WO2021200789A1 - 両面粘着シート及び半導体装置の製造方法 - Google Patents

両面粘着シート及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2021200789A1
WO2021200789A1 PCT/JP2021/013198 JP2021013198W WO2021200789A1 WO 2021200789 A1 WO2021200789 A1 WO 2021200789A1 JP 2021013198 W JP2021013198 W JP 2021013198W WO 2021200789 A1 WO2021200789 A1 WO 2021200789A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive adhesive
pressure
double
adhesive layer
layer
Prior art date
Application number
PCT/JP2021/013198
Other languages
English (en)
French (fr)
Inventor
康彦 垣内
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN202180024892.7A priority Critical patent/CN115397938A/zh
Priority to JP2022512188A priority patent/JPWO2021200789A1/ja
Priority to KR1020227027547A priority patent/KR20220156522A/ko
Publication of WO2021200789A1 publication Critical patent/WO2021200789A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • C09J2301/502Additional features of adhesives in the form of films or foils characterized by process specific features process for debonding adherents

Definitions

  • the present invention relates to a double-sided pressure-sensitive adhesive sheet and a method for manufacturing a semiconductor device using the double-sided pressure-sensitive adhesive sheet.
  • Adhesive sheets are not only used for semi-permanently fixing members, but also for processing and inspection of building materials, interior materials, electronic parts, etc. (hereinafter, "covered”). It may also be used as a temporary fixing sheet for temporarily fixing). For example, in the manufacturing process of a semiconductor device, a temporary fixing sheet is used when processing a semiconductor wafer.
  • a semiconductor wafer is processed into a semiconductor chip through a grinding process of reducing the thickness by grinding, an individualizing process of cutting and separating and individualizing.
  • the semiconductor wafer is subjected to a predetermined process in a state of being temporarily fixed to the temporary fixing sheet.
  • the semiconductor chips obtained by performing the predetermined processing are separated from the temporary fixing sheet, and then, if necessary, an expanding step of widening the distance between the semiconductor chips and a re-arrangement of a plurality of semiconductor chips having the widened distances.
  • an inverting process of inverting the front and back of the semiconductor chip, etc. the semiconductor chip is mounted on the substrate.
  • a temporary fixing sheet suitable for each application can be used.
  • Patent Document 1 discloses a heat-release type pressure-sensitive adhesive sheet for temporarily fixing electronic components at the time of cutting, in which a heat-expandable pressure-sensitive adhesive layer containing heat-expandable microspheres is provided on at least one surface of the base material. ..
  • the heat-release type adhesive sheet can secure a contact area of a predetermined size with respect to the adherend when cutting an electronic part, and thus exhibits adhesiveness capable of preventing adhesive defects such as chip skipping.
  • the heat-expandable microspheres are expanded by heating, the contact area with the adherend can be reduced and the cells can be easily peeled off.
  • the temporary fixing sheet When the temporary fixing sheet is used for processing an object to be processed, a predetermined process may be performed with the object to be processed attached to one surface and the other surface attached to the support.
  • a double-sided adhesive sheet having an adhesive layer on both sides is used.
  • one of the adhesive layers on one surface and the adhesive layer on the other surface have different action mechanisms for reducing the adhesive force.
  • the present inventors have assumed that the adhesive layer on one surface has a reduced adhesive force by utilizing the action of thermal expansion, and the adhesive layer on the other surface has an energy ray. It has been found that a double-sided pressure-sensitive adhesive sheet having an energy ray-curable pressure-sensitive adhesive layer that is cured by irradiation and whose adhesive strength is reduced is suitable for a manufacturing process of a semiconductor device or the like.
  • the energy ray for curing the energy ray-curable pressure-sensitive adhesive layer is It is necessary to irradiate from the side opposite to the energy ray-curable pressure-sensitive adhesive layer (that is, the heat-expandable layer side).
  • the process to be applied it may be necessary to separate the energy ray-curable pressure-sensitive adhesive layer and the adherend after the heat-expandable layer is thermally expanded.
  • the total light transmittance is lowered due to the expansion of the heat-expandable particles, so that the energy rays irradiated from the heat-expandable layer side are the energy rays. It becomes difficult to reach the curable pressure-sensitive adhesive layer. Therefore, there is a problem that the energy ray-curable pressure-sensitive adhesive layer is not sufficiently cured and the adhesive strength is not sufficiently reduced.
  • the present invention has been made in view of the above problems, and is a double-sided pressure-sensitive adhesive sheet having a heat-expandable layer and an energy ray-curable pressure-sensitive adhesive layer, after the heat-expandable layer is thermally expanded. Even if there is, a double-sided pressure-sensitive adhesive sheet capable of sufficiently reducing the adhesive strength of the energy-ray-curable pressure-sensitive adhesive layer by irradiating energy rays from the heat-expandable layer side and a method for manufacturing a semiconductor device using the double-sided pressure-sensitive adhesive sheet. The purpose is to provide.
  • the present inventors have focused on the total light transmittance of the double-sided adhesive sheet after thermal expansion, and have found that the above problems can be solved by adjusting the total light transmittance measured under specific conditions to a specific range.
  • the present invention has been completed.
  • a double-sided adhesive sheet having an adhesive layer (X1), a base material layer (Y), and an adhesive layer (X2) in this order. At least one of the pressure-sensitive adhesive layer (X1) and the base material layer (Y) is a heat-expandable layer containing heat-expandable particles.
  • the pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer.
  • a laminate formed by laminating a glass plate having a thickness of 1.1 mm made of soda lime glass on the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet is formed at a temperature of expansion start temperature (t) + 22 ° C. of the heat-expandable particles.
  • the base material layer (Y) is a base material laminate in which a heat-expandable base material layer (Y1) containing heat-expandable particles and a non-heat-expandable base material layer (Y2) are laminated.
  • the pressure-sensitive adhesive layer (X1), the heat-expandable base material layer (Y1), the non-heat-expandable base material layer (Y2), and the pressure-sensitive adhesive layer (X2) are provided in this order.
  • the heat-expandable base material layer (Y1) contains the heat-expandable particles in a resin material.
  • the total light transmittance of the wavelength 380nm in the case where the resin material with a thickness of 100 [mu] m (T R) is 60% or more, the double-sided pressure-sensitive adhesive sheet according to the above [8].
  • the total thickness of the pressure-sensitive adhesive layer (X1), the heat-expandable base material layer (Y1), the non-heat-expandable base material layer (Y2), and the pressure-sensitive adhesive layer (X2) is 90 to 300 ⁇ m.
  • a method for manufacturing a semiconductor device which comprises the following steps 1A, 2A, first separation step and second separation step using the double-sided pressure-sensitive adhesive sheet according to any one of the above [1] to [10].
  • Step 1A A process of attaching the object to be processed to the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet, and attaching a support to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet.
  • a step of performing one or more treatments selected from a grinding treatment and an individualization treatment a step of performing one or more treatments selected from a grinding treatment and an individualization treatment.
  • First separation step The double-sided pressure-sensitive adhesive sheet is heated to the expansion start temperature (t) or higher, and the pressure-sensitive adhesive layer (X1). ) And the support.
  • Second separation step The pressure-sensitive adhesive layer (X2) is cured by irradiating the pressure-sensitive adhesive layer (X2) with energy rays to cure the pressure-sensitive adhesive layer (X2) and the pressure-sensitive adhesive layer (X2).
  • Step of separating from the object to be processed [12]
  • the expansion start temperature (t) of the heat-expandable particles is 50 ° C. or higher and lower than 125 ° C.
  • the first separation step is a step of heating the double-sided pressure-sensitive adhesive sheet to an expansion start temperature (t) or more and less than 125 ° C. to separate the pressure-sensitive adhesive layer (X1) from the support.
  • a method for manufacturing a semiconductor device which comprises the following step 1B, step 2B, first separation step and second separation step using the double-sided pressure-sensitive adhesive sheet according to any one of the above [1] to [10].
  • Step 1B A process of attaching the object to be processed to the adhesive layer (X1) of the double-sided adhesive sheet, and attaching a support to the adhesive layer (X2) of the double-sided adhesive sheet
  • Step 2B To the object to be processed
  • First separation step The double-sided pressure-sensitive adhesive sheet is heated to the expansion start temperature (t) or higher, and the pressure-sensitive adhesive layer (X1). ) And the step of separating the object to be processed.
  • Second separation step The pressure-sensitive adhesive layer (X2) is cured by irradiating the pressure-sensitive adhesive layer (X2) with energy rays to cure the pressure-sensitive adhesive layer (X2).
  • Step of separating the support from the support [14]
  • the expansion start temperature (t) of the heat-expandable particles is 50 ° C. or higher and lower than 125 ° C.
  • the first separation step is a step of heating the double-sided pressure-sensitive adhesive sheet to an expansion start temperature (t) or more and less than 125 ° C.
  • a double-sided adhesive sheet with a release material which has a release material on one or both surfaces of the double-sided adhesive sheet according to any one of the above [1] to [10].
  • the present invention is a double-sided pressure-sensitive adhesive sheet having a heat-expandable layer and an energy ray-curable pressure-sensitive adhesive layer, and energy from the heat-expandable layer side even after the heat-expandable layer is thermally expanded. It is possible to provide a double-sided pressure-sensitive adhesive sheet capable of sufficiently reducing the adhesive strength of the energy ray-curable pressure-sensitive adhesive layer by beam irradiation and a method for manufacturing a semiconductor device using the double-sided pressure-sensitive adhesive sheet.
  • the term "active ingredient” refers to an ingredient contained in the target composition excluding the diluting solvent.
  • Mw mass average molecular weight
  • GPC gel permeation chromatography
  • (meth) acrylic acid means both “acrylic acid” and “methacrylic acid”, and other similar terms are also used.
  • a preferable numerical range for example, a range such as content
  • the lower limit value and the upper limit value described stepwise can be combined independently. For example, from the description of "preferably 10 to 90, more preferably 30 to 60", the “favorable lower limit value (10)” and the “more preferable upper limit value (60)” are combined to obtain “10 to 60". You can also do it.
  • the "energy ray” means an electromagnetic wave or a charged particle beam having an energy quantum, and examples thereof include ultraviolet rays, radiation, and electron beams.
  • Ultraviolet rays can be irradiated by using, for example, an electrodeless lamp, a high-pressure mercury lamp, a metal halide lamp, a UV-LED, or the like as an ultraviolet source.
  • the electron beam can be irradiated with an electron beam generated by an electron beam accelerator or the like.
  • the term “energy ray-polymerizable” means the property of polymerizing by irradiating with energy rays.
  • energy ray curable means a property of being cured by irradiating with energy rays.
  • whether the "layer” is a "non-thermally expandable layer” or a “thermally expandable layer” is determined as follows.
  • the layer to be judged contains the heat-expandable particles, the layer is heat-treated at the expansion start temperature (t) of the heat-expandable particles for 3 minutes. If the volume change rate calculated from the following formula is less than 5%, the layer is judged to be a "non-thermally expandable layer", and if it is 5% or more, the layer is a "thermally expandable layer”. Judge that there is.
  • volume change rate (%) ⁇ (volume of the layer after heat treatment-volume of the layer before heat treatment) / volume of the layer before heat treatment ⁇ ⁇ 100
  • the layer that does not contain the thermally expandable particles is referred to as a "non-thermally expandable layer”.
  • the "front surface” of the semiconductor wafer and the semiconductor chip refers to the surface on which the circuit is formed (hereinafter, also referred to as the “circuit surface")
  • the "back surface” of the semiconductor wafer and the semiconductor chip is the surface on which the circuit is formed. Refers to the surface that is not.
  • the thickness of each layer is the thickness at 23 ° C., and means the value measured by the method described in Examples.
  • the adhesive force of each layer means the adhesive force to the mirror surface of the silicon mirror wafer, and is peeled off by 180 ° based on JIS Z0237: 2000 in an environment of 23 ° C. and 50% RH (relative humidity). It means the adhesive force measured at a tensile speed of 300 mm / min by the method.
  • the total light transmittance is a value obtained by measuring the transmission spectrum by ultraviolet-visible spectroscopy, and specifically means a value measured by the method shown in Examples described later.
  • the double-sided adhesive sheet is A double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer (X1), a base material layer (Y), and a pressure-sensitive adhesive layer (X2) in this order. At least one of the pressure-sensitive adhesive layer (X1) and the base material layer (Y) is a heat-expandable layer containing heat-expandable particles.
  • the pressure-sensitive adhesive layer (X2) is an energy ray-curable pressure-sensitive adhesive layer.
  • a laminate formed by laminating a glass plate having a thickness of 1.1 mm made of soda lime glass on the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet is formed at a temperature of expansion start temperature (t) + 22 ° C. of the heat-expandable particles. in formed by heating for 1 minute total light transmittance measurement laminate (L a), total light transmittance at a wavelength of 380nm in the thickness direction (T a) is 20% or more.
  • the double-sided pressure-sensitive adhesive sheet has a laminated structure of double-sided pressure-sensitive adhesive sheets having a pressure-sensitive adhesive layer (X1), a base material layer (Y), and a pressure-sensitive adhesive layer (X2) in this order. be.
  • the adherend is attached to one of the adhesive layers (X1) and the adhesive layer (X2), and the support is attached to the other adhesive layer. Can be done.
  • vibration, misalignment, and coating of the adherend when one or more selected from processing and inspection are applied to the adherend. It is possible to suppress damage and the like when the body is fragile, and improve the processing accuracy and processing speed as well as the inspection accuracy and inspection speed.
  • the heat-expandable particles contained in at least one of the pressure-sensitive adhesive layer (X1) and the base material layer (Y) are set to the expansion start temperature (t) or higher.
  • the expansion start temperature (t) or higher By heating to the above temperature and expanding, unevenness is formed on the adhesive surface of the adhesive layer (X1), and the adherend attached to the adhesive surface of the adhesive layer (X1) comes into contact with the adhesive surface. It greatly reduces the area.
  • the adhesion between the adhesive surface of the pressure-sensitive adhesive layer (X1) and the adherend can be significantly reduced, and the double-sided pressure-sensitive adhesive sheet and the adherend can be easily separated.
  • the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention is an energy ray which is an adhesive layer (X2) by irradiation with energy rays from the heat-expandable layer side even after the heat-expandable layer is thermally expanded.
  • the adhesive strength of the curable pressure-sensitive adhesive layer can be sufficiently reduced. Therefore, after the heat-expandable layer is thermally expanded, even when an adherend having no light-transmitting property or having extremely low light-transmitting property is attached to the energy ray-curable pressure-sensitive adhesive layer, energy is used.
  • the adherend can be easily separated by linear irradiation.
  • the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention may have a pressure-sensitive adhesive layer (X1), a base material layer (Y), and a pressure-sensitive adhesive layer (X2) in this order. It may have only X1), a base material layer (Y) and an adhesive layer (X2), or may have another layer if necessary.
  • one surface of the double-sided pressure-sensitive adhesive sheet of one aspect of the present invention is the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1), and the other surface of the double-sided pressure-sensitive adhesive sheet of one aspect of the present invention is the pressure-sensitive adhesive layer (X2). It is the surface.
  • the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention may have a release material on the adhesive surface of at least one of the pressure-sensitive adhesive layer (X1) and the pressure-sensitive adhesive layer (X2), but has a release material. Is classified as a "double-sided adhesive sheet with a release material" described later.
  • At least one of the pressure-sensitive adhesive layer (X1) and the base material layer (Y) may be a heat-expandable layer containing heat-expandable particles.
  • the base material layer (Y) is a heat-expandable layer containing heat-expandable particles
  • the base material layer (Y) is a heat-expandable base material layer containing heat-expandable particles (Y).
  • Examples thereof include a double-sided pressure-sensitive adhesive sheet having a layer (Y2) and a pressure-sensitive adhesive layer (X2) in this order.
  • the double-sided adhesive sheet having the said structure may be referred to as "the double-sided adhesive sheet of the first aspect".
  • the double-sided pressure-sensitive adhesive sheet of one aspect of the present invention when the pressure-sensitive adhesive layer (X1) is a heat-expandable layer containing heat-expandable particles, the double-sided pressure-sensitive adhesive sheet is a heat-expandable layer.
  • the double-sided pressure-sensitive adhesive sheet having (X1), a base material layer (Y), and a pressure-sensitive adhesive layer (X2) in this order examples thereof include a double-sided pressure-sensitive adhesive sheet having (X1), a base material layer (Y), and a pressure-sensitive adhesive layer (X2) in this order.
  • the double-sided adhesive sheet having the said structure may be referred to as "the double-sided adhesive sheet of the second aspect".
  • the double-sided pressure-sensitive adhesive sheet according to the first aspect of the present invention includes, for example, the pressure-sensitive adhesive layer (X1), the heat-expandable layer base material layer (Y1), and the non-heat-expandable group shown in FIG. 1 (a).
  • Examples thereof include a double-sided pressure-sensitive adhesive sheet 1a having a material layer (Y2) and a pressure-sensitive adhesive layer (X2) in this order.
  • the double-sided pressure-sensitive adhesive sheet of the first aspect has a heat-expandable base material layer (Y1) and a non-heat-expandable base material layer (Y2) between the pressure-sensitive adhesive layer (X1) and the heat-expandable base material layer (Y1).
  • the other layer may be provided between the two layers and at least one of the layers between the non-thermally expandable base material layer (Y2) and the pressure-sensitive adhesive layer (X2). It does not have to be.
  • the double-sided pressure-sensitive adhesive sheet of the first aspect has the pressure-sensitive adhesive layer (X1) from the viewpoint of satisfactorily transmitting the deformation of the heat-expandable base material layer (Y1) due to the expansion of the heat-expandable particles to the pressure-sensitive adhesive layer (X1).
  • the heat-expandable base material layer (Y1) are preferably directly laminated.
  • the double-sided pressure-sensitive adhesive sheet according to the second aspect of the present invention includes, for example, the pressure-sensitive adhesive layer (X1), the base material layer (Y), and the pressure-sensitive adhesive layer shown in FIG. 1 (b). Examples thereof include a double-sided adhesive sheet 2a having (X2) in this order.
  • the double-sided pressure-sensitive adhesive sheet of the second aspect is provided between at least one of the layers between the pressure-sensitive adhesive layer (X1) and the base material layer (Y) and between the base material layer (Y) and the pressure-sensitive adhesive layer (X2). , It may or may not have another layer.
  • a laminate formed by laminating a glass plate having a thickness of 1.1 mm made of soda lime glass on the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention is subjected to the expansion start temperature (t) of the heat-expandable particles.
  • total light transmittance measuring laminate formed by heating for 1 minute at a temperature of + 22 °C (L a) of the total light transmittance at a wavelength of 380nm in the thickness direction (T a) is 20% or more.
  • total light transmittance (T A) is the total light transmittance of the total light transmittance measuring laminate was measured by the above condition (L A) (T A ).
  • total light transmittance (T A) is 20% or more, even the heat-expandable layer even after obtained by thermal expansion, by energy ray irradiation from the heat-expandable layer side, energy ray-curable pressure-sensitive adhesive The adhesive strength of the layer can be sufficiently reduced.
  • the amount of energy ray irradiation for curing the energy ray-curable pressure-sensitive adhesive layer can be suppressed to a low level, heat generation caused by the energy ray can be suppressed, and heat change of the adherend can be suppressed.
  • total the light transmittance (T A) is less than 20%, if the heat-expandable layer is irradiated energy beam from the heat-expandable layer side after being thermally expanded, the energy ray-curable pressure-sensitive adhesive layer energy rays It becomes difficult to reach the limit, and the adhesive strength of the energy ray-curable pressure-sensitive adhesive layer may not be sufficiently reduced.
  • the amount of energy ray irradiation for sufficiently reducing the adhesive force is increased, the productivity is deteriorated, and the adherend may be thermally changed by the heat generated by the energy ray.
  • the total light transmittance (T A) are those measured by the method described in the examples below.
  • it is preferably 80% or less, more preferably 70% or less, still more preferably 60% or less.
  • the total light transmittance (T A) may be 45% or less, may be 35% or less, it may be 30% or less.
  • the adhesive layer of the double-sided pressure-sensitive adhesive sheet prior to the thermal expansion (X2), formed by laminating a glass plate having a thickness of 1.1mm made of soda lime glass total light transmittance measurement laminate (L B) the total light transmittance at a wavelength of 380nm in the thickness direction (T B) is preferably 50% or more.
  • total light transmittance (T B) when simply referred to as “total light transmittance (T B)" has a total light transmittance of the total light transmittance measuring laminate was measured by the above condition (L B) (T B ).
  • the total light transmittance (T B) is 50% or more, the total light transmittance (T A) is easily adjusted to the above range.
  • the total light transmittance (T B) is more preferably 52% or more, still more preferably at least 54%.
  • the upper limit of the total light transmittance (T B) may be not more than 100%, easy peelability of the pressure-sensitive adhesive layer (X1), and other performance such as strength of the double-sided pressure-sensitive adhesive sheet
  • it is preferably 90% or less, more preferably 80% or less, still more preferably 75% or less.
  • the total light transmittance (T B) may be 70% or less, may be 65% or less, it may be 60% or less.
  • the total light transmittance (T B) is measured by the method described in the examples below.
  • the thickness, the content of the heat-expandable particles, and the like can be appropriately adjusted to adjust to the above range.
  • the heat-expandable particles used in the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention may be particles that expand by heating, and the expansion start temperature (t) is appropriately selected according to the use of the double-sided pressure-sensitive adhesive sheet.
  • thermosetting film-like adhesive called a die attach film (hereinafter, also referred to as "DAF").
  • DAF die attach film
  • the process is adopted.
  • the DAF is attached to one surface of the semiconductor wafer or a plurality of fragmented semiconductor chips, and is divided into the same shape as the semiconductor chip at the same time as the semiconductor wafer is fragmented or after being attached to the semiconductor chip.
  • the semiconductor chip with DAF obtained by individualizing is attached (diatached) to the substrate from the DAF side, and then the semiconductor chip and the substrate are fixed by thermosetting the DAF.
  • the DAF needs to retain the property of adhering by pressure sensitivity or heating until it is attached to the substrate.
  • the DAF is cured before the die attachment due to the heating when the heat-expandable particles are expanded, and the DAF with respect to the substrate is cured.
  • Adhesive strength may decrease. It is desirable to suppress the decrease in the adhesive strength of the DAF because it causes a decrease in the bonding reliability between the semiconductor chip and the substrate. That is, it is desirable that the thermal change of the adherend is suppressed at the time of heat peeling.
  • the expansion start temperature (t) of the heat-expandable particles is preferably less than 125 ° C., more preferably 120 ° C. or lower, still more preferably 115 ° C. or lower, further. It is preferably 110 ° C. or lower, and even more preferably 105 ° C. or lower.
  • the expansion start temperature (t) of the heat-expandable particles is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, still more preferably 60 ° C. or higher, further. It is preferably 70 ° C. or higher.
  • the expansion start temperature (t) of the thermally expandable particles means a value measured based on the following method.
  • the heat-expandable particles are microencapsulated foaming agents composed of an outer shell made of a thermoplastic resin and an contained component contained in the outer shell and vaporized when heated to a predetermined temperature. It is preferable to have.
  • the thermoplastic resin constituting the outer shell of the microencapsulating foaming agent include polyvinyl alcohol, polyvinyl butyral, polymethylmethacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone, and structural units contained in these thermoplastic resins. Examples thereof include a copolymer obtained by polymerizing two or more kinds of monomers to be formed.
  • Examples of the inclusion component which is a component contained in the outer shell of the microencapsulating foaming agent, include propane, propylene, butene, n-butane, isopentane, isopentane, neopentane, n-pentane, n-hexane, isohexane, and n-.
  • Examples thereof include low boiling point liquids such as heptane, n-octane, cyclopropane, cyclobutane, and petroleum ether.
  • the inclusion components are preferably propane, isobutane, n-pentane, and cyclopropane.
  • propane, isobutane, n-pentane, and cyclopropane One of these inclusion components may be used alone, or two or more thereof may be used in combination.
  • the expansion start temperature (t) of the heat-expandable particles can be adjusted by appropriately selecting the type of the inclusion component.
  • the average particle size of the thermally expandable particles used in one embodiment of the present invention before expansion at 23 ° C. is preferably 3 to 100 ⁇ m, more preferably 4 to 70 ⁇ m, still more preferably 6 to 60 ⁇ m, still more preferably 10 to 10. It is 50 ⁇ m.
  • the average particle size of the heat-expandable particles before expansion is the volume medium particle size (D 50 ), and is a laser diffraction type particle size distribution measuring device (for example, manufactured by Malvern, product name “Mastersizer 3000”). In the particle distribution of the heat-expandable particles before expansion measured using the above, it means the particle size in which the cumulative volume frequency calculated from the smaller particle size of the heat-expandable particles before expansion corresponds to 50%.
  • the 90% particle size (D 90 ) of the heat-expandable particles used in one embodiment of the present invention before expansion at 23 ° C. is preferably 10 to 150 ⁇ m, more preferably 15 to 100 ⁇ m, still more preferably 20 to 90 ⁇ m. Even more preferably, it is 25 to 80 ⁇ m.
  • the 90% particle size (D 90 ) of the thermally expandable particles before expansion is the expansion measured using a laser diffraction type particle size distribution measuring device (for example, manufactured by Malvern, product name "Mastersizer 3000"). In the particle distribution of the previous heat-expandable particles, it means the particle size in which the cumulative volume frequency calculated from the smaller particle size of the heat-expandable particles before expansion corresponds to 90%.
  • the maximum volume expansion coefficient when the thermally expandable particles used in one embodiment of the present invention are heated to a temperature equal to or higher than the expansion start temperature (t) is preferably 1.5 to 200 times, more preferably 2 to 150 times, and further. It is preferably 2.5 to 120 times, and even more preferably 3 to 100 times.
  • the content of the heat-expandable particles in the heat-expandable layer is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 7 with respect to the total mass (100% by mass) of the heat-expandable layer. It is mass% or more, more preferably 10 mass% or more.
  • the content of the heat-expandable particles in the heat-expandable layer is preferably 25% by mass or less, more preferably 20% by mass or less, still more preferably 20% by mass, based on the total mass (100% by mass) of the heat-expandable layer. Is 16% by mass or less, more preferably 14% by mass or less.
  • the content of the heat-expandable particles is 1% by mass or more, the peelability at the time of heat peeling tends to be improved. Further, if the content of the heat-expandable particles is 25% by mass or less, even after the heat-expandable layer is thermally expanded, the energy ray-curable adhesive can be obtained by irradiating the energy rays from the heat-expandable layer side. The adhesive strength of the agent layer can be further sufficiently reduced.
  • the thickness of the thermally expandable layer before thermal expansion is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, and even more preferably 25 to 120 ⁇ m.
  • the thickness of the heat-expandable layer before thermal expansion is 10 ⁇ m or more, the formation of irregularities due to the heat-expandable particles before thermal expansion can be suppressed. If the thickness before thermal expansion of the heat-expandable layer is 200 ⁇ m or less, total light transmittance (T A) is easily adjusted to the above range.
  • the thickness of the entire double-sided pressure-sensitive adhesive sheet before thermal expansion of the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention is preferably 90 to 300 ⁇ m, more preferably 100 to 250 ⁇ m, and further preferably 130 to 200 ⁇ m.
  • the thickness of the entire double-sided adhesive sheet is 90 ⁇ m or more, the mechanical strength of the double-sided adhesive sheet becomes good and it becomes easy to handle. If the thickness of the entire double-sided pressure-sensitive adhesive sheet is 300 ⁇ m or less, total light transmittance (T A) is easily adjusted to the above range.
  • each layer of the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention will be described.
  • suitable embodiments will be described for each of the double-sided pressure-sensitive adhesive sheet of the first aspect and the double-sided pressure-sensitive adhesive sheet of the second aspect, but the present invention is not limited to these aspects.
  • the double-sided pressure-sensitive adhesive sheet of the first aspect comprises a pressure-sensitive adhesive layer (X1), a heat-expandable base material layer (Y1), a non-heat-expandable base material layer (Y2), and a pressure-sensitive adhesive layer (X2). It is a double-sided adhesive sheet held in this order.
  • the pressure-sensitive adhesive layer (X1) included in the double-sided pressure-sensitive adhesive sheet of the first aspect may be a heat-expandable layer or a non-heat-expandable layer, but is preferably a non-heat-expandable layer. ..
  • the volume change rate (%) of the pressure-sensitive adhesive layer (X1) calculated from the above formula is less than 5%, preferably less than 2%. It is preferably less than 1%, more preferably less than 0.1%, and even more preferably less than 0.01%.
  • the pressure-sensitive adhesive layer (X1) preferably does not contain the heat-expandable particles, but may contain the heat-expandable particles within a range not contrary to the object of the present invention.
  • the pressure-sensitive adhesive layer (X1) contains thermally expandable particles, the smaller the content is, the more preferable, and the content is preferably less than 3% by mass, based on the total mass (100% by mass) of the pressure-sensitive adhesive layer (X1). It is preferably less than 1% by mass, more preferably less than 0.1% by mass, still more preferably less than 0.01% by mass, and even more preferably less than 0.001% by mass.
  • the pressure-sensitive adhesive layer (X1) included in the double-sided pressure-sensitive adhesive sheet of the first aspect can be formed from the pressure-sensitive adhesive composition (x-1) containing a pressure-sensitive adhesive resin.
  • x-1 a pressure-sensitive adhesive resin
  • Adhesive resin examples include polymers having adhesiveness by themselves and having a mass average molecular weight (Mw) of 10,000 or more.
  • the mass average molecular weight (Mw) of the adhesive resin is preferably 10,000 to 2 million, more preferably 20,000 to 1.5 million, still more preferably 30,000 to 100, from the viewpoint of improving the adhesive strength of the pressure-sensitive adhesive layer (X1). It is ten thousand.
  • the adhesive resin examples include rubber resins such as acrylic resins, urethane resins, and polyisobutylene resins, polyester resins, olefin resins, silicone resins, and polyvinyl ether resins. These adhesive resins may be used alone or in combination of two or more. When these adhesive resins are copolymers having two or more kinds of constituent units, the form of the copolymer is not particularly limited, and the block copolymer, the random copolymer, and the graft are used together. It may be any of the polymers.
  • the adhesive resin preferably contains an acrylic resin from the viewpoint of exhibiting excellent adhesive force in the adhesive layer (X1).
  • the content of the acrylic resin in the adhesive resin is preferably 30 with respect to the total amount (100% by mass) of the adhesive resin contained in the adhesive composition (x-1) or the adhesive layer (X1). It is -100% by mass, more preferably 50 to 100% by mass, still more preferably 70 to 100% by mass, and even more preferably 85 to 100% by mass.
  • the acrylic resin that can be used as an adhesive resin includes, for example, a polymer containing a structural unit derived from an alkyl (meth) acrylate having a linear or branched alkyl group, and a cyclic structure. Examples thereof include polymers containing a structural unit derived from (meth) acrylate having.
  • the mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,300,000, still more preferably 350,000 to 1,200,000, and even more preferably 500,000 to 1,100,000. ..
  • the acrylic resin used in one embodiment of the present invention includes a structural unit (a1) derived from an alkyl (meth) acrylate (a1') (hereinafter, also referred to as “monomer (a1')”) and a functional group-containing monomer (a2).
  • a1' alkyl (meth) acrylate
  • a2' functional group-containing monomer
  • the alkyl group of the monomer (a1') preferably has 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, and even more preferably 2 carbon atoms from the viewpoint of exhibiting excellent adhesive strength in the pressure-sensitive adhesive layer (X1). It is -10, more preferably 4-8.
  • the alkyl group contained in the monomer (a1') may be a straight chain alkyl group or a branched chain alkyl group.
  • Examples of the monomer (a1') include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, and iso-butyl (meth). Examples thereof include acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, and stearyl (meth) acrylate. One of these monomers (a1') may be used alone, or two or more thereof may be used in combination. As the monomer (a1'), n-butyl acrylate and 2-ethylhexyl acrylate are preferable.
  • the content of the structural unit (a1) is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass, based on the total structural unit (100% by mass) of the acrylic copolymer (A1). %, More preferably 70 to 97.0% by mass, and even more preferably 80 to 95.0% by mass.
  • Examples of the functional group contained in the monomer (a2') include a hydroxyl group, a carboxy group, an amino group, an epoxy group and the like. That is, examples of the monomer (a2') include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer. These monomers (a2') may be used alone or in combination of two or more. Among these, as the monomer (a2'), a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable, and a hydroxyl group-containing monomer is more preferable.
  • hydroxyl group-containing monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl (meth).
  • Hydroxyalkyl (meth) acrylates such as acrylates and 4-hydroxybutyl (meth) acrylates
  • hydroxyl group-containing compounds such as unsaturated alcohols such as vinyl alcohols and allyl alcohols.
  • carboxy group-containing monomer examples include ethylenically unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid and citraconic acid, and their anhydrides. , 2- (Acryloyloxy) ethyl succinate, 2-carboxyethyl (meth) acrylate and the like.
  • the content of the structural unit (a2) is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, based on the total structural unit (100% by mass) of the acrylic copolymer (A1). %, More preferably 1.0 to 15% by mass, and even more preferably 3.0 to 10% by mass.
  • the acrylic copolymer (A1) may further have a structural unit (a3) derived from a monomer (a3') other than the monomers (a1') and (a2').
  • the total content of the structural units (a1) and (a2) is preferably relative to the total structural units (100% by mass) of the acrylic copolymer (A1). It is 70 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and even more preferably 95 to 100% by mass.
  • Examples of the monomer (a3') include olefins such as ethylene, propylene and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; diene monomers such as butadiene, isoprene and chloroprene; cyclohexyl (meth) acrylate, It has a cyclic structure such as benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, and imide (meth) acrylate.
  • olefins such as ethylene, propylene and isobutylene
  • halogenated olefins such as vinyl chloride and vinylidene chloride
  • diene monomers such as butadiene, isoprene and chlor
  • (Meta) Acrylate examples thereof include styrene, ⁇ -methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile, (meth) acrylamide, (meth) acrylonitrile, (meth) acryloylmorpholine, and N-vinylpyrrolidone.
  • the content of the adhesive resin in the pressure-sensitive adhesive composition (x-1) is preferably 35 to 100% by mass with respect to the total amount (100% by mass) of the active ingredient of the pressure-sensitive adhesive composition (x-1). It is more preferably 50 to 100% by mass, further preferably 60 to 100% by mass, and even more preferably 70 to 99.5% by mass.
  • the pressure-sensitive adhesive composition (x-1) contains a pressure-sensitive adhesive resin having a functional group like the above-mentioned acrylic copolymer (A1), it further contains a cross-linking agent. Is preferable.
  • the cross-linking agent reacts with a pressure-sensitive adhesive resin having a functional group to cross-link the pressure-sensitive adhesive resins using the functional group as a cross-linking starting point.
  • cross-linking agent examples include an isocyanate-based cross-linking agent, an epoxy-based cross-linking agent, an aziridine-based cross-linking agent, and a metal chelate-based cross-linking agent. These cross-linking agents may be used alone or in combination of two or more. Among these cross-linking agents, isocyanate-based cross-linking agents are preferable from the viewpoint of increasing the cohesive force to improve the adhesive force and the availability.
  • isocyanate-based cross-linking agent examples include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; dicyclohexylmethane-4,4'-diisocyanate, bicycloheptane triisocyanate, cyclopentylene diisocyanate, and cyclohexylene diisocyanate.
  • Alicyclic polyisocyanates such as methylcyclohexylene diisocyanate, methylenebis (cyclohexyl isocyanate), 3-isocyanate methyl-3,5,5-trimethylcyclohexylisocyanate, hydrogenated xylylene diisocyanate; hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate
  • acyclic aliphatic polyisocyanates and the like, polyisocyanate compounds and the like.
  • the isocyanate-based cross-linking agent examples include a trimethylolpropane adduct-type modified product of the polyvalent isocyanate compound, a biuret-type modified product reacted with water, and an isocyanurate-type modified product containing an isocyanurate ring.
  • the isocyanurate ring is used from the viewpoint of suppressing a decrease in the elastic coefficient of the pressure-sensitive adhesive layer (X1) during heating and suppressing the residue derived from the pressure-sensitive adhesive layer (X1) from adhering to the adherend.
  • an isocyanurate-type modified product containing isocyanurate more preferably an isocyanurate-type modified product of an acyclic aliphatic polyisocyanate, and further preferably use an isocyanurate-type modified product of hexamethylene diisocyanate.
  • the content of the cross-linking agent is appropriately adjusted according to the number of functional groups of the adhesive resin, and is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having functional groups. It is more preferably 0.03 to 7 parts by mass, and further preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (x-1) may further contain a pressure-sensitive adhesive from the viewpoint of further improving the pressure-sensitive adhesive strength.
  • the "adhesive-imparting agent” refers to a component that supplementarily improves the adhesive strength of the adhesive resin and has a mass average molecular weight (Mw) of less than 10,000, and the above-mentioned adhesive resin. Is distinct from.
  • the mass average molecular weight (Mw) of the tackifier is less than 10,000, preferably 400 to 9,000, more preferably 500 to 8,000, and even more preferably 800 to 5,000.
  • the tackifier for example, it is obtained by copolymerizing a C5 distillate such as rosin-based resin, terpene-based resin, styrene-based resin, penten, isoprene, piperin, and 1,3-pentadien produced by thermal decomposition of petroleum naphtha.
  • a C5 distillate such as rosin-based resin, terpene-based resin, styrene-based resin, penten, isoprene, piperin, and 1,3-pentadien produced by thermal decomposition of petroleum naphtha.
  • C5 petroleum resin obtained by copolymerizing C9 petroleum resin produced by thermal decomposition of petroleum naphtha, C9 distillate such as vinyl toluene, and hydride of these.
  • the softening point of the tackifier is preferably 60 to 170 ° C, more preferably 65 to 160 ° C, and even more preferably 70 to 150 ° C.
  • the "softening point" of the tackifier means a value measured in accordance with JIS K 2531.
  • the tackifier one type may be used alone, or two or more types having different softening points, structures, etc. may be used in combination.
  • the weighted average of the softening points of the plurality of tackifiers belongs to the above range.
  • the content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.1 to 50% by mass, based on the total amount (100% by mass) of the active ingredient of the pressure-sensitive adhesive composition (x-1). %, More preferably 1 to 40% by mass, still more preferably 2 to 30% by mass.
  • the pressure-sensitive adhesive composition (x-1) is an additive for a pressure-sensitive adhesive used in a general pressure-sensitive adhesive in addition to the above-mentioned additives as long as the effect of the present invention is not impaired. May be contained.
  • additives for adhesives include antioxidants, softeners (plasticizers), rust preventives, pigments, dyes, retarders, reaction promoters (catalysts), ultraviolet absorbers, and energy rays described later. Examples thereof include curable compounds and photopolymerization initiators. These adhesive additives may be used alone or in combination of two or more.
  • each additive for adhesive is independently, preferably 0.0001 to 20 parts by mass, based on 100 parts by mass of the adhesive resin. It is preferably 0.001 to 10 parts by mass.
  • the adhesive strength of the pressure-sensitive adhesive layer (X1) before the heat-expandable base material layer (Y1) is thermally expanded is preferably 0.1 to 12.0 N / 25 mm, more preferably 0.5 to 9.0 N / 25 mm. , More preferably 1.0 to 8.0 N / 25 mm, and even more preferably 1.2 to 7.5 N / 25 mm.
  • the adhesive strength of the pressure-sensitive adhesive layer (X1) before the heat-expandable base material layer (Y1) is thermally expanded is 0.1 N / 25 mm or more, unintentional peeling or adhesion from the adherend during temporary fixing. It is possible to more effectively suppress the displacement of the body. On the other hand, when the adhesive strength is 12.0 N / 25 mm or less, the peelability at the time of heat peeling can be further improved.
  • the adhesive strength of the pressure-sensitive adhesive layer (X1) after the heat-expandable base material layer (Y1) is thermally expanded is preferably 1.5 N / 25 mm or less, more preferably 0.05 N / 25 mm or less, and further preferably 0. It is 0.01 N / 25 mm or less, more preferably 0 N / 25 mm.
  • the adhesive strength of 0 N / 25 mm means the adhesive strength below the measurement limit in the method for measuring the adhesive strength after thermal expansion, which will be described later, and the adhesive strength when fixing the double-sided adhesive sheet for measurement. Is too small to peel off unintentionally.
  • the adhesive strength of the pressure-sensitive adhesive layer (X1) after the heat-expandable base material layer (Y1) is thermally expanded is determined by [Measurement of adhesive strength of the pressure-sensitive adhesive layer (X2)] in Examples described later.
  • the measurement can be performed by a method in which the pressure-sensitive adhesive layer (X2) is replaced with the pressure-sensitive adhesive layer (X1).
  • the thickness of the pressure-sensitive adhesive layer (X1) contained in the double-sided pressure-sensitive adhesive sheet of the first aspect is such that when the heat-expandable particles are expanded by heating, the pressure-sensitive adhesive layer (X1) exhibits good adhesive strength. From the viewpoint of satisfactorily forming irregularities on the adhesive surface, it is preferably 3 to 10 ⁇ m, more preferably 3 to 8 ⁇ m, and even more preferably 3 to 7 ⁇ m. By adjusting the thickness of the pressure-sensitive adhesive layer (X1) within the above range, the pressure-sensitive adhesive layer (X1) can be easily formed, and the adhesive surface of the pressure-sensitive adhesive layer (X1) is well formed with irregularities. It can be made easy.
  • the heat-expandable base material layer (Y1) included in the double-sided pressure-sensitive adhesive sheet of the first aspect is a heat-expandable layer containing heat-expandable particles in a resin material, and is non-heat-expandable with the pressure-sensitive adhesive layer (X1). It is a layer provided between the base material layer (Y2).
  • Thermally expandable base material layer (Y1) total light transmittance at a wavelength of 380nm in the case of a thickness of 100 ⁇ m the resin material contained in (T R) is preferably 60% or more, more preferably 70% or more, further It is preferably 75% or more. There is no particular restriction on the upper limit of the total light transmittance (T R), it may be not more than 100%. Double-sided pressure-sensitive adhesive sheet of the first aspect, by total light transmittance (T R) is 60% or more, the total light transmittance (T A) is easily adjusted to the above range.
  • the total light transmittance (T R) may be measured as a thickness of 100 ⁇ m the resin material measurement sample was formed into a sheet, the apparatus and measurement conditions used in the measurement of total light transmittance (T A).
  • the heat-expandable base material layer (Y1) is preferably a non-adhesive base material.
  • the probe tack value on the surface of the heat-expandable base material layer (Y1) is usually less than 50 mN / 5 mm ⁇ , preferably less than 30 mN / 5 mm ⁇ , more preferably less than 10 mN / 5 mm ⁇ , and further preferably less than 5 mN / 5 mm ⁇ . ..
  • the probe tack value on the surface of the base material means a value measured by the following method. ⁇ Probe tack value> After cutting the base material to be measured into a square with a side of 10 mm, the test sample was allowed to stand in an environment of 23 ° C.
  • the probe tack value on the surface of the test sample is measured in accordance with JIS Z0237: 1991 using a tacking tester (manufactured by Japan Special Instruments Co., Ltd., product name "NTS-4800"). be able to. Specifically, a stainless steel probe having a diameter of 5 mm is brought into contact with the surface of the test sample for 1 second with a contact load of 0.98 N / cm 2 , and then the probe is brought into contact with the surface of the test sample at a speed of 10 mm / sec. The force required to separate from the surface can be measured and the value obtained can be used as the probe tack value of the test sample.
  • the surface of the heat-expandable base layer (Y1) is surfaced by an oxidation method, an unevenness method, or the like.
  • Treatment, easy adhesion treatment, or primer treatment may be performed.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromic acid treatment (wet), hot air treatment, ozone, ultraviolet irradiation treatment and the like
  • the unevenness method include a sandblast method and a solvent treatment method. Can be mentioned.
  • the heat-expandable base material layer (Y1) is preferably formed from a resin composition (y-1) containing a resin and heat-expandable particles.
