WO2021199886A1 - 好気性生物膜処理方法および装置 - Google Patents

好気性生物膜処理方法および装置 Download PDF

Info

Publication number
WO2021199886A1
WO2021199886A1 PCT/JP2021/008419 JP2021008419W WO2021199886A1 WO 2021199886 A1 WO2021199886 A1 WO 2021199886A1 JP 2021008419 W JP2021008419 W JP 2021008419W WO 2021199886 A1 WO2021199886 A1 WO 2021199886A1
Authority
WO
WIPO (PCT)
Prior art keywords
aeration
oxygen
carrier
granule
value
Prior art date
Application number
PCT/JP2021/008419
Other languages
English (en)
French (fr)
Inventor
大月 孝之
つばさ 鏡
幸一 藤江
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN202180025336.1A priority Critical patent/CN115335334A/zh
Priority to KR1020227027063A priority patent/KR20220150286A/ko
Publication of WO2021199886A1 publication Critical patent/WO2021199886A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • C02F3/085Fluidized beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/104Granular carriers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method and an apparatus for treating wastewater containing a pollutant that can be biologically oxidized with a biofilm treatment using a self-granulation granule, a fluidized bed carrier, a fixed bed carrier, or the like, and particularly relates to an aeration intensity control thereof.
  • wastewater existing outside the biofilm to be treated with microorganisms is referred to as bulk water.
  • Microorganisms are called biofilms, such as the activated sludge method using suspended sludge, the self-granulating granule method, the fluidized bed carrier method, and the fixed bed carrier method, as methods for treating wastewater containing pollutants that can be biologically oxidized.
  • biofilm method in which treatment is performed in the form of accumulated proliferation.
  • microorganisms are maintained in a dispersed state with increased reaction in a manner called microbial flocs. Maintaining a constant level of oxygen consumption caused by the autolysis process of the microorganisms themselves by maintaining a constant amount of microorganisms maintained in the reaction tank by extracting the microorganisms that increase with wastewater treatment as excess sludge. Can be done. Therefore, the increase or decrease in the amount of oxygen required in the process changes in proportion to the raw water load.
  • the amount of oxygen to be supplied can be determined by adding a certain offset of oxygen consumption associated with the self-decomposition process of microorganisms to this oxygen consumption.
  • microorganisms are typically retained in the form of agglomerates of microorganisms of about 1 mm called flocs, and a sufficient contact area between the microorganisms and the bulk aqueous phase is secured. Therefore, the permeability and diffusivity of oxygen and pollutants in the flocs are not the main rate-determining factors for the treatment performance of the pollutant removal rate. Therefore, the amount of aerated air to be supplied to the device is considered to be proportional to the amount of oxygen consumed.
  • Patent Document 1 describes that the load of a pollutant substance is measured by an instrument and the aeration air volume is controlled based on the measurement.
  • Patent Document 2 in the self-granulation granule method and the fluidized bed carrier method, when the BOD volume load is smaller than the predetermined value, the fluidization of the microbial carrier is used as a criterion, and the BOD volume load is larger than the predetermined value. In some cases, it is stated that the amount of aeration for wastewater is controlled based on the oxygen demand of wastewater.
  • the flow rate per unit time of raw water and pollutants in raw water are common indicators of raw water load. Strictly speaking, it is difficult to adjust the appropriate oxygen supply amount based only on the inflow load obtained by the product of the concentration and the tank load obtained by dividing the inflow load by the volume of the reaction tank. The reasons for this are as follows.
  • the amount of oxygen supplied to the device needs to be determined in consideration of the change in oxygen consumption due to the change in the amount of microorganisms retained in addition to the change in oxygen consumption that changes in proportion to the load of raw water.
  • the amount of oxygen required for oxidation of raw water organic matter changes according to load fluctuations, and it is also supplied by the change in the amount of biofilm held in the treatment equipment.
  • the amount of oxygen needed varies.
  • a microbial film having a film thickness of 3 mm or more is typically formed, and the contact area with bulk water per retained microorganism is smaller than that in the floating method. Therefore, when supplying oxygen to microorganisms in the biofilm, the diffusion phenomenon of oxygen at the contact surface between the bulk water and the biofilm is a major rate-determining factor in the oxygen supply.
  • the diffusion rate of oxygen in the biofilm depends on the DO level of bulk water, it is necessary to adjust the DO level in order to adjust the oxygen supply amount. Further, from the viewpoint of the aeration system, the required aeration air volume changes depending on the difference in DO level even if the oxygen supply amount is the same. It is widely known that when the DO level is high, the required aeration amount increases, and when the DO level is low, the required aeration amount decreases.
  • the amount of oxygen required to be supplied is determined by taking into account the amount of oxygen consumed by the autolysis process, which changes according to the change in the amount of microorganisms retained as a biofilm. It is necessary to adjust the DO of the bulk water to be higher according to the increase in the required oxygen supply, and to increase the aeration air volume in order to achieve the target DO.
  • the amount of oxygen required for oxidation of organic matter in the raw water is reduced.
  • the amount of oxygen required to be supplied is determined by taking into account the amount of oxygen consumed by the autolysis process, which changes according to the change in the amount of microorganisms retained as a biofilm.
  • the DO of bulk water can be kept low as the amount of oxygen required to be supplied decreases, and the amount of aeration for achieving the target DO also decreases.
  • the aeration air volume is excessively increased so that the DO of the bulk water can be maintained high and the oxygen supply amount can be maintained even under a high load. It is necessary to operate with a constant aeration volume in this state.
  • the concentration of the organic substance to be removed in the raw water is measured with a TOC meter, ammonia ion sensor, absorbance meter, etc.
  • maintenance work such as cleaning and calibration of the sensor will take time and effort.
  • the TOC meter is equipped with a complicated mechanism and has a high failure probability. Therefore, it is difficult to maintain the stability of the control system using the TOC meter from the viewpoint of operation management, and there is a concern of malfunction.
  • An object of the present invention is to provide a method and an apparatus for appropriately controlling aeration in wastewater treatment using an aerobic biological membrane.
  • raw water is supplied to an aeration tank, aerated by an aeration device, and the substance to be removed in the raw water is treated with an aerobic biological membrane by a biological membrane holding carrier or granule filled in the aeration tank.
  • the relationship between the oxygen consumption rate per carrier or granule and the corresponding DO target value and / or the corresponding aeration intensity setting value is set in advance, and the oxygen consumption per carrier or granule is set.
  • the DO target value and / or the aeration intensity set value is adjusted based on the relationship according to the fluctuation of the measured value of the velocity so that the DO becomes the target value or the set aeration intensity set value.
  • the aeration device is controlled.
  • the aerobic biological membrane treatment apparatus of the present invention comprises an aeration tank to which raw water is supplied, an aeration device that aerates the aeration tank, a carrier or granule with a biological membrane filled in the aeration tank, and the aeration device.
  • the means for adjusting the DO target value and / or the aeration intensity set value based on the above relationship according to the fluctuation of the measured value of the oxygen consumption rate per carrier or granule, and the controller is provided. It is characterized in that the aeration device is controlled so that the DO becomes the target value or the set aeration intensity set value.
  • the oxygen consumption rate per carrier or granule is the oxygen consumption rate per filling volume of the carrier, the oxygen consumption rate per total surface area of the carrier group, and the oxygen consumption rate per filling volume of the granule. , Oxygen consumption rate per total surface area of the granule group.
  • the oxygen consumption rate per carrier or granule is the measured value of the aeration air volume and the measured value of the oxygen concentration in the gas phase released from the aeration tank, or the measurement of the DO of the aeration tank. It is calculated from the experimental value or the calculated value of the oxygen dissolution efficiency of the aeration tank and the measured value or the calculated value of the filling volume or the surface area of the carrier.
  • the aeration intensity is controlled by controlling the aeration air volume, the aeration stop time, or the aeration suppression time.
  • the above relationship is set using any of the experimental results, the operation results of the actual machine, and the mechanism model considering the diffusivity of oxygen in the biofilm.
  • the aeration control is possible by using the oxygen consumption rate of the aeration tank instead of the raw water load without using a sensor for measuring the raw water concentration such as a TOC meter, so that the labor and cost of maintenance can be suppressed.
