WO2021196359A1 - 封装基板及其制作方法 - Google Patents

封装基板及其制作方法 Download PDF

Info

Publication number
WO2021196359A1
WO2021196359A1 PCT/CN2020/090698 CN2020090698W WO2021196359A1 WO 2021196359 A1 WO2021196359 A1 WO 2021196359A1 CN 2020090698 W CN2020090698 W CN 2020090698W WO 2021196359 A1 WO2021196359 A1 WO 2021196359A1
Authority
WO
WIPO (PCT)
Prior art keywords
width
dielectric layer
glass fiber
woven
warp yarn
Prior art date
Application number
PCT/CN2020/090698
Other languages
English (en)
French (fr)
Inventor
梅萌
史刚
王培春
李广峰
Original Assignee
澜起电子科技(昆山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 澜起电子科技(昆山)有限公司 filed Critical 澜起电子科技(昆山)有限公司
Priority to US17/258,900 priority Critical patent/US11825607B2/en
Publication of WO2021196359A1 publication Critical patent/WO2021196359A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/267Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/038Textiles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • the present invention relates to the general packaging technology field, and particularly relates to a packaging substrate and a manufacturing method thereof.
  • the dielectric layer is based on woven glass fiber and then wrapped with epoxy resin.
  • the dielectric constant of the dielectric layer is the equivalent dielectric constant of the glass fiber and epoxy resin integrated together.
  • the width of the signal transmission line can no longer cover the width of more than two clusters of glass fibers.
  • the signal transmission line of the package substrate is 0° or 90° along the glass fiber weaving direction.
  • the equivalent dielectric constants of the dielectric layers on the upper and lower sides of the transmission line will be very different, which leads to the signal integrity problem of the signal transmission line, which is the transmission line weaving effect.
  • the purpose of the present invention is to provide a packaging substrate and a manufacturing method thereof to solve the problem of weaving effect in the prior art.
  • This application discloses a manufacturing method of a package substrate, including:
  • the second width is different from the first width, and the weaving direction of the glass fibers in the first dielectric layer and the glass fibers in the second dielectric layer is 90°.
  • the first dielectric layer is formed by the following steps:
  • first warp yarns and first weft yarns to knit to form a first woven glass fiber, wherein the first warp yarn and the second warp yarn are glass fibers of the first width;
  • Epoxy is wrapped on both sides of the first braided glass fiber to form the first dielectric layer.
  • the second dielectric layer is formed by the following steps:
  • the second dielectric layer is formed by wrapping epoxy resin on both sides of the second woven glass fiber.
  • the first dielectric layer is formed by the following steps:
  • the first warp yarn and the first weft yarn are woven to form the first woven glass fiber, wherein the first warp yarn is the glass fiber of the first width, and the first weft yarn is the glass fiber of the third width, or
  • the first weft yarn is a glass fiber of the first width, and the first warp yarn is a glass fiber of a third width, wherein the third width is different from the first width and the second width;
  • Epoxy is wrapped on both sides of the first braided glass fiber to form the first dielectric layer.
  • the second dielectric layer is formed by the following steps:
  • the second warp yarn and the second weft yarn are woven to form a second woven glass fiber, wherein the second warp yarn is the glass fiber of the second width, and the second weft yarn is the glass fiber of the fourth width, or
  • the second weft yarn is a glass fiber of the second width, and the second warp yarn is a glass fiber of a fourth width, wherein the fourth width is different from the first width, the second width, and the Third width
  • the second dielectric layer is formed by wrapping epoxy resin on both sides of the second woven glass fiber.
  • the second width is greater than the first width
  • the method before the step of forming the packaging substrate, the method further includes: marking the weaving direction of the corresponding glass fibers on the first dielectric layer and the second dielectric layer.
  • the method before the step of forming the packaging substrate, the method further includes: forming a signal transmission line on the first dielectric layer or the second dielectric layer, and the signal transmission line is located between the first dielectric layer and the second dielectric layer. Between the second dielectric layer.
  • the signal transmission line is a copper wire, and an etching process is used to form the copper wire on the first dielectric layer or the second dielectric layer.
  • the application also discloses a package substrate, including:
  • a first medium layer the first medium layer being formed by weaving glass fibers with a first width at least;
  • a second medium layer the second medium layer being formed by woven glass fibers of at least a second width
