WO2021193382A1 - 六方晶フェライト磁性粉末およびその製造方法 - Google Patents

六方晶フェライト磁性粉末およびその製造方法 Download PDF

Info

Publication number
WO2021193382A1
WO2021193382A1 PCT/JP2021/011223 JP2021011223W WO2021193382A1 WO 2021193382 A1 WO2021193382 A1 WO 2021193382A1 JP 2021011223 W JP2021011223 W JP 2021011223W WO 2021193382 A1 WO2021193382 A1 WO 2021193382A1
Authority
WO
WIPO (PCT)
Prior art keywords
hexagonal ferrite
magnetic powder
ferrite magnetic
powder
elution
Prior art date
Application number
PCT/JP2021/011223
Other languages
English (en)
French (fr)
Inventor
将貴 越湖
暁史 小野寺
寛久 大元
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to US17/795,585 priority Critical patent/US20230081863A1/en
Priority to CN202180023933.0A priority patent/CN115335927A/zh
Publication of WO2021193382A1 publication Critical patent/WO2021193382A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/842Coating a support with a liquid magnetic dispersion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Definitions

  • the present invention relates to a magnetoplumbite type (M type) hexagonal ferrite magnetic powder suitable for high-density recording of a magnetic recording medium and a method for producing the same.
  • M-type hexagonal ferrite magnetic powder is known as a magnetic powder suitable for high-density recording used in a magnetic recording medium.
  • miniaturization of magnetic particles miniaturization of Dx volume described later
  • SNR S / N ratio
  • Patent Document 1 contains iron, a divalent metal, a tetravalent metal, Ba, Bi, and a rare earth element as a ferrite magnetic powder capable of achieving high magnetic properties while having a small particle volume.
  • a hexagonal ferrite magnetic powder having a content higher than that of the rare earth element is disclosed. It is disclosed that by adding Bi, the sintering of hexagonal ferrite particles can be reduced and the particles can be reduced.
  • Patent Document 2 describes a Ba / Fe molar ratio of 8.0% or more (0.080 or more) as a magnetic powder capable of simultaneously improving magnetic properties including SNR of a magnetic recording medium and improving durability.
  • the Fe site valence XFe is 3.005 to 3.030
  • the R / M molar ratio (M is Fe and its substitution element) is 0.001 to 0.020
  • the Dx volume is 1150 to 1450 nm.
  • Hexagonal Ba ferrite magnetic powder of No. 3 is disclosed.
  • This magnetic powder is intended to improve the magnetic characteristics (particularly S / N ratio) of the magnetic recording medium by a method of sharpening the distribution of the coercive force Hc in the magnetic powder composed of fine magnetic particles.
  • Bi it is described that it is effective for reducing the size of particles and improving the magnetic properties (Patent Document 3, paragraph 0023).
  • the firing temperature is lowered and the Dx volume is miniaturized to a level of, for example, about 2000 nm 3 or less, there is a problem that the saturation magnetization ⁇ s is significantly reduced.
  • the addition of Bi is effective in alleviating this problem. That is, when an appropriate amount of Bi (for example, 0.005 or more in Bi / Fe ratio) is added to the raw material mixture for producing hexagonal ferrite, the amorphous body of the raw material mixture is calcined and crystallized.
  • a method for producing a hexagonal ferrite magnetic powder which comprises a step of performing a treatment of elution into a solution (hereinafter referred to as "Bi elution treatment").
  • Bi elution treatment a treatment of elution into a solution
  • K Bi is a chelate stability constant for Bi 3+
  • K Fe is a chelate stability constant for Fe 3+.
  • the hexagonal ferrite magnetic powder to be subjected to the Bi elution treatment is one in which a part of Fe sites of the hexagonal ferrite crystal is replaced with one or more divalent, tetravalent or pentavalent metal elements.
  • the method for producing a hexagonal ferrite magnetic powder according to any one of the above [5] to [11] wherein the hexagonal ferrite magnetic powder to be subjected to the Bi elution treatment is a hexagonal Ba ferrite magnetic powder.
  • the present invention it has become possible to remarkably improve the saturation magnetization ⁇ s in a hexagonal ferrite magnetic powder having a small size of magnetic particles.
  • the small size of the magnetic particles is advantageous for improving the recording density, and the high saturation magnetization ⁇ s makes it possible to thin the magnetic layer, which is also advantageous for improving the SNR. It becomes. That is, the present invention contributes to improving the performance of the magnetic recording medium.
  • the hexagonal ferrite targeted in the present invention is of the magnetoplumbite type (M type) having the chemical formula AO ⁇ 6Fe 2 O 3 as a basic structure.
  • the element A in the above chemical formula is one or more elements of Ba, Sr, Pb, and Ca, and there is also a type in which a part thereof is replaced with La or the like.
  • a part of the Fe site may be replaced with one or more of divalent, tetravalent or pentavalent metal elements.
  • the divalent metal element include Co, Zn and the like
  • examples of the tetravalent metal element include Ti and Sn
  • examples of the pentavalent metal element include Nb and V.
  • Such a metal element that replaces a part of Fe site is called "Fe site substitution element”.
  • the coercive force Hc can be adjusted by substituting with these metal elements.
  • the hexagonal ferrite powder targeted in the present invention contains Bi.
  • Bi is not an element that constitutes the crystal structure of hexagonal ferrite (an element that enters the atomic site of any of the chemical formulas AO and 6Fe 2 O 3 ), but the hexagonal ferrite crystal particles were made finer and the magnetic powder was used. It is an additive element that is effective in improving the electromagnetic conversion characteristics of magnetic recording media. In particular, it has the effect of reducing the deterioration of magnetic properties even when the firing temperature is lowered to aim for the miniaturization of crystal particles. The mechanism by which such a useful effect of Bi is obtained has not been fully elucidated, but the inclusion of Bi changes the particle shape of the crystal particles constituting the hexagonal ferrite magnetic powder and the variation in the particle shape.
  • hexagonal ferrite powder targeted in the present invention may contain one or more rare earth elements such as Nd, Y, Sm, Y, Er, and Ho, or Al. These elements do not constitute the crystal structure of hexagonal ferrite.
  • a Bi-containing hexagonal ferrite magnetic powder synthesized using a raw material mixture containing Bi is subjected to a treatment for eluting a part of Bi contained in the powder.
  • a modified hexagonal ferrite magnetic powder is produced.
  • the above-mentioned process for eluting a part of Bi is referred to as "Bi elution process”.
  • the hexagonal ferrite magnetic powder used for the Bi elution treatment is referred to as "primary powder”
  • the hexagonal ferrite magnetic powder obtained by the Bi elution treatment is referred to as "treated powder”.
  • the original powder, Bi elution treatment, and processed powder will be described below.
  • the glass crystallization method is a method of crystallizing an amorphous body of a raw material mixture by firing it.
  • Bi-containing hexagonal ferrite powder obtained by a known method as shown in Patent Documents 1 to 3 can be used as the base powder.
  • the Bi source in the glass crystallization method oxidized Bi powder, metal Bi powder and the like can be used.
