WO2021199885A1 - 好気性生物膜処理方法および装置 - Google Patents

好気性生物膜処理方法および装置 Download PDF

Info

Publication number
WO2021199885A1
WO2021199885A1 PCT/JP2021/008417 JP2021008417W WO2021199885A1 WO 2021199885 A1 WO2021199885 A1 WO 2021199885A1 JP 2021008417 W JP2021008417 W JP 2021008417W WO 2021199885 A1 WO2021199885 A1 WO 2021199885A1
Authority
WO
WIPO (PCT)
Prior art keywords
aeration
load
raw water
carrier
biofilm
Prior art date
Application number
PCT/JP2021/008417
Other languages
English (en)
French (fr)
Inventor
大月 孝之
達馬 中野
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN202180025019.XA priority Critical patent/CN115335333A/zh
Priority to KR1020227027062A priority patent/KR20220150285A/ko
Publication of WO2021199885A1 publication Critical patent/WO2021199885A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • C02F3/085Fluidized beds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/104Granular carriers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method and an apparatus for treating wastewater containing a pollutant that can be biologically oxidized with a biofilm treatment using a self-granulation granule, a fluidized bed carrier, a fixed bed carrier, or the like, and particularly relates to an aeration intensity control thereof.
  • wastewater existing outside the biofilm to be treated with microorganisms is referred to as bulk water.
  • Microorganisms are called biofilms, such as the activated sludge method using suspended sludge, the self-granulating granule method, the fluidized bed carrier method, and the fixed bed carrier method, as methods for treating wastewater containing pollutants that can be biologically oxidized.
  • biofilm method in which treatment is performed in the form of accumulated proliferation.
  • microorganisms are maintained in a dispersed state in the reaction tank in a state called microbial flocs.
  • microbial flocs a state in which microorganisms are maintained.
  • the microorganisms are typically retained in the form of agglomerates of about 1 mm called flocs, and a sufficient contact area between the microorganisms and the bulk water tank is secured. Therefore, the permeability and diffusivity of oxygen in the flocs are not the main rate-determining factors in oxygen supply. Therefore, the amount of aerated air to be supplied to the device is considered to be proportional to the amount of oxygen consumed.
  • Patent Document 1 describes that the load of a pollutant substance is measured by an instrument and the aeration air volume is controlled based on the measurement.
  • Patent Document 2 in the self-granulation granule method and the fluidized bed carrier method, when the BOD volume load is smaller than the predetermined value, the fluidization of the microbial carrier is used as a criterion, and the BOD volume load is larger than the predetermined value. In some cases, it is stated that the amount of aeration for wastewater is controlled based on the oxygen demand of wastewater.
  • the flow rate per unit time of raw water and the concentration of pollutants in raw water are common indicators of raw water load. Strictly speaking, it is difficult to adjust the appropriate oxygen supply amount based only on the inflow load obtained by the product of and the inflow load and the tank load obtained by dividing the inflow load by the volume of the reaction tank. The reasons for this are as follows.
  • the amount of oxygen supplied to the device needs to be determined in consideration of the change in oxygen consumption due to the change in the amount of microorganisms retained in addition to the change in oxygen consumption that changes in proportion to the load of raw water.
  • the amount of oxygen required for oxidation of raw water organic matter changes according to load fluctuations, and it is also supplied by the change in the amount of biofilm held in the treatment equipment.
  • the amount of oxygen needed varies.
  • a biofilm having a film thickness of 3 mm or more is typically formed, and the contact area with bulk water per retained microorganism is smaller than that in the floating method. Therefore, when supplying oxygen to microorganisms in the biofilm, the diffusion phenomenon of oxygen at the contact surface between the bulk water and the biofilm is a major rate-determining factor in the oxygen supply.
  • the diffusion rate of oxygen in the biofilm depends on the DO level of bulk water, it is necessary to adjust the DO level in order to adjust the oxygen supply amount. Further, from the viewpoint of the aeration system, the required aeration air volume changes depending on the difference in DO level even if the oxygen supply amount is the same. It is widely known that when the DO level is high, the required aeration amount increases, and when the DO level is low, the required aeration amount decreases.
  • the amount of oxygen required to be supplied is determined by taking into account the amount of oxygen consumed by the autolysis process, which changes according to the change in the amount of microorganisms retained as a biofilm. It is necessary to adjust the DO of the bulk water to be higher according to the increase in the required oxygen supply, and to increase the aeration air volume in order to achieve the target DO.
  • the amount of oxygen that needs to be supplied is determined in consideration of the amount of oxygen consumed due to the autolysis process that changes according to the change in the amount of microorganisms held as a biofilm.
  • the DO of bulk water can be kept low as the amount of oxygen required to be supplied decreases, and the amount of aerated air to achieve the target DO also decreases.
  • the aeration air volume is excessively increased so that the DO of the bulk water can be maintained high and the oxygen supply amount can be maintained even under a high load. It is necessary to operate with a constant aeration volume in this state.
  • An object of the present invention is to provide a method and an apparatus for appropriately controlling aeration in wastewater treatment using an aerobic biological membrane.
  • raw water is supplied to an aeration tank, aerated by an aeration device, and the substance to be removed in the raw water is treated with an aerobic biological membrane by a biological membrane holding carrier or granule filled in the aeration tank.
  • the relationship between the raw water biological membrane load which is the raw water load per carrier or granule, and the corresponding DO target value and / or the corresponding aeration intensity setting value is set in advance, and the raw water biological membrane is used.
  • the DO target value and / or the aeration intensity set value is adjusted based on the relationship according to the fluctuation of the measured value of the load so that the DO becomes the target value or the set aeration intensity set value.
  • the aeration device is controlled.
  • the aerobic biological membrane treatment apparatus of the present invention comprises an aeration tank to which raw water is supplied, an aeration device that aerates the aeration tank, a carrier or granule with a biological membrane filled in the aeration tank, and the aeration device.
  • an aerobic biological treatment apparatus having a control controller, the relationship between the raw water biological membrane load, which is the raw water load per carrier or granule, and the corresponding DO target value and / or the corresponding aeration intensity setting value.
  • the raw water biological membrane load is the load of the substance to be removed per the filling volume of the carrier, the load of the substance to be removed per the total surface area of the carrier group, the load of the substance to be removed per the filling volume of the granule, and the granule. It is one of the substances to be removed per total surface area of the group.
  • the substance to be removed is an organic substance, a nitrogen compound or an ammonium ion, and the calculated value of the concentration obtained by converting the raw water biological membrane load from the measured value of the concentration of the object to be removed or the measured value of absorbance. And the measured value of the raw water flow rate, and the measured value or the calculated value of the filling volume or the surface area of the carrier or the granule.
  • the aeration intensity is controlled by controlling the aeration air volume, the aeration stop time, or the aeration suppression time.
  • the above relationship is set using any of the experimental results, the operation results of the actual machine, and the mechanism model considering the diffusivity of oxygen in the biofilm.
