, or 0.05 part by mass with respect to 100 parts by mass in total of the epoxy compound, the cyanate compound, and the curing agent of the epoxy compound. It may be 1 part by mass or less, 0.8 part by mass or less, 0.5 part by mass or less, 0.3 part by mass or less, or 0.1 part by mass or less.
  • the content of the curing accelerator is in this range, the semi-cured product can be easily maintained at a desired viscosity.
  • the semi-cured product composite includes the semi-cured product of the thermosetting composition described above.
  • the semi-cured product of the thermosetting composition (also simply referred to as "semi-cured product”) refers to a cured product in a state in which the curing reaction of the thermosetting composition has partially progressed.
  • the semi-cured product contains a reaction product (cured product) of an epoxy compound and a cyanate compound, and an uncured epoxy compound.
  • the semi-cured product may contain a part of an uncured cyanate compound, or may contain a part of a cured product of an epoxy compound (for example, a cured product obtained by curing an epoxy compound by a self-polymerization reaction). ..
  • the inclusion of the semi-cured product in the semi-cured product composite can be confirmed by measuring the adhesive strength of the semi-cured product composite measured by the following method.
  • the semi-cured product composite is formed into a sheet by the method described later, the sheet is placed between two copper plates, heated and pressurized for 5 minutes under the conditions of 200 ° C. and 10 MPa, and further 200 ° C. and A laminate is obtained by heating under atmospheric pressure conditions for 2 hours.
  • a 90 ° peeling test is performed according to JIS K 6854-1: 1999 "Adhesive-Peeling Adhesive Strength Test Method", and the area of the cohesive fracture portion is measured.
  • the area of the coagulated fracture portion is 30 area% or more, it can be said that the semi-cured product composite contains the semi-cured product.
  • the method for producing a semi-cured compound is a step of impregnating a porous body with a thermosetting composition containing an epoxy compound and a cyanate compound (impregnation step) and a step of impregnating the thermosetting composition. It is provided with a step (semi-curing step) of heating the porous body at a temperature T1 at which the cyanate compound reacts.
  • the aspects of the thermosetting composition are as described above.
  • the impregnation step in one embodiment, first, the above-mentioned porous body is prepared.
  • the porous body may be produced by sintering the raw material or the like, or a commercially available product may be used.
  • the porous body is a sintered body of an inorganic compound
  • the porous body can be obtained by sintering the powder containing the inorganic compound.
  • the impregnation step includes a step of sintering a powder containing an inorganic compound (hereinafter, also referred to as an inorganic compound powder) to obtain a sintered body of an inorganic compound which is a porous body.
  • a slurry containing the powder of the inorganic compound may be spheroidized by a spray dryer or the like, further molded, and then sintered to prepare a sintered body which is a porous body.
  • a mold may be used for molding, or a cold isotropic pressing (CIP) method may be used.
  • a sintering aid may be used.
  • the sintering aid may be, for example, an oxide of a rare earth element such as itria oxide, alumina oxide and magnesium oxide, a carbonate of an alkali metal such as lithium carbonate and sodium carbonate, and boric acid.
  • the amount of the sintering aid added is, for example, 0.01 part by mass or more or 0.1 part by mass with respect to 100 parts by mass of the total of the inorganic compound and the sintering aid. That may be the above.
  • the amount of the sintering aid added may be 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less with respect to 100 parts by mass of the total of the inorganic compound and the sintering aid.
  • the sintering temperature of the inorganic compound may be, for example, 1600 ° C. or higher or 1700 ° C. or higher.
  • the sintering temperature of the inorganic compound may be, for example, 2200 ° C. or lower, or 2000 ° C. or lower.
  • the sintering time of the inorganic compound may be, for example, 1 hour or more and 30 hours or less.
  • the atmosphere at the time of sintering may be, for example, an atmosphere of an inert gas such as nitrogen, helium, or argon.
  • a batch type furnace, a continuous type furnace, or the like can be used.
  • the batch type furnace include a muffle furnace, a tube furnace, an atmosphere furnace, and the like.
  • the continuous furnace include a rotary kiln, a screw conveyor furnace, a tunnel furnace, a belt furnace, a pusher furnace, a koto-shaped continuous furnace, and the like.
  • the porous body may be formed into a desired shape and thickness by cutting or the like, if necessary, before the impregnation step.
  • thermosetting composition a solution containing the thermosetting composition is subsequently prepared in the impregnation device, and the porous body is immersed in the solution to impregnate the pores of the porous body with the thermosetting composition. ..
  • the impregnation step may be performed under either a reduced pressure condition or a pressurized condition, and the impregnation under the reduced pressure condition and the impregnation under the pressurized condition may be performed in combination.
  • the pressure in the impregnation device when the impregnation step is carried out under reduced pressure conditions may be, for example, 1000 Pa or less, 500 Pa or less, 100 Pa or less, 50 Pa or less, or 20 Pa or less.
  • the pressure in the impregnation device may be, for example, 1 MPa or more, 3 MPa or more, 10 MPa or more, or 30 MPa or more.
  • the thermosetting composition When impregnating the porous body with the thermosetting composition, the thermosetting composition may be heated. By heating the thermosetting composition, the viscosity of the solution is adjusted and impregnation into the porous body is promoted.
  • the temperature at which the thermosetting composition is heated for impregnation may be a temperature exceeding the temperature T1 described later. In this case, the temperature at which the thermosetting composition is heated for impregnation may be lower than the temperature T2 in the curing step described later.
  • the upper limit of the temperature at which the thermosetting composition is heated may be equal to or lower than the temperature of T1 + 20 ° C.
  • the porous body is kept immersed in a solution containing a thermosetting composition for a predetermined time.
  • the predetermined time is not particularly limited, and may be, for example, 5 minutes or more, 30 minutes or more, 1 hour or more, 5 hours or more, 10 hours or more, 100 hours or more, or 150 hours or more.
  • the porous body impregnated with the thermosetting composition is heated at the temperature T1 at which the cyanate compound reacts.
  • the cyanate compound contained in the thermosetting composition reacts to obtain a semi-cured product.
  • the cyanate compounds may react with each other, and the cyanate compound may react with a part of the epoxy compound.
  • the equivalent ratio of the epoxy group of the epoxy compound to the cyanate group of the cyanate compound is 1.0 or more. That is, in the semi-cured product, the epoxy compound is contained in excess of the cyanate compound as the epoxy equivalent, and these epoxy compounds remain in an uncured state. As a result, a semi-cured product of the thermosetting composition is obtained.
  • the temperature T1 is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 90 ° C. or higher, from the viewpoint of sufficiently impregnating the porous body with the semi-cured product.
  • the temperature T1 is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, still more preferably 120 ° C. or lower, from the viewpoint of reducing the change in viscosity with time.
  • the temperature T1 refers to the atmospheric temperature at which the porous body impregnated with the thermosetting composition is heated.
  • the heating time in the semi-curing step may be 1 hour or more, 3 hours or more, or 5 hours or more, and may be 12 hours or less, 10 hours or less, or 8 hours or less.
  • thermosetting composition is more adherent to the adherend than the completely cured cured product.
  • this semi-cured product composite is excellent in an adherend to an adherend because the uncured state is maintained for a long period of time unless the uncured compound is heated at a curing temperature (details will be described later).
  • the desired viscosity can be easily maintained.
  • a semi-cured product composite having excellent handleability can be obtained.
  • the cured product composite can be obtained by heating the semi-cured product composite described above at a temperature higher than the temperature T1. That is, the cured product composite according to one embodiment includes a porous body and a cured product of a thermosetting composition impregnated in the porous body.