  • a method other than the glass crystallization method may be applied as long as it is a synthetic method capable of synthesizing a hexagonal ferrite magnetic powder containing Bi.
  • hexagonal ferrite crystal particles are extracted from the powder obtained in the crystallization step (step of precipitating ferrite by heat treatment).
  • a "pickling treatment” is performed in which a residual substance mainly composed of barium borate is dissolved and removed by an acid.
  • hexagonal ferrite magnetic powder from which unnecessary residual substances have been sufficiently removed through a washing step including pickling treatment is used as the base powder. Need to apply.
  • a conventionally known Bi-containing hexagonal ferrite magnetic powder product that can be used as a magnetic material for a magnetic recording medium can be used as a base powder for application to the present invention.
  • a relatively small lower limit such that the Bi / Fe molar ratio is 0.001 or more may be set, but the original powder having a Bi / Fe molar ratio of 0.020 or more is applied. It is more preferable to do so.
  • the particle shape of the crystal particles and the degree of variation in the particle shape are appropriately changed. This and the good crystallinity make it more effective in improving the electromagnetic conversion characteristics of the magnetic recording medium. It is more effective to apply the original powder having a Bi / Fe molar ratio of 0.030 or more.
  • the original powder contains a large amount of Bi
  • a large amount of excess Bi will remain in the treated powder obtained after being subjected to the Bi elution treatment described later.
  • Bi is a non-magnetic component
  • the smaller the residual amount of excess Bi the more advantageous it is to improve the magnetic characteristics of the magnetic recording medium. It is effective that the Bi content of the original powder is in the range of 0.10 or less in the Bi / Fe molar ratio.
  • the molar ratio to Fe (hereinafter sometimes referred to as "Fe molar ratio”) may be the same as the target composition of the treated powder.
  • Fe molar ratio for Fe site-substituted elements is generally maintained.
  • Rare earth elements among the component elements constituting the original powder tend to be eluted by the Bi elution treatment. Therefore, when it is necessary to contain a predetermined amount of rare earth elements in the treated powder, the rare earth element content in the original powder is set in anticipation of the elution amount in the Bi elution treatment.
  • the amount of loss of rare earth elements in the Bi elution treatment can be grasped in advance by conducting a preliminary experiment based on the actual production conditions.
  • Al among the component elements constituting the original powder, the Al / Fe molar ratio is generally maintained before and after the Bi elution treatment.
  • all or part of the necessary Al can be added to the powder by subjecting the particles to a treatment before or after the Bi elution treatment. In that case, the Al content in the original powder is set in anticipation of the Al addition amount due to the adhesion.
  • the composition of the raw material mixture (hereinafter sometimes referred to as “preparation composition”) is substantially reflected in the component composition of the hexagonal ferrite powder to be synthesized. .. Therefore, when the original powder is obtained by using the glass crystallization method, the content of each component element in the original powder may be adjusted in the charged composition.
  • the hexagonal ferrite crystal particles are fine.
  • the Dx volume obtained from the crystallite diameter can be adopted.
  • the Dx volume is calculated by the following equation (1).
  • Dx volume (nm 3 ) Dxc ⁇ ⁇ ⁇ (Dxa / 2) 2 ...
  • Dxc is the crystallite diameter (nm) in the c-axis direction of the hexagonal ferrite crystal lattice
  • Dxa is the crystallite diameter (nm) in the a-axis direction of the same crystal lattice
  • is the circumference ratio.
  • Crystallite diameter is obtained from the half width of the diffraction peak measured by the X-ray diffraction method (XRD) using Cu—K ⁇ rays by the Scherrer equation shown in the following equation (5).
  • Crystallite diameter (nm) K ⁇ / ( ⁇ ⁇ cos ⁇ )... (5)
  • K Scheller constant 0.9
  • Cu—K ⁇ ray wavelength (nm)
  • Dxc is the half width (radian) of the diffraction peak on the hexagonal (006) plane
  • Dxa is the hexagonal.
  • the lower limit of the Dx volume does not necessarily have to be limited, but when the coercive force of the magnetic powder is also emphasized, the Dx volume of the original powder is preferably 1000 nm 3 or more, and more preferably 1300 nm 3 or more. ..
  • Bi is effective for refining hexagonal ferrite crystal particles and improving the electromagnetic conversion characteristics of the magnetic recording medium using the magnetic powder, and also lowering the firing temperature to make the crystal particles finer. It has the effect of reducing the deterioration of magnetic characteristics even when aiming at.
  • Such a useful action of Bi is exhibited by Bi present in the raw material when hexagonal ferrite crystals are formed.
  • the Bi is still present in the hexagonal ferrite magnetic powder even after exerting the above-mentioned action during crystal synthesis. Since Bi is a non-magnetic component, it is considered effective for improving the magnetic characteristics if the content of excess Bi existing in the magnetic powder can be reduced.
  • the inventors have conducted research on a method for removing excess Bi existing in the hexagonal ferrite magnetic powder.
  • the Bi-containing hexagonal ferrite magnetic powder is immersed in a solution in which a compound forming a complex with Bi (the compound forming a complex with Bi is referred to as "Compound X" in the present specification) is dissolved in the solution.
  • Compound X the compound forming a complex with Bi
  • the Bi elution treatment a treatment of immersing the Bi-containing hexagonal ferrite magnetic powder in the solution in which the compound X is dissolved is applied.
  • Bi in the hexagonal ferrite magnetic powder cannot be eluted by the above-mentioned pickling treatment generally performed when the hexagonal ferrite magnetic powder is produced by using the glass crystallization method.
  • a strong acid such as hydrochloric acid or sulfuric acid is mixed with hexagonal ferrite magnetic powder, not only Bi but also ferrite crystals are dissolved, so that it is difficult to selectively elute only Bi.
  • the inventors have described a conventional Bi-containing hexagonal ferrite magnetic powder product that has been sufficiently cleaned in a cleaning process including the above pickling treatment and is ready to be used as a magnetic material for a magnetic recording medium.
  • the total Bi content in the magnetic powder obtained by chemical analysis and the Bi concentration in the surface layer of the powder particles obtained by XPS (X-ray photoelectron spectroscopy) have been compared with each other. According to it, it was found that Bi present in the Bi-containing hexagonal ferrite magnetic powder tends to be unevenly distributed on the surface layer portion of the magnetic crystal particles. That is, it can be said that the individual magnetic crystal particles of the Bi-containing hexagonal ferrite powder are coated with the Bi-concentrated layer.
  • Bi which is abundantly present in the particle surface layer
  • Compound X can coordinate not only to Bi but also to metal elements such as Fe.
  • Bi is concentrated on the surface layer of the magnetic crystal particles, when the magnetic powder is immersed in the solution of compound X, Bi on the surface layer preferentially binds to the compound X molecule and elutes, resulting in hexagonal ferrite.
  • the Bi content can be significantly reduced while substantially maintaining the particle shape of the crystal, the Dx volume, and the blending ratio of the elements (Ba, Fe, and Fe site substitution elements) constituting the crystal structure of hexagonal ferrite.