  • a resin composition (y-1) containing a resin and heat-expandable particles.
  • preferred embodiments of the resin composition (y-1) will be described.
  • the preferred embodiment of the heat-expandable particles is as described above.
  • the resin contained in the resin composition (y-1) may be a non-adhesive resin or an adhesive resin. That is, even if the resin contained in the resin composition (y-1) is an adhesive resin, the adhesiveness is obtained in the process of forming the heat-expandable base material layer (Y1) from the resin composition (y-1). It is sufficient that the resin polymerizes with the polymerizable compound, the obtained resin becomes a non-adhesive resin, and the heat-expandable base material layer (Y1) containing the resin becomes non-adhesive.
  • the mass average molecular weight (Mw) of the resin contained in the resin composition (y-1) is preferably 1,000 to 1,000,000, more preferably 1,000 to 700,000, and even more preferably 1,000 to 50. It is ten thousand.
  • the form of the copolymer is not particularly limited, and any of a block copolymer, a random copolymer, and a graft copolymer is used. It may be.
  • the content of the resin is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 65% by mass, based on the total amount (100% by mass) of the active ingredient of the resin composition (y-1). It is 90% by mass, more preferably 70 to 85% by mass.
  • the resin contained in the resin composition (y-1) is used from the viewpoint of facilitating the formation of irregularities on the adhesive surface of the pressure-sensitive adhesive layer (X1) and improving the sheet shape retention after thermal expansion. It is preferable to contain at least one selected from the group consisting of acrylic urethane-based resins and olefin-based resins. That is, the heat-expandable base material layer (Y1) preferably contains at least one selected from the group consisting of acrylic urethane-based resins and olefin-based resins. Further, as the acrylic urethane resin, the following resin (U1) is preferable.
  • a -Acrylic urethane resin (U1) obtained by polymerizing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester.
  • a prepolymer means a compound formed by polymerizing a monomer, and a compound capable of forming a polymer by further polymerization.
  • urethane prepolymer (UP) that serves as the main chain of the acrylic urethane resin (U1) include a reaction product of a polyol and a polyhydric isocyanate.
  • the urethane prepolymer (UP) is preferably obtained by further performing a chain extension reaction using a chain extender.
  • polyols used as raw materials for urethane prepolymers include alkylene-type polyols, ether-type polyols, ester-type polyols, esteramide-type polyols, ester-ether-type polyols, and carbonate-type polyols. These polyols may be used alone or in combination of two or more. As the polyol used in one embodiment of the present invention, diols are preferable, ester-type diols, alkylene-type diols and carbonate-type diols are more preferable, and ester-type diols and carbonate-type diols are even more preferable.
  • ester-type diol examples include alkanediols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 1,6-hexanediol; ethylene glycol, propylene glycol, and the like.
  • diols such as diethylene glycol, alkylene glycol such as dipropylene glycol; and phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, diphenylmethane-4 , 4'-dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, hetic acid, maleic acid, fumaric acid, itaconic acid, cyclohexane-1,3-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid, hexa
  • dicarboxylic acids such as hydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, and methylhexahydrophthalic acid, and one or more selected from these anhydrides.
  • alkylene-type diol examples include alkanediols such as 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 1,6-hexanediol; ethylene glycol, propylene glycol, and the like.
  • alkylene glycols such as diethylene glycol and dipropylene glycol
  • polyalkylene glycols such as polyethylene glycol, polypropylene glycol and polybutylene glycol
  • polyoxyalkylene glycols such as polytetramethylene glycol.
  • Examples of the carbonate type diol include 1,4-tetramethylene carbonate diol, 1,5-pentamethylene carbonate diol, 1,6-hexamethylene carbonate diol, 1,2-propylene carbonate diol, and 1,3-propylene carbonate diol. , 2,2-Dimethylpropylene carbonate diol, 1,7-heptamethylene carbonate diol, 1,8-octamethylene carbonate diol, 1,4-cyclohexane carbonate diol and the like.
  • polyisocyanate used as a raw material for the urethane prepolymer (UP) examples include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates.
  • aromatic polyisocyanates aliphatic polyisocyanates
  • alicyclic polyisocyanates One of these polyvalent isocyanates may be used alone, or two or more thereof may be used in combination. Further, these polyvalent isocyanates may be a trimethylolpropane adduct-type modified product, a biuret-type modified product reacted with water, or an isocyanurate-type modified product containing an isocyanurate ring.
  • diisocyanate is preferable, 4,4'-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (2,4-TDI), 2,6.
  • MDI 4,4'-diphenylmethane diisocyanate
  • 2,4-TDI 2,4-tolylene diisocyanate
  • 2,6 2,6.
  • -One or more selected from tolylene diisocyanate (2,6-TDI), hexamethylene diisocyanate (HMDI), and alicyclic diisocyanate are more preferable.
  • alicyclic diisocyanate examples include 3-isocyanate methyl-3,5,5-trimethylcyclohexylisocyanate (isophorone diisocyanate, IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexanediisocyanate, and 1,4-cyclohexane.
  • IPDI isophorone diisocyanate
  • Examples thereof include diisocyanate, methyl-2,4-cyclohexanediisocyanate and methyl-2,6-cyclohexanediisocyanate, but isophorone diisocyanate (IPDI) is preferable.
  • the urethane prepolymer (UP) serving as the main chain of the acrylic urethane resin (U1) is a reaction product of a diol and a diisocyanate, and is a straight chain having ethylenically unsaturated groups at both ends.
  • Urethane prepolymers are preferred.
  • an NCO group at the terminal of the linear urethane prepolymer formed by reacting a diol and a diisocyanate compound and a hydroxyalkyl (meth) acrylate are used. There is a method of reacting with.
  • hydroxyalkyl (meth) acrylate examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy.
  • examples thereof include butyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate.
  • the vinyl compound that forms the side chain of the acrylic urethane resin (U1) contains at least a (meth) acrylic acid ester.
  • the (meth) acrylic acid ester one or more selected from alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate is preferable, and alkyl (meth) acrylate and hydroxyalkyl (meth) acrylate are more preferably used in combination.
  • the mixing ratio of hydroxyalkyl (meth) acrylate to 100 parts by mass of alkyl (meth) acrylate is preferably 0.1 to 100 parts by mass. It is preferably 0.5 to 30 parts by mass, more preferably 1.0 to 20 parts by mass, and even more preferably 1.5 to 10 parts by mass.
  • the alkyl group of the alkyl (meth) acrylate has preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 8 carbon atoms, and even more preferably 1 to 3 carbon atoms.
  • hydroxyalkyl (meth) acrylate the same hydroxyalkyl (meth) acrylate used for introducing an ethylenically unsaturated group into both ends of the above-mentioned linear urethane prepolymer can be mentioned.
  • vinyl compounds other than (meth) acrylic acid ester include aromatic hydrocarbon-based vinyl compounds such as styrene, ⁇ -methylstyrene and vinyltoluene; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl acetate and vinyl propionate. , (Meta) acrylonitrile, N-vinylpyrrolidone, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, polar group-containing monomers such as meta (acrylamide); and the like. One of these may be used alone, or two or more thereof may be used in combination.
  • the content of the (meth) acrylic acid ester in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, still more preferably, based on the total amount (100% by mass) of the vinyl compound. It is 80 to 100% by mass, more preferably 90 to 100% by mass.
  • the total content of the alkyl (meth) acrylate and the hydroxyalkyl (meth) acrylate in the vinyl compound is preferably 40 to 100% by mass, more preferably 65 to 100% by mass, based on the total amount (100% by mass) of the vinyl compound. It is 100% by mass, more preferably 80 to 100% by mass, and even more preferably 90 to 100% by mass.
  • the acrylic urethane resin (U1) used in one embodiment of the present invention is obtained by mixing a urethane prepolymer (UP) and a vinyl compound containing a (meth) acrylic acid ester and polymerizing both. In the polymerization, it is preferable to further add a radical initiator.
  • the content ratio of the structural unit (u11) derived from the urethane prepolymer (UP) and the structural unit (u12) derived from the vinyl compound [(u11). ) / (U12)] is preferably 10/90 to 80/20, more preferably 20/80 to 70/30, still more preferably 30/70 to 60/40, and even more preferably 35 in terms of mass ratio. / 65-55 / 45.
  • the olefin-based resin suitable as the resin contained in the resin composition (y-1) is a polymer having at least a structural unit derived from an olefin monomer.
  • the olefin monomer is preferably an ⁇ -olefin having 2 to 8 carbon atoms, and specific examples thereof include ethylene, propylene, butylene, isobutylene, and 1-hexene. Among these, ethylene and propylene are preferable.
  • VLDPE ultra low density polyethylene
  • LDPE low density polyethylene
  • MDPE Medium density polyethylene
  • HDPE high density polyethylene
  • PP polypropylene resin
  • PB Polyethylene resin
  • Ethylene-propylene copolymer Olefin-based elastomer
  • PMP Poly (4-methyl-1-pentene)
  • Ethethylene-vinyl acetate copolymer Ethylene -Vinyl alcohol copolymer (EVOH); olefin-based ternary copolymer such as ethylene-
  • the olefin resin may be a modified olefin resin further subjected to one or more modifications selected from acid modification, hydroxyl group modification, and acrylic modification.
  • the acid-modified olefin-based resin obtained by acid-modifying an olefin-based resin is a modified polymer obtained by graft-polymerizing an unsaturated carboxylic acid or an anhydride thereof with the above-mentioned non-modified olefin-based resin.
  • the unsaturated carboxylic acid or its anhydride include maleic acid, fumaric acid, itaconic acid, citraconic acid, glutaconic acid, tetrahydrophthalic acid, aconitic acid, (meth) acrylic acid, maleic anhydride, and itaconic anhydride.
  • the unsaturated carboxylic acid or its anhydride may be used alone or in combination of two or more.
  • the acrylic-modified olefin-based resin obtained by subjecting the olefin-based resin to acrylic modification is a modification obtained by graft-polymerizing the above-mentioned non-modified olefin-based resin, which is the main chain, with an alkyl (meth) acrylate as a side chain.
  • alkyl (meth) acrylate examples include polymers.
  • the alkyl group of the above alkyl (meth) acrylate has preferably 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and further preferably 1 to 12 carbon atoms.
  • Examples of the above-mentioned alkyl (meth) acrylate include the same compounds as those which can be selected as the above-mentioned monomer (a1').
  • Examples of the hydroxyl group-modified olefin resin obtained by subjecting the olefin resin to hydroxyl group modification include a modified polymer obtained by graft-polymerizing a hydroxyl group-containing compound on the above-mentioned non-modified olefin resin which is the main chain.
  • Examples of the above-mentioned hydroxyl group-containing compound include the same as the above-mentioned hydroxyl group-containing compound.
  • the resin composition (y-1) may contain a resin other than the acrylic urethane-based resin and the olefin-based resin as long as the effects of the present invention are not impaired.
  • resins include vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polyvinyl alcohol; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene co-weight.
  • cellulose triacetate polycarbonate; polyurethane not applicable to acrylic urethane resin; polysulfone; polyether ether ketone; polyether sulfone; polyphenylene sulfide; polyimide resin such as polyetherimide and polyimide; polyamide resin; acrylic resin; Fluorine-based resin and the like can be mentioned.
  • the content of the resin other than the olefin-based resin is preferably small.
  • the content of the resin other than the acrylic urethane resin and the olefin resin is preferably less than 30 parts by mass, more preferably 20 parts by mass with respect to 100 parts by mass of the total amount of the resin contained in the resin composition (y-1). It is less than parts by mass, more preferably less than 10 parts by mass, even more preferably less than 5 parts by mass, and even more preferably less than 1 part by mass.
  • the resin composition (y-1) may contain an additive for a base material, if necessary, as long as the effects of the present invention are not impaired.
  • the base material additive include an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a slip agent, an antiblocking agent, and a colorant. These base material additives may be used alone or in combination of two or more. When these base material additives are contained, the content of each base material additive is independently, preferably 0.0001 to 20 parts by mass, more preferably 0.0001 to 20 parts by mass with respect to 100 parts by mass of the resin. Is 0.001 to 10 parts by mass.
  • solvent-free resin composition (y-1a) As one aspect of the resin composition (y-1) used in one aspect of the present invention, an oligomer having an ethylenically unsaturated group having a mass average molecular weight (Mw) of 50,000 or less, an energy ray-polymerizable monomer, and the above-mentioned Examples thereof include a solvent-free resin composition (y-1a) in which the heat-expandable particles of the above are blended and no solvent is blended. In the solvent-free resin composition (y-1a), no solvent is blended, but the energy ray-polymerizable monomer contributes to the improvement of the plasticity of the oligomer.
  • Mw mass average molecular weight
  • the mass average molecular weight (Mw) of the oligomer contained in the solvent-free resin composition (y-1a) is 50,000 or less, preferably 1,000 to 50,000, and more preferably 2,000 to. It is 40,000, more preferably 3,000 to 35,000, and even more preferably 4,000 to 30,000.
  • the oligomer may be any resin contained in the above-mentioned resin composition (y-1) having an ethylenically unsaturated group having a mass average molecular weight of 50,000 or less, and the above-mentioned urethane prepolymer. (UP) is preferable, and a linear urethane prepolymer having ethylenically unsaturated groups at both ends is more preferable.
  • a modified olefin resin having an ethylenically unsaturated group can also be used.
  • the total content of the oligomer and the energy ray-polymerizable monomer in the solvent-free resin composition (y-1a) is based on the total amount (100% by mass) of the solvent-free resin composition (y-1a). It is preferably 50 to 99% by mass, more preferably 60 to 95% by mass, still more preferably 65 to 90% by mass, and even more preferably 70 to 85% by mass.
  • Examples of the energy ray-polymerizable monomer include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, cyclohexyl (meth) acrylate, and adamantan (adamantan).
  • Alicyclic polymerizable compounds such as meta) acrylates and tricyclodecane acrylates; aromatic polymerizable compounds such as phenylhydroxypropyl acrylates, benzyl acrylates and phenolethylene oxide modified acrylates; tetrahydrofurfuryl (meth) acrylates, morpholine acrylates, N- Examples thereof include heterocyclic polymerizable compounds such as vinylpyrrolidone and N-vinylcaprolactam. Among these, isobornyl (meth) acrylate and phenylhydroxypropyl acrylate are preferable. These energy ray-polymerizable monomers may be used alone or in combination of two or more.
  • the content ratio [oligomer / energy ray-polymerizable monomer] of the oligomer to the energy ray-polymerizable monomer in the solvent-free resin composition (y-1a) is preferably 20/80 to 20/80 in mass ratio. It is 90/10, more preferably 30/70 to 85/15, and even more preferably 35/65 to 80/20.
  • the solvent-free resin composition (y-1a) is preferably further blended with a photopolymerization initiator.
  • a photopolymerization initiator By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with relatively low-energy energy rays.
  • the photopolymerization initiator include 1-hydroxycyclohexylphenyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfate, tetramethylthium monosulfide, azobisisobutyronitrile, and dibenzyl.
  • the photopolymerization initiators may be used alone or in combination of two or more.
  • the blending amount of the photopolymerization initiator is preferably 0.01 to 5 parts by mass, more preferably 0.01 to 4 parts by mass, and further, based on the total amount (100 parts by mass) of the oligomer and the energy ray-polymerizable monomer. It is preferably 0.02 to 3 parts by mass.
  • the thickness of the heat-expandable base material layer (Y1) before thermal expansion is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, and even more preferably 25 to 120 ⁇ m.
  • the thickness of the heat-expandable base material layer (Y1) before thermal expansion is 10 ⁇ m or more, the formation of irregularities due to the heat-expandable particles before thermal expansion can be suppressed, and the pressure-sensitive adhesive layer (X1) Adhesive strength can be improved. If the thickness before thermal expansion of the thermally expandable base material layer (Y1) is at 200 ⁇ m or less, total light transmittance (T A) is easily adjusted to the above range.
  • Non-thermal expansion base material layer (Y2) included in the double-sided pressure-sensitive adhesive sheet of the first aspect is provided on the surface of the heat-expandable base material layer (Y1) opposite to the laminated surface of the pressure-sensitive adhesive layer (X1). ..
  • the non-thermally expandable base material layer (Y2) is preferably a non-adhesive base material.
  • the probe tack value on the surface of the non-thermally expandable base material layer (Y2) is usually less than 50 mN / 5 mm ⁇ , preferably less than 30 mN / 5 mm ⁇ , more preferably less than 10 mN / 5 mm ⁇ , still more preferably less than 5 mN / 5 mm ⁇ . be.
  • Total light transmittance of the wavelength 380nm of non-heat-expandable base material layer (Y2) (T Y2) is preferably 70% or more, more preferably 80% or more, further preferably 85% or more.
  • the upper limit of the total light transmittance ( TY2 ) is not particularly limited and may be 100% or less.
  • total light transmittance of the non-heat-expandable base material layer (Y2) (T Y2) is 70% or more, the total light transmittance (T A) is easily adjusted to the above range.
  • the total light transmittance (T Y2) is a non-heat-expandable substrate layer (Y2) as a measurement sample can be measured by the apparatus and measurement conditions used in the measurement of total light transmittance (T A).
  • Examples of the material for forming the non-thermally expandable base material layer (Y2) include resin, metal, paper material, etc., which can be appropriately selected depending on the use of the double-sided adhesive sheet.
  • the resin examples include polyolefin resins such as polyethylene and polypropylene; vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer; polyethylene terephthalate and poly.
  • polyolefin resins such as polyethylene and polypropylene
  • vinyl resins such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer
  • polyethylene terephthalate and poly examples include polyethylene terephthalate and poly.
  • Polyester resins such as butylene terephthalate and polyethylene naphthalate; polystyrene; acrylonitrile-butadiene-styrene copolymer; cellulose triacetate; polycarbonate; urethane resins such as polyurethane and acrylic modified polyurethane; polymethylpentene; polysulfone; polyether ether ketone; Polyether sulfone; polyphenylene sulfide; polyimide resin such as polyetherimide and polyimide; polyamide resin; acrylic resin; fluorine resin and the like can be mentioned.
  • the metal include aluminum, tin, chromium, titanium and the like.
  • the paper material examples include thin leaf paper, medium quality paper, high quality paper, impregnated paper, coated paper, art paper, sulfate paper, glassine paper and the like.
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate are preferable.
  • These forming materials may be composed of one kind, or two or more kinds may be used in combination.
  • a paper material laminated with a thermoplastic resin such as polyethylene, a resin film containing the resin, or a metal film is formed on the surface of the sheet. And so on.
  • a method for forming the metal layer for example, a method of vapor-depositing the metal by a PVD method such as vacuum deposition, sputtering, or ion plating, or a method of attaching a metal foil made of the metal by using a general pressure-sensitive adhesive. The method of doing this can be mentioned.
  • the non-thermally expandable base layer (Y2) contains a resin
  • the non-thermally expandable base layer (Y2) contains a non-thermally expandable group from the viewpoint of improving the interlayer adhesion between the non-thermally expandable base material layer (Y2) and another layer to be laminated.
  • the surface of the material layer (Y2) may also be subjected to surface treatment, easy adhesion treatment, or primer treatment by an oxidation method, an unevenness method, or the like, similarly to the above-mentioned heat-expandable base material layer (Y1). ..
  • the above-mentioned base material additive that can be contained in the resin composition (y-1) may be contained together with the resin.
  • the non-thermally expandable base material layer (Y2) is a non-thermally expandable layer determined based on the above method. Therefore, the volume change rate (%) of the non-thermally expandable base material layer (Y2) calculated from the above formula is less than 5%, but preferably less than 2%, more preferably less than 1%, and further. It is preferably less than 0.1%, and even more preferably less than 0.01%.
  • the non-thermally expandable base material layer (Y2) may contain thermally expandable particles as long as the volume change rate is within the above range.
  • the resin contained in the non-thermally expandable base material layer (Y2) it is possible to adjust the volume change rate within the above range even if the thermally expandable particles are contained.
  • the smaller the content of the heat-expandable particles in the non-heat-expandable base material layer (Y2) the more preferable.
  • the specific content of the heat-expandable particles is usually less than 3% by mass, preferably less than 1% by mass, more preferably with respect to the total mass (100% by mass) of the non-heat-expandable base material layer (Y2). Is less than 0.1% by mass, more preferably less than 0.01% by mass, and even more preferably less than 0.001% by mass. Even more preferably, it does not contain thermally expandable particles.
  • the storage elastic modulus E'(23) of the non-thermally expandable base material layer (Y2) at 23 ° C. is preferably 5.0 ⁇ 10 7 to 5.0 ⁇ 10 9 Pa, more preferably 5.0 ⁇ 10 8. It is ⁇ 4.5 ⁇ 10 9 Pa, more preferably 1.0 ⁇ 10 9 to 4.0 ⁇ 10 9 Pa. If the storage elastic modulus E of the non-heat-expandable base material layer (Y2) '(23) is 5.0 ⁇ 10 7 Pa or more, it tends to improve the deformation resistance of the double-sided pressure-sensitive adhesive sheet.
  • non-heat-expandable base material layer (Y2) of the storage modulus E '(23) is less than 5.0 ⁇ 10 9 Pa, to improve the handling properties of the double-sided pressure-sensitive adhesive sheet easily.
  • the storage elastic modulus E'(23) of the non-thermally expandable base material layer (Y2) means a value measured by the method described in Examples.
  • the thickness of the non-thermally expandable base material layer (Y2) is preferably 5 to 500 ⁇ m, more preferably 15 to 300 ⁇ m, and even more preferably 20 to 200 ⁇ m.
  • the thickness of the non-thermally expandable base material layer (Y2) is 5 ⁇ m or more, it is easy to improve the deformation resistance of the double-sided adhesive sheet.
  • the total light transmittance (T A) is adjusted to the range of the It will be easier.
  • the pressure-sensitive adhesive layer (X2) contained in the double-sided pressure-sensitive adhesive sheet of the first aspect is an energy ray-curable pressure-sensitive adhesive layer, and is a laminate of a heat-expandable base material layer (Y1) of a non-heat-expandable base material layer (Y2). It is a layer provided on the surface opposite to the surface.
  • the pressure-sensitive adhesive layer (X2) is a pressure-sensitive adhesive layer that is cured by irradiating with energy rays to reduce the adhesive strength, and is preferably a pressure-sensitive adhesive layer that is cured by irradiating with ultraviolet rays to reduce the adhesive strength. ..
  • the pressure-sensitive adhesive layer (X2) is preferably a non-thermally expandable layer.
  • the volume change rate (%) of the pressure-sensitive adhesive layer (X2) calculated from the above formula is less than 5%, preferably less than 2%. It is preferably less than 1%, more preferably less than 0.1%, and even more preferably less than 0.01%.
  • the pressure-sensitive adhesive layer (X2) preferably does not contain the heat-expandable particles, but may contain the heat-expandable particles within a range not contrary to the object of the present invention.
  • the pressure-sensitive adhesive layer (X2) contains thermally expandable particles
  • the smaller the content, the more preferable, and the content is preferably less than 3% by mass, based on the total mass (100% by mass) of the pressure-sensitive adhesive layer (X2). It is preferably less than 1% by mass, more preferably less than 0.1% by mass, still more preferably less than 0.01% by mass, and even more preferably less than 0.001% by mass.
  • the pressure-sensitive adhesive layer (X2) is preferably formed from the pressure-sensitive adhesive composition (x-2) containing a pressure-sensitive adhesive resin.
  • a pressure-sensitive adhesive resin containing a pressure-sensitive adhesive resin.
  • the pressure-sensitive adhesive composition (x-2) contains a pressure-sensitive resin, and if necessary, a cross-linking agent, a pressure-sensitive adhesive, a polymerizable compound, a polymerization initiator, and general pressure-sensitive adhesive other than the above-mentioned components. It may contain an additive for a pressure-sensitive adhesive used in the agent.
  • the adhesive resin may be a polymer having adhesiveness by itself and having a mass average molecular weight (Mw) of 10,000 or more.
  • the mass average molecular weight (Mw) of the adhesive resin is preferably 10,000 to 2 million, more preferably 20,000 to 1.5 million, and further preferably 30,000 from the viewpoint of further improving the adhesive strength of the pressure-sensitive adhesive layer (X2). ⁇ 1 million.
  • Examples of the pressure-sensitive adhesive resin include those similar to the pressure-sensitive adhesive composition contained in the pressure-sensitive adhesive composition (x-1). These adhesive resins may be used alone or in combination of two or more. When these adhesive resins are copolymers having two or more kinds of constituent units, the form of the copolymer may be any of a block copolymer, a random copolymer, and a graft copolymer. There may be.
  • the adhesive resin contained in the pressure-sensitive adhesive composition (x-2) has a side chain from the viewpoint of forming the obtained pressure-sensitive adhesive layer (X2) into a pressure-sensitive adhesive layer that is cured by irradiation with energy rays to reduce the adhesive strength. It is preferably an adhesive resin having an energy ray-polymerizable functional group.
  • the energy ray-polymerizable functional group include those having a carbon-carbon double bond such as a (meth) acryloyl group, a vinyl group, and an allyl group.
  • the adhesive resin preferably contains an acrylic resin from the viewpoint of exhibiting excellent adhesive strength.
  • the content of the acrylic resin in the pressure-sensitive adhesive composition (x-2) is preferably 30 to 30% by mass with respect to the total amount (100% by mass) of the pressure-sensitive adhesive resin contained in the pressure-sensitive adhesive composition (x-2). It is 100% by mass, more preferably 50 to 100% by mass, still more preferably 70 to 100% by mass, and even more preferably 85 to 100% by mass.
  • the content of the adhesive resin in the pressure-sensitive adhesive composition (x-2) is preferably 35 to 100% by mass with respect to the total amount (100% by mass) of the active ingredient of the pressure-sensitive adhesive composition (x-2). It is more preferably 50 to 100% by mass, further preferably 60 to 98% by mass, and even more preferably 70 to 95% by mass.
  • the pressure-sensitive adhesive composition (x-2) may contain a monomer or an oligomer that can be polymerized and cured by energy ray irradiation as an energy ray-curable compound together with the pressure-sensitive adhesive resin.
  • energy ray-curable compounds include trimethylpropantri (meth) acrylate, pentaerythritol (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,4-.
  • Polyvalent (meth) acrylate monomers such as butylene glycol di (meth) acrylate and 1,6-hexanediol (meth) acrylate; polyfunctional urethane (meth) acrylate, polyfunctional polyester (meth) acrylate, polyfunctional polyether (polyfunctional polyether) Examples thereof include oligomers such as meta) acrylate and polyfunctional epoxy (meth) acrylate.
  • a polyfunctional urethane (meth) acrylate oligomer is preferable from the viewpoint of having a relatively high molecular weight and being difficult to reduce the elastic modulus of the pressure-sensitive adhesive layer (X2).
  • the molecular weight of the energy ray-curable compound (mass average molecular weight (Mw) in the case of an oligomer) is preferably 100 to 12,000, more preferably 200 to 10,000, still more preferably 400 to 8,000, and even more preferably. Is 600 to 6,000.
  • the pressure-sensitive adhesive composition (x-2) preferably further contains a photopolymerization initiator.
  • a photopolymerization initiator By containing the photopolymerization initiator, the polymerization of the energy ray-polymerizable component can proceed more efficiently.
  • the photopolymerization initiator include the same as those exemplified in the description of the solvent-free resin composition (y-1a). Among these, 1-hydroxycyclohexylphenyl ketone is preferable.
  • the content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, based on 100 parts by mass of the total amount of the adhesive resin having an energy ray-polymerizable functional group. More preferably, it is 0.05 to 2 parts by mass.
  • the pressure-sensitive adhesive composition (x-2) when the pressure-sensitive adhesive composition (x-2) contains a pressure-sensitive adhesive resin having a functional group, the pressure-sensitive adhesive composition (x-2) preferably further contains a cross-linking agent.
  • the cross-linking agent reacts with a pressure-sensitive adhesive resin having a functional group to cross-link the pressure-sensitive adhesive resins using the functional group as a cross-linking starting point.
  • Examples of the cross-linking agent that may be contained in the pressure-sensitive adhesive composition (x-2) include the same or equivalent cross-linking agents that may be contained in the pressure-sensitive adhesive composition (x-1).
  • An isocyanate-based cross-linking agent is preferable from the viewpoint of increasing the cohesive force to improve the adhesive force and the availability.
  • the content of the cross-linking agent is appropriately adjusted according to the number of functional groups of the adhesive resin, and is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having functional groups. It is more preferably 0.03 to 7 parts by mass, and further preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition (x-2) may further contain a pressure-sensitive adhesive from the viewpoint of further improving the pressure-sensitive adhesive strength.
  • a pressure-sensitive adhesive from the viewpoint of further improving the pressure-sensitive adhesive strength.
  • the same pressure-imparting agent that may be contained in the pressure-sensitive adhesive composition (x-1) may be used. can.
  • Examples of the pressure-sensitive adhesive additive include the same pressure-sensitive adhesive additives that the pressure-sensitive adhesive composition (x-1) may contain.
  • the pressure-sensitive adhesive composition (x-2) can be produced by mixing a pressure-sensitive resin, a cross-linking agent used as necessary, a pressure-sensitive adhesive, an additive for a pressure-sensitive adhesive, and the like.
  • the adhesive strength of the pressure-sensitive adhesive layer (X2) before irradiation with energy rays is preferably 1.1 to 30.0 N / 25 mm, more preferably 3.0 to 25.0 N / 25 mm, still more preferably 5.0 to 20. It is 0N / 25mm. If the adhesive force of the adhesive layer (X2) before irradiation with energy rays is 1.1 N / 25 mm or more, it is possible to more effectively suppress unintentional peeling from the adherend, misalignment of the adherend, and the like. can.
  • the adhesive strength is 30.0 N / 25 mm or less, the peelability after irradiation with energy rays can be further improved.
  • the adhesive strength of the pressure-sensitive adhesive layer (X2) before irradiation with energy rays can be measured by the method described in Examples.
  • the adhesive strength of the pressure-sensitive adhesive layer (X2) after irradiation with energy rays is preferably 1.0 N / 25 mm or less, more preferably 0.9 N / 25 mm or less, still more preferably 0.8 N / 25 mm or less, still more preferably 0. It is 7 N / 25 mm or less.
  • the lower limit value of the pressure-sensitive adhesive layer (X2) after irradiation with energy rays is not particularly limited and may be 0N / 25 mm or more.
  • the peelability from the adherend is more excellent.
  • the adhesive strength of the pressure-sensitive adhesive layer (X2) after irradiation with energy rays can be measured by the method described in Examples.
  • the thickness of the pressure-sensitive adhesive layer (X2) contained in the double-sided pressure-sensitive adhesive sheet of the first aspect is preferably 5 to 150 ⁇ m, more preferably 8 to 100 ⁇ m, still more preferably 12 to 70 ⁇ m, still more preferably 15 to 50 ⁇ m. .. If the thickness of the pressure-sensitive adhesive layer (X2) is 5 ⁇ m or more, sufficient adhesive strength can be easily obtained, and there is a tendency that unintentional peeling from the adherend and misalignment of the adherend during temporary fixing can be suppressed. It is in. On the other hand, when the thickness of the pressure-sensitive adhesive layer (X2) is 150 ⁇ m or less, the double-sided pressure-sensitive adhesive sheet tends to be easy to handle.
  • the total thickness of the above is preferably 90 to 300 ⁇ m, more preferably 100 to 250 ⁇ m, and even more preferably 130 to 200 ⁇ m.
  • the total thickness of the is 300 ⁇ m or less, total light transmittance (T A) is easily adjusted to the above range.
  • the method for producing the double-sided adhesive sheet according to the first aspect is not particularly limited, and examples thereof include a method for producing a double-sided adhesive sheet having the following steps (1a) to (5a).
  • Step (1a) A step of applying the pressure-sensitive adhesive composition (x-1) on the peeling-treated surface of the release material to form the pressure-sensitive adhesive layer (X1).
  • the resin composition (y-1), the pressure-sensitive adhesive composition (x-1), and the pressure-sensitive adhesive composition (x-2) are further blended with a diluting solvent to form a solution.
  • a diluting solvent to form a solution.
  • the coating method include a spin coating method, a spray coating method, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, a gravure coating method and the like.
  • the step of drying the coating film formed from the resin composition (y-1), the pressure-sensitive adhesive composition (x-1), and the pressure-sensitive adhesive composition (x-2) causes the expansion of the heat-expandable particles.
  • the drying temperature is lower than the expansion start temperature (t) of the heat-expandable particles.
  • the double-sided adhesive sheet of the second aspect is a double-sided adhesive sheet having an adhesive layer (X1) which is a heat-expandable layer, a base material layer (Y), and an adhesive layer (X2) in this order. ..
  • the description of the base material layer (Y) included in the double-sided pressure-sensitive adhesive sheet of the second aspect is the same as the description of the non-thermally expandable base material layer (Y2) in the double-sided pressure-sensitive adhesive sheet of the first aspect.
  • the description of the pressure-sensitive adhesive layer (X2) included in the double-sided pressure-sensitive adhesive sheet of the first aspect is the same as the description of the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet of the first aspect.
  • the pressure-sensitive adhesive layer (X1) of the second aspect is a heat-expandable layer containing heat-expandable particles, and preferably contains a polymer of an energy ray-polymerizable component and heat-expandable particles.
  • the polymer is a monomer (b1) having an energy ray-polymerizable functional group (hereinafter, also referred to as "(b1) component”) and a prepolymer having an energy ray-polymerizable functional group (b2) as the energy ray-polymerizable component.
  • a prepolymer means a compound formed by polymerizing a monomer, and a compound capable of forming a polymer by further polymerization.
  • the energy ray-polymerizable component contained in the polymerizable composition (x-1') is a component that polymerizes by irradiation with energy rays and has an energy ray-polymerizable functional group.
  • the energy ray-polymerizable functional group include those having a carbon-carbon double bond such as a (meth) acryloyl group, a vinyl group, and an allyl group.
  • a functional group containing a vinyl group or a substituted vinyl group as a part thereof, such as a (meth) acryloyl group, an allyl group, and the vinyl group or the substituted vinyl group itself are referred to as a "vinyl group-containing group”. May be collectively referred to as.
  • each component contained in the polymerizable composition (x-1') will be described.
  • the monomer (b1) having an energy ray-polymerizable functional group may be any monomer having an energy ray-polymerizable functional group, and in addition to the energy ray-polymerizable functional group, a hydrocarbon group and an energy ray-polymerizable functional group It may have a functional group other than the above.
  • Examples of the hydrocarbon group contained in the component (b1) include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and a group combining these groups.
  • the aliphatic hydrocarbon group may be a linear or branched aliphatic hydrocarbon group, or may be an alicyclic hydrocarbon group.
  • Examples of the linear or branched aliphatic hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, a sec-butyl group and an n-pentyl group.
  • aliphatic hydrocarbon groups There are 20 aliphatic hydrocarbon groups.
  • the alicyclic hydrocarbon group include an alicyclic hydrocarbon group having 3 to 20 carbon atoms such as a cyclopentyl group, a cyclohexyl group and an isobornyl group.
  • the aromatic hydrocarbon group include a phenyl group.
  • the component (b1) has an energy ray-polymerizable functional group and a linear or branched aliphatic hydrocarbon group from the viewpoint of further improving the adhesive strength of the pressure-sensitive adhesive layer (X1).
  • Monomer (b1-1) (hereinafter, also referred to as “(b1-1) component”), monomer (b1-2) having an energy ray-polymerizable functional group and an alicyclic hydrocarbon group (hereinafter, “(b1-b1-) component”). 2) It is preferable to contain "components”) and the like.
  • the content thereof is preferably 20 to 80% by mass, more preferably 40 to 40% by mass, based on the total amount (100% by mass) of the components (b1). It is 70% by mass, more preferably 50 to 60% by mass.
  • the content thereof is preferably 5 to 60% by mass, more preferably 10 to 10 to the total amount (100% by mass) of the components (b1). It is 40% by mass, more preferably 20 to 30% by mass.
  • the monomer having an energy ray-polymerizable functional group and a functional group other than the energy ray-polymerizable functional group includes, for example, a hydroxy group, a carboxy group, a thiol group, 1 or a functional group other than the energy ray-polymerizable functional group. Examples thereof include a monomer having a secondary amino group and the like.
  • the component (b1) is a monomer (b1-3) having an energy ray-polymerizable functional group and a hydroxy group from the viewpoint of further improving the formability of the pressure-sensitive adhesive layer (X1) (hereinafter, "(b1)". -3) It is preferable to contain (also referred to as "ingredient").
  • the component (b1) contains the component (b1-3)
  • the content thereof is preferably 1 to 60% by mass, more preferably 5 to 5 to the total amount (100% by mass) of the components (b1). It is 30% by mass, more preferably 10 to 20% by mass.
  • the number of energy ray-polymerizable functional groups contained in the component (b1) may be one or two or more.
  • the component (b1) is a monomer (b1-4) having three or more energy ray-polymerizable functional groups (hereinafter, "(b1-4)). It is preferable to contain (also referred to as "ingredient").
  • the content thereof is preferably 1 to 20% by mass, more preferably 2 to 2 to the total amount (100% by mass) of the components (b1). It is 15% by mass, more preferably 3 to 10% by mass.
  • a monomer having one energy ray-polymerizable functional group a monomer having one vinyl group-containing group (hereinafter, also referred to as “polymerizable vinyl monomer”) is preferable.
  • a monomer having two or more energy ray-polymerizable functional groups a monomer having two or more (meth) acryloyl groups (hereinafter, also referred to as “polyfunctional (meth) acrylate monomer”) is preferable.
  • the component (b1) contains the above compound, the cohesive force of the pressure-sensitive adhesive obtained by polymerizing these compounds is improved, and a pressure-sensitive adhesive layer (X1) with less contamination of the adherend after peeling can be formed. ..
  • the polymerizable vinyl monomer is not particularly limited as long as it has a vinyl group-containing group, and conventionally known ones can be appropriately used.
  • As the polymerizable vinyl monomer one type may be used alone, or two or more types may be used in combination.
  • Examples of the polymerizable vinyl monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, and 2-ethylhexyl (meth).
  • (b1-1) component such as acrylate, isooctyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, myristyl (meth) acrylate, palmityl (meth) acrylate, and stearyl (meth) acrylate.
  • a compound corresponding to the above (b1-2) component such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate; phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, polyoxyalkylene modified (meth) acrylate and the like.
  • Examples thereof include (meth) acrylates having no functional group other than vinyl group-containing groups in the molecule. Among these, 2-ethylhexyl acrylate and isobornyl acrylate are preferable.
  • the polymerizable vinyl monomer may further have a functional group other than the vinyl group-containing group in the molecule.
  • the functional group include a hydroxy group, a carboxy group, a thiol group, a primary or secondary amino group and the like.
  • a polymerizable vinyl monomer having a hydroxy group corresponding to the above component (b1-3) is preferable.
  • Examples of the polymerizable vinyl monomer having a hydroxy group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3 Hydroxyalkyl (meth) acrylates such as -hydroxybutyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; hydroxy group-containing acrylamides such as N-methylol acrylamide and N-methylol methacrylate can be mentioned.
  • Examples of the polymerizable vinyl monomer having a carboxy group include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid and citraconic acid. Among these, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate are preferable.
  • Examples of other polymerizable vinyl monomers include vinyl esters such as vinyl acetate and vinyl propionate; olefins such as ethylene, propylene and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; styrene and ⁇ .
  • -Sterite-based monomers such as methylstyrene; Diene-based monomers such as butadiene, isoprene, and chloroprene; Nitrile-based monomers such as acrylonitrile and methacrylonitrile; Amido-based monomers such as methacrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-vinylpyrrolidone; N, N-diethylaminoethyl (meth) acrylate, N-( Meta) Examples thereof include a tertiary amino group-containing monomer such as acryloylmorpholine.
  • the polyfunctional (meth) acrylate monomer is not particularly limited as long as it is a monomer having two or more (meth) acryloyl groups in one molecule, and conventionally known ones can be appropriately used.
  • One type of polyfunctional (meth) acrylate monomer may be used alone, or two or more types may be used in combination.
  • polyfunctional (meth) acrylate monomer examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate.
  • the total content of the polymerizable vinyl monomer in the polymerizable composition (x-1') is preferably 10 with respect to the total amount (100% by mass) of the active ingredient of the polymerizable composition (x-1'). It is -80% by mass, more preferably 30 to 75% by mass, still more preferably 50 to 70% by mass.
  • the total content of the polyfunctional (meth) acrylate monomer in the polymerizable composition (x-1') is preferable with respect to the total amount (100% by mass) of the active ingredient of the polymerizable composition (x-1'). Is 0.5 to 15% by mass, more preferably 1 to 10% by mass, still more preferably 2 to 5% by mass.
  • the total content of the component (b1) in the polymerizable composition (x-1') is preferably 15 to 15 to the total amount (100% by mass) of the active ingredient of the polymerizable composition (x-1'). It is 90% by mass, more preferably 35 to 80% by mass, and even more preferably 55 to 75% by mass.
  • prepolymer having energy ray-polymerizable functional group (b2) examples include a prepolymer having one energy ray-polymerizable functional group, a prepolymer having two or more energy ray-polymerizable functional groups, and the like.
  • the component (b2) contains a prepolymer having two or more energy ray-polymerizable functional groups from the viewpoint of forming a pressure-sensitive adhesive layer having excellent peelability and less contamination of the adherend after peeling.
  • a prepolymer having two energy ray-polymerizable functional groups it is more preferable to contain a prepolymer having two energy ray-polymerizable functional groups, and a prepolymer having two energy ray-polymerizable functional groups and having the energy ray-polymerizable functional groups at both ends is preferable. It is more preferable to contain it.
  • the component (b2) preferably contains a prepolymer having two or more (meth) acryloyl groups as an energy ray-polymerizable functional group (hereinafter, also referred to as "polyfunctional (meth) acrylate prepolymer").
  • polyfunctional (meth) acrylate prepolymer a prepolymer having two or more (meth) acryloyl groups as an energy ray-polymerizable functional group.
  • the polyfunctional (meth) acrylate prepolymer is not particularly limited as long as it is a prepolymer having two or more (meth) acryloyl groups in one molecule, and conventionally known prepolymers can be appropriately used.
  • the polyfunctional (meth) acrylate prepolymer may be used alone or in combination of two or more.
  • polyfunctional (meth) acrylate prepolymer examples include urethane acrylate-based prepolymers, polyester acrylate-based prepolymers, epoxy acrylate-based prepolymers, polyether acrylate-based prepolymers, polybutadiene acrylate-based prepolymers, and silicone acrylate-based prepolymers.
  • examples thereof include polyacrylic acrylate-based prepolymers.
  • the urethane acrylate-based prepolymer can be obtained by reacting a compound such as a polyalkylene polyol, a polyether polyol, a polyester polyol, a hydrogenated isoprene having a hydroxy group terminal, or a hydrogenated butadiene having a hydroxy group terminal with a polyisocyanate. It can be obtained by esterifying a polyurethane prepolymer with a (meth) acrylic acid or a (meth) acrylic acid derivative.
  • polyalkylene polyol used for producing the urethane acrylate-based prepolymer examples include polypropylene glycol, polyethylene glycol, polybutylene glycol, polyhexylene glycol and the like, and among these, polypropylene glycol is preferable.
  • the number of functional groups of the obtained urethane acrylate-based prepolymer is 3 or more, for example, glycerin, trimethylolpropane, triethanolamine, pentaerythritol, ethylenediamine, diethylenetriamine, sorbitol, sucrose and the like may be appropriately combined.
  • polyisocyanate used for producing the urethane acrylate-based prepolymer examples include aliphatic diisocyanates such as hexamethylene diisocyanate and trimethylene diisocyanate; aromatic diisocyanates such as tolylene diisocyanate, xylylene diisocyanate and diphenyl diisocyanate; and dicyclohexylmethane diisocyanate. , Isophorone diisocyanate and other alicyclic diisocyanates, and among these, aliphatic diisocyanates are preferable, and hexamethylene diisocyanates are more preferable.
  • the polyisocyanate is not limited to bifunctional ones, and trifunctional or higher functional ones can also be used.
  • Examples of the (meth) acrylic acid derivative used in the production of urethane acrylate-based prepolymers include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate; 2-isocyanate ethyl acrylate and 2-isocyanate ethyl acrylate.
  • Examples thereof include isocyanate ethyl methacrylate and 1,1-bis (acryloxymethyl) ethyl isocyanate, and among these, 2-isocyanate ethyl acrylate is preferable.
  • a hydroxy group contained in a compound such as a polyalkylene polyol, a polyether polyol, a polyester polyol, a hydrogenated isoprene having a hydroxy group terminal, and a hydrogenated butadiene having a hydroxy group terminal, and an isocyanate.
  • a compound such as a polyalkylene polyol, a polyether polyol, a polyester polyol, a hydrogenated isoprene having a hydroxy group terminal, and a hydrogenated butadiene having a hydroxy group terminal, and an isocyanate.
  • isocyanate alkyl (meth) acrylate for example, the above-mentioned 2-isocyanate ethyl acrylate, 2-isocyanate ethyl methacrylate, 1,1-bis (acryloxymethyl) ethyl isocyanate and the like can be used.
  • the polyester acrylate-based prepolymer can be obtained, for example, by esterifying the hydroxy groups of a polyester prepolymer having hydroxy groups at both ends obtained by condensation of a polyvalent carboxylic acid and a polyhydric alcohol with (meth) acrylic acid. Can be done. It can also be obtained by esterifying the terminal hydroxy group of the prepolymer obtained by adding an alkylene oxide to a polyvalent carboxylic acid with (meth) acrylic acid.
  • the epoxy acrylate-based prepolymer can be obtained, for example, by reacting an oxylan ring of a relatively low molecular weight bisphenol type epoxy resin, novolak type epoxy resin, or the like with (meth) acrylic acid to esterify it. It is also possible to use a carboxy-modified epoxy acrylate-based prepolymer in which the epoxy acrylate-based prepolymer is partially modified with a dibasic carboxylic acid anhydride.