  • a signal transmission line, the signal transmission line is located between the first dielectric layer and the second dielectric layer;
  • the second width is different from the first width, and the weaving direction of the glass fibers in the first dielectric layer and the glass fibers in the second dielectric layer is 90°.
  • the first medium layer includes a first warp yarn woven in the longitude direction and a first weft yarn woven in the weft direction
  • the second medium layer includes a second weft yarn woven in the longitude direction and a second weft yarn woven in the weft direction.
  • the width of the second warp yarn and/or the second weft yarn is different from the width of the first warp yarn and/or the first weft yarn.
  • the application also discloses a printed circuit board, which includes a packaging substrate formed by the method for manufacturing the packaging substrate as described above.
  • two adjacent dielectric layers use glass fibers of different widths, and the weaving direction of the glass fibers is rotated by 90°, which can increase the area covered by the glass fibers in the package substrate, improve the integrity of the signal transmission line, and make the package substrate The heat distribution is more uniform and the warpage is reduced.
  • Fig. 1 shows a schematic diagram of the flow of the manufacturing method in an embodiment of the present application.
  • FIG. 2 shows a schematic diagram of the first dielectric layer in an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of the second dielectric layer in an embodiment of the present application.
  • FIG. 1 shows a flow chart of the manufacturing method of the packaging substrate. The method includes:
  • a first dielectric layer is formed by weaving at least glass fibers with a first width.
  • a second dielectric layer is formed by weaving glass fibers of at least a second width, wherein the second width is different from the first width, and the glass fibers in the first dielectric layer are different from the second dielectric layer.
  • the weaving direction of the glass fibers in the layer is 90°.
  • step S105 the first dielectric layer and the second dielectric layer are used to form a packaging substrate.
  • FIG. 2 shows a schematic diagram of the first dielectric layer 100 in this embodiment.
  • the first dielectric layer 100 includes a first woven glass fiber and epoxy resin (not shown).
  • the first weaving glass fiber includes a first warp yarn 110 and a first weft yarn 120, and both the first warp yarn 110 and the first weft yarn 120 are glass fiber materials.
  • the first dielectric layer 100 is formed by the following steps:
  • the first warp yarn 110 and the first weft yarn 120 are woven to form a first woven glass fiber, wherein the first warp yarn 110 may be a glass fiber with a first width L1, and the first weft yarn 120 may have a third width L3 Glass fiber.
  • the first width L1 and the third width L3 are equal, that is, the first warp yarn and the first weft yarn have the same width.
  • epoxy resin is wrapped on both sides of the first braided glass fiber to form the first dielectric layer 100.
  • the first width L1 is different from the third width L3, that is, the first warp yarn and the first weft yarn have different widths.
  • first weft yarn 120 may be a glass fiber with the first width L1
  • first warp yarn 110 may be a glass fiber with a third width L3.
  • FIG. 3 shows a schematic diagram of the second dielectric layer 200 in this embodiment.
  • the second dielectric layer 200 includes a second woven glass fiber and epoxy resin (not shown).
  • the glass fiber completed by the second weaving includes a second warp yarn 210 and a second weft yarn 220, and both the second warp yarn 210 and the second weft yarn 220 are glass fiber materials.
  • the second dielectric layer 200 is formed by the following steps:
  • the second warp yarn 210 and the second weft yarn 220 are woven to form a second woven glass fiber.
  • the second warp yarn 210 may be a glass fiber with a second width L2
  • the second weft yarn 220 may be a glass fiber with a fourth width L4. fiber.
  • the second width L2 is different from the first width L1.
  • the second width L2 may be larger or smaller than the first width L1.
  • the second width L2 and the fourth width L4 are equal, that is, the second warp yarn 210 and the second weft yarn 220 have the same width.
  • epoxy resin is wrapped on both sides of the second woven glass fiber to form the second dielectric layer 200.
  • the fourth width L4 is different from the second width L2, that is, the widths of the second warp yarn 210 and the second weft yarn 220 are different.
  • the second weft yarn 220 may have a fourth width L4, and the second warp yarn 210 may have a second width L2.
  • the fourth width L4 may be different from the first width L1, the second width L2, and the third width L3.