  • the effect of such Bi elution treatment is as long as the Bi-containing hexagonal ferrite magnetic powder having the chemical formula AO ⁇ 6Fe 2 O 3 as the basic structure is applied as the base powder, the type of element constituting the A element site, Fe site. It can be enjoyed regardless of the type of substitution element, the type of rare earth element, and the presence or absence of Al.
  • the Bi elution treatment is generally effective in improving the performance of the magnetic recording medium regardless of the size of the crystal particles.
  • the saturation magnetization ⁇ s tends to decrease as described above, but by containing Bi, ⁇ s becomes a problem in hexagonal ferrite magnetic powder with fine crystal particles. The degree of decrease in the amount of particles has already been suppressed.
  • the crystal is produced by the synergistic effect of the above-mentioned effect of suppressing the decrease in ⁇ s and the effect of increasing ⁇ s by the Bi elution treatment. It is possible to achieve a high level of ⁇ s, which was difficult in the past with hexagonal ferrite magnetic powder with fine particles. Specifically, it is possible to stably obtain a hexagonal ferrite magnetic powder having a Dx volume of 1800 nm 3 or less and having a saturation magnetization ⁇ s of 42.0 Am 2 / kg or more.
  • Compound X forming a complex with Bi examples include various chelating agents, lactic acid and thiourea.
  • the chelating agent is a water-soluble compound having a property of coordinating with a metal ion such as an alkaline earth metal or a transition metal to form a chemically stable chelate complex.
  • EDTA ethylenediaminetetraacetic acid
  • CyDTA trans-1,2-cyclohexanediaminetetraacetic acid
  • DTPA diethylenetriaminetetraacetic acid
  • EDTA-OH hydroxyethylenediaminetriacetic acid
  • GEDTA glycol etherdiaminetetraacetic acid
  • known chelating agents such as these alkali metal salts can be used, and the chemical species thereof are not particularly limited. From the viewpoint of availability and cost, EDTA, 1 to 4 sodium salts of EDTA, and 1 to 4 potassium salts of EDTA are preferable.
  • a chelating agent solution in which two or more kinds of chelating agents are dissolved may be used.
  • the chelate stability constant K which indicates the stability of the chelate complex in liquid, is represented by the following equation (6).
  • K [ MN L] / ([M] N [L])... (6)
  • [L] is the molar concentration of the chelating agent molecule L
  • [M] is the molar concentration of the metal ion M
  • N is the number of moles of the metal ion M coordinated by 1 mol of the chelating agent molecule
  • [ MN L] is. it is a molar concentration of chelate complex M N L molecules.
  • the larger the chelate stability constant K the higher the stability of the chelate complex is evaluated.
  • the chelate stability constant K for Bi 3+ and Fe 3+ referred to as K Bi and K Fe, respectively.
  • the chelate stability for Bi ions is larger than the chelate stability for Fe ions from the viewpoint of preventing the dissolution of hexagonal ferrite crystals in the Bi elution treatment. It is advantageous to apply the agent.
  • K Bi is a chelate stability constant for Bi 3+
  • K Fe is a chelate stability constant for Fe 3+.
  • a chelating agent satisfying the following formula (2)' is more preferable, and a chelating agent satisfying the following formula (2)' is even more preferable.
  • logK Bi- logK Fe ⁇ 1.0... (2)' logK Bi- logK Fe ⁇ 2.0... (2)'' Further, it is more effective to apply a chelating agent having a logK Bi of 20.0 or more.
  • the pH of the solution during the Bi elution treatment is preferably maintained in the range of 2.0 to 10.0, and more preferably maintained in the range of 3.0 to 9.0. If the pH of the liquid is too low, the solubility of hexagonal ferrite crystals will increase. If the pH of the liquid is too high, the Bi elution ability of compound X will decrease. This pH adjustment can be performed by adding an acid such as acetic acid or sulfuric acid or an alkali such as sodium hydroxide to the compound X solution.
  • the pH value described in the present specification refers to a value measured by a pH meter calibrated using an appropriate buffer solution according to the pH range to be measured as a pH standard solution based on JIS Z8802. Further, the pH value described in the present specification is a value obtained by directly reading the measured value indicated by the pH meter compensated by the temperature compensating electrode under the elution temperature condition.
  • the following (4) is satisfied for the quantitative relationship between the compound X and the original powder in the Bi elution treatment. It is preferable to set it as a condition. N ⁇ Ak / A Bi ⁇ 1.0... (4)
  • the total amount of A K is a compound used in the Bi elution X (e.g. chelating agents) (mol)
  • a Bi is Bi content in the hexagonal ferrite magnetic powder subjected to Bi elution (mol)
  • N is This is the maximum number of atoms of Bi that the compound X1 molecule can coordinate.
  • the upper limit of the left side of the formula (4) is limited by the solubility of the compound X and the like, and therefore does not need to be particularly determined. However, for example, conditions satisfying the following formula (4)'can be exemplified. 100 ⁇ N ⁇ Ak / A Bi ⁇ 1.0... (4)' The value of N is 1 for each of the chelating agents exemplified in Table 1.
  • the Bi elution treatment should be performed so that the Bi residual ratio defined by the following equation (3) is 0.2 to 0.8. Is effective.
  • Bi residual ratio [Bi / Fe molar ratio of treated powder] / [Bi / Fe molar ratio of original powder] ... (3)
  • the original powder having a Dx volume of 1800 nm 3 or less and a Bi / Fe molar ratio of 0.020 to 0.10 is applied, and Bi elution is performed so that the Bi residual ratio is 0.2 to 0.8.
  • the treatment it becomes possible to realize a high saturation magnetization ⁇ s, which has been difficult in the past in a region where the Dx volume is small.
  • water may usually be used as the liquid medium of the solution in which the compound X is dissolved (compound X solution). If necessary, a mixed liquid medium of water and a solvent substance other than water (for example, alcohol such as ethanol) can also be used.
  • the solution during the Bi elution treatment may contain a substance other than compound X, an acid or alkali for pH adjustment, and the original powder as long as the effects of the present invention are not impaired.
  • the temperature of the solution during the Bi elution treatment may be set in the range of, for example, 10 to 90 ° C. From the viewpoint of increasing the elution rate of Bi, the temperature is more preferably in the range of 40 to 90 ° C.
  • the compound X concentration of the compound X solution is, for example, 0.001 to 0.2 mol / mol, which is the mass molar concentration of the compound X with respect to the total amount of the liquid medium (water or a mixed solution of water and another solvent substance) and the compound X. It can be set in the range of kg.
  • the amount of the original powder to be immersed in the solution in the Bi elution treatment can be set in the range of, for example, 1.0 to 50.0% by mass, which is the mass ratio of the original powder to the total amount of the compound X solution and the original powder.
  • the procedure for immersing the Bi-containing hexagonal ferrite magnetic powder (primary powder) in the compound X solution is a mixed state in which the particles of the original powder can come into contact with the compound X solution. As long as it is secured, there is no need to be particular about it.