  • the polyether acrylate-based prepolymer can be obtained, for example, by esterifying the hydroxy group of the polyether polyol with (meth) acrylic acid.
  • the polyacrylic acrylate-based prepolymer may have an acryloyl group in the side chain, or may have an acryloyl group at both ends or one end.
  • a polyacrylic acrylate-based prepolymer having an acryloyl group in the side chain can be obtained, for example, by adding glycidyl methacrylate to the carboxy group of polyacrylic acid.
  • an acryloyl group is introduced at both ends by utilizing the polymerization growth terminal structure of the polyacrylate prepolymer synthesized by the ATRP (Atom Transfer Radical Polymerization) method. Can be obtained by doing.
  • the mass average molecular weight (Mw) of the component (b2) is preferably 10,000 to 350,000, more preferably 15,000 to 200,000, and even more preferably 20,000 to 50,000.
  • the total content of the polyfunctional (meth) acrylate prepolymer in the polymerizable composition (x-1') is based on the total amount (100% by mass) of the active ingredient of the polymerizable composition (x-1'). It is preferably 10 to 60% by mass, more preferably 15 to 55% by mass, and even more preferably 20 to 30% by mass.
  • the total content of the component (b2) in the polymerizable composition (x-1') is preferably 10 to 10 to the total amount (100% by mass) of the active ingredient of the polymerizable composition (x-1'). It is 60% by mass, more preferably 15 to 55% by mass, and even more preferably 20 to 30% by mass.
  • the content ratio [(b2) / (b1)] of the component (b2) and the component (b1) in the polymerizable composition (x-1') is preferably 10/90 to 70/30 on a mass basis. , More preferably 20/80 to 50/50, and even more preferably 25/75 to 40/60.
  • the polymerizable composition (x-1') preferably contains a polymerizable vinyl monomer, a polyfunctional (meth) acrylate monomer, and a polyfunctional (meth) acrylate prepolymer.
  • Energy ray contained in the polymerizable composition (x-1') The total content of the polymerizable vinyl monomer, the polyfunctional (meth) acrylate monomer and the polyfunctional (meth) acrylate prepolymer in the polymerizable component is the energy ray.
  • the total amount (100% by mass) of the polymerizable component it is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, still more preferably 99% by mass or more, and 100% by mass. May be%.
  • the total content of the energy ray-polymerizable component in the polymerizable composition (x-1') is preferably 70 with respect to the total amount (100% by mass) of the active ingredient in the polymerizable composition (x-1'). It is ⁇ 98% by mass, more preferably 75 to 97% by mass, still more preferably 80 to 96% by mass, still more preferably 82 to 95% by mass.
  • the polymerizable composition (x-1') may contain other components other than the energy ray-polymerizable component and the heat-expandable particles.
  • the other components include a photopolymerization initiator, a pressure-sensitive adhesive, and an additive for a pressure-sensitive adhesive used in a general pressure-sensitive adhesive other than the above-mentioned components. Examples of these components are the same as those described in the double-sided pressure-sensitive adhesive sheet of the first aspect.
  • the polymerizable composition (x-1') may contain a solvent such as a diluent within a range not contrary to the object of the present invention, but preferably does not contain a solvent. That is, the polymerizable composition (x-1') is preferably a solvent-free polymerizable composition. Since the polymerizable composition (x-1') is a solvent-free polymerizable composition, it is possible to omit heating and drying the solvent when forming the pressure-sensitive adhesive layer (X1). The expansion of the heat-expandable particles in the above can be suppressed.
  • the polymerizable composition (x-1') contains a solvent
  • the polymerizable composition (x-1') can be produced by mixing an energy ray-polymerizable component, thermally expandable particles, and other components contained as necessary. Since the obtained polymerizable composition (x-1') is made to have a high molecular weight by subsequent energy ray polymerization, when forming a layer, a low molecular weight energy ray-polymerizable component has an appropriate viscosity. It is adjustable. Therefore, the polymerizable composition (x-1') can be used as it is as a coating solution for forming the pressure-sensitive adhesive layer (X1) without adding a solvent such as a diluent.
  • the pressure-sensitive adhesive layer (X1) formed by irradiating the polymerizable composition (x-1') with energy rays contains a wide variety of polymers obtained by polymerizing energy ray-polymerizable components and the weight thereof. Although it contains thermally expandable particles dispersed in the coalescence, there are circumstances in which it is impossible or nearly impractical to directly identify them by structure and physical properties.
  • Adhesive strength of the adhesive layer (X1) The description of the adhesive force before thermal expansion and the adhesive force after thermal expansion of the pressure-sensitive adhesive layer (X1) in the double-sided pressure-sensitive adhesive sheet of the second aspect describes the heat-expandable group in the description of the double-sided pressure-sensitive adhesive sheet of the first aspect. An explanation of the adhesive strength of the adhesive layer (X1) before the material layer (Y1) is thermally expanded and the adhesive strength of the adhesive layer (X1) after the thermally expandable base material layer (Y1) is thermally expanded. It is the same.
  • the thickness of the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet of the second aspect before thermal expansion is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, and even more preferably 25 to 120 ⁇ m. If the thickness of the pressure-sensitive adhesive layer (X1) before thermal expansion is 10 ⁇ m or more, sufficient adhesive strength can be easily obtained, and unintentional peeling from the adherend during temporary fixing, misalignment of the adherend, etc. Tends to be suppressed.
  • the thickness of the pressure-sensitive adhesive layer (X1) before thermal expansion is 200 ⁇ m or less, the peelability at the time of heat peeling is improved, and the curl of the double-sided pressure-sensitive adhesive sheet at the time of heat peeling is suppressed to improve the handleability. There is a tendency to improve. Further, the total light transmittance (T A) is easily adjusted to the above range.
  • the method for forming the pressure-sensitive adhesive layer (X1) is a polymerizable composition (x-1') containing the energy ray-polymerizable component and the heat-expandable particles.
  • a method for producing a double-sided pressure-sensitive adhesive sheet which comprises a step of irradiating an energy ray to form a polymer of the energy ray-polymerizable component.
  • the following steps (1b) to (3b) It is more preferable that the production method includes.
  • the polymerizable composition (x-1') is applied on the peeling surface of the release material to form a polymerizable composition layer, and the polymerizable composition layer is subjected to.
  • the polymerizable composition layer is subjected to.
  • the polymerizable composition (x-1') is preferably a solvent-free polymerizable composition.
  • the polymerizable composition (x-1') is a solvent-free polymerizable composition, it is not necessary to carry out the heat-drying step of the solvent in this step, and the expansion of the heat-expandable particles can be suppressed. ..
  • a polymer of energy ray-polymerizable components is formed by irradiating the polymerizable composition layer formed in the step (1b) with energy rays, and the polymer and the heat-expandable particles are contained.
  • This is a step of forming the pressure-sensitive adhesive layer (X1).
  • the energy ray irradiation in the step (2b) is the second energy ray irradiation performed on the polymerizable composition layer after the prepolymerization.
  • the energy ray irradiation in the step (2b) is different from the first energy ray irradiation, and it is preferable that the energy ray irradiation is performed to such an extent that the polymerization of the energy ray-polymerizable component does not substantially proceed even if the energy rays are further irradiated.
  • the energy ray irradiation in the step (2b) the polymerization of the energy ray-polymerizable component proceeds, and the polymer of the energy ray-polymerizable component constituting the pressure-sensitive adhesive layer (X1) is formed.
  • the pressure-sensitive adhesive composition (x-2) is applied to one surface of the release material to form a pressure-sensitive adhesive layer (X2), and the pressure-sensitive adhesive layer (X2) is used as a base material (Y).
  • a method of sticking on the other side of the surface can be mentioned.
  • any of the steps (1b) and (2b) described above it is preferable not to include the step of heating the polymerizable composition from the viewpoint of suppressing the expansion of the heat-expandable particles.
  • heating here means, for example, intentionally heating during drying, laminating, etc., and the heat and energy ray-polymerizable composition imparted to the polymerizable composition by irradiation with energy rays. The temperature rise due to the heat of polymerization generated by polymerization is not included.
  • the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention can be easily peeled off by heating the temporarily fixed adherend, it can be applied to various uses. Specifically, for example, a dicing sheet used when dicing an adherend such as a semiconductor wafer, a back grind sheet used in a step of grinding an adherend, a coating of a semiconductor chip individualized by dicing, or the like. Expanding tape used to increase the distance between wafers, transfer tape used to invert the front and back of adherends such as semiconductor chips, and temporary fixing sheet for temporarily fixing and inspecting objects to be inspected. Etc. are suitable.
  • the adherend of the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention is not particularly limited, and examples thereof include semiconductor chips, semiconductor wafers, compound semiconductors, semiconductor packages, electronic components, sapphire substrates, displays, and panel substrates. ..
  • the expansion start temperature (t) of the heat-expandable particles when the expansion start temperature (t) of the heat-expandable particles is set to less than 125 ° C., heat peeling is possible at a low temperature. It is suitable for temporarily fixing an easily adherent body.
  • the expansion start temperature (t) of the thermally expandable particles is set to 50 ° C. or higher, the thermal expansion property due to the temperature rise such as when grinding the adherend is performed. Since it can suppress the unintended expansion of particles, it is suitable for use as a back grind sheet used in the process of grinding an adherend.
  • the heating temperature at which the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention is heat-peeled from the adherend is equal to or higher than the expansion start temperature (t) of the heat-expandable particles, and is preferably "a temperature higher than the expansion start temperature (t)". , More preferably “expansion start temperature (t) + 2 ° C.” or higher, further preferably “expansion start temperature (t) + 4 ° C.” or higher, and even more preferably "expansion start temperature (t) + 5 ° C.” or higher.
  • the heating temperature at the time of heat peeling is preferably less than 125 ° C., more preferably 120 ° C. or lower, and further, within the range of the expansion start temperature (t) or higher, from the viewpoint of suppressing the thermal change of the adherend. It is preferably 115 ° C. or lower, more preferably 110 ° C. or lower, and even more preferably 105 ° C. or lower.
  • the heating method is not particularly limited as long as it can be heated above the temperature at which the heat-expandable particles expand, and for example, an electric heater; dielectric heating; magnetic heating; near infrared rays, mid infrared rays, and far infrared rays. It is possible to appropriately use heating by electromagnetic waves such as infrared rays.
  • the heating method may be any of a contact type heating method such as a heating roller and a heating press; a non-contact type heating method such as an atmosphere heating device and infrared irradiation.
  • the double-sided pressure-sensitive adhesive sheet with a release material is a double-sided pressure-sensitive adhesive sheet with a release material having a release material on one or both surfaces of the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention described above.
  • the double-sided adhesive sheet with a release material according to one aspect of the present invention for example, the double-sided adhesive sheet with a release material in which the release materials 10a and 10b are arranged on both sides of the above-mentioned double-sided adhesive sheet 1a shown in FIG. 1b can be mentioned.
  • Adhesive sheet 2b can be mentioned.
  • a double-sided adhesive sheet with a release material having a structure in which a release material having been subjected to a release treatment on both sides is laminated on one of the adhesive surfaces of the agent layer (X2) in a roll shape may be used.
  • Examples of the release material include a release sheet subjected to double-sided release treatment, a release sheet subjected to single-sided release treatment, and a material obtained by applying a release agent on a base material for the release material.
  • Examples of the base material for the release material include plastic films and papers.
  • Examples of the plastic film include polyester resin films such as polyethylene terephthalate resin, polybutylene terephthalate resin and polyethylene naphthalate resin; and olefin resin films such as polypropylene resin and polyethylene resin.
  • Examples of papers include high-quality paper. , Glassin paper, kraft paper, etc.
  • the release agent examples include rubber-based elastomers such as silicone-based resins, olefin-based resins, isoprene-based resins, and butadiene-based resins; long-chain alkyl-based resins, alkyd-based resins, and fluorine-based resins.
  • rubber-based elastomers such as silicone-based resins, olefin-based resins, isoprene-based resins, and butadiene-based resins
  • long-chain alkyl-based resins alkyd-based resins
  • fluorine-based resins fluorine-based resins
  • the thickness of the release material is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, and even more preferably 35 to 80 ⁇ m.
  • the present invention also provides a method for manufacturing a semiconductor device using the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention.
  • the double-sided adhesive sheet of one aspect of the present invention is used as a temporary fixing sheet for performing at least one of processing and inspection of an adherend (a mode).
  • a method for manufacturing a semiconductor device of the first aspect it is also referred to as “a method for manufacturing a semiconductor device of the first aspect”.
  • a semiconductor device refers to a general device which can function by utilizing semiconductor characteristics. For example, a wafer having an integrated circuit, a thin wafer having an integrated circuit, a chip having an integrated circuit, a thin chip having an integrated circuit, an electronic component including these chips, and an electronic device having the electronic component.
  • a wafer having an integrated circuit a wafer having an integrated circuit
  • a thin wafer having an integrated circuit a chip having an integrated circuit
  • a thin chip having an integrated circuit an electronic component including these chips
  • an electronic device having the electronic component including these chips
  • a processing inspection object is attached to the double-sided adhesive sheet of one aspect of the present invention, and the processing inspection object is selected from processing and inspection.
  • Examples thereof include a method for manufacturing a semiconductor device, which comprises a step of heating the double-sided pressure-sensitive adhesive sheet to the expansion start temperature (t) or higher after applying one or more.
  • processing inspection objects include semiconductor chips, semiconductor wafers, compound semiconductors, semiconductor packages, electronic components, LED elements, sapphire substrates, displays, panel substrates, and the like.
  • the processing performed on the object to be inspected is not particularly limited, and examples thereof include a grinding process and an individualization process.
  • the inspection performed on the object to be processed is not particularly limited, but for example, defect inspection using an optical microscope or laser (for example, dust inspection, surface scratch inspection, wiring pattern inspection, etc.), visual surface inspection, etc. Can be mentioned.
  • the pressure-sensitive adhesive layer of the double-sided pressure-sensitive adhesive sheet to which the object to be processed and inspected is attached may be the pressure-sensitive adhesive layer (X1) or the pressure-sensitive adhesive layer (X2).
  • the object to be processed and inspected is attached to one of the adhesive layers, and the support is attached to the other adhesive layer.
  • the support may be attached to the pressure-sensitive adhesive layer (X1) and the object to be processed and inspected may be attached to the pressure-sensitive adhesive layer (X2), or the object to be processed and inspected may be attached to the pressure-sensitive adhesive layer (X1).
  • the support may be attached to the pressure-sensitive adhesive layer (X2).
  • the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention is an energy ray-curable pressure-sensitive adhesive layer by irradiation with energy rays from the heat-expandable layer side even after the heat-expandable layer is thermally expanded. Since the adhesive strength of the agent layer (X2) can be sufficiently reduced, the degree of freedom in the method of use is higher than that of the conventional method.
  • the support When the support is attached to the pressure-sensitive adhesive layer (X1) and the object to be processed and inspected is attached to the pressure-sensitive adhesive layer (X2), the support has excellent peelability after heat treatment (X1). Even if the support is made of a hard material, it can be heat-peeled without bending the double-sided adhesive sheet and the support. Further, since the adhesive layer (X2) can reduce the adhesive force by irradiation with energy rays, it can be peeled off without contaminating the object to be processed by the residue derived from the heat-expandable particles or the like.
  • the adhesive force of the pressure-sensitive adhesive layer (X2) is sufficiently reduced by irradiation with energy rays from the heat-expandable layer side, the object to be processed and inspected on the pressure-sensitive adhesive layer (X2) side does not have light transmittance. It is possible to select even one.
  • the object to be processed and inspected is attached to the pressure-sensitive adhesive layer (X1) and the support is attached to the pressure-sensitive adhesive layer (X2)
  • the object to be processed and inspected is an adhesive having excellent peelability after heat treatment.
  • the layer (X1) when heat peeling is performed after processing, it is not necessary to pick up the objects to be processed and inspected individually, and the objects can be easily peeled at once, so that the productivity of the semiconductor device is excellent. ..
  • the adhesive force of the pressure-sensitive adhesive layer (X2) is sufficiently reduced by irradiation with energy rays from the heat-expandable layer side, the support on the pressure-sensitive adhesive layer (X2) side does not have light transmittance. Can also be selected.
  • the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention is used as a temporary fixing sheet for inspecting a processing inspection object as a part of a manufacturing process
  • a plurality of double-sided pressure-sensitive adhesive sheets are applied to the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet.
  • the inspection can be carried out with the object to be processed and inspected. After performing the inspection, for example, a part of the double-sided adhesive sheet to which the above-mentioned plurality of processing inspection objects are attached is locally heated, and a specific processing inspection object attached to the portion is selected. It can also be heat-peeled.
  • a manufacturing method including the following step 1A, step 2A, first separation step, and second separation step using the double-sided pressure-sensitive adhesive sheet of one aspect of the present invention (hereinafter, "manufacturing").
  • Method A a manufacturing method including the following step 1A, step 2A, first separation step, and second separation step using the double-sided pressure-sensitive adhesive sheet of one aspect of the present invention (hereinafter, "manufacturing").
  • Method A ”).
  • Step 1A Attaching the object to be processed to the adhesive layer (X2) and attaching the support to the adhesive layer (X1)
  • Step 2A Select from grinding and individualizing the object to be processed.
  • First separation step A step of heating the double-sided pressure-sensitive adhesive sheet to the expansion start temperature (t) or higher to separate the pressure-sensitive adhesive layer (X1) from the support.
  • Step 1A is a step of attaching the object to be processed to the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet and attaching the support to the pressure-sensitive adhesive layer (X1).
  • FIG. 3 shows a cross-sectional view illustrating a step of attaching the semiconductor wafer W to the pressure-sensitive adhesive layer (X2) of the double-sided pressure-sensitive adhesive sheet 1a and attaching the support 3 to the pressure-sensitive adhesive layer (X1).
  • the semiconductor wafer W is attached so that the surface W1 which is the circuit surface is on the adhesive layer (X2) side.
  • the semiconductor wafer W may be a silicon wafer, a wafer such as gallium arsenide, silicon carbide, sapphire, lithium tantalate, lithium niobate, gallium nitride, indium phosphorus, or a glass wafer.
  • the thickness of the semiconductor wafer W before grinding is usually 500 to 1000 ⁇ m.
  • the circuit included in the surface W1 of the semiconductor wafer W can be formed by, for example, a conventionally used general-purpose method such as an etching method or a lift-off method.
  • the material of the support 3 may be appropriately selected in consideration of required characteristics such as mechanical strength and heat resistance according to the type of the object to be processed, the content of processing, and the like.
  • Examples of the material of the support 3 include metal materials such as SUS; non-metallic inorganic materials such as glass and silicon wafers; epoxy resin, ABS resin, acrylic resin, engineering plastic, super engineering plastic, polyimide resin, polyamideimide resin and the like.
  • Resin materials Composite materials such as glass epoxy resin are mentioned, and among these, SUS, glass, and silicon wafers are preferable.
  • the engineering plastic include nylon, polycarbonate (PC), polyethylene terephthalate (PET), and the like.
  • Examples of the super engineering plastic include polyphenylene sulfide (PPS), polyethersulfone (PES), and polyetheretherketone (PEEK).
  • the support 3 is preferably attached to the entire surface of the adhesive surface of the adhesive layer (X1). Therefore, the area of the surface of the support 3 on the side to be attached to the adhesive surface of the pressure-sensitive adhesive layer (X1) is preferably equal to or larger than the area of the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer (X1). Further, the surface of the support 3 on the side to be attached to the adhesive surface of the adhesive layer (X1) is preferably flat.
  • the shape of the support 3 is not particularly limited, but is preferably plate-shaped.
  • the thickness of the support 3 may be appropriately selected in consideration of the required characteristics, but is preferably 20 ⁇ m or more and 50 mm or less, and more preferably 60 ⁇ m or more and 20 mm or less.
  • Step 2A is a step of performing one or more processes selected from a grinding process and an individualizing process on the object to be processed.
  • One or more processes selected from the grinding process and the individualizing process include, for example, a grinding process using a grinder or the like; an individualizing process by a blade dicing method, a laser dicing method, a stealth dicing (registered trademark) method; a blade tip. Grinding process and individualization process by dicing method, stealth tip dicing method; etc. can be mentioned.
  • the individualization treatment by the stealth dicing method, the grinding treatment and the individualization treatment by the blade tip dicing method, the grinding treatment and the individualization treatment by the stealth tip dicing method are preferable, and the grinding treatment by the blade tip dicing method is preferable.
  • individualization treatment, grinding treatment by stealth tip dicing method and individualization treatment are more preferable.
  • the stealth dicing method is a method in which a modified region is formed inside a semiconductor wafer by irradiation with laser light, and the semiconductor wafer is individualized using the modified region as a division starting point.
  • the modified region formed on the semiconductor wafer is a portion that has been made brittle by multiphoton absorption, and the modified region is applied by applying stress in the direction in which the semiconductor wafer is parallel to the wafer surface and the wafer is expanded due to expansion.
  • the cracks extend toward the front surface and the back surface of the semiconductor wafer starting from the above, and are separated into semiconductor chips. That is, the modified region is formed along the dividing line when it is individualized.
  • the modified region is formed inside the semiconductor wafer by irradiation with a laser beam focused on the inside of the semiconductor wafer.
  • the incident surface of the laser beam may be the front surface or the back surface of the semiconductor wafer.
  • the laser light incident surface may be a surface to which the double-sided adhesive sheet is attached, in which case the laser light is applied to the semiconductor wafer via the double-sided adhesive sheet.
  • the blade tip dicing method is also called the DBG method (Dicing Before Grinding).
  • DBG method Diing Before Grinding
  • a groove is formed in the semiconductor wafer in advance along the line to be divided at a depth shallower than the thickness, and then the semiconductor wafer is back-ground to be thin until the ground surface reaches at least the groove. It is a method of individualizing while making it into individual pieces.
  • the groove reached by the ground surface becomes a notch penetrating the semiconductor wafer, and the semiconductor wafer is divided by the notch and separated into semiconductor chips.
  • the groove formed in advance is usually provided on the surface (circuit surface) of the semiconductor wafer, and can be formed by dicing using, for example, a conventionally known wafer dicing device provided with a dicing blade or the like.
  • the stealth dicing method is also called the SDBG method (Stealth Dicing Before Grinding). Similar to the stealth dicing method, the stealth dicing method is a type of method in which a modified region is formed inside the semiconductor wafer by irradiation with laser light, and the semiconductor wafer is individualized using the modified region as a division starting point. However, it differs from the stealth dicing method in that the semiconductor wafer is separated into semiconductor chips while thinning the semiconductor wafer by grinding. Specifically, while the semiconductor wafer having the modified region is back-ground to be thinned, the pressure applied to the semiconductor wafer at that time causes the modified region as a starting point toward the surface to be attached to the pressure-sensitive adhesive layer of the semiconductor wafer.
  • the cracks are extended and the semiconductor wafer is separated into semiconductor chips.
  • the grinding thickness after forming the modified region may be the thickness reaching the modified region, but even if it does not reach the modified region strictly, it is ground to a position close to the modified region. Then, it may be cut by the processing pressure of a grinding wheel or the like.
  • the semiconductor wafer W When the semiconductor wafer W is individualized by the blade tip dicing method, it is preferable to form a groove in advance on the surface W1 of the semiconductor wafer W to be attached to the pressure-sensitive adhesive layer (X2) in step 1A.
  • the semiconductor wafer W to be attached to the pressure-sensitive adhesive layer (X2) is irradiated with laser light in step 1A to form a modified region in advance.
  • the semiconductor wafer W attached to the pressure-sensitive adhesive layer (X2) may be irradiated with laser light to form a modified region.
  • FIG. 4 shows a cross-sectional view illustrating a step of forming a plurality of modified regions 5 on the semiconductor wafer W attached to the pressure-sensitive adhesive layer (X2) by using the laser light irradiation device 4.
  • the laser beam is irradiated from the back surface W2 side of the semiconductor wafer W, and a plurality of modified regions 5 are formed inside the semiconductor wafer W at substantially equal intervals.
  • FIG. 5 (a) and 5 (b) are cross-sectional views illustrating a process of thinning the semiconductor wafer W and separating it into a plurality of semiconductor chip CPs.
  • the back surface W2 of the semiconductor wafer W on which the modified region 5 is formed is ground by a grinder 6, and at that time, the pressure applied to the semiconductor wafer W causes splitting starting from the modified region 5.
  • FIG. 5B a plurality of semiconductor chip CPs in which the semiconductor wafer W is thinned and individualized can be obtained.
  • the back surface W2 of the semiconductor wafer W is ground in a state where the support 3 supporting the semiconductor wafer W is fixed on a fixed table such as a chuck table.
  • the thickness of the semiconductor chip CP after grinding is preferably 5 to 100 ⁇ m, more preferably 10 to 45 ⁇ m. Further, when the grinding process and the individualization process are performed by the stealth tip dicing method, the thickness of the semiconductor chip CP obtained by grinding can be easily set to 50 ⁇ m or less, more preferably 10 to 45 ⁇ m.
  • the size of the semiconductor chip CP after grinding in a plan view is preferably less than 600 mm 2 , more preferably less than 400 mm 2 , and even more preferably less than 300 mm 2 .
  • the plan view means to see in the thickness direction.
  • the shape of the semiconductor chip CP after being fragmented in a plan view may be a square shape or an elongated shape such as a rectangle.
  • the double-sided pressure-sensitive adhesive sheet used in the method for manufacturing the semiconductor device of the second aspect has an expansion start temperature (t) of the thermally expandable particles of 50 ° C. or higher, thermal expansion occurs due to a temperature rise such as when grinding is performed. It is possible to avoid a situation in which the sex particles unintentionally expand. Therefore, unintended separation and misalignment of the object to be processed are suppressed.
  • Step 3A The production method A preferably further includes the following step 3A.
  • Step 3A A step of attaching a thermosetting film to the surface of the processed object to be processed, which is opposite to the pressure-sensitive adhesive layer (X2).
  • the step 3A is an arbitrary step.
  • the mode may not include step 3A.
  • the expansion start temperature (t) of the heat-expandable particles contained in the double-sided pressure-sensitive adhesive sheet used in the production method A is preferably 50 ° C. or higher and lower than 125 ° C. This makes it possible to prevent the thermosetting film from being unintentionally cured when the first separation step described later is performed.
  • FIG. 6 illustrates a step of attaching a thermosetting film 7 provided with a support sheet 8 to a surface of a plurality of semiconductor chip CPs obtained by performing the above treatment on a surface opposite to the pressure-sensitive adhesive layer (X2). A cross-sectional view is shown.
  • the thermosetting film 7 is a film having thermosetting property obtained by forming a resin composition containing at least a thermosetting resin, and is used as an adhesive when mounting a semiconductor chip CP on a substrate.
  • the thermosetting film 7 may contain a curing agent for the thermosetting resin, a thermoplastic resin, an inorganic filler, a curing accelerator, and the like, if necessary.
  • a thermosetting film generally used as a die bonding film, a die attach film, or the like can be used as the thermosetting film 7, for example.
  • the thickness of the thermosetting film 7 is not particularly limited, but is usually 1 to 200 ⁇ m, preferably 3 to 100 ⁇ m, and more preferably 5 to 50 ⁇ m.
  • the support sheet 8 may be any as long as it can support the thermosetting film 7.
  • the resin, metal listed as the non-thermally expandable base material layer (Y2) contained in the double-sided pressure-sensitive adhesive sheet of one aspect of the present invention.
  • Examples include paper materials.
  • Examples of the method of attaching the thermosetting film 7 to a plurality of semiconductor chip CPs include a method of laminating. Lamination may be performed while heating or may be performed without heating.
  • the heating temperature is preferably "a temperature lower than the expansion start temperature (t)" from the viewpoint of suppressing the expansion of the heat-expandable particles and suppressing the thermal change of the adherend. It is preferably "expansion start temperature (t) -5 ° C.” or less, more preferably “expansion start temperature (t) -10 ° C.” or less, and even more preferably “expansion start temperature (t) -15 ° C.” or less.
  • the first separation step is a step of heating the double-sided pressure-sensitive adhesive sheet to the expansion start temperature (t) or higher to separate the pressure-sensitive adhesive layer (X1) from the support.
  • FIG. 7 shows a cross-sectional view illustrating a step of heating the double-sided pressure-sensitive adhesive sheet 1a to separate the pressure-sensitive adhesive layer (X1) and the support 3.
  • the heating temperature in the first separation step is equal to or higher than the expansion start temperature (t) of the thermally expandable particles, preferably "a temperature higher than the expansion start temperature (t)", and more preferably “expansion start temperature (t) + 2 ° C.” , More preferably “expansion start temperature (t) + 4 ° C.” or higher, and even more preferably “expansion start temperature (t) + 5 ° C.” or higher.
  • the heating temperature in the first separation step is preferably "expansion start temperature (t) + 50 ° C.” or less in the range of less than 125 ° C. from the viewpoint of energy saving and suppressing the thermal change of the adherend at the time of heat peeling.
  • the heating temperature in the first separation step is preferably less than 125 ° C., more preferably 120 ° C. or lower, still more preferably 120 ° C. or lower within the range of the expansion start temperature (t) or higher. It is 115 ° C. or lower, more preferably 110 ° C. or lower, and even more preferably 105 ° C. or lower. In particular, when the heating temperature in the first separation step is less than 125 ° C., it is possible to prevent the thermosetting film from being unintentionally cured when the above-mentioned step 3A is performed.
  • the second separation step is a step of curing the pressure-sensitive adhesive layer (X2) by irradiating the pressure-sensitive adhesive layer (X2) with energy rays to separate the pressure-sensitive adhesive layer (X2) from the object to be processed. Is.
  • the adhesive force of the pressure-sensitive adhesive layer (X2) is sufficiently reduced by the energy ray irradiation from the heat-expandable layer side, the energy ray irradiation of the pressure-sensitive adhesive layer (X2) in the second separation step is heat-expandable. It can be done from the layer side.
  • the pressure-sensitive adhesive layer (X2) is cured by irradiating energy rays 9 in the thickness direction of the double-sided pressure-sensitive adhesive sheet 1a from the side of the heat-expandable base material layer (Y1), which is a heat-expandable layer.
  • a cross-sectional view illustrating a step of separating the pressure-sensitive adhesive layer (X2) and the plurality of semiconductor chip CPs is shown.
  • the conditions for irradiating the energy rays are not particularly limited, and the conditions under which the formed pressure-sensitive adhesive layer (X2) is cured and the adhesive strength is sufficiently reduced may be appropriately selected.
  • the total light transmittance of the double-sided pressure-sensitive adhesive sheet is high even after thermal expansion, so that the energy ray irradiation amount for curing the energy ray-curable pressure-sensitive adhesive layer is increased. It can be kept low. As a result, deterioration such as thermal change of the adherend can be suppressed.
  • thermosetting film 7 a plurality of semiconductor chip CPs attached on the thermosetting film 7 can be obtained.
  • a method for dividing the thermosetting film 7 for example, a method such as laser dicing with laser light, expanding, and fusing can be applied.
  • FIG. 9 shows a semiconductor chip CP with a thermosetting film 7 divided into the same shape as the semiconductor chip CP.
  • the semiconductor chip CP with the thermosetting film 7 further includes an expanding step of widening the distance between the semiconductor chip CPs, a rearrangement step of arranging a plurality of semiconductor chip CPs having a wide distance, and a plurality of semiconductor chip CPs. After an appropriate inversion step of inverting the front and back of the above, the thermosetting film 7 is attached (diatachd) to the substrate from the side. After that, the semiconductor chip and the substrate can be fixed by thermosetting the thermosetting film.
  • the method for manufacturing the semiconductor device of the second aspect may be a manufacturing method including the following steps 1B to 2B, the following first separation step, and the following second separation step (hereinafter, also referred to as “manufacturing method B”).
  • Step 1B A process of attaching the object to be processed to the adhesive layer (X1) of the double-sided adhesive sheet, and attaching a support to the adhesive layer (X2) of the double-sided adhesive sheet
  • Step 2B To the object to be processed A step of performing one or more treatments selected from a grinding treatment and an individualization treatment.
  • First separation step The double-sided adhesive sheet is heated to an expansion start temperature (t) or more and less than 125 ° C. to obtain an adhesive layer.
  • Step of separating (X1) and the object to be processed Second separation step:
  • the pressure-sensitive adhesive layer (X2) is cured by irradiating the pressure-sensitive adhesive layer (X2) with energy rays to cure the pressure-sensitive adhesive layer (X2).
  • the production method B preferably further includes the following step 3B.
  • Step 3B A step of attaching a thermosetting film to the surface of the processed object to be processed, which is opposite to the pressure-sensitive adhesive layer (X1).
  • step 3B is an arbitrary step.
  • the mode may not include step 3B.
  • the expansion start temperature (t) of the heat-expandable particles contained in the double-sided pressure-sensitive adhesive sheet used in the production method B is preferably 50 ° C. or higher and lower than 125 ° C. As a result, it is possible to prevent the thermosetting film from being unintentionally cured when the first separation step described later is performed.
  • Steps 1B to 3B are described by replacing the pressure-sensitive adhesive layer (X1) with the pressure-sensitive adhesive layer (X2) and the pressure-sensitive adhesive layer (X2) with the pressure-sensitive adhesive layer (X1) in the description of steps 1A to 3A. ..
  • the first separation step is a step of heating the double-sided pressure-sensitive adhesive sheet to the expansion start temperature (t) or higher to separate the pressure-sensitive adhesive layer (X1) from the object to be processed.
  • the heating conditions such as the heating temperature of the double-sided pressure-sensitive adhesive sheet in the first separation step are the same as those described in the manufacturing method A.
  • the first separation step is a step of heating the double-sided pressure-sensitive adhesive sheet to an expansion start temperature (t) or more and less than 125 ° C. to separate the pressure-sensitive adhesive layer (X1) from the object to be processed. It is preferable to have.
  • the first separation step a plurality of semiconductor chips attached on the thermosetting film are obtained.
  • the thermosetting film is divided to obtain a semiconductor chip with a thermosetting film.
  • the second separation step is a step of curing the pressure-sensitive adhesive layer (X2) by irradiating the pressure-sensitive adhesive layer (X2) with energy rays to separate the pressure-sensitive adhesive layer (X2) from the support.
  • the energy ray irradiation of the pressure-sensitive adhesive layer (X2) in the second separation step is heat-expandable. It can be done from the layer side.
  • the energy ray irradiation conditions the conditions under which the pressure-sensitive adhesive layer (X2) is cured and the adhesive strength is lowered may be appropriately selected.
  • FIGS. 3 to 9 show an example in which the double-sided adhesive sheet 1a of the first aspect is used
  • the manufacturing method A and the manufacturing method B also show the case of using the double-sided adhesive sheet 2a of the second aspect. It is explained in the same way.
  • the method for manufacturing a semiconductor device of the present invention is not limited to the method for manufacturing the semiconductor device according to the first and second aspects described above, and the manufacturing of the semiconductor device according to the first aspect and the second aspect is different from the first aspect and the second aspect. It may be a method.
  • a method of separating a work object attached to another sheet from the other sheet by using the double-sided adhesive sheet of one aspect of the present invention can be mentioned.
  • a plurality of semiconductor chips whose intervals are widened on the expanding tape are attached to the adhesive surface of the expanding tape, but the work of picking up these chips one by one is complicated.
  • the pressure-sensitive adhesive layer (X1) of the double-sided pressure-sensitive adhesive sheet according to one aspect of the present invention is attached to the exposed surface of a plurality of semiconductor chips attached on the expanding tape.
  • the plurality of semiconductor chips can be separated from the expanding tape at once.
  • the support is attached to the pressure-sensitive adhesive layer (X2)
  • the pressure-sensitive adhesive layer (X2) is cured by irradiating the pressure-sensitive adhesive layer (X2) with energy rays from the heat-expandable layer side.
  • the pressure-sensitive adhesive layer (X2) and the support can be easily separated.
  • the plurality of separated semiconductor chips may be transferred to another double-sided pressure-sensitive adhesive sheet, or may be subjected to a rearrangement step of aligning the plurality of semiconductor chips after being separated once.
  • ⁇ Adhesive resin> -Acrylic copolymer (A1): n-butyl acrylate (BA) / methyl methacrylate (MMA) / acrylic acid (AA) / 2-hydroxyethyl acrylate (HEA) 86/8/1/5 (mass ratio)
  • 2-Methacryloyloxyethyl isocyanate (MOI) was reacted with an acrylic copolymer having a unit so that the addition rate with respect to all the hydroxyl groups in the acrylic copolymer was 90% based on the number of moles.
  • ⁇ Crosslinking agent> -Isocyanate-based cross-linking agent (i): manufactured by Tosoh Corporation, product name "Coronate HX”, isocyanurate-type modified hexamethylene diisocyanate, solid content concentration: 100% by mass -Isocyanate-based cross-linking agent (ii): manufactured by Tosoh Corporation, product name "Coronate L”, solution containing trimethylolpropane-modified tolylene diisocyanate, solid content concentration: 75% by mass
  • Photopolymerization initiator > -Photopolymerization initiator (i): Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide-Photopolymerization initiator (ii): 1-hydroxycyclohexylphenyl ketone
  • Adhesive Layer (X1) An isocyanate-based cross-linking agent (i) 0.74 parts by mass (solid content ratio) is blended with 100 parts by mass of the solid content of the acrylic copolymer (A1), and toluene is used.
  • the pressure-sensitive adhesive composition (x-1) having a solid content concentration (active ingredient concentration) of 25% by mass was prepared by diluting with and uniformly stirring. Then, the prepared pressure-sensitive adhesive composition (x-1) is applied onto the peeling surface of the heavy-release film to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds to adhere to a thickness of 5 ⁇ m.
  • An agent layer (X1) was formed.
  • Adhesive Layer (X2) In addition to 100 parts by mass of the solid content of the acrylic copolymer (A2), 12 parts by mass (solid content ratio) of the energy ray-curable compound (i), an isocyanate-based cross-linking agent ( ii) Add 1.1 parts by mass (solid content ratio) and photopolymerization initiator (i) 1 part by mass (solid content ratio), dilute with toluene, stir uniformly, and solid content concentration (active ingredient concentration). ) 30% by mass of the pressure-sensitive adhesive composition (x-2) was prepared. Then, the prepared pressure-sensitive adhesive composition (x-2) is applied onto the peeling surface of the light release film to form a coating film, and the coating film is dried at 100 ° C. for 60 seconds to adhere to a thickness of 20 ⁇ m. An agent layer (X2) was formed.
  • Examples 1 to 4 Comparative Examples 1 to 2: Formation of double-sided pressure-sensitive adhesive sheet (1) Preparation of solvent-free resin composition (y-1a) Obtained by reacting an ester-type diol with isophorone diisocyanate (IPDI). 2-Hydroxyethyl acrylate was reacted with the terminal isocyanate urethane prepolymer to obtain a linear urethane prepolymer having ethylenically unsaturated groups at both ends, which is an oligomer having a mass average molecular weight (Mw) of 5,000.
  • Mw mass average molecular weight
  • the solvent-free resin composition (y-1a) is applied to one side of the PET film so that the thickness of the heat-expandable base material layer (Y1) to be formed becomes the thickness shown in Table 1.
  • a coating film is formed using an ultraviolet irradiation device (manufactured by Eye Graphics Co., Ltd., product name "ECS-401GX”) and a high-pressure mercury lamp (manufactured by Eye Graphics Co., Ltd., product name "H04-L41”), an illuminance of 160 mW / cm 2
  • the coating film is cured by irradiating ultraviolet rays under the condition of a light amount of 500 mJ / cm 2 , and the thermally expandable substrate layer (Y1) having the thickness shown in Table 1 is a non-thermally expandable substrate layer (Y2).
  • a base material laminate formed on the PET film as a base material was obtained.
  • the above-mentioned illuminance and light amount at the time of ultraviolet irradiation are values measured using an illuminance / light amount meter (manufactured by EIT, product name "UV Power Pack II"). Further, in order to measure the total light transmittance at a wavelength of 380nm in the case where the resin material forming the thermally expandable base material layer (Y1) and a thickness of 100 ⁇ m to (T R), the other does not contain only heat-expanding particles A solvent-free resin composition was prepared in which all the materials of the above were the same as those of the solvent-free resin composition (y-1a).
  • the solvent-free resin composition is applied to the release agent layer side of the light release film so that the thickness after curing is 100 ⁇ m, and is cured by irradiating with ultraviolet rays under the same conditions as above to release the heavy release film.
  • the agent layer side was bonded to protect the surface to obtain a resin material laminate.
  • the light release film and the heavy release film were removed to obtain a resin material molded into a sheet having a thickness of 100 ⁇ m.
  • the total light transmittance measuring laminate prepared in the same manner as described above the (L B), so that the glass plate is on the side in contact with the hot plate, the side where the double-sided pressure-sensitive adhesive sheet does not contact the hot plate Hot It was placed on a plate and heated at 110 ° C. (that is, the temperature of 88 ° C. + 22 ° C., which is the expansion start temperature (t) of the heat-expandable particles) for 1 minute.
  • the heavy release film is removed from the adhesive layer (X1), and the silicon mirror wafer is hot so that it is on the side that comes into contact with the hot plate, and the exposed adhesive layer (X1) is on the side that does not come into contact with the hot plate.
  • a sample placed on a plate and heated at 110 ° C. for 1 minute was allowed to stand for 30 minutes in an environment of 23 ° C. and 50% RH (relative humidity) to prepare an adhesive strength measurement sample before irradiation with energy rays.
  • Adhesive Strength Measurement Sample after Energy Ray Irradiation With respect to the adhesive strength measurement sample prepared by the same method as in (1) above, from the adhesive layer (X1) side, the thickness direction of the double-sided adhesive sheet (that is, , Adhesive layer (X2) direction), UV irradiation device (manufactured by Eye Graphics Co., Ltd., product name "ECS-401GX”) and high-pressure mercury lamp (manufactured by Eye Graphics Co., Ltd., product name "H04-L41”)
  • the adhesive layer (X2) was cured by irradiating it with ultraviolet rays under the conditions of an illuminance of 230 mW / cm 2 and a light intensity of 90 mJ / cm 2, and used as a sample for measuring the adhesive strength after energy ray irradiation.
  • the above-mentioned illuminance and light amount at the time of ultraviolet irradiation are values measured using an illuminance / light amount meter (manufactured by EIT, product name "UV Power Pack II”).
  • (3) Measurement of adhesive strength and calculation of adhesive strength reduction rate Measure the adhesive strength measurement sample before energy ray irradiation prepared in (1) above and the adhesive strength measurement sample after energy ray irradiation prepared in (2) above.
  • RH relative humidity
  • Adhesive force reduction rate (%) ⁇ (Adhesive force before energy ray irradiation-Adhesive force after energy ray irradiation) / Adhesive force before energy ray irradiation ⁇ x 100 The evaluation results are shown in Table 1.
  • the double-sided pressure-sensitive adhesive sheets of Examples 1 to 4 because the total light transmittance (T A) is 20% or more, adhesive strength of the pressure-sensitive adhesive layer in the double-sided pressure-sensitive adhesive sheet after thermal expansion (X2) is, It can be seen that it is greatly reduced by the energy ray irradiation from the heat-expandable layer side.
  • double-sided pressure-sensitive adhesive sheets of Comparative Examples 1 and 2 since the total light transmittance (T A) is less than 20%, the adhesive force of the adhesive layer in the double-sided pressure-sensitive adhesive sheet after thermal expansion (X2) is , It can be seen that it is not sufficiently reduced by irradiation with energy rays.

