WO2021196467A1 - 清洁机器人 - Google Patents

清洁机器人 Download PDF

Info

Publication number
WO2021196467A1
WO2021196467A1 PCT/CN2020/105623 CN2020105623W WO2021196467A1 WO 2021196467 A1 WO2021196467 A1 WO 2021196467A1 CN 2020105623 W CN2020105623 W CN 2020105623W WO 2021196467 A1 WO2021196467 A1 WO 2021196467A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
lidar
assembly
cleaning
light
Prior art date
Application number
PCT/CN2020/105623
Other languages
English (en)
French (fr)
Inventor
黄术生
夏昌太
闫瑞君
Original Assignee
深圳市银星智能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市银星智能科技股份有限公司 filed Critical 深圳市银星智能科技股份有限公司
Publication of WO2021196467A1 publication Critical patent/WO2021196467A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4002Installations of electric equipment
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4013Contaminants collecting devices, i.e. hoppers, tanks or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4063Driving means; Transmission means therefor
    • A47L11/4066Propulsion of the whole machine
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4072Arrangement of castors or wheels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4094Accessories to be used in combination with conventional vacuum-cleaning devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • the invention relates to a cleaning robot.
  • cleaning robots usually use lidar to scan the surrounding environment to achieve ranging, obstacle avoidance, and mapping functions.
  • the existing lidar protrudes from the upper cover of the robot to facilitate lidar detection of the surrounding environment, but lidar When exposed to the outside, it is easy to be hit by obstacles or drenched by liquid in the external environment, which affects the service life of the cleaning robot.
  • the technical problem to be solved by the present invention is to provide a cleaning robot with improved service life.
  • a cleaning robot includes a robot main body, a walking mechanism, a cleaning assembly, and a laser radar.
  • the robot main body is provided with an inner cavity, and the robot main body is formed with a light-transmitting window on the side wall of the inner cavity.
  • the walking mechanism is installed at the bottom of the robot main body to drive the robot main body to move, the cleaning assembly is detachably connected to the robot main body, and the cleaning assembly is used to clean the surface through which the robot main body passes.
  • the lidar is installed in the cavity, and the lidar includes a distance measuring component that can rotate relative to the robot body, and the distance measuring component transmits and receives laser signals through the light-transmitting window within a preset scanning angle. The distance measuring component transmits a detection signal through the light-transmitting window, and the detection signal is reflected after encountering an obstacle to form a reflection signal, and the reflection signal is returned to the distance measuring component through the light-transmitting window.
  • the cleaning robot includes a robot main body, a walking mechanism and a lidar
  • the robot main body is provided with an inner cavity
  • the robot main body has a light-transmitting window formed on the side wall of the inner cavity
  • the lidar includes a ranging component that can rotate relative to the robot body, wherein the robot body can protect the lidar and eliminate external interference
  • the distance measuring component of the lidar can rotate safely and stably in the cavity
  • the distance measuring component transmits and receives laser signals through the light-transmitting window within a preset scanning angle
  • the cleaning robot can apply the lidar Continuous and stable work, stable working performance, high reliability, and beneficial to improve the service life.
  • Fig. 1 is a first schematic cross-sectional view of a cleaning robot provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a three-dimensional structure of a cleaning robot provided by an embodiment of the present application
  • FIG. 3 is a second schematic cross-sectional view of the cleaning robot provided by the embodiment of the present application.
  • Fig. 4 is a schematic longitudinal cross-sectional view of the lidar provided in Fig. 1;
  • Fig. 5 is a schematic diagram of a transverse cross-section of the lidar provided in Fig. 1;
  • FIG. 6 is a schematic diagram 1 of a top view structure of a cleaning robot provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a top view structure of a cleaning robot provided by another embodiment.
  • FIG. 8 is a schematic diagram 2 of the top view structure of the cleaning robot provided by the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a collision side plate of a cleaning robot provided by an embodiment of the present application.
  • FIG. 10 is a second schematic cross-sectional view of a cleaning robot provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram 3 of the top view structure of the cleaning robot provided by the embodiment of the present application.
  • FIG. 12 is a third schematic cross-sectional view of a cleaning robot provided by an embodiment of the present application.
  • FIG. 13 is a fourth schematic cross-sectional view of a cleaning robot provided by an embodiment of the present application.
  • FIG. 14 is a schematic cross-sectional view of a cleaning robot provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of an obstacle avoidance sensor of a cleaning robot provided by an embodiment of the present application.
  • 16 is a schematic diagram 1 of the assembly structure of the collision side plate and the obstacle avoidance sensor provided by the embodiment of the present application;
  • FIG. 17 is a second schematic diagram of the assembly structure of the collision side plate and the obstacle avoidance sensor provided by the embodiment of the present application.
  • FIG. 18 is a sixth schematic cross-sectional view of a cleaning robot provided by an embodiment of the present application.
  • FIG. 19 is a seventh schematic cross-sectional view of a cleaning robot provided by an embodiment of the present application.
  • an embodiment of the present application provides a cleaning robot 100.
  • the cleaning robot 100 includes a robot body 10, a walking mechanism 20, a cleaning assembly 80, and a lidar 30.
  • the robot body 10 is provided with an inner cavity. 11.
  • the robot body 10 has a light-transmitting window 12 formed on the side wall of the inner cavity 11, and the walking mechanism 20 is installed at the bottom of the robot body 10 to drive the robot body 10 to move.
  • the assembly 80 is detachably connected to the robot body 10, the cleaning assembly 80 is used to clean the surface the robot body 10 passes through, the lidar 30 is installed in the cavity 11, and the lidar 30 includes The distance measuring component 31 that rotates relative to the robot body 10, the distance measuring component 31 transmits and receives laser signals through the light transmitting window 12 within a predetermined scanning angle, wherein the distance measuring component 31 transmits through the light transmitting window 12 emits a detection signal, the detection signal is reflected after encountering an obstacle to form a reflection signal, and the reflection signal returns to the ranging component 31 through the light-transmitting window 12.
  • the cleaning robot 100 includes a robot body 10, a walking mechanism 20, and a lidar 30, the robot body 10 is provided with an inner cavity 11, and the robot body 10 is on the side of the inner cavity 11.
  • the wall is formed with a light-transmitting window 12, which is installed in the cavity 11 through the lidar 30.
  • the lidar 30 includes a distance measuring assembly 31 rotatable relative to the robot body 10, wherein the robot body 10 It can protect the lidar 30 and eliminate external interference.
  • the ranging component 31 of the lidar 30 can rotate safely and stably in the cavity 11, and the ranging component 31 is at a preset scanning angle.
  • X receives and receives laser signals through the light-transmitting window 12, and the cleaning robot 100 can use the laser radar 30 to work continuously and stably, with stable working performance and high reliability, which is beneficial to increase the service life.
  • the cleaning robot 100 may be any one of a sweeping robot, a mopping robot, a window cleaning robot, or a vacuuming robot, etc., which is not limited herein.
  • the robot body 10 may include a chassis 14 and an upper cover assembly 15.
  • the upper cover assembly 15 is detachably mounted on the chassis 14 to protect various functional components inside the cleaning robot 100 from intense stress during use. Damage due to impact or accidental dripping; the chassis 14 and/or the upper cover assembly 15 are used to carry and support various functional components.
  • the main body of the cleaning robot 100 may also have other design structures.
  • the main body is an integrally formed structure with a structure separated from left and right. The embodiment of the present invention does not limit the material, shape, structure, etc. of the main body. .
  • the inner cavity 11 is formed between the chassis 14 and the upper cover assembly 15, and the inner cavity 11 is used to provide an arrangement space for the internal components of the cleaning robot 100.
  • the cleaning robot 100 is arranged in the inner cavity 11 with a dust box, a vacuum pump, a battery, a main circuit board, a ground detection sensor, a collision detection sensor, and a wall sensor.
  • the upper cover assembly 15 includes a main casing 16 and a collision side plate 13 movably connected to the main casing 16.
  • the main housing 16 is the main part of the upper cover assembly 15.
  • the main housing 16 can be provided with buttons, and the main housing 16 and the collision side plate 13 are jointly covered on the chassis 14 ,
  • the main housing 16 is fixedly connected to the chassis 14 by means of screw connection or the like.
  • the collision side plate 13 can move relative to the chassis 14 and the main housing 16.
  • the cleaning robot 100 further includes an elastic member elastically connecting the chassis 14 and the collision side plate 13, and the elastic member may Provide elastic support to the collision side plate 13.
  • the collision side plate 13 can contract relative to the main housing 16 when it hits an obstacle, and then the collision side plate 13 expands relative to the main housing 16 under the elastic action of the elastic member.
  • the collision side plate 13 can take any shape such as an arc, a ring, a rim, and can be set according to actual needs, which is not limited here.
  • the collision side plate 13 is provided with the light-transmitting window 12, and the front end of the chassis 14 is arranged close to the light-transmitting window 12.
  • the lidar 30 is located at the front end of the chassis 14 and adjacent to the collision side plate 13.
  • the lidar 30 can be fixed to the chassis 14 or to the main housing 16.
  • the walking mechanism 20 is connected to the robot body 10 and is configured to drive the cleaning robot 100 to move on the ground.
  • the cleaning robot 100 may be designed to autonomously plan a path on the ground, or it may be designed to respond to The remote control command moves on the ground.
  • the walking mechanism 20 includes two driving wheels 21, at least one universal wheel 22, and a motor for driving the wheels to rotate.
  • the two driving wheels 21 and the universal wheel 22 are at least Part of it protrudes from the bottom of the chassis 14.
  • the walking mechanism 20 may also include any one of triangular crawler wheels, mecanum wheels, and the like.
  • the cleaning robot 100 may include a cleaning assembly 80 that is detachably connected to the robot body 10.
  • the cleaning component 80 includes one or two of a middle sweep component and a mopping component.
  • the middle sweep assembly includes at least one middle sweep brush, the at least one middle sweep brush may include one or two of the middle sweep brush and the middle sweep rubber brush, and the at least one middle sweep brush may be provided in the chassis 14
  • the dust suction port is connected with the dust box and the dust suction fan, so that when the middle sweeping brush rotates, the dust and garbage on the ground are stirred up, and the dust is sucked up.
  • the fan generates suction force to suck dust and garbage from the dust suction port into the dust collection box.
  • the mopping assembly includes a bracket detachably connected to the chassis 14 and a wiper attached to the bracket. The wiper is used to fit the surface to be cleaned, and the wiper moves with the robot body 10 And wipe the passing surface.
  • the lidar 30 can be a mechanical lidar or a solid-state lidar, which can be set by itself according to needs.
  • the lidar 30 is a mechanical lidar
  • the lidar 30 is a 2D TOF radar, and the distance is measured using the time-of-flight principle.
  • the lidar 30 includes a housing assembly 32 that is fixedly connected to the robot body 10, and a drive assembly 33 that is fixedly connected to the housing assembly 32.
  • the drive assembly 33 can drive the distance measuring assembly 31 to rotate.
  • the distance component 31 includes a laser transmitter 34 and a single-photon detection chip 35.
  • the transmitting optical path of the laser transmitter 34 and the receiving optical path of the single-photon detection chip 35 are perpendicular to the rotation axis direction of the distance measuring component 31, And the emitting optical path of the laser transmitter 34 is parallel to the receiving optical path of the single-photon detection chip 35.
