WO2021193949A1 - 新規l-ラムノースイソメラーゼ - Google Patents

新規l-ラムノースイソメラーゼ Download PDF

Info

Publication number
WO2021193949A1
WO2021193949A1 PCT/JP2021/012989 JP2021012989W WO2021193949A1 WO 2021193949 A1 WO2021193949 A1 WO 2021193949A1 JP 2021012989 W JP2021012989 W JP 2021012989W WO 2021193949 A1 WO2021193949 A1 WO 2021193949A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
isomerase
rhamnose
activity
amino acid
Prior art date
Application number
PCT/JP2021/012989
Other languages
English (en)
French (fr)
Inventor
和也 秋光
何森 健
明秀 吉原
志郎 加藤
望月 進
裕美 吉田
成弘 神鳥
Original Assignee
国立大学法人香川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人香川大学 filed Critical 国立大学法人香川大学
Priority to EP21773444.1A priority Critical patent/EP4130278A4/en
Priority to KR1020227034672A priority patent/KR20220157985A/ko
Priority to JP2022510758A priority patent/JPWO2021193949A1/ja
Priority to MX2022011932A priority patent/MX2022011932A/es
Priority to CN202180024419.9A priority patent/CN115349018A/zh
Publication of WO2021193949A1 publication Critical patent/WO2021193949A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01014L-Rhamnose isomerase (5.3.1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/18Erwinia