Landscapes

  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有する両面粘着シートであって、前記粘着剤層(X1)及び前記基材層(Y)の少なくともいずれかが、熱膨張性粒子を含有する熱膨張性層であり、前記粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、前記両面粘着シートの粘着剤層(X2)にソーダライムガラスからなる厚さ1.1mmのガラス板を積層してなる積層体を、前記熱膨張性粒子の膨張開始温度(t)+22℃の温度で1分間加熱してなる全光線透過率測定用積層体(L)の、厚さ方向における波長380nmの全光線透過率(T)が、20%以上である、両面粘着シート及び当該両面粘着シートを用いる半導体装置の製造方法に関する。

Description

両面粘着シート及び半導体装置の製造方法
 本発明は、両面粘着シート及び該両面粘着シートを用いた半導体装置の製造方法に関する。
 粘着シートは、部材を半永久的に固定する用途だけでなく、建材、内装材、及び電子部品等を加工したり検査したりする際に、加工、検査等の対象となる部材(以下、「被着体」ともいう)を仮固定するための仮固定用シートとして使用される場合がある。例えば、半導体装置の製造過程では、半導体ウエハを加工する際に仮固定用シートが用いられている。
 半導体装置の製造過程において、半導体ウエハは、研削によって厚さを薄くする研削工程、切断分離して個片化する個片化工程等を経て、半導体チップに加工される。このとき、半導体ウエハは、仮固定用シートに仮固定された状態で所定の加工が施される。所定の加工を施して得られた半導体チップは、仮固定用シートから分離された後、必要に応じて、半導体チップ同士の間隔を広げるエキスパンド工程、間隔を広げた複数の半導体チップを配列させる再配列工程、半導体チップの表裏を反転させる反転工程等が適宜施された後、基板に実装される。上記各工程においても、それぞれの用途に適した仮固定用シートを使用することができる。
 特許文献1には、基材の少なくとも片面に、熱膨張性微小球を含有する熱膨張性粘着層が設けられた、電子部品切断時の仮固定用の加熱剥離型粘着シートが開示されている。同文献には、該加熱剥離型粘着シートは、電子部品切断時には、被着体に対して所定の大きさの接触面積を確保できるため、チップ飛び等の接着不具合を防止し得る接着性を発揮できる一方で、使用後には、加熱して熱膨張性微小球を膨張させれば、被着体との接触面積を減少させることで、容易に剥離することができる旨の記載がある。
特許第3594853号公報
 仮固定用シートを加工対象物の加工に利用する際、一方の面に加工対象物を貼付し、他方の面を支持体に貼付した状態で所定の加工を施すことがある。この場合、仮固定用シートとしては、両面に粘着剤層を有する両面粘着シートが用いられる。
 仮固定用シートとして両面粘着シートを用いる場合、一方の面の粘着剤層と、他方の面の粘着剤層とで、粘着力を低下させる作用機構を異なるものにすることで、いずれか一方の粘着剤層の粘着力を低下させる処理を行う際に、意図せず他方の粘着剤層の粘着力まで低下させてしまうことを回避することができる。
 本発明者等は、上記の利点に着目し、一方の面の粘着剤層を、熱膨張の作用を利用して粘着力が低下するものとし、他方の面の粘着剤層を、エネルギー線を照射することにより硬化して粘着力が低下するエネルギー線硬化性粘着剤層とした両面粘着シートが、半導体装置の製造プロセス等に好適であることを見出した。
 ところで、エネルギー線硬化性粘着剤層に、光線透過性を有さない又は光線透過性が低い被着体が貼付されている場合、エネルギー線硬化性粘着剤層を硬化させるためのエネルギー線は、エネルギー線硬化性粘着剤層とは反対側(すなわち、熱膨張性層側)から照射する必要がある。一方、適用するプロセスによっては、熱膨張性層を熱膨張させた後に、エネルギー線硬化性粘着剤層と被着体とを分離させる必要が生じる。しかし、熱膨張性層を熱膨張させた後の両面粘着シートは、熱膨張性粒子の膨張により全光線透過率が低下しているため、熱膨張性層側から照射したエネルギー線が、エネルギー線硬化性粘着剤層に到達し難くなる。そのため、エネルギー線硬化性粘着剤層の硬化が不十分となり、粘着力が十分に低下しないという問題があった。
 本発明は、上記問題点に鑑みてなされたものであって、熱膨張性層とエネルギー線硬化性粘着剤層とを有する両面粘着シートであって、熱膨張性層を熱膨張させた後であっても、熱膨張性層側からのエネルギー線照射によって、エネルギー線硬化性粘着剤層の粘着力を十分に低下させることができる両面粘着シート及び当該両面粘着シートを用いる半導体装置の製造方法を提供することを目的とする。
 本発明者等は、熱膨張後の両面粘着シートの全光線透過率に注目し、特定条件で測定した全光線透過率を特定範囲に調整することによって、上記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記[1]~[15]に関する。
[1]粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有する両面粘着シートであって、
 前記粘着剤層(X1)及び前記基材層(Y)の少なくともいずれかが、熱膨張性粒子を含有する熱膨張性層であり、
 前記粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、
 前記両面粘着シートの粘着剤層(X2)にソーダライムガラスからなる厚さ1.1mmのガラス板を積層してなる積層体を、前記熱膨張性粒子の膨張開始温度(t)+22℃の温度で1分間加熱してなる全光線透過率測定用積層体(L)の、厚さ方向における波長380nmの全光線透過率(T)が、20%以上である、両面粘着シート。
[2]前記熱膨張性層の、熱膨張前における厚さが、10~200μmである、上記[1]に記載の両面粘着シート。
[3]前記熱膨張性層中における前記熱膨張性粒子の含有量が、前記熱膨張性層の全質量(100質量%)に対して、1~25質量%である、上記[1]又は[2]に記載の両面粘着シート。
[4]前記熱膨張性粒子の膨張開始温度(t)が、50℃以上125℃未満である、上記[1]~[3]のいずれかに記載の両面粘着シート。
[5]前記熱膨張をさせる前の両面粘着シート全体の厚さが、90~300μmである、上記[1]~[4]のいずれかに記載の両面粘着シート。
[6]前記熱膨張をさせる前の両面粘着シートの粘着剤層(X2)に、ソーダライムガラスからなる厚さ1.1mmのガラス板を積層してなる全光線透過率測定用積層体(L)の、厚さ方向における波長380nmの全光線透過率(T)が、50%以上である、上記[1]~[5]のいずれかに記載の両面粘着シート。
[7]前記エネルギー線硬化性粘着剤層が、紫外線を照射することにより硬化して粘着力が低下する粘着剤層である、上記[1]~[6]のいずれかに記載の両面粘着シート。
[8]前記基材層(Y)が、熱膨張性粒子を含有する熱膨張性基材層(Y1)と非熱膨張性基材層(Y2)とが積層された基材積層体であり、前記粘着剤層(X1)と、前記熱膨張性基材層(Y1)と、前記非熱膨張性基材層(Y2)と、前記粘着剤層(X2)とを、この順で有する、上記[1]~[7]のいずれかに記載の両面粘着シート。
[9]前記熱膨張性基材層(Y1)が、樹脂材料中に前記熱膨張性粒子を含有してなるものであり、
 前記樹脂材料を厚さ100μmとした場合における波長380nmの全光線透過率(T)が、60%以上である、上記[8]に記載の両面粘着シート。
[10]前記粘着剤層(X1)、前記熱膨張性基材層(Y1)、前記非熱膨張性基材層(Y2)及び前記粘着剤層(X2)の合計厚さが、90~300μmである、上記[8]又は[9]に記載の両面粘着シート。
[11]上記[1]~[10]のいずれかに記載の両面粘着シートを用い、下記工程1A、工程2A、第一分離工程及び第二分離工程を含む半導体装置の製造方法。
 工程1A:前記両面粘着シートが有する粘着剤層(X2)に加工対象物を貼付し、前記両面粘着シートが有する粘着剤層(X1)に支持体を貼付する工程
 工程2A:前記加工対象物に対して、研削処理及び個片化処理から選択される1以上の処理を施す工程
 第一分離工程:前記両面粘着シートを前記膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記支持体とを分離する工程
 第二分離工程:前記粘着剤層(X2)にエネルギー線を照射することにより前記粘着剤層(X2)を硬化させて、前記粘着剤層(X2)と前記加工対象物とを分離する工程
[12]前記熱膨張性粒子の膨張開始温度(t)が50℃以上125℃未満であり、
 前記工程2Aの後に、前記処理を施した加工対象物の、粘着剤層(X2)とは反対側の面に、熱硬化性を有する熱硬化性フィルムを貼付する工程3Aを含み、
 前記第一分離工程が、前記両面粘着シートを膨張開始温度(t)以上125℃未満に加熱して、前記粘着剤層(X1)と前記支持体とを分離する工程である、
 上記[11]に記載の半導体装置の製造方法。
[13]上記[1]~[10]のいずれかに記載の両面粘着シートを用い、下記工程1B、工程2B、第一分離工程及び第二分離工程を含む半導体装置の製造方法。
 工程1B:前記両面粘着シートが有する粘着剤層(X1)に加工対象物を貼付し、前記両面粘着シートが有する粘着剤層(X2)に支持体を貼付する工程
 工程2B:前記加工対象物に対して、研削処理及び個片化処理から選択される1以上の処理を施す工程
 第一分離工程:前記両面粘着シートを前記膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記加工対象物とを分離する工程
 第二分離工程:前記粘着剤層(X2)にエネルギー線を照射することにより前記粘着剤層(X2)を硬化させて、前記粘着剤層(X2)と前記支持体とを分離する工程
[14]前記熱膨張性粒子の膨張開始温度(t)が50℃以上125℃未満であり、
 前記工程2Bの後に、前記処理を施した加工対象物の、粘着剤層(X1)とは反対側の面に、熱硬化性を有する熱硬化性フィルムを貼付する工程3Bを含み、
 前記第一分離工程が、前記両面粘着シートを膨張開始温度(t)以上125℃未満に加熱して、前記粘着剤層(X1)と前記加工対象物とを分離する工程である、
 上記[13]に記載の半導体装置の製造方法。
[15]上記[1]~[10]のいずれかに記載の両面粘着シートの一方又は両方の面に剥離材を有する、剥離材付き両面粘着シート。
 本発明によると、熱膨張性層とエネルギー線硬化性粘着剤層とを有する両面粘着シートであって、熱膨張性層を熱膨張させた後であっても、熱膨張性層側からのエネルギー線照射によって、エネルギー線硬化性粘着剤層の粘着力を十分に低下させることができる両面粘着シート及び当該両面粘着シートを用いる半導体装置の製造方法を提供することができる。
本発明の両面粘着シートの構成の一例を示す断面図である。 本発明の両面粘着シートの構成の別の例を示す断面図である。 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。 本発明の半導体装置の製造方法の工程の一例を説明する、断面図である。
 本明細書において、「有効成分」とは、対象となる組成物に含有される成分のうち、希釈溶剤を除いた成分を指す。
 また、本明細書において、質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法に基づいて測定した値である。
 本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。
 また、本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
 本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味し、その例として、紫外線、放射線、電子線等が挙げられる。紫外線は、例えば、紫外線源として無電極ランプ、高圧水銀ランプ、メタルハライドランプ、UV-LED等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 本明細書において、「エネルギー線重合性」とは、エネルギー線を照射することにより重合する性質を意味する。また、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味する。
 本明細書において、「層」が「非熱膨張性層」であるか「熱膨張性層」であるかは、以下のように判断する。
 判断の対象となる層が熱膨張性粒子を含有する場合、当該層を熱膨張性粒子の膨張開始温度(t)で、3分間加熱処理する。下記式から算出される体積変化率が5%未満である場合、当該層は「非熱膨張性層」であると判断し、5%以上である場合、当該層は「熱膨張性層」であると判断する。
・体積変化率(%)={(加熱処理後の前記層の体積-加熱処理前の前記層の体積)/加熱処理前の前記層の体積}×100
 なお、熱膨張性粒子を含有しない層は「非熱膨張性層」であるとする。
 本明細書において、半導体ウエハ及び半導体チップの「表面」とは回路が形成された面(以下、「回路面」ともいう)を指し、半導体ウエハ及び半導体チップの「裏面」とは回路が形成されていない面を指す。
 本明細書において、各層の厚さは、23℃における厚さであり、実施例に記載の方法により測定された値を意味する。
 本明細書において、各層の粘着力は、シリコンミラーウエハのミラー面に対する粘着力を意味し、23℃、50%RH(相対湿度)の環境下で、JIS Z0237:2000に基づき、180°引き剥がし法により、引っ張り速度300mm/minにて測定される粘着力を意味する。
 本明細書において、全光線透過率とは、紫外可視分光法により透過スペクトルを測定することで得られる値であり、具体的には後述する実施例に示す方法によって測定される値を意味する。
[両面粘着シート]
 本発明の一態様の両面粘着シートは、
 粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有する両面粘着シートであって、
 前記粘着剤層(X1)及び前記基材層(Y)の少なくともいずれかが、熱膨張性粒子を含有する熱膨張性層であり、
 前記粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、
 前記両面粘着シートの粘着剤層(X2)にソーダライムガラスからなる厚さ1.1mmのガラス板を積層してなる積層体を、前記熱膨張性粒子の膨張開始温度(t)+22℃の温度で1分間加熱してなる全光線透過率測定用積層体(L)の、厚さ方向における波長380nmの全光線透過率(T)が、20%以上である。
 本発明の一態様の両面粘着シートは、粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有する両面粘着シートの積層構造を有するものである。
 当該構成を有することで、粘着剤層(X1)又は粘着剤層(X2)のいずれか一方の粘着剤層に被着体を貼付し、いずれか他方の粘着剤層に支持体を貼付することができる。被着体が両面粘着シートを介して支持体に固定されることによって、被着体に対して加工及び検査から選択される1以上を施す際に、被着体の振動、位置ズレ、及び被着体が脆弱である場合の破損等を抑制し、加工精度及び加工速度並びに検査精度及び検査速度を向上させることができる。
 本発明の一態様の両面粘着シートは、粘着剤層(X1)及び基材層(Y)の少なくともいずれかである熱膨張性層に含まれる熱膨張性粒子を、膨張開始温度(t)以上の温度に加熱して膨張させることにより、粘着剤層(X1)の粘着表面に凹凸を形成させ、粘着剤層(X1)の粘着表面に貼付されている被着体と当該粘着表面との接触面積を大きく低下させるものである。これにより、粘着剤層(X1)の粘着表面と被着体との密着性を著しく低下させることができ、両面粘着シートと被着体とを容易に分離することができる。
 さらに、本発明の一態様の両面粘着シートは、熱膨張性層を熱膨張させた後であっても、熱膨張性層側からのエネルギー線照射によって、粘着剤層(X2)であるエネルギー線硬化性粘着剤層の粘着力を十分に低下させることができる。そのため、熱膨張性層を熱膨張させた後、エネルギー線硬化性粘着剤層に光線透過性を有さない又は光線透過性が極めて低い被着体が貼付されている場合であっても、エネルギー線照射によって該被着体を容易に分離することができる。
<両面粘着シートの構成>
 本発明の一態様の両面粘着シートは、粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有するものであればよく、粘着剤層(X1)、基材層(Y)及び粘着剤層(X2)のみを有していてもよいし、必要に応じて、他の層を有していてもよい。但し、本発明の一態様の両面粘着シートの一方の表面は粘着剤層(X1)の粘着表面であり、本発明の一態様の両面粘着シートの他方の表面は粘着剤層(X2)の粘着表面である。
 本発明の一態様の両面粘着シートは、粘着剤層(X1)及び粘着剤層(X2)の少なくともいずれか一方の粘着表面上に剥離材を有していてもよいが、剥離材を有するものは、後述する「剥離材付き両面粘着シート」に分類される。
 本発明の一態様の両面粘着シートにおいては、粘着剤層(X1)及び基材層(Y)の少なくともいずれかが、熱膨張性粒子を含有する熱膨張性層であればよい。
 基材層(Y)が熱膨張性粒子を含有する熱膨張性層である場合の両面粘着シートとしては、基材層(Y)が、熱膨張性粒子を含有する熱膨張性基材層(Y1)と非熱膨張性基材層(Y2)とが積層された基材積層体であり、粘着剤層(X1)と、熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)と、粘着剤層(X2)とを、この順で有する両面粘着シートが挙げられる。以下、当該構成を有する両面粘着シートを「第1の態様の両面粘着シート」と称する場合がある。
 また、本発明の一態様の両面粘着シートにおいて、粘着剤層(X1)が熱膨張性粒子を含有する熱膨張性層である場合の両面粘着シートとしては、熱膨張性層である粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有する両面粘着シートが挙げられる。以下、当該構成を有する両面粘着シートを「第2の態様の両面粘着シート」と称する場合がある。
 次に、図面を参照しながら、本発明の一態様の両面粘着シートの構成について、より具体的に説明する。
 本発明の第1の態様の両面粘着シートとしては、例えば、図1(a)に示される、粘着剤層(X1)と、熱膨張性層基材層(Y1)と、非熱膨張性基材層(Y2)と、粘着剤層(X2)とを、この順で有する両面粘着シート1aが挙げられる。
 第1の態様の両面粘着シートは、粘着剤層(X1)と熱膨張性基材層(Y1)との間、熱膨張性基材層(Y1)と非熱膨張性基材層(Y2)との間、及び非熱膨張性基材層(Y2)と粘着剤層(X2)との間の少なくともいずれかの層間に、他の層を有していてもよく、他の層を有していなくてもよい。
 但し、第1の態様の両面粘着シートは、熱膨張性粒子の膨張による熱膨張性基材層(Y1)の変形を、粘着剤層(X1)に良好に伝える観点から、粘着剤層(X1)と熱膨張性基材層(Y1)とが直接積層されていることが好ましい。
 本発明の第2の態様の両面粘着シートとしては、例えば、図1(b)に示される、熱膨張性層である粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有する両面粘着シート2aが挙げられる。
 第2の態様の両面粘着シートは、粘着剤層(X1)と基材層(Y)との間及び基材層(Y)と粘着剤層(X2)との間の少なくともいずれかの層間に、他の層を有していてもよく、他の層を有していなくてもよい。
<全光線透過率>
 本発明の一態様の両面粘着シートの粘着剤層(X2)にソーダライムガラスからなる厚さ1.1mmのガラス板を積層してなる積層体を、前記熱膨張性粒子の膨張開始温度(t)+22℃の温度で1分間加熱してなる全光線透過率測定用積層体(L)の、厚さ方向における波長380nmの全光線透過率(T)は、20%以上である。
 なお、以下の説明において、単に「全光線透過率(T)」と記載する場合は、上記条件で測定された全光線透過率測定用積層体(L)の全光線透過率(T)を意味するものとする。
 全光線透過率(T)が20%以上であることによって、熱膨張性層を熱膨張させた後であっても、熱膨張性層側からのエネルギー線照射によって、エネルギー線硬化性粘着剤層の粘着力を十分に低下させることができる。また、エネルギー線硬化性粘着剤層を硬化させるためのエネルギー線照射量を低く抑えることができ、エネルギー線に起因する発熱を抑制して被着体が熱変化することを抑制することができる。
 一方、全光線透過率(T)が20%未満であると、熱膨張性層を熱膨張させた後に熱膨張性層側からエネルギー線照射する場合、エネルギー線がエネルギー線硬化性粘着剤層まで到達し難くなり、エネルギー線硬化性粘着剤層の粘着力が十分に低下しないことがある。また、十分に粘着力を低下させるためのエネルギー線照射量が多くなり、生産性が悪化すると共に、エネルギー線に起因する発熱によって被着体が熱変化する場合がある。
 本明細書において、全光線透過率(T)は、後述する実施例に記載の方法により測定されるものである。
 全光線透過率(T)は、熱膨張後であってもエネルギー線硬化性粘着剤層の粘着力を十分に低下させるという観点から、20%以上であり、好ましくは21%以上、より好ましくは22%以上である。また、全光線透過率(T)の上限値に特に制限はなく、100%以下であってもよいが、粘着剤層(X1)の易剥離性、両面粘着シートの強度等の他の性能とのバランスを良好に保つという観点から、好ましくは80%以下、より好ましくは70%以下、更に好ましくは60%以下である。また、上記と同様の観点から、全光線透過率(T)は、45%以下であってもよく、35%以下であってもよく、30%以下であってもよい。
 また、熱膨張をさせる前の両面粘着シートの粘着剤層(X2)に、ソーダライムガラスからなる厚さ1.1mmのガラス板を積層してなる全光線透過率測定用積層体(L)の、厚さ方向における波長380nmの全光線透過率(T)は、50%以上であることが好ましい。
 なお、以下の説明において、単に「全光線透過率(T)」と記載する場合は、上記条件で測定された全光線透過率測定用積層体(L)の全光線透過率(T)を意味するものとする。
 本発明の一態様の両面粘着シートは、全光線透過率(T)が50%以上であることによって、全光線透過率(T)を上記の範囲に調整し易くなる。
 同様の観点から、全光線透過率(T)は、より好ましくは52%以上、更に好ましくは54%以上である。全光線透過率(T)の上限値に特に制限はなく、100%以下であってもよいが、粘着剤層(X1)の易剥離性、両面粘着シートの強度等の他の性能とのバランスを良好に保つという観点から、好ましくは90%以下、より好ましくは80%以下、更に好ましくは75%以下である。また、上記と同様の観点から、全光線透過率(T)は、70%以下であってもよく、65%以下であってもよく、60%以下であってもよい。
 本明細書において、全光線透過率(T)は、後述する実施例に記載の方法により測定される。
 全光線透過率(T)及び全光線透過率(T)は、例えば、粘着剤層(X1)、基材層(Y)、粘着剤層(X2)等の形成に用いる材料及び各層の厚さ、熱膨張性粒子の含有量等を適宜調整して、上記の範囲に調整することができる。
<熱膨張性粒子>
 本発明の一態様の両面粘着シートに用いられる熱膨張性粒子は、加熱により膨張する粒子であればよく、膨張開始温度(t)は、両面粘着シートの用途に応じて適宜選択される。
 ところで、近年、半導体チップを基板に実装する際に、半導体チップをダイアタッチフィルム(以下、「DAF」ともいう)と称される、熱硬化性を有するフィルム状接着剤を介して基板に貼付する工程が採用されている。
 DAFは、半導体ウエハ又は個片化した複数の半導体チップの一方の面に貼付され、半導体ウエハの個片化と同時に又は半導体チップに貼付された後に半導体チップと同形状に分割される。個片化して得られたDAF付き半導体チップは、DAF側から基板に貼付(ダイアタッチ)され、その後、DAFを熱硬化させることで半導体チップと基板とが固着される。このとき、DAFは基板に貼付されるまでは、感圧又は加熱により接着する性質が保持される必要がある。しかしながら、DAF付き半導体チップを加熱剥離型の粘着シートの被着体とする場合、熱膨張性粒子を膨張させる際の加熱によって、ダイアタッチ前にDAFの硬化が進行してしまい、基板に対するDAFの接着力が低下することがある。DAFの接着力の低下は、半導体チップと基板との接合信頼性の低下を招くため、抑制されることが望ましい。つまり、加熱剥離する際に被着体の熱変化が抑制されることが望ましい。
 かかる観点から、本発明の一態様の両面粘着シートにおいて、熱膨張性粒子の膨張開始温度(t)は、好ましくは125℃未満、より好ましくは120℃以下、更に好ましくは115℃以下、より更に好ましくは110℃以下、更になお好ましくは105℃以下である。
 また、加熱剥離型の粘着シートの熱膨張性粒子として膨張開始温度が低いものを用いると、被着体に対して研削を行う場合等の温度上昇によって、熱膨張性粒子が膨張してしまうことがある。熱膨張性粒子のこのような意図しない膨張は、被着体の意図しない分離、位置ズレ等に繋がるため、抑制されることが望ましい。
 かかる観点から、本発明の一態様の両面粘着シートにおいて、熱膨張性粒子の膨張開始温度(t)は、好ましくは50℃以上、より好ましくは55℃以上、更に好ましくは60℃以上、より更に好ましくは70℃以上である。
 なお、本明細書において、熱膨張性粒子の膨張開始温度(t)は、以下の方法に基づき測定された値を意味する。
(熱膨張性粒子の膨張開始温度(t)の測定法)
 直径6.0mm(内径5.65mm)、深さ4.8mmのアルミカップに、測定対象となる熱膨張性粒子0.5mgを加え、その上からアルミ蓋(直径5.6mm、厚さ0.1mm)をのせた試料を作製する。
 動的粘弾性測定装置を用いて、その試料にアルミ蓋上部から、加圧子により0.01Nの力を加えた状態で、試料の高さを測定する。そして、加圧子により0.01Nの力を加えた状態で、20℃から300℃まで10℃/minの昇温速度で加熱し、加圧子の垂直方向における変位量を測定し、正方向への変位開始温度を膨張開始温度(t)とする。
 熱膨張性粒子としては、熱可塑性樹脂から構成された外殻と、当該外殻に内包され、且つ所定の温度まで加熱されると気化する内包成分とから構成される、マイクロカプセル化発泡剤であることが好ましい。
 マイクロカプセル化発泡剤の外殻を構成する熱可塑性樹脂としては、例えば、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン、もしくはこれらの熱可塑性樹脂に含まれる構成単位を形成する単量体の2種以上を重合して得られる共重合体等が挙げられる。
 マイクロカプセル化発泡剤の外殻に内包される成分である内包成分としては、例えば、プロパン、プロピレン、ブテン、n-ブタン、イソブタン、イソペンタン、ネオペンタン、n-ペンタン、n-ヘキサン、イソヘキサン、n-ヘプタン、n-オクタン、シクロプロパン、シクロブタン、石油エーテル等の低沸点液体が挙げられる。
 これらの中でも、加熱剥離する際に被着体の熱変化を抑制すると共に、被着体に対して研削を行う場合等の温度上昇による熱膨張性粒子の意図しない膨張を抑制する観点から、熱膨張性粒子の膨張開始温度(t)を50℃以上125℃未満とする場合、内包成分は、プロパン、イソブタン、n-ペンタン、及びシクロプロパンが好ましい。
 これらの内包成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 熱膨張性粒子の膨張開始温度(t)は、内包成分の種類を適宜選択することで調整可能である。
 本発明の一態様で用いる、熱膨張性粒子の23℃における膨張前の平均粒子径は、好ましくは3~100μm、より好ましくは4~70μm、更に好ましくは6~60μm、より更に好ましくは10~50μmである。
 なお、熱膨張性粒子の膨張前の平均粒子径とは、体積中位粒子径(D50)であり、レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の熱膨張性粒子の粒子分布において、膨張前の熱膨張性粒子の粒子径の小さい方から計算した累積体積頻度が50%に相当する粒子径を意味する。
 本発明の一態様で用いる、熱膨張性粒子の23℃における膨張前の90%粒子径(D90)としては、好ましくは10~150μm、より好ましくは15~100μm、更に好ましくは20~90μm、より更に好ましくは25~80μmである。
 なお、熱膨張性粒子の膨張前の90%粒子径(D90)とは、レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の熱膨張性粒子の粒子分布において、膨張前の熱膨張性粒子の粒子径の小さい方から計算した累積体積頻度が90%に相当する粒子径を意味する。
 本発明の一態様で用いる熱膨張性粒子の膨張開始温度(t)以上の温度まで加熱した際の体積最大膨張率は、好ましくは1.5~200倍、より好ましくは2~150倍、更に好ましくは2.5~120倍、より更に好ましくは3~100倍である。
 熱膨張性層中の熱膨張性粒子の含有量は、熱膨張性層の全質量(100質量%)に対して、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは7質量%以上、より更に好ましくは10質量%以上である。また、熱膨張性層中の熱膨張性粒子の含有量は、熱膨張性層の全質量(100質量%)に対して、好ましくは25質量%以下、より好ましくは20質量%以下、更に好ましくは16質量%以下、より更に好ましくは14質量%以下である。
 熱膨張性粒子の含有量が1質量%以上であれば、加熱剥離時の剥離性が向上する傾向にある。また、熱膨張性粒子の含有量が25質量%以下であれば、熱膨張性層を熱膨張させた後であっても、熱膨張性層側からのエネルギー線照射によって、エネルギー線硬化性粘着剤層の粘着力をより一層十分に低下させることができる。
<熱膨張性層の厚さ>
 本発明の一態様において、熱膨張性層の熱膨張前の厚さは、好ましくは10~200μm、より好ましくは20~150μm、更に好ましくは25~120μmである。
 熱膨張性層の熱膨張前の厚さが10μm以上であると、熱膨張前の熱膨張性粒子に起因する凹凸の形成を抑制することができる。また、熱膨張性層の熱膨張前の厚さが200μm以下であると、全光線透過率(T)を上記の範囲に調整し易くなる。
<両面粘着シート全体の厚さ>
 本発明の一態様の両面粘着シートを熱膨張させる前の両面粘着シート全体の厚さは、好ましくは90~300μm、より好ましくは100~250μm、更に好ましくは130~200μmである。
 両面粘着シート全体の厚さが90μm以上であると、両面粘着シートの機械的強度等が良好となり取り扱い易くなる。また、両面粘着シート全体の厚さが300μm以下であると、全光線透過率(T)を上記の範囲に調整し易くなる。
 次に、本発明の一態様の両面粘着シートが有する各層の好適な態様について説明する。
 以下では、第1の態様の両面粘着シート及び第2の態様の両面粘着シートそれぞれについて好適な態様を説明するが、本発明はこれらの態様に限定されるものではない。
[第1の態様の両面粘着シート]
 第1の態様の両面粘着シートは、粘着剤層(X1)と、熱膨張性基材層(Y1)と、非熱膨張性基材層(Y2)と、粘着剤層(X2)とを、この順で有する両面粘着シートである。
<粘着剤層(X1)>
 第1の態様の両面粘着シートが有する粘着剤層(X1)は、熱膨張性層であってもよく、非熱膨張性層であってもよいが、非熱膨張性層であることが好ましい。
 粘着剤層(X1)が非熱膨張性層である場合、上記式から算出される粘着剤層(X1)の体積変化率(%)は、5%未満であり、好ましくは2%未満、より好ましくは1%未満、更に好ましくは0.1%未満、より更に好ましくは0.01%未満である。
 粘着剤層(X1)は、熱膨張性粒子を含有しないことが好ましいが、本発明の目的に反しない範囲で熱膨張性粒子を含有していてもよい。粘着剤層(X1)が熱膨張性粒子を含有する場合、その含有量は少ないほど好ましく、粘着剤層(X1)の全質量(100質量%)に対して、好ましくは3質量%未満、より好ましくは1質量%未満、更に好ましくは0.1質量%未満、より更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。
 第1の態様の両面粘着シートが有する粘着剤層(X1)は、粘着性樹脂を含む粘着剤組成物(x-1)から形成することができる。
 以下、粘着剤組成物(x-1)に含まれる各成分について説明する。
(粘着性樹脂)
 粘着性樹脂としては、当該樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体が挙げられる。
 粘着性樹脂の質量平均分子量(Mw)は、粘着剤層(X1)の粘着力向上の観点から、好ましくは1万~200万、より好ましくは2万~150万、更に好ましくは3万~100万である。
 粘着性樹脂の具体例としては、アクリル系樹脂、ウレタン系樹脂、ポリイソブチレン系樹脂等のゴム系樹脂、ポリエステル系樹脂、オレフィン系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂等が挙げられる。
 これらの粘着性樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、これらの粘着性樹脂が、2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
 ここで、本発明の一態様において、粘着剤層(X1)に優れた粘着力を発現させる観点から、粘着性樹脂が、アクリル系樹脂を含むことが好ましい。
 粘着性樹脂中のアクリル系樹脂の含有量としては、粘着剤組成物(x-1)又は粘着剤層(X1)に含まれる粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、更に好ましくは70~100質量%、より更に好ましくは85~100質量%である。
 本発明の一態様において、粘着性樹脂として使用し得る、アクリル系樹脂としては、例えば、直鎖又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含む重合体、環状構造を有する(メタ)アクリレートに由来する構成単位を含む重合体等が挙げられる。
 アクリル系樹脂の質量平均分子量(Mw)としては、好ましくは10万~150万、より好ましくは20万~130万、更に好ましくは35万~120万、より更に好ましくは50万~110万である。
 本発明の一態様で用いるアクリル系樹脂としては、アルキル(メタ)アクリレート(a1’)(以下、「モノマー(a1’)」ともいう)に由来する構成単位(a1)及び官能基含有モノマー(a2’)(以下、「モノマー(a2’)」ともいう)に由来する構成単位(a2)を有するアクリル系共重合体(A1)がより好ましい。
 モノマー(a1’)が有するアルキル基の炭素数としては、粘着剤層(X1)に優れた粘着力を発現させるという観点から、好ましくは1~24、より好ましくは1~12、更に好ましくは2~10、より更に好ましくは4~8である。
 なお、モノマー(a1’)が有するアルキル基は、直鎖アルキル基であってもよく、分岐鎖アルキル基であってもよい。
 モノマー(a1’)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。
 これらのモノマー(a1’)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 モノマー(a1’)としては、n-ブチルアクリレート及び2-エチルヘキシルアクリレートが好ましい。
 構成単位(a1)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは50~99.9質量%、より好ましくは60~99.0質量%、更に好ましくは70~97.0質量%、より更に好ましくは80~95.0質量%である。
 モノマー(a2’)が有する官能基としては、例えば、水酸基、カルボキシ基、アミノ基、エポキシ基等が挙げられる。
 つまり、モノマー(a2’)としては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。
 これらのモノマー(a2’)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、モノマー(a2’)としては、水酸基含有モノマー及びカルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。
 水酸基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール、アリルアルコール等の不飽和アルコール類等の水酸基含有化合物が挙げられる。
 カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸及びその無水物、2-(アクリロイルオキシ)エチルサクシネート、2-カルボキシエチル(メタ)アクリレート等が挙げられる。
 構成単位(a2)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは0.1~30質量%、より好ましくは0.5~20質量%、更に好ましくは1.0~15質量%、より更に好ましくは3.0~10質量%である。
 アクリル系共重合体(A1)は、さらにモノマー(a1’)及び(a2’)以外の他のモノマー(a3’)に由来の構成単位(a3)を有していてもよい。
 なお、アクリル系共重合体(A1)において、構成単位(a1)及び(a2)の合計含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは70~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%、より更に好ましくは95~100質量%である。
 モノマー(a3’)としては、例えば、エチレン、プロピレン、イソブチレン等のオレフィン類;塩化ビニル、ビニリデンクロリド等のハロゲン化オレフィン類;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー類;シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレート等の環状構造を有する(メタ)アクリレート;スチレン、α-メチルスチレン、ビニルトルエン、ギ酸ビニル、酢酸ビニル、アクリロニトリル、(メタ)アクリルアミド、(メタ)アクリロニトリル、(メタ)アクリロイルモルホリン、N-ビニルピロリドン等が挙げられる。
 粘着剤組成物(x-1)中における粘着性樹脂の含有量は、粘着剤組成物(x-1)の有効成分の全量(100質量%)に対して、好ましくは35~100質量%、より好ましくは50~100質量%、更に好ましくは60~100質量%、より更に好ましくは70~99.5質量%である。
(架橋剤)