  • the thermosetting composition is the same as the above-described embodiment.
  • the method for producing a cured product composite includes a step of impregnating a porous body with a thermosetting composition containing an epoxy compound and a cyanate compound (impregnation step), and a step of impregnating the thermosetting composition.
  • the porous body is heated at a temperature T1 at which the epoxy compound and the cyanate compound react, and then heated at a temperature T2 higher than the temperature T1 (curing step).
  • the impregnation step is the same as the above-described embodiment.
  • the porous body impregnated with the thermosetting composition is heated at the temperature T1 at which the cyanate compound reacts.
  • the heating conditions at this time may be the same conditions as the semi-curing step in the method for producing a semi-cured product composite described above.
  • the porous body is heated at a temperature T2 higher than the temperature T1.
  • the temperature T2 may be the temperature at which the epoxy compound self-polymerization reaction (reaction between uncured epoxy compounds) occurs.
  • the uncured epoxy compound contained in the semi-cured product can be cured by the self-polymerization reaction, and the thermosetting composition can be completely cured.
  • the temperature T2 may be a temperature at which the epoxy compound and the epoxy compound curing agent react with each other.
  • the epoxy compound and the curing agent react with each other to form a crosslinked structure, and the thermosetting composition can be completely cured.
  • the temperature T2 is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and further preferably 200 ° C. or higher from the viewpoint of short-time curing.
  • the temperature T2 is preferably 260 ° C. or lower, more preferably 240 ° C. or lower, still more preferably 220 ° C. or lower, from the viewpoint of volatilization of low molecular weight components contained in the composition and thermal stability of the composition.
  • the temperature T2 refers to the atmospheric temperature when heating the semi-cured product composite.
  • the heating time at the temperature T2 may be 1 hour or more, 5 hours or more, or 10 hours or more, and may be 30 hours or less, 25 hours or less, or 20 hours or less.
  • thermosetting composition preferably used by impregnating a porous body.
  • the thermosetting composition used by impregnating the porous body contains an epoxy compound and a cyanate compound, and the equivalent ratio of the epoxy group of the epoxy compound to the cyanate group of the cyanate compound is 1.0 or more. It is a thermosetting composition.
  • This thermosetting composition is excellent for a complex that can maintain a highly adhesive state by impregnating a porous body and semi-curing it. More specific embodiments of the thermosetting composition are as described above.
  • the semi-cured product composite described above can be used, for example, by molding it into a sheet or the like and adhering it to an adherend.
  • a semi-cured product complex is obtained by the method described above, the resin (thermosetting composition or semi-cured product) adhering to the outer periphery of the complex is removed, and then the semi-cured product is cut to a predetermined thickness.
  • the cured product complex can be formed into a sheet.
  • the semi-cured product composite molded into a sheet shape can be placed on the adherend and pressed while heating at a temperature of T2, for example, to cure the semi-cured product while adhering to the adherend. ..
  • thermosetting composition Epoxy compound: trade name "HP-4032D”, cyanate compound manufactured by DIC Co., Ltd .: trade name "TA-CN”, benzoxazine compound manufactured by Mitsubishi Gas Chemical Co., Ltd .: trade name "FA type benzoxazine”, Shikoku Kasei Kogyo Ester compound manufactured by Co., Ltd .: Diphenyl phthalate, manufactured by Tokyo Kasei Kogyo Co., Ltd. (reagent) Metallic curing accelerator: Bis (2,4-pentandionato) Zinc (II), manufactured by Tokyo Chemical Industry Co., Ltd. Amine-based curing accelerator: 4-dimethylaminopyridine (DMAP), manufactured by Tokyo Chemical Industry Co., Ltd.
  • DMAP 4-dimethylaminopyridine
  • thermosetting composition An epoxy compound, a cyanate compound, and a benzoxazine compound or an ester compound as a curing agent for the epoxy compound were measured in a container so as to have the composition (parts by mass) shown in Table 1. Further, a curing accelerator was added in an amount shown in Table 1 with respect to a total of 100 parts by mass of the epoxy compound, the cyanate compound and the curing agent of the epoxy compound, and all of them were mixed. Since the epoxy compound was in a solid state at room temperature, the epoxy compound was mixed in a state of being heated to about 80 ° C. As a result, the thermosetting compositions according to Examples and Comparative Examples were prepared.
  • thermosetting compositions according to Examples and Comparative Examples were heated and cured under the conditions of 120 ° C. and atmospheric pressure. At the same time as heating, the viscosity of the thermocurable composition changes with respect to the heating time by measuring the viscosity of the thermocurable composition under the condition of a shear rate of 10 (1 / sec) using a rotational viscometer. Was evaluated. The results are shown in FIG. 1 (a) shows the results of Examples 1, 2 and 4, and FIG. 1 (b) shows the results of Example 3. For comparison, both FIGS. 1 (a) and 1 (b) are shown. The result of Comparative Example 1 is shown in. As shown in FIGS.
  • thermosetting compositions of Examples 1 to 4 are thermosetting when heated at 120 ° C. (corresponding to the temperature T1 in the above-described embodiment) for a predetermined time.
  • the viscosity of the composition was substantially constant within the range of 1 ⁇ 10 3 to 1 ⁇ 10 5 Pa ⁇ s. That is, by using a thermosetting composition containing an epoxy compound and a cyanate compound so that the epoxy group equivalent / cyanato group equivalent is 1.0 or more, the heat of Comparative Example 1 in which the equivalent ratio is less than 1.0. It was found that the semi-cured product of the thermosetting composition can be easily adjusted to a state of excellent adhesiveness as compared with the case where the curable composition is used.
  • thermosetting composition of Example 4 since a benzoxazine compound that reacts at a temperature higher than 120 ° C. was added in a larger amount than in Example 1, a larger amount of unreacted epoxy compound remained, and 1 ⁇ viscosity in the following 10 6 Pa ⁇ s becomes substantially constant.
  • Amorphous boron nitride powder (manufactured by Denka Co., Ltd., oxygen content: 1.5%, boron nitride purity 97.6%, average particle size: 6.0 ⁇ m) is 40.0% by mass, hexagonal boron nitride powder in a container. (Manufactured by Denka Co., Ltd., oxygen content: 0.3%, boron nitride purity: 99.0%, average particle size: 30.0 ⁇ m) were measured so as to be 60.0% by mass, and the sintering aid was added. After adding (boric acid, calcium carbonate), an organic binder and water were added and mixed, and then dry granulation was performed to prepare a mixed powder of nitride.
  • the above mixed powder was filled in a mold and press-molded at a pressure of 5 MPa to obtain a molded product.
  • the molded product was compressed by applying a pressure of 20 to 100 MPa using a cold isotropic pressurizing (CIP) device (manufactured by Kobe Steel, Ltd., trade name: ADW800).
  • CIP cold isotropic pressurizing
  • a porous body is prepared by holding the compressed molded body at 2000 ° C. for 10 hours and sintering it using a batch type high-frequency furnace (manufactured by Fuji Dempa Kogyo Co., Ltd., trade name: FTH-300-1H). bottom.
  • the firing was carried out by adjusting the inside of the furnace under a nitrogen atmosphere while flowing nitrogen into the furnace in a standard state so that the flow rate was 10 L / min.
  • the porous body prepared as described above was impregnated with the thermosetting compositions according to Examples 1 to 4 by the following methods.
  • a vacuum heating impregnation device manufactured by Kyoshin Engineering Co., Ltd., trade name: G-555AT-R.
  • the inside of the apparatus was degassed for 10 minutes under the conditions of temperature: 100 ° C. and pressure: 15 Pa.
  • the container containing the porous body and the thermosetting composition was taken out and placed in a pressure heating impregnation device (manufactured by Kyoshin Engineering Co., Ltd., trade name: HP-4030AA-H45) at a temperature of 130 ° C.
  • the thermosetting composition was further impregnated into the porous body by holding for 120 minutes under the condition of 3.5 MPa.
  • the nitride sintered body was taken out from the apparatus and heated under the conditions of a temperature of 120 ° C. and an atmospheric pressure for a predetermined time, so that a semi-cured product composite having excellent adhesiveness could be easily produced.