  • the order in which each substance is added to the liquid is not particularly limited. Specific procedures include, for example, a method of adding the original powder to the compound X solution, a method of adding the compound X solution to a container containing the original powder, and a state in which the original powder is immersed in a liquid medium such as water. After that, a method of adding compound X to the solution can be considered.
  • the Bi elution treatment may be repeated a plurality of times. That is, the solid content recovered from the slurry that has been subjected to the Bi elution treatment is washed and dried with pure water as necessary, and then again immersed in the solution in which the compound X is dissolved. Can be processed. At that time, the compound X used in the Bi elution treatment at each time may be of the same type or of different types.
  • a hexagonal ferrite magnetic powder (treated powder) having a reduced Bi content can be obtained.
  • a hexagonal ferrite magnetic powder containing Bi in a Bi / Fe molar ratio of 0.035 or less, having a saturation magnetization ⁇ s of 42.0 Am 2 / kg or more, and a Dx volume of 1800 nm 3 or less can be stably produced. can do.
  • Such a hexagonal ferrite magnetic powder exhibiting a high saturation magnetization ⁇ s despite its small crystal particle size is extremely useful for achieving both a high recording density and a high SNR at a high level in a magnetic recording medium.
  • Bi contained in the treated powder is prevented from being concentrated on the surface layer of the crystal particles, and most of them are taken into the inside of the crystal particles and exist. It is speculated that such an existing form of Bi functions effectively in maintaining the good crystallinity of hexagonal ferrite and contributes to the improvement of magnetic properties.
  • the Bi / Fe molar ratio of the treated powder can be suppressed to 0.025 or less.
  • [total content of Fe site-substituted element (mol)] / [Fe content (mol)] is 0.001. It is preferably 0.060.
  • the R / Fe molar ratio is preferably 0.001 to 0.010 when the rare earth element is expressed as R.
  • the Al / Fe molar ratio is preferably 0.001 to 0.050.
  • the above raw material mixture was placed in a pelletizer, formed into a spherical shape while spraying water, granulated, and then dried at 270 ° C. for 14 hours to obtain a granulated product having a particle size of 1 to 50 mm.
  • the obtained granulated product was melted in a melting furnace using a platinum crucible. After raising the temperature to 1400 ° C. and holding the mixture for 60 minutes with stirring, each raw material was completely melted.
  • the melt (molten metal) was discharged from a nozzle and rapidly cooled by a gas atomizing method to obtain an amorphous body.
  • the obtained amorphous material was crystallized by firing under the condition of heating and holding at 630 ° C. for 60 minutes to produce hexagonal ferrite.
  • the powder obtained by the above firing contains a residual substance mainly composed of barium borate in addition to hexagonal ferrite.
  • the powder is immersed in a 10 mass% acetic acid aqueous solution heated to 60 ° C. and held for 1 hour with stirring to dissolve the residual substance in the liquid, and then solid-liquid separation is performed by filtration to solidify the powder. Minutes were collected. This solid content is called "acid-cleaned solid content”.
  • the component analysis of the hexagonal ferrite magnetic powder sample was performed using a high frequency inductively coupled plasma emission spectrometer ICP (720-ES) manufactured by Agilent Technologies, Inc. From the obtained quantitative values, the composition of the metal element was calculated as a molar ratio to Fe.
  • the magnetic powder sample obtained in this example (“main powder” used in Examples 1 to 6 described later) had Fe: 50.0% by mass and Bi: 7.12% by mass, and had a Bi / Fe molar ratio. It was calculated as 0.038.
  • Hexagonal ferrite magnetic powder sample is packed in a plastic container of ⁇ 6 mm, and an external magnetic field 795.8 kA / m (10 kOe) and magnetic field sweep speed 795 are used using a VSM device (VSM-P7-15) manufactured by Toei Kogyo Co., Ltd.
  • the coercive force Hc, saturation magnetization ⁇ s, square ratio SQ, and coercive force distribution SFD were measured at .8 kA / m / min (10 kOe / min).
  • the coercive force Hc of the magnetic powder sample of this example (the "primary powder” used in Examples 1 to 6 described later) was 174 kA / m, the saturation magnetization ⁇ s was 41.1 Am 2 / kg, and the square ratio SQ was 0. 513, the coercive force distribution SFD was 0.764.
  • the specific surface area of the hexagonal ferrite magnetic powder sample was determined by the BET one-point method using 4-sorb US manufactured by Yuasa Ionics Co., Ltd. As a result, the BET specific surface area of the magnetic powder sample of this example (“original powder” used in Examples 1 to 6 described later) was 101.1 m 2 / g.
  • the measurement method was a continuous measurement method, in which the sampling interval Dxc: 0.05 °, Dxa: 0.02 °, the scanning speed Dxc: 0.1 ° / min, Dxa: 0.4 ° / min, and the number of integrations was one. ..
  • the Dx volume was obtained by substituting the measured values of Dxc and Dxa into the above equation (1).
  • the Dx volume of the magnetic powder sample of this example (“source powder” used in Examples 1 to 6 described later) was 1690 nm 3 . The above results are shown in Table 2.
  • Example 1 The hexagonal ferrite magnetic powder obtained in the above-mentioned control example was used as a base powder and subjected to the following Bi elution treatment.
  • the recovered solid content was washed with pure water to remove components such as a chelating agent adhering to the particle surface.
  • the solid content after washing was dried in the air at 110 ° C. to obtain a sample of hexagonal ferrite magnetic powder (treated powder) subjected to Bi elution treatment.
  • the obtained magnetic powder sample (treated powder) was measured in the same manner as in the control example described above.
  • the magnetic powder sample obtained in this example had Fe: 51.2% by mass and Bi: 4.37% by mass, and the Bi / Fe molar ratio was calculated to be 0.023.
  • the Bi residual ratio according to the above formula (3) was 0.023 / 0.038 ⁇ 0.61, and it was confirmed that the Bi content was significantly reduced by the Bi elution treatment.
  • the coercive force Hc of the magnetic powder sample (treated powder) obtained in this example is 182 kA / m
  • the saturation magnetization ⁇ s is 42.0 Am 2 / kg
  • the square ratio SQ is 0.517
  • the coercive force distribution SFD is 0.692.
  • the BET specific surface area was 104.6 m 2 / g, and the Dx volume was 1750 nm 3 .
  • Table 2 The above results are shown in Table 2 (the same applies to each of the following examples).
  • Example 2 The hexagonal ferrite magnetic powder obtained in the above-mentioned control example was used as the base powder for Bi elution treatment.
  • the amount of the chelating agent ethylenediaminetetraacetic acid disodium dihydrate
  • the experiment was carried out in the same manner as in Example 1.
  • the pH of the liquid at the start of immersion was 3.6, and the pH of the liquid at the end of immersion after stirring and holding for 6 hours was 4.5.
  • the Bi / Fe molar ratio of the magnetic powder sample (treated powder) obtained in this example was 0.019.
  • the Bi residual ratio according to the above formula (3) was 0.019 / 0.038 ⁇ 0.50, and it was confirmed that the Bi content was significantly reduced by the Bi elution treatment.