  • the lidar 30 may also be a triangular ranging radar.
  • the distance measuring component 31 can be driven to rotate by the driving component 33, wherein the distance measuring component 31 includes a laser transmitter 34 and a single-photon detection chip 35, and the laser transmitter 34 can emit a detection light signal,
  • the single-photon detection chip 35 can receive the reflected light signal reflected by the obstacle, and the lidar 30 can realize two-dimensional ranging according to the time-flight ranging principle; usually a detection chip with a larger photosensitive area or multiple detections are used. Chips or focusing light-transmitting parts can improve the ability of the lidar 30 to detect reflected light, but it will increase the system complexity and volume of the lidar 30.
  • this application uses a small-sized single-photon detection chip 35, and the laser The emission optical path of the transmitter 34 is parallel to the receiving optical path of the single-photon detection chip 35, which greatly compresses the space occupied by the ranging component 31, thereby reducing the volume of the radar.
  • the small-size single-photon detection chip 35 has high photoelectric gain. The ability of the lidar 30 to detect the reflected light signal is significantly improved, and the ranging effect can be ensured without adding complicated circuit components. Therefore, the lidar 30 has a small volume and does not need to occupy too much internal space of the robot body 10.
  • the housing assembly 32 includes a base 321 and a transparent cover 322 covering the base 321.
  • the transparent cover 322 can be fixed relative to the base 321.
  • the transparent cover 322 can be fixedly connected to the base 321 by means of screw connection, glue bonding or threaded connection, and the transparent cover 322 can be connected to the base 321.
  • the base 321 is hermetically connected. The detection beam emitted by the distance measuring module and the reflected beam received by the distance measuring module may pass through the transparent cover 322.
  • a cavity 323 is formed between the base 321 and the transparent cover 322, and the cavity 323 can provide installation space and movement space for the ranging component 31 and the driving component 33 of the lidar 30.
  • the driving component 33 is installed on the base 321 and drivingly connected with the distance measuring component 31.
  • the drive assembly 33 includes a motor stator and a motor rotor.
  • the motor stator and the motor rotor can form a brushless motor with a compact structure and occupy a small space.
  • the motor stator is fixedly installed on the base 321, and the motor rotor is fixedly installed on the distance measuring assembly 31.
  • the central axis of the motor stator, the central axis of the motor rotor, and the rotation axis of the distance measuring assembly 31 coincide.
  • the motor stator can drive the motor rotor to rotate relative to the base 321 through electromagnetic force, thereby driving the distance measuring assembly 31 to rotate relative to the base 321.
  • the drive assembly 33 may include a motor and a transmission member, the motor is fixed on the base 321, and the transmission member is drivingly connected between the distance measuring assembly 31 and the drive shaft of the motor.
  • the transmission member may be a conveyor belt or a gear, so that the motor can drive the distance measuring assembly 31 to rotate through the transmission member.
  • the pair of driving wheels 21 are installed in the middle position of the chassis 14, the lidar 30 is located at the front end of the chassis 14, the lidar 30 and the The pair of driving wheels 21 are triangularly distributed.
  • the lidar 30 is located at the front end of the chassis 14, and the distance between the lidar 30 and the collision side plate 13 is small, so that the lidar 30 can directly pass through the light transmission window of the collision side plate 13 12 Transceive laser signals, and reduce other parts to block laser signals.
  • a predetermined distance is set between the connection direction of the lidar 30 and the pair of driving wheels 21, which can provide installation space for circuit boards, motors, batteries, and the like.
  • the lidar 30 may be fixed to the chassis 14 or the main housing 16 so that the position of the lidar 30 is relatively fixed.
  • the walking mechanism 20 includes at least one universal wheel 22 arranged on the chassis 14, and the at least one universal wheel 22 is mounted on the chassis 14 and the front end Relative back end.
  • the at least one universal wheel 22 is installed on the rear end of the chassis 14 opposite to the front end, that is, the at least one universal wheel 22 is located at the pair of driving wheels 21 away from the lidar 30 One side.
  • the chassis 14 is provided with at least one positioning structure that cooperates with the at least one universal wheel 22, and the positioning structure is protrudingly provided in the inner cavity 11 and is located on the pair of driving wheels 21 away from the laser One side of the radar 30 can prevent the laser radar 30 from interfering with the universal wheel 22 and the positioning structure.
  • the number of the universal wheels 22 can be one or two or more than two, which can be set according to actual needs.
  • the at least one universal wheel 22 is installed at the front end of the chassis 14, the at least one universal wheel 22 is adjacent to the lidar 30, and, Taking the center line of the pair of driving wheels 21 as a reference line, the distance between the at least one universal wheel 22 and the reference line is smaller than the distance between the lidar 30 and the reference line, and the chassis 14 The distance between the above positioning structure and the reference line is smaller than the distance between the lidar 30 and the reference line, so that the above positioning structure is staggered from the lidar 30, thereby avoiding interference problems.
  • the cleaning robot 100 further includes a main circuit board 70 disposed on the chassis 14, the main circuit board 70 has a front edge 71 adjacent to the lidar 30, Part of the front edge 71 is recessed to form a notch 72, and the notch 72 at least partially accommodates the lidar 30.
  • the main circuit board 70 is electrically connected to the traveling mechanism 20, the lidar 30, the battery and the motor on the chassis 14 and so on.
  • the main circuit board 70 is arranged close to the collision side plate 13 and the lidar 30.
  • the notch 72 is provided on the main circuit, so that the main circuit board 70 does not need to be moved backward as a whole, and the notch 72 can also provide a receiving space for the lidar 30.
  • the preset scanning angle X is greater than or equal to 180°.
  • the distance measuring component 31 can rotate 360° with respect to the robot body 10, and the distance measuring component 31 can emit a laser detection signal at a preset frequency in a preset scanning angle X.
  • the aforementioned laser detection signal After being reflected on an external obstacle, a laser reflection signal is formed, and the above-mentioned laser reflection signal is returned to the lidar 30, wherein both the above-mentioned laser detection signal and the laser reflection signal need to pass through the light-transmitting window 12.
  • the laser scanning angle of the lidar 30 in normal operation cannot reach 360 degrees, that is, the preset scanning angle X is less than 360°.
  • the preset scanning angle X is greater than or equal to 230° and less than 360°.
  • the preset scanning angle X may also be less than 230°.
  • the collision side plate 13 is provided with a strip-shaped elongated hole 133 and a light-transmitting member 134 that covers the strip-shaped elongated hole, and is arranged on the strip At least one reinforcing rib 135 in the long hole 133 is combined with the light-transmitting member 134.
  • the collision side plate 13 is provided with the strip-shaped elongated hole 133 and a light-transmitting member 134 that covers the strip-shaped elongated hole 133.
  • the strip-shaped long hole 133 has a relatively large length to transmit and receive laser signals within the preset scanning angle X through the lidar 30.
  • the light-transmitting member 134 may be a plastic member, the light-transmitting member 134 may transmit the laser signal passing through the strip-shaped elongated hole 133, and a dark filter layer is attached to the light-transmitting member 134 to shield The device on the inner side of the collision side plate 13.
  • the strip-shaped long hole 133 has two opposite long sides 136 and two opposite short sides 137, and the two long sides 136 are connected to the two short sides 137 respectively.
  • the at least one reinforcing rib 135 is fixedly connected to the two long sides 136 and combined with the light transmitting member 134, so that the at least one reinforcing rib 135 is opposed to the two long sides 136 and the light transmitting member 134 Supporting by 134 is beneficial to increase the overall strength of the collision side plate 13 and avoid the deformation of the strip-shaped elongated hole 133 and the light-transmitting member 134.
  • the reinforcing ribs 135 can be one or more, and they can be set according to needs.
  • the cleaning robot 100 further includes a sensor assembly 60 fixedly connected to the main body of the robot.
  • the sensor assembly 60 is adjacent to the lidar 30.
  • the sensor assembly The scanning light path area 60 and the scanning light path area 50 of the distance measuring component 31 are staggered in the direction perpendicular to the reference plane 40.
  • the reference surface 40 is disposed on the chassis 14, and the reference surface 40 is located on the side of the chassis 14 away from the upper cover assembly 15.
  • the scanning light path area 50 of the distance measuring component 31 is substantially parallel to the reference surface 40. Since the preset scanning angle X is greater than or equal to 180°, the scanning light path area 50 needs to occupy a part of the space of the inner cavity 11, in order to prevent the sensing component 60 from blocking the scanning light path of the lidar 30 ,
  • the scanning light path area 50 of the sensing component 60 and the distance measuring component 31 is staggered in the direction perpendicular to the reference plane 40, so that the scanning light path area of the sensing component 60 and the distance measuring component 31 50 is located at different installation heights, so that the sensing assembly 60 can avoid the scanning light path area 50 of the lidar 30, ensuring that the ranging assembly 31 works normally within a preset angle range.
  • the sensor assembly 60 may include any one or more of the obstacle avoidance sensor 61, the collision detection sensor 62, the ground detection sensor 63, etc
  • the robot body 10 has an arrangement area 90 that overlaps the scanning light path area 50, the arrangement area 90 is adjacent to the collision side plate 13, and the arrangement area 90 is located in the scanning light path area 50.
  • the orthographic projection of the sensing assembly 60 on the chassis 14 is at least partially located in the arrangement area 90, so that the sensing assembly 60 and the scanning light path area 50 at least partially overlap, so that the transmission
  • the sensor assembly 60 and the lidar 30 are arranged in a compact structure, occupying a small internal space of the robot body 10, which is conducive to optimizing the arrangement of internal components of the cleaning robot 100, realizing volume optimization design, and facilitating the laser
  • the radar 30 realizes a wide-angle scanning light path.
  • the orthographic projection of the sensor assembly 60 on the chassis 14 is completely staggered from the arrangement area 90.
  • the sensor assembly 60 includes at least one obstacle avoidance sensor 61, and the distance between the at least one obstacle avoidance sensor 61 and the reference surface 40 is greater than or smaller than the scanning light path area The distance between 50 and the reference surface 40.
  • the at least one obstacle avoidance sensor 61 may transmit an obstacle detection signal to the outside, the obstacle detection signal is reflected on an external obstacle to form a reflected signal, and the obstacle avoidance sensor 61 receives the reflected signal, and The obstacle situation in front of the cleaning robot 100 is determined according to the reflected signal.
  • the obstacle avoidance sensor 61 may be a 3D obstacle avoidance sensor, the obstacle avoidance sensor 61 may emit an obstacle detection signal to detect surrounding obstacles, and the emission area of the obstacle avoidance sensor 61 is sandwiched between the reference surface 40 Angle setting, the aforementioned included angle can be an acute angle, a right angle or an obtuse angle.
  • the number of obstacle avoidance sensors 61 is three, and the at least one obstacle avoidance sensor 61 may include a first obstacle avoidance sensor and a second obstacle avoidance sensor.
  • the first obstacle avoidance sensor and the The second obstacle avoidance sensors are respectively located on the left and right sides of the lidar 30, and the first obstacle avoidance sensor and the second obstacle avoidance sensor are used to detect obstacles on both sides in front of the cleaning robot 100, respectively.
  • the at least one obstacle avoidance sensor 61 includes a third obstacle avoidance sensor that is used for obstacles on the left or right side of the cleaning robot 100, and the third obstacle avoidance sensor may be used as an obstacle along a wall. Sensors.