  • the necessary and sufficient oxygen supply suitable for the properties of the carrier and granule in the aeration tank, which changes with time, is estimated by using the raw water biomembrane load instead of the flow rate load and volume load, and the target of DO is Since the value and the set value of the aeration intensity itself are changed and controlled, the aeration can be appropriately controlled.
  • FIG. 1 is a block diagram of a biological treatment apparatus to which the present invention is applied.
  • the wastewater to be treated (raw water) is introduced into the aeration tank 2 through the pipe 1.
  • the aeration tank 2 is filled with a carrier C supporting a biofilm.
  • An aeration pipe 3 is installed at the bottom of the aeration tank 2, and air is supplied from the blower 4 through the pipe 5 to perform aeration.
  • the water that has been aerobically treated by the biofilm passes through the screen 2a and is taken out as treated water from the pipe 6.
  • a flow meter 7 and a concentration meter 8 for measuring the flow rate of raw water flowing through the pipe 1 and the concentration of the substance to be treated, a DO total 9 for measuring DO in the tank 2, and a blower 4 are used.
  • An air flow meter 10 for measuring the amount of air supplied to the air diffuser pipe 3 is provided, and these detected values are input to the controller 11.
  • the aeration intensity is controlled by controlling the blower 4 by the controller 11.
  • Examples of the densitometer 8 include a TOC meter, an ammoniacal nitrogen meter, and a UV absorbance meter (to obtain TOC / N).
  • the carrier is scraped to reduce the particle size and flow out of the aeration tank through a gap in the screen, the carrier filling rate in the aeration tank decreases, and the inside of the tank becomes smaller.
  • the carrier filling rate is lowered, and the contact area between the biological film surface and the bulk water is lowered, so that the physical performance may be lowered.
  • the amount of microorganisms retained on the carrier may increase and the amount of oxygen consumed due to autolysis of microorganisms may increase.
  • the amount of microorganisms retained in and between the carriers may increase and oxygen consumption due to autolysis of microorganisms may increase.
  • the number and particle size of self-granulation granules fluctuate over time, and the amount of biological membrane in the aeration tank increases or decreases, resulting in biological membrane and bulk water. Since the oxygen diffusivity to the biological membrane changes due to the change in the contact area, the aeration air volume required for wastewater treatment changes even if the organic matter load is the same.
  • the relationship between the raw water biofilm load and the corresponding DO target value and / or the corresponding aeration intensity setting value is set in advance, and the relationship is described according to the fluctuation of the measured value of the raw water biofilm load. Adjust the corresponding DO target value and / or aeration intensity setting value based on.
  • the aeration device is controlled so that the DO becomes the target value or the set aeration intensity set value.
  • the raw water biological membrane load includes the substance load to be removed per carrier filling volume (carrier volume load), the substance load to be removed per total surface area of the carrier group (all carriers in the tank) (carrier surface area load), and granulation.
  • the substance load to be removed per packed volume of the sul (granule volume load) or the substance load to be removed per total surface area of the granule group (all granules in the tank) (granule surface area load) is suitable.
  • Conc Road Q ⁇ Conc Road: Raw water load [kg / d]
  • Q Raw water flow rate [m 3 / d]
  • Conc Raw water concentration [kg / m 3 ] Examples of the raw water concentration include TOC, ammoniacal nitrogen, and TOC / N concentration estimated from UV absorbance.
  • the carrier volume load is calculated by the following equation.
  • Road CarrierVol Road / V Carrier Load CarrierVol: support volume loading [kg / (m 3 ⁇ d )] V Carrier : Carrier filling volume in the aeration tank [m 3 ]
  • the carrier surface area load is calculated by the following equation.
  • Road CarrierSurf Road / S Carrier Road CarrierSurf : Carrier surface area load [kg / (m 2 ⁇ d)] S Carrier : Total surface area of the carrier group in the aeration tank [m 2 ]
  • the raw water load may fluctuate rapidly in minutes over time, but the change over time in the properties of the carrier (carrier filling volume in the aeration tank or total surface area of the carrier group in the aeration tank) It changes relatively slowly from day to month. Therefore, it is preferable to update the calculated value of the raw water load frequently.
  • the carrier filling volume in the aeration tank or the total surface area of the carrier group in the aeration tank is analyzed by sampling the carrier periodically (for example, once every 1 to 3 months), and the carrier filling volume is analyzed. , The total surface area data of the carrier group may be updated.
  • the oxygen consumption required to be supplied by the processing apparatus is calculated as the sum of the oxygen requirement for oxidizing the organic substance in the raw water and the oxygen consumption derived from the microbial self-oxidation held in the biological membrane.
  • the oxygen consumption rate of the processing device is monitored as an index to be monitored, and the aeration intensity is controlled based on the oxygen consumption rate. That is, under low load conditions where the oxygen consumption rate is equal to or less than the predetermined value, the aeration intensity is set to the specified intensity or more in order to maintain the stirring intensity in the treated water tank, and when the oxygen consumption rate is equal to or more than the predetermined value, the oxygen consumption level. Adjust the aeration intensity according to the above.
  • a method of calculating the oxygen consumption rate when the oxygen consumption rate is used as a control index will be described with reference to FIG.
  • the wastewater to be treated (raw water) is introduced into the aeration tank 2 through the pipe 1.
  • the aeration tank 2 is filled with a carrier C supporting a biofilm.
  • Air diffusers 3a, 3b, 3c are installed at the bottom of the aeration tank 2, and air is supplied from the blower 4 through the pipe 5 and the branch pipes 5a, 5b, 5c to perform aeration.
  • the aeration tank 2 is provided with a canopy 2r.
  • the water that has been aerobically treated by the biofilm passes through the screen 2a and is taken out as treated water from the pipe 6.
  • an exhaust gas meter 24 for measuring the oxygen concentration in the gas phase portion gas above the aeration tank 2 and below the canopy 2r, and a DO total 19 for measuring the DO in the aeration tank 2 are used as measuring means.
  • An air volume meter 20 for measuring the amount of air supplied from the blower 4 to the aeration pipes 3a to 3c is provided.
  • ⁇ Case 1 How to calculate the oxygen consumption rate from the air volume meter and the exhaust gas meter> The aeration air volume and the oxygen concentration in the exhaust gas are measured, and the oxygen consumption rate qO 2 is directly calculated by the following equation.
  • OTE Oxygen transfer efficiency [-] Z 0 : Oxygen mole fraction in blown air [-] Z: Mole fraction of oxygen in exhaust gas [-] qO 2 : Oxygen consumption rate [kg / d] G ⁇ : Blow-in flow rate of aerated air converted to standard state [Nm 3 / d] ⁇ m : Specific volume of oxygen [Nm 3 / kg]
  • ⁇ Case 2 Method of calculating oxygen consumption rate from DO meter and aeration air volume> The aeration air volume and DO are measured, and the oxygen consumption rate qO 2 is indirectly estimated.
  • I Preparation before mounting the control device
  • OTE Oxygen transfer efficiency [-] Z 0 : Oxygen mole fraction in blown air [-] Z: Mole fraction of oxygen in exhaust gas [-] ⁇ : Oxygen solubility index [m] ⁇ m : Specific volume of oxygen [Nm 3 / kg] h: Water depth of the air diffuser [m] Cs: Saturated dissolved oxygen concentration [kg / m 3 ] C: Dissolved oxygen concentration in the mixed solution [kg / m 3 ]
  • the oxygen consumption rate qO 2 is continuously estimated by the following formula from the DO meter, the continuous measurement data of the aeration air volume, and the oxygen solubility index ⁇ obtained in advance.
  • the oxygen consumption rate (qO 2 ) is regarded as the raw water load (Load)