  • the width of the second warp yarn and/or the second weft yarn is different from the width of the first warp yarn and/or the first weft yarn, that is, the first warp yarn and the first weft yarn
  • the width of the second warp yarn and the second weft yarn may be different from each other, that is, the first width L1, the second width L2, the third width L3, and the fourth width L4 may be different from each other.
  • the knitting direction of the second dielectric layer is rotated by 90° relative to the knitting direction of the first dielectric layer.
  • the first warp yarn is knitted in the longitude direction
  • the first weft yarn is woven in the latitude direction
  • the second warp yarn is woven in the latitude direction
  • the second weft yarn is woven in the longitude direction.
  • the method before the step of forming the packaging substrate, the method further includes: marking the weaving direction of the corresponding glass fibers on the first dielectric layer and the second dielectric layer.
  • the method before the step of forming the packaging substrate, the method further includes: forming a signal transmission line on the first dielectric layer or the second dielectric layer, and the signal transmission line is located between the first dielectric layer and the second dielectric layer. Between the second dielectric layer.
  • the signal transmission line is a copper wire, and an etching process is used to form the copper wire on the first dielectric layer or the second dielectric layer. It should be noted that the etching process for forming the copper wire is well known to those skilled in the art, and will not be repeated here.
  • the first dielectric layer 100 and the second dielectric layer 200 are laminated to form the packaging substrate.
  • two adjacent dielectric layers use glass fibers of different widths, and the weaving direction of the glass fibers of the second dielectric layer is rotated 90° with respect to the weaving direction of the glass fibers of the first dielectric layer, which can increase the glass fibers. Cover the area, improve the signal integrity of the signal transmission line, and make the heat distribution of the package substrate more uniform, and the warpage is reduced.
  • the glass fiber width of the upper and lower dielectric layers should be as small as possible, and the difference in the distance between the glass fibers of the upper and lower dielectric layers should be as small as possible. Table 1 below shows some types of woven glass fibers in the IPC standard.
  • the warp and weft widths of some woven glass fibers are the same, such as Type 1017, 1027, 106 in Table 1, and some woven glass fibers have different warp and weft widths, for example, Table 1 Type 1037, and type 1017, 1027, 1037, and 106 have different warp or weft widths.
  • the first dielectric layer selects 1017 type woven glass fibers
  • the second dielectric layer selects 1037 type woven glass fibers.
  • type 106 woven glass fiber is selected for the first dielectric layer
  • type 1027 woven glass fiber is selected for the second dielectric layer.
  • the second embodiment of the present application also discloses a packaging substrate, which includes:
  • a first medium layer the first medium layer being formed by weaving glass fibers with a first width at least;
  • a second dielectric layer, the second dielectric layer is formed by weaving at least a second width of glass fiber, and the first dielectric layer is laminated on the first dielectric layer;
  • a signal transmission line, the signal transmission line is located between the first dielectric layer and the second dielectric layer;
  • the second width is different from the first width, for example, the second width is greater than the first width.
  • the weaving directions of the glass fibers in the first dielectric layer and the glass fibers in the second dielectric layer are 90°.
  • the first medium layer includes a first warp yarn woven in the longitude direction and a first weft yarn woven in the weft direction
  • the second medium layer includes a second weft yarn woven in the longitude direction and a second weft yarn woven in the weft direction.
  • the width of the second warp yarn and/or the second weft yarn is different from the width of the first warp yarn and/or the first weft yarn.
  • Printed circuit board which includes a packaging substrate formed by the method of manufacturing a packaging substrate as described above, and an integrated circuit board is packaged on the packaging substrate.
  • an act is performed based on a certain element, it means that the act is performed at least based on that element, which includes two situations: performing the act only based on the element, and performing the act based on the element and Other elements perform the behavior.
  • Multiple, multiple, multiple, etc. expressions include two, two, two, and two or more, two or more, and two or more expressions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Textile Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Woven Fabrics (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