  • the number of obstacle avoidance sensors 61 is one or more than three, which can be set according to actual needs.
  • the orthographic projection of the at least one obstacle avoidance sensor 61 on the chassis 14 is at least partially located in the arrangement area 90, so that the at least one obstacle avoidance sensor 61 and the laser
  • the arrangement of the radar 30 is compact and takes up little space.
  • the distance between the at least one obstacle avoidance sensor 61 and the reference surface 40 is greater than the distance between the scanning light path area 50 and the reference surface 40.
  • the greater the distance between the at least one obstacle avoidance sensor 61 and the reference surface 40 the greater the distance between the at least one obstacle avoidance sensor 61 and the ground, which is more conducive to ensuring the measurement of the at least one obstacle avoidance sensor 61 Accuracy;
  • the at least one obstacle avoidance sensor 61 and the chassis 14 are provided with an interval, and the scanning light path area 50 of the ranging component 31 is located within the above interval, so that the at least one obstacle avoidance sensor 61 and the ranging
  • the scanning light path area 50 of the component 31 is staggered, so that the lidar 30 can realize a large-angle scanning light path.
  • the at least one obstacle avoidance sensor 61 may be accommodated in the inner cavity 11, or the at least one obstacle avoidance sensor 61 may also be protrudingly arranged on the main housing 16 away from the chassis 14. On one side, the at least one obstacle avoidance sensor 61 can reduce the space occupied by the inner cavity 11.
  • lidar 30 there are two ways to install the lidar 30 in the robot body 10:
  • the base 321 of the lidar 30 is disposed adjacent to the chassis 14, and the ranging component 31 and the transparent cover 322 of the lidar 30 are disposed adjacent to the main housing 16. That is, the lidar 30 adopts an upright installation form, so that the distance between the scanning optical path area 50 of the ranging component 31 and the reference surface 40 is the first height;
  • the base 321 of the lidar 30 is arranged adjacent to the main housing 16, and the ranging component 31 and the transparent cover 322 of the lidar 30 are arranged adjacent to the chassis 14. That is, the lidar 30 adopts an inverted installation form, so that the distance between the scanning light path area 50 of the distance measuring component 31 and the reference surface 40 is the second height.
  • the second height is smaller than the first height, so that the installation height requirement for the at least one obstacle avoidance sensor 61 can be reduced, which in turn is beneficial to reducing the overall height dimension of the cleaning robot 100.
  • the distance between the at least one obstacle avoidance sensor 61 and the reference surface 40 is smaller than the distance between the scanning light path area 50 and the reference surface 40.
  • the scanning light path area 50 of the distance measurement component 31 is spaced apart from the chassis 14, and the at least one obstacle avoidance sensor 61 is located within the above space, so that the at least one obstacle avoidance sensor 61 and the distance measurement component 31
  • the scanning light path area 50 is staggered.
  • the at least one obstacle avoidance sensor 61 may be located directly below, lower left or lower right of the distance measuring component 31.
  • the robot body 10 includes a movable collision side plate 13, and the collision side plate 13 is provided with the light-transmitting window 12.
  • the at least one obstacle avoidance sensor 61 is spaced apart from the collision side plate 13, and the collision side plate 13 is provided with a light-transmitting hole 131 at a position corresponding to the obstacle avoidance sensor 61, or the at least one obstacle avoidance sensor 61
  • the collision side plate 13 is hermetically connected to the collision side plate 13, and the collision side plate 13 is provided with a light-transmitting portion 132 at a position corresponding to the 61 component of the obstacle avoidance sensor.
  • the at least one obstacle avoidance sensor 61 is spaced apart from the collision side plate 13, and the collision side plate 13 is provided with a light-transmissive position corresponding to the obstacle avoidance sensor 61. ⁇ 131.
  • the at least one obstacle avoidance sensor 61 may be fixedly connected to the main housing 16 or the chassis 14, then the at least one obstacle avoidance sensor 61 is fixed relative to the chassis 14 and the main housing 16.
  • the collision side plate 13 is expanded relative to the main housing 16, there is a maximum distance between the collision side plate 13 and the at least one obstacle avoidance sensor 61, and the maximum distance is greater than that of the collision side plate 13.
  • the movement stroke avoids the collision side plate 13 from damaging the at least one obstacle avoidance sensor 61.
  • Each obstacle avoidance sensor 61 includes a sensor body 601 and a packaging component 602.
  • the packaging component 602 includes a packaging seat 603 and an optical lens 604 covered on the packaging seat 603.
  • the packaging seat 603 and the optical lens A sealed space 605 for accommodating the sensor body 601 is formed between the lenses 604.
  • the optical lens 604 can transmit the signals sent and received by the sensor body 601. At the same time, the optical lens 604 can play a dust-proof function to avoid external dust. Contaminate the sensor body.
  • the collision side plate 13 is provided with a light transmission hole 131 corresponding to the position of each obstacle avoidance sensor 61, so that each obstacle avoidance sensor 61 transmits an obstacle detection signal and receives a reflection signal through the light transmission hole 131 at the corresponding position. .
  • the number of the light-transmitting holes 131 is the same as the number of the obstacle avoidance sensors 61.
  • the collision side plate 13 is provided with a light-transmitting portion 132 at a position corresponding to the 61 obstacle avoidance sensors, and the at least one obstacle avoidance sensor 61 and The collision side plate 13 is hermetically connected.
  • the obstacle avoidance sensor 61 includes a sensor body 601 and a package seat 604, and the package seat 604 is hermetically connected to the package side plate, so that the package seat 604 and the collision side plate 13 are formed to accommodate the The sealed space 605 of the sensor body 601.
  • the light-transmitting portion 132 can transmit the signals received and received by the obstacle avoidance sensor 61, and at the same time, can play a dust-proof function to prevent external dust from polluting the sensor body 601.
  • the light-transmitting portion 132 is formed by a part of the light-transmitting member, which can reduce the number of openings on the collision side plate 13 and improve the simplicity of appearance.
  • the number of the obstacle avoidance sensor 61 may be one or two or more than two.
  • the sensing assembly 60 includes at least one collision detection sensor 62, and the distance between the at least one collision detection sensor 62 and the reference surface 40 is greater than or less than the scanning distance. The distance between the optical path area 50 and the reference surface 40.
  • the collision detection sensor 62 includes a collision detection body 621 and a trigger 622 movably connected to the collision detection body 621.
  • the collision detection body 621 is fixedly connected to the main housing 16 or the chassis 14.
  • One end of the triggering member 622 away from the collision detection body 621 abuts the collision side plate 13, and the collision side plate 13 is expanded relative to the main housing 16, that is, the cleaning robot 100 has not collided with an obstacle, so
  • the trigger 622 is in the first position, and the trigger 622 does not trigger the collision detection body 621 to work; when the collision side plate 13 is retracted relative to the main housing 16, the collision side plate 13 drives the trigger
  • the member 622 moves to the second position relative to the main body of the collision side plate 13, the trigger member 622 triggers the collision detection body 621 to generate a collision signal, and the cleaning robot 100 determines the existence of an obstacle according to the collision signal.
  • the number of the collision detection sensors 62 is two, and the at least one collision detection sensor 62 may include a first collision detection sensor and a second collision detection sensor.
  • the first collision detection sensor and the The second collision detection sensors are respectively located on the left and right sides of the lidar 30, and the first collision detection sensor and the second collision detection sensor are used to detect the collision of obstacles on the left and right sides of the collision side plate 13 respectively.
  • the number of obstacle avoidance sensors 61 is one or more than two, which can be set according to actual needs.
  • the at least one collision detection sensor 62 and the at least one obstacle avoidance sensor 61 are substantially located on the same plane, which is beneficial to reduce the overall height of the cleaning robot 100.
  • the orthographic projection of the at least one collision detection sensor 62 on the chassis 14 is at least partially located in the arrangement area 90, so that the at least one collision detection sensor 62 and the laser
  • the arrangement of the radar 30 is compact and takes up little space.
  • the distance between the at least one collision detection sensor 62 and the reference surface 40 is greater than the distance between the scanning light path area 50 and the reference surface 40.
  • an interval is set between the at least one collision detection sensor 62 and the chassis 14, and the scanning light path area 50 of the distance measuring assembly 31 is located within the interval, so that the at least one collision detection sensor 62 is connected to the distance measuring device.
  • the scanning light path area 50 of the component 31 is staggered, so that the lidar 30 can realize a large-angle scanning light path.
  • the distance between the at least one collision detection sensor 62 and the reference surface 40 is smaller than the distance between the scanning light path area 50 and the reference surface 40.
  • the scanning light path area 50 of the distance measuring component 31 is spaced from the chassis 14 and the at least one collision detection sensor 62 is located within the aforementioned distance, so that the at least one collision detection sensor 62 and the distance measuring component 31 are separated from each other.
  • the scanning light path area 50 is staggered.
  • the at least one collision detection sensor 62 may be located directly below, lower left or lower right of the distance measuring assembly 31.
  • the sensing assembly 60 includes at least one ground detection sensor 63, and the distance between the at least one ground detection sensor 63 and the reference surface 40 is less than that of the scanning light path area 50 and The distance of the reference surface 40.
  • the at least one ground detection sensor 63 is installed at the front end of the chassis 14 and adjacent to the collision side plate 13.
  • the at least one ground detection sensor 63 is used to sense terrain with a height difference. For example, when the cleaning robot 100 encounters a step surface while walking on the ground, the at least one ground detection sensor 63 can sense the step surface. , The cleaning robot 100 can stop moving or retreat to prevent the cleaning robot 100 from falling from the step surface.
  • the number of the ground detection sensors 63 can be one or two or more, and can be set according to actual needs.
  • the ground detection sensor 63 may be located directly below the lidar 30 or The lower left or lower right makes the at least one ground detection sensor 63 avoid the scanning light path of the distance measuring component 31, so that the lidar 30 can realize a large-angle scanning light path.
  • the orthographic projection of the at least one ground detection sensor 63 on the chassis 14 is at least partially located in the arrangement area 90, so that the at least one ground detection sensor 63 and the laser
  • the arrangement of the radar 30 is compact and takes up little space.
  • the robot body 10 is provided with at least one through hole 64 at a position corresponding to the lidar 30 at the bottom, and the at least one ground detection sensor 63 is respectively installed on the at least one Inside the through hole 64.
  • the number of the ground detection sensors 63 may be one or two or more than two, and the number of the through holes 64 is the same as the number of the ground detection sensors 63.
  • the at least one through hole 64 is provided at a position of the chassis 14 corresponding to the lidar 30, and the at least one ground detection sensor 63 is installed in the at least one through hole 64, so that the at least one ground
  • the detection sensor 63 and the lidar 30 are stacked, so that the at least one ground detection sensor 63 and the lidar 30 are arranged in a compact structure and occupy a small space, while avoiding the at least one ground detection sensor 63 from blocking the
  • the scanning light path of the lidar 30 is convenient for the lidar 30 to realize a large-angle scanning light path.