  • aeration control can be performed appropriately even in cases where the TOC meter cannot be used due to on-site facilities or raw water types.
  • the oxygen consumption rate per carrier or granule is used to estimate the necessary and sufficient oxygen supply suitable for the properties of the carrier or granule in the aeration tank that changes with time, and DO Since the target value and the set value of the aeration intensity itself are changed and controlled, more appropriate aeration control becomes possible.
  • FIG. 1 is a block diagram of a biological treatment apparatus to which the present invention is applied.
  • the wastewater to be treated (raw water) is introduced into the aeration tank 2 through the pipe 1.
  • the aeration tank 2 is filled with a carrier C supporting a biofilm.
  • Air diffusers 3a, 3b, 3c are installed at the bottom of the aeration tank 2, and air is supplied from the blower 4 through the pipe 5 and the branch pipes 5a, 5b, 5c to perform aeration.
  • the aeration tank 2 is provided with a canopy 2r.
  • the water that has been aerobically treated by the biofilm passes through the screen 2a and is taken out as treated water from the pipe 6.
  • an exhaust gas meter 7 for measuring the oxygen concentration in the gas phase portion gas above the aeration tank 2 and below the canopy 2r, and a DO total 8 for measuring the DO in the aeration tank 2 are used as measuring means.
  • An air volume meter 9 for measuring the amount of air supplied from the blower 4 to the aeration pipes 3a to 3c is provided.
  • aeration is controlled based on the oxygen consumption rate per carrier or granule of the aeration tank, instead of using the raw water load as a control index.
  • the oxygen consumption rate of the aeration tank is high, and when the raw water load is small, the oxygen consumption rate is low, but the oxygen consumption rate includes oxygen consumption due to the self-decomposition process of microorganisms. ing.
  • a microbial film having a film thickness of 3 mm or more is generally formed, and the contact area with bulk water per retained microorganism is typically a floc of about 1 mm. It is less than the floating method that uses the microorganisms that form. Therefore, when supplying oxygen to microorganisms in the biofilm, the diffusion phenomenon of oxygen at the contact surface between the bulk water and the microbial membrane is a major rate-determining factor in oxygen supply. It is also known that the contact area between the microbial membrane and bulk water is a major factor in the oxygen diffusion rate to the microbial membrane. The larger the contact area, the higher the oxygen diffusion rate, and the smaller the contact area, the lower the oxygen diffusion rate.
  • the diffusion rate of oxygen in the microbial membrane depends on the DO level of bulk water, and it is necessary to adjust the DO level in order to adjust the oxygen supply amount. Further, from the viewpoint of the aeration system, the required aeration air volume changes depending on the difference in DO level even if the oxygen supply amount is the same. It is widely known that when the DO level is high, the required aeration amount increases, and when the DO level is low, the required aeration amount decreases. For this reason, conventional treatment equipment that uses biological membranes often keeps the DO level of bulk water high so that a sufficient oxygen diffusion phenomenon that satisfies the required oxygen consumption occurs, resulting in excessive aeration. Often wastes energy.
  • the carrier is scraped to reduce the particle size and flow out of the tank as SS through the gaps in the screen, the carrier filling rate in the tank decreases, and the biofilm
  • the processing performance may decrease due to the decrease in the contact area between the surface and the bulk water.
  • the number and particle size of self-granulation granules fluctuate over time, and the amount of biological membrane in the aeration tank increases or decreases, resulting in biological membrane and bulk water.
  • the oxygen diffusivity to the biological membrane changes. Therefore, even if the organic matter load is the same, the aeration air volume required for wastewater treatment changes.
  • load management using the oxygen consumption rate has the advantage of being able to monitor the oxygen demand including oxygen consumption due to changes in the amount of microorganisms, but the oxygen transfer rate from bulk water to the biological membrane is a carrier. Affected by changes in quantity and contact area. Therefore, even if the oxygen consumption rate is the same, the appropriate DO level and aeration air volume change due to changes in the properties of the carrier and granule, so it is difficult to control the aeration amount that does not cause energy loss while satisfying the oxygen demand. Become.
  • the aeration control can be performed in consideration of the influence of the increase / decrease in the amount of the carrier and the amount of granule, as in the case of performing the aeration control using the raw water load.
  • aeration is controlled by using the oxygen consumption rate per carrier or granule as a control index, not simply the oxygen consumption rate.
  • an index such as the oxygen consumption rate per filling volume of the carrier or granule or the oxygen consumption rate per total surface area of the carrier group or granule can be exemplified.
  • Conc Road Q ⁇ Conc Road: Raw water load [kg / d]
  • Q Raw water flow rate [m 3 / d]
  • Conc Raw water concentration [kg / m 3 ] Examples of the raw water concentration include TOC, ammoniacal nitrogen, and TOC / N concentration estimated from UV absorbance.
  • the carrier volume load is calculated by the following equation.
  • Road CarrierVol Road / V Carrier Load CarrierVol: support volume loading [kg / (m 3 ⁇ d )] V Carrier : Carrier filling volume in the aeration tank [m 3 ]
  • the carrier surface area load is calculated by the following equation.
  • Road CarrierSurf Road / S Carrier Road CarrierSurf : Carrier surface area load [kg / (m 2 ⁇ d)] S Carrier : Total surface area of the carrier group in the aeration tank [m 2 ]
  • the raw water load may fluctuate rapidly in minutes over time, but the change over time in the properties of the carrier (carrier filling volume in the aeration tank or total surface area of the carrier group in the aeration tank) It changes relatively slowly from day to month. Therefore, it is preferable to update the calculated value of the raw water load frequently.
  • the carrier filling volume in the aeration tank or the total surface area of the carrier group in the aeration tank is analyzed by sampling the carrier periodically (for example, once every 1 to 3 months), and the carrier filling volume is analyzed. , The total surface area data of the carrier group may be updated.
  • OTE Oxygen transfer efficiency [-] Z 0 : Oxygen mole fraction in blown air [-] Z: Mole fraction of oxygen in exhaust gas [-] qO 2 : Oxygen consumption rate [kg / d] G ⁇ : Blow-in flow rate of aerated air converted to standard state [Nm 3 / d] ⁇ m : Specific volume of oxygen [Nm 3 / kg]
  • ⁇ Case 2 Method of calculating oxygen consumption rate from DO meter and aeration air volume> The aeration air volume and DO are measured, and the oxygen consumption rate qO 2 is indirectly estimated.
  • I Preparation before mounting the control device
  • OTE Oxygen transfer efficiency [-] Z 0 : Oxygen mole fraction in blown air [-] Z: Mole fraction of oxygen in exhaust gas [-] ⁇ : Oxygen solubility index [m] ⁇ m : Specific volume of oxygen [Nm 3 / kg] h: Water depth of the air diffuser [m] Cs: Saturated dissolved oxygen concentration [kg / m 3 ] C: Dissolved oxygen concentration in the mixed solution [kg / m 3 ]
  • the oxygen consumption rate qO 2 is continuously estimated by the following formula from the DO meter, the continuous measurement data of the aeration air volume, and the oxygen solubility index ⁇ obtained in advance.
  • the relationship between the oxygen consumption rate per carrier or granule of the aeration tank and the corresponding DO target value or the corresponding aeration intensity setting value is set in advance, and the measured value of the oxygen consumption rate fluctuates.
  • the corresponding DO target value or aeration intensity setting value is adjusted based on the above relationship.
  • the aeration device is controlled so that the DO becomes the target value or the set aeration intensity set value.
  • This relationship may be any of a calibration curve (approximate function), a control table, and the like.
  • Biofilm mechanism model for creating calibration curve or control table As one method for finding the relationship between the raw water biofilm load and the DO target value or the exposure intensity setting value, when the biofilm comes into contact with the bulk aqueous phase in a fluid state containing the pollutant and oxygen, the pollutant A kinetic model (hereinafter sometimes referred to as a biofilm mechanism model) that estimates a decrease or an increase or decrease in the amount of activated sludge cells in a biofilm can be used.
  • a biofilm mechanism model is based on the situation where bacterial cell growth and pollutant consumption / oxygen consumption occur simultaneously in the biological membrane, and oxygen is transferred to the bulk water by diffusion of dissolved oxygen in the bulk aqueous phase into the biological membrane and aeration.
  • the increase or contraction of the biofilm occurs due to the increase or decrease in the volume of the bacterial cell group accompanying the growth and death of the bacterial cell, the attachment of the bacterial cell from the bulk water, and the exfoliation of the bacterial cell into the bulk water.