Abstract

本発明の一側面は、多孔質体と、多孔質体に含浸された熱硬化性組成物の半硬化物と、を備える半硬化物複合体であって、熱硬化性組成物は、エポキシ化合物及びシアネート化合物を含有し、熱硬化性組成物において、シアネート化合物のシアナト基に対する、エポキシ化合物のエポキシ基の当量比が1.0以上である、半硬化物複合体を提供する。

Description

半硬化物複合体及びその製造方法、硬化物複合体及びその製造方法、並びに多孔質体に含浸させて用いられる熱硬化性組成物
 本発明は、半硬化物複合体及びその製造方法、硬化物複合体及びその製造方法、並びに多孔質体に含浸させて用いられる熱硬化性組成物に関する。
 LED照明装置、車載用パワーモジュール等の電子部品においては、使用時に発生する熱を効率的に放熱することが課題となっている。この課題に対して、電子部品を実装するプリント配線板の絶縁層を高熱伝導化する方法、電子部品又はプリント配線板を電気絶縁性の熱インターフェース材(Thermal Interface Materials)を介してヒートシンクに取り付ける方法等の対策が取られている。このような絶縁層及び熱インターフェース材には、樹脂と窒化ホウ素等のセラミックスとで構成される複合体(放熱部材)が用いられる。
国際公開第2014/196496号
 上述のような複合体は、電子部品等の被着体に接着させて用いられるため、接着性の高い状態を長時間持続可能であると、ハンドリング性に優れるため望ましい。複合体においては、樹脂が半硬化の状態であって、所定の粘度範囲であるときに接着性に優れた状態となる。従来の複合体では、半硬化状態の樹脂において急激な粘度上昇が起こりやすかったため、所望の粘度範囲で保持することが困難であった。
 本発明の一側面は、多孔質体に熱硬化性組成物の半硬化物が含浸された半硬化物複合体において、半硬化物を所望の粘度範囲で保持することを目的とする。
 本発明者らは、エポキシ化合物及びシアネート化合物を所定量含有する熱硬化性組成物の半硬化物が、急激に粘度上昇せず、所望の粘度範囲(例えば、接着性に優れる粘度範囲)で保持されることを見出した。これにより、この硬化性組成物の半硬化物を多孔質体に含浸させた半硬化物複合体が接着性の高い状態を保持できることを見出し、本発明を完成させた。
 本発明の一側面は、多孔質体と、多孔質体に含浸された熱硬化性組成物の半硬化物と、を備える半硬化物複合体であって、熱硬化性組成物は、エポキシ化合物及びシアネート化合物を含有し、熱硬化性組成物において、シアネート化合物のシアナト基に対する、エポキシ化合物のエポキシ基の当量比が1.0以上である、半硬化物複合体を提供する。
 シアネート化合物は、複合体に添加することによりその耐熱性を高めることができるが、その一方で、半硬化状態の樹脂における急激な粘度上昇が生じやすくなる。上記の半硬化物複合体においては、シアネート化合物とエポキシ化合物とが所定のバランスで含まれることにより、半硬化物の急激な粘度上昇を抑制できる。
 本発明の他の一側面は、エポキシ化合物及びシアネート化合物を含有する熱硬化性組成物を多孔質体に含浸させる工程と、熱硬化性組成物を含浸させた多孔質体を、シアネート化合物が反応する温度T1で加熱する工程と、を備え、熱硬化性組成物において、シアナト基に対する、エポキシ化合物のエポキシ基の当量比が1.0以上である、半硬化物複合体の製造方法を提供する。
 本発明の他の一側面は、多孔質体と、多孔質体に含浸された熱硬化性組成物の硬化物とを備える硬化物複合体であって、熱硬化性組成物は、エポキシ化合物及びシアネート化合物を含有し、熱硬化性組成物において、シアナト基に対する、エポキシ化合物のエポキシ基の当量比が1.0以上である、硬化物複合体を提供する。
 本発明の他の一側面は、エポキシ化合物及びシアネート化合物を含有する熱硬化性組成物を多孔質体に含浸させる工程と、熱硬化性組成物を含浸させた多孔質体を、シアネート化合物が反応する温度T1で加熱した後に、温度T1よりも高温の温度T2で加熱する工程と、を備え、熱硬化性組成物において、シアナト基に対する、エポキシ化合物のエポキシ基の当量比が1.0以上である、硬化物複合体の製造方法を提供する。
 本発明の他の一側面は、多孔質体に含浸させて用いられる熱硬化性組成物であって、熱硬化性組成物は、エポキシ化合物及びシアネート化合物を含有し、シアネート化合物のシアナト基に対する、エポキシ化合物のエポキシ基の当量比が1.0以上である、熱硬化性組成物を提供する。
 本発明の一側面によれば、多孔質体に熱硬化性組成物の半硬化物が含浸された半硬化物複合体において、半硬化物を所望の粘度範囲で保持することができる。
実施例及び比較例に係る熱硬化性組成物の粘度挙動を示すグラフである。
 以下、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。
<半硬化物複合体>
 一実施形態に係る半硬化物複合体は、多孔質体と、多孔質体に含浸された熱硬化性組成物の半硬化物とを備える。
 多孔質体は、複数の微細な孔(以下、「細孔」ともいう)が形成された構造を有する。多孔質体における細孔は、少なくとも一部が互いに連結して連続孔を形成していてもよい。
 多孔質体は、無機化合物で形成されていてよく、好ましくは無機化合物の焼結体で形成されている。無機化合物の焼結体は、絶縁物の焼結体であってもよい。絶縁物の焼結体における絶縁物は、好ましくは、炭化物、窒化物、ダイヤモンド、黒鉛等の非酸化物を含有し、より好ましくは窒化物を含有する。炭化物は、炭化ケイ素等であってよい。窒化物は、窒化ホウ素、窒化アルミニウム、及び窒化ケイ素からなる群から選択される少なくとも一種の窒化物を含有してよく、好ましくは窒化ホウ素を含有する。すなわち、多孔質体は、好ましくは窒化ホウ素を含有する絶縁物の焼結体で形成されていてよく、より好ましくは、窒化ホウ素焼結体で形成されている。多孔質体が窒化ホウ素焼結体で形成されている場合、窒化ホウ素焼結体は、窒化ホウ素の一次粒子同士が焼結されてなるものであってよい。窒化ホウ素としては、アモルファス状の窒化ホウ素及び六方晶状の窒化ホウ素のいずれも用いることができる。
 多孔質体の熱伝導率は、例えば、30W/(m・K)以上、50W/(m・K)以上、又は60W/(m・K)以上であってよい。多孔質体が熱伝導性に優れていると、得られる半硬化物複合体の熱抵抗を低下させることができる。多孔質体の熱伝導率は、多孔質体を長さ10mm×幅10mm×厚さ1mmに形成した試料について、レーザーフラッシュ法により測定される。
 多孔質体中の細孔の平均孔径は、例えば0.5μm以上であってよく、細孔内に熱硬化性組成物を好適に充填できる観点から、好ましくは0.6μm以上、より好ましくは0.8μm以上、更に好ましくは1μm以上である。細孔の平均孔径は、半硬化物複合体の絶縁性が向上する観点から、好ましくは、3.5μm以下、3.0μm以下、2.5μm以下、2.0μm以下、又は1.5μm以下である。
 多孔質体中の細孔の平均孔径は、水銀ポロシメーターを用いて測定される細孔径分布(横軸:細孔径、縦軸:累積細孔容積)において、累積細孔容積が全細孔容積の50%に達する細孔径として定義される。水銀ポロシメーターとしては、島津製作所社製の水銀ポロシメーターを用いることができ、0.03気圧から4000気圧まで圧力を増やしながら加圧して測定する。
 多孔質体に占める細孔の割合(気孔率)は、多孔質体の全体積を基準として、熱硬化性組成物の充填による半硬化物複合体の強度向上が好適に図られる観点から、好ましくは10体積%以上、20体積%以上、又は30体積%以上であり、半硬化物複合体の絶縁性及び熱伝導率を向上させる観点から、好ましくは70体積%以下、より好ましくは60体積%以下、更に好ましくは50体積%以下である。当該割合(気孔率)は、多孔質体の体積及び質量から求められるかさ密度D1(g/cm)と多孔質体を構成する材料の理論密度D2(例えば窒化ホウ素の場合は2.28g/cm)とから、下記式:
 気孔率(体積%)=[1-(D1/D2)]×100
に従って算出される。