  • the coercive force Hc is 184 kA / m
  • the saturation magnetization ⁇ s is 42.3 Am 2 / kg
  • the square ratio SQ is 0.519
  • the coercive force distribution SFD is 0.579
  • the BET specific surface area is 106.7 m 2 / g
  • Dx The volume was 1680 nm 3 .
  • Example 3 The hexagonal ferrite magnetic powder obtained in the above-mentioned control example was used as the base powder for Bi elution treatment.
  • the amount of the chelating agent (ethylenediaminetetraacetic acid disodium dihydrate) added was changed so that the value of N ⁇ Ak / A Bi on the left side of the above equation (4) was 2.0.
  • the experiment was carried out in the same manner as in Example 1 except that the amount of the 90 mass% acetic acid aqueous solution added was changed from 16.0 g to 8.0 g.
  • the pH of the liquid at the start of immersion was 4.1, and the pH of the liquid at the end of immersion after holding for 6 hours of stirring was 8.2.
  • the Bi / Fe molar ratio of the magnetic powder sample (treated powder) obtained in this example was 0.023.
  • the Bi residual ratio according to the above formula (3) was 0.023 / 0.038 ⁇ 0.61, and it was confirmed that the Bi content was significantly reduced by the Bi elution treatment.
  • the coercive force Hc is 180 kA / m
  • the saturation magnetization ⁇ s is 42.1 Am 2 / kg
  • the square ratio SQ is 0.516
  • the coercive force distribution SFD is 0.699
  • the BET specific surface area is 104.1 m 2 / g
  • Dx The volume was 1680 nm 3 .
  • Example 4 The hexagonal ferrite magnetic powder obtained in the above-mentioned control example was used as the base powder for Bi elution treatment.
  • the amount of the chelating agent (ethylenediaminetetraacetic acid disodium dihydrate) added was changed so that the value of N ⁇ Ak / A Bi on the left side of the above equation (4) was 4.0.
  • the experiment was carried out in the same manner as in Example 1 except that the amount of the 90 mass% acetic acid aqueous solution added was changed from 16.0 g to 8.0 g.
  • the pH of the liquid at the start of immersion was 4.2, and the pH of the liquid at the end of immersion after holding for 6 hours of stirring was 7.4.
  • the Bi / Fe molar ratio of the magnetic powder sample (treated powder) obtained in this example was 0.012.
  • the Bi residual ratio according to the above formula (3) was 0.012 / 0.038 ⁇ 0.32, and it was confirmed that the Bi content was significantly reduced by the Bi elution treatment.
  • the coercive force Hc is 181 kA / m
  • the saturation magnetization ⁇ s is 43.3 Am 2 / kg
  • the square ratio SQ is 0.519
  • the coercive force distribution SFD is 0.676
  • the BET specific surface area is 108.0 m 2 / g
  • Dx The volume was 1750 nm 3 .
  • Example 5 The hexagonal ferrite magnetic powder obtained in the above-mentioned control example was used as the base powder for Bi elution treatment.
  • the amount of the chelating agent (ethylenediaminetetraacetic acid disodium dihydrate) added was changed so that the value of N ⁇ Ak / A Bi on the left side of the above equation (4) was 4.0.
  • the experiment was carried out in the same manner as in Example 1 except that the liquid temperature during immersion was changed from 60 ° C. to 40 ° C.
  • the pH of the liquid at the start of immersion was 3.6, and the pH of the liquid at the end of immersion after stirring and holding for 6 hours was 4.3.
  • the Bi / Fe molar ratio of the magnetic powder sample (treated powder) obtained in this example was 0.019.
  • the Bi residual ratio according to the above formula (3) was 0.019 / 0.038 ⁇ 0.50, and it was confirmed that the Bi content was significantly reduced by the Bi elution treatment.
  • the coercive force Hc is 184 kA / m
  • the saturation magnetization ⁇ s is 42.3 Am 2 / kg
  • the square ratio SQ is 0.519
  • the coercive force distribution SFD is 0.668
  • the BET specific surface area is 105.8 m 2 / g
  • Dx The volume was 1660 nm 3 .
  • Example 6 The hexagonal ferrite magnetic powder obtained in the above-mentioned control example was used as the base powder for Bi elution treatment.
  • the amount of the chelating agent (ethylenediaminetetraacetic acid disodium dihydrate) added was changed so that the value of N ⁇ Ak / A Bi on the left side of the above equation (4) was 4.0.
  • the experiment was carried out in the same manner as in Example 1 except that the amount of the 90 mass% acetic acid aqueous solution added was changed from 16.0 g to 8.0 g and the liquid temperature during immersion was changed from 60 ° C to 40 ° C. Was done.
  • the pH of the liquid at the start of immersion was 4.1, and the pH of the liquid at the end of immersion after stirring and holding for 6 hours was 5.9.
  • the Bi / Fe molar ratio of the magnetic powder sample (treated powder) obtained in this example was 0.016.
  • the Bi residual ratio according to the above formula (3) was 0.016 / 0.038 ⁇ 0.42, and it was confirmed that the Bi content was significantly reduced by the Bi elution treatment.
  • the coercive force Hc is 184 kA / m
  • the saturation magnetization ⁇ s is 42.8 Am 2 / kg
  • the square ratio SQ is 0.521
  • the coercive force distribution SFD is 0.565
  • the BET specific surface area is 106.1 m 2 / g
  • Dx The volume was 1680 nm 3 .
  • the hexagonal ferrite magnetic powder obtained in each example is subjected to a Bi elution treatment, so that the Bi content is significantly reduced from that of the original powder of the control example.
  • Bi elution treatment a Bi elution treatment
  • the ratio of Fe molars to Fe was hardly changed before and after the Bi elution treatment, and preferential elution of Bi could be realized.
  • the Dx volume of the original powder is substantially maintained even after the Bi elution treatment.
  • the saturation magnetization ⁇ s was improved by the Bi elution treatment.
  • FIG. 1 shows the relationship between the firing temperature and the Dx volume.
  • the Dx volume tends to decrease as the firing temperature decreases.
  • FIG. 2 shows the relationship between the Dx volume and the saturation magnetization ⁇ s.