  • kinetic models for biofilm utilization processing it is necessary to mathematically model these phenomena. Since such a phenomenon originally occurs in a three-dimensional space, the model formula is complicated, but the increase / contraction of the biological membrane should be expressed by a one-dimensional model formula that considers changes only in the thickness direction. The simulation can be performed relatively easily.
  • a mathematical model of a fluidized bed carrier can be constructed.
  • such mathematical models are often described in the form of simultaneous ordinary differential equations, and it is possible to simulate the dynamic behavior of the target process using numerical integration software for the simultaneous differential equations. can. For example, it is possible to predict the treated water quality according to the DO situation of the bulk aqueous phase, which changes depending on a specific device configuration, load assumption, and aeration intensity.
  • the aeration intensity can be controlled, for example, by changing the aeration air volume (aeration flow rate), the aeration stop time or the aeration suppression time (weak aeration time) for each fixed time cycle.
  • the aeration stop time indicates the time for stopping the internal aeration in a fixed time cycle in so-called intermittent aeration.
  • the aeration suppression time is the time of weak aeration in the operation of alternately repeating strong aeration and weak aeration.
  • the aeration air volume, aeration stop time, and aeration suppression time are controlled continuously or stepwise according to the raw water load.
  • ⁇ Oxygen diffusivity index> In the case of biomembrane treatment using a self-granulating microbial granule or a biomembrane attached to a fluid bed or fixed bed carrier to remove pollutants, the liquid phase in a fluid state and the microorganism come into contact with each other as compared with the floating method.
  • the surface area is small, and in order to biodecompose pollutants, oxygen and pollutants must diffuse and permeate into the biological membrane (in the thickness direction), and the rate of this diffusion permeation process is the growth rate of microorganisms and oxygen consumption. Due to its slowness compared to its speed, the diffusion infiltration process is one of the major determinants of processing performance.
  • the surface area of the biofilm in contact with bulk water is a factor that affects the diffusion and permeation process.
  • the surface area is narrowed, even if the DO of the bulk water is the same, the total amount of oxygen diffused into the biofilm is relatively reduced, the treatment performance is deteriorated, and the quality of the treated water tends to be deteriorated.
  • the surface area is widened, even if the DO of the bulk water is the same, the total amount of oxygen diffusion to the biofilm is relatively increased, the treatment capacity is increased, and the treated water quality tends to be good. Further, even if the DO is low, sufficient processing performance can be exhibited, and the amount of aeration and the electric power related to aeration can be reduced.
  • wastewater containing organic substances is used when treated by aerobic biological membrane treatment accompanied by aeration, but in addition, an aeration tank such as biological nitrification and denitrification treatment using a biological membrane.
  • an aeration tank such as biological nitrification and denitrification treatment using a biological membrane.
  • the present invention can be carried out by the same method when performing biological treatment including an aerobic treatment step using a biological membrane.
  • Oxygen concentration measurement in the exhaust gas discharged from the aeration tank does not require regular cleaning work because the measuring unit does not come into direct contact with the wastewater that is highly polluted by the sensor. Stable measurement is possible if the above is performed once a day and regular maintenance is performed once a year.
  • a fluorescent DO meter As for the dissolved oxygen concentration meter in the aeration tank, a fluorescent DO meter with little deviation of the measured value due to pollution has been used in recent years, and typically once a month for regular cleaning and air oxygen concentration. The accuracy can be maintained by the calibration work using.
  • Example 1 Method of calculating oxygen consumption rate from air volume meter and exhaust gas meter
  • the oxygen consumption rate qO 2 was calculated from the online data of the aerated air volume and the oxygen concentration in the exhaust gas.
  • (2) Evaluation of calibration frequency of exhaust gas meter 7 (exhaust gas oxygen concentration meter) required for continuous measurement Once a day, O 2 standard gas of known concentration is ventilated to exhaust gas meter 7 and indicated by exhaust gas meter 7. The value was confirmed, and when the difference between the standard gas concentration and the indicated value of the exhaust gas meter 7 was 0.2% or more, the exhaust gas meter 7 was calibrated. The required calibration frequency was once every 7 days. This calibration operation can be automated.
  • Example 2 Method of estimating oxygen consumption rate from DO meter and air volume meter
  • (1) the oxygen concentration in the gas phase above the aeration tank 2 is sampled with an exhaust gas meter, and the aeration air volume in the reaction tank, the oxygen concentration in the exhaust gas, and the DO in the reaction tank are measured.
  • the oxygen solubility index ⁇ was calculated based on the measurement results.
  • (2) Based on the oxygen solubility index ⁇ measured in advance, the oxygen consumption rate qO 2 was continuously calculated from the online measurement data of the DO meter and the aeration air volume.
  • the wastewater to be treated (raw water) is introduced into the aeration tank 11 through the pipe 10.
  • the aeration tank 11 is filled with a carrier C supporting a biofilm.
  • An aeration pipe 13 is installed at the bottom of the aeration tank 11, and air is supplied from the blower 14 through the pipe 15 to perform aeration.
  • the water that has been aerobically treated by the biofilm passes through the screen 12 and is taken out as treated water from the pipe 16.
  • a flow meter 17 and a TOC total 18 for measuring the flow rate and TOC concentration of raw water flowing through the pipe 10
  • a DO total 19 for measuring DO in the aeration tank 11
  • a blower 14 disperse.
  • An aeration meter 20 for measuring the amount of air supplied to the trachea 13 is provided, and these detected values are input to the controller 21.
  • the aeration intensity is controlled by controlling the motor rotation speed of the blower 14 by the controller 21.
  • the TOC load was calculated by measuring the raw water flow rate with the flow meter 17 and measuring the TOC concentration of the raw water with the TOC total 18.
  • Raw water was sampled once a day, filtered through a 0.45 ⁇ m filter, and then the TOC concentration in the filtrate was measured with a TOC meter in the analysis room.
  • the TOC total 18 was calibrated.
  • the required calibration frequency was once every three days.
  • Example 1 ⁇ Creation of control table> Using the biomembrane mechanism model, we simulated the oxygen consumption rate per carrier filling volume, the target value of DO for this, and the effect of weak aeration time on the treated water quality, and targeted for each oxygen consumption rate per carrier filling volume. The relationship between the DO target value and the weak aeration time set value that can realize the minimum aeration air volume that can maintain the treated water quality was obtained in advance and created as a control table shown in Table 2.
  • the oxygen consumption rate per carrier filling volume was calculated by the measurement and calculation of Experimental Example 2, and the DO target value and the weak aeration time set value were adjusted every 2 hours according to this value.
  • TOC carrier volume loading (kgC / (m 3 ⁇ d ), below, may be omitted units.) If there is less than 0.5 to 2.5, the target value of the DO 3.1 mg / L, In the case of 2.5 or more and less than 2.7, the target value of DO is 3.8 mg / L, In the case of 2.7 or more and less than 3.0, the target value of DO is 3.9 mg / L, In the case of 3.0 or more and less than 3.2, the target value of DO is 4.4 mg / L, In the case of 3.2 or more, the target value of DO is 4.8 mg / L, Are set as appropriate values, When the TOC carrier volume load is 0.5 or more and less than 0.8, the weak exposure time setting value is 110 minutes every 2 hours, and when it is 0.8 or more and less than 1.2, 90 minutes every 2 hours.
  • TOC carrier volume loading is 2.7 (kgC / (m 3 ⁇ d))
  • the weak exposure time setting value is set to zero (that is, intermittent exposure was not performed).
  • Raw water whose TOC load fluctuates as shown in Fig. 6 was used as wastewater to be treated.
  • the DO target value once every 2 hours and the weak aeration time in the 2-hour cycle are adjusted based on the control table in Table 2, and the constant low air volume during weak aeration ( It was set to 3 m 3 / (bottom area m 2 ⁇ hr)), and the motor rotation speed of the blower was controlled so as to reach the set DO target value at times other than weak aeration.
  • FIG. 3 The time course of the weak aeration time is shown in FIG. 3, and the time course of DO is shown in FIG. Further, FIG. 5 shows a change over time in power consumption due to the blower.
  • Example 1 The same as in Example 1 except that the target value of DO was fixed at 3.5 mg / L and the weak aeration time was kept constant at 10 minutes / 2 hours. The results are shown in FIGS. 3-5.
  • Example 1 since the DO target value and the weak aeration time were adjusted according to the oxygen consumption rate per carrier, the amount of electric power used by the blower was smaller than that in Comparative Example 1. That is, while the electric energy consumption of Comparative Example 1 was about 1150 kWh / day, the electric energy consumption of Example 1 was about 950 kWh / day, which was about 17% less.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)