本申请公开了一种封装基板及其制作方法,该方法包括:采用至少由第一宽度的玻璃纤维编织形成的第一介质层和至少由第二宽度的玻璃纤维编织形成的第二介质层形成封装基板,其中,所述第二宽度不同于所述第一宽度,所述第一介质层中的玻璃纤维与所述第二介质层中的玻璃纤维的编织方向成90°。

Description

封装基板及其制作方法 技术领域
本发明一般封装技术领域,特别涉及一种封装基板及其制作方法。
背景技术
对于采用PPG(Pre-preg)材质的封装基板,其介质层是以玻璃纤维编织为基础,再以环氧树脂包裹而成。介质层的介电常数是玻璃纤维和环氧树脂整合在一起的等效介电常数。随着封装基板的信号传输线越来越窄,信号传输线的宽度已经不能覆盖两簇以上的玻璃纤维的宽度,从而导致封装基板的信号传输线沿着玻璃纤维编织方向呈0°或者90°时候,信号传输线上下两侧的介质层的等效介电常数会有很大的差别,从而导致信号传输线的信号完整性问题,这就是传输线编织效应。
然而,随着系统架构越来越复杂,信号速率越来越高,高速信号传输线的信号完整性就显得更重要。因此,需要提供一种改进的封装基板及其制作方法。
发明内容
本发明的目的在于提供一种封装基板及其制作方法,以解决现有技术中编织效应的问题。
本申请公开了一种封装基板的制作方法,包括:
采用至少由第一宽度的玻璃纤维编织形成的第一介质层和至少由第二宽度的玻璃纤维编织形成的第二介质层形成封装基板;
其中,所述第二宽度不同于所述第一宽度,所述第一介质层中的玻璃纤 维与所述第二介质层中的玻璃纤维的编织方向成90°。
在一个优选例中,所述第一介质层采用以下步骤形成:
采用第一经纱和第一纬纱编织形成第一编织完成的玻璃纤维,其中,所述第一经纱与所述第二经纱是所述第一宽度的玻璃纤维;
在所述第一编织完成的玻璃纤维两侧包裹环氧树脂形成所述第一介质层。
在一个优选例中,所述第二介质层采用以下步骤形成:
采用第二经纱和第二纬纱编织形成第二编织完成的玻璃纤维,其中,所述第二经纱与所述第一纬纱是所述第二宽度的玻璃纤维;
在所述第二编织完成的玻璃纤维两侧包裹环氧树脂形成所述第二介质层。
在一个优选例中,所述第一介质层采用以下步骤形成:
采用第一经纱和第一纬纱编织形成第一编织完成的玻璃纤维,其中,所述第一经纱是所述第一宽度的玻璃纤维,所述第一纬纱是第三宽度的玻璃纤维,或所述第一纬纱是所述第一宽度的玻璃纤维,所述第一经纱是第三宽度的玻璃纤维,其中,所述第三宽度不同于所述第一宽度和所述第二宽度;
在所述第一编织完成的玻璃纤维两侧包裹环氧树脂形成所述第一介质层。
在一个优选例中,所述第二介质层采用以下步骤形成:
采用第二经纱和第二纬纱编织形成第二编织完成的玻璃纤维,其中,所述第二经纱是所述第二宽度的玻璃纤维,所述第二纬纱是第四宽度的玻璃纤维,或所述第二纬纱是所述第二宽度的玻璃纤维,所述第二经纱是第四宽度的玻璃纤维,其中,所述第四宽度不同于所述第一宽度、所述第二宽度和所述第三宽度;
在所述第二编织完成的玻璃纤维两侧包裹环氧树脂形成所述第二介质层。
在一个优选例中,所述第二宽度大于所述第一宽度。
在一个优选例中,在形成所述封装基板的步骤之前还包括:在所述第一介质层和所述第二介质层上标记相应玻璃纤维的编织方向。
在一个优选例中,在形成所述封装基板的步骤之前还包括:在所述第一介质层或所述第二介质层上形成信号传输线,所述信号传输线位于所述第一介质层和所述第二介质层之间。
在一个优选例中,所述信号传输线为铜导线,在所述第一介质层或所述第二介质层上采用蚀刻工艺形成铜导线。
本申请还公开了一种封装基板,包括:
第一介质层,所述第一介质层至少由第一宽度的玻璃纤维编织形成;
第二介质层,所述第二介质层至少由第二宽度的玻璃纤维编织形成;
信号传输线,所述信号传输线位于所述第一介质层与所述第二介质层之间;
其中,所述第二宽度不同于所述第一宽度,所述第一介质层中的玻璃纤维与所述第二介质层中的玻璃纤维的编织方向成90°。
在一个优选例中,所述第一介质层包括沿经度方向编织的第一经纱和沿纬度方向编织的第一纬纱,所述第二介质层包括沿经度方向编织的第二纬纱和沿纬度方向编织的第二经纱,所述第二经纱和/或第二纬纱的宽度与所述第一经纱和/或所述第一纬纱的宽度不同。
本申请还公开了一种印刷电路板,包括:采用如前文描述的封装基板的制作方法形成的封装基板。