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种清洁机器人(100),清洁机器人(100)包括机器人主体(10)、行走机构(20)、清洁组件(80)和激光雷达(30),机器人主体(10)设有内腔(11),机器人主体(10)在内腔(11)的侧壁形成有透光窗口(12),行走机构(20)安装于机器人主体(10)的底部,以驱动机器人主体(10)移动,清洁组件(80)可拆卸连接于机器人主体(10),清洁组件(80)用于清洁机器人主体(10)经过的表面,激光雷达(30)安装于内腔(11)中,激光雷达(30)包括可相对机器人主体(10)旋转的测距组件(31),测距组件(31)在预设扫描角度内经透光窗口(12)收发激光信号,其中,测距组件(31)透过透光窗口(12)发射探测信号,探测信号遇到障碍物后反射形成反射信号,反射信号透过透光窗口(12)返回至测距组件(31)。

Description

清洁机器人
本发明要求2020年03月31日向中国国家知识产权局递交的申请号为202010247492.X,发明名称为“清洁机器人”的在先申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及一种清洁机器人。
背景技术
目前清洁机器人通常应用激光雷达对周围环境进行扫描,进而实现测距、避障和建图等功能,现有的激光雷达相对机器人的上盖凸出,从而方便激光雷达探测周围环境,但是激光雷达暴露在外部容易遭到障碍物的撞击,或者被外部环境中的液体淋到,影响清洁机器人的使用寿命。
发明内容
本发明所要解决的技术问题在于,提供一种提高使用寿命的清洁机器人。
为了解决上述技术问题,本发明的实施例采用以下技术方案:
一种清洁机器人,所述清洁机器人包括机器人主体、行走机构、清洁组件和激光雷达,所述机器人主体设有内腔,所述机器人主体在所述内腔的侧壁形成有透光窗口,所述行走机构安装于所述机器人主体的底部,以驱动所述机器人主体移动,所述清洁组件可拆卸连接于所述机器人主体,所述清洁组件用于清洁所述机器人主体经过的表面,所述激光雷达安装于所述内腔中,所述激光雷达包括可相对所述机器人主体旋转的测距组件,所述测距组件在预设扫描角度内经所述透光窗口收发激光信号,其中,所述测距组件透过所述透光窗口发射探测信号,所述探测信号遇到障碍物后反射形成反射信号,所述反射信号透过所述透光窗口返回至所述测距组件。
与现有技术相比,本发明实施例的技术方案至少具有以下有益效果:
本发明的实施例中,通过所述清洁机器人包括机器人主体、行走机构和激光雷达,所述机器人主体设有内腔,所述机器人主体在所述内腔的侧壁形成有透光窗口,又通过所述激光雷达安装于所述内腔中,所述激光雷达包括可相对所述机器人主体旋转的测距组件,其中所述机器人主体可以对所述激光雷达起到保护作用,排除外部干扰,所述激光雷达的测距组件可以在所述内腔中安全稳定地旋转,所述测距组件在预设扫描角度内经所述透光窗口收发激光信号,所述清洁机器人可以应用所述激光雷达持续稳定地工作,工作性能稳定,可靠性高,有利于提高使用寿命。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的变形形式。
图1是本申请实施例提供的清洁机器人的截面示意图一;
图2是本申请实施例提供的清洁机器人的立体结构示意图;
图3是本申请实施例提供的清洁机器人的截面示意图二;
图4是图1中提供的激光雷达的纵向截面示意图;
图5是图1中提供的激光雷达的横向截面示意图;
图6是本申请实施例提供的清洁机器人的俯视结构示意图一;
图7是另一实施方式提供的清洁机器人的俯视结构示意图;
图8是本申请实施例提供的清洁机器人的俯视结构示意图二;
图9是本申请实施例提供的清洁机器人的碰撞侧板的结构示意图;
图10是本申请实施例提供的清洁机器人的截面示意图二;
图11是本申请实施例提供的清洁机器人的俯视结构示意图三;
图12是本申请实施例提供的清洁机器人的截面示意图三;
图13是本申请实施例提供的清洁机器人的截面示意图四;
图14是本申请实施例提供的清洁机器人的截面示意图五;
图15是本申请实施例提供的清洁机器人的避障传感器的结构示意图;
图16是本申请实施例提供的碰撞侧板和避障传感器的组装结构示意图一;
图17是本申请实施例提供的碰撞侧板和避障传感器的组装结构示意图二;
图18是本申请实施例提供的清洁机器人的截面示意图六;
图19是本申请实施例提供的清洁机器人的截面示意图七。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1至图6,本申请实施例提供一种清洁机器人100,所述清洁机器人100包括机器人主体10、行走机构20、清洁组件80和激光雷达30,所述机器人主体10设有内腔11,所述机器人主体10在所述内腔11的侧壁形成有透光窗口12,所述行走机构20安装于所述机器人主体10的底部,以驱动所述机器人主体10移动,所述清洁组件80可拆卸连接于所述机器人主体10,所述清洁组件80用于清洁所述机器人主体10经过的表面,所述激光雷达30安装于所述内腔11中,所述激光雷达30包括可相对所述机器人主体10旋转的测距组件31,所述测距组件31在预设扫描角度内经所述透光窗口12收发激光信号,其中,所述测距组件31透过所述透光窗口12发射探测信号,所述探测信号遇到障碍物后反射形成反射信号,所述反射信号透过所述透光窗口12返回至所述测距组件31。
与现有技术相比,本发明实施例的技术方案至少具有以下有益效果:
本发明的实施例中,通过所述清洁机器人100包括机器人主体10、行走机构20和激光雷达30,所述机器人主体10设有内腔11,所述机器人主体10在所述内腔11的侧壁形成有透光窗口12,又通过所述激光雷达30安装于所 述内腔11中,所述激光雷达30包括可相对所述机器人主体10旋转的测距组件31,其中所述机器人主体10可以对所述激光雷达30起到保护作用,排除外部干扰,所述激光雷达30的测距组件31可以在所述内腔11中安全稳定地旋转,所述测距组件31在预设扫描角度X内经所述透光窗口12收发激光信号,所述清洁机器人100可以应用所述激光雷达30持续稳定地工作,工作性能稳定,可靠性高,有利于提高使用寿命。
可以理解的是,所述清洁机器人100可以是扫地机器人、拖地机器人、擦窗机器人或吸尘机器人等的任意一种,在此不作限定。
本实施方式中,所述机器人主体10可以包括底盘14和上盖组件15,上盖组件15可拆卸地安装于底盘14上,以在使用期间保护清洁机器人100内部的各种功能部件免受激烈撞击或无意间滴洒的液体的损坏;底盘14和/或上盖组件15用于承载和支撑各种功能部件。在一可选实施例中,清洁机器人100的本体也可以是其他设计构造,例如,本体为一体成型结构、左右分离设置的结构,本发明实施例对本体的材料、形状、结构等不做限定。
所述底盘14和所述上盖组件15之间形成所述内腔11,所述内腔11用于为所述清洁机器人100的内部器件提供排布空间。所述清洁机器人100在所述内腔11中排布有集尘盒、真空泵、电池、主电路板、地面检测传感器、碰撞检测传感器和沿墙传感器等。所述上盖组件15包括主壳体16和与所述主壳体16活动连接的碰撞侧板13。所述主壳体16为所述上盖组件15的主体部分,所述主壳体16上可以设置按键,所述主壳体16和所述碰撞侧板13共同盖设于所述底盘14上,所述主壳体16通过螺钉连接等方式固定连接所述底盘14。所述碰撞侧板13可相对所述底盘14和所述主壳体16活动,所述清洁机器人100还包括弹性连接所述底盘14和所述碰撞侧板13的弹性件,所述弹性件可以对所述碰撞侧板13提供弹性支撑力。所述碰撞侧板13撞到障碍物时可相对所述主壳体16收缩,接着所述碰撞侧板13在所述弹性件的弹性作用下相对所述主壳体16展开。所述碰撞侧板13可以呈现弧形、环形、凵形等任意一种形状,可以根据实际需要设置,在此不作限定。
所述碰撞侧板13设有所述透光窗口12,所述底盘14的前端靠近所述透 光窗口12设置。所述激光雷达30位于所述底盘14的前端,并与所述碰撞侧板13相邻。所述激光雷达30可以固定于所述底盘14或固定于所述主壳体16。所述碰撞侧板13相对所述主壳体16展开的状态,所述碰撞侧板13和所述激光雷达30之间设置间距,所述间距大于或等于所述碰撞侧板13的活动行程,以避免所述碰撞侧板13碰伤所述激光雷达30。
所述行走机构20连接所述机器人主体10并被配置为驱动清洁机器人100在地面上移动,例如,所述清洁机器人100可以被设计成自主地在地面上规划路径,也可以被设计成响应于遥控指令在地面上移动。在本申请实施例中,所述行走机构20包括两个驱动轮21、至少一个万向轮22、以及用于带动轮子转动的马达,所述两个驱动轮21和所述万向轮22至少部分凸伸出所述底盘14的底部,例如,在清洁机器人100在自身重量的作用下,所述两个轮子可以部分地隐藏于底盘14内。在一可选实施例中,所述行走机构20还可以包括三角履带轮、麦克纳姆轮等中的任意一种。
所述清洁机器人100可以包括清洁组件80,所述清洁组件80可拆卸连接于所述机器人主体10。所述清洁组件80包括中扫组件和拖擦组件中的一个或两个。所述中扫组件包括至少一个中扫刷,所述至少一个中扫刷可以包括中扫毛刷和中扫胶刷中的一个或两个,所述至少一个中扫刷可以设于底盘14的底部开设的收容槽内,收容槽内开设有吸尘口,该吸尘口与集尘盒以及吸尘风机连通,使得当中扫毛刷转动时将地面上的灰尘、垃圾搅起,利用吸尘风机产生抽吸力把灰尘、垃圾从吸尘口吸入至集尘盒内。所述拖擦组件包括可拆卸连接于所述底盘14的支架以及附设于所述支架上的擦拭件,所述擦拭件用于贴合待清洁表面,所述擦拭件跟随所述机器人主体10移动而对经过的表面进行擦拭。
所述激光雷达30可以为机械激光雷达或固态激光雷达,可以根据需要自行设置。在本实施方式中,所述激光雷达30为机械激光雷达,所述激光雷达30为2D TOF雷达,采用时间飞行原理测量距离。所述激光雷达30包括固定连接所述机器人主体10的壳体组件32、固定连接所述壳体组件32的驱动组件33,所述驱动组件33可驱动所述测距组件31旋转,所述测距组件31包括 激光发射器34和单光子探测芯片35,所述激光发射器34的发射光路和所述单光子探测芯片35的接收光路所在平面垂直于所述测距组件31的转动轴线方向,且所述激光发射器34的发射光路与所述单光子探测芯片35的接收光路相平行。在其他实施方式中,所述激光雷达30也可以为三角测距雷达。