  • the "carrier volume load” or the “carrier surface area load” is calculated, and the calculation result is referred to as the "raw water biological membrane load”.
  • the appropriate DO target value or aeration intensity setting value is found, and the appropriate DO target value or aeration intensity according to the raw water biological membrane load is found.
  • the relationship between the raw water biofilm load and the DO target value or aeration intensity setting value is determined using the result data of preliminary experiments, the operation record data of the actual machine, and the simulation result of the mechanism model considering the diffusivity of oxygen in the biofilm. Set.
  • the method of expressing the relationship between the raw water biofilm load and the DO target value or the aeration intensity set value is a functional expression (an approximate function that obtains an appropriate DO target value or an appropriate aeration intensity according to the raw water biofilm load) and a control table. (The relationship between the raw water biofilm load and the appropriate DO target value or the appropriate aeration intensity is arranged in a table format) or the like.
  • Biofilm mechanism model for creating the relationship between raw water biofilm load and DO target value and / or aeration intensity setting value As one method for finding the relationship between the raw water biofilm load and the DO target value and / or the exposure intensity setting value, pollution when the biofilm comes into contact with the bulk aqueous phase in a fluid state containing pollutants and oxygen.
  • a kinetic model (hereinafter sometimes referred to as a biofilm mechanism model) that estimates the decrease in substances and the increase / decrease in the amount of activated sludge cells in the biofilm can be used.
  • Such a kinetic model is based on the situation where bacterial cell growth and pollutant consumption / oxygen consumption occur simultaneously in the biological membrane, and oxygen is transferred to the bulk water by diffusion of dissolved oxygen in the bulk aqueous phase into the biological membrane and aeration. It is necessary to consider the melting phenomenon.
  • the increase or contraction of the biofilm occurs due to the increase or decrease in the volume of the bacterial cell group accompanying the growth and death of the bacterial cell, the attachment of the bacterial cell from the bulk water, and the exfoliation of the bacterial cell into the bulk water.
  • a mathematical model of a fluidized bed carrier can be constructed.
  • such mathematical models are often described in the form of simultaneous ordinary differential equations, and it is possible to simulate the dynamic behavior of the target process using numerical integration software for the simultaneous differential equations. can. For example, it is possible to predict the treated water quality according to the DO situation of the bulk aqueous phase, which changes depending on a specific device configuration, load assumption, and aeration intensity.
  • the aeration intensity can be controlled, for example, by changing the aeration air volume (aeration flow rate), the aeration stop time or the aeration suppression time (weak aeration time) for each fixed time cycle.
  • the aeration stop time indicates the time for stopping aeration within a fixed time cycle in so-called intermittent aeration.
  • the aeration suppression time is the time of weak aeration in the operation of alternately repeating strong aeration and weak aeration.
  • the aeration air volume, aeration stop time, and aeration suppression time are controlled continuously or stepwise according to the raw water load.
  • the present invention can be carried out by the same method when a fixed bed carrier or granule is used.
  • the volume or surface area of the carrier or the carrier group may be the volume or surface area of the granule or the granule group in the equations (2) and (3).
  • wastewater containing organic substances is used when treated by aerobic biological membrane treatment accompanied by aeration, but in addition, an aeration tank such as biological nitrification and denitrification treatment using a biological membrane.
  • an aeration tank such as biological nitrification and denitrification treatment using a biological membrane.
  • the present invention can be carried out by the same method when performing biological treatment including an aerobic treatment step using a biological membrane.
  • the controller 11 includes a mechanism for adjusting the amount of aeration in order to obtain a DO value according to the target value of DO, and an intermittent aeration mechanism for periodically performing weak aeration with a specified air volume.
  • a cubic urethane sponge carrier having a side length of 3 mm was used as the carrier C.
  • the substrate that is, the pollutant to be treated
  • the substrate is supplied from the inflow and effluent, part of which flows out together with the treated water, and the rest diffuses into the biological membrane according to the concentration difference between the bulk aqueous phase and the biological membrane, and the bulk aqueous phase and the organism. It models a situation in which oxidative decomposition occurs and decreases with the growth of microorganisms in the membrane.
  • the rate of oxidative decomposition of pollutants with the growth of microorganisms is a model that decreases as the oxygen concentration and the substrate, that is, the pollutant concentration decrease.
  • oxygen is supplied to the bulk aqueous phase by an air diffuser, but part of it is also supplied as oxygen contained in the inflow and drainage.
  • part of the supplied oxygen flows out together with the treated water, and the rest diffuses into the biofilm according to the difference between the oxygen concentration of the bulk aqueous phase and the oxygen concentration of the biofilm, and microorganisms in the bulk aqueous phase and the biofilm. It models the situation in which it is consumed as it grows and self-decomposes.
  • the rate of decrease in oxygen consumed by the growth of pollutant microorganisms is a model that decreases as the oxygen concentration and the substrate, that is, the pollutant concentration decrease.
  • control table in Table 1 was used as the relationship between the DO target value and / or the aeration intensity setting value according to the raw water biofilm load.
  • TOC carrier volume loading (kgC / (m 3 ⁇ d ), below, may be omitted units.) If there is less than 0.1 or more to 0.6, the target value of the DO 3.1 mg / L, In the case of 0.6 or more and less than 0.7, the target value of DO is 3.8 mg / L, In the case of 0.7 or more and less than 0.9, the target value of DO is 3.9 mg / L, In the case of 0.9 or more and less than 1.0, the target value of DO is 4.4 mg / L, If it is 1.0 or more, the target value of DO is 4.8 mg / L, Are set as appropriate values, When the TOC carrier volume load is 0.1 or more and less than 0.2, the weak exposure time setting value is 110 minutes every 2 hours, and when it is 0.2 or more and less than 0.3, 90 minutes every 2 hours.
  • Example 1 Raw water whose TOC load fluctuates as shown in FIG. 5 was designated as wastewater to be treated.
  • the DO target value once every 2 hours and the weak aeration time in the 2-hour cycle are adjusted based on the control table in Table 1, and the constant low air volume during weak aeration ( It was set to 3 m 3 / (bottom area m 2 ⁇ hr)), and the motor rotation speed of the blower was controlled so as to reach the set DO target value during the time zone other than the time of weak aeration.
  • FIG. 2 The time course of the weak aeration time is shown in FIG. 2, and the time course of DO is shown in FIG. Further, FIG. 4 shows a change over time in power consumption due to the blower.
  • Example 1 The same as in Example 1 except that the target value of DO was fixed at 3.5 mg / L and the weak aeration time was kept constant at 10 minutes / 2 hours. The results are shown in FIGS. 2-4.
  • Example 1 since the DO target value and the weak aeration time were adjusted according to the load per carrier, the amount of electric power used by the blower was smaller than that in Comparative Example 1. That is, while the electric energy consumption of Comparative Example 1 was about 1150 kWh / day, the electric energy consumption of Example 1 was about 950 kWh / day, which was about 17% less.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Activated Sludge Processes (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