Abstract

【課題】磁気記録媒体の記録密度向上およびSNR向上を同時に達成するうえで極めて有用な、結晶が微細でかつ高い飽和磁化を有する六方晶フェライト磁性粉を提供する。 【解決手段】Bi/Feモル比0.035以下の範囲でBiを含有し、飽和磁化σsが42.0Am2/kg以上、結晶子径に基づいて算出されるDx体積が1800nm3以下である六方晶フェライト磁性粉。この磁性粉は、Biを含有する六方晶フェライト磁性粉を、Biと錯体を形成する化合物Xが溶解している溶液に浸漬させることにより、前記六方晶フェライト磁性粉中に存在するBiの一部を前記溶液中に溶出させる処理を行う工程を含む、六方晶フェライト磁性粉の製造方法によって製造できる。

Description

六方晶フェライト磁性粉末およびその製造方法
 本発明は、磁気記録媒体の高密度記録に適したマグネトプランバイト型(M型)六方晶フェライト磁性粉およびその製造方法に関する。
 磁気記録媒体に用いる高密度記録に適した磁性粉として、M型六方晶フェライト磁性粉が知られている。記録密度向上の観点からは、磁性粒子の微細化(後述Dx体積の微小化)が有利となる。一方、記録媒体のSNR(S/N比)向上の観点からは、磁性層を薄くすることが有利である。磁性相を薄くしても高い記録密度を確保するためには磁性粉の飽和磁化σsを高める必要がある。しかしながら、磁性粒子の顕著な微細化を図りながら飽和磁化σsを高く維持することは容易でない。
 特許文献1には、小粒子体積を持ちながらも高い磁気特性を達成しうるフェライト磁性粉末として、鉄、2価の金属、4価の金属、Ba、Bi、および希土類元素を含み、前記Biの含有量を前記希土類元素の含有量より多くした六方晶フェライト磁性粉末が開示されている。Biを添加することで、六方晶フェライトの粒子同士の焼結を減らすことができ、小粒子化できることが開示されている。
 特許文献2には、磁気記録媒体のSNRを含めた磁気特性の向上と、耐久性の向上とを同時に実現し得る磁性粉末として、Ba/Feモル比が8.0%以上(0.080以上)、Bi/Feモル比が2.5%以上(0.025以上)、Al/Feモル比が3.0~6.0%(0.030~0.060)である六方晶フェライト磁性粉が開示されている。
 特許文献3には、Feサイト価数XFeが3.005~3.030、R/Mモル比(MはFeおよびその置換元素)が0.001~0.020、かつDx体積が1150~1450nmである六方晶Baフェライト磁性粉が開示されている。この磁性粉は、微細な磁性粒子からなる磁性粉において保磁力Hcの分布をシャープにする手法により、磁気記録媒体の磁気特性(特にS/N比)の改善を意図したものである。Biに関しては、小粒子化および磁気特性の向上に有効であることが記載されている(特許文献3、段落0023)。
特開2011-178654号公報 特開2015-111484号公報 特開2016-171264号公報
 六方晶フェライト粉末において、磁性粒子の微細化(後述Dx体積の微小化)を実現するためには、結晶化させる際の焼成温度を低くすることが有効である。しかし、焼成温度を低くしてDx体積が例えば2000nm程度以下のレベルにまで微細化させると、飽和磁化σsが大幅に低下するという問題があった。Biの添加はこの問題の軽減に有効である。すなわち、六方晶フェライトを製造するための原料混合物中にBiを適量(例えばBi/Fe比で0.005以上)添加しておくと、その原料混合物の非晶質体を焼成して結晶化させる際の焼成温度を低くすることによりDx体積を例えば2000nm以下にコントロールしても、焼成温度の低下に伴うσsの低下の程度を小さくすることができる。ただしその場合でも、焼成温度を十分に高くして合成される六方晶フェライト結晶が呈する、本来の高いσsは得られない。昨今では磁気記録媒体の更なる性能向上の要求が高まっている。上記のBi添加手法を利用しても、その要求に十分応えることは難しい。
 本発明は、磁気記録媒体の更なる性能向上のニーズに鑑み、記録密度の向上およびSNRの向上を同時に達成するうえで極めて有用な六方晶フェライト磁性粉を提供することを目的とする。また、そのような六方晶フェライト磁性粉を得るための効果的な製造技術を提供することを目的とする。
 上記目的を達成するために、本明細書では以下の発明を開示する。
 [1]Bi/Feモル比0.035以下の範囲でBiを含有し、飽和磁化σsが42.0Am/kg以上、下記(1)式で表されるDx体積が1800nm以下である六方晶フェライト磁性粉。
 Dx体積(nm)=Dxc×π×(Dxa/2) …(1)
 ここで、Dxcは六方晶フェライト結晶格子のc軸方向の結晶子径(nm)、Dxaは同結晶格子のa軸方向の結晶子径(nm)、πは円周率である。
 [2]Bi/Feモル比0.005~0.035の範囲でBiを含有する上記[1]に記載の六方晶フェライト磁性粉。
 [3]六方晶フェライト結晶のFeサイトの一部が2価、4価または5価の金属元素の1種以上で置換されている上記[1]または[2]に記載の六方晶フェライト磁性粉。
 [4]前記六方晶フェライト磁性粉は六方晶Baフェライト磁性粉である、上記[1]~[3]のいずれかに記載の六方晶フェライト磁性粉。
 [5]Biを含有する六方晶フェライト磁性粉を、Biと錯体を形成する化合物Xが溶解している溶液に浸漬させることにより、前記六方晶フェライト磁性粉中に存在するBiの一部を前記溶液中に溶出させる処理(以下「Bi溶出処理」という。)を行う工程を含む、六方晶フェライト磁性粉の製造方法。
 [6]前記化合物Xはキレート剤である、上記[5]に記載の六方晶フェライト磁性粉の製造方法。
 [7]前記キレート剤は下記(2)式を満たすものである、上記[6]に記載の六方晶フェライト磁性粉の製造方法。
 logKBi-logKFe≧0.5 …(2)
 ここで、KBiはBi3+に対するキレート安定度定数、KFeはFe3+に対するキレート安定度定数である。
 [8]前記Bi溶出処理に供する六方晶フェライト磁性粉を「元粉」、Bi溶出工程により得られる六方晶フェライト磁性粉を「処理済み粉」と呼ぶとき、前記(1)式で表されるDx体積が1800nm以下、Bi/Feモル比が0.020~0.100である元粉を適用し、下記(3)式で定義されるBi残留割合を0.2~0.8とする、上記[5]~[7]のいずれかに記載の六方晶フェライト磁性粉の製造方法。
 Bi残留割合=[処理済み粉のBi/Feモル比]/[元粉のBi/Feモル比] …(3)
 [9]前記Bi溶出処理中の溶液のpHを2.0~10.0とする上記[5]~[8]のいずれかに記載の六方晶フェライト磁性粉の製造方法。
 [10]前記Bi溶出処理に使用する化合物Xの総量A(モル)と、前記Bi溶出処理に供する六方晶フェライト磁性粉中に含まれるBi量ABi(モル)の関係が下記(4)式を満たす条件でBi溶出処理を行う、上記[5]~[9]のいずれかに記載の六方晶フェライト磁性粉の製造方法。
 N×A/ABi≧1.0 …(4)
 ここで、Nは化合物X1分子が配位できるBiの最大原子数である。