 半硬化物複合体中の多孔質体の割合は、半硬化物複合体の絶縁性及び熱伝導率を向上させる観点から、好ましくは30体積%以上、より好ましくは40体積%以上、更に好ましくは50体積%以上である。半硬化物複合体中の多孔質体の割合は、例えば、90体積%以下、80体積%以下、70体積%以下、又は60体積%以下であってよい。
 熱硬化性組成物は、熱硬化性を有する化合物として、エポキシ化合物及びシアネート化合物を含有する。
 エポキシ化合物としては、例えば、半硬化物として所望の粘度を有するエポキシ化合物、又は多孔質体に含浸させる際に含浸に適する粘度を有するエポキシ化合物を適宜選択すればよい。エポキシ化合物としては、1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレン、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等が挙げられる。このうち、1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレンは、例えば、HP-4032D、(DIC株式会社製、商品名)として商業的に入手可能である。その他、エポキシ化合物の市販品として、EP-4000L、EP4088L、EP3950(以上、株式会社ADEKA製、商品名)、EXA-850CRP(DIC株式会社、商品名)、jER807、jER152、YX8000、YX8800(以上、三菱ケミカル株式会社製、商品名)が用いられる。エポキシ化合物としては、ビニル基を有するエポキシ化合物も使用できる。ビニル基を有するエポキシ化合物としては、例えばTEPIC-FL、TEPIC-VL(以上、日産化学株式会社製、商品名)、MA-DGIC、DA-MGIC(以上、四国化成工業株式会社製、商品名)等が商業的に入手可能である。
 エポキシ化合物の含有量は、熱硬化性組成物全量基準で、好ましくは30質量%以上、より好ましくは40質量%以上、更に好ましくは50質量%以上であり、好ましくは85質量%以下、より好ましくは75質量%以下、更に好ましくは70質量%以下である。
 シアネート化合物としては、ジメチルメチレンビス(1,4-フェニレン)ビスシアナート、ビス(4-シアネートフェニル)メタン等が挙げられる。ジメチルメチレンビス(1,4-フェニレン)ビスシアナートは、例えば、TA-CN(三菱ガス化学株式会社製、商品名)として商業的に入手可能である。
 シアネート化合物の含有量は、熱硬化性組成物全量基準で、好ましくは5質量%以上、より好ましくは8質量%以上、更に好ましくは10質量%以上であり、好ましくは51質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。
 熱硬化性組成物を所望の粘度の半硬化状態(詳細は後述)で保持する観点から、熱硬化性組成物に含まれるシアネート化合物のシアナト基に対する、エポキシ化合物のエポキシ基の当量比(エポキシ基当量/シアナト基当量)が、1.0以上である。当該当量比は、好ましくは1.5以上、より好ましくは2.0以上、更に好ましくは2.5以上であり、また、熱硬化性組成を含浸させやすくする観点、及び半硬化物複合体の耐熱性を優れたものとする観点から、好ましくは、6.0以下、5.5以下、5.0以下、4.5以下、4.0以下、3.5以下、又は3.0以下である。
 熱硬化性組成物は、エポキシ化合物及びシアネート化合物以外の、熱硬化性を有する他の化合物を更に含有してもよい。
 熱硬化性組成物は、所望の粘度の半硬化状態をより一層保持しやすくする観点から、エポキシ化合物及びシアネート化合物に加えて、硬化剤を更に含有してもよい。一実施形態において、熱硬化性組成物は、エポキシ化合物の硬化剤を含有する。エポキシ化合物の硬化剤は、エポキシ化合物と架橋構造を形成する(エポキシ化合物を硬化させる)化合物である。
 エポキシ化合物の硬化剤は、好ましくは、ベンゾオキサジン化合物、エステル化合物、及びフェノール化合物からなる群より選択される少なくとも一種を含有する。
 ベンゾオキサジン化合物としては、ビスフェノールF型ベンゾオキサジン化合物等が挙げられる。ビスフェノールF型ベンゾオキサジン化合物は、例えば、F-a型ベンゾオキサジン(四国化成工業株式会社製、商品名)として商業的に入手可能である。
 エステル化合物としては、フタル酸ジフェニル、フタル酸ベンジル2-エチルヘキシル等が挙げられる。エステル化合物は、活性エステル化合物であってもよい。活性エステル化合物とは、構造中にエステル結合を1つ以上有し、かつ、エステル結合の両側に芳香族環が結合している化合物をいう。
 フェノール化合物としては、フェノール、クレゾール、ビスフェノールA、ビスフェノールF、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有するもの)、ナフトールアラルキル樹脂、アリルフェノール樹脂等が挙げられる。これらは、単独で用いられてよく、二種以上を混合して用いられてもよい。フェノール化合物は、例えば、TD2131、VH4150(DIC株式会社製、商品名)、MEHC-7851M、MEHC-7500、MEH8005、MEH8000H(明和化成株式会社製、商品名)として商業的に入手可能である。
 熱硬化性組成物がエポキシ化合物の硬化剤を含有する場合、硬化剤の含有量は、熱硬化性組成物全量基準で、好ましくは0.1質量%以上、より好ましくは5質量%以上、更に好ましくは7質量%以上であり、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは15質量%以下である。
 熱硬化性組成物は、上述した化合物以外に、硬化促進剤を更に含有してもよい。硬化促進剤は、硬化反応の触媒として機能する成分(触媒型硬化剤)が含まれる。熱硬化性組成物が硬化促進剤を含有することにより、後述する、エポキシ化合物とシアネート化合物との反応、エポキシ化合物の自己重合反応、及び/又はエポキシ化合物とエポキシ化合物の硬化剤との反応を進めやすくすることができ、半硬化物を所望の粘度の半硬化状態で維持しやすくすることもできる。このような成分としては、有機金属塩、リン化合物、イミダゾール誘導体、アミン化合物、又はカチオン重合開始剤等が挙げられる。硬化剤は、これらを1種単独で又は2種以上を組み合わせて用いられてよい。
 有機金属塩としては、ビス(2,4-ペンタンジオナト)亜鉛(II)、オクチル酸亜鉛、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、アセチルアセトン鉄、オクチル酸ニッケル、オクチル酸マンガン等の有機金属塩類などが挙げられる。
 リン化合物としては、テトラフェニルホスホニウムテトラ-p-トリルボレート、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィン、トリ-p-トリルホスフィン、トリス(4-クロロフェニル)ホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン、トリフェニルホスフィントリフェニルボラン、テトラフェニルホスホニウムジシアナミド、テトラフェニルホスホニウムテトラ(4-メチルフェニル)ボレート等が挙げられる。
 イミダゾール誘導体としては、1-(1-シアノメチル)-2-エチル-4-メチル-1H-イミダゾール、2-エチルー4-メチルイミダゾール、2-メチルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,4,5-トリフェニルイミダゾール等が挙げられる。
 アミン化合物としては、ジシアンジアミド、トリエチルアミン、トリブチルアミン、トリ-n-オクチルアミン、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、ベンジルジメチルアミン、4-メチル-N,N-ジメチルベンジルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、4-ジメチルアミノピリジン等が挙げられる。
 カチオン重合開始剤としては、ベンジルスルホニウム塩、ベンジルアンモニウム塩、ベンジルピリジニウム塩、ベンジルホスホニウム塩、ヒドラジニウム塩、カルボン酸エステル化合物、スルホン酸エステル化合物、アミンイミド、五塩化アンチモン-塩化アセチル錯体、ジアリールヨードニウム塩-ジベンジルオキシ銅等が挙げられる。