原水を曝気槽2に供給し、曝気槽2に充填された生物膜保持担体Cまたはグラニュールにより原水中の除去対象物質を好気性生物処理する方法及び装置において、生物膜保持担体またはグラニュールあたりの原水負荷である原水生物膜負荷と、これに対応するDO目標値及び/または対応する曝気強度設定値との関係を予め設定しておき、原水生物膜負荷の計測値の変動に応じて前記関係に基づいて前記DO目標値及び/または曝気強度設定値を調整し、DOが該目標値となるように、又は設定された曝気強度設定値となるように曝気装置を制御することを特徴とする好気性生物膜処理方法および装置。

Description

好気性生物膜処理方法および装置
 本発明は、生物学的に酸化できる汚濁物質を含む排水を、自己造粒グラニュールや流動床担体、固定床担体などにより生物膜処理する方法及び装置に係り、特にその曝気強度制御に関する。本発明においては、微生物処理を行う生物膜の外部に存在する排水をバルク水と呼ぶ。
 生物学的に酸化できる汚濁物質を含む排水の処理方法として、浮遊汚泥を用いる活性汚泥法のほか、自己造粒グラニュール法や流動床担体法、固定床担体法など、微生物が生物膜とよばれる集積増殖した様態で処理を行う生物膜法などがある。
 前者の浮遊汚泥を用いる活性汚泥法では、微生物フロックと称される様態で微生物が反応槽に分散状態で維持されている。排水処理に伴い増加する微生物を余剰汚泥として引き抜く操作により反応槽で維持する微生物量を一定に維持することで微生物自体の自己分解プロセスに起因して発生する酸素消費量を一定のレベルに維持することができる。従って、同プロセスでの必要酸素量の増減は原水負荷に比例して変化する。この酸素消費に微生物の自己分解プロセスに伴う一定の酸素消費のオフセットを足すことで供給すべき酸素消費量を決定することができる。同プロセスでは微生物が典型的にはフロックと呼ばれる1mm前後のび凝集体の様態で保持されており微生物とバルク水槽との接触面積が十分確保されている。そのため、フロック内での酸素の浸透性・拡散性が酸素供給における主要な律速因子とならない。このため装置に供給すべき曝気風量は酸素消費量に比例すると考えられる。特許文献1には、汚濁物質の負荷を計器で計測し、これに基づいて曝気風量を制御することが記載されている。
 浮遊汚泥を用いる活性汚泥法、および生物膜法(自己造粒グラニュール法、流動床担体法、固定床担体法など)においては、原水の負荷に比例した酸素供給量調整を簡易に行う手法として、液中の溶存酸素濃度(以下DOと記載する)を一定に保つ風量制御を行ういわゆるDO制御システムが広く用いられている。
 特許文献2には、自己造粒グラニュール法、流動床担体法において、BOD容積負荷が所定値よりも小さいときは微生物担体の流動化を判断基準とし、BOD容積負荷が前記所定値よりも大きいときは廃水の酸素要求量を判断基準として廃水に対する曝気量を制御することが記載されている。
特開2001-353496号公報 特開昭63-256185号公報
 自己造粒グラニュール法、流動床担体法、固定床担体法など生物膜を利用した処理を行う方法では、原水負荷の指標として一般的である原水の単位時間あたりの流量と原水の汚濁物質濃度との積により求められる流入負荷や、流入負荷を反応槽の容積で除算して求められる槽負荷のみに基づいて適切な酸素供給量調整を行うことは、厳密には困難である。その理由として以下が挙げられる。
 生物膜を利用する方法では、反応槽に微生物膜の様態で保持されている微生物量を一定に保つ手段がなく結果保持されている微生物量が時間により変化するため、微生物自体の自己分解プロセスに起因して発生する酸素消費量も変化する。従って生物膜を利用した方法では、装置に与える酸素供給量は原水の負荷に比例して変化する酸素消費量の変化に加え微生物保持量の変化に伴う酸素消費の変化も考慮して決定する必要がある。
 こういった要因により、生物膜を利用した処理方式では負荷変動に応じて原水有機物の酸化に必要な酸素量は変化し、処理装置内に保持されている生物膜の量の変化によっても供給する必要がある酸素量は変化する。さらに生物膜法では典型的には3mm以上の膜厚の生物膜が形成されることが一般的であり、保持される微生物あたりのバルク水との接触面積が浮遊法と比較して少ない。このため生物膜内の微生物への酸素供給にあたってはバルク水と生物膜の接触面における酸素の拡散現象が酸素供給における主要な律速因子となる。
 生物膜における酸素の拡散速度はバルク水のDOレベルに依存するので、酸素供給量を調整するためにはDOレベルを調整する必要がある。また、曝気システムの観点からは、同じ酸素供給量であってもDOレベルの違いにより必要曝気風量は変化する。DOレベルが高い場合には必要曝気量が増え、DOレベルが低い場合には必要曝気量は低下することが広く知られている。
 従って、負荷が増加した場合には、原水中の有機物の酸化に必要な酸素量は増加する。生物膜として保持されている微生物量の変化に応じて変化する自己分解プロセスに起因する酸素消費量を加味して供給必要酸素量が決まる。供給必要酸素量の増加に応じバルク水のDOを高くする調整を行い、目標とするDOを達成するために曝気風量も増加させる必要がある。
 逆に、負荷が低下した場合には、原水中の有機物の酸化に必要な酸素量は低下する。生物膜として保持されている微生物量の変化に応じて変化する自己分解プロセスに起因する酸素消費量を加味して供給する必要のある酸素量が決まる。供給必要酸素量の低下に応じバルク水のDOを低く維持することができ、目標とするDOを達成するための曝気風量も低下する。
 こういった理由から、曝気風量の負荷に応じた調整・制御をしない運転を行う場合、高負荷時においてもバルク水のDOを高く維持し酸素供給量を維持できるように曝気風量を過剰に多くした状態での風量一定運転をする必要がある。
 高負荷時において必要な高いDOを維持できる風量一定運転下では、負荷低下時の酸素消費量低下に応じた風量抑制をしないため、エネルギー消費の無駄が発生する。高負荷時の酸素供給を想定し高めのDO目標値を設定したDO制御を行った場合も、生物膜処理装置では負荷低下時にはDOレベルを低下することができるため、DO制御の目標DOレベルを下げれば、曝気風量をさらに絞ることが可能である。しかし、通常のDO制御ではこのようなDO目標低下による風量抑制をしないため、エネルギー消費の無駄はなお発生する。
 このような理由から、エネルギー消費の無駄は、負荷変動が大きな場合に特に顕著となる。しかしながら、このようなエネルギー消費の無駄が生じる状況があっても、負荷変動に応じて処理水質を悪化させないDOレベルを調整する操作・目標DOレベルに合わせた風量調整を行うことは従来の技術では困難である。オペレーターが適宜風量調整を行う場合でも、従来は低負荷であってもある程度の余裕をみた必要以上の酸素供給を行うべく過剰なDOレベル設定・曝気を行うことが多い。そのため、エネルギーの無駄が生じる場合が多い。
 原水負荷の指標として一般的である流量負荷や槽負荷を用いると、生物膜に保持されている微生物量の変化の影響を加味できない。また生物膜とバルク水との接触面積の影響を考慮することができず、適切な曝気量管理は難しい。そのため、従来は微生物量が多く保持された状況を想定した酸素消費量を前提とし、生物膜とバルク水の接触面積の影響を考慮しない多めの曝気風量設定を行うことが一般的である。このような理由からもエネルギーの無駄が生じることが多い。