Abstract

原水を曝気槽2に供給し、曝気槽に充填された生物膜保持担体Cまたはグラニュールにより原水中の除去対象物質を好気性生物処理する方法及び装置において、生物膜保持担体またはグラニュールあたりの酸素消費速度と、これに対応するDO目標値及び/または対応する曝気強度設定値との関係を予め設定しておき、担体またはグラニュールあたりの酸素消費速度の計測値の変動に応じて前記関係に基づいて前記DO目標値及び/または曝気強度設定値を調整し、DOが該目標値となるように、又は設定された曝気強度設定値となるように曝気装置を制御する。

Description

好気性生物膜処理方法および装置
 本発明は、生物学的に酸化できる汚濁物質を含む排水を、自己造粒グラニュールや流動床担体、固定床担体などにより生物膜処理する方法及び装置に係り、特にその曝気強度制御に関する。本発明においては、微生物処理を行う生物膜の外部に存在する排水をバルク水と呼ぶ。
 生物学的に酸化できる汚濁物質を含む排水の処理方法として、浮遊汚泥を用いる活性汚泥法のほか、自己造粒グラニュール法や流動床担体法、固定床担体法など、微生物が生物膜とよばれる集積増殖した様態で処理を行う生物膜法などがある。
 前者の浮遊汚泥を用いる活性汚泥法では、微生物フロックと称される様態で微生物が反応増に分散状態に維持されている。排水処理に伴い増加する微生物を余剰汚泥として引き抜く操作により反応槽で維持する微生物量を一定に維持することで微生物自体の自己分解プロセスに起因して発生する酸素消費を一定のレベルに維持することができる。従って、同プロセスでの必要酸素量の増減は原水負荷に比例して変化する。この酸素消費に微生物の自己分解プロセスに伴う一定の酸素消費のオフセットを足すことで供給すべき酸素消費量を決定することができる。同プロセスでは微生物が典型的にはフロックと呼ばれる1mm前後の微生物の凝集体の様態で保持されており、微生物とバルク水相との接触面積が十分確保されている。そのため、フロック内での酸素や汚濁物質の浸透性・拡散性が汚濁物除去速度の主要な処理性能の律速因子とならない。このため装置に供給すべき曝気風量は酸素消費量に比例すると考えられる。特許文献1には、汚濁物質の負荷を計器で計測し、これに基づいて曝気風量を制御することが記載されている。
 浮遊汚泥を用いる活性汚泥法、および生物膜法(自己造粒グラニュール法、流動床担体法、固定床担体法など)においては、原水の負荷に比例した酸素供給量調整を簡易に行う手法として、液中の溶存酸素濃度(以下DOと記載する)を一定に保つ風量制御を行ういわゆるDO制御システムが広く用いられている。
 特許文献2には、自己造粒グラニュール法、流動床担体法において、BOD容積負荷が所定値よりも小さいときは微生物担体の流動化を判断基準とし、BOD容積負荷が前記所定値よりも大きいときは廃水の酸素要求量を判断基準として廃水に対する曝気量を制御することが記載されている。
特開2001-353496号公報 特開昭63-256185号公報
 自己造粒グラニュール法、流動床担体法、固定床担体法など生物膜を利用した処理を行う方法では、原水負荷の指標として一般的である、原水の単位時間あたりの流量と原水の汚濁物質濃度との積により求められる流入負荷や、流入負荷を反応槽の容積で除算して求められる槽負荷のみに基づいて適切な酸素供給量調整を行うことは、厳密には困難である。その理由として以下が挙げられる。
 微生物膜を利用する方法では、反応槽に生物膜の様態で保持されている微生物量を一定に保つ手段がなく結果保持されている微生物量が時間により変化するため、微生物自体の自己分解プロセスに起因して発生する酸素消費量も変化する。従って生物膜を利用した方法では、装置に与える酸素供給量は原水の負荷に比例して変化する酸素消費量の変化に加え微生物保持量の変化に伴う酸素消費の変化も考慮して決定する必要がある。
 こういった要因により、生物膜を利用した処理方式では負荷変動に応じて原水有機物の酸化に必要な酸素量は変化し、処理装置内に保持されている生物膜の量の変化によっても供給する必要がある酸素量は変化する。さらに生物膜法では典型的には3mm以上の膜厚の微生物膜が形成されることが一般的であり、保持されている微生物あたりのバルク水との接触面積が浮遊法と比較して少ない。このため生物膜内の微生物への酸素供給にあたってはバルク水と生物膜の接触面における酸素の拡散現象が酸素供給における主要な律速因子となる。
 生物膜における酸素の拡散速度はバルク水のDOレベルに依存するので、酸素供給量を調整するためにはDOレベルを調整する必要がある。また、曝気システムの観点からは、同じ酸素供給量であってもDOレベルの違いにより必要曝気風量は変化する。DOレベルが高い場合には必要曝気量が増え、DOレベルが低い場合には必要曝気量は低下することが広く知られている。
 従って、負荷が増加した場合には、原水中の有機物の酸化に必要な酸素量は増加する。生物膜として保持されている微生物量の変化に応じて変化する自己分解プロセスに起因する酸素消費量を加味して供給必要酸素量が決まる。供給必要酸素量の増加に応じバルク水のDOを高くする調整を行い、目標とするDOを達成するために曝気風量も増加する必要がある。
 逆に、負荷が低下した場合には、原水中の有機物の酸化に必要な酸素量は低下する。生物膜として保持されている微生物量の変化に応じて変化する自己分解プロセスに起因する酸素消費量を加味して供給必要酸素量が決まる。供給必要酸素量の低下に応じバルク水のDOを低く維持することができ、目標とするDOを達成するための曝気量も低下する。
 こういった理由から、曝気風量の負荷に応じた調整・制御をしない運転を行う場合、高負荷時においてもバルク水のDOを高く維持し酸素供給量を維持できるように曝気風量を過剰に多くした状態での風量一定運転をする必要がある。
 高負荷時において必要な高いDOを維持できる風量一定運転下では、負荷低下時の酸素消費低下時の酸素消費低下に応じた風量抑制をしないためエネルギーの無駄が発生する。高負荷時の酸素供給を想定し高めのDO目標値を設定したDO制御を行った場合も、生物膜処理装置では負荷低下維持にはDOレベルを低下することができるため、DO制御の目標DOレベルをさげれば、曝気風量を絞ることが可能である。しかし、通常のDO制御ではこのようなDO目標値低下による風量抑制をしないためエネルギー消費の無駄はなお発生する。
 このような理由から、エネルギー消費の無駄は、負荷変動が大きな場合に特に顕著となる。しかしながら、このようなエネルギー消費の無駄が生じる状況があっても、負荷変動に応じて処理水質を悪化させないDOレベルを調整する操作・目標DOレベルに風量調整を行うことは従来の技術では困難である。オペレーターが適宜風量調整を行う場合でも、従来は低負荷であってもある程度の高負荷を想定そのため、従来は低負荷であってもある程度の余裕をみた必要以上の酸素供給を行うべく過剰なDOレベル設定・曝気をおこなうことが多い。そのため、エネルギーの無駄が生じる場合が多い。
 原水負荷の指標として一般的である原水負荷を曝気強度の調整に利用しようとする場合、原水中の除去対象物質の濃度を計測する必要がある。この場合、例えば有機物負荷のオンライン計測装置としてTOC計、アンモニアセンサー、吸光度系などを原水槽に設置する対応が考えられる。しかしながら計測機の初期費用高い、有機物種に固形物が多いなどの理由から安定した計測が難しい、有機物の組成により分析精度が得られなといった問題から現実には設置が難しく、自動計測による負荷監視ができないため、結果適切な曝気強度を決定することが困難な状況が発生する場合がしばしば発生する。
 また、TOC計、アンモニアイオンセンサー、吸光度計などで原水中の除去対象有機物質の濃度計測を行うと、センサーの洗浄・校正などの維持管理作業に手間がかかる。特にTOC計は複雑な機構を備えたものであり、故障確率が高い。そのため、TOC計を利用した制御システムの安定維持は、運転管理面から困難であり、誤動作の懸念がある。
 本発明は、好気性生物膜を用いた排水処理において、曝気を適切に制御する方法及び装置を提供することを目的とする。
 本発明の好気性生物膜処理方法は、原水を曝気槽に供給し、曝気装置で曝気し、曝気槽に充填された生物膜保持担体またはグラニュールにより原水中の除去対象物質を好気性生物処理する方法において、該担体またはグラニュールあたりの酸素消費速度と、これに対応するDO目標値及び/または対応する曝気強度設定値との関係を予め設定しておき、担体またはグラニュールあたりの酸素消費速度の計測値の変動に応じて前記関係に基づいて前記DO目標値及び/または曝気強度設定値を調整し、DOが該目標値となるように、又は設定された曝気強度設定値となるように、前記曝気装置を制御することを特徴とする。