其中,通过所述驱动组件33可驱动所述测距组件31旋转,其中,所述测距组件31包括激光发射器34和单光子探测芯片35,所述激光发射器34可以发射探测光信号,所述单光子探测芯片35可以接收由障碍物反射的反射光信号,所述激光雷达30可以根据时间飞行测距原理可以实现二维测距;通常采用较大感光面积的探测芯片或多个探测芯片或者调焦透光件来提高激光雷达30探测反射光的能力,但会导致激光雷达30的系统复杂度增加以及体积增加,而本申请采用小尺寸的单光子探测芯片35,且所述激光发射器34的发射光路与所述单光子探测芯片35的接收光路相平行,极大压缩了测距组件31占用的空间,进而减少雷达体积,其中小尺寸的单光子探测芯片35光电增益高,明显提高激光雷达30探测反射光信号的能力,无需增加复杂的电路器件也能保证测距效果。因此,所述激光雷达30的体积较小,无需占用所述机器人主体10过多的内部空间。
其中,所述壳体组件32包括底座321和盖合于所述底座321上的透光罩322。所述透光罩322可相对所述底座321固定。所述透光罩322相对底座321固定的情况下,所述透光罩322可以通过螺钉连接、胶水粘结或螺纹连接等方式固定连接所述底座321,所述透光罩322可以与所述底座321密封连接。所述测距模块发射的探测光束和接收的反射光束可以通过所述透光罩322。
所述底座321和所述透光罩322之间形成空腔323,所述空腔323可以为所述激光雷达30的测距组件31和驱动组件33提供安装空间和运动空间。所述驱动组件33安装于所述底座321上,并与所述测距组件31驱动连接。
本实施方式中,所述驱动组件33包括电机定子和电机转子。所述电机定子和所述电机转子可以组成结构紧凑的无刷电机,占用空间小。所述电机定子固定安装在底座321上,所述电机转子固定安装在所述测距组件31上。所述电机定子的中心轴线、所述电机转子的中心轴线和所述测距组件31的转动轴 线三者重合。所述电机定子可以通过电磁力驱动所述电机转子相对所述底座321转动,进而带动所述测距组件31相对所述底座321转动。
在其他实施方式中,所述驱动组件33可以包括电机和传动件,所述电机固定于所述底座321上,所述传动件传动连接在所述测距组件31和所述电机的驱动轴之间,所述传动件可以是传送带或者齿轮,从而所述电机可以经所述传动件带动所述测距组件31转动。
请参阅图1和图6,可选地,所述一对驱动轮21安装于所述底盘14的中间位置,所述激光雷达30位于所述底盘14的前端,所述激光雷达30与所述一对驱动轮21呈三角分布。其中,所述激光雷达30位于所述底盘14的前端,所述激光雷达30与所述碰撞侧板13的间距小,便于所述激光雷达30直接透过所述碰撞侧板13的透光窗口12收发激光信号,并减少其他部件阻挡激光信号。所述激光雷达30与所述一对驱动轮21的连线方向之间设置预设距离,可以为电路板、电机和电池等提供安装空间。所述激光雷达30可以固定于所述底盘14或所述主壳体16,使得所述激光雷达30的位置相对固定。
请参阅图1和图7,可选地,所述行走机构20包括设置于所述底盘14上的至少一个万向轮22,所述至少一个万向轮22安装于所述底盘14上与前端相对的后端。
本实施方式中,所述至少一个万向轮22安装于所述底盘14上与前端相对的后端,即所述至少一个万向轮22位于所述一对驱动轮21远离所述激光雷达30一侧。所述底盘14上设有与所述至少一个万向轮22配合的至少一个定位结构,所述定位结构凸设于所述内腔11中,并位于所述一对驱动轮21远离所述激光雷达30一侧,从而可以避免所述激光雷达30与所述万向轮22以及所述定位结构相互干涉。其中,所述万向轮22的数目可以为一个或两个或两个以上,可以根据实际需要进行设置。
请参阅图1和图6,在其他实施方式中,所述至少一个万向轮22安装于所述底盘14的前端,所述至少一个万向轮22与所述激光雷达30相邻,并且,以所述一对驱动轮21的中心连线为参考线,所述至少一个万向轮22与所述参考线的距离小于所述激光雷达30与所述参考线的距离,且所述底盘14上的定 位结构与所述参考线的距离小于所述激光雷达30与所述参考线的距离,使得上述定位结构与所述激光雷达30错开,从而避免干涉问题。
请参阅图1和图8,可选地,所述清洁机器人100还包括设置于所述底盘14上的主电路板70,所述主电路板70具有邻近所述激光雷达30的前边缘71,部分所述前边缘71凹陷形成缺口72,所述缺口72至少部分收容所述激光雷达30。其中,所述主电路板70电连接所述行走机构20、所述激光雷达30以及所述底盘14上的电池和电机等。所述主电路板70靠近所述碰撞侧板13和所述激光雷达30设置。通过所述主电路上设置缺口72,从而所述主电路板70无需整体往后挪动设置,也能通过所述缺口72为所述激光雷达30提供收容空间。
请参阅图1和图6,可选地,所述预设扫描角度X大于或等于180°。本实施方式中,所述测距组件31可以相对所述机器人主体10进行360°转动,所述测距组件31可以在预设扫描角度X中按照预设频率发射激光探测信号,上述激光探测信号在外部障碍物上反射后形成激光反射信号,上述激光反射信号返回至所述激光雷达30,其中,上述激光探测信号和激光反射信号均需要透过所述透光窗口12。由于所述激光雷达30位于所述内腔11中,所述激光雷达30正常工作的激光扫描角度无法达到360度,即所述预设扫描角度X小于360°。在一些可选地所述预设扫描角度X,所述预设扫描角度X大于或等于230°,且小于360°。当然,在其他实施方式中,所述预设扫描角度X也可以小于230°。
请参阅图1、图2和图9,可选地,所述碰撞侧板13设有条形长孔133和封盖所述条形长孔的透光件134,以及设置于所述条形长孔133内的至少一个加强筋135,所述至少一个加强筋135与所述透光件134相结合。
本实施方式中,所述碰撞侧板13设有所述条形长孔133和封盖所述条形长孔133的透光件134。所述条形长孔133具有较大的长度,以通过所述激光雷达30在预设扫描角度X内收发的激光信号。所述透光件134可以为塑料件,所述透光件134可以透过经过所述条形长孔133的激光信号,所述透光件134上附设深色的滤光层,以遮挡位于所述碰撞侧板13内侧的器件。所述条形长 孔133具有相对设置的两个长边136和相对设置的两个短边137,所述两个长边136分别连接所述两个短边137。所述至少一个加强筋135固定连接于所述两个长边136,并与所述透光件134结合,从而所述至少一个加强筋135对所述两个长边136和所述透光件134进行支撑,有利于增加所述碰撞侧板13的整体强度,避免所述条形长孔133和所述透光件134变形。所述加强筋135可以为一个或多个,可以根据需要自行设置。
请参阅图1、图6、图10和图11,可选地,定义所述机器人主体10底部的平面为参考面40,所述测距组件31所收发的激光信号在所述预设扫描角度X内经过的区域形成扫描光路区域50,所述清洁机器人100还包括固定连接所述机器人主体的传感组件60,所述传感组件60与所述激光雷达30相邻,所述传感组件60与所述测距组件31的扫描光路区域50在垂直所述参考面40方向上错开设置。
本实施方式中,所述参考面40设置于所述底盘14上,所述参考面40位于所述底盘14背离所述上盖组件15一侧。所述测距组件31的扫描光路区域50与所述参考面40大致平行。由于所述预设扫描角度X大于或等于180°,所述扫描光路区域50需要占用所述内腔11的一部分空间,为避免所述传感组件60对所述激光雷达30的扫描光路造成遮挡,通过所述传感组件60与所述测距组件31的扫描光路区域50在垂直所述参考面40方向上错开设置,使得所述传感组件60和所述测距组件31的扫描光路区域50位于不同安装高度上,从而所述传感组件60可以避开所述激光雷达30的扫描光路区域50,保证所述测距组件31在预设角度范围内正常工作。其中,所述传感组件60可以包括避障传感器61、碰撞检测传感器62和地面检测传感器63等中的任意一个或任意多个,可以根据实际需要设置。
其中,所述机器人主体10具有与所述扫描光路区域50重叠的排布区域90,所述排布区域90邻近所述碰撞侧板13,所述排布区域90位于所述扫描光路区域50的下方,所述传感组件60在所述底盘14上的正投影至少部分位于所述排布区域90内,使得所述传感组件60与所述扫描光路区域50至少部分重叠,从而所述传感组件60和所述激光雷达30的排布结构紧凑,占用所述 机器人主体10的内部空间小,有利于优化所述清洁机器人100的内部器件排布,实现体积优化设计,同时便于所述激光雷达30实现大角度的扫描光路。在其他实施方式中,所述传感组件60在所述底盘14上的正投影与所述排布区域90完全错开。
请参阅图10至图14,可选地,所述传感组件60包括至少一个避障传感器61,所述至少一个避障传感器61与所述参考面40的距离大于或小于所述扫描光路区域50与所述参考面40的距离。
本实施方式中,所述至少一个避障传感器61可以对外发射障碍物探测信号,所述障碍物探测信号在外部障碍物上反射形成反射信号,所述避障传感器61接收所述反射信号,并根据所述反射信号确定所述清洁机器人100前方的障碍物情况。所述避障传感器61可以为3D避障传感器,所述避障传感器61可以发射障碍物探测信号,以探测周围的障碍物,所述避障传感器61的发射区域与所述参考面40呈夹角设置,上述夹角可以是锐角、直角或钝角。
在本实施方式中,所述避障传感器61的数目为三个,所述至少一个避障传感器61可以包括第一避障传感器和第二避障传感器,所述第一避障传感器和所述第二避障传感器分别位于所述激光雷达30的左右两侧,所述第一避障传感器和所述第二避障传感器用于分别检测所述清洁机器人100前方两侧的障碍物。所述至少一个避障传感器61包括第三避障传感器,所述第三避障传感器用于所述清洁机器人100左侧或右侧的障碍物,所述第三避障传感器可以用作沿墙传感器,在其他实施方式中,所述避障传感器61的数目为一个或者三个以上,可以根据实际需要设置。