 本発明は、好気性生物膜を用いた排水処理において、曝気を適切に制御する方法及び装置を提供することを目的とする。
 本発明の好気性生物膜処理方法は、原水を曝気槽に供給し、曝気装置で曝気し、曝気槽に充填された生物膜保持担体またはグラニュールにより原水中の除去対象物質を好気性生物処理する方法において、該担体またはグラニュールあたりの原水負荷である原水生物膜負荷と、これに対応するDO目標値及び/または対応する曝気強度設定値との関係を予め設定しておき、原水生物膜負荷の計測値の変動に応じて前記関係に基づいて前記DO目標値及び/または曝気強度設定値を調整し、DOが該目標値となるように、又は設定された曝気強度設定値となるように、前記曝気装置を制御することを特徴とする。
 本発明の好気性生物膜処理装置は、原水が供給される曝気槽と、該曝気槽を曝気する曝気装置と、該曝気槽に充填された生物膜付き担体またはグラニュールと、該曝気装置を制御する制御器とを有する好気性生物処理装置において、該担体またはグラニュールあたりの原水負荷である原水生物膜負荷と、これに対応するDO目標値及び/または対応する曝気強度設定値との関係を予め設定する手段と、原水生物膜負荷の計測値の変動に応じて前記関係に基づいて前記DO目標値及び/または曝気強度設定値を調整する手段とを備えており、前記制御器は、DOが該目標値となるように、又は設定された曝気強度設定値となるように、前記曝気装置を制御することを特徴とする。
 本発明の一態様では、前記原水生物膜負荷は、担体の充填容積あたりの除去対象物質負荷、担体群の総表面積あたりの除去対象物質負荷、グラニュールの充填容積あたりの除去対象物質負荷、グラニュール群の総表面積あたりの除去対象物質負荷、のいずれかである。
 本発明の一態様では、前記除去対象物質は、有機物、窒素化合物又はアンモニウムイオンであり、前記原水生物膜負荷を、除去対象物の濃度の計測値又は吸光度の計測値から換算した濃度の計算値と、原水流量の計測値と、担体またはグラニュールの充填容積または表面積の計測値又は計算値と、から算出する。
 本発明の一態様では、前記曝気強度の制御を、曝気風量、曝気停止時間又は曝気抑制時間の制御によって行う。
 本発明の一態様では、前記関係を、実験結果、実機の運転実績、生物膜における酸素の拡散性を考慮した機構モデルの何れかを用いて設定する。
 本発明では、流量負荷や容積負荷ではなく、原水生物膜負荷を用いて、経時的に変化する曝気槽内の担体やグラニュールの性状に適合した必要十分な酸素供給を推定し、DOの目標値や曝気強度の設定値そのものを変更して制御するため、曝気を適切に制御することができる。
本発明が適用される生物処理装置の構成図である。 実施例及び比較例の結果を示すグラフである。 実施例及び比較例の結果を示すグラフである。 実施例及び比較例の結果を示すグラフである。 原水のTOC負荷を示すグラフである。 本発明が適用される生物処理装置の構成図である。
 図1は本発明が適用される生物処理装置の構成図である。
 被処理排水(原水)は、配管1を通じて曝気槽2に導入される。曝気槽2内には、生物膜を担持した担体Cが充填されている。曝気槽2内の底部には散気管3が設置されており、ブロア4から配管5を通じて空気が供給され、曝気が行われる。
 生物膜によって好気的に生物処理された水は、スクリーン2aを通り抜け、配管6から処理水として取り出される。
 この生物処理装置では、計測手段として、配管1を流れる原水の流量及び被処理物質濃度を測定する流量計7及び濃度計8と、槽2内のDOを測定するDO計9と、ブロア4から散気管3へ供給される空気量を測定する風量計10が設けられており、これらの検出値が制御器11に入力される。制御器11によってブロア4が制御されることにより曝気強度が制御される。
 濃度計8としては、TOC計、アンモニア性窒素計、又はUV吸光度計(TOC・Nを求める)などが例示される。
 本発明者が種々検討を重ねたところ、原水負荷として流量負荷や槽負荷を用いると、原水負荷が同じであるにも拘わらず適切な曝気管理が難しい場合がある原因の一つは、曝気槽内に充填した担体やグラニュールの状態が変化するためであることが見出された。
 例えば、流動床担体を充填した曝気槽を長期運転した場合、担体が削れて小粒径化してスクリーンの隙間から曝気槽外に流出し、曝気槽内の担体充填率が低下し、槽内の担体充填率が低下し、生物膜表面とバルク水の接触面積が低下することにより理性能が低下することがある。
 長期運転した場合、担体に保持される微生物量が増加し微生物の自己分解に起因する酸素消費量が増加することがある。
 固定床処理の一種である沈降性の担体を利用した膨張床を設けた曝気槽の場合、定期的に逆洗して担体間の余剰汚泥やSSを排出する必要がある。この際に担体相互の衝突や剪断力により担体が摩耗して担体の充填率が徐々に低下し、槽内の担体充填率が低下し、生物膜表面とバルク水の接触面積が低下することにより処理性能が低下することがある。
 長期運転した場合、担体内および担体間に保持されている微生物量が増加し微生物の自己分解に起因する酸素消費量が増加することがある。
 自己造粒グラニュールを用いる生物処理槽では、経時的に自己造粒グラニュールの個体数や粒径が変動して、曝気槽内における生物膜の量が増減することにより、生物膜とバルク水の接触面積が変化することにより生物膜への酸素拡散性が変化する、このため有機物負荷が同じであっても排水処理に必要な曝気風量が変化する現象が発生する。
 本発明では、原水生物膜負荷と、これに対応するDO目標値及び/または対応する曝気強度設定値との関係を予め設定しておき、原水生物膜負荷の計測値の変動に応じて前記関係に基づいて対応するDO目標値及び/または曝気強度設定値を調整する。
 そして、DOが目標値となるように、又は設定された曝気強度設定値となるように曝気装置を制御する。
 原水生物膜負荷としては、担体の充填容積あたりの除去対象物質負荷(担体容積負荷)、または担体群(槽内のすべての担体)の総表面積あたりの除去対象物質負荷(担体表面積負荷)、グラニュールの充填容積あたりの除去対象物質負荷(グラニュール容積負荷)、またはグラニュール群(槽内のすべてのグラニュール)の総表面積あたりの除去対象物質負荷(グラニュール表面積負荷)が好適である。
<原水負荷>
 原水負荷は次式によって算出される。
  Load=Q・Conc
   Load:原水負荷[kg/d]
   Q:原水流量[m/d]
   Conc:原水濃度[kg/m
 原水濃度としては、TOC、アンモニア性窒素、UV吸光度から推算したTOC・Nの濃度が挙げられる。
<担体容積負荷>
 担体容積負荷は次式によって算出される。
  LoadCarrierVol=Load/VCarrier
   LoadCarrierVol:担体容積負荷[kg/(m・d)]
   VCarrier:曝気槽内の担体充填容積[m
<担体表面積負荷>
 担体表面積負荷は次式によって算出される。
  LoadCarrierSurf=Load/SCarrier