Definitions

  • the present invention presents a novel L-rhamnose isomerase and a method for producing the same, a microorganism that produces the enzyme, a DNA encoding the enzyme, a recombinant vector containing the same, a transformation host cell, an L-rhamnose isomerase variant, and L-rhamnose isomerase.
  • the present invention relates to a method for producing ketose or aldose using a l-rhamnose isomerase or a variant.
  • Rare sugars are, according to the definition of the International Rare Sugar Society, "sugars that rarely exist in nature", that is, monosaccharides that are abundant in nature.
  • monosaccharides tetrose
  • aldose two types of ketose
  • ketose two types of ketose
  • sugar alcohols three types of sugar alcohols.
  • aldose four types of ketose
  • sugar alcohols four types of sugar alcohols as monosaccharides (pentoses) having five carbon atoms.
  • monosaccharides (hexoses) with 6 carbon atoms in total 16 types of aldose, 8 types of ketose, and 10 types of sugar alcohol.
  • heptose monosaccharides having 7 carbon atoms
  • aldoheptose ketoheptose
  • heptitol having 7 carbon atoms
  • aldoses there are generally six types of aldoses that are abundant in nature: D-glucose, D-galactose, D-mannose, D-ribose, D-xylose, and L-arabinose.
  • Other aldoses such as D-allose are defined as rare sugars.
  • the rare sugars are L-allose, L-gulose, L-glucose, L-galactose, L-altrose, L-idose, L-mannose, L-talose, and D-talose.
  • D-fructose is abundant in nature, while other kets are not abundant in nature, so it can be said to be a rare sugar.
  • D-allulose also known as D-psicose
  • D-tagatose D-sorbose
  • L-fructose L-allulose
  • L-allulose also known as L-psicose
  • L-tagatose L- Sorbose
  • D-allulose also known as D-psicose
  • D-psicose which is the basic raw material for the production of all rare sugars
  • D-allose becomes the center of new rare sugar production to D-allose and the like by the enzymatic reaction.
  • D-allose is an aldose which is an isomer different only in the OH group direction of the carbon at the 3-position from D-glucose, and is a rare sugar monosaccharide also known as an isomer of the ketose D-allose.
  • D-allose is a pharmaceutical composition containing it as an active ingredient for treating renal diseases selected from acute renal failure and uremia (Patent Document 1), and motor disorders caused by muscular atrophic lateral sclerosis.
  • Drugs for delaying the onset or progression of uremia Patent Document 2), blood pressure increase inhibitor (Patent Document 3), agents characterized by being used for suppressing angiogenesis (Patent Document 4), T lymphocyte proliferation inhibitor (Patent Document 5) or a peritoneal deterioration inhibitor used in combination with a peritoneal dialysate (Patent Document 6) is known, and is also known as an edible pesticide (Patent Document 7).
  • Patent Document 1 renal diseases selected from acute renal failure and uremia
  • Patent Document 3 Drugs for delaying the onset or progression of uremia
  • Patent Document 3 blood pressure increase inhibitor
  • agents characterized by being used for suppressing angiogenesis Patent Document 4
  • T lymphocyte proliferation inhibitor Patent Document 5
  • Non-Patent Document 1 L-rhamnose isomerase is an enzyme that catalyzes the reversible isomerization reaction between L-rhamnose and L-rhamnose, whereas P. stutzeri-derived L-rhamnose isomerase is not only between L-rhamnose and L-rhamnose.
  • L-lyxose-L-xylulose, L-mannose-L-fractose, D-growth-D-sorbose, D-ribose-D-ribbulose, D-allose-D-allose, L-tagatose-L A wide range of substrate specificities that can also act between tagatose have been revealed. Utilizing this broad substrate specificity, it has become possible to produce various rare aldoses and kets on ismoling, centering on the conversion of D-allose to D-allose.
  • the rare sugar D-allose is produced by using the pure rare sugar D-allose as a raw material and using a known L-rhamnose isomerase (EC 5.3.1.14).
  • L-rhamnose isomerase is an enzyme that catalyzes the isomerization reaction of L-rhamnose to L-rhamnose, and can also catalyze the isomerization of L-rhamnose to L-rhamnose. It is also known to act on the isomerization between D-allose and D-allulose. Since isomerases are named after the substrate that exhibits the highest activity, their substrate specificity varies among the enzymes named L-rhamnose isomerase.
  • the present invention is a novel L-rhamnose derived from a microorganism that has been approved for use in the production of foods and is not toxic, has high activity, and can isomerize D-allose to D-allose in high yield.
  • An object of the present invention is to provide an isomerase, a microorganism having the enzyme, and a production method using the enzyme.
  • the present inventors collected soils in various places, focusing on the non-toxic bacterial species on the list that are approved for use as foods not only in Japan but also in Europe and the United States. Microorganisms were isolated from it, and the search for microorganisms having L-rhamnose isomerase activity was continued. As a result, we found a microorganism belonging to the genus Erwinia that produces a novel L-rhamnose isomerase among many isolated strains. This Erwinia microorganism, Erwinia billingiae, produces a novel L-rhamnose isomerase with high activity and high heat resistance.
  • This novel microbial-derived L-lamnose isomerase catalyzes the isomerization reaction between aldose and the corresponding ketose, recognizes and reacts with the CHO group of C1 and the OH group of C2 of aldose, and OH the CHO group of C1. Based on this, the OH group of C2 is converted to a CO group, or the OH group of C1 of ketose and the CO group of C2 are recognized and reacted, and the OH group of C1 is converted to a CHO group and the CO group of C2 is converted to OH. It has an aldose-ketose isomerase activity that converts to a group. Further, when D-allose is produced using D-allose as a substrate, D-altrose, which is a by-product, is not produced, so that it is suitable for producing D-allose.
  • the present invention relates to the L-rhamnose isomerase described in the following (1) to (4) and the microorganism described in the following (5).
  • L-rhamnose isomerase derived from a microorganism belonging to the genus Erwinia, the molecular weight of the subunit measured by SDS-PAGE is 48 kDa, and the substrate specificities of the following (A) and (B) are determined.
  • L-rhamnose isomerase having.
  • A) The CHO group of C1 of Ardose and the OH group of C2 are recognized and reacted to convert the CHO group of C1 into an OH group and the OH group of C2 into a CO group, or the OH group of C1 of Ketose.
  • the optimum pH for the reaction is 9.
  • the optimum reaction temperature is 70 ° C. (3)
  • the present invention also describes the protein described in (5) to (7) below, the DNA described in (8) to (11) below, a recombinant vector, or a transformed host cell, or described in (12) below. Regarding microorganisms.
  • (5) A protein containing the amino acid sequence represented by SEQ ID NO: 1.
  • the CHO group of C1 of Ardose and the OH group of C2 are recognized and reacted to convert the CHO group of C1 into an OH group and the OH group of C2 into a CO group, or the OH group of C1 of Ketose. It has an isomerase activity that recognizes and reacts with the CO group of C2 and converts the OH group of C1 into a CHO group and the CO group of C2 into an OH group.
  • a protein that is an amino acid substitution variant of a protein consisting of the amino acid sequence represented by SEQ ID NO: 1, has 78% or more identity with the amino acid sequence represented by SEQ ID NO: 1, and has a SEQ ID NO: K3, L4, I5, Y9, E10, L11, Y16, D18, V19, I21, V23, E24, Q25, V26, M27, T28, G32, I33, R46, N52, E54, of the amino acid sequence represented by 1.
  • the reaction temperature is higher than that of a protein having an amino acid substitution at at least one site selected from 419, having the L-ramnose isomerase activity of (A) and (B) below, and consisting of the amino acid sequence represented by SEQ ID NO: 1.
  • the ratio of L-ramnose isomerase activity at 70 ° C. and 50 ° C. (T70 / T50) is high, the residual activity after heat retention at 60 ° C.
  • the present invention also relates to the immobilized protein according to the following (13) to (16).
  • the L-rhamnose isomerase according to any one of (1) to (4) above is in the state of a crude enzyme present in the cell disrupted product, or according to any one of (5) to (7) above.
  • Protein is immobilized on a carrier in the form of a crude protein present in a disrupted cell of a transformed host cell.
  • the present invention also relates to the method for producing L-rhamnose isomerase, or the method for producing ketose or aldose, described in (17) to (19) below.
  • the microbial cell of the genus L-rhamnose isomerase producing L-rhamnose isomerase according to any one of (1) to (4) above or the transformed host cell according to (11) above is cultured in a medium.
  • a method for producing ketose or aldose which comprises reacting the protein of 1 or the immobilized protein according to any one of (13) to (16) above to produce a corresponding ketose or aldose, and collecting the ketose or aldose. ..
  • the L-rhamnose isomerase of the present invention is characterized by having particularly high heat resistance and high activity as compared with the conventional L-rhamnose isomerase derived from a microorganism.
  • the conventional L-rhamnose isomerase derived from Pseudomonas stutzeri has an optimum temperature of 60 ° C.
  • the enzyme of the present invention has a high temperature of 70 ° C. and is heat-treated at 60 ° C. for 10 minutes. Since the residual activity of Pseudomonas stella has a thermal stability of 80% or more, it is suitable for use in industrial production.
  • the excellent heat resistance of this enzyme can be further enhanced by producing an amino acid substitution mutant of this enzyme.
  • the substrate when the substrate is 100 mM D-allose, it has a high conversion activity to D-allose of 2.26 U per unit protein at 60 ° C., and the present invention enables mass production of D-allose.
  • the enzyme of the present invention converts only D-allose and does not produce D-altrose, which is a by-product, so that the yield is increased accordingly.
  • the present invention relates to L-rhamnose isomerase that can be isolated from a microorganism belonging to the genus Erwinia, and has characteristic properties in high activity and heat resistance.
  • the L-lamnose isomerase of the present invention recognizes and reacts with the CHO group of C1 of aldose and the OH group of C2, and converts the CHO group of C1 into an OH group and the OH group of C2 into a CO group to form ketose.
  • it has an isomerase activity that recognizes and reacts with the OH group of C1 of ketose and the CO group of C2, and converts the OH group of C1 into a CHO group and the CO group of C2 into an OH group to form an aldose.
  • the ketose referred to in the present invention means a ketohexose of six-carbon sugar or a ketopentose of five-carbon sugar having a ketose structure.
  • Ketohexose contains allulose (also known as psicose), sorbose, tagatose and fructose, and ketopentose contains ribulose and xylulose.
  • aldose as used in the present invention means aldohexose of six-carbon sugar or ald-pentose of five-carbon sugar having an aldose structure.
  • Aldohexose includes glucose, allose, altrose, growth, idose, talose, galactose and mannose
  • aldopentose includes ribose, arabinose, xylose and lyxose.
  • D- or L- means these D-forms and L-forms.
  • the L-lamnose isomerase of the present invention acts on L-lamnose, L-lyxose, L-mannose, D-ribose, L-talose, and D-allose, and acts on L-lamnose-L-lamnose, L-lyxose-.
  • the L-rhamnose isomerase of the present invention belongs to the genus Erwinia, and by culturing a microorganism capable of producing L-rhamnose isomerase and isolating L-rhamnose isomerase from the cells grown in the culture medium. Can be prepared.
  • a microorganism capable of producing L-rhamnose isomerase and isolating L-rhamnose isomerase from the cells grown in the culture medium. can be prepared.
  • the microorganism belonging to the genus Erwinia for example, Erwinia billingiae GuaL218-3 and mutant strains thereof can be advantageously used.
  • the GuaL218-3 strain was internationally deposited on February 28, 2020 at the Patent Microbiology Depositary, National Institute of Technology and Evaluation, located at 2-5-8 Kazusakamatari, Kisarazu City, Chiba Prefecture, Japan. Then, it was received as receipt number NITE ABP-03142, and then GuaL218-3 shares were formally deposited internationally
  • L-rhamnose isomerase-producing bacteria of the genus Elvinia are aerated and cultured in an inorganic salt medium supplemented with L-rhamnose, and then the cells are recovered from the culture solution by centrifugation.
  • the recovered cells were washed with 10 mM Tris-HCl buffer (pH 7.5), suspended in 10 mL of 10 mM Tris-HCl buffer (pH 7.5), and lysozyme, a lytic enzyme, was added. Then, the cells are disrupted by enzymatic treatment, or the cells are disrupted with an ultrasonic homogenizer while cooling the bacterial cell suspension in ice water. The crushed material is centrifuged, and the centrifugal supernatant is used as a crude enzyme solution.
  • the activity of L-rhamnose isomerase in the crude enzyme solution before purification can be confirmed by measuring the amount of D-rhamnose isomerase produced using D-allulose as a substrate.
  • the enzyme activity for converting D-allose to D-allose, which is a reverse reaction, is also measured under the same conditions. These conversion reactions are usually carried out under the following conditions.
  • Substrate concentration is 1-60% (w / v), preferably about 5-50% (w / v)
  • reaction temperature is 30-80 ° C, preferably about 50-70 ° C
  • reaction pH is 6-11.
  • the reaction time can be appropriately selected from about 8 to 11, but in the case of a batch reaction, a range of 4 to 20 hours is usually selected.
  • the crude enzyme solution can be sequentially purified by ion exchange chromatography and hydrophobic chromatography to isolate the purified enzyme.
  • SDS-PAGE gel concentration 12.5%
  • the L-rhamnose isomerase of the present invention purified as described above is a metal enzyme having a subunit molecular weight of about 48 kDa by SDS-PAGE and its degree of activation regulated by metal ions.
  • the reaction with the substrate can be carried out in the presence of a metal ion selected from the group consisting of manganese, cobalt, nickel, magnesium, iron, copper, zinc and calcium at a concentration of 0.5-5 mM.
  • the L-rhamnose isomerase of the present invention has a predetermined amino acid sequence, and as an example, a protein having the amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence homologous thereto has an equivalent L. -Proteins that maintain l-rhamnose isomerase activity can be mentioned.
  • the homologous amino acid sequence is, for example, 75% or more, 78% or more, 80% or more, preferably 85% or more, more preferably 90% or more, still more preferably 95% or more amino acids with the amino acid sequence of SEQ ID NO: 1. Refers to having sequence identity.
  • the identity (%) of two amino acid sequences or two nucleic acid sequences can be determined, for example, by the following procedure. First, arrange the two arrays for optimal comparison. At this time, for example, a gap may be introduced in the first sequence to optimize the alignment with the second sequence. When the molecule at a specific position (amino acid residue or nucleotide) in the first sequence is the same as the molecule at the corresponding position in the second sequence, it can be said that the molecule at that position is the same.
  • comparison of two sequences and determination of identity can be realized using a mathematical algorithm.
  • mathematical algorithms available for sequence comparison include Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87: 2264-68, Karlin and Altschul (1993) Proc. Natl. Acad. Sci. There is an algorithm modified in USA 90: 5873-77, but it is not limited to this. Such an algorithm is described in Altschul et al. (1990) J. Mol. Mol. Biol. 215: It is incorporated into the NBLAST program and the XBLAST program (version 2.0) described in 403-10.
  • the DNA of the present invention is a gene encoding the protein and has a predetermined base sequence.
  • Examples thereof include a DNA sequence encoding the amino acid sequence represented by SEQ ID NO: 1, a base sequence represented by SEQ ID NO: 2, or a base sequence homologous to the base sequence represented by SEQ ID NO: 2.
  • the homologous base sequence is, for example, 75% or more, 78% or more, 80% or more, preferably 85% or more, more preferably 90% or more, still more preferably 95% or more of the base sequence of SEQ ID NO: 2. Refers to having sequence identity.
  • the DNA of the present invention can also be inserted into an appropriate vector capable of autonomous replication to obtain a recombinant vector.
  • the recombinant vector is composed of DNA and a vector capable of autonomous replication, and if DNA is available, it can be relatively easily prepared by a conventional recombinant DNA technique.
  • Appropriate vectors are selected according to the purpose of use, such as cloning and protein expression, and depending on the host cell.
  • vectors examples include plasmid vectors such as pBR322, pUC18, pUB110, pTZ4, pC194, pHV14, TRp7, YEp7, pBS7 and phage vectors such as ⁇ gt ⁇ ⁇ C, ⁇ gt ⁇ ⁇ B, ⁇ 11, ⁇ 1, ⁇ 105. Be done.
  • the recombinant vector thus obtained can be introduced into an appropriate host cell such as Escherichia coli, Bacillus subtilis, actinomycete, and yeast.
  • an appropriate host cell such as Escherichia coli, Bacillus subtilis, actinomycete, and yeast.
  • introduction method a known method such as a calcium phosphate co-precipitation method, an electroporation method, a lipofection method, or a microinjection method is used.
  • a colony hybridization method or the like is applied to obtain transformed host cells.
  • the method for producing a protein having L-rhamnose isomerase and L-rhamnose isomerase activity of the present invention is not particularly limited, and a known method can be adopted.
  • the L-rhamnose isomerase of the present invention is a host cell transformed with a DNA encoding a microorganism capable of producing L-rhamnose isomerase of the present invention or a protein having L-rhamnose isomerase activity of the present invention.
  • a known method can be used as the culturing method, and for example, either liquid culture or solid culture can be used.
  • the enzyme and protein of the present invention are purified and recovered.
  • a method for purifying / recovering an enzyme or protein a known method can be freely selected. For example, when recovering from a culture solution, for example, the culture supernatant is filtered, centrifuged, or the like to insolubilize the culture supernatant. After removing the substance, separation and purification can be performed by appropriately combining concentration with an ultrafiltration membrane, salting out such as sulphate precipitation, dialysis, and various chromatographies such as ion exchange resins.
  • the cells are crushed by lytic enzyme treatment, ultrasonic treatment, or the like, and then separated and purified in the same manner.
  • the L-rhamnose isomerase of the present invention can be used by immobilizing an enzyme like other isomerases, and a highly active immobilized enzyme can be obtained by various immobilization methods.
  • an immobilized enzyme By using an immobilized enzyme, a large amount of isomerization reaction can be continuously carried out, and a known immobilization means such as a carrier binding method, a cross-linking method, a gel encapsulation method, a microencapsulation method and the like can be used. It can be an immobilized enzyme, and the carrier may be any known carrier.
  • One aspect of the method for immobilizing L-rhamnose isomerase of the present invention is immobilization using a crude enzyme solution.
  • the crude enzyme solution containing L-rhamnose isomerase obtained by ultrasonically treating the cell suspension is added to an ion exchange resin or the like and bound at a low temperature to immobilize the L-rhamnose isomerase. be able to.
  • an ion exchange resin or the like In order to extract L-rhamnose isomerase from the cells, it is necessary to crush the cell walls of the cells, and as described above, there is a crushing method by ultrasonic treatment or enzyme treatment such as lysozyme. It was found that the crude enzyme solution obtained by ultrasonic treatment contained a large amount of active L-rhamnose isomerase.
  • any known immobilized carrier can be used, but ion exchange resins, sodium alginate, synthetic adsorbents and the like are convenient and often used.
  • the basic anion exchange resin for example, either a strong basic anion exchange resin or a weakly basic anion exchange resin can be used.
  • the strong basic anion exchange resin examples thereof include SA20A and PA418 (manufactured by Mitsubishi Chemical Co., Ltd.), and examples of the weakly basic anion exchange resin include WA30 (manufactured by Mitsubishi Chemical Co., Ltd.), FPA54, FPA95 (manufactured by Organo Co., Ltd.) and the like.
  • the synthetic adsorbent include XAD7HP (manufactured by Organo Corporation).
  • the immobilized L-rhamnose isomerase When an immobilized enzyme is produced using a weakly basic anion exchange resin as a carrier, the immobilized L-rhamnose isomerase can be easily eluted after the reaction, and thus the regeneration of the immobilized enzyme is very high. It can be done easily and the production efficiency is good.
  • the L-rhamnose isomerase of the present invention is obtained by culturing a host cell transformed with a DNA encoding a microorganism capable of producing L-rhamnose isomerase or a protein having L-rhamnose isomerase activity of the present invention in a nutrient medium. It can be produced by collecting a protein having L-rhamnose isomerase activity from the culture obtained in the above.
  • a known method can be used as the culturing method, and for example, either liquid culture or solid culture can be used.
  • the L-rhamnose isomerase of the present invention is purified and recovered.
  • a known method can be freely selected. For example, when recovering from the culture solution, for example, the culture supernatant is filtered, centrifuged, or the like to obtain an insoluble matter. After removal, separation and purification can be performed by appropriately combining concentration with an ultrafiltration membrane, salting out such as sulphate precipitation, dialysis, and various chromatographies such as ion exchange resins.
  • the cells are crushed by lytic enzyme treatment, ultrasonic treatment, or the like, and then separated and purified in the same manner.
  • the purified L-rhamnose isomerase of the present invention or the immobilized enzyme is used to act on a solution containing one or more selected from possible substrates of aldose or ketose to produce the corresponding ketose or ketose. , These can be manufactured. Since the L-rhamnose isomerase of the present invention has a higher substrate specificity for D-allose than the conventional L-rhamnose isomerase, a large amount of the rare sugar D-allose is contained in the presence of D-allose which can be a substrate. Can be manufactured.
  • a mutation is introduced into the gene of L-rhamnose isomerase of the present invention, and the corresponding amino acid residue is replaced with another amino acid residue by a site-specific mutation operation to obtain a mutant having various amino acid substitutions.
  • an enzyme having high D-allulose isomerase activity at an optimum temperature and an enzyme having high heat resistance can be obtained from a wild-type enzyme without amino acid substitution.
  • the heat resistance is evaluated by four indexes that the ratio of loin isomerase activity (T80 / optimum temperature) is high.
  • the L-rhamnose isomerase of the present invention retains the enzyme activity even in a variant having an amino acid sequence identity of about 78%, and has an optimum temperature as compared with the wild-type enzyme of SEQ ID NO: 1.
  • the ratio of D-l-rhamnose isomerase activity (T70 / T50) at reaction temperatures of 70 ° C. and 50 ° C. is higher, the residual activity after heat retention at 60 ° C. for 1 hour is higher, or the reaction temperature is 80 ° C.
  • a variant having a higher ratio of D-allulose isomerase activity (T80 / optimum temperature) at the optimum temperature can be obtained.
  • Patent Document 8 the method for creating a phylogenetic tree described in Patent Document 8 was referred to. All the DNA sequences encoding the enzyme having an activity similar to that of L-rhamnose isomerase represented by SEQ ID NO: 1 of the present invention or the putative enzyme are extracted, and the method of Patent Document 8 is used to obtain a phylogenetic tree as a common ancestral DNA. Create a phylogenetic tree that is phylogenetically derived from the DNA sequence of developmental origin.
  • amino acid sequences encoded by the obtained DNA sequences that are the same lineage as SEQ ID NO: 1 of the present invention are compared, and attention is paid to the amino acid sequences of the parts having different sequences.
  • various L-ramnorse isomerase variants are prepared by changing the amino acids and the like corresponding to the different sites of SEQ ID NO: 1 by base substitution by introducing a site-specific mutation. From among them, amino acid substitution mutants having high D-allulose isomerase activity at the optimum temperature and amino acid substitution mutants having high thermostability are selected from wild-type enzymes.
  • the amino acid substitution variants of the present invention include, as an exception, a variant in which one amino acid residue is added to the amino acid at position 418 at the C-terminal.
  • the site-specific mutagenesis method should be performed by any method such as inverse PCR method or annealing method (edited by Muramatsu et al., "Revised 4th Edition New Genetic Engineering Handbook", Yodosha, p.82-88). Can be done. If necessary, various commercially available site-directed mutagenesis kits such as Stratagene's QuickChange II Site-Directed Mutagenesis Kit and QuickChange Multi Site-Directed Mutagenesis Kit can be used. Site-specific mutagenesis can most commonly be performed with mutation primers containing the nucleotide mutations to be introduced.
  • Such a mutation primer is annealed to a region containing a nucleotide sequence encoding an amino acid residue to be modified in a gene, and is modified in place of the nucleotide sequence (codon) encoding the amino acid residue to be modified. It may be designed to include a base sequence having a nucleotide sequence (codon) encoding an amino acid residue.
  • amino acid substitution variant means a variant in which an amino acid in the original sequence is substituted with a different amino acid.
  • substitution there are conservative substitutions and non-conservative substitutions, and there is no particular concern about the substitutions.
  • the substitution is a conservative substitution.
  • Conservative substitutions are amino acids that have the same properties (basic, acidic, or neutral) and polarity (hydrophilic or hydrophobic), such as basic to basic, acidic to acidic, and polar to polar. , Substitution between aromatic amino acids or between aliphatic amino acids, and the like.
  • Conservative substitutions include, for example, basic amino acids (Arg, Lys, His), acidic amino acids (Glu, Asp), neutral non-polar amino acids (Gly, Ala, Val, Leu, Ile, Met), aliphatic amino acids (Ala). , Val, Leu, Ile, Met), polar amino acids (Gln, Asn, Ser, Thr), aromatic amino acids (Phe, Trp, Tyr) and the like.
  • a non-conservative substitution is to exchange with an amino acid of a member outside the above group, for example, by deleting Cys or substituting with another amino acid to prevent folding into a protein in a tertiary structure.
  • the Hydropathy Index of Amino Acids J.I. Amino acids are substituted in consideration of Mol. Biol. (1982) Vol. 157, p. 105-132).
  • it may be replaced with an amino acid having less steric hindrance than the original amino acid, or a charged amino acid may be replaced with an uncharged amino acid.
  • substitutions there are conservative substitutions and non-conservative substitutions, for example, Ala to Ser or Thr substitution, Arg to Gln, His or Lys substitution, Asn to Glu, Gln, Lys, His or Asp. Substitution to Asp to Asn, Glu or Gln, Cys to Ser or Ala, Gln to Asn, Glu, Lys, His, Asp or Arg, Glu to Asn, Gln, Lys or Asp Substitution to, Gly to Pro substitution, His to Asn, Lys, Gln, Arg or Tyr substitution, Ile to Leu, Met, Val or Phe substitution, Leu to Ile, Met, Val or Phe Substitution, Lys to Asn, Glu, Gln, His or Arg, Met to Ile, Leu, Val or Phe, Phe to Trp, Tyr, Met, Ile or Leu, Ser to Thr or Ala Substitution to Thr to Ser or Ala, Trp to Ph or Tyr, Tyr to His,
  • a wild-type enzyme having the amino acid sequence of SEQ ID NO: 1 a large number of multiple mutants in which 90 amino acids are substituted are prepared from a mutant in which one amino acid is substituted, and an enzyme activity and heat resistance test are performed. As a result, 58 mutants were selected. Of these, 13 out of 58 mutants were confirmed to have higher D-allulose isomerase activity at the optimum temperature than the wild-type enzyme without amino acid substitution. In addition, 52 out of 58 mutants having a higher ratio of D-allulose isomerase activity (T70 / T50) at reaction temperatures of 70 ° C. and 50 ° C. than wild-type enzymes, and kept warm at 60 ° C. for 1 hour compared to wild-type enzymes.
  • T70 / T50 ratio of D-allulose isomerase activity
  • the L-rhamnose isomerase of the present invention is also excellent in that many mutants having higher heat resistance than the wild-type L-rhamnose isomerase can be obtained.
  • ⁇ Experiment 3 Preparation of crude enzyme> Bacterial cells were collected by centrifugation from the respective culture solutions of the GuaL218-3 strain and the AgM30 strain. The recovered cells were washed with 10 mM Glycine-NaOH buffer (pH 9.0), and then the cells were suspended in 10 mL of Glycine-NaOH buffer (pH 9.0), and then the cells were suspended. The cells were disrupted with an ultrasonic homogenizer (Emerson Japan, Ltd.) while cooling the turbid liquid in ice water. The crushed product was centrifuged at 12,000 rpm for 20 minutes, and the centrifugation supernatant was used as each crude enzyme.
  • an ultrasonic homogenizer Emerson Japan, Ltd.
  • Example 4 Production of D-allose by crude enzyme> Using the two crude enzyme solutions obtained, D-allulose was added as a substrate to a final concentration of 100 mM, and the enzyme reaction was carried out at 30 ° C. for 4 hours, and then the amount of D-allose produced was measured. Then, the amount of D-allose produced was compared by the area area of HPLC. Specifically, the composition of the enzyme reaction solution is 50 mM Glycine-NaOH buffer (pH 9.0), 100 mM D-allulose, crude enzyme solution, 1 mM manganese chloride, reacted at 30 ° C. for 4 hours, and boiled for 2 minutes. After stopping the reaction, the liquid composition after the reaction was measured by HPLC.
  • the ratio of the area area of D-allose produced by HPLC analysis is shown in FIG.
  • the amount of conversion of D-allose to D-allose per amount of the same culture solution was about 23 times that of the control crude enzyme derived from the GuaL218-3 strain and that of the control crude enzyme derived from the AgM30 strain. rice field.
  • the enzyme purified by ion exchange chromatography was further purified by hydrophobic chromatography.
  • the column used was HiTrap PHENYL, which was dissolved by adding ammonium sulfate to an enzyme solution so as to have a concentration of 2M, and the concentration was reduced from 100% to 0% of 2M ammonium sulfate at a flow rate of 5 mL / min to elute and fractionate by 5 mL.
  • the fraction in which the enzyme activity was detected was dialyzed to remove ammonium sulfate to obtain a hydrophobic chromatographic separation and purification enzyme.
  • FIG. 6 shows the residual activity of this enzyme and the control enzyme after being kept warm at each temperature for 10 minutes under the reaction conditions (10 minutes) for which the optimum temperature was determined.
  • the decrease in relative activity of this enzyme at 60 ° C. was less than 20%, which was overwhelmingly less than the decrease of 80% in the control enzyme. In comparison, it was found to be a more stable enzyme at high temperatures.
  • D-allose or D-allose isomerase activity Regarding the measurement of the D-allose isomerase activity of this enzyme, the same experiment as in Experiment 6 was carried out to carry out an enzymatic reaction. Using 100 mM D-allose as a substrate, an enzymatic reaction is carried out at 60 ° C. for 60 minutes, and after the reaction, the reaction is stopped by putting the reaction solution in a boiling solution for 3 minutes, and the liquid composition after the reaction is measured by HPLC.
  • the enzyme activity of 1 unit (U) is the amount of enzyme that isomerizes D-allose to produce 1 ⁇ mol of D-allose per minute under the above conditions.
  • the reaction conditions are shown in Table 4. D-allulose isomerase activity was measured under similar conditions.
  • the enzyme activity of 1 unit (U) is the amount of enzyme that isomerizes D-allose to produce 1 ⁇ mol of D-allose per minute under the above conditions.
  • L-rhamnose The activity against L-rhamnose was the strongest, followed by L-lyxose, L-mannose, D-ribose, L-talose, and D-allose.
  • L-rhamnose, L-lyxose, L-mannose, D-ribose, and D-allose were in that order, and did not react with L-talose.
  • This enzyme is used between L-rhamnose and L-ramnose, between L-lyxose and L-xylulose, between L-mannose and L-fructoses, between D-ribose and D-ribulose, between L-talose and L-tagatose, and D.
  • ⁇ Experiment 7 Preparation of immobilized enzyme> The cells of the Erwinia billingiae GuaL218-3 strain, which had been cultured and recovered in the same manner as in Experiment 2, were used. 1. Acquisition of crude enzyme by ultrasonic treatment of bacterial cells 40 mL of 50 mM Glycine-NaOH buffer (pH 9.0) is suspended in 1 L of the culture solution, and the bacterial cell suspension is ultrasonically cooled in ice water. It was crushed with a homogenizer. The crushed product was centrifuged at 15,000 ⁇ g for 30 minutes, and the centrifugal supernatant was used as a crude enzyme solution.
  • Glycine-NaOH buffer pH 9.0
  • the enzyme activity of the immobilized enzyme was measured by measuring the amount of D-allose produced when the enzyme reaction was carried out using D-allulose as a substrate. First, a solution (500 ⁇ L) of 100 mg of an immobilized enzyme resin, Glycine-NaOH buffer (pH 9.0) (final concentration 50 mM), manganese chloride (final concentration 1 mM), and D-allulose (final concentration 100 mM) was added to the reaction solution. The composition was adjusted, and the reaction was carried out in a constant temperature water bath at 30 ° C. for 24 minutes, and then boiled at 100 ° C. for 2 minutes to immediately stop the reaction.
  • ⁇ Experiment 8-1 Determination of the entire base sequence of chromosomal DNA> Unlike existing similar enzymes, the D-allose isomerase enzyme of this bacterium could not be isolated using the PCR amplification method or the existing protein database. Therefore, the entire genome sequence of Erwinia billingiae GuaL218-3 strain was determined, and a database of proteins encoded by all ORFs in the genome was constructed. Erwinia billingiae GuaL218-3 strain cultured cells were requested to Macrogen Japan Co., Ltd. as test cells, and next-generation sequence analysis using PacBio-RSII / Sequence was requested.
  • ⁇ Experiment 8-2 Construction of protein database> Based on the obtained DNA sequence of about 5.7 Mb, 5,357 ORFs were estimated using the Prokka program, and the amino acid sequence was estimated for each ORF. The 5,357 amino acid sequences were used as a protein database of Erwinia billingiae GuaL218-3 strain.
  • a phylogenetic tree was prepared by the amino acid sequence of L-ramnorse isomerase represented by SEQ ID NO: 1 of the present invention and the method described in Patent Document 8, and classified into the same strain as the DNA sequence of SEQ ID NO: 2 of the present invention.
  • the amino acid sequence encoded by the DNA sequence is compared with the amino acid sequence of SEQ ID NO: 1, and the amino acids and the like corresponding to the sites different from SEQ ID NO: 1 are changed by base substitution by site-specific mutagenesis, and various L-ramnorse isomerases are used.
  • a variant was created.
  • the amino acid substitution mutants of the present invention included a mutant in which one amino acid residue (G) was added to the amino acid at position 418 at the C-terminal.
  • a 1-amino acid substitution mutant was prepared by introducing a site-specific mutation.
  • the PCR reaction was performed.
  • the obtained PCR fragment was transformed into host Escherichia coli, and the plasmid DNA was extracted from the obtained clone to confirm that the target mutation was introduced by sequence analysis.
  • the multiple substitution mutant was prepared by repeating the above method.
  • Recombinant E. coli expressing recombinant enzymes containing site-specific mutant enzymes are 3.5% polypeptone with ampicillin added to a final concentration of 100 ⁇ g / ml, 2.0% yeast extract, 1.0% chloride.
  • Preculture was performed at 30 ° C. and 200 rpm for 12 hours in a medium containing sodium and 2 mM manganese chloride.
  • the preculture solution was inoculated into an expression medium containing ampicillin so as to have a final concentration of 100 ⁇ g / ml in a volume of 1/20, and main culture was carried out at 30 ° C. and 200 rpm for 2 hours.
  • IPTG was added so as to have a final concentration of 0.1 mM, and the expression of the recombinant enzyme was induced at 30 ° C. and 200 rpm overnight.
  • the composition of the medium for expression of recombinant Escherichia coli is shown in Table 8.
  • the enzymatic activity of the wild-type enzyme obtained by recombination and the crude enzyme of the amino acid substitution mutant is Tris-HCl buffer (pH 8.0) having a final concentration of 50 mM as a buffer using D-allulose having a final concentration of 100 mM as a substrate.
  • the reaction was carried out at each temperature for 10 minutes, and the sugar composition in the reaction solution was measured by measuring the amount of D-allose produced using HPLC.
  • the enzyme solution was heat-treated at 60 ° C. for 1 hour, and then the enzyme reaction was carried out at 60 ° C. for 10 minutes with the reaction composition shown in Table 9 to measure the residual activity. bottom.
  • the composition of the reaction solution is shown in Table 9 below.
  • the reaction optimum temperature and relative activity of each mutant were measured, and an amino acid substitution mutant having higher D-allulose isomerase activity than the wild-type enzyme at the reaction optimum temperature of each mutant was selected.
  • the wild-type enzyme is a crude enzyme produced by recombination, and the optimum temperature for D-allose production was 60 ° C., which was lower than the optimum temperature of 70 ° C. for L-ramnose of the purified enzyme, but mutation was caused. Some mutants returned to the optimum temperature by insertion. As a result, 13 mutants having a higher optimum temperature or higher D-allulose isomerase activity at the optimum temperature than the wild-type enzyme were obtained (Table 10).
  • the ratio of D-allulose isomerase activity at reaction temperatures of 70 ° C. and 50 ° C. of each variant is the same as the measurement of the optimum reaction temperature and relative activity of each variant.
  • the ratio of the residual activity after heat retention at 60 ° C. for 1 hour and the D-allulose isomerase activity at the reaction temperature of 80 ° C. and the optimum temperature (T80 / optimum temperature) was measured. Then, mutants having a higher index than wild-type enzymes were selected (Tables 11 to 13).
  • amino acid substitution sites and the like shown below are different from those shown in SEQ ID NOs: 3 to 60 in the sequence listing, the amino acid sequence shown in the sequence listing is the correct sequence.
  • the number in parentheses at the end of each sequence indicates the number of amino acid substitutions.
  • amino acid substitution mutants of sequences 3 to 60 have specific amino acid substitutions at the following 122 sites.
  • amino acid substitution mutants of sequences 3 to 60 are subjected to amino acid substitution and addition of one amino acid residue at the following 122 sites.
  • the largest number of amino acid substitutions in sequences 3 to 60 is 90 in sequence 33, and the amino acid sequence identity of the wild-type enzyme in sequence 1 is 78%.
  • the one having the largest number of amino acid substitutions is 84 of Sequence 32.
  • the number is 80%, and the identity of the sequence 1 with the amino acid sequence is 80%.
  • Table 11 shows the numbers of 52 sequences having a higher ratio of D-allulose isomerase activity (T70 / T50) at reaction temperatures of 70 ° C. and 50 ° C. than the wild-type enzyme of sequence 1.
  • Table 12 shows the numbers of 17 sequences having higher residual activity after being kept warm at 60 ° C. for 1 hour than the wild-type enzyme of sequence 1.
  • Table 13 shows the numbers of 56 sequences having a higher ratio of D-allulose isomerase activity (T80 / optimum temperature) at a reaction temperature of 80 ° C. and an optimum temperature than the wild-type enzyme of sequence 1.
  • the L-rhamnose isomerase of the present invention is characterized by having particularly high heat resistance and high activity as compared with the conventional L-rhamnose isomerase derived from a microorganism.
  • the conventional L-rhamnose isomerase derived from Pseudomonas stutzeri has an optimum temperature of 60 ° C.
  • the enzyme of the present invention has a high temperature of 70 ° C. and is heat-treated at 60 ° C. for 10 minutes. Since the residual activity of Pseudomonas stella has a thermal stability of 80% or more, it is suitable for use in industrial production.
  • the substrate when the substrate is D-allose, it has a high conversion activity to D-allose of 2.26 U per mg protein at 60 ° C., and the present invention opens the way for mass production of D-allose. ..
  • the L-rhamnose isomerase of the present invention can obtain a highly active immobilized enzyme by various immobilization methods, and by using the immobilized enzyme, it is possible to carry out a continuous and large amount of isomerization reaction. Is. By being able to be fixed industrially, the target aldose can be mass-produced.
  • many amino acid-substituted variants of L-rhamnose isomerase of the present invention include those having higher enzyme activity or heat resistance than the present enzyme before mutation. Therefore, the establishment of the L-rhamnose isomerase and its variants of the present invention and the method for producing the same is extremely significant not only in the sugar manufacturing industry but also in the food, cosmetics, pharmaceuticals, and agrochemical industries related thereto.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