在一些可选地实施方式中,所述至少一个避障传感器61在所述底盘14上的正投影至少部分位于所述排布区域90内,使得所述至少一个避障传感器61与所述激光雷达30的排布结构紧凑,占用空间小。
请参阅图10至图13,一种实施方式中,所述至少一个避障传感器61与所述参考面40的距离大于所述扫描光路区域50与所述参考面40的距离。其中,所述至少一个避障传感器61与所述参考面40的距离越大,所述至少一个避障传感器61与地面的距离越大,更有利于保证所述至少一个避障传感器61 的测量精度;所述至少一个避障传感器61与所述底盘14之间设置间隔,所述测距组件31的扫描光路区域50位于上述间隔内,使得所述至少一个避障传感器61与所述测距组件31的扫描光路区域50错开设置,从而便于所述激光雷达30实现大角度的扫描光路。可以理解的是,所述至少一个避障传感器61可以收容于所述内腔11中,或者,所述至少一个避障传感器61也可以凸出设置于所述主壳体16背离所述底盘14一侧,则所述至少一个避障传感器61可以减少占用所述内腔11的空间。
而且,所述激光雷达30在机器人主体10内的安装方式有两种:
请继续参阅图12,第一种,所述激光雷达30的底座321邻近所述底盘14设置,所述激光雷达30的测距组件31和透光罩322均邻近所述主壳体16设置,即所述激光雷达30采用正立安装形式,使得所述测距组件31的扫描光路区域50与所述参考面40的距离为第一高度;
请继续参阅图13,第二种,所述激光雷达30的底座321邻近所述主壳体16设置,所述激光雷达30的测距组件31和透光罩322均邻近所述底盘14设置,即所述激光雷达30采用倒置安装形式,使得所述测距组件31的扫描光路区域50与所述参考面40的距离为第二高度。对于同一激光雷达30,所述第二高度小于所述第一高度,从而可以降低对所述至少一个避障传感器61的安装高度要求,进而有利于降低所述清洁机器人100的整体高度尺寸。
请继续参阅图14,另一实施方式中,所述至少一个避障传感器61与所述参考面40的距离小于所述扫描光路区域50与所述参考面40的距离。其中,所述测距组件31的扫描光路区域50与所述底盘14设置间隔,所述至少一个避障传感器61位于上述间隔内,使得所述至少一个避障传感器61与所述测距组件31的扫描光路区域50错开设置。所述至少一个避障传感器61可以位于所述测距组件31的正下方或左下方或右下方。
请参阅图11、图12、图15、图16和图17,可选地,所述机器人主体10包括可活动的碰撞侧板13,所述碰撞侧板13设有所述透光窗口12,所述至少一个避障传感器61与所述碰撞侧板13间隔设置,所述碰撞侧板13对应所述避障传感器61的位置设有透光孔131,或者,所述至少一个避障传感器61与 所述碰撞侧板13密封连接,所述碰撞侧板13对应所述避障传感器61件的位置设有透光部132。
请继续参阅图12和图15,本实施方式,所述至少一个避障传感器61与所述碰撞侧板13间隔设置,所述碰撞侧板13对应所述避障传感器61的位置设有透光孔131。所述至少一个避障传感器61可以固定连接所述主壳体16或所述底盘14,则所述至少一个避障传感器61相对所述底盘14和所述主壳体16固定。所述碰撞侧板13相对所述主壳体16展开的状态,所述碰撞侧板13和所述至少一个避障传感器61之间存在最大间隔,所述最大间隔大于所述碰撞侧板13的活动行程,以避免所述碰撞侧板13碰伤所述至少一个避障传感器61。每一所述避障传感器61包括传感器本体601和封装组件602,所述封装组件602包括封装座603和盖设于所述封装座603上的光学镜片604,所述封装座603和所述光学镜片604之间形成收容所述传感器本体601的密封空间605,所述光学镜片604可透过所述传感器本体601所收发的信号,同时所述光学镜片604可以起到防尘作用,避免外部灰尘污染所述传感器本体。所述碰撞侧板13对应每一所述避障传感器61的位置设有透光孔131,便于每一所述避障传感器61通过对应位置的透光孔131发射障碍物探测信号并接收反射信号。所述透光孔131的数目与所述避障传感器61的数目相同。
请继续参阅图12、图16和图17,在其他实施方式中,所述碰撞侧板13对应所述避障传感器61件的位置设有透光部132,所述至少一个避障传感器61与所述碰撞侧板13密封连接。其中,所述避障传感器61包括传感器本体601和封装座604,所述封装座604与所述封装侧板密封连接,使得所述封装座604和所述碰撞侧板13之间形成收容所述传感器本体601的密封空间605。所述透光部132可以透过所述避障传感器61所收发的信号,同时可以起到防尘作用,避免外部灰尘污染所述传感器本体601。所述透光部132由所述透光件的一部分形成,可以减少所述碰撞侧板13上的开孔数量,提高外观简洁性。所述避障传感器61的数目可以是一个或两个或两个以上。
请参阅图11、18和图19,可选地,所述传感组件60包括至少一个碰撞检测传感器62,所述至少一个碰撞检测传感器62与所述参考面40的距离大 于或小于所述扫描光路区域50与所述参考面40的距离。
本实施方式中,所述碰撞检测传感器62包括碰撞检测本体621和活动连接所述碰撞检测本体621的触发件622。所述碰撞检测本体621固定连接所述主壳体16或所述底盘14。所述触发件622远离所述碰撞检测本体621一端抵触所述碰撞侧板13,所述碰撞侧板13相对所述主壳体16展开的状态,即所述清洁机器人100尚未碰撞障碍物,所述触发件622处于第一位置,所述触发件622未触发所述碰撞检测本体621工作;所述碰撞侧板13相对所述主壳体16收缩时,所述碰撞侧板13带动所述触发件622相对所述碰撞侧板13主体移动至第二位置,所述触发件622触发所述碰撞检测本体621产生碰撞信号,所述清洁机器人100根据所述碰撞信号确定障碍物的存在。在本实施方式中,所述碰撞检测传感器62的数目为两个,所述至少一个碰撞检测传感器62可以包括第一碰撞检测传感器和第二碰撞检测传感器,所述第一碰撞检测传感器和所述第二碰撞检测传感器分别位于所述激光雷达30的左右两侧,所述第一碰撞检测传感器和所述第二碰撞检测传感器用于分别检测所述碰撞侧板13左右两侧碰撞障碍物的情况。在其他实施方式中,所述避障传感器61的数目为一个或者两个以上,可以根据实际需要设置。
在一些可选地实施方式中,所述至少一个碰撞检测传感器62与所述至少一个避障传感器61大致位于同一平面上,有利于减少所述清洁机器人100的整体高度尺寸。
在一些可选地实施方式中,所述至少一个碰撞检测传感器62在所述底盘14上的正投影至少部分位于所述排布区域90内,使得所述至少一个碰撞检测传感器62与所述激光雷达30的排布结构紧凑,占用空间小。
请参阅图11和图18,一种实施方式中,所述至少一个碰撞检测传感器62与所述参考面40的距离大于所述扫描光路区域50与所述参考面40的距离。其中,所述至少一个碰撞检测传感器62与所述底盘14之间设置间隔,所述测距组件31的扫描光路区域50位于上述间隔内,使得所述至少一个碰撞检测传感器62与所述测距组件31的扫描光路区域50错开设置,从而便于所述激光雷达30实现大角度的扫描光路。
在本实施方式中,所述激光雷达30在上述所述机器人主体10内的安装方式有两种,可以参照前面的描述,在此不再赘述。
请参阅图11和图19,另一种实施方式中,所述至少一个碰撞检测传感器62与所述参考面40的距离小于所述扫描光路区域50与所述参考面40的距离。其中,所述测距组件31的扫描光路区域50与所述底盘14设置间隔,所述至少一个碰撞检测传感器62位于上述间隔内,使得所述至少一个碰撞检测传感器62与所述测距组件31的扫描光路区域50错开设置。所述至少一个碰撞检测传感器62可以位于所述测距组件31的正下方或左下方或右下方。
请参阅图11和图18,可选地,所述传感组件60包括至少一个地面检测传感器63,所述至少一个地面检测传感器63与所述参考面40的距离小于所述扫描光路区域50与所述参考面40的距离。
本实施方式中,所述至少一个地面检测传感器63安装于所述底盘14的前端,并邻近所述碰撞侧板13。所述至少一个地面检测传感器63用于感测具有高度差的地形,例如,所述清洁机器人100在地面上行走遇到台阶面,所述至少一个地面检测传感器63可以感测到所述台阶面,所述清洁机器人100可以停止移动或者退后,避免所述清洁机器人100从上述台阶面处跌落。所述地面检测传感器63的数目可以是一个或两个或两个以上,可以根据实际需要设置。通过所述至少一个地面检测传感器63与所述参考面40的距离小于所述扫描光路区域50与所述参考面40的距离,所述地面检测传感器63可以位于所述激光雷达30的正下方或左下方或右下方,使得所述至少一个地面检测传感器63避开所述测距组件31的扫描光路,便于所述激光雷达30实现大角度的扫描光路。
在一些可选地实施方式中,所述至少一个地面检测传感器63在所述底盘14上的正投影至少部分位于所述排布区域90内,使得所述至少一个地面检测传感器63与所述激光雷达30的排布结构紧凑,占用空间小。
请参阅图11和图18,可选地,所述机器人主体10在底部对应所述激光雷达30的位置设置有至少一个通孔64,所述至少一个地面检测传感器63分别安装于所述至少一个通孔64内。
本实施方式中,所述地面检测传感器63的数目可以是一个或两个或两个以上,所述通孔64的数目与所述地面检测传感器63的数目相同。所述至少一个通孔64设置于所述底盘14对应所述激光雷达30的位置,通过将所述至少一个地面检测传感器63分别安装于所述至少一个通孔64内,使得所述至少一个地面检测传感器63与所述激光雷达30堆叠设置,使得所述至少一个地面检测传感器63和所述激光雷达30的排布结构紧凑,占用空间小,同时避免所述至少一个地面检测传感器63遮挡所述激光雷达30的扫描光路,便于所述激光雷达30实现大角度的扫描光路。
在本说明书的描述中,参考术语“第一个实施例”、“第二个实施例”、“本发明的实施例”、“一个实施方式”、“一种实施方式”、“一个实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。