 本発明の好気性生物膜処理装置は、原水が供給される曝気槽と、該曝気槽を曝気する曝気装置と、該曝気槽に充填された生物膜付き担体またはグラニュールと、該曝気装置を制御する制御器とを有する好気性生物処理装置において、該担体またはグラニュールあたりの酸素消費速度と、これに対応するDO目標値及び/または対応する曝気強度設定値との関係を予め設定する手段と、担体またはグラニュールあたりの酸素消費速度の計測値の変動に応じて前記関係に基づいて前記DO目標値及び/または曝気強度設定値を調整する手段とを備えており、前記制御器は、DOが該目標値となるように、又は設定された曝気強度設定値となるように、前記曝気装置を制御することを特徴とする。
 本発明の一態様では、前記担体またはグラニュールあたりの酸素消費速度は、担体の充填容積あたりの酸素消費速度、担体群の総表面積あたりの酸素消費速度、グラニュールの充填体積あたりの酸素消費速度、グラニュール群の総表面積あたりの酸素消費速度、のいずれかである。
 本発明の一態様では、前記担体またはグラニュールあたりの酸素消費速度は、曝気風量の計測値と、曝気槽から放出された気相中の酸素濃度の計測値、もしくは、曝気槽のDOの計測値および曝気槽の酸素溶解効率の実験値または計算値と、担体の充填容積または表面積の計測値あるいは計算値とから算出されたものである。
 本発明の一態様では、前記曝気強度の制御を、曝気風量、曝気停止時間又は曝気抑制時間の制御によって行う。
 本発明の一態様では、前記関係を、実験結果、実機の運転実績、生物膜における酸素の拡散性を考慮した機構モデルの何れかを用いて設定する。
 本発明では、原水負荷ではなく、曝気槽の酸素消費速度を用いて、TOC計など原水濃度計測にセンサーを用いることなく曝気制御が可能であるため、メンテナンスの人手とコストを抑制することができる上、現場施設や原水種によってTOC計が使用できないケースにおいても適切に曝気制御することが可能となる。
 また、本発明の一態様では、担体またはグラニュールあたりの酸素消費速度を用いて、経時的に変化する曝気槽内の担体やグラニュールの性状に適合した必要十分な酸素供給を推定し、DOの目標値や曝気強度の設定値そのものを変更して制御するため、より適切な曝気制御が可能となる。
本発明が適用される生物処理装置の構成図である。 比較例の生物処理装置の構成図である。 実施例及び比較例の結果を示すグラフである。 実施例及び比較例の結果を示すグラフである。 実施例及び比較例の結果を示すグラフである。 原水のTOC負荷を示すグラフである。
 図1は本発明が適用される生物処理装置の構成図である。
 被処理排水(原水)は、配管1を通じて曝気槽2に導入される。曝気槽2内には、生物膜を担持した担体Cが充填されている。曝気槽2内の底部には散気管3a,3b,3cが設置されており、ブロア4から配管5及び分岐配管5a,5b,5cを通じて空気が供給され、曝気が行われる。曝気槽2には天蓋2rが設けられている。
 生物膜によって好気的に生物処理された水は、スクリーン2aを通り抜け、配管6から処理水として取り出される。
 この生物処理装置では、計測手段として、曝気槽2上部かつ天蓋2r下側の気相部ガス中の酸素濃度を測定する排ガス計7と、曝気槽2内のDOを測定するDO計8と、ブロア4から散気管3a~3cへ供給される空気量を測定する風量計9が設けられている。
 本発明では、原水負荷を管理指標とするのでなく、曝気槽の担体またはグラニュールあたりの酸素消費速度に基づいて曝気制御する。
 一般に、原水負荷が大きいと曝気槽の酸素消費速度は大きく、原水負荷が小さいと酸素消費速度は小さくなるが、同酸素消費速度は微生物の自己分解プロセスに起因する酸素消費を含んだものとなっている。
 一方、生物膜法では典型的には3mm以上の膜厚の微生物膜が形成されることが一般的であり、保持される微生物あたりのバルク水との接触面積が典型的には1mm前後のフロックを形成している微生物を利用する浮遊法と比較して少ない。このため生物膜内の微生物への酸素供給にあたってはバルク水と微生物膜の接触面における酸素の拡散現象が酸素供給における主要な律速因子となる。また、微生物膜への酸素拡散速度に微生物膜とバルク水との接触面積が主要な因子となることも知られている。接触面積が広ければ酸素拡散速度は高まり、接触面積が狭くなれば酸素拡散速度は低下する。また、微生物膜における酸素の拡散速度はバルク水のDOレベルに依存することが知られており、酸素供給量を調整するためにはDOレベルを調整する必要があることになる。また、曝気システムの観点からは、同じ酸素供給量であってもDOレベルの違いにより必要曝気風量は変化する。DOレベルが高い場合には必要曝気量が増え、DOレベルが低い場合には必要曝気量は低下することが広く知られている。そのため、従来は生物膜を利用する処理装置では、必要な酸素消費を満たす十分な酸素拡散現象が発生するようにバルク水のDOレベルを高めに維持することが多く、結果過剰な曝気を行うことが多く、エネルギーの無駄が生じることが多い。
 DOレベルを高めに維持することにより曝気に関連するエネルギーの無駄が生じる状況が発生する根本原因について検討したところ、曝気槽内に充填した担体やグラニュールの保持量・保持量に比例して変化する微生物膜とバルク水の接触面積が変化し酸素の拡散効率が変化することが一因であることが見出された。
 例えば、流動床担体が充填された曝気槽を長期運転した場合、担体が削れて小粒径化してスクリーンの隙間からSSとして槽外に流出し、槽内の担体充填率が低下し、生物膜表面とバルク水の接触面積が低下することにより処理性能が低下することがある。
 また、沈降性の担体を利用した膨張床を設けた曝気槽の場合、定期的に逆洗して担体間の余剰汚泥やSSを排出する必要がある。この際に担体相互の衝突や剪断力により担体が摩耗して担体の充填率が徐々に低下し、槽内の担体充填率が低下し、生物膜表面とバルク水の接触面積が低下することにより、酸素の生物膜への拡散に寄与できる生物膜とバルク水との接触面積が低下し、酸素の移動速度が低下し、処理性能が低下する。
 自己造粒グラニュールを用いる生物処理槽では、経時的に自己造粒グラニュールの個体数や粒径が変動して、曝気槽内における生物膜の量が増減することにより、生物膜とバルク水の接触面積が増減することにより生物膜への酸素拡散性が変化する、このため有機物負荷が同じであっても排水処理に必要な曝気風量が変化する現象が発生する。
 このような理由から、酸素消費速度を利用した負荷管理は微生物量の変化に起因する酸素消費も含んだ酸素要求量を監視できるメリットはあるものの、バルク水から生物膜への酸素移動速度が担体量の変化や接触面積の変化の影響を受ける。このため酸素消費速度が同じであっても担体やグラニュールの性状変化により適切なDOレベルや曝気風量は変化するため酸素要求量を満たしつつエネルギーロスを発生させない曝気量を管理することは困難となる。このような理由から、酸素消費速度を利用した曝気制御においても原水負荷を利用した曝気制御を行う場合と同様に、担体量やグラニュール量の増減の影響を考慮した曝気制御が可能となる担体またはグラニュールあたりの酸素消費速度を指標として曝気制御を行うことが望ましい。担体またはグラニュール量あたりのバルク水と生物膜との接触面積は一定と想定できるため、接触面積の変化に伴う酸素移動速度の変化を考慮に入れる必要がなくなるためである。
 そこで、本発明では、単に酸素消費速度ではなく、担体またはグラニュールあたりの酸素消費速度を管理指標として用いて曝気を制御する。
 担体またはグラニュールあたりの酸素消費速度として、担体またはグラニュールの充填容積あたりの酸素消費速度、あるいは、担体群またはグラニュールの総表面積あたりの酸素消費速度といった指標を例示することができる。
<原水負荷>
 原水負荷は次式によって算出される。
  Load=Q・Conc
    Load:原水負荷[kg/d]
    Q:原水流量[m/d]
    Conc:原水濃度[kg/m
 原水濃度としては、TOC、アンモニア性窒素、UV吸光度から推算したTOC・Nの濃度が挙げられる。
<担体容積負荷>
 担体容積負荷は次式によって算出される。
  LoadCarrierVol=Load/VCarrier
   LoadCarrierVol:担体容積負荷[kg/(m・d)]
   VCarrier:曝気槽内の担体充填容積[m