本申请中相邻两个介质层采用不同宽度的玻璃纤维,并使得玻璃纤维的编织方向旋转90°,能够增加封装基板中玻璃纤维覆盖的区域,提高信号传输线的完整性,并使得封装基板的热分布更加均匀,翘曲度减小。
附图说明
参考以下附图描述本申请的非限制性和非穷举性实施例,其中除非另有说明,否则相同的附图标记在各个附图中指代相同的部分。
图1示出了本申请一实施例中制作方法的流程的示意图。
图2示出了本申请一实施例中第一介质层的示意图。
图3示出了本申请一实施例中第二介质层的示意图。
具体实施方式
现在将描述本申请的各个方面和示例。以下描述提供了用于彻底理解和实现这些示例的描述的具体细节。然而,本领域技术人员将理解,可以在没有许多这些细节的情况下实践本申请。
另外,可能未详细示出或描述一些众所周知的结构或功能,以便简明扼要并避免不必要地模糊相关描述。
在下面给出的描述中使用的术语旨在以其最广泛的合理方式解释,即使它与本申请的某些特定示例的详细描述一起使用。以下甚至可以强调某些术语,然而,任何旨在以任何受限制的方式解释的术语将在本详细描述部分中明确且具体地定义。
本申请一实施例中公开了一种封装基板的制作方法,图1示出了封装基板的制作方法的流程图,该方法包括:
步骤S101中,至少由第一宽度的玻璃纤维编织形成第一介质层。
步骤S103中,至少由第二宽度的玻璃纤维编织形成第二介质层,其中,所述第二宽度不同于所述第一宽度,所述第一介质层中的玻璃纤维与所述第二介质层中的玻璃纤维的编织方向成90°。
步骤S105中,采用所述第一介质层和所述第二介质层形成封装基板。
图2示出了本实施例中第一介质层100的示意图,所述第一介质层100包括第一编织完成的玻璃纤维和环氧树脂(未示出)。其中,第一编织完成 的玻璃纤维包括第一经纱110和第一纬纱120,第一经纱110和第一纬纱120均为玻璃纤维材料。在一个优选实施例中,所述第一介质层100采用以下步骤形成:
采用第一经纱110和第一纬纱120编织形成第一编织完成的玻璃纤维,其中,所述第一经纱110可以是第一宽度L1的玻璃纤维,所述第一纬纱120可以是第三宽度L3的玻璃纤维。在一些示例中,所述第一宽度L1与所述第三宽度L3相等,即所述第一经纱与第一纬纱宽度相等。
之后,在所述第一编织完成的玻璃纤维两侧包裹环氧树脂形成所述第一介质层100。
在另一实施例中,所述第一宽度L1不同于所述第三宽度L3,即所述第一经纱与第一纬纱具有不同的宽度。
应当理解,所述第一纬纱120可以是所述第一宽度L1的玻璃纤维,所述第一经纱110可以是第三宽度L3的玻璃纤维。
图3示出了本实施例中第二介质层200的示意图,所述第二介质层200包括第二编织完成的玻璃纤维和环氧树脂(未示出)。其中,第二编织完成的玻璃纤维包括第二经纱210和第二纬纱220,第二经纱210和第二纬纱220均为玻璃纤维材料。在一个优选例中,所述第二介质层200采用以下步骤形成:
采用第二经纱210和第二纬纱220编织形成第二编织完成的玻璃纤维,所述第二经纱210可以是第二宽度L2的玻璃纤维,所述第二纬纱220可以是第四宽度L4的玻璃纤维。并且,所述第二宽度L2与所述第一宽度L1与不同。例如,所述第二宽度L2可以大于或小于所述第一宽度L1。
在一些示例中,所述第二宽度L2和所述第四宽度L4相等,即所述第二经纱210与第二纬纱220宽度相等。
之后,在所述第二编织完成的玻璃纤维两侧包裹环氧树脂形成所述第二介质层200。
在另一实施例中,所述第四宽度L4不同于所述第二宽度L2,即所述第二经纱210与所述第二纬纱220的宽度不相同。
应当理解,所述第二纬纱220可以是第四宽度L4,所述第二经纱210可以是第二宽度L2。并且,能够理解,在其他的实施例中,所述第四宽度L4可以不同于所述第一宽度L1、所述第二宽度L2和所述第三宽度L3。
进一步地,在一些实施例中,所述第二经纱和/或第二纬纱的宽度与所述第一经纱和/或所述第一纬纱的宽度不同,即所述第一经纱、第一纬纱、第二经纱和第二纬纱的宽度可以各不相同,也就是说,所述第一宽度L1、第二宽度L2、第三宽度L3、第四宽度L4可以各不相同。
本实施方式中,所述第二介质层的编织方向相对于所述第一介质层的编织方向旋转90°,具体的,参考图2和图3所示,第一经纱编织在经度方向上,第一纬纱编织在纬度方向上,而第二经纱编织在纬度方向上,第二纬纱编织在经度方向。在一个优选例中,在形成所述封装基板的步骤之前还包括:在所述第一介质层和所述第二介质层上标记相应玻璃纤维的编织方向。