Claims (20)

  1. 一种清洁机器人,包括机器人主体、行走机构、清洁组件和激光雷达,所述机器人主体设有内腔,所述机器人主体在所述内腔的侧壁形成有透光窗口,所述行走机构安装于所述机器人主体的底部,以驱动所述机器人主体移动,所述清洁组件可拆卸连接于所述机器人主体,所述清洁组件用于清洁所述机器人主体经过的表面,所述激光雷达安装于所述内腔中,所述激光雷达包括可相对所述机器人主体旋转的测距组件,所述测距组件在预设扫描角度内经所述透光窗口收发激光信号,其中,所述测距组件透过所述透光窗口发射探测信号,所述探测信号遇到障碍物后反射形成反射信号,所述反射信号透过所述透光窗口返回至所述测距组件。
  2. 如权利要求1所述的清洁机器人,其中,所述预设扫描角度大于或等于180°。
  3. 如权利要求1所述的清洁机器人,其中,定义所述机器人主体底部的平面为参考面,所述测距组件所收发的激光信号在所述预设扫描角度内经过的区域形成扫描光路区域,所述清洁机器人还包括固定连接所述机器人主体的传感组件,所述传感组件与所述激光雷达相邻,所述传感组件与所述测距组件的扫描光路区域在垂直所述参考面方向上错开设置。
  4. 如权利要求3所述的清洁机器人,其中,所述传感组件包括至少一个避障传感器,所述至少一个避障传感器与所述参考面的距离大于或小于所述扫描光路区域与所述参考面的距离。
  5. 如权利要求4所述的清洁机器人,其中,所述机器人主体包括可活动的碰撞侧板,所述碰撞侧板设有所述透光窗口,所述至少一个避障传感器与所述碰撞侧板间隔设置,所述碰撞侧板对应所述避障传感器的位置设有透光孔,或者,所述至少一个避障传感器与所述碰撞侧板密封连接,所述碰撞侧板对应所述避障传感器件的位置设有透光部。
  6. 如权利要求3所述的清洁机器人,其中,所述传感组件包括至少一个碰撞检测传感器,所述至少一个碰撞检测传感器与所述参考面的距离大于或小于所述扫描光路区域与所述参考面的距离。
  7. 如权利要求3所述的清洁机器人,其中,所述传感组件包括至少一个地面检测传感器,所述至少一个地面检测传感器与所述参考面的距离小于所述扫描光路区域与所述参考面的距离。
  8. 如权利要求7所述的清洁机器人,其中,所述机器人主体在底部对应所述激光雷达的位置设置有至少一个通孔,所述至少一个地面检测传感器分别安装于所述至少一个通孔内。
  9. 如权利要求1所述的清洁机器人,其中,所述机器人主体包括底盘,所述行走机构包括设置于所述底盘上的一对驱动轮,所述一对驱动轮安装于所述底盘的中间位置,所述激光雷达位于所述底盘的前端,所述激光雷达与所述一对驱动轮呈三角分布。
  10. 如权利要求9所述的清洁机器人,其中,所述行走机构包括设置于所述底盘上的至少一个万向轮,所述至少一个万向轮安装于所述底盘上与前端相对的后端。
  11. 如权利要求9所述的清洁机器人,还包括设置于所述底盘上的主电路板,所述主电路板具有邻近所述激光雷达的前边缘,部分所述前边缘凹陷形成缺口,所述缺口至少部分收容所述激光雷达。
  12. 如权利要求1所述的清洁机器人,其中,所述激光雷达包括固定连接所述机器人主体的壳体组件、固定连接所述壳体组件的驱动组件,所述驱动组件可驱动所述测距组件旋转,所述测距组件包括激光发射器和单光子探测芯片,所述激光发射器的发射光路和所述单光子探测芯片的接收光路所在平面垂直于所述测距组件的转动轴线方向,且所述激光发射器的发射光路与所述单光子探测芯片的接收光路相平行。
  13. 一种清洁机器人,包括机器人主体、行走机构、清洁组件和激光雷达,所述机器人主体设有内腔,所述机器人主体在所述内腔的侧壁形成有透光窗口,所述行走机构安装于所述机器人主体的底部,以驱动所述机器人主体移动,所述清洁组件可拆卸连接于所述机器人主体,所述清洁组件用于清洁所述机器人主体经过的表面,所述激光雷达安装于所述内腔中,所述激光雷达包括可相对所述机器人主体旋转的测距组件,所述测距组件在预设扫描角度内经所述透 光窗口收发激光信号,其中,所述测距组件透过所述透光窗口发射探测信号,所述探测信号遇到障碍物后反射形成反射信号,所述反射信号透过所述透光窗口返回至所述测距组件;
    其中,所述预设扫描角度大于或等于180°;
    其中,所述激光雷达包括固定连接所述机器人主体的壳体组件、固定连接所述壳体组件的驱动组件,所述驱动组件可驱动所述测距组件旋转,所述测距组件包括激光发射器和单光子探测芯片,所述激光发射器的发射光路和所述单光子探测芯片的接收光路所在平面垂直于所述测距组件的转动轴线方向,且所述激光发射器的发射光路与所述单光子探测芯片的接收光路相平行。
  14. 如权利要求13所述的清洁机器人,其中,定义所述机器人主体底部的平面为参考面,所述测距组件所收发的激光信号在所述预设扫描角度内经过的区域形成扫描光路区域,所述清洁机器人还包括固定连接所述机器人主体的传感组件,所述传感组件与所述激光雷达相邻,所述传感组件与所述测距组件的扫描光路区域在垂直所述参考面方向上错开设置。
  15. 如权利要求14所述的清洁机器人,其中,所述传感组件包括至少一个避障传感器,所述至少一个避障传感器与所述参考面的距离大于或小于所述扫描光路区域与所述参考面的距离。
  16. 如权利要求15所述的清洁机器人,其中,所述机器人主体包括可活动的碰撞侧板,所述碰撞侧板设有所述透光窗口,所述至少一个避障传感器与所述碰撞侧板间隔设置,所述碰撞侧板对应所述避障传感器的位置设有透光孔,或者,所述至少一个避障传感器与所述碰撞侧板密封连接,所述碰撞侧板对应所述避障传感器件的位置设有透光部。
  17. 如权利要求14所述的清洁机器人,其中,所述传感组件包括至少一个碰撞检测传感器,所述至少一个碰撞检测传感器与所述参考面的距离大于或小于所述扫描光路区域与所述参考面的距离。
  18. 如权利要求14所述的清洁机器人,其中,所述传感组件包括至少一个地面检测传感器,所述至少一个地面检测传感器与所述参考面的距离小于所述扫描光路区域与所述参考面的距离。
  19. 如权利要求18所述的清洁机器人,其中,所述机器人主体在底部对应所述激光雷达的位置设置有至少一个通孔,所述至少一个地面检测传感器分别安装于所述至少一个通孔内。
  20. 一种清洁机器人,包括机器人主体、行走机构、清洁组件和激光雷达,所述机器人主体设有内腔,所述机器人主体在所述内腔的侧壁形成有透光窗口,所述行走机构安装于所述机器人主体的底部,以驱动所述机器人主体移动,所述清洁组件可拆卸连接于所述机器人主体,所述清洁组件用于清洁所述机器人主体经过的表面,所述激光雷达安装于所述内腔中,所述激光雷达包括可相对所述机器人主体旋转的测距组件,所述测距组件在预设扫描角度内经所述透光窗口收发激光信号,其中,所述测距组件透过所述透光窗口发射探测信号,所述探测信号遇到障碍物后反射形成反射信号,所述反射信号透过所述透光窗口返回至所述测距组件;
    其中,所述预设扫描角度大于或等于180°;
    其中,定义所述机器人主体底部的平面为参考面,所述测距组件所收发的激光信号在所述预设扫描角度内经过的区域形成扫描光路区域,所述清洁机器人还包括固定连接所述机器人主体的传感组件,所述传感组件与所述激光雷达相邻,所述传感组件与所述测距组件的扫描光路区域在垂直所述参考面方向上错开设置;
    其中,所述激光雷达包括固定连接所述机器人主体的壳体组件、固定连接所述壳体组件的驱动组件,所述驱动组件可驱动所述测距组件旋转,所述测距组件包括激光发射器和单光子探测芯片,所述激光发射器的发射光路和所述单光子探测芯片的接收光路所在平面垂直于所述测距组件的转动轴线方向,且所述激光发射器的发射光路与所述单光子探测芯片的接收光路相平行。
PCT/CN2020/105623 2020-03-31 2020-07-29 清洁机器人 WO2021196467A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010247492.X 2020-03-31
CN202010247492.XA CN111466835A (zh) 2020-03-31 2020-03-31 清洁机器人