<担体表面積負荷>
 担体表面積負荷は次式によって算出される。
  LoadCarrierSurf=Load/SCarrier
   LoadCarrierSurf:担体表面積負荷[kg/(m・d)]
   SCarrier:曝気槽内の担体群の総表面積[m
 曝気槽においては、原水負荷は経時的に分単位で急速に変動することがあるが、担体の性状(曝気槽内の担体充填容積又は曝気槽内の担体群の総表面積)の経時的変化は日から月単位で比較的緩慢に変化する。そのため、原水負荷の計算値は頻繁に更新するのが好ましい。また、曝気槽内の担体充填容積又は曝気槽内の担体群の総表面積については、担体を定期的に(例えば1~3ヶ月に1回程度の頻度で)サンプリングして解析し、担体充填容積、担体群の総表面積データを更新すればよい。
[酸素消費速度の演算方法]
<ケース1:風量計と排ガス計から酸素消費速度を演算する方法>
 曝気風量と排ガス中の酸素濃度を計測し、酸素消費速度qOを次式により直接的に演算する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 OTE:酸素移動効率[-]
 Z:吹き込み空気中の酸素モル分率[-]
 Z:排ガス中の酸素モル分率[-]
 qO:酸素消費速度[kg/d]
 Gν:標準状態換算の曝気空気の吹き込み流量[Nm/d]
 ν:酸素の比容[Nm/kg]
<ケース2:DO計と曝気風量とから酸素消費速度を計算する方法>
 曝気風量とDOを計測し、酸素消費速度qOを間接的に推算する。
(i) (制御装置実装前の準備)酸素消費速度の推算に必要な酸素溶解性指標φを次式により算出する。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 OTE:酸素移動効率[-]
 Z:吹き込み空気中の酸素モル分率[-]
 Z:排ガス中の酸素モル分率[-]
 φ:酸素溶解性指標[m]
 ν:酸素の比容[Nm/kg]
 h:散気装置の水深[m]
 Cs:飽和溶存酸素濃度[kg/m
 C:混合液中の溶存酸素濃度[kg/m
(ii) (装置稼働時)酸素消費速度の経時変化を連続計測する。
 DO計と曝気風量の連続計測データ、および予め求めた酸素溶解性指標φから酸素消費速度qOを次式により連続推算する。
Figure JPOXMLDOC01-appb-M000005
 qO:酸素消費速度[kg/d]
 Gν:標準状態換算の曝気空気の吹き込み流量[Nm/h]
 h:散気装置の水深[m]
 Cs:飽和溶存酸素濃度[kg/m
 C:混合液中の溶存酸素濃度[kg/m
 φ:酸素溶解性指標[m]
 本発明では、曝気槽の担体またはグラニュールあたりの酸素消費速度と、これに対応するDO目標値または対応する曝気強度設定値との関係を予め設定しておき、酸素消費速度の計測値の変動に応じて前記関係に基づいて対応するDO目標値または曝気強度設定値を調整する。
 そして、DOが目標値となるように、又は設定された曝気強度設定値となるように曝気装置を制御する。
[酸素消費速度と、DO目標値及び/又は曝気強度設定値との関係]
 酸素消費速度と、DO目標値及び/または曝気強度設定値との関係は、予備実験の結果データ、実機の運転実績データ、生物膜における酸素の拡散性を考慮した機構モデルのシミュレーション結果などを用いて設定される。
 この関係は、検量線(近似関数)、制御表などのいずれでもよい。
[検量線又は制御表を作成するための生物膜機構モデル]
 原水生物膜負荷と、DO目標値または曝気強度設定値との関係を見出すための1手法として、汚濁物質と酸素を含む流動状態にあるバルク水相に生物膜が接したときの、汚濁物質の減少や生物膜中の活性汚泥菌体量の増減を推定する動力学モデル(以降、生物膜機構モデルと称する場合がある。)を利用することができる。このような動力学モデルは、菌体増殖と汚濁物質の消費・酸素消費が生物膜内で同時に発生する状況、バルク水相中の溶存酸素の生物膜への拡散およびエアレーションにより酸素がバルク水中に溶解する現象も考慮して構築する必要がある。また、生物膜の増加や縮小は、菌体の増殖および死滅に伴った菌体群の体積の増加および減少やバルク水からの菌体の付着およびバルク水への菌体の剥離により発生する。生物膜利用処理に動力学モデルを利用する場合、これらの現象を数学モデル化する必要がある。このような現象は本来3次元空間で発生する現象のため、モデル式は複雑なものとなるが、生物膜の増加・縮小を厚さ方向のみの変化を考慮する1次元モデル式で表現することでシミュレーションを比較的容易に行うことができる。活性汚泥による排水処理をシミュレーションするための数学モデルとしては、例えばInternational Water AssociationのTask Groupが提案している一連の数学モデル[参考文献1] が活用できる。生物膜を対象とした数学モデル例としては[参考文献2]などを利用できる。
[参考文献1] M Henze; IWA. Task Group on Mathematical Modelling for Design and Operaton of Biological Wastewater Treatment; et al
[参考文献2] Boltz, J. P., Johnson, B.R., Daigger, G.T., Sandino, J., (2009a). “Modeling Integrated Fixed-Film Activated Sludge and Moving Bed Biofilm Reactor Systems I: Mathematical Treatment and Model Development”. Water Environment Research, 81(6), 555-575
 数学モデルを利用することで、例えば流動床担体の数学モデルを構築することができる。一般にこのような数学モデルは連立常微分方程式の形式で記述されることが多く、常微分連立法廷式を対象とした数値積分ソフトウエアを利用して対象プロセスの動的な挙動をシミュレーションすることができる。例えば、特定の装置構成、負荷想定、曝気強度により変化するバルク水相のDOの状況に応じた処理水質の予想を行うことが可能である。
 数学モデルを利用することで、様々な負荷条件に対して、様々な曝気強度で処理を行った場合の、例えば処理水のTOC濃度を予想することができる。シミュレーション結果を踏まえ、処理が悪化しない最低限のDO目標値や曝気強度調整を検討し、シミュレーション結果を整理した表を作成し、本特許の制御システムで利用する制御表に活用することができる。
[曝気強度の制御]
 曝気強度は、例えば、曝気風量(給気流量)、一定の時間サイクル毎の曝気停止時間あるいは曝気抑制時間(弱曝気の時間)を変えることにより制御することができる。曝気停止時間はいわゆる間欠曝気における一定の時間サイクルの内曝気を停止する時間を示す。曝気抑制時間とは、強曝気と弱曝気を交互に繰り返す運転における弱曝気の時間である。
 曝気風量、曝気停止時間、曝気抑制時間は、原水負荷に応じて連続的又は段階的に制御する。
<酸素拡散性指標>
 汚濁物質除去のために自己造粒微生物グラニュールや流動床もしくは固定床担体に付着させた生物膜を利用する生物膜処理の場合、浮遊法と比較して流動状態の液相と微生物とが接触する表面積が少なく、汚濁物質の生分解のためには生物膜の内部へ(厚み方向へ)酸素や汚濁物質が拡散浸透する必要があり、この拡散浸透プロセスの速度は微生物の増殖速度・酸素消費速度と比較して遅いため、拡散浸透プロセスが処理性能を決定する主要な要因の一つである。
 生物膜がバルク水と接触する表面積は拡散浸透プロセスに影響を与える因子である。表面積が狭くなると、バルク水のDOが同じであっても、相対的に生物膜への酸素拡散総量が減り、処理性能が低下して処理水水質が悪化する傾向となる。逆に、表面積が広くなると、バルク水のDOが同じであっても、相対的に生物膜への酸素拡散総量が増加し、処理能力が上がり、処理水質が良好となる傾向となる。また、低いDOであっても十分な処理性能を発揮することができ、曝気量、曝気に関わる電力を削減できる。
 自己造粒微生物グラニュールを利用する装置の場合、長期的な運用によりグラニュールが肥大した場合、自己造粒微生物グラニュールの容積あたりのバルク水と接触する比表面積が低下し、装置容積あたりのバルク水と接触する表面積が低下する。