 本発明の一態様において、粘着剤組成物(x-1)は、上述のアクリル系共重合体(A1)のように、官能基を有する粘着性樹脂を含有する場合、さらに架橋剤を含有することが好ましい。
 当該架橋剤は、官能基を有する粘着性樹脂と反応して、当該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。
 これらの架橋剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの架橋剤の中でも、凝集力を高めて粘着力を向上させる観点、入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。
 イソシアネート系架橋剤としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族ポリイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート、ビシクロヘプタントリイソシアネート、シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、メチレンビス(シクロヘキシルイソシアネート)、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート、水添キシリレンジイソシアネート等の脂環式ポリイソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の非環式脂肪族ポリイソシアネート;等の多価イソシアネート化合物等が挙げられる。
 また、イソシアネート系架橋剤としては、当該多価イソシアネート化合物のトリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含むイソシアヌレート型変性体等も挙げられる。
 これらの中でも、加熱時における粘着剤層(X1)の弾性率の低下を抑制して、粘着剤層(X1)由来の残渣が被着体に付着するのを抑制する観点から、イソシアヌレート環を含むイソシアヌレート型変性体を用いることが好ましく、非環式脂肪族ポリイソシアネートのイソシアヌレート型変性体を用いることがより好ましく、ヘキサメチレンジイソシアネートのイソシアヌレート型変性体を用いることが更に好ましい。
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。
(粘着付与剤)
 本発明の一態様において、粘着剤組成物(x-1)は、粘着力をより向上させる観点から、さらに粘着付与剤を含有していてもよい。
 本明細書において、「粘着付与剤」とは、粘着性樹脂の粘着力を補助的に向上させる成分であって、質量平均分子量(Mw)が1万未満のものを指し、上記した粘着性樹脂とは区別されるものである。
 粘着付与剤の質量平均分子量(Mw)は1万未満であり、好ましくは400~9,000、より好ましくは500~8,000、更に好ましくは800~5,000である。
 粘着付与剤としては、例えば、ロジン系樹脂、テルペン系樹脂、スチレン系樹脂、石油ナフサの熱分解で生成するペンテン、イソプレン、ピペリン、1,3-ペンタジエン等のC5留分を共重合して得られるC5系石油樹脂、石油ナフサの熱分解で生成するインデン、ビニルトルエン等のC9留分を共重合して得られるC9系石油樹脂、及びこれらを水素化した水素化樹脂等が挙げられる。
 粘着付与剤の軟化点は、好ましくは60~170℃、より好ましくは65~160℃、更に好ましくは70~150℃である。
 なお、本明細書において、粘着付与剤の「軟化点」は、JIS K 2531に準拠して測定した値を意味する。
 粘着付与剤は、1種を単独で用いてもよく、軟化点、構造等が異なる2種以上を併用してもよい。2種以上の粘着付与剤を用いる場合、それら複数の粘着付与剤の軟化点の加重平均が、上記範囲に属することが好ましい。
 粘着付与剤の含有量は、粘着剤組成物(x-1)の有効成分の全量(100質量%)に対して、好ましくは0.01~65質量%、より好ましくは0.1~50質量%、更に好ましくは1~40質量%、より更に好ましくは2~30質量%である。
(粘着剤用添加剤)
 本発明の一態様において、粘着剤組成物(x-1)は、本発明の効果を損なわない範囲で、上述の添加剤以外にも、一般的な粘着剤に使用される粘着剤用添加剤を含有していてもよい。
 このような粘着剤用添加剤としては、例えば、酸化防止剤、軟化剤(可塑剤)、防錆剤、顔料、染料、遅延剤、反応促進剤(触媒)、紫外線吸収剤、後述するエネルギー線硬化性化合物及び光重合開始剤等が挙げられる。
 なお、これらの粘着剤用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 これらの粘着剤用添加剤を含有する場合、それぞれの粘着剤用添加剤の含有量は、それぞれ独立して、粘着性樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
(熱膨張性基材層(Y1)を熱膨張させる前の粘着剤層(X1)の粘着力)
 熱膨張性基材層(Y1)を熱膨張させる前の粘着剤層(X1)の粘着力は、好ましくは0.1~12.0N/25mm、より好ましくは0.5~9.0N/25mm、更に好ましくは1.0~8.0N/25mm、より更に好ましくは1.2~7.5N/25mmである。
 熱膨張性基材層(Y1)を熱膨張させる前の粘着剤層(X1)の粘着力が0.1N/25mm以上であれば、仮固定時における被着体からの意図しない剥離、被着体の位置ズレ等をより効果的に抑制することができる。一方、当該粘着力が12.0N/25mm以下であれば、加熱剥離時の剥離性をより向上させることができる。
(熱膨張性基材層(Y1)を熱膨張させた後の粘着剤層(X1)の粘着力)
 熱膨張性基材層(Y1)を熱膨張させた後の粘着剤層(X1)の粘着力は、好ましくは1.5N/25mm以下、より好ましくは0.05N/25mm以下、更に好ましくは0.01N/25mm以下、より更に好ましくは0N/25mmである。なお、粘着力が0N/25mmであるとは、後述する熱膨張後の粘着力の測定方法において、測定限界以下の粘着力を意味し、測定のために両面粘着シートを固定する際に粘着力が小さすぎて意図せず剥離する場合も含まれる。
 本明細書において、熱膨張性基材層(Y1)を熱膨張させた後の粘着剤層(X1)の粘着力は、後述する実施例における[粘着剤層(X2)の粘着力の測定]に記載の方法において、粘着剤層(X2)を粘着剤層(X1)に置き換えた方法によって測定することができる。
(粘着剤層(X1)の厚さ)
 第1の態様の両面粘着シートが有する粘着剤層(X1)の厚さは、良好な粘着力を発現させると共に、熱膨張性粒子を加熱により膨張させた際に、粘着剤層(X1)の粘着表面に凹凸を良好に形成させる観点から、好ましくは3~10μm、より好ましくは3~8μm、更に好ましくは3~7μmである。
 粘着剤層(X1)の厚さを上記範囲に調整することで、粘着剤層(X1)を形成しやすくすることができ、且つ、粘着剤層(X1)の粘着表面に凹凸を良好に形成させやすくできる。
<熱膨張性基材層(Y1)>
 第1の態様の両面粘着シートが有する熱膨張性基材層(Y1)は、樹脂材料中に熱膨張性粒子を含有する熱膨張性層であり、粘着剤層(X1)と非熱膨張性基材層(Y2)との間に設けられる層である。
 熱膨張性基材層(Y1)に含有される樹脂材料を厚さ100μmとした場合における波長380nmの全光線透過率(T)は、好ましくは60%以上、より好ましくは70%以上、更に好ましくは75%以上である。全光線透過率(T)の上限値に特に制限はなく、100%以下であってもよい。
 第1態様の両面粘着シートは、全光線透過率(T)が60%以上であることによって、全光線透過率(T)を上記の範囲に調整し易くなる。
 全光線透過率(T)は、厚さ100μmのシートに成形した樹脂材料を測定試料として、全光線透過率(T)の測定に用いられる装置及び測定条件により測定することができる。
 熱膨張性基材層(Y1)は、非粘着性の基材であることが好ましい。
 熱膨張性基材層(Y1)の表面におけるプローブタック値は、通常50mN/5mmφ未満であるが、好ましくは30mN/5mmφ未満、より好ましくは10mN/5mmφ未満、更に好ましくは5mN/5mmφ未満である。
 なお、本明細書において、基材の表面におけるプローブタック値は、以下の方法により測定された値を意味する。
<プローブタック値>
 測定対象となる基材を一辺10mmの正方形に切断した後、23℃、50%RH(相対湿度)の環境下で24時間静置したものを試験サンプルとして、23℃、50%RH(相対湿度)の環境下で、タッキング試験機(日本特殊測器株式会社製、製品名「NTS-4800」)を用いて、試験サンプルの表面におけるプローブタック値を、JIS Z0237:1991に準拠して測定することができる。具体的には、直径5mmのステンレス鋼製のプローブを、1秒間、接触荷重0.98N/cmで試験サンプルの表面に接触させた後、当該プローブを10mm/秒の速度で、試験サンプルの表面から離すのに必要な力を測定し、得られた値を、その試験サンプルのプローブタック値とすることができる。
 熱膨張性基材層(Y1)と積層する他の層との層間密着性を向上させる観点から、熱膨張性基材層(Y1)の表面に対して、酸化法、凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。
 酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸処理(湿式)、熱風処理、オゾン、紫外線照射処理等が挙げられ、凹凸化法としては、例えば、サンドブラスト法、溶剤処理法等が挙げられる。
 熱膨張性基材層(Y1)は、樹脂及び熱膨張性粒子を含む樹脂組成物(y-1)から形成することが好ましい。
 以下、樹脂組成物(y-1)の好ましい態様について説明する。なお、熱膨張性粒子の好適な態様については上記した通りである。
(樹脂)
 樹脂組成物(y-1)に含まれる樹脂は、非粘着性樹脂であってもよく、粘着性樹脂であってもよい。
 つまり、樹脂組成物(y-1)に含まれる樹脂が粘着性樹脂であっても、樹脂組成物(y-1)から熱膨張性基材層(Y1)を形成する過程において、当該粘着性樹脂が重合性化合物と重合反応し、得られる樹脂が非粘着性樹脂となり、当該樹脂を含む熱膨張性基材層(Y1)が非粘着性となればよい。
 樹脂組成物(y-1)に含まれる前記樹脂の質量平均分子量(Mw)としては、好ましくは1,000~100万、より好ましくは1,000~70万、更に好ましくは1,000~50万である。
 また、当該樹脂が2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
 樹脂の含有量は、樹脂組成物(y-1)の有効成分の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。
 樹脂組成物(y-1)に含まれる前記樹脂としては、粘着剤層(X1)の粘着表面に凹凸を形成しやすくする観点、及び熱膨張後のシート形状維持性を良好にする観点から、アクリルウレタン系樹脂及びオレフィン系樹脂からなる群から選ばれる1種以上を含有することが好ましい。すなわち、熱膨張性基材層(Y1)は、アクリルウレタン系樹脂及びオレフィン系樹脂からなる群から選ばれる1種以上を含有することが好ましい。
 また、上記アクリルウレタン系樹脂としては、以下の樹脂(U1)が好ましい。
・ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを重合してなるアクリルウレタン系樹脂(U1)。
 なお、本明細書において、プレポリマーとは、モノマーが重合してなる化合物であって、さらなる重合を行うことでポリマーを構成することが可能な化合物を意味する。
〔アクリルウレタン系樹脂(U1)〕
 アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ポリオールと多価イソシアネートとの反応物が挙げられる。
 なお、ウレタンプレポリマー(UP)は、更に鎖延長剤を用いた鎖延長反応を施して得られたものであることが好ましい。
 ウレタンプレポリマー(UP)の原料となるポリオールとしては、例えば、アルキレン型ポリオール、エーテル型ポリオール、エステル型ポリオール、エステルアミド型ポリオール、エステル・エーテル型ポリオール、カーボネート型ポリオール等が挙げられる。
 これらのポリオールは、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の一態様で用いるポリオールとしては、ジオールが好ましく、エステル型ジオール、アルキレン型ジオール及びカーボネート型ジオールがより好ましく、エステル型ジオール、カーボネート型ジオールが更に好ましい。
 エステル型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;等のジオール類から選択される1種又は2種以上と、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、4,4-ジフェニルジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ヘット酸、マレイン酸、フマル酸、イタコン酸、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸及びこれらの無水物から選択される1種又は2種以上と、の縮重合体が挙げられる。
 具体的には、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリヘキサメチレンイソフタレートジオール、ポリネオペンチルアジペートジオール、ポリエチレンプロピレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリブチレンヘキサメチレンアジペートジオール、ポリジエチレンアジペートジオール、ポリ(ポリテトラメチレンエーテル)アジペートジオール、ポリ(3-メチルペンチレンアジペート)ジオール、ポリエチレンアゼレートジオール、ポリエチレンセバケートジオール、ポリブチレンアゼレートジオール、ポリブチレンセバケートジオール、ポリネオペンチルテレフタレートジオール等が挙げられる。
 アルキレン型ジオールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のアルカンジオール;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレングリコール;ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリアルキレングリコール;ポリテトラメチレングリコール等のポリオキシアルキレングリコール;等が挙げられる。
 カーボネート型ジオールとしては、例えば、1,4-テトラメチレンカーボネートジオール、1,5-ペンタメチレンカーボネートジオール、1,6-ヘキサメチレンカーボネートジオール、1,2-プロピレンカーボネートジオール、1,3-プロピレンカーボネートジオール、2,2-ジメチルプロピレンカーボネートジオール、1,7-ヘプタメチレンカーボネートジオール、1,8-オクタメチレンカーボネートジオール、1,4-シクロヘキサンカーボネートジオール等が挙げられる。
 ウレタンプレポリマー(UP)の原料となる多価イソシアネートとしては、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。
 これらの多価イソシアネートは、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、これらの多価イソシアネートは、トリメチロールプロパンアダクト型変性体、水と反応させたビュウレット型変性体、イソシアヌレート環を含有させたイソシアヌレート型変性体であってもよい。
 これらの中でも、本発明の一態様で用いる多価イソシアネートとしては、ジイソシアネートが好ましく、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-トリレンジイソシアネート(2,4-TDI)、2,6-トリレンジイソシアネート(2,6-TDI)、ヘキサメチレンジイソシアネート(HMDI)、及び脂環式ジイソシアネートから選ばれる1種以上がより好ましい。
 脂環式ジイソシアネートとしては、例えば、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート等が挙げられるが、イソホロンジイソシアネート(IPDI)が好ましい。
 本発明の一態様において、アクリルウレタン系樹脂(U1)の主鎖となるウレタンプレポリマー(UP)としては、ジオールとジイソシアネートとの反応物であり、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーが好ましい。
 当該直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入する方法としては、ジオールとジイソシアネート化合物とを反応してなる直鎖ウレタンプレポリマーの末端のNCO基と、ヒドロキシアルキル(メタ)アクリレートとを反応させる方法が挙げられる。
 ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。
 アクリルウレタン系樹脂(U1)の側鎖となる、ビニル化合物としては、少なくとも(メタ)アクリル酸エステルを含む。
 (メタ)アクリル酸エステルとしては、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートから選ばれる1種以上が好ましく、アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用することがより好ましい。
 アルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートを併用する場合、アルキル(メタ)アクリレート100質量部に対する、ヒドロキシアルキル(メタ)アクリレートの配合割合としては、好ましくは0.1~100質量部、より好ましくは0.5~30質量部、更に好ましくは1.0~20質量部、より更に好ましくは1.5~10質量部である。
 当該アルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~24、より好ましくは1~12、更に好ましくは1~8、より更に好ましくは1~3である。
 また、ヒドロキシアルキル(メタ)アクリレートとしては、上述の直鎖ウレタンプレポリマーの両末端にエチレン性不飽和基を導入するために用いられるヒドロキシアルキル(メタ)アクリレートと同じものが挙げられる。
 (メタ)アクリル酸エステル以外のビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族炭化水素系ビニル化合物;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;酢酸ビニル、プロピオン酸ビニル、(メタ)アクリロニトリル、N-ビニルピロリドン、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、メタ(アクリルアミド)等の極性基含有モノマー;等が挙げられる。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 ビニル化合物中の(メタ)アクリル酸エステルの含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。
 ビニル化合物中のアルキル(メタ)アクリレート及びヒドロキシアルキル(メタ)アクリレートの合計含有量としては、当該ビニル化合物の全量(100質量%)に対して、好ましくは40~100質量%、より好ましくは65~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。
 本発明の一態様で用いるアクリルウレタン系樹脂(U1)は、ウレタンプレポリマー(UP)と、(メタ)アクリル酸エステルを含むビニル化合物とを混合し、両者を重合することで得られる。
 当該重合においては、さらにラジカル開始剤を加えて行うことが好ましい。
 本発明の一態様で用いるアクリルウレタン系樹脂(U1)において、ウレタンプレポリマー(UP)に由来の構成単位(u11)と、ビニル化合物に由来する構成単位(u12)との含有量比〔(u11)/(u12)〕としては、質量比で、好ましくは10/90~80/20、より好ましくは20/80~70/30、更に好ましくは30/70~60/40、より更に好ましくは35/65~55/45である。
〔オレフィン系樹脂〕
 樹脂組成物(y-1)に含まれる樹脂として好適な、オレフィン系樹脂としては、オレフィンモノマーに由来の構成単位を少なくとも有する重合体である。
 上記オレフィンモノマーとしては、炭素数2~8のα-オレフィンが好ましく、具体的には、エチレン、プロピレン、ブチレン、イソブチレン、1-ヘキセン等が挙げられる。
 これらの中でも、エチレン及びプロピレンが好ましい。
 具体的なオレフィン系樹脂としては、例えば、超低密度ポリエチレン(VLDPE、密度:880kg/m以上910kg/m未満)、低密度ポリエチレン(LDPE、密度:910kg/m以上915kg/m未満)、中密度ポリエチレン(MDPE、密度:915kg/m以上942kg/m未満)、高密度ポリエチレン(HDPE、密度:942kg/m以上)、直鎖状低密度ポリエチレン等のポリエチレン樹脂;ポリプロピレン樹脂(PP);ポリブテン樹脂(PB);エチレン-プロピレン共重合体;オレフィン系エラストマー(TPO);ポリ(4-メチル-1-ペンテン)(PMP);エチレン-酢酸ビニル共重合体(EVA);エチレン-ビニルアルコール共重合体(EVOH);エチレン-プロピレン-(5-エチリデン-2-ノルボルネン)等のオレフィン系三元共重合体;等が挙げられる。
 本発明の一態様において、オレフィン系樹脂は、さらに酸変性、水酸基変性、アクリル変性から選ばれる1種以上の変性を施した変性オレフィン系樹脂であってもよい。
 例えば、オレフィン系樹脂に対して酸変性を施してなる酸変性オレフィン系樹脂としては、上述の無変性のオレフィン系樹脂に、不飽和カルボン酸又はその無水物を、グラフト重合させてなる変性重合体が挙げられる。
 上記の不飽和カルボン酸又はその無水物としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、グルタコン酸、テトラヒドロフタル酸、アコニット酸、(メタ)アクリル酸、無水マレイン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸、無水アコニット酸、ノルボルネンジカルボン酸無水物、テトラヒドロフタル酸無水物等が挙げられる。
 なお、不飽和カルボン酸又はその無水物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 オレフィン系樹脂に対してアクリル変性を施してなるアクリル変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、側鎖として、アルキル(メタ)アクリレートをグラフト重合させてなる変性重合体が挙げられる。
 上記のアルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~20、より好ましくは1~16、更に好ましくは1~12である。
 上記のアルキル(メタ)アクリレートとしては、例えば、上述したモノマー(a1’)として選択可能な化合物と同じものが挙げられる。
 オレフィン系樹脂に対して水酸基変性を施してなる水酸基変性オレフィン系樹脂としては、主鎖である上述の無変性のオレフィン系樹脂に、水酸基含有化合物をグラフト重合させてなる変性重合体が挙げられる。
 上記の水酸基含有化合物としては、上述した水酸基含有化合物と同様のものが挙げられる。
〔アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂〕
 本発明の一態様において、樹脂組成物(y-1)は、本発明の効果を損なわない範囲で、アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂を含有してもよい。
 そのような樹脂としては、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;アクリルウレタン系樹脂には該当しないポリウレタン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
 ただし、粘着剤層(X1)の粘着表面に凹凸を形成しやすくする観点、及び熱膨張後のシート形状維持性を良好にする観点から、樹脂組成物(y-1)中のアクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有量は、少ない方が好ましい。
 アクリルウレタン系樹脂及びオレフィン系樹脂以外の樹脂の含有量としては、樹脂組成物(y-1)中に含まれる樹脂の全量100質量部に対して、好ましくは30質量部未満、より好ましくは20質量部未満、更に好ましくは10質量部未満、より更に好ましくは5質量部未満、更になお好ましくは1質量部未満である。
(基材用添加剤)
 樹脂組成物(y-1)には、本発明の効果を損なわない範囲で、必要に応じて、基材用添加剤を含有してもよい。
 基材用添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、スリップ剤、アンチブロッキング剤、着色剤等が挙げられる。
 なお、これらの基材用添加剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 これらの基材用添加剤を含有する場合、それぞれの基材用添加剤の含有量は、それぞれ独立して、前記樹脂100質量部に対して、好ましくは0.0001~20質量部、より好ましくは0.001~10質量部である。
(無溶剤型樹脂組成物(y-1a))
 本発明の一態様で用いる樹脂組成物(y-1)の一態様として、質量平均分子量(Mw)が50,000以下のエチレン性不飽和基を有するオリゴマーと、エネルギー線重合性モノマーと、上述の熱膨張性粒子を配合してなり、溶剤を配合しない、無溶剤型樹脂組成物(y-1a)が挙げられる。
 無溶剤型樹脂組成物(y-1a)では、溶剤を配合しないが、エネルギー線重合性モノマーが、前記オリゴマーの可塑性の向上に寄与するものである。
 無溶剤型樹脂組成物(y-1a)に対して、エネルギー線を照射することで、エチレン性不飽和基を有するオリゴマー、エネルギー線重合性モノマー等が重合し、熱膨張性基材層(Y1)が形成される。
 無溶剤型樹脂組成物(y-1a)に含まれる前記オリゴマーの質量平均分子量(Mw)は、50,000以下であるが、好ましくは1,000~50,000、より好ましくは2,000~40,000、更に好ましくは3,000~35,000、より更に好ましくは4,000~30,000である。
 前記オリゴマーとしては、上述の樹脂組成物(y-1)に含まれる樹脂のうち、質量平均分子量が50,000以下のエチレン性不飽和基を有するものであればよいが、上述のウレタンプレポリマー(UP)が好ましく、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーがより好ましい。
 なお、当該オリゴマーとしては、エチレン性不飽和基を有する変性オレフィン系樹脂も使用し得る。
 無溶剤型樹脂組成物(y-1a)中における、前記オリゴマー及びエネルギー線重合性モノマーの合計含有量は、無溶剤型樹脂組成物(y-1a)の全量(100質量%)に対して、好ましくは50~99質量%、より好ましくは60~95質量%、更に好ましくは65~90質量%、より更に好ましくは70~85質量%である。
 エネルギー線重合性モノマーとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレート、トリシクロデカンアクリレート等の脂環式重合性化合物;フェニルヒドロキシプロピルアクリレート、ベンジルアクリレート、フェノールエチレンオキシド変性アクリレート等の芳香族重合性化合物;テトラヒドロフルフリル(メタ)アクリレート、モルホリンアクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム等の複素環式重合性化合物等が挙げられる。これらの中でも、イソボルニル(メタ)アクリレート、フェニルヒドロキシプロピルアクリレートが好ましい。
 これらのエネルギー線重合性モノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
 無溶剤型樹脂組成物(y-1a)中における、前記オリゴマーと、前記エネルギー線重合性モノマーとの含有量比[オリゴマー/エネルギー線重合性モノマー]は、質量比で、好ましくは20/80~90/10、より好ましくは30/70~85/15、更に好ましくは35/65~80/20である。
 本発明の一態様において、無溶剤型樹脂組成物(y-1a)は、さらに光重合開始剤を配合してなることが好ましい。
 光重合開始剤を含有することで、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることができる。
 光重合開始剤としては、例えば、1-ヒドロキシシクロへキシルフェニルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ジベンジル、ジアセチル、β-クロロアンスラキノン、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシド等が挙げられる。
 これらの光重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 光重合開始剤の配合量は、前記オリゴマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、好ましくは0.01~5質量部、より好ましくは0.01~4質量部、更に好ましくは0.02~3質量部である。
(熱膨張性基材層(Y1)の厚さ)
 本発明の一態様において、熱膨張性基材層(Y1)の熱膨張前の厚さは、好ましくは10~200μm、より好ましくは20~150μm、更に好ましくは25~120μmである。
 熱膨張性基材層(Y1)の熱膨張前の厚さが10μm以上であると、熱膨張前の熱膨張性粒子に起因する凹凸の形成を抑制することができ、粘着剤層(X1)の粘着力を良好にすることができる。熱膨張性基材層(Y1)の熱膨張前の厚さが200μm以下であると、全光線透過率(T)を上記の範囲に調整し易くなる。
<非熱膨張性基材層(Y2)>
 第1の態様の両面粘着シートが有する非熱膨張性基材層(Y2)は、熱膨張性基材層(Y1)の粘着剤層(X1)の積層面とは反対側の面に設けられる。
 非熱膨張性基材層(Y2)は、非粘着性の基材であることが好ましい。非熱膨張性基材層(Y2)の表面におけるプローブタック値は、通常50mN/5mmφ未満であるが、好ましくは30mN/5mmφ未満、より好ましくは10mN/5mmφ未満、更に好ましくは5mN/5mmφ未満である。
 非熱膨張性基材層(Y2)の波長380nmの全光線透過率(TY2)は、好ましくは70%以上、より好ましくは80%以上、更に好ましくは85%以上である。全光線透過率(TY2)の上限値に特に制限はなく、100%以下であってもよい。
 非熱膨張性基材層(Y2)の全光線透過率(TY2)が70%以上であることによって、全光線透過率(T)を上記の範囲に調整し易くなる。
 全光線透過率(TY2)は、非熱膨張性基材層(Y2)を測定試料として、全光線透過率(T)の測定に用いられる装置及び測定条件により測定することができる。
 非熱膨張性基材層(Y2)の形成材料としては、例えば、樹脂、金属、紙材等が挙げられ、両面粘着シートの用途に応じて適宜選択することができる。
 樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体等のビニル系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン;アクリロニトリル-ブタジエン-スチレン共重合体;三酢酸セルロース;ポリカーボネート;ポリウレタン、アクリル変性ポリウレタン等のウレタン樹脂;ポリメチルペンテン;ポリスルホン;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリフェニレンスルフィド;ポリエーテルイミド、ポリイミド等のポリイミド系樹脂;ポリアミド系樹脂;アクリル樹脂;フッ素系樹脂等が挙げられる。
 金属としては、例えば、アルミニウム、スズ、クロム、チタン等が挙げられる。
 紙材としては、例えば、薄葉紙、中質紙、上質紙、含浸紙、コート紙、アート紙、硫酸紙、グラシン紙等が挙げられる。
 これらの中でも、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂が好ましい。
 これらの形成材料は、1種から構成されていてもよく、2種以上を併用してもよい。
 2種以上の形成材料を併用した非熱膨張性基材層(Y2)としては、紙材をポリエチレン等の熱可塑性樹脂でラミネートしたもの、樹脂を含む樹脂フィルム又はシートの表面に金属膜を形成したもの等が挙げられる。
 なお、金属層の形成方法としては、例えば、上記金属を真空蒸着、スパッタリング、イオンプレーティング等のPVD法により蒸着する方法、又は、上記金属からなる金属箔を一般的な粘着剤を用いて貼付する方法等が挙げられる。
 なお、非熱膨張性基材層(Y2)と積層する他の層との層間密着性を向上させる観点から、非熱膨張性基材層(Y2)が樹脂を含む場合、非熱膨張性基材層(Y2)の表面に対しても、上述の熱膨張性基材層(Y1)と同様に、酸化法、凹凸化法等による表面処理、易接着処理、あるいはプライマー処理を施してもよい。
 また、非熱膨張性基材層(Y2)が樹脂を含む場合、当該樹脂と共に、樹脂組成物(y-1)にも含有し得る、上述の基材用添加剤を含有してもよい。
 非熱膨張性基材層(Y2)は、上述の方法に基づき判断される、非熱膨張性層である。
 そのため、上述の式から算出される非熱膨張性基材層(Y2)の体積変化率(%)としては、5%未満であるが、好ましくは2%未満、より好ましくは1%未満、更に好ましくは0.1%未満、より更に好ましくは0.01%未満である。
 また、非熱膨張性基材層(Y2)は、体積変化率が上記範囲である限り、熱膨張性粒子を含有してもよい。例えば、非熱膨張性基材層(Y2)に含まれる樹脂を選択することで、熱膨張性粒子が含まれていたとしても、体積変化率を上記範囲に調整することは可能である。
 ただし、非熱膨張性基材層(Y2)中の熱膨張性粒子の含有量は、少ないほど好ましい。
 具体的な熱膨張性粒子の含有量としては、非熱膨張性基材層(Y2)の全質量(100質量%)に対して、通常3質量%未満、好ましくは1質量%未満、より好ましくは0.1質量%未満、更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。更になお好ましくは熱膨張性粒子を含有しないことである。
(非熱膨張性基材層(Y2)の23℃における貯蔵弾性率E’(23))
 非熱膨張性基材層(Y2)の23℃における貯蔵弾性率E’(23)は、好ましくは5.0×10~5.0×10Pa、より好ましくは5.0×10~4.5×10Pa、更に好ましくは1.0×10~4.0×10Paである。
 非熱膨張性基材層(Y2)の貯蔵弾性率E’(23)が5.0×10Pa以上であれば、両面粘着シートの耐変形性を向上させやすい。一方、非熱膨張性基材層(Y2)の貯蔵弾性率E’(23)が5.0×10Pa以下であれば、両面粘着シートの取り扱い性を向上させやすい。
 なお、本明細書において、非熱膨張性基材層(Y2)の貯蔵弾性率E’(23)は、実施例に記載の方法により測定された値を意味する。
(非熱膨張性基材層(Y2)の厚さ)
 非熱膨張性基材層(Y2)の厚さは、好ましくは5~500μm、より好ましくは15~300μm、更に好ましくは20~200μmである。非熱膨張性基材層(Y2)の厚さが5μm以上であれば、両面粘着シートの耐変形性を向上させやすい。一方、非熱膨張性基材層(Y2)の厚さが500μm以下であれば、両面粘着シートの取り扱い性を向上させ易くなると共に、全光線透過率(T)を上記の範囲に調整し易くなる。
<粘着剤層(X2)>
 第1の態様の両面粘着シートが有する粘着剤層(X2)は、エネルギー線硬化性粘着剤層であり、非熱膨張性基材層(Y2)の熱膨張性基材層(Y1)の積層面とは反対側の面に設けられる層である。
 粘着剤層(X2)は、エネルギー線を照射することにより硬化して粘着力が低下する粘着剤層であり、好ましくは紫外線を照射することにより硬化して粘着力が低下する粘着剤層である。
 粘着剤層(X2)は、非熱膨張性層であることが好ましい。
 粘着剤層(X2)が非熱膨張性層である場合、上記式から算出される粘着剤層(X2)の体積変化率(%)は、5%未満であり、好ましくは2%未満、より好ましくは1%未満、更に好ましくは0.1%未満、より更に好ましくは0.01%未満である。
 粘着剤層(X2)は、熱膨張性粒子を含有しないことが好ましいが、本発明の目的に反しない範囲で熱膨張性粒子を含有していてもよい。
 粘着剤層(X2)が熱膨張性粒子を含有する場合、その含有量は少ないほど好ましく、粘着剤層(X2)の全質量(100質量%)に対して、好ましくは3質量%未満、より好ましくは1質量%未満、更に好ましくは0.1質量%未満、より更に好ましくは0.01質量%未満、より更に好ましくは0.001質量%未満である。
 粘着剤層(X2)は、粘着性樹脂を含有する粘着剤組成物(x-2)から形成することが好ましい。以下、粘着剤組成物(x-2)に含有される各成分について説明する。
 粘着剤組成物(x-2)は、粘着性樹脂を含有するものであり、必要に応じて、架橋剤、粘着付与剤、重合性化合物、重合開始剤、上記各成分以外の一般的な粘着剤に使用される粘着剤用添加剤等を含有していてもよい。
(粘着性樹脂)
 粘着性樹脂としては、当該樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体であればよい。
 粘着性樹脂の質量平均分子量(Mw)は、粘着剤層(X2)の粘着力をより向上させる観点から、好ましくは1万~200万、より好ましくは2万~150万、更に好ましくは3万~100万である。
 粘着性樹脂としては、粘着剤組成物(x-1)が含有する粘着剤組成物と同様のものが挙げられる。
 これらの粘着性樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、これらの粘着性樹脂が、2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
 粘着剤組成物(x-2)に含有される粘着性樹脂は、得られる粘着剤層(X2)をエネルギー線照射によって硬化して粘着力が低下する粘着剤層とする観点から、側鎖にエネルギー線重合性官能基を有する粘着性樹脂であることが好ましい。