エルビニア(Erwinia)属に属する微生物から得ることができ、SDS-PAGEで測定したサブユニットの分子質量が約48kDaであり、下記(A)および(B)の基質特異性を有するL-ラムノースイソメラーゼ。 (A)アルドースのC1のCHO基とC2のOH基を認識して反応し、C1のCHO基をOH基に、C2のOH基をCO基に変換するか、あるいは、ケトースのC1のOH基とC2のCO基を認識して反応し、C1のOH基をCHO基に、C2のCO基をOH基に変換するイソメラーゼ活性を有する。 (B)L-ラムノースとL-ラムニュロース間、L-リキソースとL-キシルロース間、L-マンノースとL-フラクトース間、D-リボースとD-リブロース間、L-タロースとL-タガトース間、及びD-アロースとD-アルロース間の異性化反応を触媒する活性を有する。

Description

新規L-ラムノースイソメラーゼ
 本発明は、新規なL-ラムノースイソメラーゼとその製造方法、これを生産する微生物、該酵素をコードするDNAとこれを含む組換えベクターと形質転換宿主細胞、L-ラムノースイソメラーゼ変異体、およびL-ラムノースイソメラーゼまたは変異体によるケトースまたはアルドースの製造方法に関する。
 希少糖とは、国際希少糖学会の定義によれば、「自然界に希にしか存在しない糖」であり、すなわち、自然界における存在量が少ない単糖である。
 炭素数が4つの単糖(テトロース)は、アルドース4種類、ケトース2種類および糖アルコール3種類ある。炭素数が5つの単糖(ペントース)は、アルドース8種類、ケトース4種類および糖アルコール4種類ある。炭素数が6つの単糖(ヘキソース)は全部で34種類あり、アルドースが16種類、ケトースが8種類、糖アルコールが10種類ある。炭素数が7つの単糖(ヘプトース)の種類は、炭素数7のアルドヘプトース、ケトヘプトース、ヘプチトールはそれぞれ32,16,16種類存在する。
 例えば、六炭糖(ヘキソース)には、一般に、自然界に多量に存在するアルドースは、D-グルコース、D-ガラクトース、D-マンノース、D-リボース、D-キシロース、L-アラビノースの6種類であり、それ以外のD-アロースなどのアルドースは希少糖と定義される。すなわち、アルドースのうち希少糖とされるものとしては、L-アロース、L-グロース、L-グルコース、L-ガラクトース、L-アルトロース、L-イドース、L-マンノース、L-タロース、D-タロース、D-イドース、D-アルトロース、D-グロース、D-アロースが挙げられる。ケトースとしては、D-フラクトースは自然界に多量に存在するのに対し、他のケトースは、自然界に多量に存在しないので、希少糖といえる。ケトースのうち希少糖とされるものとしては、D-アルロース(別名D-プシコース)、D-タガトース、D-ソルボース、L-フラクトース、L-アルロース(別名L-プシコース)、L-タガトース、L-ソルボースが挙げられる。
 昨今、すべての希少糖生産の根幹原料となるD-アルロース(別名D-プシコース)の大量生産技術が確立し、入手困難であった希少糖の生産が可能となった。さらに酵素反応によって、D-アルロースはD-アロースなどへの新たな希少糖生産の中心となると考えられる。
 D-アロースは、D-グルコースと3位の炭素のOH基方向のみ異なる異性体であるアルドースであって、ケトースであるD-アルロースの異性体としても知られる希少糖単糖類である。D-アロースは、それを有効成分とする、急性腎不全および尿毒症から選択される腎疾患を治療するための医薬組成物(特許文献1)、筋萎縮性側索硬化症に起因する運動障害の発症または進行を遅延するための医薬品(特許文献2)、血圧上昇抑制剤(特許文献3)、血管新生の抑制に用いることを特徴とする剤(特許文献4)、Tリンパ球増殖抑制剤(特許文献5)、または腹膜透析液に配合して使用される腹膜劣化抑制剤(特許文献6)が知られており、また、食することのできる農薬(特許文献7)としても知られている。最近では、腎細胞癌細胞に取り込まれての抗腫瘍効果(特願2019-52195号)、ヒト尿路上皮癌細胞に対する強い抗腫瘍効果(特願2019-58477号)に関する発明が出願されている。このような特徴から、D-アロースは医薬、農薬分野で次世代の核心的な素材として注目を浴びており、D-アルロースの次はD-アロースの大量生産技術の確立が求められている。
 微生物が生産する酵素を用いてD-アロースを生産する方法として、本発明者らはシュードモナス スタッツェリ(Pseudomonas stutzeri)から単離されたL-ラムノースイソメラーゼ(L-rhamnose isomerase)を用いてアルロースからアロースを生産する技術を開発した(非特許文献1)。L-ラムノースイソメラーゼはL-ラムノース-L-ラムニュロース間の可逆的な異性化反応を触媒する酵素であるが、P.stutzeri由来L-ラムノースイソメラーゼは、L-ラムノース-L-ラムニュロース間だけでなく、L-リキソース-L-キシルロース間、L-マンノース-L-フラクトース間、D-グロース-D-ソルボース間、D-リボース-D-リブロース間、D-アロース-D-アルロース間,L-タロース-L-タガトース間にも作用できる幅広い基質特異性が明らかとなった。この広い基質特異性を利用し、D-アルロースからD-アロースへの変換を中心に、イズモリング上のさまざまな希少アルドースおよびケトースの生産が可能となった。
特許第5330976号公報 特許第5317055号公報 特許第5158779号公報 特許第4943839号公報 特許第4724824号公報 特開2009-269887号公報 特許第5816871号公報 米国特許第10,480,018号明細書
J.Ferment.Biоeng.(1997) Vol.84,p.319
 今日、ほとんどの希少糖生産が可能になってきたことに伴い、希少糖生産にも新しい課題が次々と生まれてきた。例えば、生理活性が明らかになった希少糖D-アロースの実験室レベルの大量生産から産業化へつながる市場規模の大量生産へのシフトが本発明者らの新しい課題となった。すなわち、希少糖生産における効率のよい大量生産を可能にするためには、まず、より高い熱耐性活性と広範囲の至適pHを持つ酵素を選抜することが必須であると考えた。
 上記のとおり従来の技術では、純粋な希少糖D-アルロースを原料として、公知のL-ラムノースイソメラーゼ(EC 5.3.1.14)を用いて希少糖D-アロースを生産している。L-ラムノースイソメラーゼは、L-ラムノースから L-ラムニュロースへの異性化反応を触媒する酵素であり、L-ラムニュロースからL--ラムノースへの異性化も触媒できる。D-アロ-スとD-アルロース間の異性化にも作用することが既知である。異性化酵素は最も高い活性を示す基質を元に命名されるため、L-ラムノースイソメラーゼと命名された酵素の中でも、その基質特異性は様々である。
また、該公知の酵素にはD-アロース生成時に、アルドースであるD-アルトロース(D-altrose)も副産物として生成させるものがあり、副産物であるD-アルトロースの存在は、D-アロース精製工程におけるD-アロースの収率低下の原因となっていた。そこで、大量生産による希少糖D-アロースの純度も課題の一つとなった。
 本発明は、食品を製造する際に使用が認められ毒性がないとされる微生物由来であり、かつ活性が高く、高収率でD-アルロースからD-アロースへ異性化できる新規なL-ラムノースイソメラーゼの提供、該酵素を有する微生物の提供、および、その酵素を用いる製造方法を提供することをその課題とする。
 本発明者らは、日本だけでなくヨーロッパおよびアメリカにおいても、食品として使用が認められているリストに載っている毒性がほとんどないとされる菌種に着目して、各地の土壌を採取し、そこから微生物を分離し、L-ラムノースイソメラーゼ活性を有する微生物の探索を続けた。
 その結果、数多く単離した菌株の中に新規なL-ラムノースイソメラーゼを産生するエルビニア(Erwinia)属に属する微生物を見出した。このエルビニア属微生物であるエルビニア ビリンゲ(Erwinia billingiae)は、活性が高くかつ高耐熱性の新規なL-ラムノースイソメラーゼを産生する。
 この微生物由来の新規なL-ラムノースイソメラーゼは、アルドースと対応するケトース間の異性化反応を触媒し、アルドースのC1のCHO基とC2のOH基を認識して反応し、C1のCHO基をOH基に、C2のOH基をCO基に変換するか、あるいは、ケトースのC1のOH基とC2のCO基を認識して反応し、C1のOH基をCHO基に、C2のCO基をOH基に変換する、アルドース-ケトース間のイソメラーゼ活性を有する。また、D-アルロースを基質としてD-アロースを製造する際に、副生成物であるD-アルトロースを生成しないことから、D-アロースの製造に適している。
 すなわち、本発明は、下記(1)ないし(4)に記載のL-ラムノースイソメラーゼ、および下記(5)に記載の微生物に関する。
(1)エルビニア(Erwinia)属に属する微生物由来のL-ラムノースイソメラーゼであって、SDS-PAGEで測定したサブユニットの分子質量が48kDaであり、下記(A)および(B)の基質特異性を有するL-ラムノースイソメラーゼ。
 (A)アルドースのC1のCHO基とC2のOH基を認識して反応し、C1のCHO基をOH基に、C2のOH基をCO基に変換するか、あるいは、ケトースのC1のOH基とC2のCO基を認識して反応し、C1のOH基をCHO基に、C2のCO基をOH基に変換するイソメラーゼ活性を有する。
 (B)L-ラムノースとL-ラムニュロース間、L-リキソースとL-キシルロース間、L-マンノースとL-フラクトース間、D-リボースとD-リブロース間、L-タロースとL-タガトース間、及びD-アロースとD-アルロース間の異性化反応を触媒する活性を有する。
(2)下記(C)および(D)の理化学的性質を有する、上記(1)に記載のL-ラムノースイソメラーゼ。
 (C)反応至適pHは9である。
 (D)反応至適温度は70℃である。
(3)エルビニア属に属する微生物がエルビニア ビリンゲ(Erwinia billingiae)である、上記(1)または(2)に記載のL-ラムノースイソメラーゼ。
(4)エルビニア属に属する微生物が特許微生物寄託センターに受託番号NITE BP-03142として国際寄託されているエルビニア ビリンゲ(Erwinia billingiae) GuaL218-3である、上記(1)ないし(3)のいずれかに記載のL-ラムノースイソメラーゼ。
 また、本発明は、下記(5)ないし(7)に記載のタンパク質、下記(8)ないし(11)に記載のDNA、組換えベクター、または形質転換宿主細胞、若しくは下記(12)に記載の微生物に関する。
(5)配列番号1で表されるアミノ酸配列を含むタンパク質。
(6)配列番号1で表されるアミノ酸配列からなるタンパク質のアミノ酸置換変異体であるタンパク質であって、配列番号1で表されるアミノ酸配列と80%以上の同一性を有し、かつ配列番号1で表されるアミノ酸配列のK3、L4、I5、Y9、E10、L11、Y16、D18、V19、I21、V23、Q25、V26、M27、T28、G32、I33、R46、N52、E54、R68、H73、A77、I79、E80、K81、M83、A89、D102、T103、E106、D108、A109、E111、Q113、S116、H117、Q124、H125、K126、S134、S148、D151、K152、G153、C162、I168、H171、P179、V186、L193、I195、L198、A199、E202、A205、S206、V211、F216、D217、A218、S219、C245、L246、A250、T257、T275、V280、L300、T310、A313、N315、K316、N319、K320、A345、S357、D358、Q359、R361、K362、L365、E366、A371、L375、V387、A390、W391、L393、H395、V397、D400、A401、S402、S405、E406、H409、Q412、Q413、T414、R416、L417、419から選ばれる少なくとも1つの部位のアミノ酸置換を有し、下記(A)および(B)のL-ラムノースイソメラーゼ活性を有し、かつ配列番号1で表されるアミノ酸配列からなるタンパク質より、至適温度におけるL-ラムノースイソメラーゼ活性が高いタンパク質。
 (A)アルドースのC1のCHO基とC2のOH基を認識して反応し、C1のCHO基をOH基に、C2のOH基をCO基に変換するか、あるいは、ケトースのC1のOH基とC2のCO基を認識して反応し、C1のOH基をCHO基に、C2のCO基をOH基に変換するイソメラーゼ活性を有する。
 (B)L-ラムノースとL-ラムニュロース間、L-リキソースとL-キシルロース間、L-マンノースとL-フラクトース間、D-リボースとD-リブロース間、L-タロースとL-タガトース間、及びD-アロースとD-アルロース間の異性化反応を触媒する活性を有する。
(7)配列番号1で表されるアミノ酸配列からなるタンパク質のアミノ酸置換変異体であるタンパク質であって、配列番号1で表されるアミノ酸配列と78%以上の同一性を有し、かつ配列番号1で表されるアミノ酸配列のK3、L4、I5、Y9、E10、L11、Y16、D18、V19、I21、V23、E24、Q25、V26、M27、T28、G32、I33、R46、N52、E54、R68、H73、A77、I79、E80、K81、A82、M83、S84、A89、K90、I97、D102、T103、E106、D108、A109、E111、Q113、S116、H117、E120、Q124、H125、K126、S134、P139、L140、S148、A150、D151、K152、G153、I154、C162、R167、I168、H171、P179、V186、L193、I195、L198、A199、E202、A205、S206、E210、V211、K215、F216、D217、A218、S219、C245、L246、A250、T254、T257、T275、V280、R282、L300、T310、A313、N315、K316、N319、K320、A345、S357、D358、Q359、R361、K362、L363、L365、E366、Y369、A371、A374、L375、S381、V387、A390、W391、L393、H395、V397、D400、A401、S402、S405、E406、H409、Q412、Q413、T414、R416、L417、419から選ばれる少なくとも1つの部位のアミノ酸置換を有し、下記(A)および(B)のL-ラムノースイソメラーゼ活性を有し、かつ配列番号1で表されるアミノ酸配列からなるタンパク質より、反応温度70℃と50℃におけるL-ラムノースイソメラーゼ活性の比(T70/T50)が高いか、60℃で1時間保温後の残存活性が高いか、または反応温度80℃と至適温度におけるL-ラムノースイソメラーゼ活性の比(T80/至適温度)が高いタンパク質。
 (A)アルドースのC1のCHO基とC2のOH基を認識して反応し、C1のCHO基をOH基に、C2のOH基をCO基に変換するか、あるいは、ケトースのC1のOH基とC2のCO基を認識して反応し、C1のOH基をCHO基に、C2のCO基をOH基に変換するイソメラーゼ活性を有する。
 (B)L-ラムノースとL-ラムニュロース間、L-リキソースとL-キシルロース間、L-マンノースとL-フラクトース間、D-リボースとD-リブロース間、L-タロースとL-タガトース間、及びD-アロースとD-アルロース間の異性化反応を触媒する活性を有する。
(8)上記(5)ないし(7)のいずれかに記載のタンパク質をコードするDNA。
(9)配列番号2で表される塩基配列を含むDNA。
(10)上記(8)または(9)に記載のDNAを含有する組換えベクター。
(11)上記(10)に記載の組換えベクターにより形質転換された形質転換宿主細胞。
(12)上記(1)ないし(4)のいずれかに記載のL-ラムノースイソメラーゼを生産する、特許微生物寄託センターに受託番号NITE BP-03142として国際寄託されているエルビニア ビリンゲ(Erwinia billingiae) GuaL218-3。
 また、本発明は、下記(13)ないし(16)に記載の固定化タンパク質に関する。
(13)上記(1)ないし(4)のいずれかに記載のL-ラムノースイソメラーゼ、または上記(5)ないし(7)のいずれかに記載のタンパク質が担体に固定化されている、固定化タンパク質。
(14)上記(1)ないし(4)のいずれかに記載のL-ラムノースイソメラーゼが菌体破砕物中に存在する粗酵素の状態で、または上記(5)ないし(7)のいずれかに記載のタンパク質が形質転換宿主細胞の、菌体破砕物中に存在する粗タンパク質の状態で担体に固定化されている、固定化タンパク質。
(15)前記担体が、イオン交換樹脂または合成吸着剤である上記(13)または(14)に記載の固定化タンパク質。
(16)前記担体が、WA30、FPA54、またはFPA95である上記(15)に記載の固定化タンパク質。
 また、本発明は、下記(17)ないし(19)に記載のL-ラムノースイソメラーゼの製造方法、またはケトースまたはアルドースの製造方法に関する。
(17)上記(1)ないし(4)のいずれかに記載のL-ラムノースイソメラーゼを生産するエルビニア属微生物、または上記(11)に記載の形質転換宿主細胞を培地中で培養し、微生物菌体中に当該L-ラムノースイソメラーゼを蓄積させ、これを採取するL-ラムノースイソメラーゼの製造方法。(18)前記培地がL-ラムノースを添加した無機塩培地である、上記(17)に記載のL-ラムノースイソメラーゼの製造方法。
(19)アルドースまたはケトースから選ばれる1種以上を含有する溶液に、上記(1)ないし(4)のいずれかに記載のL-ラムノースイソメラーゼ、上記(5)ないし(7)のいずれかに記載のタンパク質、または上記(13)ないし(16)のいずれかに記載の固定化タンパク質を作用させて、対応するケトースまたはアルドースを生成せしめ、これを採取することを特徴とするケトースまたはアルドースの製造方法。
 本発明のL-ラムノースイソメラーゼは、微生物由来の従来のL-ラムノースイソメラーゼと比べて、特に高い耐熱性を有し、かつ高活性であることが特徴である。たとえば、従来のシュードモナス スタッツェリ(Pseudomonas stutzeri)由来のL-ラムノースイソメラーゼは至適温度が60℃であるのに対して、本発明の酵素は70℃と高く、しかも60℃で10分間加熱処理した後の残存活性も80%以上という熱安定性を有するので、工業的生産での使用に適している。この酵素のもつ優れた耐熱性は、この酵素のアミノ酸置換変異体の作成により、さらに高めることができるという特性がある。
 また、基質が100mMのD-アルロースである場合に、60℃で単位タンパク当たり2.26Uの高いD-アロースへの転換活性を有し、本発明によりD-アロースの大量生産が可能になる。特に、基質がD-アルロースである場合、本発明の酵素はD-アロースのみに変換し、副生成物であるD-アルトロースを生成しないので、収率がその分高くなる。
本粗酵素(GuaL218-3株由来)と対照粗酵素(AgM30株由来)のD-アロースの生成量の比較を示す図である。 本酵素の分子質量を確認するためのSDS‐PAGEの結果を示す。図中、左の数字の単位はkDa。 本酵素と対照酵素の至適pHを示す図である。 本酵素と対照酵素の24時間後におけるpH安定性を示す図である。 本酵素と対照酵素の至適温度を示す図である。 本酵素と対照酵素の10分保温における温度安定性を示す図である。 本酵素と対照酵素の基質特異性を示す図である。 本酵素と対照酵素への金属イオンの影響を示す図である。 固定化担体による本酵素の固定化酵素の活性発現率の相対値を示す。 大腸菌で発現させた組換酵素のSDS‐PAGEの結果を示す。 組換酵素によるD-アルロースからD-アロースへの転換反応を行った反応液のHPLCの分析結果を示す。
 本発明は、エルビニア(Erwinia)属に属する微生物から単離することができるL-ラムノースイソメラーゼに関するものであり、高い活性、耐熱性において特徴的な性質を有する。
 本発明のL-ラムノースイソメラーゼは、アルドースのC1のCHO基とC2のOH基を認識して反応し、C1のCHO基をOH基に、C2のOH基をCO基に変換してケトースにするか、あるいは、ケトースのC1のOH基とC2のCO基を認識して反応し、C1のOH基をCHO基に、C2のCO基をOH基に変換してアルドースにするイソメラーゼ活性を有する。
 本発明でいうケトースとは、ケトース構造を有する六炭糖のケトヘキソースまたは五炭糖のケトペントースを意味する。ケトヘキソースには、アルロース(別名プシコース)、ソルボース、タガトース、フラクトースが、ケトペントースには、リブロース、キシルロースが含まれる。
 本発明でいうアルドースとは、アルドース構造を有する六炭糖のアルドヘキソースまたは五炭糖のアルドペントースを意味する。アルドヘキソースには、グルコース、アロース、アルトロース、グロース、イドース、タロース、ガラクトース、マンノースが、アルドペントースには、リボース、アラビノース、キシロース、リキソースが含まれる。D-またはL-とは、これらのD-体およびL-体を意味する。
 本発明のL-ラムノースイソメラーゼは、L-ラムノース、L-リキソース、L-マンノース、D-リボース、L-タロース、およびD-アロースに作用し、L-ラムノース-L-ラムニュロース間、L-リキソース-L-キシロース間、L-マンノース-L-フラクトース間、D-リボース-D-リブロース間、L-タロース-L-タガトース間、およびD-アロース-D-アルロース間の変換を触媒できる、幅広い基質特異性を有する。
 本発明のL-ラムノースイソメラーゼは、エルビニア(Erwinia)属に属し、L-ラムノースイソメラーゼ産生能を有する微生物を培養し、培養液中に生育した菌体中からL-ラムノースイソメラーゼを単離することにより調製することができる。エルビニア(Erwinia)属に属する微生物としては、例えば、エルビニア ビリンゲ(Erwinia billingiae)GuaL218-3およびこれらの変異株などが有利に利用できる。この出願をするに際し、GuaL218-3株は、2020年2月28日に日本国千葉県木更津市かずさ鎌足2-5-8所在の独立行政法人製品評価技術基盤機構 特許微生物寄託センターに国際寄託し、受領番号NITE ABP-03142として受領され、その後GuaL218-3株は、2020年2月28日付で受託番号NITE BP-03142として正式にブダペスト条約に基づき国際寄託された。
 本発明のL-ラムノースイソメラーゼは、エルビニア属の、L-ラムノースイソメラーゼ生産菌を、L-ラムノースを添加した無機塩培地で通気培養した後、遠心分離により菌体を培養液から回収する。回収した菌体を、10mMトリス-HCl緩衝液(pH7.5)を用いて洗浄した後、10mLの10mMトリス-HCl緩衝液(pH7.5)中に懸濁させ、溶菌酵素であるリゾチームを添加して酵素処理により細胞を破砕するか、または、菌体懸濁液を氷水中で冷却しながら超音波ホモジナイザーで細胞破砕する。それらの破砕物を遠心分離して、その遠心上清を粗酵素液とする。
 精製前の粗酵素液のL-ラムノースイソメラーゼの活性は、D-アルロースを基質とし、D-アロ-スの生成量を測定することにより確認することができる。
 逆反応であるD-アロースからD-アルロースへ変換する酵素活性についても同様の条件で測定する。これらの変換反応は、通常、次の条件で行なわれる。基質濃度は1~60%(w/v)、望ましくは、約5~50%(w/v)、反応温度は30~80℃、望ましくは、約50~70℃、反応pHは6~11、望ましくは、約8~11、反応時間は適宜選択できるが、バッチ反応の場合には、通常4~20時間の範囲が選ばれる。
 粗酵素液は、順次イオン交換クロマトグラフィーと疎水クロマトグラフィーにより精製して、精製酵素を単離することができる。酵素が精製されたことを確認するために、SDS-PAGE(ゲル濃度12.5%)にかけて、単一なバンドが得られることと見掛けの分子質量を確認する。
 上記のように精製された本発明のL-ラムノースイソメラーゼは、SDS-PAGEによるサブユニット分子質量が約48kDaであり、その活性化度が金属イオンによって調節される金属酵素である。基質との反応は、マンガン、コバルト、ニッケル、マグネシウム、鉄、銅、亜鉛、およびカルシウムからなる群より選択された金属イオンの濃度0.5~5mMでの存在下で行われうる。
 本発明のL-ラムノースイソメラーゼは、所定のアミノ酸配列を有しており、その例としては、配列番号1で表されるアミノ酸配列を有するタンパク質、またはそれと相同なアミノ酸配列を有し、同等なL-ラムノースイソメラーゼ活性を維持するタンパク質が挙げられる。相同なアミノ酸配列とは、例えば、配列番号1のアミノ酸配列と75%以上、78%以上、80%以上、好ましくは85%以上、より好ましくは90%以上、さらにより好ましくは95%以上のアミノ酸配列の同一性を有することを指す。
 二つのアミノ酸配列または二つの核酸配列(塩基配列)の同一性(%)は例えば以下の手順で決定することができる。まず、最適な比較ができるよう二つの配列を並べる。この際、例えば、第一の配列にギャップを導入して、第二の配列とのアライメントを最適化してもよい。第一の配列の特定位置の分子(アミノ酸残基又はヌクレオチド)が、第二の配列における対応する位置の分子と同じであるとき、その位置の分子が同一であるといえる。二つの配列の同一性は、その二つの配列に共通する同一位置の数の関数であり(即ち、同一性(%)=同一位置の数/位置の総数×100)、好ましくは、アライメントの最適化に要したギャップの数及びサイズも考慮に入れる。
 また、二つの配列の比較及び同一性の決定は、数学的アルゴリズムを用いて実現可能である。配列の比較に利用可能な数学的アルゴリズムの具体例としては、Karlin及びAltschul(1990)Proc.Natl.Acad.Sci.USA 87:2264―68に記載され、Karlin及びAltschul(1993)Proc.Natl.Acad.Sci.USA 90:5873―77において改変されたアルゴリズムがあるが、これに限定されることはない。このようなアルゴリズムは、Altschulら(1990)J.Mol.Biol.215:403―10に記載のNBLASTプログラム及びXBLASTプログラム(バージョン2.0)に組み込まれている。本発明の核酸分子に等価なヌクレオチド配列を得るには例えばNBLASTプログラムでscore=100、wordlength=12としてBLASTヌクレオチド検索を行えばよい。