 担体を利用する装置の場合、長期的な運用により担体が保持する汚泥保持量が増加すると、担体内部の空隙空間が微生物膜自体およびスケール成分等の生物活性のない固形分により閉塞するため、バルク水と生物膜の接触面積が低下する。この結果、担体充填容積あたりのバルク水と接触する比表面積が低下し、曝気槽容積あたりのバルク水と接触する表面積が低下する。
 特に、固定担体に付着させた生物膜を利用する処理の場合、運用期間が長期に渡ると担体間の空間に過剰な生物膜が保持されていく傾向がある。このような状況では、生物膜保持量の増加に応じバルク水相の容量が相対的に低下する。また、この状態がさらに進むと、担体間の空間が微生物膜により閉塞し、バルク水が流入できない空間が発生する。この結果、バルク水相と生物膜との接触面積が徐々に低下し、生物膜への酸素や汚濁物質の浸透透過性が経時的に低下する傾向がある。
[流動床以外の生物処理]
 図1では、流動床担体を用いた生物処理について説明したが、固定床担体やグラニュールを用いる場合も同様の手法で本発明を実施することができる。
 本実施形態では、有機物を含む排水を、曝気を伴う好気性生物膜処理により処理するときに用いることを説明したが、他にも生物膜を用いた生物学的硝化脱窒処理など、曝気槽にて生物膜を用いた好気処理工程を含む生物処理を行う場合にも同じ手法で本発明を実施することができる。
[センサーのメンテナンス]
 風量計測にはオリフィスと組み合わせた微差圧計やピトー管と組み合わせた微差圧計や熱線式風量計を利用することが一般的である。工業計器である微差圧計や熱線式風量計の計測安定性は高く、大気を対象とした計測であり汚濁物質を含む排水を対象とした計測と比較してセンサー汚染による精度低下のリスクも少ないため、典型的には1回/年の定期的なメンテナンスを行えば安定した計測が可能である。
 曝気槽から放出される排気中の酸素濃度計測は、計測部がセンサー汚染性の高い排水と直接接触しないため、定期的な洗浄作業が不要で、典型的には大気酸素濃度を利用した定期校正を1回/1日実施し、1回/年の定期的なメンテナンスを行えば安定した計測が可能である。
 曝気槽内の溶存酸素濃度計は、汚染による計測値のずれが原理的に少ない蛍光式DO計が近年使われるようになっており、典型的には1回/月の定期洗浄・空気酸素濃度を利用した校正作業で精度を維持することができる。
[実験例1:風量計と排ガス計から酸素消費速度を演算する方法]
(1) 図1の生物処理装置において、曝気風量と排ガス中の酸素濃度のオンラインデータから酸素消費速度qOを演算した。
(2) 連続計測に必要な排ガス計7(排ガス酸素濃度計)の校正頻度の評価
 1日に1度、既知の濃度のO標準ガスを排ガス計7に通気して、排ガス計7の指示値を確認し、標準ガス濃度と排ガス計7の指示値の差が0.2%以上となった場合は、排ガス計7を校正した。必要な校正頻度は7日間に1度であった。なお、本校正操作は自動化が可能である。
[実験例2:DO計と風量計から酸素消費速度を推算する方法]
(1) 図1の生物処理装置において、曝気槽2上部の気相部の酸素濃度を排ガス計で採取し、反応槽の曝気風量、排ガス中の酸素濃度、反応槽内のDOを測定し、測定結果に基づき酸素溶解性指標φを計算した。
(2) 事前計測した酸素溶解性指標φに基づき、DO計と曝気風量のオンライン計測データから酸素消費速度qOを連続演算した。
(3) 連続計測に必要なDO計の校正頻度の評価
 1日に1度、飽和水で校正したポータブルDO計で反応槽内のDOを測定することで、DO計8との指示値の差を確認し、その差が±0.5mg/L以上となった場合、DO計8を校正した。必要な校正頻度は15日間に1度であった。
[実験例3:TOC計と流量計から原水負荷を算出]
 図2に示す生物処理装置を用いて、原水のTOC濃度の計測値を利用した原水負荷に基づく曝気制御を行う場合のメンテナンス頻度について確認した。
 図2の生物処理装置では、被処理排水(原水)は、配管10を通じて曝気槽11に導入される。曝気槽11内には、生物膜を担持した担体Cが充填されている。曝気槽11内の底部には散気管13が設置されており、ブロア14から配管15を通じて空気が供給され、曝気が行われる。
 生物膜によって好気的に生物処理された水は、スクリーン12を通り抜け、配管16から処理水として取り出される。
 この生物処理装置では、計測手段として、配管10を流れる原水の流量及びTOC濃度を測定する流量計17及びTOC計18と、曝気槽11内のDOを測定するDO計19と、ブロア14から散気管13へ供給される空気量を測定する風量計20が設けられており、これらの検出値が制御器21に入力される。制御器21によってブロア14のモーター回転数が制御されることにより曝気強度が制御される。
 原水流量を流量計17で測定し、TOC計18で原水のTOC濃度を測定することで、TOC負荷を算出した。
 1日に一度、原水をサンプリングして、0.45μmのフィルターでろ過した後、濾液中のTOC濃度を分析室のTOC計で測定した。TOC計18と分析室のTOC計の指示値の差が5%以上となった場合は、TOC計18を校正した。必要な校正頻度は3日間に1度であった。
Figure JPOXMLDOC01-appb-T000006
 表1の通り、原水中のTOCをTOC計18で測定する実験例3よりも、曝気槽における酸素消費速度を直接的または間接的に算出する実験例1,2の方が計器の校正の手間が小さいことが認められた。
[実施例1]
<制御表の作成>
 生物膜機構モデルを利用して、担体充填容積あたりの酸素消費速度とこれに対するDOの目標値および弱曝気時間の処理水質への影響のシミュレーションを行い、担体充填容積あたりの酸素消費速度毎に目標処理水質を維持できる最小曝気風量を実現できるDO目標値および弱曝気時間設定値の関係を予め求めて、表2に示す制御表として作成した。
Figure JPOXMLDOC01-appb-T000007
 実験例2の計測・演算により担体充填容積あたりの酸素消費速度を算出し、この数値に応じて2hr毎にDOの目標値および弱曝気時間設定値を調整した。
 この制御表では、例えば、TOC担体容積負荷(kgC/(m・d)、以下、単位を省略する場合がある。)が
0.5以上~2.5未満の場合は、DOの目標値3.1mg/L、
2.5以上~2.7未満の場合は、DOの目標値3.8mg/L、
2.7以上~3.0未満の場合は、DOの目標値3.9mg/L、
3.0以上~3.2未満の場合は、DOの目標値4.4mg/L、
3.2以上の場合は、DOの目標値4.8mg/L、
をそれぞれ適正値として設定し、
TOC担体容積負荷0.5以上~0.8未満の場合は、弱曝気時間設定値を2時間ごとに110分、同0.8以上1.2未満の場合は2時間ごとに90分、同1.2以上1.5未満の場合は2時間ごとに80分、同1.5以上2.0未満の場合は2時間ごとに60分、同2.0以上2.5未満の場合は2時間ごとに40分、同2.0以上2.5未満の場合は2時間ごとに20分をそれぞれ適正値として設定し、TOC担体容積負荷が2.7(kgC/(m・d))以上の場合は、弱曝気時間設定値をゼロとする(つまり間欠曝気を行わなかった。)。
 TOC負荷が図6の通り変動する原水を処理対象排水とした。
 担体容積負荷の2時間の移動平均値に基づき、2時間に1度DO目標値、2時間サイクルでの弱曝気時間を表2の制御表に基づき調整し、弱曝気時は一定の低風量(3m/(底面積m・hr))とし、弱曝気時以外の時間は設定したDO目標値となるようにブロアのモーター回転数を制御した。
 弱曝気時間の長さの経時変化を図3に示し、DOの経時変化を図4に示す。また、ブロアによる電力消費量の経時変化を図5に示す。
[比較例1]
 DOの目標値を3.5mg/Lと一定とし、弱曝気時間を10分/2時間と一定に維持したこと以外は実施例1と同様にした。結果を図3~5に示す。
<考察>
 実施例1では、担体当たりの酸素消費速度に応じてDO目標値および弱曝気時間を調整したので、ブロアの電力使用量が比較例1に比べて少ない。即ち、比較例1の電力消費量は約1150kWh/日であったのに対して、実施例1の電力消費量は約950kWh/日となり、約17%少ない。
 なお、実施例1及び比較例1の処理水質は殆ど差異がなかった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2020年3月31日付で出願された日本特許出願2020-063032に基づいており、その全体が引用により援用される。
 2,11 曝気槽
 2a,12 スクリーン
 3a,3b,3c 散気管
 4,14 ブロア
 7 排ガス計
 8,19 DO計
 9,20 風量計