 [11]前記Bi溶出処理に供する六方晶フェライト磁性粉は、六方晶フェライト結晶のFeサイトの一部が2価、4価または5価の金属元素の1種以上で置換されているものである、上記[5]~[10]のいずれかに記載の六方晶フェライト磁性粉の製造方法。
 [12]前記Bi溶出処理に供する六方晶フェライト磁性粉は六方晶Baフェライト磁性粉である、上記[5]~[11]のいずれかに記載の六方晶フェライト磁性粉の製造方法。
 本発明によれば、磁性粒子のサイズが小さい六方晶フェライト磁性粉において、飽和磁化σsを顕著に向上させることが可能になった。この磁性粉を磁気記録媒体に使用すると、磁性粒子のサイズが小さいことにより記録密度の向上に有利となり、かつ飽和磁化σsが高いことにより磁性層を薄くすることができるのでSNRの向上にも有利となる。すなわち本発明は、磁気記録媒体の性能向上に資するものである。
Bi含有六方晶フェライト磁性粉について、焼成温度とDx体積の関係を例示したグラフ。 Bi含有六方晶フェライト磁性粉について、Dx体積と飽和磁化σsの関係を例示したグラフ。
 本発明で対象とする六方晶フェライトは、化学式AO・6Feを基本構造とするマグネトプランバイト型(M型)のものである。上記化学式中のA元素はBa、Sr、Pb、Caの1種以上の元素であり、その一部をLaなどで置換したタイプもある。Feサイトの一部は2価、4価または5価の金属元素の1種以上で置換されていてもよい。上記2価の金属元素としてはCo、Zn等が挙げられ、上記4価の金属元素としてはTi、Sn等が挙げられ、上記5価の金属元素としてはNb、V等が挙げられる。このようなFeサイトの一部を置換する金属元素を「Feサイト置換元素」と呼ぶ。これらの金属元素で置換することにより保磁力Hcを調整することができる。
 本発明で対象とする六方晶フェライト粉はBiを含有する。Biは六方晶フェライトの結晶構造を構成する元素(化学式AO・6Feのいずれかの原子サイトに入る元素)ではないが、六方晶フェライト結晶粒子の微細化や、当該磁性粉を使用した磁気記録媒体の電磁変換特性の向上に有効な添加元素である。特に、焼成温度を低くして結晶粒子の微細化を狙った場合でも磁気特性の低下を小さくする効果を有する。このようなBiの有用な効果が得られるメカニズムは十分に解明されていないが、Bi含有により、六方晶フェライト磁性粉を構成する結晶粒子の粒子形状やその粒子形状のばらつきが変化すること、六方晶フェライトの結晶性が向上すること、などの要因が考えられる。本発明においては上記のようなBi添加の利点を享受すべく、Biを含有する六方晶フェライト粉を対象とする。後述のBi溶出処理によって得られる改質された六方晶フェライト粉においても所定量のBiが残存している。
 また、本発明で対象とする六方晶フェライト粉は、Nd、Y、Sm、Y、Er、Ho等の希土類元素の1種以上や、Alを含有していても構わない。これらの元素は六方晶フェライトの結晶構造を構成するものではない。
[Bi含有六方晶フェライト磁性粉の改質方法]
 本発明の製造方法は、Biを含有する原料混合物を使用して合成されたBi含有六方晶フェライト磁性粉に対して、その粉末中に含有されるBiの一部を溶出させる処理を施すことによって、改質された六方晶フェライト磁性粉を製造するものである。本明細書において、Biの一部を溶出させる上記の処理を「Bi溶出処理」と呼ぶ。また、前記Bi溶出処理に供する六方晶フェライト磁性粉を「元粉」、Bi溶出処理により得られる六方晶フェライト磁性粉を「処理済み粉」と呼ぶ。以下に、元粉、Bi溶出処理、処理済み粉について説明する。
[元粉]
 本発明に適用する元粉の製造プロセスとしては、小さい結晶粒子サイズを有する粒度分布の揃った六方晶フェライト磁性粉を得る観点から、ガラス結晶化法を利用することが好ましい。ガラス結晶化法は、原料混合物の非晶質体を焼成することによって結晶化させる手法である。ガラス結晶化法を適用する場合は、特許文献1~3に示されるような公知の方法で得られるBi含有六方晶フェライト粉を元粉として利用することができる。ガラス結晶化法でのBi源としては、酸化Bi粉、金属Bi粉などが使用できる。Biを含有する六方晶フェライト磁性粉を合成することができる合成法であれば、ガラス結晶化法以外の手法を適用してもよい。なお、ガラス結晶化法を利用して六方晶フェライト磁性粉を製造するプロセスでは、結晶化工程(熱処理によりフェライトを析出させる工程)で得られた粉体から六方晶フェライトの結晶粒子を抽出するために、通常、ホウ酸バリウムを主体とする残余物質を酸によって溶解除去する「酸洗処理」が行われる。ガラス結晶化法により結晶化させた六方晶フェライトを本発明に使用する場合、酸洗処理を含む洗浄工程を経て、不要な残余物質が十分に除去されている六方晶フェライト磁性粉を元粉として適用する必要がある。磁気記録媒体の磁性素材として使用可能な従来公知のBi含有六方晶フェライト磁性粉の製品は、本発明に適用するための元粉として使用できる。
 元粉のBi含有量範囲については、Bi/Feモル比が例えば0.001以上というような比較的少ない下限を設定してもよいが、Bi/Feモル比0.020以上の元粉を適用することがより好ましい。結晶化させた段階でBi/Feモル比0.020以上のBiを含有している六方晶フェライト磁性粉は、結晶粒子の粒子形状や、その粒子形状のばらつきの程度が適度に変化していること、および結晶性が良好であることから、磁気記録媒体の電磁変換特性の向上にはより効果的である。Bi/Feモル比0.030以上の元粉を適用することが一層効果的である。ただし、元粉に多量のBiが含有されていると、後述のBi溶出処理に供した後に得られる処理済み粉にも余分なBiが多く残留するようになる。Biは非磁性成分であるため、余分なBiの残留量が少ないほど磁気記録媒体の磁気特性の向上には有利となる。元粉のBi含有量は、Bi/Feモル比0.100以下の範囲とすることが効果的である。
 元粉を構成する成分元素のうちFeサイト置換元素については、Feに対するモル比(以下「対Feモル比」ということがある。)を処理済み粉の目標組成と同様にすればよい。Bi溶出処理の前後において、Feサイト置換元素についての対Feモル比は概ね維持される。元粉を構成する成分元素のうち希土類元素については、Bi溶出処理によって溶出する傾向が見られる。そのため、処理済み粉に所定量の希土類元素を含有させる必要がある場合は、Bi溶出処理での溶出分を見込んで、元粉中の希土類元素含有量を設定する。Bi溶出処理で希土類元素の損失量がどの程度になるかは、予め実際の製造条件を踏まえた予備実験を行うことによって把握しておくことができる。元粉を構成する成分元素のうちAlについては、Bi溶出処理の前後においてAl/Feモル比が概ね維持される。ただし、Alに関しては、Bi溶出処理の前または後に、Alを粒子に被着させる処理を施すことよって粉体中に必要なAlの全部または一部を添加することもできる。その場合は、前記の被着によるAl添加量を見込んで、元粉中のAl含有量を設定する。なお、ガラス結晶化法で六方晶フェライト結晶を合成する場合、原料混合物の配合組成(以下「仕込み組成」ということがある。)は、合成される六方晶フェライト粉の成分組成にほぼ反映される。したがって、ガラス結晶化法を利用して元粉を得る場合、元粉中の各成分元素の含有量は、仕込み組成において調整しておけばよい。