 本発明のDNAは、前記タンパク質をコードする遺伝子であり、所定の塩基配列を有する。その例としては、配列番号1で表されるアミノ酸配列をコードするDNA配列、配列番号2で表される塩基配列、または配列番号2で表される塩基配列と相同な塩基配列を有し、かつ、配列番号1のタンパク質と同等なL-ラムノースイソメラーゼ活性を維持するタンパク質をコードするDNA配列が挙げられる。相同な塩基配列とは、例えば、配列番号2の塩基配列と75%以上、78%以上、80%以上、好ましくは85%以上、より好ましくは90%以上、さらにより好ましくは95%以上の塩基配列の同一性を有することを指す。
 本発明のDNAを、自律複製可能な適宜ベクターに挿入して組換えベクターとすることもできる。組換えベクターは、DNAと自律複製可能なベクターとからなり、DNAが入手できれば、常法の組換えDNA技術により比較的容易に調製することができる。クローニングやタンパク質の発現という使用目的に応じて、また宿主細胞に応じて、適切なベクターが選択される。このようなベクターの例としては、pBR322、pUC18、pUB110、pTZ4、pC194、pHV14、TRp7、YEp7、pBS7などのプラスミドベクターやλgt・λC、λgt・λB、ρ11、φ1、φ105などのファージベクターが挙げられる。
 このようにして得られる組換えベクターを、大腸菌、枯草菌、放線菌、酵母をはじめとする適宜の宿主細胞に導入することができる。導入方法は、リン酸カルシウム共沈降法、エレクトロポレーション法、リポフェクション法、マイクロインジェクション法等の公知の方法を用いる。形質転換された宿主細胞を取得するために、コロニーハイブリダイゼーション法等を適用する。
 本発明のL-ラムノースイソメラーゼ、L-ラムノースイソメラーゼ活性を有するタンパク質の製造方法は特に限定されず、公知の方法を採用することができる。具体的には、本発明のL-ラムノースイソメラーゼは、本発明のL-ラムノースイソメラーゼ生産能を有する微生物、または本発明のL-ラムノースイソメラーゼ活性を有するタンパク質をコードするDNAで形質転換された宿主細胞を、栄養培地で培養して得られる培養物から、L-ラムノースイソメラーゼ活性を有するタンパク質を採取することで製造することができる。培養方法には公知の手法を用いることができ、例えば液体培養及び固体培養の何れも用いることができる。
 このようにして、菌体を培養した後、本発明の酵素、タンパク質を精製・回収する。酵素、タンパク質の精製・回収方法は、公知の方法を自由に選択して行うことができ、例えば、培養液から回収する場合には、例えば培養上清をろ過、遠心処理等することにより、不溶物を除去した後、限外ろ過膜による濃縮、硫安沈殿等の塩析、透析、イオン交換樹脂等の各種クロマトグラフィーなどを適宜組み合わせて分離、精製を行うことができる。また、菌体内から回収する場合には、例えば菌体を溶解酵素処理、超音波処理などによって破砕した後、同様に分離、精製を行う。
 また、本発明のL-ラムノースイソメラーゼは、他のイソメラーゼと同様に、酵素を固定化しての利用が可能であり、種々の固定化方法によって活性の高い固定化酵素を得ることができる。固定化酵素を用いることで、連続的に大量の異性化反応を行うことが可能となり、公知の固定化手段、例えば、担体結合法、架橋法、ゲル包括法、マイクロカプセル化法等を利用して固定化酵素とすることができ、また、担体は公知の任意の担体であってよい。
 本発明のL-ラムノースイソメラーゼを固定化する方法の一態様は、粗酵素液を用いる固定化である。菌体懸濁液を超音波処理することで得られた、L-ラムノースイソメラーゼを含む粗酵素液をイオン交換樹脂等に添加し、低温下で結合させることにより、L-ラムノースイソメラーゼを固定化することができる。
 菌体内から、L-ラムノースイソメラーゼを取り出すためには、菌体細胞壁を破砕する必要があり、超音波処理あるいはリゾチームなどの酵素処理による破砕方法があるのは、上述のとおりである。超音波処理により得られる粗酵素液中に、活性を有するL-ラムノースイソメラーゼが多く含まれることがわかった。粗酵素液から酵素を固定化する担体としても、固定化担体として公知の任意のものを用いることができるが、イオン交換樹脂、アルギン酸ナトリウム、合成吸着剤等が便利でよく用いられる。
 イオン交換樹脂のうち、例えば塩基性陰イオン交換樹脂としては、強塩基性陰イオン交換樹脂あるいは弱塩基性陰交換樹脂のいずれも用いることができ、たとえば、強塩基性陰イオン交換樹脂としては、SA20A、PA418(三菱ケミカル社製)等が挙げられ、弱塩基性陰イオン交換樹脂としてはWA30(三菱ケミカル社製)、FPA54、FPA95(オルガノ社製)等が挙げられる。合成吸着剤としてはXAD7HP(オルガノ社製)等が挙げられる。
 弱塩基性陰イオン交換樹脂を担体に用いて固定化酵素を製造した場合、固定化した、L-ラムノースイソメラーゼは、その反応後容易に溶離させることができることから、固定化酵素の再生を非常に簡便に行うことができ、生産効率が良い。
 本発明のL-ラムノースイソメラーゼは、本発明の、L-ラムノースイソメラーゼ生産能を有する微生物、または、L-ラムノースイソメラーゼ活性を有するタンパク質をコードするDNAで形質転換された宿主細胞を、栄養培地で培養して得られる培養物から、L-ラムノースイソメラーゼ活性を有するタンパク質を採取することで製造できる。培養方法には公知の手法を用いることができ、例えば液体培養及び固体培養の何れも用いることができる。
 菌体を培地で培養した後、本発明のL-ラムノースイソメラーゼを精製・回収する。タンパク質の精製・回収方法は、公知の方法を自由に選択して行うことができ、例えば、培養液から回収する場合には、例えば培養上清をろ過、遠心処理等することにより、不溶物を除去した後、限外ろ過膜による濃縮、硫安沈殿等の塩析、透析、イオン交換樹脂等の各種クロマトグラフィーなどを適宜組み合わせて分離、精製を行うことができる。また、菌体内から回収する場合には、例えば菌体を溶解酵素処理、超音波処理などによって破砕した後、同様に分離、精製を行う。
 本発明の精製されたL-ラムノースイソメラーゼまたは固定化された該酵素を用いて、基質となり得るアルドースまたはケトースから選ばれる1種以上を含有する溶液に作用させて、対応するケトースまたはアルドースを生成せしめ、これらを製造することができる。本発明のL-ラムノースイソメラーゼは、D-アルロースに対する基質特異性が従来のL-ラムノースイソメラーゼに比べて高いので、基質となり得るD-アルロースの存在下で、希少糖であるD-アロースを大量に製造することができる。
 また、本発明のL-ラムノースイソメラーゼの遺伝子に突然変異を導入して、対応するアミノ酸残基を部位特異的変異操作により他のアミノ酸残基に置換して、様々なアミノ酸置換を有する変異体を調製することにより、アミノ酸置換していない野生型酵素より、至適温度におけるD-アルロースイソメラーゼ活性が高い酵素や耐熱性の高い酵素を得ることができる。至適温度、反応温度70℃と50℃におけるD-アルロースイソメラーゼ活性の比(T70/T50)、60℃で1時間保温後の残存活性、または反応温度80℃と至適温度におけるD-アルロースイソメラーゼ活性の比(T80/至適温度)が高いという4つの指標で耐熱性を評価する。
 本発明のL-ラムノースイソメラーゼはアミノ酸配列の同一性が78%程度の変異体であっても、酵素活性を保持しつつ、かつ、配列番号1の野生型酵素と比較して、至適温度が上がるか、反応温度70℃と50℃におけるD-アルロースイソメラーゼ活性の比(T70/T50)がより高いか、60℃で1時間保温後の残存活性がより高いか、または反応温度80℃と至適温度におけるD-アルロースイソメラーゼ活性の比(T80/至適温度)がより高い変異体を得ることができる。
 アミノ酸置換変異体の設計に関しては、特許文献8に記載の系統樹を作成する方法を参考にした。
 本発明の配列番号1で表されるL-ラムノースイソメラーゼと類似する活性を有する酵素あるいは推定酵素をコードするDNA配列を全て抽出し、特許文献8の方法を用いて、共通の祖先DNAとしての系統発生起源のDNA配列から系統発生的に派生する系統樹を作製する。そして、系統樹において本発明の配列番号1と同じ系統となる得られたDNA配列がコードするアミノ酸配列を比較して、配列が相違する部分のアミノ酸配列に着目し、アミノ酸残基が異なる部位は酵素活性への関与が小さいと予想して、配列番号1のその相違する部位に対応するアミノ酸等を、部位特異的変異導入による塩基置換により変化させて各種L-ラムノースイソメラーゼ変異体を作製する。その中から、野生型酵素より、至適温度におけるD-アルロースイソメラーゼ活性が高いアミノ酸置換変異体や耐熱性の高いアミノ酸置換変異体を選択する。
 また、本発明のアミノ酸置換変異体には例外的に、C末端の418位のアミノ酸に、1アミノ酸残基を付加した変異体が包含されている。
 部位特異的変異導入法は、例えば、インバースPCR法やアニーリング法など(村松ら編、「改訂第4版新遺伝子工学ハンドブック」、羊土社、p.82-88)の任意の手法により行うことができる。必要に応じてStratagene社のQuickChange II Site-Directed Mutagenesis Kitや、QuickChange Multi Site-Directed Mutagenesis Kit等の各種の市販の部位特異的変異導入用キットを使用することもできる。
 部位特異的変異導入は、最も一般的には、導入すべきヌクレオチド変異を含む変異プライマーを用いて行うことができる。そのような変異プライマーは、遺伝子内の改変対象のアミノ酸残基をコードするヌクレオチド配列を含む領域にアニーリングし、かつその改変対象のアミノ酸残基をコードするヌクレオチド配列(コドン)に代えて改変後のアミノ酸残基をコードするヌクレオチド配列(コドン)を有する塩基配列を含むように設計すればよい。
 アミノ酸置換変異体とは、元の配列のアミノ酸に対して異なるアミノ酸に置換されている変異体を意味し、置換については、保存的置換もあれば非保存的置換もあり、特にこだわることもないが、発明の好ましい態様において、置換は保存的置換である。保存的置換とは、塩基性を塩基性に、酸性を酸性に、極性を極性のように、同じ性質(塩基性、酸性、または中性)、極性(親水性または疎水性)を有するアミノ酸同士や、芳香族アミノ酸同士または脂肪族アミノ酸同士の置換などが該当する。
 保存的置換は、例えば、塩基性アミノ酸(Arg、Lys、His)、酸性アミノ酸(Glu、Asp)、中性非極性アミノ酸(Gly、Ala、Val、Leu、Ile、Met)、脂肪族アミノ酸(Ala、Val、Leu、Ile、Met)、極性アミノ酸(Gln、Asn、Ser、Thr)、芳香族アミノ酸(Phe、Trp、Tyr)等のグループ内により行われる。
 一方、非保存的置換とは、上記グループ外のメンバーのアミノ酸と交換することであり、例えば、3次構造でタンパク質中に折り畳まれることを防ぐためにCysを欠失させるか、他のアミノ酸に置換する。あるいは、親水性/疎水性のバランスが保たれるように、または合成を容易にするために親水度を上げるように、アミノ酸に関する疎水性/親水性の指標であるアミノ酸のハイドロパシー指数(J.Mol.Biol.(1982)Vol.157,p.105-132)を考慮して、アミノ酸を置換する。
 また、元のアミノ酸よりも立体障害の少ないアミノ酸への置換、電荷を持つアミノ酸から電荷を持たないアミノ酸へ置換することもある。
 置換については、保存的置換もあれば非保存的置換もあり、例えば、AlaからSerまたはThrへの置換、ArgからGln、HisまたはLysへの置換、AsnからGlu、Gln、Lys、HisまたはAspへの置換、AspからAsn、GluまたはGlnへの置換、CysからSerまたはAlaへの置換、GlnからAsn、Glu、Lys、His、AspまたはArgへの置換、GluからAsn、Gln、LysまたはAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、ArgまたはTyrへの置換、IleからLeu、Met、ValまたはPheへの置換、LeuからIle、Met、ValまたはPheへの置換、LysからAsn、Glu、Gln、HisまたはArgへの置換、MetからIle、Leu、ValまたはPheへの置換、PheからTrp、Tyr、Met、IleまたはLeuへの置換、SerからThrまたはAlaへの置換、ThrからSerまたはAlaへの置換、TrpからPheまたはTyrへの置換、TyrからHis、PheまたはTrpへの置換、および、ValからMet、IleまたはLeuへの置換が挙げられるが、これらに限定されない。これらのアミノ酸残基の置換については置換可能な残基の分類は例示であり、置換可能なアミノ酸残基はこの分類に限定されるものではない。
 配列番号1のアミノ酸配列を有する野生型酵素において、1か所のアミノ酸を置換した変異体から90か所のアミノ酸を置換した多数の多重変異体を作製して、酵素活性および耐熱性試験を行うことにより、58個の変異体を選択した。このうち、アミノ酸置換していない野生型酵素より、至適温度におけるD-アルロースイソメラーゼ活性が高い変異体が、58種中13種確認された。
 また、野生型酵素より、反応温度70℃と50℃におけるD-アルロースイソメラーゼ活性の比(T70/T50)が高い変異体は、58種中52種、野生型酵素より60℃で1時間保温後の残存活性が高い変異体が、58種中17種、野生型酵素より反応温度80℃と至適温度におけるD-アルロースイソメラーゼ活性の比(T80/至適温度)が高い変異体が、58種中56種確認された。
 本発明のL-ラムノースイソメラーゼは、耐熱性が野生型L-ラムノースイソメラーゼよりも高い変異体が数多く得られる点でも優れている。
 以下、実験により本発明を詳細に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
<実験1:菌株の由来および同定>
 本発明者等はスクリーニングにより単離した数多くの菌を、L-ラムノースを添加した液体培地に植菌して振とう培養を行い、L-ラムノースを基質としてL-ラムニュロースの生成量を測定することにより、L-ラムノースイソメラーゼの活性を測定した。
 このようにして、最も活性の高い菌株として微生物GuaL218-3株を見出し、GuaL218-3株は16SrRNA遺伝子塩基配列相同性に基づく系統解析により、エルビニアに属することが判明した。
 菌株の同定
(1)16SrRNA遺伝子塩基配列相同性
 16SrRNA遺伝子の1-500bp領域を解析し、塩基数500bpを特定した。
(2)相同性検索
 この菌株の16SrRNA遺伝子の塩基配列について、BLASTサーチ(日本DNAデータバンク)により基準菌株とされている既知の菌種との相同性検索を行った。上記特定した塩基数500bpの塩基配列に対し、相同性98%以上であった菌株名と相同性(%)の値から、GuaL218-3株の微生物は、エルビニア ビリンゲ(Erwinia billingiae)であることが決定された。
 このGuaL218-3株は、2020年2月28日付けで、独立行政法人製品評価技術基盤機構 特許微生物寄託センターに国際寄託し、受託番号NITE BP-03142として国際寄託された。
<実験2:エルビニア ビリンゲ(Erwinia billingiae) GuaL218-3(受託番号 NITE BP-03142)株の培養>
 L-ラムノース1.0%を炭素源とし硫安を窒素源とする無機塩液体培地に、エルビニア ビリンゲ(Erwinia billingiae) GuaL218-3(受託番号 NITE BP-03142)株の種培養液1%(v/v)を無菌的に添加し、通気撹拌しながら30℃で24時間培養した。
 本発明の菌株と比較のための対照菌株として、アルスロバクター グロビフォルミス(Arthrobacter globiformis)M30(NITE BP-1111)株(以下、「AgM30株」という。)を、GuaL218-3株と同様の培地および培養条件で培養した。
<実験3:粗酵素の調製>
 GuaL218-3株とAgM30株のそれぞれの培養液から、遠心分離により菌体を回収した。回収した菌体は、それぞれ10mMGlycine-NaOH緩衝液(pH9.0)を用いて洗浄し、次いで、菌体を10mLのGlycine-NaOH緩衝液(pH9.0)に懸濁した後、その菌体懸濁液を氷水中で冷却しながら超音波ホモジナイザー(日本エマソン株式会社)で細胞破砕した。破砕物を12,000rpmで20分間遠心し、その遠心上清をそれぞれの粗酵素とした。
<実験4:粗酵素によるD-アロースの生産>
 得られた2つの粗酵素液を用いて、それぞれ基質として終濃度100mMになるようにD-アルロースを添加して、30℃で4時間酵素反応を行った後、D-アロースの生成量を測定し、D-アロースの生成量をHPLCのエリア面積により比較した。具体的には、酵素反応液組成は、50mMGlycine-NaOH緩衝液(pH9.0)、100mM D-アルロース、粗酵素液、1mM塩化マンガンを用い、30℃4時間反応させ、2分間ボイルすることで反応を止めてから、HPLCにかけて反応後の液組成を測定した。HPLC分析による生成されたD-アロースのエリア面積の比を図1に示す。
 同培養液量当たりの粗酵素を用いた際のD-アルロースからD-アロースへの変換量は、GuaL218-3株由来の本粗酵素が、AgM30株由来の対照粗酵素の約23倍であった。
<実験5:酵素の精製>
1.イオン交換クロマトグラフィー、疎水クロマトグラフィーによる精製
 2つの粗酵素液をイオンクロマトグラフィーによる精製を行った。用いたカラムは緩衝液(20mM Tris-HCl pH7.5)で平衡化したHiTrapQ HPであり、AKTAシステムを用い流速5mL/minで1M NaClの濃度勾配で0%から100%を5mLずつのフラクションに分けて分画した。酵素活性が検出されたフラクションを回収してイオン交換クロマト分離による精製酵素を得た。
2.イオン交換クロマト分離により精製した酵素をさらに疎水クロマトグラフィーにより精製した。用いたカラムはHiTrap PHENYLであり、酵素液に2Mとなるように硫安を加えて溶解し、流速5mL/minで2Mの硫安100%から0%まで濃度を下げて溶出し5mLずつ分画した。酵素活性が検出された画分を透析し硫安を除去して、疎水クロマト分離精製酵素を得た。
3.ポリアクリルアミドゲル電気泳動
 常法に従いSDS-PAGE(ゲル濃度12.5%)を行い、精製酵素の純度を確認した。図2では、左が標準の蛋白質であり、中央と右のレーンが疎水クロマトグラフィーを用いて精製した後の酵素である。この結果は約48kDaに単一なバンドが認められ、これにより酵素は純粋に精製されたことが確認され、精製した本酵素は、SDS‐PAGEによるサブユニット分子質量が約48kDaであることが判明した。
<実験6:酵素の理化学的性質の測定>
 精製酵素であるL-ラムノースイソメラーゼ活性の測定については、下記の実験を行って酵素反応を行った。基質として5mM L-ラムノースを用い、10分間の酵素反応を各条件下で行い、反応後、反応液に10%トリクロロ酢酸溶液を50μL加えることで反応を停止し、システインカルバゾール硫酸法により生成したL-ラムニュロースを測定した。
1.反応至適pH
 測定にあたり、反応の至適pHについて5mM L-ラムノースを基質として用い、各種緩衝液pH3~11を用いて30℃で10分間反応し、生成したL-ラムニュロースを、システインカルバゾール硫酸法を用いて測定することで求めた。
 反応条件を表1に示す。使用したバッファーを表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 結果を図3に示す。本酵素の反応至適pHは9であるのに対して、対照酵素の反応至適pHは10とアルカリ側にあり、本酵素の反応至適pHはより広範囲であり、かつ、より酸性下で高い活性を示す。
2.pH安定性
 次に、表2のpH4~11の4つの緩衝液を用いて、各緩衝液中で、30℃で24時間保持した後の残存活性を図4に示す。
 本酵素も対照酵素もpH6~11において安定であるが、対照酵素のpH安定性がpH6で最も高いのに対して、本酵素ではpH7.5と10において、最も安定であった。
3.反応至適温度
 Glycine-NaOH緩衝液によりpHを9に調整し、30-80℃の様々な温度での反応を行い。至適温度を求めた。反応条件は表3に示す。40℃から80℃の温度範囲が本酵素の好適な温度であり、反応温度と相対活性を測定した結果を示す図5から、本酵素の至適温度は70℃であることが明らかとなった。
Figure JPOXMLDOC01-appb-T000003
 対照酵素の至適温度は50℃であるが、本酵素は、特に最も高い活性を示した70℃を100とした相対活性(%)が、80℃で40%、60℃で80%、50℃で70%であるのに対して、対照酵素では、最も高い活性を示した50℃を100とした相対活性(%)が、60℃で65%、70℃で8%であり、本酵素は特に高温での活性が維持され、高い耐熱性を有する。
4.熱安定性
 表3に示した上記3.で至適温度を求めた反応条件(10分)により、本酵素と対照酵素を各温度で10分間保温した後の残存活性を、図6に示す。10分間保温した後の温度安定性において、本酵素の60℃での相対活性の減少は20%未満であり、対照酵素の80%の減少より圧倒的に少ないことから、本酵素は対照酵素に比べて、高温でより安定な酵素であることがわかった。
5.D-アロースまたはD-アルロースイソメラーゼ活性、
 本酵素のD-アロースイソメラーゼ活性の測定については、実験6と同様の実験を行って酵素反応を行った。基質として100mM D-アロースを用い、60℃で60分間の酵素反応を行い、反応後、反応液を3分間沸騰液中にいれることで反応を止めHPLCによって、反応後の液組成を測定する。酵素活性1単位(U)は、上記条件下において、D-アロースを異性化し1分間に1μmolのD-アルロースを生成する酵素量である。反応条件を表4に示す。
 同様な条件で、D-アルロースイソメラーゼ活性を測定した。基質として100mM D-アルロースを用いて、60℃で60分の酵素反応を行い、D-アロースを生成させた。酵素活性1単位(U)は、上記条件下において、D-アルロースを異性化し1分間に1μmolのD-アロースを生成する酵素量である。
Figure JPOXMLDOC01-appb-T000004
 その結果は、本酵素のD-アロースに対する比活性は、5.21U/mgであり、D-アルロースに対する比活性は2.26U/mgであるということが判明した。
 しかも、本酵素によりD-アルロースをD-アロースに異性化する際、副生成物のD-アルトロースは生成されなかった。
6.L-ラムノースイソメラーゼの基質特異性
 L-ラムノースと5種類のアルドース(D-アロース、L-タロース、L-リキソース、D-リボース、L-マンノース)に対する、本酵素の異性化活性について検討した。酵素反応組成は、下記表5に示したように各基質終濃度5mM、酵素液(終濃度50mMリン酸緩衝液 pH8.0)で、70℃10分間反応しHPLCによる分析によりそれぞれのアルドースから異性化されたケトースを測定した。
 L-ラムノースの異性化活性を100として、それぞれのアルドースに対する活性を、相対活性として示している。
 D-アロース(D-Allose)、L-マンノース(L-Mannose)、L-タロース(L-Talose)、L-リキソース(L-Lyxose)、D-リボース(D-Ribose)を基質として活性を相対活性として、表6と図7に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 最もL-ラムノースに対する活性が強く、次いでL-リキソース、L-マンノース、D-リボース、L-タロース、D-アロースの順であった。一方、対照酵素では、L-ラムノース、L-リキソース、L-マンノース、D-リボース、D-アロースの順であり、L-タロースには反応しなかった。本酵素は、L-ラムノース-L-ラムニュロース間、L-リキソース-L-キシルロース間、L-マンノース-L-フラクトース間、D-リボース-D-リブロース間,L-タロース-L-タガトース間、D-アロース-D-アルロース間の異性化反応を触媒する。
7.金属イオンの影響
 次に、D-アロースイソメラーゼ活性に対する金属イオンの影響を調べる目的で、酵素を一部透析して酵素活性を測定した。透析は、酵素液をセルロース膜に入れ、20mMEDTAを含むGlycine-NaOH緩衝液(pH9.0)に浸し、この緩衝液をゆっくりと16時間かけて撹拌することにより行い、他の金属イオンの影響を取り除いた。こうして得られた酵素の酵素活性を、各種二価金属イオン1mMの存在下(表7の反応条件下)で反応後、システインカルバゾール法により測定した。 
 その結果、CoClは本酵素活性を著しく上昇させ、本酵素は金属依存性を示した(図7)。
Figure JPOXMLDOC01-appb-T000007
<実験7:固定化酵素の調製>
 実験2と同様に培養して回収したエルビニア ビリンゲ(Erwinia billingiae) GuaL218-3株の菌体を使用した。
1.菌体の超音波処理による粗酵素の取得
 培養液1L分の菌体を50mMGlycine-NaOH緩衝液(pH9.0)40mL懸濁し、その菌体懸濁液を氷水中で冷却しながら超音波ホモジナイザーで細破砕した。破砕物を15,000×gで30分間遠心し、その遠心上清を粗酵素液とした。
2.粗酵素の固定化
 純水でよく洗浄して膨潤させた後に50mMGlycine-NaOH緩衝液(pH9.0)で平衡化したイオン交換樹脂または合成吸着剤に上記で得た粗酵素液を添加し、4℃で20時間緩やかに混和することで粗酵素タンパク質を結合させた。次いで、50mMGlycine-NaOH緩衝液(pH9.0)で洗浄し、固定化酵素を得た。