Claims (6)

  1.  原水を曝気槽に供給し、曝気装置で曝気し、曝気槽に充填された生物膜保持担体またはグラニュールにより原水中の除去対象物質を好気性生物処理する方法において、
     該担体またはグラニュールあたりの酸素消費速度と、これに対応するDO目標値及び/または対応する曝気強度設定値との関係を予め設定しておき、
     担体またはグラニュールあたりの酸素消費速度の計測値の変動に応じて前記関係に基づいて前記DO目標値及び/または曝気強度設定値を調整し、
     DOが該目標値となるように、又は設定された曝気強度設定値となるように、前記曝気装置を制御することを特徴とする好気性生物膜処理方法。
  2.  前記担体またはグラニュールあたりの酸素消費速度は、担体の充填容積あたりの酸素消費速度、担体群の総表面積あたりの酸素消費速度、グラニュールの充填体積あたりの酸素消費速度、グラニュール群の総表面積あたりの酸素消費速度、のいずれかである請求項1の好気性生物膜処理方法。
  3.  前記担体またはグラニュールあたりの酸素消費速度は、
     曝気風量の計測値と、
     曝気槽から放出された気相中の酸素濃度の計測値、もしくは、曝気槽のDOの計測値および曝気槽の酸素溶解効率の実験値または計算値と、
     担体の充填容積または表面積の計測値あるいは計算値と
    から算出されたものであることを特徴とする請求項1又は2の好気性生物膜処理方法。
  4.  前記曝気強度の制御を、曝気風量、曝気停止時間又は曝気抑制時間の制御によって行う請求項1~3のいずれかの好気性生物膜処理方法。
  5.  前記関係を、実験結果、実機の運転実績、生物膜における酸素の拡散性を考慮した機構モデルの何れかを用いて設定することを特徴とする請求項1~4のいずれかの好気性生物膜処理方法。
  6.  原水が供給される曝気槽と、該曝気槽を曝気する曝気装置と、該曝気槽に充填された生物膜付き担体またはグラニュールと、該曝気装置を制御する制御器とを有する好気性生物処理装置において、
     該担体またはグラニュールあたりの酸素消費速度と、これに対応するDO目標値及び/または対応する曝気強度設定値との関係を予め設定する手段と、
     担体またはグラニュールあたりの酸素消費速度の計測値の変動に応じて前記関係に基づいて前記DO目標値及び/または曝気強度設定値を調整する手段と
    を備えており、
     前記制御器は、DOが該目標値となるように、又は設定された曝気強度設定値となるように、前記曝気装置を制御することを特徴とする好気性生物膜処理装置。
PCT/JP2021/008419 2020-03-31 2021-03-04 好気性生物膜処理方法および装置 WO2021199886A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180025336.1A CN115335334A (zh) 2020-03-31 2021-03-04 好氧生物膜处理方法及装置
KR1020227027063A KR20220150286A (ko) 2020-03-31 2021-03-04 호기성 생물막 처리 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020063032A JP7017166B2 (ja) 2020-03-31 2020-03-31 好気性生物膜処理方法および装置
JP2020-063032 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021199886A1 true WO2021199886A1 (ja) 2021-10-07

Family

ID=77930192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008419 WO2021199886A1 (ja) 2020-03-31 2021-03-04 好気性生物膜処理方法および装置

Country Status (4)

Country Link
JP (1) JP7017166B2 (ja)
KR (1) KR20220150286A (ja)
CN (1) CN115335334A (ja)
WO (1) WO2021199886A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115583721A (zh) * 2022-09-23 2023-01-10 浙江数翰科技有限公司 基于污水处理的ai智能曝气方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206087A (ja) * 1993-01-12 1994-07-26 Shimizu Corp 循環流動床型廃水処理方法および循環流動床型廃水処理における曝気量制御方法
JPH09187783A (ja) * 1996-01-11 1997-07-22 Nkk Corp 浄水用生物接触濾過装置の運転方法
US6375845B1 (en) * 1997-10-02 2002-04-23 Suez-Lyonnaise Des Eaux Method for evaluating and controlling the biomass contained in waste water treatment biological tanks

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548561B2 (ja) 1987-04-10 1996-10-30 建設省建築研究所長 廃水処理方法およびその装置
JP4365512B2 (ja) 2000-06-12 2009-11-18 株式会社東芝 下水処理システムおよび計測システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206087A (ja) * 1993-01-12 1994-07-26 Shimizu Corp 循環流動床型廃水処理方法および循環流動床型廃水処理における曝気量制御方法
JPH09187783A (ja) * 1996-01-11 1997-07-22 Nkk Corp 浄水用生物接触濾過装置の運転方法
US6375845B1 (en) * 1997-10-02 2002-04-23 Suez-Lyonnaise Des Eaux Method for evaluating and controlling the biomass contained in waste water treatment biological tanks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115583721A (zh) * 2022-09-23 2023-01-10 浙江数翰科技有限公司 基于污水处理的ai智能曝气方法及系统
CN115583721B (zh) * 2022-09-23 2023-11-07 浙江数翰科技有限公司 基于污水处理的ai智能曝气方法及系统

Also Published As

Publication number Publication date
JP7017166B2 (ja) 2022-02-08
KR20220150286A (ko) 2022-11-10
CN115335334A (zh) 2022-11-11
JP2021159845A (ja) 2021-10-11

Similar Documents

Publication Publication Date Title
WO2021199885A1 (ja) 好気性生物膜処理方法および装置
JP5833791B1 (ja) 活性汚泥における曝気量制御方法
WO2021199886A1 (ja) 好気性生物膜処理方法および装置
JP2017113725A (ja) 下水処理場の運転支援装置及び運転支援方法
WO2021200968A1 (ja) 好気性生物処理方法および装置
KR20220024245A (ko) 하수처리장용 통합제어 시스템
JP2005034717A (ja) 水質情報演算処理装置
WO2021240968A1 (ja) 好気性生物処理方法および装置
US20120292251A1 (en) Method and apparatus for monitoring biological activity and controlling aeration in an activated sludge plant
JP6062328B2 (ja) 排水の処理方法および排水の処理装置、並びに制御方法、制御装置、およびプログラム
JP6818951B1 (ja) 水処理装置および水処理方法
JPS6344033B2 (ja)
JPH0938683A (ja) 生物学的水処理装置
JP6430324B2 (ja) 排水の処理方法および排水の処理装置
JP6550212B2 (ja) 汚水処理装置及び汚水処理方法
JP3444021B2 (ja) オキシデーションディッチ型水処理装置の制御方法及び制御装置
JP7347304B2 (ja) 好気性生物膜処理方法および装置
JP2021169062A (ja) 好気性生物膜処理方法および装置
JP3731249B2 (ja) 生物処理装置
JP2023151175A (ja) 曝気装置の運転制御システム
JPH04305297A (ja) 活性汚泥処理制御装置
KR20240022561A (ko) 생물전기화학 센서를 통한 오존 투입 제어
JPH03267198A (ja) 廃水処理装置の運転方法
Potier et al. Elements of modelling and control of urban wastewater treatment systems
JP2000254680A (ja) 排水処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781707

Country of ref document: EP

Kind code of ref document: A1