    LoadCarrierSurf:担体表面積負荷[kg/(m・d)]
    SCarrier:曝気槽内の担体群の総表面積[m
 曝気槽においては、原水負荷は経時的に分単位で急速に変動することがあるが、担体の性状(曝気槽内の担体充填容積又は曝気槽内の担体群の総表面積)の経時的変化は日から月単位で比較的緩慢に変化する。そのため、原水負荷の計算値は頻繁に更新するのが好ましい。また、曝気槽内の担体充填容積又は曝気槽内の担体群の総表面積については、担体を定期的に(例えば1~3ヶ月に1回程度の頻度で)サンプリングして解析し、担体充填容積、担体群の総表面積データを更新すればよい。
[酸素消費速度を管理指標とした制御]
[酸素消費速度の演算方法]
 本発明の一態様では、原水の有機物質を酸化するために必要な酸素必要量と生物膜に保持されている微生物自己酸化に由来する酸素消費量の合計として処理装置が供給必要な酸素消費を監視する指標として処理装置の酸素消費速度を監視し酸素消費速度に基づいて曝気強度の制御を行う。即ち、酸素消費速度が所定値以下となる低負荷条件下においては処理水槽内の撹拌強度を維持するために曝気強度を規定強度以上とし、酸素消費速度が所定値以上の場合、酸素消費のレベルに応じた曝気強度調整を行う。このように酸素消費速度を管理指標とする場合の酸素消費速度の演算方法について、図6を用いて説明する。
 図6の生物処理装置では、被処理排水(原水)は、配管1を通じて曝気槽2に導入される。曝気槽2内には、生物膜を担持した担体Cが充填されている。曝気槽2内の底部には散気管3a,3b,3cが設置されており、ブロア4から配管5及び分岐配管5a,5b,5cを通じて空気が供給され、曝気が行われる。曝気槽2には天蓋2rが設けられている。
 生物膜によって好気的に生物処理された水は、スクリーン2aを通り抜け、配管6から処理水として取り出される。
 この生物処理装置では、計測手段として、曝気槽2上部かつ天蓋2r下側の気相部ガス中の酸素濃度を測定する排ガス計24と、曝気槽2内のDOを測定するDO計19と、ブロア4から散気管3a~3cへ供給される空気量を測定する風量計20が設けられている。
<ケース1:風量計と排ガス計から酸素消費速度を演算する方法>
 曝気風量と排ガス中の酸素濃度を計測し、酸素消費速度qOを次式により直接的に演算する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 OTE:酸素移動効率[-]
 Z:吹き込み空気中の酸素モル分率[-]
 Z:排ガス中の酸素モル分率[-]
 qO:酸素消費速度[kg/d]
 Gν:標準状態換算の曝気空気の吹き込み流量[Nm/d]
 ν:酸素の比容[Nm/kg]
<ケース2:DO計と曝気風量とから酸素消費速度を計算する方法>
 曝気風量とDOを計測し、酸素消費速度qOを間接的に推算する。
(i) (制御装置実装前の準備)酸素消費速度の推算に必要な酸素溶解性指標φを次式により算出する。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 OTE:酸素移動効率[-]
 Z:吹き込み空気中の酸素モル分率[-]
 Z:排ガス中の酸素モル分率[-]
 φ:酸素溶解性指標[m]
 ν:酸素の比容[Nm/kg]
 h:散気装置の水深[m]
 Cs:飽和溶存酸素濃度[kg/m
 C:混合液中の溶存酸素濃度[kg/m
(ii) (装置稼働時)酸素消費速度の経時変化を連続計測する。
 DO計と曝気風量の連続計測データ、および予め求めた酸素溶解性指標φから酸素消費速度qOを次式により連続推算する。
Figure JPOXMLDOC01-appb-M000005
 qO:酸素消費速度[kg/d]
 Gν:標準状態換算の曝気空気の吹き込み流量[Nm/h]
 h:散気装置の水深[m]
 Cs:飽和溶存酸素濃度[kg/m
 C:混合液中の溶存酸素濃度[kg/m
 φ:酸素溶解性指標[m]
[原水生物膜負荷に応じた、DO目標値又は曝気強度設定値の関係]
 本発明の様態では、酸素消費速度(qO)を原水負荷(Load)と見なし、さらに「担体容積負荷」もしくは「担体表面積負荷」を計算して、同計算結果を「原水生物膜負荷」とみなして、DO目標値または曝気強度を変えた場合の処理水質の予測もしくは実績から、適正なDO目標値または曝気強度設定値を見出し、原水生物膜負荷に応じた、適正DO目標値又は曝気強度設定値の関係を見出し、制御システムで活用する。
 原水生物膜負荷と、DO目標値または曝気強度設定値との関係は、予備実験の結果データ、実機の運転実績データ、生物膜における酸素の拡散性を考慮した機構モデルのシミュレーション結果などを用いて設定される。
 この原水生物膜負荷と、DO目標値または曝気強度設定値との関係の表現方法は、関数式(原水生物膜負荷に応じて適正DO目標値もしくは適正曝気強度が得られる近似関数)、制御表(原水生物膜負荷と適正DO目標値もしくは適正曝気強度との関係を表形式で整理したもの)などのいずれでもよい。
[原水生物膜負荷と、DO目標値及び/または曝気強度設定値との関係作成するための生物膜機構モデル]
 原水生物膜負荷と、DO目標値及び/または曝気強度設定値との関係を見出すための1手法として、汚濁物質と酸素を含む流動状態にあるバルク水相に生物膜が接したときの、汚濁物質の減少や生物膜中の活性汚泥菌体量の増減を推定する動力学モデル(以降、生物膜機構モデルと称する場合がある。)を利用することができる。このような動力学モデルは、菌体増殖と汚濁物質の消費・酸素消費が生物膜内で同時に発生する状況、バルク水相中の溶存酸素の生物膜への拡散およびエアレーションにより酸素がバルク水中に溶解する現象も考慮して構築する必要がある。また、生物膜の増加や縮小は、菌体の増殖および死滅に伴った菌体群の体積の増加および減少やバルク水からの菌体の付着およびバルク水への菌体の剥離により発生する。生物膜利用処理に動力学モデルを利用する場合、これらの現象を数学モデル化する必要がある。このような現象は本来3次元空間で発生する現象のため、モデル式は複雑なものとなるが、生物膜の増加・縮小を厚さ方向のみの変化を考慮する1次元モデル式で表現することでシミュレーションを比較的容易に行うことができる。活性汚泥による排水処理をシミュレーションするための数学モデルとしては、例えばInternational Water AssociationのTask Groupが提案している一連の数学モデル[参考文献1] が活用できる。生物膜を対象とした数学モデル例としては[参考文献2]などを利用できる。
[参考文献1] M Henze; IWA. Task Group on Mathematical Modelling for Design and Operaton of Biological Wastewater Treatment; et al
[参考文献2] Boltz, J. P., Johnson, B.R., Daigger, G.T., Sandino, J., (2009a). “Modeling Integrated Fixed-Film Activated Sludge and Moving Bed Biofilm Reactor Systems I: Mathematical Treatment and Model Development”. Water Environment Research, 81(6), 555-575