 固定化担体として、強塩基性陰イオン交換樹脂(三菱ケミカル社製のSA10A、SA11A、NSA100、SA20A、PA306S、PA308、PA312、PA316、PA408、PA412、PA418、弱塩基性陰イオン交換樹脂(三菱ケミカル社製のWA10、WA20、WA21J、WA30およびオルガノ社製のFPA54、FPA60CL、FPA95)、または合成吸着剤(オルガノ社製のXAD7HP、XAD118ON)を用いた。
3.固定化酵素の酵素活性の測定方法
 固定化酵素の酵素活性の測定は、D-アルロースを基質として酵素反応させたときのD-アロースの生成量を測定することにより行った。
 まず、100mgの固定化酵素樹脂、Glycine-NaOH緩衝液(pH9.0)(終濃度50mM)、塩化マンガン(終濃度1mM)、及びD-アルロース(終濃度100mM)の溶液(500μL)を反応液組成とし、30℃恒温水槽で24分間反応させた後、100℃で2分間ボイルすることで直ちに反応を停止させた。この反応後の溶液を室温まで冷却してからイオン交換樹脂(200CT及びIRA67の混合樹脂(いずれもオルガノ社製))で脱塩し、さらにフィルター処理をして分析サンプルとした。分析は、高速液体クロマトグラフィー(カラム:GL-C611(Hitachi)、温度:60℃、溶離液:0.1mM NaOH、流速:1.0mL/分、検出器:RID-20A(島津))を用いて、生成したD-アロースのピーク面積を測定することにより行った。
4.酵素固定化に用いる担体による酵素活性の比較
 酵素固定化に用いる担体による影響を確認するため、上記2に記載の各担体に固定化した本酵素の酵素活性を比較した。なお、相対値は、比較サンプルのうち活性発現率の最も高いサンプルを100として算出することにより求めた。
 図9に、各種固定化酵素の活性発現率の相対値を示す。
<実験8:酵素をコードするDNAのクローニング及びこれを含む組換えベクターと形質転換宿主細胞の調製>
 D-アルロースイソメラーゼ活性を有するタンパク質をコードするDNAをエルビニア ビリンゲ(Erwinia billingiae) GuaL218-3株からクローニングし、自立複製可能な組換えDNAの作製、酵素をコードするDNAの塩基配列の決定、及び形質転換微生物の調製を行った。
<実験8-1:染色体DNAの全塩基配列の決定>
 本菌のD-アロースイソメラーゼ酵素は既存の類似酵素と異なり、PCR増幅の手法や既存のタンパク質データベースを用いて単離することが出来なかった。そこで、エルビニア ビリンゲ(Erwinia billingiae)GuaL218-3株の全ゲノム配列を決定し、そのゲノム中の全ORFのコードするタンパク質群のデータベースの構築を行った。エルビニア ビリンゲ(Erwinia billingiae)GuaL218-3株培養菌体を供試菌体として株式会社マクロジェン・ジャパンに依頼しPacBio-RSII/Sequelを用いた次世代シーケンス解析を依頼した。
 その結果、塩基数4,301,131bpと1,024,754bp、280,568bp、126,938bpの4つのコンティグが得られた。この4つのコンティグで約5.7Mbであることから、エルビニア ビリンゲ(Erwinia billingiae)GuaL218-3株の全ゲノム配列をカバー出来ていると考えた。
<実験8-2:タンパク質データベースの構築>
 得られた約5.7MbのDNA配列を基に、Prokkaプログラムを用いて5,357個のORFを推定し、それぞれのORFについてアミノ酸配列を推定した。この5,357個のアミノ酸配列をエルビニア ビリンゲ(Erwinia billingiae)GuaL218-3株のタンパク質データベースとした。
<実験8-3:D-アルロースイソメラーゼ活性を有するタンパク質の同定>
 上記のタンパク質データベースを用いて、タンパク質同定システムであるMASCOTserver(マトリックスサイエンス社)に登録し、D-アルロースイソメラーゼ活性が見られたタンパク質の同定を行った。供試サンプルには、段落[0045]のSDS-PAGEの48kDaのバンドを用い、還元処理、アルキル化処理の後、トリプシン消化した断片をMALDI-TOF-MS解析に供した。
 その結果、下記の418アミノ酸からなる配列1(配列表の配列番号1)のアミノ酸配列中で下線を引いて示すアミノ酸配列と78%の相似性が見られたことから、本タンパク質がエルビニア ビリンゲ(Erwinia billingiae)GuaL218-3株のL-ラムノースイソメラーゼであることが強く示唆された。
[配列1]
MTKLIEQAYELAKQRYADVGIDVEQVMTQLDGIPVSMHCWQGDDVRGFENPNGELTGGIQATGNYPGRARNAHELRADIEKAMSLIPGAKRLNLHAIYLESDTPVERDAIEPQHFSHWVEWAKQHKLGLDFNPSCFSHPLSADGFTLSHADKGIRQFWIDHCKASRRISAHFGEQLGTPSVMNIWVPDGMKDLTIDRLAPRERLASALDEVISEKFDASHHIDAVESKLFGIGAESYTVGSNEFCLGYAASRQTALTLDAGHFHPTEVISDKISTAMLYVPRLLLHVSRPVRWDSDHVVLLDDETQAIATEIARNKLFNKVHIGLDFFDASINRIAAWVIGTRNAKKALLRALLEPSDQLRKLELEGDYTARLALLEEQKSLPWQAVWEAWCLRHDVPADASWLSEVRHYEQQTLRLR
(配列1 エルビニア ビリンゲ(Erwinia billingiae)GuaL218-3株のタンパク質データベースを用いて同定したアミノ酸配列。下線部で示すアミノ酸配列がMALDI-TOF-MS解析で得られたピークと一致した配列。)
<実験8-4:D-アルロースイソメラーゼ活性を有する酵素遺伝子の単離>
 アミノ酸配列より同定した遺伝子の配列2のDNA配列(配列表の配列番号2)を合成し、pQE60ベクター(Qiagen社)に組み込み、発現用大腸菌を形質転換した。構築した大腸菌発現系を用いて誘導酵素の確認を行った。SDS-PAGEの結果は図10に示すように、誘導タンパク質が可溶性画分に確認された。また、この誘導された組換酵素を用いて、60%(w/v)のD-アルロースを基質に30℃で24時間反応させ、HPLCでD-アルロースイソメラーゼ活性を確認した結果を図11に示した。この図のリテンションタイム22.48分のピークはD-アロース、リテンションタイム29.67分のピークはD-アルロースであり、本組換え酵素は、D-アルロースからD-アロースへ異性化反応を触媒し、副生成物として懸念されていたD-アルトロースも生成しなかった。
[配列2]
ATGACAAAGCTGATTGAACAAGCTTATGAACTGGCTAAACAACGTTACGCTGACGTAGGAATTGATGTGGAGCAGGTGATGACGCAATTGGATGGGATTCCTGTGTCGATGCACTGCTGGCAGGGGGATGACGTGCGCGGCTTCGAAAACCCCAATGGCGAACTCACCGGCGGGATTCAGGCCACAGGTAACTATCCGGGACGCGCGCGTAATGCGCATGAACTGCGCGCCGATATCGAAAAAGCCATGTCGCTGATTCCAGGCGCTAAGCGCCTCAATCTGCACGCCATCTATCTGGAAAGCGACACGCCGGTAGAACGTGATGCTATCGAACCGCAACACTTCAGCCACTGGGTGGAGTGGGCAAAACAGCATAAATTAGGGCTCGATTTTAATCCAAGCTGCTTCTCGCATCCTTTAAGTGCCGATGGTTTTACCCTGTCACACGCTGACAAAGGCATCCGCCAGTTCTGGATTGATCACTGCAAGGCCAGTCGCCGCATCTCGGCACATTTTGGTGAACAACTGGGCACGCCCTCAGTGATGAACATCTGGGTTCCGGACGGTATGAAAGATCTCACCATTGATCGCCTGGCGCCGCGTGAACGTTTAGCCAGCGCGCTGGATGAAGTGATCAGCGAAAAATTCGATGCCAGTCATCATATCGACGCCGTCGAAAGTAAGTTATTCGGGATTGGTGCTGAGAGTTATACCGTGGGGTCCAATGAGTTTTGCCTTGGCTACGCTGCCAGCCGCCAGACCGCGCTGACACTTGATGCCGGGCATTTCCATCCCACTGAAGTGATCTCCGACAAAATCTCCACCGCGATGCTGTATGTCCCGCGCCTGTTATTGCACGTCAGCCGTCCGGTGCGTTGGGACAGCGACCATGTGGTGCTGCTGGATGATGAAACCCAGGCCATTGCCACTGAAATTGCGCGTAACAAGCTGTTCAACAAAGTGCATATCGGCCTCGACTTCTTTGATGCTTCCATCAACCGCATCGCGGCGTGGGTGATTGGTACCCGCAATGCCAAAAAGGCGTTACTGCGTGCGCTGTTGGAGCCGAGTGACCAACTGCGCAAACTGGAGCTTGAGGGGGATTACACCGCACGTCTGGCGCTGCTGGAGGAGCAAAAGTCATTGCCATGGCAGGCTGTCTGGGAAGCCTGGTGCTTGCGTCACGATGTCCCTGCTGATGCCAGTTGGCTCAGCGAAGTCCGTCATTATGAACAACAAACACTGCGTCTACGTTAA
<実験9:本酵素のアミノ酸置換変異体の作成とその酵素活性、耐熱性>
 本発明の配列番号1で表されるL-ラムノースイソメラーゼのアミノ酸配列と、特許文献8に記載された方法で系統樹を作成し、本発明の配列番号2のDNA配列と同じ系統に分類されたDNA配列がコードするアミノ酸配列と配列番号1のアミノ酸配列を比較して、配列番号1と相違する部位に対応するアミノ酸等を部位特異的変異導入による塩基置換により変化させて、各種L-ラムノースイソメラーゼ変異体を作成した。本発明のアミノ酸置換変異体には例外的に、C末端の418位のアミノ酸に、1アミノ酸残基(G)を付加した変異体を含めた。
 部位特異的変異導入により、まず1アミノ酸置換変異体を作成した。目的の変異導入部位にアミノ酸置換が起こるような1ないし2塩基対に塩基置換を加えた塩基配列を持つ両DNA鎖のPCRプライマーを作製し、変異導入元のプラスミドDNAとこれらの両プライマーを用いたPCR反応を行った。得られたPCR断片を宿主大腸菌に形質転換し、得られたクローンからプラスミドDNAを抽出して目的変異が導入されたことを、シークエンス解析によって確認した。多重置換変異体については、上記の方法を繰り返すことにより作製した。
 部位特異的変異酵素を含む組換え酵素を発現する組換え大腸菌は、終濃度100μg/mlとなるようにアンピシリンを加えた3.5%ポリペプトン、2.0%酵母抽出物、1.0%塩化ナトリウム、2mM塩化マンガンを含む培地で30℃、200rpmで12時間前培養を行った。前培養液を1/20量、終濃度100μg/mlとなるようにアンピシリンを加えた発現用培地に植菌し、30℃、200rpmで2時間本培養を行った。本培養後、終濃度0.1mMとなるようにIPTGを添加して30℃、200rpmで一晩組換え酵素の発現誘導を行った。
 組換え大腸菌の発現用培地の組成を、表8に示す。
Figure JPOXMLDOC01-appb-T000008
 組換えによって得られた野生型酵素およびアミノ酸置換変異体の粗酵素の酵素活性は、終濃度100mMのD-アルロースを基質に、緩衝液として終濃度50mMのTris-HCl緩衝液(pH8.0)を用いて各温度で10分間反応させ、反応液中の糖組成をHPLCを用いて生産されたD-アロースの量を測定した。
 また、これら粗酵素の60℃で1時間保温後の残存活性として、酵素液を60℃で1時間熱処理した後、表9の反応組成で60℃で10分間酵素反応を行い、残存活性を測定した。
 反応液の組成を、下記表9に示す。
Figure JPOXMLDOC01-appb-T000009
 上記方法で、各変異体の反応至適温度と相対活性を測定し、各変異体の反応至適温度において、野生型酵素よりD-アルロースイソメラーゼ活性が高いアミノ酸置換変異体を選択した。
 野生型酵素は組換えで製造された粗酵素のことであり、D-アロース生産における至適温度は60℃であり、精製酵素のL-ラムノースに対する至適温度70℃より下がったが、変異を挿入することで至適温度が戻った変異体も存在した。
 結果として、野生型酵素より、至適温度が高いかまたは至適温度におけるD-アルロースイソメラーゼ活性が高い変異体が、13個得られた(表10)。
 また、耐熱性の指標として、上記各変異体の反応至適温度と相対活性の測定と同様に各変異体の反応温度70℃と50℃におけるD-アルロースイソメラーゼ活性の比(T70/T50)、60℃で1時間保温後の残存活性、および反応温度80℃と至適温度におけるD-アルロースイソメラーゼ活性の比(T80/至適温度)を測定した。そして、野生型酵素よりいずれかの指標が高い変異体を選択した(表11~13)。
 その結果、野生型酵素より上記4つの指標のいずれかが高い変異体を56個取得した。これら56の変異体の各アミノ酸配列を、配列表の配列番号3~8、10~28、30~60に示す。配列番号9および29のアミノ酸配列を有する変異体は、活性は有するものの、4つの指標のいずれでも野生型酵素に届かなかった。
 これら配列表の配列番号3~60のアミノ酸配列を有する各変異体を、「配列3~60」と名付ける。
 以下、配列3~60における野生型酵素(配列番号1)からのアミノ酸置換部位(位置)と置換アミノ酸をそれぞれ示す。この場合、以下に示すアミノ酸置換部位等が、配列表の配列番号3~60に示すものと相違している場合には、配列表に示すアミノ酸配列が正しい配列である。また各配列の最後の括弧内の数字は、アミノ酸置換の数をしめす。
配列3 419G (1)
  4 V280I (1)
  5 V387I (1)
  6 L198F (1)
  7 S405E (1)
  8 N52E (1)
  9 Q124R (1)
 10 D102T (1)
 11 Q359L (1)
 12 K152P (1)
 13 D18A、F216L、T310S、L365Q (4)
 14 D18A、F216L、L365Q (3)
 15 Y9F、D18A、V19I、I21V、Q25K、T28A、H73D、A77S、I79V、T103K、E106D、Q113K、H117N、Q124T、P179A、I195V、A199G、E202Q、F216L、D217N、A218P、S219A、A250S、L300I、N315H、N319D、S357T、L365S、A371G、L375M、L417Q (31)
 16 Y9F、D18A、V19I、I21V、T28A、H73D、A77S、I79V、T103K、E106D、Q113K、H117N、Q124T、P179A、I195V、E202Q、F216L、D217N、A218P、S219A、A250S、L300I、N315H、N319D、S357T、L365N、A371G、L375M、L417Q (29)
 17 D18A、V19I、I21V、T28A、H73D、A77S、I79V、T103K、E106D、Q113K、H117N、Q124T、P179A、I195V、E202Q、F216L、D217N、A218P、S219A、A250S、L300I、N315H、N319D、S357T、L365S、A371G、L375M (27)
 18 D18A、V19I、I21V、T28A、I79V、Q113K、H117N、Q124P、I195V、E202Q、F216L、A218P、S219A、A250T、T310S、N315H、N319D、S357T、L365N、L417Q (20)
 19 D18A、V19I、I21V、T28A、H73D、T103K、  Q113K、H117N、Q124N、H125N、E202Q、F216L、  D217N、A218P、S219Q、A250T、N315H、N319D、L365N (19)
 20 D18A、V19I、I21V、T28A、H73D、T103K、Q113K、H117N、Q124N、H125N、I195V、E202Q、F216L、D217N、A218P、S219Q、A250T、N315H、N319D、S357T、L365N (21)
 21 Y9F、D18A、V19I、I21V、M27L、T28G、G32R、N52Q、E54A、H73D、I79L、K81Q、T103K、E106A、A109E、Q113E、H117N、Q124N、K126Q、S134T、H171Y、I195V、E202Q、V211I、F216L、D217N、A218P、S219Q、A250T、T275A、T310N、N315Q、K316N、N319D、K320R、S357T、D358A、K362Q、L365N、E406D (40)
 22 D18A、V19I、I21V、M27L、T28G、G32R、N52Q、E54A、H73D、I79L、K81Q、T103K、E106A、A109E、Q113E、H117N、Q124N、K126Q、S134T、H171Y、I195V、E202Q、V211I、F216L、D217N、A218P、S219Q、A250T、T275A、T310N、N315Q、K316N、N319D、K320R、S357T、D358A、K362Q、L365N、E406D (39)
 23 Y9F、D18A、V19I、I21V、T28G、N52Q、E54A、H73D、I79L、T103K、Q113E、H117N、Q124N、S134T、H171Y、I195V、E202Q、F216L、D217N、A218P、S219Q、A250T、T275A、T310N、N315Q、N319D、S357T、K362Q、L365N、E406D (30)
 24 Y9F、D18A、V19I、I21V、T28A、N52Q、E54A、H73D、I79L、T103K、Q113E、H117N、Q124N、H125N、S134T、H171Y、I195V、E202Q、V211I、F216L、D217N、A218P、S219Q、A250T、T310N、N315Q、N319D、S357T、K362Q、L365N、E406D (31)
 25 D18A、V19I、I21V、T28A、N52Q、E54A、H73D、I79L、T103K、Q113E、H117N、Q124K、S134T、H171Y、I195V、E202Q、V211I、F216L、D217N、A218P、S219Q、A250S、T310N、N315Q、N319D、S357T、L365N (27)
 26 D18A、V19I、I21V、V26A、T28A、G32R、N52Q、E54A、H73D、I79L、E80D、T103K、Q113E、H117N、Q124K、S134T、H171Y、I195V、E202Q、A205V、F216L、D217N、A218P、S219Q、A250T、T310N、N315Q、N319D、S357T、K362Q、L365N (31)
 27 L4Q、Y9F、V19I、I21V、V26A、M27I、T28R、G32R、N52Q、E54A、H73D、A77S、E80D、T103K、Q113A、S116A、H117N、E120A、Q124E、L140M、A150S、G153T、I154V、H171Y、L193I、I195V、E202Q、A205M、F216L、D217N、A218P、S219Q、T257C、T275A、T310S、A313V、N315H、K316Q、N319D、A345T、S357T、Q359R、K362Q、L363A、L365N、A374T、S405G、E406D (48)
 28 V19I、I21V、V26A、M27I、T28R、G32R、N52Q、E54A、H73D、A77S、E80D、T103K、Q113A、S116A、H117N、E120A、Q124E、L140M、A150S、G153T、I154V、H171Y、L193I、I195V、E202Q、A205M、F216L、D217N、A218P、S219Q、T257C、T275A、T310S、A313V、N315H、K316Q、N319D、A345T、S357T、Q359R、K362Q、L363A、L365N、A374T、S405G、E406D (46)
 29 D18E、V19N、I21V、E24D、Q25L、T28A、G32E、E54Q、H73D、M83I、K90M、D102S、T103Q、Q113K、H117N、E120A、Q124S、H125N、K126R、S134T、P139A、L140K、K152T、R167H、H171Y、L198F、E202Q、E210A、V211I、K215Q、F216L、D217N、A218P、S219Q、A250S、T254I、T310H、N315Q、N319D、Q359R、K362R、L365S、Y369F (43)
 30 K3T、L4Q、I5L、Y9W、E10D、Y16F、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52G、E54S、R68K、H73T、I79L、K81L、A82T、M83L、A89P、T103E、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124A、H125N、S148A、K152D、G153E、C162V、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、V211A、F216L、A218P、S219A、C245Y、L246M、T257C、T275A、T310S、A313I、N315H、K316D、N319D、K320R、A345M、S357T、D358A、Q359E、R361K、L365A、E366N、A390M、W391Y、L393Q、H395N、V397A、D400G、A401S、S402Q、S405D、E406N、H409A、Q412E、Q413D、T414V、R416S、L417Q、419G (84)
 31 K3T、L4Q、I5L、Y9W、E10D、Y16F、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52G、E54S、R68K、H73T、I79L、K81L、A82T、M83L、A89P、T103E、E106A、D108N、A109E、E111K、Q113E、S116K、Q124A、H125N、S148A、K152D、G153E、C162V、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、V211A、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316D、N319D、K320R、A345M、S357T、D358A、Q359E、R361K、L365A、E366N、A390M、W391Y、L393Q、H395N、V397A、D400G、A401S、S402Q、S405D、E406N、H409A、Q412E、Q413D、T414V、R416S、L417Q、419G (84)
 32 K3T、L4Q、I5L、Y9W、E10D、Y16F、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52G、E54S、R68K、H73T、I79L、K81L、M83L、A89P、T103E、E106A、D108N、A109E、E111K、Q113G、S116T、H117N、Q124A、H125N、S148A、K152D、G153E、C162V、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、V211A、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316D、N319D、K320R、A345M、S357T、D358A、Q359E、R361K、L365A、E366N、A390M、W391Y、L393Q、H395N、V397A、D400G、A401S、S402Q、S405D、E406N、H409A、Q412K、Q413D、T414V、R416S、L417Q、419G (84)
 33 K3T、L4Q、I5L、Y9W、E10D、D18A、I21V、E24D、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52G、E54S、R68K、H73T、I79L、K81L、M83L、A89P、E106A、D108N、A109E、E111K、Q113A、S116K、H117N、E120A、Q124A、H125N、K126Q、S148A、D151N、K152D、G153D、C162V、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、V211A、F216L、D217N、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310N、A313I、N315H、K316D、N319D、K320R、A345M、S357T、D358S、Q359A、R361K、K362Q、L365E、E366N、A374V、S381T、A390M、W391Y、L393Q、H395N、V397T、D400G、A401S、S402Q、S405D、E406N、H409M、Q412K、Q413D、T414V、R416S、L417Q、419G (90)
 34 L11I、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52E、E54S、R68K、H73G、I79L、K81Q、M83L、A89P、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124A、H125N、D151N、K152D、G153E、I168V、H171Y、V186I、L193I、I195V、L198F、E202Q、A205L、S206N、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、V280I、T310S、A313I、N315H、K316N、N319D、K320R、A345M、S357T、D358E、K362Q、L365A、E366D (60)