 上述した硬化促進剤の含有量は、エポキシ化合物、シアネート化合物、及びエポキシ化合物の硬化剤の合計100質量部に対して、0.001質量部以上、0.01質量部以上、又は0.05質量部以上であってよく、1質量部以下、0.8質量部以下、0.5質量部以下、0.3質量部以下、又は0.1質量部以下であってよい。硬化促進剤の含有量がこの範囲であることにより、半硬化物を所望の粘度で維持しやすくすることができる。
 半硬化物複合体は、上述した熱硬化性組成物の半硬化物を備えている。熱硬化性組成物の半硬化物(単に「半硬化物」ともいう。)は、熱硬化性組成物の硬化反応が一部進行した状態の硬化物をいう。一実施形態において、半硬化物は、エポキシ化合物とシアネート化合物との反応物(硬化物)と、未硬化のエポキシ化合物とを含有する。半硬化物には、未硬化のシアネート化合物が一部含まれていてもよく、エポキシ化合物の硬化物(例えば、エポキシ化合物が自己重合反応によって硬化した硬化物)が一部含まれていてもよい。
 半硬化物複合体に半硬化物が含まれていることは、以下の方法で測定される半硬化物複合体の接着強度を測定することにより確認することができる。まず、後述する方法により半硬化物複合体をシート状に成形し、このシートを2枚の銅板間に配置し、200℃及び10MPaの条件下で5分間加熱及び加圧して、更に200℃及び大気圧の条件下で2時間加熱して積層体を得る。次に、JIS K 6854-1:1999「接着剤-はく離接着強さ試験方法」に従って、90°はく離試験を行い、凝集破壊部分の面積を測定する。その結果、凝集破壊部分の面積が30面積%以上であれば、半硬化物複合体に半硬化物が含まれているということができる。
 次に、半硬化物複合体の製造方法を説明する。一実施形態において、半硬化物複合体の製造方法は、エポキシ化合物及びシアネート化合物を含有する熱硬化性組成物を多孔質体に含浸させる工程(含浸工程)と、熱硬化性組成物を含浸させた多孔質体を、シアネート化合物が反応する温度T1で加熱する工程(半硬化工程)と、を備える。熱硬化性組成物の態様は、上述したとおりである。
 含浸工程では、一実施形態において、まず、上述の多孔質体を用意する。多孔質体は原料の焼結等によって作製してもよいし、市販品を用いてもよい。多孔質体が無機化合物の焼結体である場合には、無機化合物を含む粉末を焼結させることにより、多孔質体を得ることができる。すなわち、一実施形態において、含浸工程は、無機化合物を含有する粉末(以下、無機化合物粉末ともいう)を焼結させて、多孔質体である無機化合物の焼結体を得る工程を有する。
 無機化合物の焼結体は、無機化合物の粉末を含むスラリーを噴霧乾燥機等で球状化処理し、更に成形した後に焼結し、多孔質体である焼結体を調製してもよい。成形には、金型を用いてもよく、冷間等方加圧(cold isostatic pressing:CIP)法を用いてもよい。
 焼結の際には、焼結助剤を用いてもよい。焼結助剤は、例えば、酸化イットリア、酸化アルミナ及び酸化マグネシウム等の希土類元素の酸化物、炭酸リチウム及び炭酸ナトリウム等のアルカリ金属の炭酸塩、並びにホウ酸等であってよい。焼結助剤を配合する場合は、焼結助剤の添加量は、例えば、無機化合物及び焼結助剤の合計100質量部に対して、0.01質量部以上、又は0.1質量部以上であってよい。焼結助剤の添加量は、無機化合物及び焼結助剤の合計100質量部に対して、20質量部以下、15質量部以下、又は10質量部以下であってよい。焼結助剤の添加量を上記範囲内とすることで、焼結体の平均細孔径を上述の範囲に調整することが容易となる。
 無機化合物の焼結温度は、例えば、1600℃以上又は1700℃以上であってよい。無機化合物の焼結温度は、例えば、2200℃以下、又は2000℃以下であってよい。無機化合物の焼結時間は、例えば、1時間以上であってよく、30時間以下であってよい。焼結時の雰囲気は、例えば、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下であってよい。
 焼結には、例えば、バッチ式炉及び連続式炉等を用いることができる。バッチ式炉としては、例えば、マッフル炉、管状炉、及び雰囲気炉等を挙げることができる。連続式炉としては、例えば、ロータリーキルン、スクリューコンベア炉、トンネル炉、ベルト炉、プッシャー炉、及び琴形連続炉等を挙げることができる。
 多孔質体は、含浸工程の前に必要に応じて、所望の形状及び厚み等に切断等によって成形されてもよい。
 含浸工程では、続いて、含浸装置内に熱硬化性組成物を含む溶液を用意し、当該溶液に多孔質体を浸漬させることで、多孔質体の細孔に熱硬化性組成物を含浸させる。
 含浸工程は、減圧条件下及び加圧条件下のいずれで行ってもよく、減圧条件下での含浸と、加圧条件下での含浸とを組み合わせて行ってもよい。減圧条件下で含浸工程を実施する場合における含浸装置内の圧力は、例えば、1000Pa以下、500Pa以下、100Pa以下、50Pa以下、又は20Pa以下であってよい。加圧条件下で含浸工程を実施する場合における含浸装置内の圧力は、例えば、1MPa以上、3MPa以上、10MPa以上、又は30MPa以上であってよい。
 多孔質体へ熱硬化性組成物を含浸させる際には、熱硬化性組成物を加熱してもよい。熱硬化性組成物を加熱することによって、溶液の粘度が調整され、多孔質体への含浸が促進される。含浸のために熱硬化性組成物を加熱する温度は、後述する温度T1を超える温度であってよい。この場合、含浸のために熱硬化性組成物を加熱する温度は、後述する硬化工程における温度T2よりも低温であってよい。熱硬化性組成物を加熱する温度の上限は、温度T1+20℃の温度以下であってもよい。
 含浸工程では、熱硬化性組成物を含む溶液に多孔質体を浸漬した状態で所定の時間だけ保持する。当該所定の時間(浸漬時間)は、特に制限されず、例えば、5分間以上、30分間以上、1時間以上、5時間以上、10時間以上、100時間以上、又は150時間以上であってよい。
 半硬化工程では、熱硬化性組成物が含浸された多孔質体を、シアネート化合物が反応する温度T1で加熱する。これにより、熱硬化性組成物中に含まれるシアネート化合物が反応して、半硬化物が得られる。このとき、シアネート化合物同士が反応してよく、シアネート化合物とエポキシ化合物の一部とが反応してもよい。一方、熱硬化性組成物においては、上述したように、シアネート化合物のシアナト基に対する、エポキシ化合物のエポキシ基の当量比が1.0以上である。すなわち、半硬化物においては、エポキシ化合物がエポキシ当量としてシアネート化合物よりも過剰に含まれており、これらのエポキシ化合物が未硬化の状態で残存している。その結果、熱硬化性組成物の半硬化物が得られる。
 温度T1は、多孔質体に半硬化物を十分に含浸させる観点から、好ましくは70℃以上、より好ましくは80℃以上、更に好ましくは90℃以上である。温度T1は、時間に対する粘度変化を小さくする観点から、好ましくは180℃以下、より好ましくは150℃以下、更に好ましくは120℃以下である。なお、温度T1は、熱硬化性組成物を含浸させた多孔質体を加熱する際の雰囲気温度を指す。
 半硬化工程における加熱時間は、1時間以上、3時間以上、又は5時間以上であってよく、12時間以下、10時間以下、又は8時間以下であってよい。
 上述の半硬化物複合体では、一部の化合物(主にエポキシ化合物)が未硬化で含まれているため、熱硬化性組成物が完全硬化した硬化物よりも被着体への接着体に優れる。また、この半硬化物複合体では、未硬化の化合物が硬化する温度(詳細は後述する)で加熱しない限り、未硬化の状態が長期間保持されるため、被着体への接着体に優れる所望の粘度を容易に保持することができる。これにより、ハンドリング性に優れた半硬化物複合体を得ることができる。
<硬化物複合体>
 以上説明した半硬化物複合体を、温度T1よりも高温の温度で加熱することにより、硬化物複合体を得ることができる。すなわち、一実施形態に係る硬化物複合体は、多孔質体と、多孔質体に含浸された熱硬化性組成物の硬化物とを備える。熱硬化性組成物は、上述した態様と同様である。