Publications (1)

Publication Number Publication Date
WO2021196467A1 true WO2021196467A1 (zh) 2021-10-07

Family

ID=71749480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105623 WO2021196467A1 (zh) 2020-03-31 2020-07-29 清洁机器人

Country Status (3)

Country Link
US (1) US11910975B2 (zh)
CN (1) CN111466835A (zh)
WO (1) WO2021196467A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879250B (zh) * 2020-08-04 2021-10-08 小狗电器互联网科技(北京)股份有限公司 一种墙面检测方法、装置、扫地机及存储介质
CN114073469A (zh) * 2020-08-21 2022-02-22 苏州三六零机器人科技有限公司 扫地机器人
CN112051847A (zh) * 2020-08-26 2020-12-08 苏州三六零机器人科技有限公司 扫地机器人、扫地机器人的控制方法、装置及可读介质
CN112515544A (zh) * 2020-09-11 2021-03-19 深圳市银星智能科技股份有限公司 智能机器人
CN112754357A (zh) * 2020-12-09 2021-05-07 深圳市云视机器人有限公司 一种清洁设备
CN114532896B (zh) * 2022-01-07 2023-04-18 山东卓远装饰材料有限公司 一种自动避障智能机器人
SE2250549A1 (en) * 2022-05-06 2023-11-07 Husqvarna Ab Robotic lawnmower system
CN114831545A (zh) * 2022-05-18 2022-08-02 陀螺人工智能(山东)有限公司 一种基于陀螺仪碰撞检测的清扫机器人
CN114812463B (zh) * 2022-06-27 2022-09-30 山西嘉世达机器人技术有限公司 检测清洁机到达边缘的方法、检测装置、清洁机和介质
WO2024088086A1 (zh) * 2022-10-24 2024-05-02 科沃斯机器人股份有限公司 清洁装置及其应用的透光罩、自移动装置
CN116520254B (zh) * 2023-04-23 2023-10-24 无锡智鸿达电子科技有限公司 一种双偏振伺服型扫描雷达
CN116594023B (zh) * 2023-06-13 2023-11-14 江苏洁路宝环保科技有限公司 一种智能扫地机器人避物检测装置及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107175645A (zh) * 2017-07-05 2017-09-19 深圳悉罗机器人有限公司 移动机器人
US20180292837A1 (en) * 2017-04-05 2018-10-11 Li-Pai Chen Mobile robot having automatic charging module
CN108814422A (zh) * 2014-01-10 2018-11-16 艾罗伯特公司 自主移动机器人
CN208179600U (zh) * 2017-12-29 2018-12-04 杭州萤石软件有限公司 移动机器人
CN210008978U (zh) * 2019-05-16 2020-02-04 深圳市杉川机器人有限公司 激光测量装置及扫地机器人
CN110870719A (zh) * 2018-09-04 2020-03-10 北京雷动云合智能技术有限公司 一种激光雷达位于内部的扫地机器人

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3451478B2 (ja) * 1999-12-21 2003-09-29 住友重機械工業株式会社 プロセスチャンバ
JP4149108B2 (ja) * 2000-01-28 2008-09-10 オリンパス株式会社 バーコード走査装置
IL140232A (en) * 2000-12-11 2010-04-29 Rafael Advanced Defense Sys Method and system for guiding active laser imaging of interceptor missiles
GB0316241D0 (en) * 2003-07-11 2003-08-13 Qinetiq Ltd Wind speed measurement apparatus and method
US9282867B2 (en) * 2012-12-28 2016-03-15 Irobot Corporation Autonomous coverage robot
US9483055B2 (en) * 2012-12-28 2016-11-01 Irobot Corporation Autonomous coverage robot
KR101623871B1 (ko) * 2015-07-02 2016-05-24 주식회사 파인로보틱스 로봇 청소기
KR102637851B1 (ko) * 2016-12-23 2024-02-20 엘지전자 주식회사 청소 로봇
US10653282B2 (en) * 2016-12-23 2020-05-19 Lg Electronics Inc. Cleaning robot
KR20180078999A (ko) * 2016-12-30 2018-07-10 엘지전자 주식회사 청소 로봇
KR20180078998A (ko) * 2016-12-30 2018-07-10 엘지전자 주식회사 청소 로봇
KR102664917B1 (ko) * 2017-01-04 2024-05-14 엘지전자 주식회사 청소 로봇
US10646090B2 (en) * 2017-01-04 2020-05-12 Lg Electronics Inc. Cleaning robot
KR20180106225A (ko) * 2017-03-17 2018-10-01 엘지전자 주식회사 로봇 청소기
KR102021828B1 (ko) * 2017-08-07 2019-09-17 엘지전자 주식회사 청소기
US10447973B2 (en) * 2017-08-08 2019-10-15 Waymo Llc Rotating LIDAR with co-aligned imager
US20200245837A1 (en) * 2017-10-13 2020-08-06 Chiba Institute Of Technology Self-propelled vacuum cleaner
CN108030447B (zh) * 2017-12-29 2023-10-31 美的集团电子商务有限公司 扫地机器人及其建立地图的方法和控制方法
KR102393440B1 (ko) * 2018-05-15 2022-05-03 현대모비스 주식회사 라이다 센서 및 그 제어 방법
US11194335B2 (en) * 2018-07-10 2021-12-07 Neato Robotics, Inc. Performance-based cleaning robot charging method and apparatus
CN209678392U (zh) * 2019-01-04 2019-11-26 云鲸智能科技(东莞)有限公司 一种移动机器人
CN209678394U (zh) * 2019-03-04 2019-11-26 深圳市杉川机器人有限公司 激光雷达及扫地机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108814422A (zh) * 2014-01-10 2018-11-16 艾罗伯特公司 自主移动机器人
US20180292837A1 (en) * 2017-04-05 2018-10-11 Li-Pai Chen Mobile robot having automatic charging module
CN107175645A (zh) * 2017-07-05 2017-09-19 深圳悉罗机器人有限公司 移动机器人
CN208179600U (zh) * 2017-12-29 2018-12-04 杭州萤石软件有限公司 移动机器人
CN110870719A (zh) * 2018-09-04 2020-03-10 北京雷动云合智能技术有限公司 一种激光雷达位于内部的扫地机器人
CN210008978U (zh) * 2019-05-16 2020-02-04 深圳市杉川机器人有限公司 激光测量装置及扫地机器人

Also Published As

Publication number Publication date
US11910975B2 (en) 2024-02-27
CN111466835A (zh) 2020-07-31
US20210298556A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2021196467A1 (zh) 清洁机器人
US10725477B2 (en) Mobile robot
CN111381241B (zh) 激光雷达和清洁机器人
KR20210113986A (ko) 이동 로봇
WO2022222706A1 (zh) 一种自移动清洁设备
CN220271559U (zh) 激光雷达及移动设备
CN212307723U (zh) 清洁机器人
US20220080593A1 (en) Intelligent robot
CN212845935U (zh) 激光雷达和清洁机器人
TWI723151B (zh) 掃地機
CN212307727U (zh) 智能机器人
JP7221416B2 (ja) ロボット掃除機及びその走行路状況の検出方法と制御方法
CN209961912U (zh) 激光测距装置及清洁机器人
KR20220021980A (ko) 청소 로봇 및 그 제어 방법
US20220305679A1 (en) Self-moving robot
CN213282754U (zh) 智能机器人
CN217792902U (zh) 一种悬崖传感器及自移动设备
CN213399311U (zh) 智能机器人
TW202020480A (zh) 移動機器人上的感測器外殼
CN214048678U (zh) 智能机器人
CN110226898A (zh) 一种扫地机器人
CN213918359U (zh) 前撞组件和智能机器人
CN212630677U (zh) 智能机器人
CN112519910A (zh) 智能机器人
WO2021084792A1 (ja) 検出装置及びロボット集塵機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928697

Country of ref document: EP

Kind code of ref document: A1