 35 D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52E、E54S、R68K、H73G、I79L、K81Q、M83L、A89P、I97L、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124T、H125N、D151N、K152N、G153E、I168V、H171Y、V186I、L193I、I195V、L198F、E202Q、A205L、S206N、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、V280I、T310S、A313I、N315H、K316N、N319D、K320R、A345M、S357T、D358E、K362Q、L365A、E366D、S381C (61)
 36 Y16F、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52E、E54A、R68K、H73T、I79L、K81Q、M83L、A89P、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124A、H125N、D151N、K152D、G153E、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206D、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316N、N319D、K320R、A345M、S357T、K362Q、L365A、E366D (57)
 37 Y16F、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52E、E54A、R68K、H73T、I79L、K81Q、M83L、A89P、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124A、H125N、D151N、K152D、G153E、C162V、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206D、F216L、D217N、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316N、N319D、K320R、A345M、S357T、K362Q、L365A、E366D (59)
 38 Y16F、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52E、E54A、R68K、H73T、I79L、K81Q、M83L、A89P、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124A、H125N、D151N、K152N、G153E、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316N、N319D、K320R、A345M、S357T、D358E、K362Q、L365A、E366D (58)
 39 Y16F、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52E、E54A、R68K、H73T、I79L、K81Q、M83L、A89P、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124A、H125N、K152N、G153E、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316N、N319D、K320R、A345M、S357T、D358E、K362Q、L365A、E366N (57)
 40 Y16F、D18A、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52E、E54S、R68K、H73T、I79L、K81Q、M83L、A89P、E106S、A109Q、E111K、Q113E、S116K、H117N、Q124A、H125N、K126Q、K152N、G153K、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206D、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313V、N315H、K316N、N319D、K320R、A345M、S357T、D358E、K362Q、L365A、E366S (56)
 41 Y16F、D18A、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52E、E54S、R68K、H73T、I79L、K81Q、M83L、A89P、E106S、A109Q、E111K、Q113E、S116K、H117N、Q124A、H125N、K126Q、K152N、G153K、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313V、N315H、K316N、N319D、K320R、A345M、S357T、D358E、K362Q、L365A、E366S (56)
 42 Y16F、D18A、I21V、V26A、M27L、T28P、G32R、I33L、R46A、N52Q、E54A、R68K、H73T、I79L、K81Q、A89P、D108N、E111K、Q113E、S116K、H117N、Q124E、K152N、G153D、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316N、N319D、K320R、A345M、S357T、K362Q、L365A、E366N (50)
 43 Y16F、D18A、Q25E、V26A、M27L、T28R、G32R、I33L、R46S、N52E、E54S、R68K、H73S、I79L、K81Q、S84R、A89P、E106S、A109Q、E111K、Q113E、S116K、H117N、Q124A、H125N、K126Q、K152N、G153S、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、R282Q、T310S、A313V、N315H、K316D、N319D、K320R、A345M、S357T、D358A、Q359E、L365A、E366A (57)
 44 Y16F、D18A、Q25E、V26A、M27L、T28R、G32R、I33L、R46S、N52E、E54S、R68K、H73S、I79L、K81Q、S84R、A89P、E106S、A109Q、E111K、Q113E、S116K、H117N、Q124A、H125N、K126Q、K152N、G153S、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、F216L、D217N、A218P、S219A、C245Y、A250T、T257C、T275A、R282Q、T310S、A313V、N315H、K316D、N319D、K320R、A345M、S357T、D358A、Q359E、L365A、E366A (57)
 45 Y16F、D18A、Q25E、V26A、M27L、T28R、G32R、I33L、R46S、N52E、E54S、R68K、H73S、A77T、I79L、K81Q、S84R、A89P、E106S、A109Q、E111K、Q113E、S116K、H117N、Q124A、H125N、K126Q、K152N、G153S、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、F216L、D217N、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、R282Q、T310S、A313V、N315H、K316D、N319D、K320R、A345M、S357T、D358A、Q359E、L365A、E366A (59)
 46 Y16F、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52G、E54A、R68K、H73T、I79L、K81L、M83L、A89P、T103E、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124A、H125N、K152D、G153E、C162V、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、F216L、D217N、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316D、N319D、K320R、A345M、S357T、D358A、Q359E、K362Q、L365A、E366D (61)
 47 Y16F、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52G、E54A、R68K、H73T、I79L、K81L、M83L、A89P、T103E、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124A、H125N、S148A、K152D、G153E、C162V、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、F216L、D217N、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316D、N319D、K320R、A345M、S357T、D358A、Q359E、K362Q、L365A、E366D (62)
 48 Y16F、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52G、E54A、R68K、H73T、I79L、K81L、M83L、A89P、T103E、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124A、H125N、S148A、K152N、G153E、C162V、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、F216L、D217N、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316D、N319D、K320R、A345M、S357T、D358A、Q359E、K362Q、L365A、E366N (62)
 49 E10D、Y16F、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52G、E54S、R68K、H73T、I79L、K81L、M83L、A89P、T103E、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124A、H125N、S148A、K152D、G153E、C162V、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、V211A、F216L、D217N、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316D、N319D、K320R、A345M、S357T、D358A、Q359E、R361K、K362Q、L365A、E366N (65)
 50 E10D、Y16F、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52G、E54S、R68K、H73T、I79L、K81L、M83L、A89P、T103E、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124A、H125N、S148A、K152D、G153E、C162V、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、V211A、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316D、N319D、K320R、A345M、S357T、D358A、Q359E、R361K、K362Q、L365A、E366N (64)
 51 Y16F、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52G、E54S、R68K、H73T、I79L、K81L、M83L、A89P、T103E、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124A、H125N、S148A、K152N、G153E、C162V、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、V211A、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316D、N319D、K320R、A345M、S357T、D358A、Q359E、R361K、K362Q、L365A、E366N (63)
 52 E10D、Y16F、D18A、I21V、Q25E、V26A M27L、T28R、G32R、I33L、R46A、N52G、E54S、R68K、H73T、I79L、K81L、M83L、A89P、T103E、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124A、H125N、K126R、S148A、D151N、K152D、G153E、C162V、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、V211A、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316D、N319D、K320R、A345M、S357V、D358A、Q359A、R361K、K362Q、L365E、E366N (66)
 53 Y16F、D18A、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52G、E54S、R68K、H73T、I79L、K81L、M83L、A89P、T103E、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124A、H125N、K126R、S148A、D151N、K152N、G153E、C162V、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、V211A、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316D、N319D、K320R、A345M、S357V、D358A、Q359A、R361K、K362Q、L365E、E366N (65)
 54 E10D、D18A、I21V、E24D、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52G、E54S、R68K、H73T、I79L、K81L、M83L、A89P、E106A、D108N、A109E、E111K、Q113A、S116K、H117N、E120A、Q124A、H125N、K126Q、S148A、D151N、K152D、G153D、C162V、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、V211A、F216L、D217N、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316D、N319D、K320R、A345M、S357T、D358S、Q359A、R361K、K362Q、L365E、E366N、A374V、S381T (69)
 55 K3T、L4Q、I5L、Y9W、L11I、D18A、V19I、I21V、V23A、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52E、E54S、R68K、H73Q、I79L、K81Q、M83L、A89P、D102T、E106A、D108N、A109E、E111K、Q113E、S116K、Q124R、K126Q、D151N、K152P、G153E、H171Y、L193I、I195V、L198F、E202Q、A205L、S206N、F216L、A218P、S219A、C245Y、L246M、T257C、T275A、V280I、T310S、A313I、N315H、K316N、N319D、K320R、A345M、S357T、D358A、Q359L、K362Q、L365N、E366D、V387I、A390M、W391Y、L393Q、V397T、D400G、A401S、S402Q、S405E、E406N、H409T、Q412K、Q413D、T414V、R416S、L417Q、419G (81)
 56 K3T、L4Q、I5L、Y9W、D18A、V19I、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52D、E54S、R68K、I79L、K81Q、M83L、A89P、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124P、K126Q、D151N、K152E、G153E、H171Y、L193I、I195V、E202Q、A205L、S206N、F216L、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、T310S、A313I、N315H、K316N、N319D、K320R、A345M、S357T、D358A、K362Q、L365N、E366D、A390M、W391Y、L393Q、V397T、D400G、A401S、S402Q、S405D、E406N、H409T、Q412K、Q413D、T414V、R416S、L417Q、419G (75)
 57 K3T、L4Q、I5L、Y9W、D18A、V19I、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52E、E54T、R68K、H73N、I79L、K81Q、M83L、A89P、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124G、K126Q、D151N、K152E、G153E、H171Y、L193I、I195V、E202Q、A205L、S206N、F216L、A218P、S219A、C245Y、L246M、T257C、T275A、T310S、A313I、N315H、K316N、N319D、K320R、A345M、S357T、D358A、Q359L、K362Q、L365N、E366D、A390M、W391Y、L393Q、V397T、D400G、A401S、S402Q、S405D、E406N、H409T、Q412K (71)
 58 Y9W、D18A、V19I、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52E、E54T、R68K、H73N、I79L、K81Q、M83L、A89P、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124G、K126Q、D151N、K152E、G153E、H171Y、L193I、I195V、E202Q、A205L、S206N、F216L、A218P、S219A、C245Y、L246M、T257C、T275A、T310S、A313I、N315H、K316N、N319D、K320R、A345M、S357T、D358A、Q359L、K362Q、L365N、E366D、A390M、W391Y、L393Q、V397T、D400G、A401S、S402Q、S405D、E406N、H409T、Q412K (68)
 59 Y9W、D18A、V19I、I21V、Q25E、V26A、M27L、T28R、G32R、I33L、R46A、N52E、E54T、R68K、H73N、I79L、K81Q、M83L、A89P、E106A、D108N、A109E、E111K、Q113E、S116K、H117N、Q124G、K126Q、D151N、K152E、G153E、H171Y、L193I、I195V、E202Q、A205L、S206N、F216L、A218P、S219A、C245Y、L246M、T257C、T275A、T310S、A313I、N315H、K316N、N319D、K320R、A345M、S357T、D358A、Q359L、K362Q、L365N、E366D、A390M、W391Y、L393Q、V397T、D400G、A401S、S402Q、S405D、E406N、H409T (67)
 60 K3T、L4Q、I5L、Y9W、Y16F、D18A、Q25E、V26A、M27L、T28R、G32R、I33L、R46S、N52E、E54S、R68K、H73S、I79L、K81Q、S84R、A89P、E106S、A109Q、E111K、Q113E、S116K、H117N、Q124A、H125N、K126Q、K152D、G153S、I168V、H171Y、V186I、L193I、I195V、E202Q、A205L、S206A、F216L、D217N、A218P、S219A、C245Y、L246M、A250T、T257C、T275A、R282Q、T310S、A313V、N315H、K316D、N319D、K320R、A345M、S357T、D358A、Q359E、L365A、E366P、A390M、W391Y、L393Q、V397T、D400G、A401S、S402E、S405E、E406S、H409A、Q412K、Q413E、T414I、R416S、L417R、419G (78)
 これらをまとめると、配列3~60のアミノ酸置換変異体は、以下の122の部位に特定のアミノ酸置換がなされている。
K3T、L4Q、I5L、Y9F/W、E10D、L11I、Y16F、D18A/E、V19I/N、I21V、V23A、E24D、Q25K/L/E、V26A、M27L/I、T28A/G/R/P、G32E/R、I33L、R46A/S、N52D/E/G/Q、E54A/Q/S/T、R68K、H73D/G/N/S/T/Q、A77S/T、I79L/V、E80D、K81Q/L、A82T、M83I/L、S84R、A89P、K90M、I97L、D102S/T、T103E/K/Q、E106A/D/S、D108N、A109E/Q、E111K、Q113A/E/K/G、S116A/K/T、H117N、E120A、Q124A/E/G/K/N/R/P/S/T、H125N、K126R/Q、S134T、P139A、L140K/M、S148A、A150S、D151N、K152D/E/N/P/T、G153D/E/K/S/T、I154V、C162V、R167H、I168V、H171Y、P179A、V186I、L193I、I195V、L198F、A199G、E202Q、A205L/M/V、S206A/D/N、E210A、V211A/I、K215Q、F216L、D217N、A218P、S219A/Q、C245Y、L246M、A250S/T、T254I、T257C、T275A、V280I、R282Q、L300I、T310N/H/S、A313I/V、N315H/Q、K316D/N/Q、N319D、K320R、A345M/T、S357T/V、D358A/E/S、Q359A/E/L/R、R361K、K362Q/R、L363A、L365A/E/N/S/Q、E366A/D/N/P/S、Y369F、A371G、A374T/V、L375M、S381C/T、V387I、A390M、W391Y、L393Q、H395N、V397A/T、D400G、A401S、S402Q/E、S405D/E/G、E406D/N/S、H409A/T/M、Q412E/K、Q413D/E、T414V/I、R416S、L417Q/R、419G
 さらに、配列3~60のアミノ酸置換変異体には、以下の122の部位にアミノ酸置換と1アミノ酸残基の付加がなされている。
K3、L4、I5、Y9、E10、L11、Y16、D18、V19、I21、V23、E24、Q25、V26、M27、T28、G32、I33、R46、N52、E54、R68、H73、A77、I79、E80、K81、A82、M83、S84、A89、K90、I97、D102、T103、E106、D108、A109、E111、Q113、S116、H117、E120、Q124、H125、K126、S134、P139、L140、S148、A150、D151、K152、G153、I154、C162、R167、I168、H171、P179、V186、L193、I195、L198、A199、E202、A205、S206、E210、V211、K215、F216、D217、A218、S219、C245、L246、A250、T254、T257、T275、V280、R282、L300、T310、A313、N315、K316、N319、K320、A345、S357、D358、Q359、R361、K362、L363、L365、E366、Y369、A371、A374、L375、S381、V387、A390、W391、L393、H395、V397、D400、A401、S402、S405、E406、H409、Q412、Q413、T414、R416、L417、419
 配列3~60の中で最もアミノ酸置換の数が多いのは、配列33の90個であり、配列1の野生型酵素とは、アミノ酸配列の同一性が78%である。
 また、下記の表10に示す、配列1の野生型酵素より至適温度におけるD-アルロースイソメラーゼ活性が高い13個の配列の中で、最もアミノ酸置換の数が多いのは、配列32の84個であり、配列1のアミノ酸配列との同一性は80%である。
Figure JPOXMLDOC01-appb-T000010
 