在一个优选例中,在形成所述封装基板的步骤之前还包括:在所述第一介质层或所述第二介质层上形成信号传输线,并且所述信号传输线位于所述第一介质层和所述第二介质层之间。在一个优选例中,所述信号传输线为铜导线,在所述第一介质层或所述第二介质层上采用蚀刻工艺形成铜导线。应当注意,形成铜导线的蚀刻工艺为本领域技术人员所公知的,在此不做赘述。
在一个优选例中,层叠所述第一介质层100和所述第二介质层200形成所述封装基板。本实施例中,相邻两个介质层采用不同宽度的玻璃纤维,并使得第二介质层的玻璃纤维的编织方向相对于第一介质层的玻璃纤维的编织方向旋转90°,能够增加玻璃纤维覆盖区域,提高信号传输线的信号完整性,并使得封装基板的热分布更加均匀,翘曲度减小。
为了能够更好地理解本说明书的技术方案,下面结合一个具体的例子来进行说明,该例子中罗列的细节主要是为了便于理解,不作为对本申请保护 范围的限制。
对于内层的高速信号传输线的上下两个相邻介质层选择同一序列的介质层材料,选择不同宽度类型的玻璃纤维(参考IPC标准)。这样两种同一序列不同宽度的玻璃纤维的介质介电常数、热传导系数和杨氏模量就会区别不大,便于封装的电性能设计、热性能设计和机械性能的设计。上下两个介质层的玻璃纤维宽度都要尽可能的小,同时上下两个介质层的玻璃纤维间的间距的差异也要尽可能的小。下表1中示出了IPC标准中部分类型的编织完成的玻璃纤维。
表1 IPC标准的部分类型的编织完成的玻璃纤维
Figure PCTCN2020090698-appb-000001
由表1可以看出有些编织完成的玻璃纤维的经纱和纬纱的宽度相等,例如表1中的1017、1027、106型,有些编织完成的玻璃纤维的经纱和纬纱宽度不等,例如,表1中的1037型,而且1017、1027、1037及106型相互之间的经纱或纬纱的宽度各不相同。在一实施例中,例如第一介质层选择1017型编织完成的玻璃纤维,第二介质层选择1037型编织完成的玻璃纤维。在另一实施例中,第一介质层选择106型编织完成的玻璃纤维,第二介质层选择1027型编织完成的玻璃纤维。
本申请的第二实施方式中还公开了一种封装基板,该封装基板包括:
第一介质层,所述第一介质层至少由第一宽度的玻璃纤维编织形成;
第二介质层,所述第二介质层至少由第二宽度的玻璃纤维编织形成,所述第一介质层层叠于所述第一介质层上;
信号传输线,所述信号传输线位于所述第一介质层与所述第二介质层之间;
其中,所述第二宽度不同于所述第一宽度,例如,所述第二宽度大于所述第一宽度。并且,所述第一介质层中的玻璃纤维与所述第二介质层中的玻璃纤维的编织方向成90°。
在一个优选例中,所述第一介质层包括沿经度方向编织的第一经纱和沿纬度方向编织的第一纬纱,所述第二介质层包括沿经度方向编织的第二纬纱和沿纬度方向编织的第二经纱,所述第二经纱和/或第二纬纱的宽度与所述第一经纱和/或所述第一纬纱的宽度不同。
本申请的另一实施方式还公开了一种印刷电路板(Printed circuit board),该印刷电路板包括,采用如前文描述的封装基板的制作方法形成的封装基板,所述封装基板上封装有集成电路器件或芯片,所述集成电路器件或芯片用于实现预定义的功能。
需要说明的是,在本专利的申请文件中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。本专利的申请文件中,如果提到根据某要素执行某行为,则是指至少根据该要素执行该行为的意思,其中包括了两种情况:仅根据该要素执 行该行为、和根据该要素和其它要素执行该行为。多个、多次、多种等表达包括2个、2次、2种以及2个以上、2次以上、2种以上。
在本说明书提及的所有文献都被认为是整体性地包括在本申请的公开内容中,以便在必要时可以作为修改的依据。此外应理解,以上所述仅为本说明书的较佳实施例而已,并非用于限定本说明书的保护范围。凡在本说明书一个或多个实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本说明书一个或多个实施例的保护范围之内。
在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。