 数学モデルを利用することで、例えば流動床担体の数学モデルを構築することができる。一般にこのような数学モデルは連立常微分方程式の形式で記述されることが多く、常微分連立法廷式を対象とした数値積分ソフトウエアを利用して対象プロセスの動的な挙動をシミュレーションすることができる。例えば、特定の装置構成、負荷想定、曝気強度により変化するバルク水相のDOの状況に応じた処理水質の予想を行うことが可能である。
 数学モデルを利用することで、様々な負荷条件に対して、様々な曝気強度で処理を行った場合の、例えば処理水のTOC濃度を予想することができる。シミュレーション結果を踏まえ、処理が悪化しない最低限のDO目標値や曝気強度調整を検討し、シミュレーション結果を整理した表を作成し、本特許の制御システムで利用する制御表に活用することができる。
[曝気強度の制御]
 曝気強度は、例えば、曝気風量(給気流量)、一定の時間サイクル毎の曝気停止時間あるいは曝気抑制時間(弱曝気の時間)を変えることにより制御することができる。曝気停止時間はいわゆる間欠曝気における一定の時間サイクル内の曝気を停止する時間を示す。曝気抑制時間とは、強曝気と弱曝気を交互に繰り返す運転における弱曝気の時間である。
 曝気風量、曝気停止時間、曝気抑制時間は、原水負荷に応じて連続的又は段階的に制御する。
[流動床以外の生物処理]
 図1では、流動床担体を用いた生物処理について説明したが、固定床担体やグラニュールを用いる場合も同様の手法で本発明を実施することができる。例えば、原水グラニュール負荷の場合は、(2),(3)式において担体又は担体群の体積又は表面積をグラニュール又はグラニュール群の体積又は表面積とすればよい。
 本実施形態では、有機物を含む排水を、曝気を伴う好気性生物膜処理により処理するときに用いることを説明したが、他にも生物膜を用いた生物学的硝化脱窒処理など、曝気槽にて生物膜を用いた好気処理工程を含む生物処理を行う場合にも同じ手法で本発明を実施することができる。
<装置構成>
 図1の装置を用い、流動床担体に対し、TOCの担体容積負荷で原水負荷を監視しDO・弱曝気時間を制御する方法の一例を次に説明する。
 制御器11は、DOの目標値に応じたDO値とするために曝気量を調整する機構と、定期的に指定風量の弱曝気を行う間欠曝気機構を備えている。
 担体Cとしては、1辺の長さが3mmの立方体形状のウレタンスポンジ製担体を使用した。
<生物膜機構モデル>
 実際には3次元構造を持つ担体内部とバルク水との間で発生する汚濁物質と酸素の拡散現象を、1次元の簡易モデルで表現し、この1次元モデルは、バルク水と生物膜3層の全4層の完全混合コンパートメントを想定したモデルで構成した。
 菌体はバルク水相および生物膜内で基質すなわち汚濁物質および酸素を消費して増殖し一定の割合で自己分解する。増殖した菌体は、バルク水相の菌体濃度差に応じ付着・脱着が発生する。一般的には生物膜における菌体濃度がバルク水相の菌体濃度よりも高いため、生物膜内で増殖した菌体が脱着する量の方が、水相に存在する菌体が生物膜に付着する量より多い状況をモデル化している。
 基質すなわち処理対象の汚濁物質は、流入排水から供給され、一部が処理水と共に流出し、残部はバルク水相と生物膜との濃度差に応じて生物膜へ拡散し、バルク水相および生物膜内で微生物の増殖に伴う酸化分解が行われ減少する状況をモデル化している。微生物の増殖に伴って汚濁物質が酸化分解する速度は、酸素濃度および基質すなわち汚濁物質濃度が低下するとともに低下するモデルとなっている。
 酸素は、大部分がバルク水相に対し散気装置により供給されるが、一部は流入排水に含まれる酸素としても供給される。また、供給された酸素の一部は、処理水と共に流出し、残部がバルク水相の酸素濃度と生物膜の酸素濃度差に応じて生物膜へ拡散し、バルク水相および生物膜内で微生物の増殖および自己分解に伴って消費される状況をモデル化している。汚濁物質の微生物の増殖に伴い消費される酸素の減少速度は、酸素濃度および基質すなわち汚濁物質濃度が低下するとともに低下するモデルとなっている。
<原水生物膜負荷とDO目標値及び/又は曝気強度設定値との関係>
 構築した生物膜の1次元の拡散モデルの数式を用いて、数値積分シミュレーションにより処理条件に対する処理水質を予測し適切な制御条件を探索的に求めて、以下の制御表にまとめた。
 本事例では原水生物膜負荷に応じたDO目標値及び/又は曝気強度設定値との関係として表1の制御表を使用するものとした。
Figure JPOXMLDOC01-appb-T000006
 この制御表では、例えば、TOC担体容積負荷(kgC/(m・d)、以下、単位を省略する場合がある。)が
0.1以上~0.6未満の場合は、DOの目標値3.1mg/L、
0.6以上~0.7未満の場合は、DOの目標値3.8mg/L、
0.7以上~0.9未満の場合は、DOの目標値3.9mg/L、
0.9以上~1.0未満の場合は、DOの目標値4.4mg/L、
1.0以上の場合は、DOの目標値4.8mg/L、
をそれぞれ適正値として設定し、
TOC担体容積負荷0.1以上~0.2未満の場合は、弱曝気時間設定値を2時間ごとに110分、同0.2以上0.3未満の場合は2時間ごとに90分、同0.3以上0.4未満の場合は2時間ごとに80分、同0.4以上0.5未満の場合は2時間ごとに60分、同0.5以上0.6未満の場合は2時間ごとに20分をそれぞれ適正値として設定し、TOC担体容積負荷が0.6(kgC/(m・d))以上の場合は、弱曝気時間設定値をゼロとする(つまり間欠曝気を行わなかった。)。
[実施例1]
 TOC負荷が図5の通り変動する原水を処理対象排水とした。
 担体容積負荷の2時間の移動平均値に基づき、2時間に1度DO目標値、2時間サイクルでの弱曝気時間を表1の制御表に基づき調整し、弱曝気時は一定の低風量(3m/(底面積m・hr))とし、弱曝気時以外の時間帯は設定したDO目標値となるようにブロアのモーター回転数を制御した。
 弱曝気時間の長さの経時変化を図2に示し、DOの経時変化を図3に示す。また、ブロアによる電力消費量の経時変化を図4に示す。
[比較例1]
 DOの目標値を3.5mg/Lと一定とし、弱曝気時間を10分/2時間と一定に維持したこと以外は実施例1と同様にした。結果を図2~4に示す。
<考察>
 実施例1では、担体当たりの負荷に応じてDO目標値および弱曝気時間を調整したので、ブロアの電力使用量が比較例1に比べて少ない。即ち、比較例1の電力消費量は約1150kWh/日であったのに対して、実施例1の電力消費量は約950kWh/日となり、約17%少ない。
 なお、実施例1及び比較例1の処理水質は殆ど差異がなかった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2020年3月31日付で出願された日本特許出願2020-063031に基づいており、その全体が引用により援用される。
 2 曝気槽
 3 散気管
 4 ブロア
 7 流量計
 8 濃度計
 9 DO計
 10 風量計
 11 制御器