 表11には、配列1の野生型酵素より反応温度70℃と50℃におけるD-アルロースイソメラーゼ活性の比(T70/T50)が高い52個の配列の番号を示す。
Figure JPOXMLDOC01-appb-T000011
 表12には、配列1の野生型酵素より60℃で1時間保温後の残存活性が高い17個の配列の番号を示す。
Figure JPOXMLDOC01-appb-T000012
 表13には、配列1の野生型酵素より反応温度80℃と至適温度におけるD-アルロースイソメラーゼ活性の比(T80/至適温度)が高い56個の配列の番号を示す。
Figure JPOXMLDOC01-appb-T000013
 本発明のL-ラムノースイソメラーゼは、微生物由来の従来のL-ラムノースイソメラーゼと比べて、特に高い耐熱性を有し、かつ高活性であることが特徴である。たとえば、従来のシュードモナス スタッツェリ(Pseudomonas stutzeri)由来のL-ラムノースイソメラーゼは至適温度が60℃であるのに対して、本発明の酵素は70℃と高く、しかも60℃で10分間加熱処理した後の残存活性も80%以上という熱安定性を有するので、工業的生産での使用に適している。
 また、基質がD-アルロースである場合に、60℃でmgタンパク質当たり2.26Uの高いD-アロースへの転換活性を有し、本発明によりD-アロースの大量生産の道を拓くものである。
 また、本発明のL-ラムノースイソメラーゼは、種々の固定化方法によって活性の高い固定化酵素を得ることができ、固定化酵素を用いることで、連続的で大量の異性化反応を行うことが可能である。工業的に固定化できることで、目的とするアルドースの大量生産ができる。
 さらに、本発明のL-ラムノースイソメラーゼのアミノ酸置換変異体には、変異前の本酵素より酵素活性あるいは耐熱性が高いものが多数包含されている。
 したがって、本発明のL-ラムノースイソメラーゼとその変異体、およびその製造方法の確立は、製糖産業のみならず、これに関連する食品、化粧品、医薬品、農薬産業における工業的意義が極めて大きい。