 エネルギー線重合性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等の炭素-炭素二重結合を有するものが挙げられる。
 粘着性樹脂は、優れた粘着力を発現させる観点から、アクリル系樹脂を含有することが好ましい。
 粘着剤組成物(x-2)中におけるアクリル系樹脂の含有量は、粘着剤組成物(x-2)に含有される粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、更に好ましくは70~100質量%、より更に好ましくは85~100質量%である。
 粘着剤組成物(x-2)中における粘着性樹脂の含有量は、粘着剤組成物(x-2)の有効成分の全量(100質量%)に対して、好ましくは35~100質量%、より好ましくは50~100質量%、更に好ましくは60~98質量%、より更に好ましくは70~95質量%である。
(エネルギー線硬化性化合物)
 粘着剤組成物(x-2)は、粘着性樹脂と共に、エネルギー線硬化性化合物として、エネルギー線照射により重合硬化可能なモノマー又はオリゴマーを含有していてもよい。
 このようなエネルギー線硬化性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-へキサンジオール(メタ)アクリレート等の多価(メタ)アクリレートモノマー;多官能ウレタン(メタ)アクリレート、多官能ポリエステル(メタ)アクリレート、多官能ポリエーテル(メタ)アクリレート、多官能エポキシ(メタ)アクリレート等のオリゴマーが挙げられる。
 これらの中でも、比較的分子量が高く、粘着剤層(X2)の弾性率を低下させにくいという観点から、多官能ウレタン(メタ)アクリレートオリゴマーが好ましい。
 エネルギー線硬化性化合物の分子量(オリゴマーの場合は質量平均分子量(Mw))は、好ましくは100~12,000、より好ましくは200~10,000、更に好ましくは400~8,000、より更に好ましくは600~6,000である。
(光重合開始剤)
 粘着剤組成物(x-2)は、さらに光重合開始剤を含有することが好ましい。
 光重合開始剤を含有することで、エネルギー線重合性成分の重合をより効率的に進行させることができる。
 光重合開始剤としては、無溶剤型樹脂組成物(y-1a)の説明で例示したものと同じものが挙げられる。これらの中でも、1-ヒドロキシシクロヘキシルフェニルケトンが好ましい。
 光重合開始剤の含有量は、エネルギー線重合性官能基を有する粘着性樹脂の全量100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~5質量部、更に好ましくは0.05~2質量部である。
(架橋剤)
 本発明の一態様において、粘着剤組成物(x-2)が官能基を有する粘着性樹脂を含有する場合、粘着剤組成物(x-2)は、さらに架橋剤を含有することが好ましい。
 当該架橋剤は、官能基を有する粘着性樹脂と反応して、当該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
 粘着剤組成物(x-2)が含有していてもよい架橋剤としては、粘着剤組成物(x-1)が含有していてもよい架橋剤と同じもの又は同等のものが挙げられるが、凝集力を高めて粘着力を向上させる観点、入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、更に好ましくは0.05~5質量部である。
(粘着付与剤)
 本発明の一態様において、粘着剤組成物(x-2)は、粘着力をより向上させる観点から、さらに粘着付与剤を含有していてもよい。
 粘着剤組成物(x-2)が含有していてもよい粘着付与剤としては、粘着剤組成物(x-1)が含有していてもよい粘着付与剤と同等のものを使用することができる。
(粘着剤用添加剤)
 粘着剤用添加剤としては、粘着剤組成物(x-1)が含有していてもよい粘着剤用添加剤と同じものが挙げられる。
 粘着剤組成物(x-2)は、粘着性樹脂、必要に応じて使用される架橋剤、粘着付与剤、粘着剤用添加剤等を混合することで製造することができる。
(粘着剤層(X2)のエネルギー線照射前の粘着力)
 粘着剤層(X2)のエネルギー線照射前の粘着力は、好ましくは1.1~30.0N/25mm、より好ましくは3.0~25.0N/25mm、更に好ましくは5.0~20.0N/25mmである。
 粘着剤層(X2)のエネルギー線照射前の粘着力が1.1N/25mm以上であれば、被着体からの意図しない剥離、被着体の位置ズレ等をより効果的に抑制することができる。一方、当該粘着力が30.0N/25mm以下であれば、エネルギー線照射後の剥離性をより向上させることができる。
 なお、粘着剤層(X2)のエネルギー線照射前の粘着力は、実施例に記載の方法によって測定することができる。
(粘着剤層(X2)のエネルギー線照射後の粘着力)
 粘着剤層(X2)のエネルギー線照射後の粘着力は、好ましくは1.0N/25mm以下、より好ましくは0.9N/25mm以下、更に好ましくは0.8N/25mm以下、より更に好ましくは0.7N/25mm以下である。粘着剤層(X2)のエネルギー線照射後の下限値に特に制限はなく、0N/25mm以上であってもよい。
 粘着剤層(X2)のエネルギー線照射後の粘着力が1.0N/25mm以下であれば、被着体からの剥離性により優れたものとなる。
 なお、粘着剤層(X2)のエネルギー線照射後の粘着力は、実施例に記載の方法によって測定することができる。
(粘着剤層(X2)の厚さ)
 第1の態様の両面粘着シートが有する粘着剤層(X2)の厚さは、好ましくは5~150μm、より好ましくは8~100μm、更に好ましくは12~70μm、より更に好ましくは15~50μmである。
 粘着剤層(X2)の厚さが5μm以上であれば、十分な粘着力が得られやすくなり、仮固定時における被着体からの意図しない剥離、被着体の位置ズレ等を抑制できる傾向にある。一方、粘着剤層(X2)の厚さが150μm以下であれば、両面粘着シートの取り扱いが容易になる傾向にある。
 第1の態様の両面粘着シートにおいて、粘着剤層(X1)、熱膨張性基材層(Y1)、非熱膨張性基材層(Y2)及び粘着剤層(X2)の、熱膨張させる前の合計厚さは、好ましくは90~300μm、より好ましくは100~250μm、更に好ましくは130~200μmである。
 合計厚さが90μm以上であると、両面粘着シートの機械的強度等が良好となり取り扱い易くなる。また、合計厚さが300μm以下であると、全光線透過率(T)を上記の範囲に調整し易くなる。
<第1の態様の両面粘着シートの製造方法>
 第1の態様の両面粘着シートの製造方法は、特に制限はなく、例えば、下記工程(1a)~(5a)を有する、両面粘着シートの製造方法が挙げられる。
・工程(1a):剥離材の剥離処理表面上に、粘着剤組成物(x-1)を塗布して粘着剤層(X1)を形成する工程。
・工程(2a):非熱膨張性基材層(Y2)の片面に、樹脂組成物(y-1)を塗布して非熱膨張性基材層(Y2)と熱膨張性基材層(Y1)とが積層された基材積層体を形成する工程。
・工程(3a):工程(1a)で形成した粘着剤層(X1)の粘着表面と、工程(2a)で形成した基材積層体の熱膨張性基材層(Y1)側の表面とを、貼り合わせて片面粘着シートを得る工程。
・工程(4a):剥離材の剥離処理表面上に、粘着剤組成物(x-2)を塗布して粘着剤層(X2)を形成する工程。
・工程(5a):工程(3a)で形成した片面粘着シートの非熱膨張性基材層(Y2)の表面に、工程(4a)で形成した粘着剤層(X2)の粘着表面を貼り合わせる工程。
 上記両面粘着シートの製造方法において、樹脂組成物(y-1)、粘着剤組成物(x-1)、及び粘着剤組成物(x-2)は、さらに希釈溶剤を配合し、溶液の形態としてもよい。
 塗布方法としては、例えば、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。
 また、樹脂組成物(y-1)、粘着剤組成物(x-1)、及び粘着剤組成物(x-2)から形成される塗膜を乾燥する工程は、熱膨張性粒子の膨張を抑制する観点から、乾燥温度を熱膨張性粒子の膨張開始温度(t)未満で行うことが好ましい。
[第2の態様の両面粘着シート]
 第2の態様の両面粘着シートは、熱膨張性層である粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有する両面粘着シートである。
 第2の態様の両面粘着シートが有する基材層(Y)についての説明は、第1の態様の両面粘着シートにおける非熱膨張性基材層(Y2)についての説明と同じであり、第2の態様の両面粘着シートが有する粘着剤層(X2)についての説明は、第1の態様の両面粘着シートにおける粘着剤層(X2)についての説明と同じである。
<粘着剤層(X1)>
 第2の態様の粘着剤層(X1)は熱膨張性粒子を含有する熱膨張性層であり、エネルギー線重合性成分の重合体及び熱膨張性粒子を含有することが好ましい。
 上記重合体は、前記エネルギー線重合性成分として、エネルギー線重合性官能基を有するモノマー(b1)(以下、「(b1)成分」ともいう)及びエネルギー線重合性官能基を有するプレポリマー(b2)(以下、「(b2)成分」ともいう)を含有する重合性組成物(以下、「重合性組成物(x-1’)」ともいう)にエネルギー線を照射してなる重合体である。
 なお、本明細書において、プレポリマーとは、モノマーが重合してなる化合物であって、さらなる重合を行うことでポリマーを構成することが可能な化合物を意味する。
 重合性組成物(x-1’)が含有するエネルギー線重合性成分は、エネルギー線の照射によって重合する成分であり、エネルギー線重合性官能基を有するものである。
 エネルギー線重合性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等の炭素-炭素二重結合を有するものが挙げられる。なお、以下の説明において、(メタ)アクリロイル基、アリル基等のように、その一部にビニル基又は置換ビニル基を含む官能基と、ビニル基又は置換ビニル基そのものを「ビニル基含有基」と総称する場合がある。
 以下、重合性組成物(x-1’)に含有される各成分について説明する。
(エネルギー線重合性官能基を有するモノマー(b1))
 エネルギー線重合性官能基を有するモノマー(b1)としては、エネルギー線重合性官能基を有するモノマーであればよく、エネルギー線重合性官能基の他にも、炭化水素基、エネルギー線重合性官能基以外の官能基等を有していてもよい。
 (b1)成分が有する炭化水素基としては、例えば、脂肪族炭化水素基、芳香族炭化水素基、これらを組み合わせた基等が挙げられる。
 脂肪族炭化水素基は、直鎖状又は分岐鎖状の脂肪族炭化水素基であってもよく、脂環式炭化水素基であってもよい。
 直鎖状又は分岐鎖状の脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基、イソオクチル基、n-デシル基、n-ドデシル基、n-ミリスチル基、n-パルミチル基、n-ステアリル基等の炭素数1~20の脂肪族炭化水素基が挙げられる。
 脂環式炭化水素基としては、例えば、シクロペンチル基、シクロヘキシル基、イソボルニル基等の炭素数3~20の脂環式炭化水素基が挙げられる。
 芳香族炭化水素基としては、例えば、フェニル基が挙げられる。
 脂肪族炭化水素基と芳香族炭化水素基とを組み合わせた基としては、例えば、フェノキシエチル基、ベンジル基が挙げられる。
 これらの中でも、(b1)成分は、粘着剤層(X1)の粘着力をより向上させる観点からは、エネルギー線重合性官能基と直鎖状又は分岐鎖状の脂肪族炭化水素基とを有するモノマー(b1-1)(以下、「(b1-1)成分」ともいう)、エネルギー線重合性官能基と脂環式炭化水素基とを有するモノマー(b1-2)(以下、「(b1-2)成分」ともいう)等を含有することが好ましい。
 (b1)成分が、(b1-1)成分を含有する場合、その含有量は、(b1)成分の合計(100質量%)に対して、好ましくは20~80質量%、より好ましくは40~70質量%、更に好ましくは50~60質量%である。
 (b1)成分が、(b1-2)成分を含有する場合、その含有量は、(b1)成分の合計(100質量%)に対して、好ましくは5~60質量%、より好ましくは10~40質量%、更に好ましくは20~30質量%である。
 エネルギー線重合性官能基と、エネルギー線重合性官能基以外の官能基とを有するモノマーとしては、エネルギー線重合性官能基以外の官能基として、例えば、ヒドロキシ基、カルボキシ基、チオール基、1又は2級アミノ基等を有するモノマーが挙げられる。これらの中でも、(b1)成分は、粘着剤層(X1)の形成性をより向上させる観点から、エネルギー線重合性官能基とヒドロキシ基とを有するモノマー(b1-3)(以下、「(b1-3)成分」ともいう)を含有することが好ましい。
 (b1)成分が、(b1-3)成分を含有する場合、その含有量は、(b1)成分の合計(100質量%)に対して、好ましくは1~60質量%、より好ましくは5~30質量%、更に好ましくは10~20質量%である。
 (b1)成分が有するエネルギー線重合性官能基の数は1個であってもよく、2個以上であってもよい。また、粘着剤層(X1)の剥離性をより向上させる観点から、(b1)成分は、エネルギー線重合性官能基を3個以上有するモノマー(b1-4)(以下、「(b1-4)成分」ともいう)を含有することが好ましい。
 (b1)成分が、(b1-4)成分を含有する場合、その含有量は、(b1)成分の合計(100質量%)に対して、好ましくは1~20質量%、より好ましくは2~15質量%、更に好ましくは3~10質量%である。
 エネルギー線重合性官能基を1個有するモノマーとしては、1つのビニル基含有基を有するモノマー(以下、「重合性ビニルモノマー」ともいう)が好ましい。
 エネルギー線重合性官能基を2個以上有するモノマーとしては、(メタ)アクリロイル基を2個以上有するモノマー(以下、「多官能(メタ)アクリレートモノマー」ともいう)が好ましい。(b1)成分が上記化合物を含有することで、これらを重合して得られる粘着剤の凝集力が向上し、剥離後の被着体汚染が少ない粘着剤層(X1)を形成することができる。
〔重合性ビニルモノマー〕
 重合性ビニルモノマーとしては、ビニル基含有基を有するものであれば、特に限定されず、従来公知のものを適宜使用することができる。
 重合性ビニルモノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
 重合性ビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ミリスチル(メタ)アクリレート、パルミチル(メタ)アクリレート、ステアリル(メタ)アクリレー等の上記(b1-1)成分に該当する化合物;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の上記(b1-2)成分に該当する化合物;フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ポリオキシアルキレン変性(メタ)アクリレート等の分子内にビニル基含有基以外の官能基を有さない(メタ)アクリレート等が挙げられる。これらの中でも、2-エチルヘキシルアクリレート、イソボルニルアクリレートが好ましい。
 重合性ビニルモノマーは、分子内にビニル基含有基以外の官能基をさらに有するものであってもよい。当該官能基としては、例えば、ヒドロキシ基、カルボキシ基、チオール基、1又は2級アミノ基等が挙げられる。これらの中でも、上記(b1-3)成分に該当するヒドロキシ基を有する重合性ビニルモノマーが好ましい。
 ヒドロキシ基を有する重合性ビニルモノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;N-メチロールアクリルアミド、N-メチロールメタクリルアミド等のヒドロキシ基含有アクリルアミド類等が挙げられる。また、カルボキシ基を有する重合性ビニルモノマーとしては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、シトラコン酸等のエチレン性不飽和カルボン酸等が挙げられる。これらの中でも、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレートが好ましい。
 また、その他の重合性ビニルモノマーとしては、例えば、酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;エチレン、プロピレン、イソブチレン等のオレフィン類;塩化ビニル、ビニリデンクロリド等のハロゲン化オレフィン類;スチレン、α-メチルスチレン等のスチレン系単量体;ブタジエン、イソプレン、クロロプレン等のジエン系単量体;アクリロニトリル、メタクリロニトリル等のニトリル系単量体;アクリルアミド、メタクリルアミド、N-メチルアクリルアミド、N-メチルメタクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-ビニルピロリドン等のアミド系単量体;(メタ)アクリル酸N,N-ジエチルアミノエチル、N-(メタ)アクリロイルモルフォリン等の3級アミノ基含有単量体等が挙げられる。
〔多官能(メタ)アクリレートモノマー〕
 多官能(メタ)アクリレートモノマーとしては、一分子中に(メタ)アクリロイル基を2つ以上有するモノマーであれば、特に限定されず、従来公知のものを適宜使用することができる。
 多官能(メタ)アクリレートモノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
 多官能(メタ)アクリレートモノマーとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、ジ(アクリロキシエチル)イソシアヌレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジアクリレート等の2官能(メタ)アクリレートモノマー;トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ビス(アクリロキシエチル)ヒドロキシエチルイソシアヌレート、イソシアヌル酸エチレンオキサイド変性トリアクリレート、ε―カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、ジグリセリンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の上記(b1-4)成分に該当する多官能(メタ)アクリレートモノマー等が挙げられる。
《(b1)成分の含有量》
 重合性組成物(x-1’)中における、重合性ビニルモノマーの合計含有量は、重合性組成物(x-1’)の有効成分の全量(100質量%)に対して、好ましくは10~80質量%、より好ましくは30~75質量%、更に好ましくは50~70質量%である。
 重合性組成物(x-1’)中における多官能(メタ)アクリレートモノマーの合計含有量は、重合性組成物(x-1’)の有効成分の全量(100質量%)に対して、好ましくは0.5~15質量%、より好ましくは1~10質量%、更に好ましくは2~5質量%である。
 重合性組成物(x-1’)中における(b1)成分の合計含有量は、重合性組成物(x-1’)の有効成分の全量(100質量%)に対して、好ましくは15~90質量%、より好ましくは35~80質量%、更に好ましくは55~75質量%である。
(エネルギー線重合性官能基を有するプレポリマー(b2))
 エネルギー線重合性官能基を有するプレポリマー(b2)としては、エネルギー線重合性官能基を1個有するプレポリマー、エネルギー線重合性官能基を2個以上有するプレポリマー等が挙げられる。これらの中でも、(b2)成分は、剥離性に優れると共に剥離後の被着体汚染が少ない粘着剤層を形成する観点から、エネルギー線重合性官能基を2個以上有するプレポリマーを含有することが好ましく、エネルギー線重合性官能基を2個有するプレポリマーを含有することがより好ましく、エネルギー線重合性官能基を2個有し、該エネルギー線重合性官能基を両末端に有するプレポリマーを含有することが更に好ましい。
 (b2)成分としては、エネルギー線重合性官能基として(メタ)アクリロイル基を2個以上有するプレポリマー(以下、「多官能(メタ)アクリレートプレポリマー」ともいう)を含有することが好ましい。(b2)成分が上記化合物を含有することで、これらを重合して得られる粘着剤の凝集力が向上し、剥離性に優れると共に、剥離後の被着体汚染が少ない粘着剤層(X1)を形成することができる。
〔多官能(メタ)アクリレートプレポリマー〕
 多官能(メタ)アクリレートプレポリマーとしては、一分子中に(メタ)アクリロイル基を2つ以上有するプレポリマーであれば、特に限定されず、従来公知のものを適宜使用することができる。
 多官能(メタ)アクリレートプレポリマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
 多官能(メタ)アクリレートプレポリマーとしては、例えば、ウレタンアクリレート系プレポリマー、ポリエステルアクリレート系プレポリマー、エポキシアクリレート系プレポリマー、ポリエーテルアクリレート系プレポリマー、ポリブタジエンアクリレート系プレポリマー、シリコーンアクリレート系プレポリマー、ポリアクリルアクリレート系プレポリマー等が挙げられる。
 ウレタンアクリレート系プレポリマーは、例えば、ポリアルキレンポリオール、ポリエーテルポリオール、ポリエステルポリオール、ヒドロキシ基末端を有する水添イソプレン、ヒドロキシ基末端を有する水添ブタジエン等の化合物と、ポリイソシアネートとの反応によって得られるポリウレタンプレポリマーを、(メタ)アクリル酸又は(メタ)アクリル酸誘導体でエステル化することにより得ることができる。
 ウレタンアクリレート系プレポリマーの製造に使用されるポリアルキレンポリオールとしては、例えば、ポリプロピレングリコール、ポリエチレングリコール、ポリブチレングリコール、ポリへキシレングリコール等が挙げられ、これらの中でも、ポリプロピレングリコールが好ましい。なお、得られるウレタンアクリレート系プレポリマーの官能基数を3以上とする場合は、例えば、グリセリン、トリメチロールプロパン、トリエタノールアミン、ペンタエリスリトール、エチレンジアミン、ジエチレントリアミン、ソルビトール、スクロース等を適宜組み合わせればよい。
 ウレタンアクリレート系プレポリマーの製造に使用されるポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、トリメチレンジイソシアネート等の脂肪族ジイソシアネート;トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルジイソシアネート等の芳香族ジイソシアネート;ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂環式ジイソシアネート等が挙げられ、これらの中でも、脂肪族ジイソシアネートが好ましく、ヘキサメチレンジイソシアネートがより好ましい。なお、ポリイソシアネートは2官能に限らず、3官能以上のものも用いることができる。
 ウレタンアクリレート系プレポリマーの製造に使用される(メタ)アクリル酸誘導体としては、例えば、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレート等のヒドロキシアルキル(メタ)アクリレート;2-イソシアネートエチルアクリレート、2-イソシアネートエチルメタクリレート、1,1-ビス(アクリロキシメチル)エチルイソシアネート等が挙げられ、これらの中でも、2-イソシアネートエチルアクリレートが好ましい。
 ウレタンアクリレート系プレポリマーの別の製造方法として、ポリアルキレンポリオール、ポリエーテルポリオール、ポリエステルポリオール、ヒドロキシ基末端を有する水添イソプレン、ヒドロキシ基末端を有する水添ブタジエン等の化合物が有するヒドロキシ基と、イソシアネートアルキル(メタ)アクリレートが有する-N=C=O部分とを反応させる方法が挙げられる。この場合、当該イソシアネートアルキル(メタ)アクリレートとしては、例えば、上記の2-イソシアネートエチルアクリレート、2-イソシアネートエチルメタクリレート、1,1-ビス(アクリロキシメチル)エチルイソシアネート等を使用することができる。
 ポリエステルアクリレート系プレポリマーは、例えば、多価カルボン酸と多価アルコールとの縮合によって得られる両末端にヒドロキシ基を有するポリエステルプレポリマーのヒドロキシ基を(メタ)アクリル酸でエステル化することにより得ることができる。また、多価カルボン酸にアルキレンオキシドを付加して得られるプレポリマーの末端のヒドロキシ基を(メタ)アクリル酸でエステル化することによっても得ることができる。
 エポキシアクリレート系プレポリマーは、例えば、比較的低分子量のビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂等のオキシラン環に、(メタ)アクリル酸を反応させてエステル化することにより得ることができる。また、エポキシアクリレート系プレポリマーを部分的に二塩基性カルボン酸無水物で変性したカルボキシ変性型のエポキシアクリレート系プレポリマーを用いることもできる。
 ポリエーテルアクリレート系プレポリマーは、例えば、ポリエーテルポリオールのヒドロキシ基を(メタ)アクリル酸でエステル化することにより得ることができる。
 ポリアクリルアクリレート系プレポリマーは、側鎖にアクリロイル基を有していてもよいし、両末端もしくは片末端にアクリロイル基を有していてもよい。側鎖にアクリロイル基を有するポリアクリルアクリレート系プレポリマーは、例えば、ポリアクリル酸のカルボキシ基にグリシジルメタクリレートを付加させることにより得られる。また、両末端にアクリロイル基を有するポリアクリルアクリレート系プレポリマーは、例えば、ATRP(Atom Transfer Radical Polymerization)法によって合成したポリアクリレートプレポリマーの重合成長末端構造を利用して両末端にアクリロイル基を導入することで得ることができる。
 (b2)成分の質量平均分子量(Mw)は、好ましくは10,000~350,000、より好ましくは15,000~200,000、更に好ましくは20,000~50,000である。
《(b2)成分の含有量》
 重合性組成物(x-1’)中における多官能(メタ)アクリレートプレポリマーの合計含有量は、重合性組成物(x-1’)の有効成分の全量(100質量%)に対して、好ましくは10~60質量%、より好ましくは15~55質量%、更に好ましくは20~30質量%である。
 重合性組成物(x-1’)中における(b2)成分の合計含有量は、重合性組成物(x-1’)の有効成分の全量(100質量%)に対して、好ましくは10~60質量%、より好ましくは15~55質量%、更に好ましくは20~30質量%である。
 重合性組成物(x-1’)中における、(b2)成分及び(b1)成分の含有量比〔(b2)/(b1)〕は、質量基準で、好ましくは10/90~70/30、より好ましくは20/80~50/50、更に好ましくは25/75~40/60である。
 上記のエネルギー線重合性成分の中でも、重合性組成物(x-1’)は、重合性ビニルモノマー、多官能(メタ)アクリレートモノマー及び多官能(メタ)アクリレートプレポリマーを含有することが好ましい。
 重合性組成物(x-1’)が含有するエネルギー線重合性成分中における、重合性ビニルモノマー、多官能(メタ)アクリレートモノマー及び多官能(メタ)アクリレートプレポリマーの合計含有量は、エネルギー線重合性成分の全量(100質量%)に対して、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、より更に好ましくは99質量%以上であり、100質量%であってもよい。
 重合性組成物(x-1’)中におけるエネルギー線重合性成分の合計含有量は、重合性組成物(x-1’)の有効成分の全量(100質量%)に対して、好ましくは70~98質量%、より好ましくは75~97質量%、更に好ましくは80~96質量%、より更に好ましくは82~95質量%である。
(その他の成分)
 重合性組成物(x-1’)は、エネルギー線重合性成分及び熱膨張性粒子以外のその他の成分を含有していてもよい。
 上記その他の成分としては、光重合開始剤、粘着付与剤、上記各成分以外の一般的な粘着剤に使用される粘着剤用添加剤等が挙げられる。
 これらの成分は、第1の態様の両面粘着シートで説明したものと同じものが挙げられる。
 なお、重合性組成物(x-1’)は、本発明の目的に反しない範囲で、希釈剤等の溶剤を含有していてもよいが、溶剤を含有しないことが好ましい。すなわち、重合性組成物(x-1’)は、無溶剤型重合性組成物であることが好ましい。
 重合性組成物(x-1’)が無溶剤型重合性組成物であることによって、粘着剤層(X1)を形成する際に、溶剤の加熱乾燥を省略することができるため、加熱乾燥時における熱膨張性粒子の膨張を抑制することができる。
 重合性組成物(x-1’)が溶剤を含有する場合、その含有量は少ないほど好ましく、重合性組成物(x-1’)の有効成分の全量(100質量%)に対して、好ましくは10質量%以下、より好ましくは1質量%以下、更に好ましくは0.1質量%以下、より更に好ましくは0.01質量%以下である。
 重合性組成物(x-1’)は、エネルギー線重合性成分、熱膨張性粒子、及び必要に応じて含有されるその他の成分を混合することで製造することができる。得られる重合性組成物(x-1’)は、その後のエネルギー線重合によって高分子量化させるものであるため、層を形成する際には、低分子量のエネルギー線重合性成分により適度な粘度に調整可能である。そのため重合性組成物(x-1’)は、希釈剤等の溶剤を添加することなく、そのまま塗布溶液として粘着剤層(X1)の形成に使用することができる。
 なお、重合性組成物(x-1’)にエネルギー線を照射して形成される粘着剤層(X1)には、エネルギー線重合性成分が重合してなる多種多様の重合体と、該重合体中に分散する熱膨張性粒子が含まれるが、これらを構造及び物性で直接特定することは、不可能であるか、またはおよそ実際的ではないという事情が存在する。
(粘着剤層(X1)の粘着力)
 第2の態様の両面粘着シートにおける粘着剤層(X1)の熱膨張前の粘着力及び熱膨張後の粘着力についての説明は、第1の態様の両面粘着シートの説明における、熱膨張性基材層(Y1)を熱膨張させる前の粘着剤層(X1)の粘着力及び熱膨張性基材層(Y1)を熱膨張させた後の粘着剤層(X1)の粘着力についての説明と同じである。
(粘着剤層(X1)の厚さ)
 第2の態様の両面粘着シートが有する粘着剤層(X1)の熱膨張前の厚さは、好ましくは10~200μm、より好ましくは20~150μm、更に好ましくは25~120μmである。
 粘着剤層(X1)の熱膨張前の厚さが10μm以上であれば、十分な粘着力が得られ易くなり、仮固定時における被着体からの意図しない剥離、被着体の位置ズレ等を抑制できる傾向にある。一方、粘着剤層(X1)の熱膨張前の厚さが200μm以下であれば、加熱剥離時の剥離性が向上すると共に、加熱剥離時に両面粘着シートがカールすることを抑制し、取り扱い性を向上できる傾向にある。また、全光線透過率(T)を上記の範囲に調整し易くなる。
<第2の態様の両面粘着シートの製造方法>
 第2の態様の両面粘着シートの製造方法は、粘着剤層(X1)を形成する方法が、前記エネルギー線重合性成分及び前記熱膨張性粒子を含有する重合性組成物(x-1’)にエネルギー線を照射して、前記エネルギー線重合性成分の重合体を形成する工程を含む、両面粘着シートの製造方法であることが好ましく、具体的には、下記工程(1b)~(3b)を含む製造方法であることがより好ましい。
 工程(1b):基材(Y)の一方の面側に、重合性組成物(x-1’)からなる重合性組成物層を形成する工程
 工程(2b):前記重合性組成物層にエネルギー線を照射することにより、前記エネルギー線重合性成分の重合体を形成し、該重合体と前記熱膨張性粒子とを含有する粘着剤層(X1)を形成する工程
 工程(3b):基材(Y)の他方の面側に粘着剤層(X2)を形成する工程
 工程(1b)としては、例えば、剥離材の剥離処理面上に重合性組成物(x-1’)を塗布して重合性組成物層を形成し、該重合性組成物層に対して、第一のエネルギー線照射を行い、重合性組成物層中のエネルギー線重合性成分を予備重合させてから、予備重合後の重合性組成物層に基材(Y)を貼付する方法が挙げられる。
 なお、重合性組成物(x-1’)は上記した通り、無溶剤型重合性組成物であることが好ましい。重合性組成物(x-1’)が無溶剤型重合性組成物である場合、本工程において溶剤の加熱乾燥工程を実施しなくてもよく、熱膨張性粒子の膨張を抑制することができる。
 工程(2b)は、工程(1b)で形成した重合性組成物層にエネルギー線を照射することにより、エネルギー線重合性成分の重合体を形成し、該重合体と熱膨張性粒子とを含有する粘着剤層(X1)を形成する工程である。
 ここで、工程(1b)において第一のエネルギー線照射を行う場合、工程(2b)におけるエネルギー線照射は、予備重合後の重合性組成物層に対して行う第二のエネルギー線照射となる。
 工程(2b)のエネルギー線照射は、第一のエネルギー線照射とは異なり、さらにエネルギー線を照射しても、実質的にエネルギー線重合性成分の重合が進行しない程度まで行うことが好ましい。工程(2b)のエネルギー線照射によって、エネルギー線重合性成分の重合が進行し、粘着剤層(X1)を構成するエネルギー線重合性成分の重合体が形成される。
 工程(3b)としては、剥離材の一方の面に粘着剤組成物(x-2)を塗布して粘着剤層(X2)を形成し、該粘着剤層(X2)を基材(Y)の他方の面側に貼付する方法が挙げられる。
 上記した工程(1b)及び(2b)に含まれるいずれの工程においても、熱膨張性粒子の膨張を抑制する観点から、重合性組成物を加熱する工程を含まないことが好ましい。
 なお、ここでの「加熱」とは、例えば、乾燥、ラミネート時等において意図的に加熱することを意味し、エネルギー線照射によって重合性組成物に付与される熱、エネルギー線重合性組成物の重合によって発生する重合熱等による温度上昇は含めないものとする。
[両面粘着シートの用途及び使用方法]
 本発明の一態様の両面粘着シートは、仮固定された被着体を加熱により容易に剥離することができるため、様々な用途に適用可能である。具体的には、例えば、半導体ウエハ等の被着体をダイシングする際に用いられるダイシングシート、被着体を研削する工程に用いられるバックグラインドシート、ダイシングによって個片化された半導体チップ等の被着体同士の距離を拡大させるために用いられるエキスパンドテープ、半導体チップ等の被着体の表裏を反転させるために用いられる転写テープ、検査対象物を仮固定して検査するための仮固定用シート等に好適である。
 本発明の一態様の両面粘着シートの被着体としては、特に限定されないが、例えば、半導体チップ、半導体ウエハ、化合物半導体、半導体パッケージ、電子部品、サファイア基板、ディスプレイ、パネル用基板等が挙げられる。
 本発明の一態様の両面粘着シートにおいて、熱膨張性粒子の膨張開始温度(t)を125℃未満とした場合、低温での加熱剥離が可能であることから、DAF付き半導体チップ等の熱変化し易い被着体を仮固定するのに好適である。
 また、本発明の一態様の両面粘着シートにおいて、熱膨張性粒子の膨張開始温度(t)を50℃以上とした場合、被着体に対して研削を行う場合等の温度上昇による熱膨張性粒子の意図しない膨張を抑制できることから、被着体を研削する工程に用いられるバックグラインドシートとして用いるのに好適である。
 本発明の一態様の両面粘着シートを被着体から加熱剥離する際の加熱温度は、熱膨張性粒子の膨張開始温度(t)以上であり、好ましくは「膨張開始温度(t)より高い温度」、より好ましくは「膨張開始温度(t)+2℃」以上、更に好ましくは「膨張開始温度(t)+4℃」以上、より更に好ましくは「膨張開始温度(t)+5℃」以上である。また、省エネルギー性及び加熱剥離時における被着体の熱変化を抑制する観点からは、好ましくは「膨張開始温度(t)+50℃」以下、より好ましくは「膨張開始温度(t)+40℃」以下、更に好ましくは「膨張開始温度(t)+20℃」以下である。
 また、加熱剥離する際の加熱温度は、被着体の熱変化を抑制する観点からは、膨張開始温度(t)以上の範囲内において、好ましくは125℃未満、より好ましくは120℃以下、更に好ましくは115℃以下、より更に好ましくは110℃以下、更になお好ましくは105℃以下である。
 加熱の方式としては、熱膨張性粒子が膨張する温度以上に加熱することができるものであれば特に限定されず、例えば、電熱ヒーター;誘電加熱;磁気加熱;近赤外線、中赤外線、及び遠赤外線等の赤外線等の電磁波による加熱等を適宜使用できる。なお、加熱方式は、加熱ローラー、加熱プレス等の接触型加熱方式;雰囲気加熱装置、赤外線照射等の非接触型加熱方式のいずれの加熱方式であってもよい。
[剥離材付き両面粘着シート]
 本発明の一態様の剥離材付き両面粘着シートは、上記した本発明の一態様の両面粘着シートの一方又は両方の面に剥離材を有する剥離材付き両面粘着シートである。
 本発明の一態様の剥離材付き両面粘着シートとしては、例えば、図2(a)に示される、上記した両面粘着シート1aの両面に剥離材10a、10bが配された剥離材付き両面粘着シート1bが挙げられる。
 本発明の別の一態様の剥離材付き両面粘着シートとしては、例えば、図2(b)に示される、上記した両面粘着シート2aの両面に剥離材10a、10bが配された剥離材付き両面粘着シート2bが挙げられる。
 なお、図2(a)及び(b)に示す剥離材付き両面粘着シート1b、2bにおいて、剥離材10aを粘着剤層(X1)から剥がす際の剥離力と、剥離材10bを粘着剤層(X2)から剥がす際の剥離力とが同程度である場合、双方の剥離材を外側へ引っ張って剥がそうとすると、粘着剤層が、2つの剥離材に伴って分断されて引き剥がされるという現象が生じることがある。このような現象を抑制する観点から、2つの剥離材10a、10bは、互いに貼付される粘着剤層からの剥離力が異なるように設計された2種の剥離材を用いることが好ましい。
 本発明のさらに別の一態様の剥離材付き両面粘着シートとしては、上記した両面粘着シート1a(図1(a))、2a(図1(b))において、粘着剤層(X1)及び粘着剤層(X2)の一方の粘着表面に、両面に剥離処理が施された剥離材が積層したものを、ロール状に巻いた構成を有する剥離材付き両面粘着シートであってもよい。
 剥離材としては、両面剥離処理をされた剥離シート、片面剥離処理をされた剥離シート等が用いられ、剥離材用の基材上に剥離剤を塗布したもの等が挙げられる。
 剥離材用の基材としては、例えば、プラスチックフィルム、紙類等が挙げられる。プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂フィルム;ポリプロピレン樹脂、ポリエチレン樹脂等のオレフィン樹脂フィルム等が挙げられ、紙類としては、例えば、上質紙、グラシン紙、クラフト紙等が挙げられる。