Claims (12)

  1. 一种封装基板的制作方法,包括:
    采用至少由第一宽度的玻璃纤维编织形成的第一介质层和至少由第二宽度的玻璃纤维编织形成的第二介质层形成封装基板;
    其中,所述第二宽度不同于所述第一宽度,所述第一介质层中的玻璃纤维与所述第二介质层中的玻璃纤维的编织方向成90°。
  2. 根据权利要求1所述的制作方法,其特征在于,所述第一介质层采用以下步骤形成:
    采用第一经纱和第一纬纱编织形成第一编织完成的玻璃纤维,其中,所述第一经纱与所述第二经纱是所述第一宽度的玻璃纤维;
    在所述第一编织完成的玻璃纤维两侧包裹环氧树脂形成所述第一介质层。
  3. 根据权利要求1所述的制作方法,其特征在于,所述第二介质层采用以下步骤形成:
    采用第二经纱和第二纬纱编织形成第二编织完成的玻璃纤维,其中,所述第二经纱与所述第一纬纱是所述第二宽度的玻璃纤维;
    在所述第二编织完成的玻璃纤维两侧包裹环氧树脂形成所述第二介质层。
  4. 根据权利要求1所述的制作方法,其特征在于,所述第一介质层采用以下步骤形成:
    采用第一经纱和第一纬纱编织形成第一编织完成的玻璃纤维,其中,所述第一经纱是所述第一宽度的玻璃纤维,所述第一纬纱是第三宽度的玻璃纤维,或所述第一纬纱是所述第一宽度的玻璃纤维,所述第一经纱是第三宽度的玻璃纤维,其中,所述第三宽度不同于所述第一宽度和所述第二宽度;
    在所述第一编织完成的玻璃纤维两侧包裹环氧树脂形成所述第一介质层。
  5. 根据权利要求4所述的制作方法,其特征在于,所述第二介质层采用以下步骤形成:
    采用第二经纱和第二纬纱编织形成第二编织完成的玻璃纤维,其中,所 述第二经纱是所述第二宽度的玻璃纤维,所述第二纬纱是第四宽度的玻璃纤维,或所述第二纬纱是所述第二宽度的玻璃纤维,所述第二经纱是第四宽度的玻璃纤维,其中,所述第四宽度不同于所述第一宽度、所述第二宽度和所述第三宽度;
    在所述第二编织完成的玻璃纤维两侧包裹环氧树脂形成所述第二介质层。
  6. 根据权利要求1所述的制作方法,其特征在于,所述第二宽度大于所述第一宽度。
  7. 根据权利要求1所述的制作方法,其特征在于,在形成所述封装基板的步骤之前还包括:在所述第一介质层和所述第二介质层上标记相应玻璃纤维的编织方向。
  8. 根据权利要求1所述的制作方法,其特征在于,在形成所述封装基板的步骤之前还包括:在所述第一介质层或所述第二介质层上形成信号传输线,所述信号传输线位于所述第一介质层和所述第二介质层之间。
  9. 根据权利要求8所述的制作方法,其特征在于,所述信号传输线为铜导线,在所述第一介质层或所述第二介质层上采用蚀刻工艺形成铜导线。
  10. 一种封装基板,包括:
    第一介质层,所述第一介质层至少由第一宽度的玻璃纤维编织形成;
    第二介质层,所述第二介质层至少由第二宽度的玻璃纤维编织形成;
    信号传输线,所述信号传输线位于所述第一介质层与所述第二介质层之间;
    其中,所述第二宽度不同于所述第一宽度,所述第一介质层中的玻璃纤维与所述第二介质层中的玻璃纤维的编织方向成90°。
  11. 根据权利要求10所述的封装基板,其特征在于,所述第一介质层包括沿经度方向编织的第一经纱和沿纬度方向编织的第一纬纱,所述第二介质层包括沿经度方向编织的第二纬纱和沿纬度方向编织的第二经纱,所述第二经纱和/或第二纬纱的宽度与所述第一经纱和/或所述第一纬纱的宽度不同。
  12. 一种印刷电路板,包括,采用如权利要求1~8中任意一项所述的封装基板的制作方法形成的封装基板。
PCT/CN2020/090698 2020-04-01 2020-05-15 封装基板及其制作方法 WO2021196359A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/258,900 US11825607B2 (en) 2020-04-01 2020-05-15 Package substrate manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010251543.6A CN113496898A (zh) 2020-04-01 2020-04-01 封装基板及其制作方法
CN202010251543.6 2020-04-01

Publications (1)

Publication Number Publication Date
WO2021196359A1 true WO2021196359A1 (zh) 2021-10-07

Family

ID=77926896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090698 WO2021196359A1 (zh) 2020-04-01 2020-05-15 封装基板及其制作方法

Country Status (3)