 

Claims (19)

  1.  エルビニア(Erwinia)属に属する微生物由来のL-ラムノースイソメラーゼであって、SDS-PAGEで測定したサブユニットの分子質量が48kDaであり、下記(A)および(B)の基質特異性を有するL-ラムノースイソメラーゼ。
     (A)アルドースのC1のCHO基とC2のOH基を認識して反応し、C1のCHO基をOH基に、C2のOH基をCO基に変換するか、あるいは、ケトースのC1のOH基とC2のCO基を認識して反応し、C1のOH基をCHO基に、C2のCO基をOH基に変換するイソメラーゼ活性を有する。
     (B)L-ラムノースとL-ラムニュロース間、L-リキソースとL-キシルロース間、L-マンノースとL-フラクトース間、D-リボースとD-リブロース間、L-タロースとL-タガトース間、及びD-アロースとD-アルロース間の異性化反応を触媒する活性を有する。
  2.  下記(C)および(D)の理化学的性質を有する、請求項1に記載のL-ラムノースイソメラーゼ。
     (C)反応至適pHは9である。
     (D)反応至適温度は70℃である。
  3.  エルビニア属に属する微生物がエルビニア ビリンゲ(Erwinia billingiae)である、請求項1または2に記載のL-ラムノースイソメラーゼ。
  4.  エルビニア属に属する微生物が特許微生物寄託センターに受託番号NITE BP-03142として国際寄託されているエルビニア ビリンゲ(Erwinia billingiae) GuaL218-3である、請求項1ないし3のいずれかに記載のL-ラムノースイソメラーゼ。
  5.  配列番号1で表されるアミノ酸配列を含むタンパク質。
  6.  配列番号1で表されるアミノ酸配列からなるタンパク質のアミノ酸置換変異体であるタンパク質であって、配列番号1で表されるアミノ酸配列と80%以上の同一性を有し、かつ配列番号1で表されるアミノ酸配列のK3、L4、I5、Y9、E10、L11、Y16、D18、V19、I21、V23、Q25、V26、M27、T28、G32、I33、R46、N52、E54、R68、H73、A77、I79、E80、K81、M83、A89、D102、T103、E106、D108、A109、E111、Q113、S116、H117、Q124、H125、K126、S134、S148、D151、K152、G153、C162、I168、H171、P179、V186、L193、I195、L198、A199、E202、A205、S206、V211、F216、D217、A218、S219、C245、L246、A250、T257、T275、V280、L300、T310、A313、N315、K316、N319、K320、A345、S357、D358、Q359、R361、K362、L365、E366、A371、L375、V387、A390、W391、L393、H395、V397、D400、A401、S402、S405、E406、H409、Q412、Q413、T414、R416、L417、419から選ばれる少なくとも1つの部位のアミノ酸置換を有し、下記(A)および(B)のL-ラムノースイソメラーゼ活性を有し、かつ配列番号1で表されるアミノ酸配列からなるタンパク質より、至適温度におけるL-ラムノースイソメラーゼ活性が高いタンパク質。
     (A)アルドースのC1のCHO基とC2のOH基を認識して反応し、C1のCHO基をOH基に、C2のOH基をCO基に変換するか、あるいは、ケトースのC1のOH基とC2のCO基を認識して反応し、C1のOH基をCHO基に、C2のCO基をOH基に変換するイソメラーゼ活性を有する。
     (B)L-ラムノースとL-ラムニュロース間、L-リキソースとL-キシルロース間、L-マンノースとL-フラクトース間、D-リボースとD-リブロース間、L-タロースとL-タガトース間、及びD-アロースとD-アルロース間の異性化反応を触媒する活性を有する。
  7.  配列番号1で表されるアミノ酸配列からなるタンパク質のアミノ酸置換変異体であるタンパク質であって、配列番号1で表されるアミノ酸配列と78%以上の同一性を有し、かつ配列番号1で表されるアミノ酸配列のK3、L4、I5、Y9、E10、L11、Y16、D18、V19、I21、V23、E24、Q25、V26、M27、T28、G32、I33、R46、N52、E54、R68、H73、A77、I79、E80、K81、A82、M83、S84、A89、K90、I97、D102、T103、E106、D108、A109、E111、Q113、S116、H117、E120、Q124、H125、K126、S134、P139、L140、S148、A150、D151、K152、G153、I154、C162、R167、I168、H171、P179、V186、L193、I195、L198、A199、E202、A205、S206、E210、V211、K215、F216、D217、A218、S219、C245、L246、A250、T254、T257、T275、V280、R282、L300、T310、A313、N315、K316、N319、K320、A345、S357、D358、Q359、R361、K362、L363、L365、E366、Y369、A371、A374、L375、S381、V387、A390、W391、L393、H395、V397、D400、A401、S402、S405、E406、H409、Q412、Q413、T414、R416、L417、419から選ばれる少なくとも1つの部位のアミノ酸置換を有し、下記(A)および(B)のL-ラムノースイソメラーゼ活性を有し、かつ配列番号1で表されるアミノ酸配列からなるタンパク質より、反応温度70℃と50℃におけるL-ラムノースイソメラーゼ活性の比(T70/T50)が高いか、60℃で1時間保温後の残存活性が高いか、または反応温度80℃と至適温度におけるL-ラムノースイソメラーゼ活性の比(T80/至適温度)が高いタンパク質。
     (A)アルドースのC1のCHO基とC2のOH基を認識して反応し、C1のCHO基をOH基に、C2のOH基をCO基に変換するか、あるいは、ケトースのC1のOH基とC2のCO基を認識して反応し、C1のOH基をCHO基に、C2のCO基をOH基に変換するイソメラーゼ活性を有する。
     (B)L-ラムノースとL-ラムニュロース間、L-リキソースとL-キシルロース間、L-マンノースとL-フラクトース間、D-リボースとD-リブロース間、L-タロースとL-タガトース間、及びD-アロースとD-アルロース間の異性化反応を触媒する活性を有する。
  8.  請求項5ないし7のいずれかに記載のタンパク質をコードするDNA。
  9.  配列番号2で表される塩基配列若しくはその相補的配列含むDNA。
  10.  請求項8または9に記載のDNAを含有する組換えベクター。
  11.  請求項10に記載の組換えベクターにより形質転換された形質転換宿主細胞。
  12.  請求項1ないし4のいずれかに記載のL-ラムノースイソメラーゼを生産する、特許微生物寄託センターに受託番号NITE BP-03142として国際寄託されているエルビニア ビリンゲ(Erwinia billingiae) GuaL218-3。
  13.  請求項1ないし4のいずれかに記載のL-ラムノースイソメラーゼ、または請求項5ないし7のいずれかに記載のタンパク質が担体に固定化されている、固定化タンパク質。
  14.  請求項1ないし4のいずれかに記載のL-ラムノースイソメラーゼが菌体破砕物中に存在する粗酵素の状態で、または請求項5ないし7のいずれかに記載のタンパク質が形質転換宿主細胞の、菌体破砕物中に存在する粗タンパク質の状態で担体に固定化されている、固定化タンパク質。
  15.  前記担体が、イオン交換樹脂または合成吸着剤である請求項13または14に記載の固定化タンパク質。
  16.  前記担体が、WA30、FPA54、またはFPA95である請求項15に記載の固定化タンパク質。
  17. 請求項1ないし4のいずれかに記載のL-ラムノースイソメラーゼを生産するエルビニア属微生物、または請求項11に記載の形質転換宿主細胞を培地中で培養し、微生物菌体中に当該L-ラムノースイソメラーゼを蓄積させ、これを採取するL-ラムノースイソメラーゼの製造方法。
  18. 前記培地がL-ラムノースを添加した無機塩培地である、請求項17に記載のL-ラムノースイソメラーゼの製造方法。
  19.  アルドースまたはケトースから選ばれる1種以上を含有する溶液に、請求項1ないし4のいずれかに記載のL-ラムノースイソメラーゼ、請求項5ないし7のいずれかに記載のタンパク質、または請求項13ないし16のいずれかに記載の固定化タンパク質を作用させて、対応するケトースまたはアルドースを生成せしめ、これを採取することを特徴とするケトースまたはアルドースの製造方法。

     
PCT/JP2021/012989 2020-03-26 2021-03-26 新規l-ラムノースイソメラーゼ WO2021193949A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21773444.1A EP4130278A4 (en) 2020-03-26 2021-03-26 NEW L-RHAMNOSE ISOMERASE
KR1020227034672A KR20220157985A (ko) 2020-03-26 2021-03-26 신규 l-람노오스이소메라아제
JP2022510758A JPWO2021193949A1 (ja) 2020-03-26 2021-03-26
MX2022011932A MX2022011932A (es) 2020-03-26 2021-03-26 Novedosa l-ramnosa isomerasa.
CN202180024419.9A CN115349018A (zh) 2020-03-26 2021-03-26 新型l-鼠李糖异构酶

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-055308 2020-03-26
JP2020055308 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193949A1 true WO2021193949A1 (ja) 2021-09-30

Family

ID=77892291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012989 WO2021193949A1 (ja) 2020-03-26 2021-03-26 新規l-ラムノースイソメラーゼ

Country Status (6)

Country Link
EP (1) EP4130278A4 (ja)
JP (1) JPWO2021193949A1 (ja)
KR (1) KR20220157985A (ja)
CN (1) CN115349018A (ja)
MX (1) MX2022011932A (ja)
WO (1) WO2021193949A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114207A1 (ja) * 2020-11-30 2022-06-02 国立大学法人香川大学 新規l-ラムノースイソメラーゼ

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022239A1 (ja) * 2004-08-24 2006-03-02 National University Corporation Kagawa University 耐熱性l-ラムノースイソメラーゼ遺伝子配列とその用途
WO2006093292A1 (ja) * 2005-03-04 2006-09-08 National University Corporation Kagawa University D-プシコースとd-アロースの複合体結晶性糖質およびその製造方法
JP2009269887A (ja) 2008-05-09 2009-11-19 Kagawa Univ 希少糖を含有する腹膜劣化抑制剤、腹膜透析液および腹膜透析法
JP4724824B2 (ja) 2004-03-19 2011-07-13 国立大学法人 香川大学 希少糖のtリンパ球の増殖抑制への使用
JP4943839B2 (ja) 2004-05-26 2012-05-30 株式会社希少糖生産技術研究所 血管新生抑制剤
JP5158779B2 (ja) 2005-08-31 2013-03-06 国立大学法人 香川大学 D−アロースを有効成分とする血圧上昇抑制剤
JP5317055B2 (ja) 2006-11-09 2013-10-16 国立大学法人 香川大学 希少糖の筋萎縮性側索硬化症に起因する運動障害の発症または進行を遅延するための医薬品
JP5330976B2 (ja) 2002-05-22 2013-10-30 株式会社伏見製薬所 D−アロースを有効成分とする医薬組成物
JP5816871B2 (ja) 2008-08-18 2015-11-18 三井化学アグロ株式会社 D−タガトースを有効成分として含有する植物病害の防除剤および防除方法
JP2019052195A (ja) 2016-01-15 2019-04-04 株式会社Moresco 滑水性コート材料
JP2019058477A (ja) 2017-09-27 2019-04-18 株式会社サンセイアールアンドディ 遊技機
US10480018B2 (en) 2015-05-22 2019-11-19 Archer Daniels Midland Company Genus of epimerase enzymes for conversion of fructose to allulose at high temperature and low pH

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943839B1 (ja) 1968-06-10 1974-11-25
JPS5330976B1 (ja) 1971-07-22 1978-08-30
JPS5317055B2 (ja) 1972-08-09 1978-06-06
EP0020961B1 (de) 1979-06-20 1982-05-12 F. HOFFMANN-LA ROCHE & CO. Aktiengesellschaft Vorrichtung zum Nachweis von Mikroorganismen
KR100480018B1 (ko) 2002-12-11 2005-03-31 (주) 대호바콘텍 콘크리트 말뚝용 헤드커버 및 그를 이용한 말뚝 기초구조물의 시공방법
US8389248B2 (en) * 2006-11-20 2013-03-05 National University Corporation Kagawa University Deoxyketohexose isomerase and method for producing deoxyhexose and derivative thereof using same
WO2014069537A1 (ja) * 2012-10-30 2014-05-08 松谷化学工業株式会社 D-アロースの生産方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5330976B2 (ja) 2002-05-22 2013-10-30 株式会社伏見製薬所 D−アロースを有効成分とする医薬組成物
JP4724824B2 (ja) 2004-03-19 2011-07-13 国立大学法人 香川大学 希少糖のtリンパ球の増殖抑制への使用
JP4943839B2 (ja) 2004-05-26 2012-05-30 株式会社希少糖生産技術研究所 血管新生抑制剤
WO2006022239A1 (ja) * 2004-08-24 2006-03-02 National University Corporation Kagawa University 耐熱性l-ラムノースイソメラーゼ遺伝子配列とその用途
WO2006093292A1 (ja) * 2005-03-04 2006-09-08 National University Corporation Kagawa University D-プシコースとd-アロースの複合体結晶性糖質およびその製造方法
JP5158779B2 (ja) 2005-08-31 2013-03-06 国立大学法人 香川大学 D−アロースを有効成分とする血圧上昇抑制剤
JP5317055B2 (ja) 2006-11-09 2013-10-16 国立大学法人 香川大学 希少糖の筋萎縮性側索硬化症に起因する運動障害の発症または進行を遅延するための医薬品
JP2009269887A (ja) 2008-05-09 2009-11-19 Kagawa Univ 希少糖を含有する腹膜劣化抑制剤、腹膜透析液および腹膜透析法
JP5816871B2 (ja) 2008-08-18 2015-11-18 三井化学アグロ株式会社 D−タガトースを有効成分として含有する植物病害の防除剤および防除方法
US10480018B2 (en) 2015-05-22 2019-11-19 Archer Daniels Midland Company Genus of epimerase enzymes for conversion of fructose to allulose at high temperature and low pH
JP2019052195A (ja) 2016-01-15 2019-04-04 株式会社Moresco 滑水性コート材料
JP2019058477A (ja) 2017-09-27 2019-04-18 株式会社サンセイアールアンドディ 遊技機

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 10
DATABASE UniProtKB 11 December 2019 (2019-12-11), "RecName: Full=L-rhamnose isomerase {ECO:0000256|HAMAP-Rule:MF_00541};", XP055862412, retrieved from UniProt Database accession no. A0A1X1EUU6 *
DATABASE UniProtKB 11 December 2019 (2019-12-11), retrieved from UniProt Database accession no. AOAOU3URD4 *
DATABASE UniProtKB 4 March 2015 (2015-03-04), "RecName: Full=L-rhamnose isomerase {ECO:0000256|HAMAP-Rule:MF_00541};", XP055862417, retrieved from UniProt Database accession no. A0A0B1R5T7 *
J. FERMENT. BIOENG., vol. 84, 1997, pages 319
J. MOL. BIOL., vol. 157, 1982, pages 105 - 132
KARLINALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 2264 - 68
KARLINALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 77
See also references of EP4130278A4
YODOSHA ET AL.: "New Genetic Engineering Handbook", article "PCR method, an annealing method", pages: 82 - 88

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114207A1 (ja) * 2020-11-30 2022-06-02 国立大学法人香川大学 新規l-ラムノースイソメラーゼ

Also Published As

Publication number Publication date
EP4130278A1 (en) 2023-02-08
CN115349018A (zh) 2022-11-15
KR20220157985A (ko) 2022-11-29
JPWO2021193949A1 (ja) 2021-09-30
MX2022011932A (es) 2022-10-20
EP4130278A4 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
KR102132381B1 (ko) 아스로박터 글로비포미스에 의해 생산되는 케토오스 3-에피머라제
JP5098086B2 (ja) ケトース3−エピメラーゼとその製造方法並びに用途
CN105849260B (zh) 编码阿洛酮糖差向异构酶的多核苷酸和使用其生产阿洛酮糖的方法
JP6995410B2 (ja) 新規ケトース3-エピメラーゼ
KR101919713B1 (ko) 신규한 d-사이코스 3-에피머화 효소 및 이를 이용한 d-사이코스의 제조 방법
KR20140021974A (ko) 사이코스 에피머화 효소 및 이를 이용한 사이코스로 전환용 조성물
Poonperm et al. Cloning, sequencing, overexpression and characterization of L-rhamnose isomerase from Bacillus pallidus Y25 for rare sugar production
WO2021193949A1 (ja) 新規l-ラムノースイソメラーゼ
JP7404537B2 (ja) アルロースエピマー化酵素変異体、その製造方法及びそれを利用したアルロースの製造方法
US20210261939A1 (en) A Novel D-Psicose 3-Epimerase and Method for Producing D-Psicose Using the Same
KR102187354B1 (ko) 사이코스 에피머화 효소 및 이를 이용한 사이코스의 제조 방법
KR100443865B1 (ko) 호열성 아라비노스 이성화효소 및 그를 이용한 타가토스의 제조방법
KR20190068470A (ko) 신규한 사이코스-6-인산 탈인산효소, 상기 효소를 포함하는 사이코스 생산용 조성물, 상기 효소를 이용하여 사이코스를 제조하는 방법
WO2022114207A1 (ja) 新規l-ラムノースイソメラーゼ
CN113302299A (zh) 阿洛酮糖差向异构酶变体、其生产方法以及使用其生产阿洛酮糖的方法
JP2023554112A (ja) 熱安定性に優れたアルロースエピマー化酵素変異体、その製造方法およびこれを用いたアルロースの製造方法
EP4053274A1 (en) Fructose-6-phosphate 3-epimerase and use thereof
JP4686090B2 (ja) マンノースイソメラーゼ遺伝子
JP2004024189A (ja) 耐熱性ケラタナーゼをコードするdna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21773444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510758

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227034672

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021773444

Country of ref document: EP

Effective date: 20221026