 この硬化物複合体は、上述した半硬化物複合体をより高温の温度で加熱することにより得ることができる。一実施形態に係る硬化物複合体の製造方法は、エポキシ化合物及びシアネート化合物を含有する熱硬化性組成物を多孔質体に含浸させる工程(含浸工程)と、熱硬化性組成物を含浸させた多孔質体を、エポキシ化合物及びシアネート化合物が反応する温度T1で加熱した後に、温度T1よりも高温の温度T2で加熱する工程(硬化工程)と、を備える。含浸工程は、上述した態様と同様である。
 硬化工程においては、まず、熱硬化性組成物を含浸させた多孔質体をシアネート化合物が反応する温度T1で加熱する。このときの加熱条件は、上述した半硬化物複合体の製造方法における半硬化工程と同様の条件であってよい。
 続いて、多孔質体を、温度T1よりも高温の温度T2で加熱する。一実施形態において、温度T2は、エポキシ化合物の自己重合反応(未硬化のエポキシ化合物同士の反応)が生じる温度であってよい。これにより、半硬化物中に含まれる未硬化のエポキシ化合物を自己重合反応により硬化させて、熱硬化性組成物を完全に硬化させることができる。
 熱硬化性組成物が上述したエポキシ化合物の硬化剤を含有する場合には、温度T2は、エポキシ化合物とエポキシ化合物の硬化剤とが互いに反応する温度であってもよい。この場合、エポキシ化合物と硬化剤とが互いに反応することによって架橋構造が形成され、熱硬化性組成物を完全に硬化させることができる。
 温度T2は、短時間硬化の観点から、好ましくは150℃以上、より好ましくは180℃以上、更に好ましくは200℃以上である。温度T2は、組成物に含まれる低分子量成分の揮発と組成物の熱安定性の観点から、好ましくは260℃以下、より好ましくは240℃以下、更に好ましくは220℃以下である。なお、温度T2は、半硬化物複合体を加熱する際の雰囲気温度を指す。
 温度T2での加熱時間は、1時間以上、5時間以上、又は10時間以上であってよく、30時間以下、25時間以下、又は20時間以下であってよい。
 本発明の一実施形態は、多孔質体に含浸させることにより好適に用いられる熱硬化性組成物ととらえることもできる。一実施形態に係る多孔質体に含浸させて用いられる熱硬化性組成物は、エポキシ化合物及びシアネート化合物を含有し、シアネート化合物のシアナト基に対する、エポキシ化合物のエポキシ基の当量比が1.0以上である、熱硬化性組成物である。この熱硬化性組成物は、多孔質体に含浸させて半硬化させることにより、接着性の高い状態を維持できる複合体用として優れている。熱硬化性組成物のより具体的な態様は、上述したとおりである。
 以上説明した半硬化物複合体は、例えば、シート状等に成形し、被着体に接着することにより使用できる。例えば、上述した方法により半硬化物複合体を得て、当該複合体の外周に付着した樹脂(熱硬化性組成物又は半硬化物)を除去した後に、所定の厚みに切断することにより、半硬化物複合体をシート状に成形することができる。シート状に成形された半硬化物複合体は、被着体に配置して、例えば温度T2で加熱しながらプレスすることにより、被着体に接着させながら、半硬化物を硬化させることができる。
 以下、実施例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 熱硬化性組成物の調製には、下記の材料を用いた。
 エポキシ化合物:商品名「HP-4032D」、DIC株式会社製
 シアネート化合物:商品名「TA-CN」、三菱ガス化学株式会社製
 ベンゾオキサジン化合物:商品名「F-a型ベンゾオキサジン」、四国化成工業株式会社製
 エステル化合物:フタル酸ジフェニル、東京化成工業株式会社製(試薬)
 金属系硬化促進剤:ビス(2,4-ペンタンジオナト)亜鉛(II)、東京化成工業株式会社製
 アミン系硬化促進剤:4-ジメチルアミノピリジン(DMAP)、東京化成工業株式会社製
[熱硬化性組成物の調製]
 容器に、エポキシ化合物、シアネート化合物、及び、エポキシ化合物の硬化剤であるベンゾオキサジン化合物又はエステル化合物を、表1に示す組成(質量部)になるように測り取った。さらに、硬化促進剤を、エポキシ化合物、シアネート化合物及びエポキシ化合物の硬化剤の合計100質量部に対して表1に示す量にて添加し、これらを全て混合した。なお、エポキシ化合物が室温で固体状態であったため、エポキシ化合物を80℃程度に加熱した状態で混合した。これにより、実施例及び比較例に係る熱硬化性組成物を調製した。
Figure JPOXMLDOC01-appb-T000001
[粘度挙動の評価]
 実施例及び比較例に係る熱硬化性組成物を、120℃、大気圧の条件下で加熱して硬化させた。加熱するのと同時に、回転粘度計を用いて、剪断速度が10(1/秒)の条件下で熱硬化性組成物の粘度を測定することにより、加熱時間に対する熱硬化性組成物の粘度変化を評価した。結果を図1に示す。図1(a)には実施例1,2,4の結果を、図1(b)には実施例3の結果をそれぞれ示し、比較のため図1(a)及び図1(b)の両方に比較例1の結果を示した。図1(a)、(b)に示すように、実施例1~4の熱硬化性組成物では、120℃(上述した実施形態における温度T1に相当)で所定時間加熱したところ、熱硬化性組成物の粘度が1×10~1×10Pa・sの範囲内で略一定となった。すなわち、エポキシ基当量/シアナト基当量が1.0以上となるようにエポキシ化合物及びシアネート化合物を含有する熱硬化性組成物を用いることにより、当量比が1.0未満である比較例1の熱硬化性組成物を用いた場合と比較して、熱硬化性組成物の半硬化物を接着性に優れる状態に容易に調整できることがわかった。なお、実施例4の熱硬化性組成物においては、120℃より高温で反応するベンゾオキサジン化合物を実施例1よりも多く添加しているため、未反応のエポキシ化合物がより多く残存し、1×10Pa・s以下において粘度が略一定となった。
[半硬化物複合体の作製]
 容器に、アモルファス窒化ホウ素粉末(デンカ株式会社製、酸素含有量:1.5%、窒化ホウ素純度97.6%、平均粒径:6.0μm)が40.0質量%、六方晶窒化ホウ素粉末(デンカ株式会社製、酸素含有量:0.3%、窒化ホウ素純度:99.0%、平均粒径:30.0μm)が60.0質量%となるようにそれぞれ測り取り、焼結助剤(ホウ酸、炭酸カルシウム)を加えた後に有機バインダー、水を加え混合後、乾燥造粒し窒化物の混合粉末を調整した。
 上記混合粉末を金型に充填し、5MPaの圧力でプレス成形し、成形体を得た。次に、冷間等方加圧(CIP)装置(株式会社神戸製鋼所製、商品名:ADW800)を用いて、上記成形体を20~100MPaの圧力をかけて圧縮した。圧縮された成形体を、バッチ式高周波炉(富士電波工業株式会社製、商品名:FTH-300-1H)を用いて2000℃で10時間保持して焼結させることによって、多孔質体を調製した。なお、焼成は、炉内に窒素を標準状態で流量を10L/分となるように流しながら、炉内を窒素雰囲気下に調整して行った。
 上述のとおり調製した多孔質体に、実施例1~4に係る熱硬化性組成物をそれぞれ以下の方法で含浸させた。まず、真空加温含浸装置(株式会社協真エンジニアリング製、商品名:G-555AT-R)に、上記多孔質体と、容器に入れた上記熱硬化性組成物とを入れた。次に、温度:100℃、及び圧力:15Paの条件下で、装置内を10分間脱気した。脱気後、同条件に維持したまま、上記多孔質体を上記熱硬化性組成物に40分間浸漬し、熱硬化性組成物を上記多孔質体に含浸させた。
 その後、上記多孔質体及び熱硬化性組成物を入れた容器を取出し、加圧加温含浸装置(株式会社協真エンジニアリング製、商品名:HP-4030AA-H45)に入れ、温度:130℃、及び圧力:3.5MPaの条件下で、120分間保持することで、熱硬化性組成物を多孔質体に更に含浸させた。その後、窒化物焼結体を装置から取出し、温度:120℃及び大気圧の条件下で所定時間加熱したところ、接着性に優れる半硬化物複合体を容易に作製することができた。
[硬化物複合体の作製]
 得られた半硬化物複合体を加圧加温含浸装置に入れ、温度:200℃、及び大気圧の条件下で、5時間更に加熱したところ、熱硬化性組成物の半硬化物が更に硬化して、接着性が認められない硬化物複合体を作製することができた。