Country Link
US (1) US11825607B2 (zh)
CN (1) CN113496898A (zh)
WO (1) WO2021196359A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113496898A (zh) * 2020-04-01 2021-10-12 澜起电子科技(昆山)有限公司 封装基板及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202347200U (zh) * 2011-12-16 2012-07-25 上海宏和电子材料有限公司 Ic封装用电子级玻璃纤维布
CN104953013A (zh) * 2015-07-16 2015-09-30 华天科技(昆山)电子有限公司 荧光玻纤板
CN109390315A (zh) * 2017-08-14 2019-02-26 三星电子株式会社 电路板和使用其的半导体封装
CN109643693A (zh) * 2016-08-30 2019-04-16 三星Sdi株式会社 膜式半导体包封构件、其制得的半导体封装与其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3324916B2 (ja) * 1995-10-16 2002-09-17 日東紡績株式会社 ガラスクロス、プリプレグ、積層板及び多層プリント配線板
TW434360B (en) * 1998-02-18 2001-05-16 Toray Industries Carbon fiber matrix for reinforcement, laminate and detecting method
CN101861052A (zh) * 2009-04-13 2010-10-13 英业达股份有限公司 电路板
US9307636B2 (en) * 2011-07-20 2016-04-05 Panasonic Intellectual Property Management Co., Ltd. Printed wiring board
JP6031943B2 (ja) * 2012-10-29 2016-11-24 富士通株式会社 回路基板、回路基板の製造方法、電子装置及びガラスクロス
CN103755989B (zh) * 2014-01-14 2017-01-11 广东生益科技股份有限公司 电路基板及其制备方法
KR102412612B1 (ko) * 2015-08-28 2022-06-23 삼성전자주식회사 패키지 기판 및 프리프레그
CN113496898A (zh) * 2020-04-01 2021-10-12 澜起电子科技(昆山)有限公司 封装基板及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202347200U (zh) * 2011-12-16 2012-07-25 上海宏和电子材料有限公司 Ic封装用电子级玻璃纤维布
CN104953013A (zh) * 2015-07-16 2015-09-30 华天科技(昆山)电子有限公司 荧光玻纤板
CN109643693A (zh) * 2016-08-30 2019-04-16 三星Sdi株式会社 膜式半导体包封构件、其制得的半导体封装与其制备方法
CN109390315A (zh) * 2017-08-14 2019-02-26 三星电子株式会社 电路板和使用其的半导体封装

Also Published As

Publication number Publication date
CN113496898A (zh) 2021-10-12
US20220141962A1 (en) 2022-05-05
US11825607B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
JP6634651B2 (ja) 差動信号線の配線方法、及びpcb基板
WO2021196359A1 (zh) 封装基板及其制作方法
US20180213636A1 (en) Crosstalk reduction between signal layers in a multilayered package by variable-width mesh plane structures
US9226404B2 (en) PCB board, core for manufacturing the PCB board and method for manufacturing the PCB board
JP2009111287A (ja) 電子部品モジュール及びその回路基板
JP2010212439A (ja) 回路基板
US20180310401A1 (en) Printed wiring board and camera module
US6441470B1 (en) Technique to minimize crosstalk in electronic packages
TW201519400A (zh) 半導體封裝件
CN111491500A (zh) 电磁波衰减体及电子装置
US10510680B2 (en) Semiconductor device having electromagnetic wave attenuation layer
US20110076472A1 (en) Package substrate
TW201225747A (en) Printed circuit board
US7829480B2 (en) PCB supporting woven fabric and a PCB having the same
KR102149793B1 (ko) 인쇄회로기판 및 인쇄회로기판의 휨 제어방법
US20150136446A1 (en) Printed circuit board
CN113192923A (zh) 一种封装基板的设计方法、封装基板和芯片
JPWO2007135997A1 (ja) プリント基板
JP2011077237A (ja) プリント基板、プリント基板の製造方法
KR20090020197A (ko) 피씨비 휨을 개선하기 위한 반도체 칩 패키지용인쇄회로기판
TWI822393B (zh) 抑制玻纖效應之傳輸裝置
KR20090015454A (ko) 반도체 웨이퍼 및 반도체 소자의 제조 방법
KR20100034463A (ko) 열차단 코어를 구비하는 인쇄회로기판을 갖는 반도체소자
KR20120129096A (ko) 물성 제어를 통한 기판의 휨 제어방법 및 이를 적용한 기판
CN105807558A (zh) 一种新型的组合掩膜版

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928649

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 05/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20928649

Country of ref document: EP

Kind code of ref document: A1