Claims (6)

  1.  原水を曝気槽に供給し、曝気装置で曝気し、曝気槽に充填された生物膜保持担体またはグラニュールにより原水中の除去対象物質を好気性生物処理する方法において、
     該担体またはグラニュールあたりの原水負荷である原水生物膜負荷と、これに対応するDO目標値及び/または対応する曝気強度設定値との関係を予め設定しておき、
     原水生物膜負荷の計測値の変動に応じて前記関係に基づいて前記DO目標値及び/または曝気強度設定値を調整し、
     DOが該目標値となるように、又は設定された曝気強度設定値となるように、前記曝気装置を制御することを特徴とする好気性生物膜処理方法。
  2.  前記原水生物膜負荷は、担体の充填容積あたりの除去対象物質負荷、担体群の総表面積あたりの除去対象物質負荷、グラニュールの充填容積あたりの除去対象物質負荷、グラニュール群の総表面積あたりの除去対象物質負荷、のいずれかである請求項1の好気性生物膜処理方法。
  3.  前記除去対象物質は、有機物、窒素化合物又はアンモニウムイオンであり、
     前記原水生物膜負荷を、
     除去対象物の濃度の計測値又は吸光度の計測値から換算した濃度の計算値と、
     原水流量の計測値と、
     担体またはグラニュールの充填容積または表面積の計測値又は計算値と、
    から算出することを特徴とする請求項1又は2の好気性生物膜処理方法。
  4.  前記曝気強度の制御を、曝気風量、曝気停止時間又は曝気抑制時間の制御によって行う請求項1~3のいずれかの好気性生物膜処理方法。
  5.  前記関係を、実験結果、実機の運転実績、生物膜における酸素の拡散性を考慮した機構モデルの何れかを用いて設定することを特徴とする請求項1~4のいずれかの好気性生物膜処理方法。
  6.  原水が供給される曝気槽と、該曝気槽を曝気する曝気装置と、該曝気槽に充填された生物膜付き担体またはグラニュールと、該曝気装置を制御する制御器とを有する好気性生物処理装置において、
     該担体またはグラニュールあたりの原水負荷である原水生物膜負荷と、これに対応するDO目標値及び/または対応する曝気強度設定値との関係を予め設定する手段と、
     原水生物膜負荷の計測値の変動に応じて前記関係に基づいて前記DO目標値及び/または曝気強度設定値を調整する手段とを備えており、
     前記制御器は、DOが該目標値となるように、又は設定された曝気強度設定値となるように、前記曝気装置を制御することを特徴とする好気性生物膜処理装置。
PCT/JP2021/008417 2020-03-31 2021-03-04 好気性生物膜処理方法および装置 WO2021199885A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180025019.XA CN115335333A (zh) 2020-03-31 2021-03-04 好氧生物膜处理方法及装置
KR1020227027062A KR20220150285A (ko) 2020-03-31 2021-03-04 호기성 생물막 처리 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-063031 2020-03-31
JP2020063031A JP7017165B2 (ja) 2020-03-31 2020-03-31 好気性生物膜処理方法および装置

Publications (1)

Publication Number Publication Date
WO2021199885A1 true WO2021199885A1 (ja) 2021-10-07

Family

ID=77930180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008417 WO2021199885A1 (ja) 2020-03-31 2021-03-04 好気性生物膜処理方法および装置

Country Status (4)

Country Link
JP (1) JP7017165B2 (ja)
KR (1) KR20220150285A (ja)
CN (1) CN115335333A (ja)
WO (1) WO2021199885A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115583721A (zh) * 2022-09-23 2023-01-10 浙江数翰科技有限公司 基于污水处理的ai智能曝气方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016201089A1 (en) 2015-06-09 2016-12-15 Enviroscent, Inc. Formed three-dimensional matrix and associated coating providing modulated release of volatile compositions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258798A (ja) * 1986-05-02 1987-11-11 Kurita Water Ind Ltd 微量有機物含有水の生物学的処理方法
JP2004148151A (ja) * 2002-10-29 2004-05-27 Ebara Corp 有機性排水の処理方法と装置
US20170225986A1 (en) * 2014-08-04 2017-08-10 Veolia Water Solutions & Technologies Support Biofilm process for treating water with continuous or semi-continuous production of biomass with enhanced polyhydroxyalkanoate content

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548561B2 (ja) 1987-04-10 1996-10-30 建設省建築研究所長 廃水処理方法およびその装置
JP4365512B2 (ja) 2000-06-12 2009-11-18 株式会社東芝 下水処理システムおよび計測システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258798A (ja) * 1986-05-02 1987-11-11 Kurita Water Ind Ltd 微量有機物含有水の生物学的処理方法
JP2004148151A (ja) * 2002-10-29 2004-05-27 Ebara Corp 有機性排水の処理方法と装置
US20170225986A1 (en) * 2014-08-04 2017-08-10 Veolia Water Solutions & Technologies Support Biofilm process for treating water with continuous or semi-continuous production of biomass with enhanced polyhydroxyalkanoate content

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115583721A (zh) * 2022-09-23 2023-01-10 浙江数翰科技有限公司 基于污水处理的ai智能曝气方法及系统
CN115583721B (zh) * 2022-09-23 2023-11-07 浙江数翰科技有限公司 基于污水处理的ai智能曝气方法及系统

Also Published As

Publication number Publication date
JP7017165B2 (ja) 2022-02-08
KR20220150285A (ko) 2022-11-10
CN115335333A (zh) 2022-11-11
JP2021159844A (ja) 2021-10-11

Similar Documents

Publication Publication Date Title
Brindle et al. Nitrification and oxygen utilisation in a membrane aeration bioreactor
WO2021199885A1 (ja) 好気性生物膜処理方法および装置
JP5608027B2 (ja) 水処理システム及びその曝気風量制御方法
JP4381473B1 (ja) 排水処理装置
JP6720100B2 (ja) 水処理方法及び水処理装置
JP5685504B2 (ja) 水処理システムおよびその曝気風量制御方法
JP5833791B1 (ja) 活性汚泥における曝気量制御方法
WO2021200968A1 (ja) 好気性生物処理方法および装置
WO2021199886A1 (ja) 好気性生物膜処理方法および装置
WO2021240968A1 (ja) 好気性生物処理方法および装置
JP6062328B2 (ja) 排水の処理方法および排水の処理装置、並びに制御方法、制御装置、およびプログラム
JP3929800B2 (ja) 生物膜ろ過方法とそのシステム
JP4190177B2 (ja) 生物学的脱窒素処理における有機炭素源添加方法および装置
JP2021159860A (ja) 好気性生物膜処理方法および装置
JP6430324B2 (ja) 排水の処理方法および排水の処理装置
JP2021169062A (ja) 好気性生物膜処理方法および装置
JP3444021B2 (ja) オキシデーションディッチ型水処理装置の制御方法及び制御装置
KR20040087832A (ko) 오폐수 정화 장치 및 방법
JP3731249B2 (ja) 生物処理装置
JPH05177196A (ja) 高度浄水処理における活性炭供給装置
JPH06126293A (ja) 曝気槽溶存酸素制御方法
JPH0155913B2 (ja)
JPH07116693A (ja) 活性汚泥循環変法の運転制御方法
JPH03267198A (ja) 廃水処理装置の運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779489

Country of ref document: EP

Kind code of ref document: A1