Claims (16)

  1.  多孔質体と、前記多孔質体に含浸された熱硬化性組成物の半硬化物とを備える半硬化物複合体であって、
     前記熱硬化性組成物は、エポキシ化合物及びシアネート化合物を含有し、
     前記熱硬化性組成物において、前記シアネート化合物のシアナト基に対する、前記エポキシ化合物のエポキシ基の当量比が1.0以上である、半硬化物複合体。
  2.  前記熱硬化性組成物が、前記エポキシ化合物の硬化剤を更に含有する、請求項1に記載の半硬化物複合体。
  3.  前記硬化剤が、ベンゾオキサジン化合物、エステル化合物及びフェノール化合物からなる群より選択される少なくとも一種を含有する、請求項2に記載の半硬化物複合体。
  4.  エポキシ化合物及びシアネート化合物を含有する熱硬化性組成物を多孔質体に含浸させる工程と、
     前記熱硬化性組成物を含浸させた前記多孔質体を、前記シアネート化合物が反応する温度T1で加熱する工程と、を備え、
     前記熱硬化性組成物において、前記シアネート化合物のシアナト基に対する、前記エポキシ化合物のエポキシ基の当量比が1.0以上である、半硬化物複合体の製造方法。
  5.  前記熱硬化性組成物が、前記エポキシ化合物の硬化剤を更に含有する、請求項4に記載の半硬化物複合体の製造方法。
  6.  前記硬化剤が、ベンゾオキサジン化合物、エステル化合物及びフェノール化合物からなる群より選択される少なくとも一種を含有する、請求項5に記載の半硬化物複合体の製造方法。
  7.  多孔質体と、前記多孔質体に含浸された熱硬化性組成物の硬化物とを備える硬化物複合体であって、
     前記熱硬化性組成物は、エポキシ化合物及びシアネート化合物を含有し、
     前記熱硬化性組成物において、前記シアネート化合物のシアナト基に対する、前記エポキシ化合物のエポキシ基の当量比が1.0以上である、硬化物複合体。
  8.  前記熱硬化性組成物が、前記エポキシ化合物の硬化剤を更に含有する、請求項7に記載の硬化物複合体。
  9.  前記硬化剤が、ベンゾオキサジン化合物、エステル化合物及びフェノール化合物からなる群より選択される少なくとも一種を含有する、請求項8に記載の硬化物複合体。
  10.  エポキシ化合物及びシアネート化合物を含有する熱硬化性組成物を多孔質体に含浸させる工程と、
     前記熱硬化性組成物を含浸させた前記多孔質体を、前記シアネート化合物が反応する温度T1で加熱した後に、前記温度T1よりも高温の温度T2で加熱する工程と、を備え、
     前記熱硬化性組成物において、前記シアネート化合物のシアナト基に対する、前記エポキシ化合物のエポキシ基の当量比が1.0以上である、硬化物複合体の製造方法。
  11.  前記温度T2が、前記エポキシ化合物の自己重合反応が生じる温度である、請求項10に記載の硬化物複合体の製造方法。
  12.  前記熱硬化性組成物が、前記エポキシ化合物の硬化剤を更に含有し、
     前記温度T2が、前記エポキシ化合物と前記硬化剤とが互いに反応する温度である、請求項10に記載の硬化物複合体の製造方法。
  13.  前記硬化剤が、ベンゾオキサジン化合物、エステル化合物及びフェノール化合物からなる群より選択される少なくとも一種を含有する、請求項12に記載の硬化物複合体の製造方法。
  14.  多孔質体に含浸させて用いられる熱硬化性組成物であって、
     前記熱硬化性組成物は、エポキシ化合物及びシアネート化合物を含有し、
     前記シアネート化合物のシアナト基に対する、前記エポキシ化合物のエポキシ基の当量比が1.0以上である、熱硬化性組成物。
  15.  前記エポキシ化合物の硬化剤を更に含有する、請求項14に記載の熱硬化性組成物。
  16.  前記硬化剤が、ベンゾオキサジン化合物、エステル化合物及びフェノール化合物からなる群より選択される少なくとも一種を含有する、請求項15に記載の熱硬化性組成物。
PCT/JP2021/013397 2020-03-31 2021-03-29 半硬化物複合体及びその製造方法、硬化物複合体及びその製造方法、並びに多孔質体に含浸させて用いられる熱硬化性組成物 WO2021200871A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022512245A JPWO2021200871A1 (ja) 2020-03-31 2021-03-29
CN202180023020.9A CN115315470A (zh) 2020-03-31 2021-03-29 半固化物复合体及其制造方法、固化物复合体及其制造方法、以及含浸于多孔质体来进行使用的热固性组合物
EP21780239.6A EP4130114A4 (en) 2020-03-31 2021-03-29 SEMI-CURED PRODUCT COMPLEX AND METHOD FOR PRODUCING SAME, CURED PRODUCT COMPLEX AND METHOD FOR PRODUCING SAME, AND THERMOSETTING COMPOSITION USED FOR IMPREGNATING POROUS BODY
US17/907,462 US20230122917A1 (en) 2020-03-31 2021-03-29 Semicured product complex and method for producing same, cured product complex and method for producing same, and thermosetting composition used to impregnate porous body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020063697 2020-03-31
JP2020-063697 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200871A1 true WO2021200871A1 (ja) 2021-10-07