 剥離剤としては、例えば、シリコーン系樹脂、オレフィン系樹脂、イソプレン系樹脂、ブタジエン系樹脂等のゴム系エラストマー;長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂等が挙げられる。剥離剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 剥離材の厚さは、好ましくは10~200μm、より好ましくは20~150μm、更に好ましくは35~80μmである。
[半導体装置の製造方法]
 本発明は、本発明の一態様の両面粘着シートを用いる半導体装置の製造方法も提供する。
 本発明の半導体装置の製造方法の一態様としては、本発明の一態様の両面粘着シートを、被着体の加工及び検査の少なくともいずれか一方を行うための仮固定用シートとして使用する態様(以下、「第1態様の半導体装置の製造方法」ともいう)が挙げられる。
 なお、本明細書において、「半導体装置」とは、半導体特性を利用することで機能し得る装置全般を指す。例えば、集積回路を備えるウエハ、集積回路を備える薄化されたウエハ、集積回路を備えるチップ、集積回路を備える薄化されたチップ、これらのチップを含む電子部品、及び当該電子部品を備える電子機器類等が挙げられる。
<第1態様の半導体装置の製造方法>
 第1態様の半導体装置の製造方法のより具体的な態様としては、本発明の一態様の両面粘着シートに加工検査対象物を貼付し、該加工検査対象物に対して、加工及び検査から選択される1以上を施した後に、前記両面粘着シートを前記膨張開始温度(t)以上に加熱する工程を含む、半導体装置の製造方法が挙げられる。
 加工検査対象物としては、例えば、半導体チップ、半導体ウエハ、化合物半導体、半導体パッケージ、電子部品、LED素子、サファイア基板、ディスプレイ、パネル用基板等が挙げられる。
 加工検査対象物に対して行われる加工は、特に限定されないが、例えば、研削処理、個片化処理等が挙げられる。
 加工検査対象物に対して行われる検査は、特に限定されないが、例えば、光学顕微鏡、レーザーを利用した欠陥検査(例えば、ごみ検査、表面傷検査、配線パターン検査等)、目視による表面検査等が挙げられる。
 第1態様の半導体装置の製造方法において、加工検査対象物を貼付する両面粘着シートの粘着剤層は、粘着剤層(X1)であってもよく、粘着剤層(X2)であってもよいが、いずれか一方の粘着剤層に加工検査対象物を貼付し、いずれか他方の粘着剤層に支持体を貼付することが好ましい。加工検査対象物が両面粘着シートを介して支持体に固定されることによって、加工及び検査の少なくともいずれか一方を行う際に、加工検査対象物の振動、位置ズレ、脆弱な加工検査対象物の破損等を抑制し、加工精度及び加工速度並びに検査精度及び検査速度を向上させることができる。このとき、支持体が粘着剤層(X1)に貼付され、加工検査対象物が粘着剤層(X2)に貼付される態様であってもよいし、加工検査対象物が粘着剤層(X1)に貼付され、支持体が粘着剤層(X2)に貼付される態様であってもよい。なお、本発明の一態様の両面粘着シートは、熱膨張性層を熱膨張させた後であっても、熱膨張性層側からのエネルギー線照射によって、エネルギー線硬化性粘着剤層である粘着剤層(X2)の粘着力を十分に低下させることができるため、従来の方法よりも使用方法の自由度が高いものである。
 支持体が粘着剤層(X1)に貼付され、加工検査対象物が粘着剤層(X2)に貼付される態様である場合、支持体が加熱処理後の剥離性に優れる粘着剤層(X1)に貼付されることで、支持体が硬質な材質から構成されるものであっても、両面粘着シート及び支持体を屈曲させることなく加熱剥離することができる。また、粘着剤層(X2)は、エネルギー線の照射によって粘着力を低下させることができるため、熱膨張性粒子に由来する残渣等によって加工対象物を汚染させることなく剥離することができる。さらに、粘着剤層(X2)は、熱膨張性層側からのエネルギー線照射によって粘着力が十分に低下するため、粘着剤層(X2)側の加工検査対象物は光線透過性を有さないものであっても選択することが可能である。
 一方、加工検査対象物が粘着剤層(X1)に貼付され、支持体が粘着剤層(X2)に貼付される態様である場合、加工検査対象物が加熱処理後の剥離性に優れる粘着剤層(X1)に貼付されることで、加工後に加熱剥離する際、加工検査対象物を個別にピックアップ等する必要がなく、一括で容易に剥離することができるため、半導体装置の生産性に優れる。また、粘着剤層(X2)は熱膨張性層側からのエネルギー線照射によって粘着力が十分に低下するため、粘着剤層(X2)側の支持体は光線透過性を有さないものであっても選択可能である。
 また、本発明の一態様の両面粘着シートを、加工検査対象物を、製造工程の一環として検査するための仮固定用シートとして使用する場合、両面粘着シートの粘着剤層(X1)に複数個の加工検査対象物を貼付した状態で検査を実施することができる。検査を行った後、例えば、上記複数個の加工検査対象物が貼付されている両面粘着シートの一部を局所的に加熱して、当該部分に貼付されている特定の加工検査対象物を選択的に加熱剥離することもできる。
<第2態様の半導体装置の製造方法>
 第2態様の半導体装置の製造方法としては、本発明の一態様の両面粘着シートを用い、下記工程1A、工程2A、第一分離工程、及び第二分離工程を含む製造方法(以下、「製造方法A」ともいう)が挙げられる。
 工程1A:粘着剤層(X2)に加工対象物を貼付し、粘着剤層(X1)に支持体を貼付する工程
 工程2A:前記加工対象物に対して、研削処理及び個片化処理から選択される1以上の処理を施す工程
 第一分離工程:前記両面粘着シートを前記膨張開始温度(t)以上に加熱して、粘着剤層(X1)と前記支持体とを分離する工程
 第二分離工程:前記粘着剤層(X2)にエネルギー線を照射することにより前記粘着剤層(X2)を硬化させて、前記粘着剤層(X2)と前記加工対象物とを分離する工程
 以下、製造方法Aについて図面を参照しながら説明する。なお、以下の説明では、加工対象物として半導体ウエハを用いる場合の例を主に説明するが、他の加工対象物の場合も同様である。他の加工対象物としては、加工検査対象物として挙げた上記と同様のものが挙げられる。
(工程1A)
 工程1Aは、両面粘着シートが有する粘着剤層(X2)に加工対象物を貼付し、粘着剤層(X1)に支持体を貼付する工程である。
 図3には、両面粘着シート1aが有する粘着剤層(X2)に半導体ウエハWを貼付し、粘着剤層(X1)に支持体3を貼付する工程を説明する断面図が示されている。
 半導体ウエハWは、回路面である表面W1が粘着剤層(X2)側になるように貼付される。
 半導体ウエハWは、シリコンウエハであってもよく、ガリウム砒素、炭化ケイ素、サファイア、タンタル酸リチウム、ニオブ酸リチウム、窒化ガリウム、インジウム燐等のウエハ、ガラスウエハであってもよい。
 半導体ウエハWの研削前の厚さは、通常は500~1000μmである。
 半導体ウエハWの表面W1が有する回路は、例えば、エッチング法、リフトオフ法等の従来汎用されている方法によって形成することができる。
 支持体3の材質は、加工対象物の種類、加工内容等に応じて、機械強度、耐熱性等の要求される特性を考慮の上、適宜選択すればよい。
 支持体3の材質としては、例えば、SUS等の金属材料;ガラス、シリコンウエハ等の非金属無機材料;エポキシ樹脂、ABS樹脂、アクリル樹脂、エンジニアリングプラスチック、スーパーエンジニアリングプラスチック、ポリイミド樹脂、ポリアミドイミド樹脂等の樹脂材料;ガラスエポキシ樹脂等の複合材料等が挙げられ、これらの中でも、SUS、ガラス、シリコンウエハが好ましい。
 上記エンジニアリングプラスチックとしては、例えば、ナイロン、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)等が挙げられる。
 上記スーパーエンジニアリングプラスチックとしては、例えば、ポリフェニレンスルファイド(PPS)、ポリエーテルサルフォン(PES)、ポリエーテルエーテルケトン(PEEK)等が挙げられる。
 支持体3は、粘着剤層(X1)の粘着表面の全面に貼付されることが好ましい。そのため、粘着剤層(X1)の粘着表面に貼付される側の支持体3の表面の面積は、粘着剤層(X1)の粘着表面の面積以上であることが好ましい。また、粘着剤層(X1)の粘着表面に貼付される側の支持体3の面は平面状であることが好ましい。
 支持体3の形状は、特に限定されないが、板状であることが好ましい。
 支持体3の厚さは、要求される特性を考慮して適宜選択すればよいが、好ましくは20μm以上50mm以下、より好ましくは60μm以上20mm以下である。
(工程2A)
 工程2Aは、前記加工対象物に対して、研削処理及び個片化処理から選択される1以上の処理を施す工程である。
 研削処理及び個片化処理から選択される1以上の処理としては、例えば、グラインダー等を用いる研削処理;ブレードダイシング法、レーザーダイシング法、ステルスダイシング(登録商標)法による個片化処理;ブレード先ダイシング法、ステルス先ダイシング法による研削処理及び個片化処理;等が挙げられる。
 これらの中でも、ステルスダイシング法による個片化処理、ブレード先ダイシング法による研削処理及び個片化処理、ステルス先ダイシング法による研削処理及び個片化処理が好適であり、ブレード先ダイシング法による研削処理及び個片化処理、ステルス先ダイシング法による研削処理及び個片化処理がより好適である。
 ステルスダイシング法は、レーザー光の照射により半導体ウエハの内部に改質領域を形成し、該改質領域を分割起点として、半導体ウエハを個片化する方法である。半導体ウエハに形成された改質領域は多光子吸収によって脆質化された部分であり、半導体ウエハがエキスパンドによりウエハ面と平行かつウエハが拡張される方向に応力がかかることにより、該改質領域を起点として半導体ウエハの表面及び裏面に向けて亀裂が伸展することで、半導体チップに個片化される。すなわち、改質領域は、個片化される際の分割線に沿って形成される。
 改質領域は、半導体ウエハの内部に焦点を合わせたレーザー光の照射によって半導体ウエハの内部に形成される。レーザー光の入射面は、半導体ウエハの表面であっても裏面であってもよい。また、レーザー光入射面は、両面粘着シートが貼付された面であってもよく、その場合、レーザー光は両面粘着シートを介して半導体ウエハに照射される。
 ブレード先ダイシング法は、DBG法(Dicing Before Grinding)とも呼ばれる。ブレード先ダイシング法は、分割予定のラインに沿って、予め半導体ウエハにその厚さより浅い深さで溝を形成した後、該半導体ウエハを、研削面が少なくとも溝に到達するまで裏面研削して薄化させつつ個片化する方法である。研削面が到達した溝は、半導体ウエハを貫通する切り込みとなり、半導体ウエハは該切り込みにより分割されて半導体チップに個片化される。予め形成される溝は、通常は半導体ウエハの表面(回路面)に設けられるものであり、例えば、従来公知の、ダイシングブレードを備えるウエハダイシング装置等を用いたダイシングにより形成することができる。
 ステルス先ダイシング法は、SDBG法(Stealth Dicing Before Grinding)とも呼ばれる。ステルス先ダイシング法は、ステルスダイシング法と同様、レーザー光の照射により半導体ウエハの内部に改質領域を形成し、該改質領域を分割起点として、半導体ウエハを個片化する方法の一種であるが、研削処理を行って半導体ウエハを薄化させつつ半導体ウエハを半導体チップに個片化する点がステルスダイシング法とは異なる。具体的には、改質領域を有する半導体ウエハを裏面研削して薄化させつつ、その際に半導体ウエハにかかる圧力によって該改質領域を起点として半導体ウエハの粘着剤層との貼付面に向けて亀裂を伸展させ、半導体ウエハを半導体チップに個片化する。
 なお、改質領域を形成した後の研削厚さは、改質領域に至る厚さであってもよいが、厳密に改質領域にまで至らなくても、改質領域に近接する位置まで研削して研削砥石等の加工圧力で割断させてもよい。
 半導体ウエハWをブレード先ダイシング法によって個片化する場合、工程1Aで粘着剤層(X2)に貼付する半導体ウエハWの表面W1には、予め溝を形成しておくことが好ましい。
 一方、半導体ウエハWをステルス先ダイシング法によって個片化する場合は、工程1Aで粘着剤層(X2)に貼付する半導体ウエハWに対してレーザー光を照射して予め改質領域を形成しておいてもよいし、粘着剤層(X2)に貼付されている半導体ウエハWに対してレーザー光を照射して改質領域を形成してもよい。
 図4には、粘着剤層(X2)に貼付した半導体ウエハWに対して、レーザー光照射装置4を用いて複数の改質領域5を形成する工程を説明する断面図が示されている。
 レーザー光は半導体ウエハWの裏面W2側から照射され、半導体ウエハWの内部に複数の改質領域5が略等間隔に形成されている。
 図5(a)及び(b)には、半導体ウエハWを薄化させつつ複数の半導体チップCPに個片化する工程を説明する断面図が示されている。
 図5(a)に示されるように、改質領域5を形成した半導体ウエハWの裏面W2をグラインダー6によって研削し、その際、半導体ウエハWにかかる圧力により改質領域5を起点とする割断を生じさせる。これにより、図5(b)に示されるように、半導体ウエハWが薄化及び個片化された複数の半導体チップCPが得られる。
 改質領域5が形成された半導体ウエハWは、例えば、該半導体ウエハWを支持している支持体3をチャックテーブル等の固定テーブル上に固定した状態で、その裏面W2が研削される。
 研削後の半導体チップCPの厚さは、好ましくは5~100μm、より好ましくは10~45μmである。また、ステルス先ダイシング法によって研削処理及び個片化処理を行う場合、研削されて得られた半導体チップCPの厚さを50μm以下、より好ましくは10~45μmとすることが容易になる。
 研削後の半導体チップCPの平面視における大きさは、好ましくは600mm未満、より好ましくは400mm未満、更に好ましくは300mm未満である。なお、平面視とは厚さ方向に見ることをいう。
 個片化後の半導体チップCPの平面視における形状は、方形であってもよく、矩形等の細長形状であってもよい。
 なお、第2態様の半導体装置の製造方法に用いられる両面粘着シートは、熱膨張性粒子の膨張開始温度(t)が50℃以上であるため、研削を行う場合等の温度上昇によって、熱膨張性粒子が意図せず膨張してしまうような事態を回避することができる。したがって、加工対象物の意図しない分離、位置ズレ等が抑制される。
(工程3A)
 製造方法Aは、さらに下記工程3Aを含むことが好ましい。
 工程3A:前記処理を施した加工対象物の、粘着剤層(X2)とは反対側の面に、熱硬化性フィルムを貼付する工程
 但し、製造方法Aにおいて工程3Aは任意の工程であり、工程3Aを有さない態様であってもよい。
 工程3Aを行う場合、製造方法Aに用いる両面粘着シートに含有される熱膨張性粒子の膨張開始温度(t)は50℃以上125℃未満であることが好ましい。これによって、後述する第一分離工程を行う際に、上記熱硬化性フィルムが意図せずに硬化することを抑制することができる。
 図6には、前記処理を施して得られた複数の半導体チップCPの、粘着剤層(X2)とは反対側の面に、支持シート8を備える熱硬化性フィルム7を貼付する工程を説明する断面図が示されている。
 熱硬化性フィルム7は、少なくとも熱硬化性樹脂を含有する樹脂組成物を製膜して得られる熱硬化性を有するフィルムであり、半導体チップCPを基板に実装する際の接着剤として用いられる。熱硬化性フィルム7は、必要に応じて、上記熱硬化性樹脂の硬化剤、熱可塑性樹脂、無機充填材、硬化促進剤等を含有していてもよい。
 熱硬化性フィルム7としては、例えば、ダイボンディングフィルム、ダイアタッチフィルム等として一般的に使用されている熱硬化性フィルムを使用することができる。
 熱硬化性フィルム7の厚さは、特に限定されないが、通常は1~200μmであり、好ましくは3~100μm、より好ましくは5~50μmである。
 支持シート8は、熱硬化性フィルム7を支持できるものであればよく、例えば、本発明の一態様の両面粘着シートが有する非熱膨張性基材層(Y2)として挙げられた樹脂、金属、紙材等が挙げられる。
 熱硬化性フィルム7を、複数の半導体チップCPに貼付する方法としては、例えば、ラミネートによる方法が挙げられる。
 ラミネートは加熱しながら行ってもよく、非加熱で行ってもよい。ラミネートを加熱しながら行う場合の加熱温度は、熱膨張性粒子の膨張を抑制する観点及び被着体の熱変化を抑制する観点から、好ましくは「膨張開始温度(t)より低い温度」、より好ましくは「膨張開始温度(t)-5℃」以下、更に好ましくは「膨張開始温度(t)-10℃」以下、より更に好ましくは「膨張開始温度(t)-15℃」以下である。
(第一分離工程)
 第一分離工程は、前記両面粘着シートを前記膨張開始温度(t)以上に加熱して、粘着剤層(X1)と前記支持体とを分離する工程である。
 図7には、両面粘着シート1aを加熱して、粘着剤層(X1)と支持体3とを分離する工程を説明する断面図が示されている。
 第一分離工程における加熱温度は、熱膨張性粒子の膨張開始温度(t)以上であり、好ましくは「膨張開始温度(t)より高い温度」、より好ましくは「膨張開始温度(t)+2℃」以上、更に好ましくは「膨張開始温度(t)+4℃」以上、より更に好ましくは「膨張開始温度(t)+5℃」以上である。また、第一分離工程における加熱温度は省エネルギー性及び加熱剥離時における被着体の熱変化を抑制する観点からは、125℃未満の範囲において、好ましくは「膨張開始温度(t)+50℃」以下、より好ましくは「膨張開始温度(t)+40℃」以下、更に好ましくは「膨張開始温度(t)+20℃」以下である。
 第一分離工程における加熱温度は、被着体の熱変化を抑制する観点からは、膨張開始温度(t)以上の範囲内において、好ましくは125℃未満、より好ましくは120℃以下、更に好ましくは115℃以下、より更に好ましくは110℃以下、より更に好ましくは105℃以下である。特に、第一分離工程における加熱温度が125℃未満であると、上記した工程3Aを行う場合に、熱硬化性フィルムが意図せずに硬化することを抑制することができる。
(第二分離工程)
 第二分離工程は、前記粘着剤層(X2)にエネルギー線を照射することにより前記粘着剤層(X2)を硬化させて、前記粘着剤層(X2)と前記加工対象物とを分離する工程である。
 ここで、粘着剤層(X2)は熱膨張性層側からのエネルギー線照射によって粘着力が十分に低下するため、第二分離工程における粘着剤層(X2)に対するエネルギー線照射は、熱膨張性層側から行うことができる。
 図8には、熱膨張性層である熱膨張性基材層(Y1)側から両面粘着シート1aの厚さ方向にエネルギー線9を照射することにより粘着剤層(X2)を硬化させて、粘着剤層(X2)と複数の半導体チップCPとを分離する工程を説明する断面図が示されている。
 エネルギー線照射の条件は特に限定されず、形成した粘着剤層(X2)が硬化して粘着力が十分に低下する条件を適宜選択すればよい。本発明の一態様の半導体装置の製造方法によると、熱膨張後であっても両面粘着シートの全光線透過率が高いため、エネルギー線硬化性粘着剤層を硬化させるためのエネルギー線照射量を低く抑えることができる。これにより被着体の熱変化等の変質を抑制することができる。
 上記各工程を経て、熱硬化性フィルム7上に貼付された複数の半導体チップCPが得られる。
 次に、複数の半導体チップCPが貼付されている熱硬化性フィルム7を、半導体チップCPと同形状に分割して、熱硬化性フィルム7付き半導体チップCPを得ることが好ましい。熱硬化性フィルム7の分割方法としては、例えば、レーザー光によるレーザーダイシング、エキスパンド、溶断等の方法を適用することができる。
 図9には、半導体チップCPと同形状に分割された熱硬化性フィルム7付き半導体チップCPが示されている。
 熱硬化性フィルム7付き半導体チップCPは、さらに、必要に応じて、半導体チップCP同士の間隔を広げるエキスパンド工程、間隔を広げた複数の半導体チップCPを配列させる再配列工程、複数の半導体チップCPの表裏を反転させる反転工程等が適宜施された後、熱硬化性フィルム7側から基板に貼付(ダイアタッチ)される。その後、熱硬化性フィルムを熱硬化させることで半導体チップと基板とを固着することができる。
 第2態様の半導体装置の製造方法は、下記工程1B~2B、下記第一分離工程、及び下記第二分離工程を含む製造方法(以下、「製造方法B」ともいう)であってもよい。
 工程1B:両面粘着シートが有する粘着剤層(X1)に加工対象物を貼付し、前記両面粘着シートが有する粘着剤層(X2)に支持体を貼付する工程
 工程2B:前記加工対象物に対して、研削処理及び個片化処理から選択される1以上の処理を施す工程
 第一分離工程:前記両面粘着シートを前記膨張開始温度(t)以上、125℃未満に加熱して、粘着剤層(X1)と前記加工対象物とを分離する工程
 第二分離工程:前記粘着剤層(X2)にエネルギー線を照射することにより前記粘着剤層(X2)を硬化させて、前記粘着剤層(X2)と前記支持体とを分離する工程
 製造方法Bは、さらに下記工程3Bを含むことが好ましい。
 工程3B:前記処理を施した加工対象物の、粘着剤層(X1)とは反対側の面に、熱硬化性フィルムを貼付する工程
 但し、製造方法Bにおいて工程3Bは任意の工程であり、工程3Bを有さない態様であってもよい。
 工程3Bを行う場合、製造方法Bに用いられる両面粘着シートに含有される熱膨張性粒子の膨張開始温度(t)は50℃以上125℃未満であることが好ましい。これによって、後述する第一分離工程を行う際に、熱硬化性フィルムが意図せずに硬化することを抑制することができる。
 工程1B~3Bは、工程1A~3Aの説明における粘着剤層(X1)を粘着剤層(X2)に、粘着剤層(X2)を粘着剤層(X1)に読み替えて説明されるものである。
 第一分離工程は、前記両面粘着シートを前記膨張開始温度(t)以上に加熱して、粘着剤層(X1)と前記加工対象物とを分離する工程である。
 第一分離工程における両面粘着シートの加熱温度等の加熱条件は、製造方法Aにおける説明と同じである。特に、工程3Bを行う場合、第一分離工程は、両面粘着シートを膨張開始温度(t)以上125℃未満に加熱して、粘着剤層(X1)と前記加工対象物とを分離する工程であることが好ましい。
 第一分離工程によって、熱硬化性フィルム上に貼付された複数の半導体チップが得られる。その後、上記した製造方法Aの場合と同じように、熱硬化性フィルムを分割して、熱硬化性フィルム付き半導体チップが得られる。
 第二分離工程は、前記粘着剤層(X2)にエネルギー線を照射することにより前記粘着剤層(X2)を硬化させて、前記粘着剤層(X2)と前記支持体とを分離する工程である。
 ここで、粘着剤層(X2)は熱膨張性層側からのエネルギー線照射によって粘着力が十分に低下するため、第二分離工程における粘着剤層(X2)に対するエネルギー線照射は、熱膨張性層側から行うことができる。
 エネルギー線照射の条件は、粘着剤層(X2)を硬化して粘着力が低下する条件を適宜選択すればよい。
 なお、図3~図9は、第1の態様の両面粘着シート1aを用いた例を示しているが、第2の態様の両面粘着シート2aを用いる場合も、製造方法A及び製造方法Bは同様に説明されるものである。
<別の態様の半導体装置の製造方法>
 本発明の半導体装置の製造方法は、上記した第1態様及び第2態様の半導体装置の製造方法に限定されるものではなく、第1態様及び第2態様とは別の態様の半導体装置の製造方法であってもよい。
 別の態様の半導体装置の製造方法の他の一例としては、別のシートに貼付されている加工対象物を、本発明の一態様の両面粘着シートを用いて、該別のシートから分離させる方法が挙げられる。
 例えば、エキスパンドテープ上で間隔を広げられた複数の半導体チップは、エキスパンドテープの粘着表面に貼付されているが、これらのチップを1個ずつピックアップする作業は煩雑である。本発明の一態様の半導体装置の製造方法によると、エキスパンドテープ上に貼付された複数の半導体チップの表出面に、本発明の一態様の両面粘着シートの粘着剤層(X1)を貼付し、次いで、複数の半導体チップからエキスパンドテープを剥離することで、エキスパンドテープから複数の半導体チップを一括して分離することができる。そのとき、粘着剤層(X2)に支持体が貼付されている場合、熱膨張性層側から粘着剤層(X2)にエネルギー線を照射することにより前記粘着剤層(X2)を硬化させて、粘着剤層(X2)と支持体とを容易に分離することができる。
 分離された複数の半導体チップは、別の両面粘着シートに転写されてもよく、一旦分離した後、複数の半導体チップを整列させる再配列工程に供されてもよい。
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、各製造例及び実施例における物性値は、以下の方法により測定した値である。
[質量平均分子量(Mw)]
 ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「TSK guard column HXL-L」「TSK gel G2500HXL」「TSK gel G2000HXL」「TSK gel G1000HXL」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・流速:1.0mL/min
[各層の厚さ]
 株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K6783、Z1702、Z1709に準拠)を用いて、23℃にて測定した。
[熱膨張性粒子の平均粒子径(D50)、90%粒子径(D90)]
 レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて、23℃における膨張前の熱膨張性粒子の粒子分布を測定した。
 そして、粒子分布の粒子径の小さい方から計算した累積体積頻度が50%及び90%に相当する粒子径を、それぞれ「熱膨張性粒子の平均粒子径(D50)」及び「熱膨張性粒子の90%粒子径(D90)」とした。
[非熱膨張性基材層(Y2)の23℃における貯蔵弾性率E’(23)]
 縦30mm×横5mmに裁断した非熱膨張性基材層(Y2)を試験サンプルとして、動的粘弾性測定装置(TAインスツルメント社製、製品名「DMAQ800」)を用いて、試験開始温度0℃、試験終了温度200℃、昇温速度3℃/分、振動数1Hz、振幅20μmの条件で、23℃における貯蔵弾性率E’を測定した。その結果、後述する非熱膨張性基材層(Y2)であるPETフィルムの23℃における貯蔵弾性率E’(23)は、2.27×10Paであった。
[厚さ方向における波長380nmの全光線透過率の測定方法]
 以下の条件にて、各測定試料の透過スペクトルを測定し、厚さ方向における波長380nmの全光線透過率を取得した。
<測定条件>
 測定波長範囲:200~800nm
 測定温度:23℃
 測定雰囲気:空気
 測定装置:積分球付属装置(株式会社島津製作所製、製品名「ISR-3100」)を備えた紫外可視近赤外分光光度計(株式会社島津製作所製、製品名「UV-3600」)
 以下の製造例及び実施例において、各層の形成に使用した材料の詳細は以下の通りである。
<粘着性樹脂>
・アクリル系共重合体(A1):n-ブチルアクリレート(BA)/メチルメタクリレート(MMA)/アクリル酸(AA)/2-ヒドロキシエチルアクリレート(HEA)=86/8/1/5(質量比)からなる原料モノマーに由来の構成単位を有する、Mw60万のアクリル系共重合体を含む溶液、希釈溶剤:酢酸エチル、固形分濃度:40質量%
・アクリル系共重合体(A2):n-ブチルアクリレート(BA)/メチルメタクリレート(MMA)/2-ヒドロキシエチルアクリレート(HEA)=52/20/28(質量比)からなる原料モノマーに由来する構成単位を有するアクリル系共重合体に、2-メタクリロイルオキシエチルイソシアネート(MOI)をアクリル系共重合体中の全水酸基に対する付加率がモル数基準で90%となるように反応させた、Mw50万のエネルギー線硬化性のアクリル系共重合体を含む溶液、希釈溶剤:酢酸エチル、固形分濃度:35質量%
<架橋剤>
・イソシアネート系架橋剤(i):東ソー株式会社製、製品名「コロネートHX」、ヘキサメチレンジイソシアネートのイソシアヌレート型変性体、固形分濃度:100質量%
・イソシアネート系架橋剤(ii):東ソー株式会社製、製品名「コロネートL」、トリメチロールプロパン変性トリレンジイソシアネートを含む溶液、固形分濃度:75質量%
<エネルギー線硬化性化合物>
・エネルギー線硬化性化合物(i):日本合成化学工業株式会社製、製品名「シコウUT-4332」、多官能ウレタンアクリレート
<光重合開始剤>
・光重合開始剤(i):ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシド
・光重合開始剤(ii):1-ヒドロキシシクロヘキシルフェニルケトン
<添加剤>
・フタロシアニン系顔料
<熱膨張性粒子>
・熱膨張性粒子:Nouryon社製、製品名「Expancel(登録商標)031-40」(DUタイプ)、膨張開始温度(t)=88℃、平均粒子径(D50)=12.6μm、90%粒子径(D90)=26.2μm
<剥離材>
・重剥離フィルム:リンテック株式会社製、製品名「SP-PET382150」、ポリエチレンテレフタレート(PET)フィルムの片面にシリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm
・軽剥離フィルム:リンテック株式会社製、製品名「SP-PET381031」、PETフィルムの片面にシリコーン系剥離剤から形成した剥離剤層を設けたもの、厚さ:38μm
製造例1:粘着剤層(X1)の形成
 アクリル系共重合体(A1)の固形分100質量部に、イソシアネート系架橋剤(i)0.74質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)25質量%の粘着剤組成物(x-1)を調製した。
 そして、重剥離フィルムの剥離面上に、調製した粘着剤組成物(x-1)を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ5μmの粘着剤層(X1)を形成した。
製造例2:粘着剤層(X2)の形成
 アクリル系共重合体(A2)の固形分100質量部に、エネルギー線硬化性化合物(i)12質量部(固形分比)、イソシアネート系架橋剤(ii)1.1質量部(固形分比)、光重合開始剤(i)1質量部(固形分比)を配合し、トルエンで希釈し、均一に撹拌して、固形分濃度(有効成分濃度)30質量%の粘着剤組成物(x-2)を調製した。
 そして、軽剥離フィルムの剥離面上に、調製した粘着剤組成物(x-2)を塗布して塗膜を形成し、当該塗膜を100℃で60秒間乾燥して、厚さ20μmの粘着剤層(X2)を形成した。
実施例1~4、比較例1~2:両面粘着シートの形成
(1)無溶剤型樹脂組成物(y-1a)の調製
 エステル型ジオールと、イソホロンジイソシアネート(IPDI)を反応させて得られた末端イソシアネートウレタンプレポリマーに、2-ヒドロキシエチルアクリレートを反応させて、質量平均分子量(Mw)5,000のオリゴマーである、両末端にエチレン性不飽和基を有する直鎖ウレタンプレポリマーを得た。
 そして、上記で合成したウレタンプレポリマー40質量部(固形分比)に、エネルギー線重合性モノマーとして、イソボルニルアクリレート(IBXA)40質量部(固形分比)、及びフェニルヒドロキシプロピルアクリレート(HPPA)20質量部(固形分比)を配合し、ウレタンプレポリマー及びエネルギー線重合性モノマーの全量(100質量部)に対して、さらに光重合開始剤(ii)2.0質量部(固形分比)、及び、添加剤として、フタロシアニン系顔料0.2質量部(固形分比)、シクロヘキシルアクリレート(CHA)20質量部を配合し、エネルギー線硬化性組成物を調製した。
 そして、当該エネルギー線硬化性組成物に熱膨張性粒子を、得られる熱膨張性基材層(Y1)全質量(100質量%)に対する熱膨張性粒子の含有量が表1に記載の含有量になるように配合し、溶剤を含有しない、無溶剤型樹脂組成物(y-1a)を調製した。
(2)熱膨張性基材層(Y1)と非熱膨張性基材層(Y2)とを積層した基材積層体の形成
 非熱膨張性基材層(Y2)として、PETフィルム(東洋紡株式会社製、製品名「コスモシャインA4300」、厚さ:50μm)を準備した。なお、該PETフィルムを測定試料として、上記の方法で測定した厚さ方向における波長380nmの全光線透過率(TY2)は90.9%であった。
 次に、当該PETフィルムの片面に無溶剤型樹脂組成物(y-1a)を、形成される熱膨張性基材層(Y1)の厚さが表1に記載の厚さになるように塗布して塗膜を形成した。
 そして、紫外線照射装置(アイグラフィックス株式会社製、製品名「ECS-401GX」)及び高圧水銀ランプ(アイグラフィックス株式会社製、製品名「H04-L41」)を用いて、照度160mW/cm、光量500mJ/cmの条件で紫外線を照射し、当該塗膜を硬化させ、表1に記載の厚さを有する熱膨張性基材層(Y1)が非熱膨張性基材層(Y2)としてのPETフィルム上に形成された基材積層体を得た。なお、紫外線照射時の上記の照度及び光量は、照度・光量計(EIT社製、製品名「UV Power Puck II」)を用いて測定した値である。
 また、熱膨張性基材層(Y1)を構成する樹脂材料を厚さ100μmとした場合における波長380nmの全光線透過率(T)を測定するために、熱膨張性粒子のみを含まず他の材料は全て無溶剤型樹脂組成物(y-1a)と同じである無溶剤型樹脂組成物を調製した。該無溶剤型樹脂組成物を、硬化後の厚さが100μmになるように軽剥離フィルムの剥離剤層側に塗布し、上記と同じ条件で紫外線を照射して硬化させ、重剥離フィルムの剥離剤層側を貼り合わせて表面を保護して樹脂材料積層体を得た。その後、軽剥離フィルムと重剥離フィルムを除去して、厚さ100μmのシートに成形した樹脂材料を得た。該シートを測定試料として、上記の方法で測定した厚さ方向における波長380nmの全光線透過率(T)は78.2%であった。
(3)剥離材付き両面粘着シートの形成
 製造例1で形成した粘着剤層(X1)の粘着表面と、上記(2)で形成した基材積層体の熱膨張性基材層(Y1)の表面とを貼り合わせた。次に、製造例2で形成した粘着剤層(X2)の粘着表面と、当該基材積層体のPETフィルムの表面とを貼り合わせた。
 これにより、以下の構成を有する剥離材付き両面粘着シートを作製した。
 <重剥離フィルム>/<粘着剤層(X1)、厚さ:5μm>/<熱膨張性基材層(Y1)、厚さ:表1に記載の厚さ>/<非熱膨張性基材層(Y2)、厚さ:50μm>/<粘着剤層(X2)、厚さ:20μm>/<軽剥離フィルム>
[全光線透過率(T)及び(T)の測定]
 上記で得られた剥離材付き両面粘着シートの粘着剤層(X2)から軽剥離フィルムを除去し、表出した粘着剤層(X2)の粘着表面上に、ガラス板(ソーダライムガラス、厚さ1.1mm)を真空ラミネータ(ニッコーマテリアルズ株式会社製、製品名「V-130」)を用いて、60℃で0.2MPaの条件にて30秒間プレスして貼付し、粘着剤層(X1)から重剥離フィルムを除去して、熱膨張前の両面粘着シートとガラス板とが積層された全光線透過率測定用積層体(L)を作製した。
 また、上記と同じ方法で作製した全光線透過率測定用積層体(L)を、ガラス板がホットプレートと接触する側になり、両面粘着シートがホットプレートと接触しない側になるようにホットプレート上に載置し、110℃(すなわち、熱膨張性粒子の膨張開始温度(t)である88℃+22℃の温度)で1分間加熱した。これにより、熱膨張後の両面粘着シートとガラス板とが積層された全光線透過率測定用積層体(L)を作製した。
 上記で作製した全光線透過率測定用積層体(L)及び全光線透過率測定用積層体(L)を測定試料として、上記の条件にて、両面粘着シートの厚さ方向における波長380nmの全光線透過率(T)及び(T)を測定した。なお、光線の入射面は粘着剤層(X1)側の面とした。
[粘着剤層(X2)の粘着力の測定]
(1)エネルギー線照射前の粘着力測定試料の作製
 25mm×250mmに裁断した両面粘着シートの粘着剤層(X2)から軽剥離フィルムを除去し、表出した粘着剤層(X2)の粘着表面を、被着体であるシリコンミラーウエハのミラー面に対し、JIS Z0237:2000に基づき重さ2kgのローラーを1往復させて貼付した後、23℃、50%RH(相対湿度)の環境下で、20分間静置した。その後、粘着剤層(X1)から重剥離フィルムを除去し、シリコンミラーウエハがホットプレートと接触する側になり、表出した粘着剤層(X1)がホットプレートと接触しない側になるようにホットプレート上に載置し、110℃で1分間加熱したものを、23℃、50%RH(相対湿度)の環境下で、30分間静置してエネルギー線照射前の粘着力測定試料とした。
(2)エネルギー線照射後の粘着力測定試料の作製
 上記(1)と同じ方法で準備した粘着力測定試料に対して、粘着剤層(X1)側から、両面粘着シートの厚さ方向(すなわち、粘着剤層(X2)方向)に向けて、紫外線照射装置(アイグラフィックス株式会社製、製品名「ECS-401GX」)及び高圧水銀ランプ(アイグラフィックス株式会社製、製品名「H04-L41」)を用いて、照度230mW/cm、光量90mJ/cmの条件で紫外線を照射して粘着剤層(X2)を硬化させたものを、エネルギー線照射後の粘着力測定試料とした。なお、紫外線照射時の上記の照度及び光量は、照度・光量計(EIT社製、製品名「UV Power Puck II」)を用いて測定した値である。
(3)粘着力の測定と粘着力低下率の算出
 上記(1)で作製したエネルギー線照射前の粘着力測定試料、及び上記(2)で作製したエネルギー線照射後の粘着力測定試料を測定試料として、23℃、50%RH(相対湿度)の環境下で、引張試験機(株式会社エー・アンド・デイ製、製品名「テンシロン(登録商標)」)を用いて、JIS Z0237:2000に基づき、180°引き剥がし法により、引っ張り速度300mm/minにて粘着力を測定した。
 また、粘着力低下率(%)は下記式から算出した。
粘着力低下率(%)={(エネルギー線照射前の粘着力-エネルギー線照射後の粘着力)/エネルギー線照射前の粘着力}×100
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1~4の両面粘着シートは、全光線透過率(T)が20%以上であるため、熱膨張後の両面粘着シートにおける粘着剤層(X2)の粘着力が、熱膨張性層側からのエネルギー線照射によって大きく低下していることが分かる。これに対して、比較例1及び2の両面粘着シートは、全光線透過率(T)が20%未満であるため、熱膨張後の両面粘着シートにおける粘着剤層(X2)の粘着力は、エネルギー線の照射によって十分に低下されていないことが分かる。
 1a、2a 両面粘着シート
 1b、2b 剥離材付き両面粘着シート
 10a、10b 剥離材
 3 支持体
 4 レーザー光照射装置
 5 改質領域
 6 グラインダー
 7 熱硬化性フィルム
 8 支持シート
 9 エネルギー線
 W 半導体ウエハ
 W1 半導体ウエハの回路面
 W2 半導体ウエハの裏面
 CP 半導体チップ
(X1) 粘着剤層(X1)
(X2) 粘着剤層(X2)
(Y)  基材層(Y)
(Y1) 熱膨張性基材層(Y1)
(Y2) 非熱膨張性基材層(Y2)