Family

ID=77929213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013397 WO2021200871A1 (ja) 2020-03-31 2021-03-29 半硬化物複合体及びその製造方法、硬化物複合体及びその製造方法、並びに多孔質体に含浸させて用いられる熱硬化性組成物

Country Status (5)

Country Link
US (1) US20230122917A1 (ja)
EP (1) EP4130114A4 (ja)
JP (1) JPWO2021200871A1 (ja)
CN (1) CN115315470A (ja)
WO (1) WO2021200871A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210869A1 (ja) * 2021-03-31 2022-10-06 デンカ株式会社 半硬化物複合体の製造方法、硬化物複合体の製造方法、及び半硬化物複合体

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148919A (ja) * 2010-01-22 2011-08-04 Panasonic Electric Works Co Ltd 樹脂組成物、樹脂組成物の製造方法、樹脂ワニス、プリプレグ、金属張積層板、及びプリント配線板
WO2014061812A1 (ja) * 2012-10-19 2014-04-24 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、積層板、及びプリント配線板
WO2014112464A1 (ja) * 2013-01-15 2014-07-24 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、積層板、金属箔張積層板及びプリント配線板
JP2014185222A (ja) * 2013-03-22 2014-10-02 Mitsubishi Gas Chemical Co Inc 樹脂組成物、プリプレグ、積層板及びプリント配線板
WO2014196496A1 (ja) 2013-06-03 2014-12-11 電気化学工業株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
WO2015033731A1 (ja) * 2013-09-09 2015-03-12 三菱瓦斯化学株式会社 プリプレグ、金属箔張積層板及びプリント配線板
WO2017006898A1 (ja) * 2015-07-06 2017-01-12 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板
WO2017155110A1 (ja) * 2016-03-10 2017-09-14 デンカ株式会社 セラミックス樹脂複合体
WO2018181606A1 (ja) * 2017-03-29 2018-10-04 デンカ株式会社 伝熱部材及びこれを含む放熱構造体
US20190016644A1 (en) * 2016-01-11 2019-01-17 Zhangjiagang Institute Of Industrial Technologies Soochow University Modified barium titanate foam ceramic/thermosetting resin composites and preparation method thereof
WO2019167579A1 (ja) * 2018-02-27 2019-09-06 東レ株式会社 熱硬化性樹脂組成物、プリプレグおよび繊維強化複合材料
WO2019172345A1 (ja) * 2018-03-07 2019-09-12 デンカ株式会社 セラミックス樹脂複合体と金属板の仮接着体、その製造方法、当該仮接着体を含んだ輸送体、およびその輸送方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010075006A1 (en) * 2008-12-16 2010-07-01 Dow Global Technologies Inc. Homogeneous bismaleimide - triazine - epoxy compositions useful for the manufacture of electrical laminates
KR101866039B1 (ko) * 2016-07-19 2018-06-11 현대자동차주식회사 복합재 피스톤핀 처리방법 및 표면처리된 복합재 피스톤핀

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148919A (ja) * 2010-01-22 2011-08-04 Panasonic Electric Works Co Ltd 樹脂組成物、樹脂組成物の製造方法、樹脂ワニス、プリプレグ、金属張積層板、及びプリント配線板
WO2014061812A1 (ja) * 2012-10-19 2014-04-24 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、積層板、及びプリント配線板
WO2014112464A1 (ja) * 2013-01-15 2014-07-24 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、積層板、金属箔張積層板及びプリント配線板
JP2014185222A (ja) * 2013-03-22 2014-10-02 Mitsubishi Gas Chemical Co Inc 樹脂組成物、プリプレグ、積層板及びプリント配線板
WO2014196496A1 (ja) 2013-06-03 2014-12-11 電気化学工業株式会社 樹脂含浸窒化ホウ素焼結体およびその用途
WO2015033731A1 (ja) * 2013-09-09 2015-03-12 三菱瓦斯化学株式会社 プリプレグ、金属箔張積層板及びプリント配線板
WO2017006898A1 (ja) * 2015-07-06 2017-01-12 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板
US20190016644A1 (en) * 2016-01-11 2019-01-17 Zhangjiagang Institute Of Industrial Technologies Soochow University Modified barium titanate foam ceramic/thermosetting resin composites and preparation method thereof
WO2017155110A1 (ja) * 2016-03-10 2017-09-14 デンカ株式会社 セラミックス樹脂複合体
WO2018181606A1 (ja) * 2017-03-29 2018-10-04 デンカ株式会社 伝熱部材及びこれを含む放熱構造体
WO2019167579A1 (ja) * 2018-02-27 2019-09-06 東レ株式会社 熱硬化性樹脂組成物、プリプレグおよび繊維強化複合材料
WO2019172345A1 (ja) * 2018-03-07 2019-09-12 デンカ株式会社 セラミックス樹脂複合体と金属板の仮接着体、その製造方法、当該仮接着体を含んだ輸送体、およびその輸送方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210869A1 (ja) * 2021-03-31 2022-10-06 デンカ株式会社 半硬化物複合体の製造方法、硬化物複合体の製造方法、及び半硬化物複合体

Also Published As

Publication number Publication date
CN115315470A (zh) 2022-11-08
EP4130114A4 (en) 2023-09-06
EP4130114A1 (en) 2023-02-08
US20230122917A1 (en) 2023-04-20
JPWO2021200871A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
US10487013B2 (en) Ceramic resin composite body
EP3722368B1 (en) Nitride ceramic resin composite body
JP6000749B2 (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シートの製造方法と熱伝導性樹脂シート、並びに電力用半導体装置
WO2020203586A1 (ja) 複合体、複合体の製造方法、積層体及び積層体の製造方法
JP5558885B2 (ja) 樹脂複合組成物及びその用途
KR102318231B1 (ko) 무기충전재, 이를 포함하는 수지 조성물, 그리고 이를 이용한 방열 기판
JP2014193965A (ja) 高熱伝導性樹脂組成物、高熱伝導性半硬化樹脂フィルム及び高熱伝導性樹脂硬化物
KR20150050437A (ko) 수지 조성물, 수지 시트, 수지 경화물 및 기판
WO2021200871A1 (ja) 半硬化物複合体及びその製造方法、硬化物複合体及びその製造方法、並びに多孔質体に含浸させて用いられる熱硬化性組成物
JP2015196823A (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
JP2016155946A (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート、回路基板及びパワーモジュール
JP2016169325A (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート、回路基板及びパワーモジュール
JP7458479B2 (ja) 複合体及び複合体の製造方法
JP7248867B2 (ja) 複合体シート及び積層体
WO2021200965A1 (ja) 複合体シート
JP6979270B2 (ja) グラファイト樹脂複合体
WO2023190575A1 (ja) 回路基板の製造方法及び回路基板
JP5919048B2 (ja) エポキシ樹脂組成物、エポキシ樹脂シート、金属ベース回路基板
WO2022209402A1 (ja) 回路基板の製造方法及び回路基板
JP7176159B2 (ja) 複合シート及びその製造方法、並びに、積層体及びその製造方法
JP7196367B2 (ja) 複合シート及びその製造方法、積層体及びその製造方法、並びに、パワーデバイス
JP2022074145A (ja) 組成物、液状封止剤、樹脂複合材、封止材、封止材の製造方法、及び電子デバイス
KR20180055126A (ko) 무기충전재, 이를 포함하는 수지 조성물, 그리고 이를 이용한 방열 기판
JP2016204669A (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シートの製造方法と熱伝導性樹脂シート、並びに電力用半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512245

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021780239

Country of ref document: EP

Effective date: 20221024