 

Claims (15)

  1.  粘着剤層(X1)と、基材層(Y)と、粘着剤層(X2)とを、この順で有する両面粘着シートであって、
     前記粘着剤層(X1)及び前記基材層(Y)の少なくともいずれかが、熱膨張性粒子を含有する熱膨張性層であり、
     前記粘着剤層(X2)が、エネルギー線硬化性粘着剤層であり、
     前記両面粘着シートの粘着剤層(X2)にソーダライムガラスからなる厚さ1.1mmのガラス板を積層してなる積層体を、前記熱膨張性粒子の膨張開始温度(t)+22℃の温度で1分間加熱してなる全光線透過率測定用積層体(L)の、厚さ方向における波長380nmの全光線透過率(T)が、20%以上である、両面粘着シート。
  2.  前記熱膨張性層の、熱膨張前における厚さが、10~200μmである、請求項1に記載の両面粘着シート。
  3.  前記熱膨張性層中における前記熱膨張性粒子の含有量が、前記熱膨張性層の全質量(100質量%)に対して、1~25質量%である、請求項1又は2に記載の両面粘着シート。
  4.  前記熱膨張性粒子の膨張開始温度(t)が、50℃以上125℃未満である、請求項1~3のいずれか1項に記載の両面粘着シート。
  5.  前記熱膨張をさせる前の両面粘着シート全体の厚さが、90~300μmである、請求項1~4のいずれか1項に記載の両面粘着シート。
  6.  前記熱膨張をさせる前の両面粘着シートの粘着剤層(X2)に、ソーダライムガラスからなる厚さ1.1mmのガラス板を積層してなる全光線透過率測定用積層体(L)の、厚さ方向における波長380nmの全光線透過率(T)が、50%以上である、請求項1~5のいずれか1項に記載の両面粘着シート。
  7.  前記エネルギー線硬化性粘着剤層が、紫外線を照射することにより硬化して粘着力が低下する粘着剤層である、請求項1~6のいずれか1項に記載の両面粘着シート。
  8.  前記基材層(Y)が、熱膨張性粒子を含有する熱膨張性基材層(Y1)と非熱膨張性基材層(Y2)とが積層された基材積層体であり、前記粘着剤層(X1)と、前記熱膨張性基材層(Y1)と、前記非熱膨張性基材層(Y2)と、前記粘着剤層(X2)とを、この順で有する、請求項1~7のいずれか1項に記載の両面粘着シート。
  9.  前記熱膨張性基材層(Y1)が、樹脂材料中に前記熱膨張性粒子を含有してなるものであり、
     前記樹脂材料を厚さ100μmとした場合における波長380nmの全光線透過率(T)が、60%以上である、請求項8に記載の両面粘着シート。
  10.  前記粘着剤層(X1)、前記熱膨張性基材層(Y1)、前記非熱膨張性基材層(Y2)及び前記粘着剤層(X2)の合計厚さが、90~300μmである、請求項8又は9に記載の両面粘着シート。
  11.  請求項1~10のいずれか1項に記載の両面粘着シートを用い、下記工程1A、工程2A、第一分離工程及び第二分離工程を含む半導体装置の製造方法。
     工程1A:前記両面粘着シートが有する粘着剤層(X2)に加工対象物を貼付し、前記両面粘着シートが有する粘着剤層(X1)に支持体を貼付する工程
     工程2A:前記加工対象物に対して、研削処理及び個片化処理から選択される1以上の処理を施す工程
     第一分離工程:前記両面粘着シートを前記膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記支持体とを分離する工程
     第二分離工程:前記粘着剤層(X2)にエネルギー線を照射することにより前記粘着剤層(X2)を硬化させて、前記粘着剤層(X2)と前記加工対象物とを分離する工程
  12.  前記熱膨張性粒子の膨張開始温度(t)が50℃以上125℃未満であり、
     前記工程2Aの後に、前記処理を施した加工対象物の、粘着剤層(X2)とは反対側の面に、熱硬化性を有する熱硬化性フィルムを貼付する工程3Aを含み、
     前記第一分離工程が、前記両面粘着シートを膨張開始温度(t)以上125℃未満に加熱して、前記粘着剤層(X1)と前記支持体とを分離する工程である、
     請求項11に記載の半導体装置の製造方法。
  13.  請求項1~10のいずれか1項に記載の両面粘着シートを用い、下記工程1B、工程2B、第一分離工程及び第二分離工程を含む半導体装置の製造方法。
     工程1B:前記両面粘着シートが有する粘着剤層(X1)に加工対象物を貼付し、前記両面粘着シートが有する粘着剤層(X2)に支持体を貼付する工程
     工程2B:前記加工対象物に対して、研削処理及び個片化処理から選択される1以上の処理を施す工程
     第一分離工程:前記両面粘着シートを前記膨張開始温度(t)以上に加熱して、前記粘着剤層(X1)と前記加工対象物とを分離する工程
     第二分離工程:前記粘着剤層(X2)にエネルギー線を照射することにより前記粘着剤層(X2)を硬化させて、前記粘着剤層(X2)と前記支持体とを分離する工程
  14.  前記熱膨張性粒子の膨張開始温度(t)が50℃以上125℃未満であり、
     前記工程2Bの後に、前記処理を施した加工対象物の、粘着剤層(X1)とは反対側の面に、熱硬化性を有する熱硬化性フィルムを貼付する工程3Bを含み、
     前記第一分離工程が、前記両面粘着シートを膨張開始温度(t)以上125℃未満に加熱して、前記粘着剤層(X1)と前記加工対象物とを分離する工程である、
     請求項13に記載の半導体装置の製造方法。
  15.  請求項1~10のいずれか1項に記載の両面粘着シートの一方又は両方の面に剥離材を有する、剥離材付き両面粘着シート。

     
PCT/JP2021/013198 2020-03-31 2021-03-29 両面粘着シート及び半導体装置の製造方法 WO2021200789A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180024892.7A CN115397938A (zh) 2020-03-31 2021-03-29 双面粘合片及半导体装置的制造方法
JP2022512188A JPWO2021200789A1 (ja) 2020-03-31 2021-03-29
KR1020227027547A KR20220156522A (ko) 2020-03-31 2021-03-29 양면 점착 시트 및 반도체 장치의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020063719 2020-03-31
JP2020-063719 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200789A1 true WO2021200789A1 (ja) 2021-10-07

Family

ID=77929052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013198 WO2021200789A1 (ja) 2020-03-31 2021-03-29 両面粘着シート及び半導体装置の製造方法

Country Status (5)

Country Link
JP (1) JPWO2021200789A1 (ja)
KR (1) KR20220156522A (ja)
CN (1) CN115397938A (ja)
TW (1) TW202214802A (ja)
WO (1) WO2021200789A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7157861B1 (ja) 2021-10-15 2022-10-20 リンテック株式会社 半導体装置の製造方法
EP4324893A1 (de) * 2022-08-19 2024-02-21 tesa SE Laminat
WO2024117235A1 (ja) * 2022-12-01 2024-06-06 日産化学株式会社 異物除去用コーティング膜形成組成物及び半導体基板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240098460A (ko) * 2022-12-21 2024-06-28 주식회사 포스코 전기강판 접착 코팅 조성물, 전기강판 적층체 및 이의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292916A (ja) * 2002-04-08 2003-10-15 Nitto Denko Corp 粘着シートを用いた被着体加工方法
JP2013203800A (ja) * 2012-03-27 2013-10-07 Nitto Denko Corp 電子部品切断用加熱剥離型粘着シート及び電子部品加工方法
WO2021049570A1 (ja) * 2019-09-12 2021-03-18 リンテック株式会社 半導体装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594853B2 (ja) 1981-02-23 1984-02-01 株式会社日立製作所 半導体装置
WO2018181766A1 (ja) * 2017-03-31 2018-10-04 リンテック株式会社 半導体装置の製造方法及び両面粘着シート

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292916A (ja) * 2002-04-08 2003-10-15 Nitto Denko Corp 粘着シートを用いた被着体加工方法
JP2013203800A (ja) * 2012-03-27 2013-10-07 Nitto Denko Corp 電子部品切断用加熱剥離型粘着シート及び電子部品加工方法
WO2021049570A1 (ja) * 2019-09-12 2021-03-18 リンテック株式会社 半導体装置の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7157861B1 (ja) 2021-10-15 2022-10-20 リンテック株式会社 半導体装置の製造方法
JP2023059543A (ja) * 2021-10-15 2023-04-27 リンテック株式会社 半導体装置の製造方法
EP4324893A1 (de) * 2022-08-19 2024-02-21 tesa SE Laminat
DE102022121016A1 (de) 2022-08-19 2024-02-22 Tesa Se Laminat
WO2024117235A1 (ja) * 2022-12-01 2024-06-06 日産化学株式会社 異物除去用コーティング膜形成組成物及び半導体基板

Also Published As

Publication number Publication date
JPWO2021200789A1 (ja) 2021-10-07
TW202214802A (zh) 2022-04-16
KR20220156522A (ko) 2022-11-25
CN115397938A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
WO2021200789A1 (ja) 両面粘着シート及び半導体装置の製造方法
WO2021117695A1 (ja) 粘着シート及び半導体装置の製造方法
WO2020189568A1 (ja) 粘着シート及び半導体装置の製造方法
WO2019216262A1 (ja) 半導体チップの製造方法
JP7273792B2 (ja) 加工品の製造方法及び粘着性積層体
JPWO2019098102A1 (ja) 半導体装置の製造方法
WO2020196755A1 (ja) 粘着シート、粘着シートの製造方法及び半導体装置の製造方法
JP6792700B2 (ja) 加工検査対象物の加熱剥離方法
WO2021049570A1 (ja) 半導体装置の製造方法
JP7405618B2 (ja) 粘着性積層体、粘着性積層体の使用方法、及び半導体装置の製造方法
WO2020196757A1 (ja) 粘着シート、粘着シートの製造方法及び半導体装置の製造方法
WO2020196758A1 (ja) 粘着シート、粘着シートの製造方法及び半導体装置の製造方法
WO2020196756A1 (ja) 粘着シートの製造方法、半導体装置の製造方法及び粘着シート
JP7490417B2 (ja) 粘着シート
WO2022054889A1 (ja) 粘着シート及び半導体装置の製造方法
WO2022196752A1 (ja) 半導体装置の製造方法及び半導体装置の製造装置
WO2023054318A1 (ja) 半導体装置の製造方法
JP7157861B1 (ja) 半導体装置の製造方法
WO2024058094A1 (ja) 半導体装置の製造方法
JP2024107808A (ja) 粘着シート及び半導体装置の製造方法
JPWO2019098101A1 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512188

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779743

Country of ref document: EP

Kind code of ref document: A1