 磁気記録媒体の高記録密度化のためには、六方晶フェライト結晶粒子が微細であることが有利となる。結晶粒子のサイズ的パラメータとして、結晶子径から求まるDx体積を採用することができる。Dx体積は下記(1)式により算出される。
 Dx体積(nm)=Dxc×π×(Dxa/2) …(1)
 ここで、Dxcは六方晶フェライト結晶格子のc軸方向の結晶子径(nm)、Dxaは同結晶格子のa軸方向の結晶子径(nm)、πは円周率である。
 結晶子径はCu-Kα線を用いたX線回折法(XRD)により測定される回折ピークの半値幅から、下記(5)式に示すシェラーの式により求める。
 結晶子径(nm)=Kλ/(β・cosθ) …(5)
 ここで、K:シェラー定数0.9、λ:Cu-Kα線波長(nm)、β:Dxcの測定では六方晶(006)面の回折ピークの半値幅(ラジアン)、Dxaの測定では六方晶(220)面の回折ピークの半値幅(ラジアン)、θ:回折ピークのブラッグ角(回折角2θの1/2)(ラジアン)である。
 発明者らの検討によれば、元粉としてDx体積が1800nm以下の六方晶フェライト磁性粉を適用したとき、Bi溶出処理を施した後の処理済み粉を使用した磁気記録媒体において、Dx体積が小さいことによる記録密度の向上に加え、SNRの向上についても極めて高い効果が期待できる。Dx体積の下限については必ずしも制限する必要はないが、磁性粉の保磁力についても重視する場合は、元粉のDx体積を1000nm以上とすることが好ましく、1300nm以上とすることがより好ましい。
[Bi溶出処理]
 上述のように、Biは六方晶フェライト結晶粒子の微細化や、当該磁性粉を使用した磁気記録媒体の電磁変換特性の向上に有効であり、また、焼成温度を低くして結晶粒子の微細化を狙った場合でも磁気特性の低下を小さくする効果を有する。このようなBiの有用な作用は、六方晶フェライトの結晶が生成する際に、原料中に存在させておいたBiによって発揮される。そのBiは結晶合成時に上記のような作用を発揮させた後も、六方晶フェライト磁性粉中に存在する。Biは非磁性成分であるため、磁性粉中に存在する余分なBiの含有量を低減することができれば、磁気特性向上にとって有効であると考えられる。そこで発明者らは六方晶フェライト磁性粉中に存在する余分なBiの除去方法について研究を重ねた。その結果、Biと錯体を形成する化合物(本明細書ではBiと錯体を形成する化合物を「化合物X」と呼ぶ。)が溶解している溶液中にBi含有六方晶フェライト磁性粉を浸漬させる「湿式処理」を行うと、Feやその置換金属元素の溶出を極力抑えながら、磁性粉中に存在するBi含有量を大幅に減少させることができることを知見した。また、Bi含有量の大幅な減少に伴って磁性粉の飽和磁化σsが上昇することも確認された。したがって、本発明の改質された六方晶フェライト磁性粉の製造方法においては、Bi溶出処理として、化合物Xが溶解している溶液中にBi含有六方晶フェライト磁性粉を浸漬させる処理を適用する。なお、ガラス結晶化法を利用して六方晶フェライト磁性粉を製造する際に一般的に行われる上述の酸洗処理では、六方晶フェライト磁性粉中のBiを溶出させることはできない。また、塩酸や硫酸等の強酸と六方晶フェライト磁性粉とを混合した場合には、Biだけでなくフェライト結晶も溶解してしまうため、Biのみを選択的に溶出させることは難しい。
 発明者らは、上記の酸洗処理を含む洗浄工程で十分に洗浄処理が施され、磁気記録媒体の磁性体素材として使用可能な状態とされた従来のBi含有六方晶フェライト磁性粉の製品について、化学分析により求まる磁性粉中のトータルBi含有量と、XPS(X線光電子分光法)により求まる粉末粒子表層部のBi濃度との対比検討を行ってきた。それによると、Bi含有六方晶フェライト磁性粉中に存在するBiは、磁性結晶粒子の表層部に偏在する傾向があることがわかった。すなわちBi含有六方晶フェライト粉の個々の磁性結晶粒子は、Bi濃化層で被覆されていると言うことができる。Bi含有六方晶フェライト磁性粉を化合物Xが溶解している溶液に浸漬することによって磁性粉中のBi含有量が大幅に低減する理由は、粒子表層部に多く存在するBiが化合物Xと金属錯体を形成することによって液中に溶出するためであると考えられる。化合物XはBiだけでなくFeなどの金属元素にも配位しうる。しかし、磁性結晶粒子の表層部にはBiが濃化しているので、磁性粉を化合物Xの溶液に浸漬すると、表層部のBiが優先的に化合物X分子と結合して溶出し、六方晶フェライト結晶の粒子形状、Dx体積、および六方晶フェライトの結晶構造を構成する元素(Ba、FeおよびFeサイト置換元素)の配合割合をほぼ維持したまま、Bi含有量を大幅に低減させることができる。このようなBi溶出処理の効果は、化学式AO・6Feを基本構造とするBi含有六方晶フェライト磁性粉を元粉として適用する限り、A元素サイトを構成する元素の種類、Feサイトの置換元素の種類、希土類元素の種類、およびAlの含有有無にかかわらず、享受することができる。
 Bi溶出処理によって粒子表層部に濃化しているBiの含有量を低減させることは、磁気特性向上にとって有効である。そのため、Bi溶出処理は、結晶粒子のサイズにかかわらず一般的に磁気記録媒体の性能向上に効果的であると言える。一方で、結晶粒子が微細である六方晶フェライト磁性粉では上述のように飽和磁化σsの低下が生じ易いが、Biを含有させることにより結晶粒子が微細な六方晶フェライト磁性粉で問題となるσsの低下の程度が既に抑制されている。そのため、結晶粒子が微細であるBi含有六方晶フェライト磁性粉を元粉としてBi溶出処理に供すると、前記のσsの低下抑制効果と、Bi溶出処理によるσsの上昇効果との相乗効果により、結晶粒子が微細である六方晶フェライト磁性粉では従来困難であった高いレベルのσsが実現できる。具体的にはDx体積が1800nm以下の六方晶フェライト磁性粉において、飽和磁化σsが42.0Am/kg以上であるものを安定して得ることが可能である。
(Biと錯体を形成する化合物X)
 Biと錯体を形成する性質を有する化合物Xとしては、各種キレート剤の他、乳酸やチオ尿素などを挙げることができる。
 キレート剤は、アルカリ土類金属や遷移金属等の金属イオンに配位して、化学的に非常に安定なキレート錯体を形成する性質を持つ水溶性化合物である。本発明では、エチレンジアミン四酢酸(EDTA)、trans-1,2-シクロヘキサンジアミン四酢酸(CyDTA)、ジエチレントリアミン五酢酸(DTPA)、ヒドロキシエチレンジアミン三酢酸(EDTA-OH)、グリコールエーテルジアミン四酢酸(GEDTA)や、これらのアルカリ金属塩など、公知のキレート剤を用いることができ、その化学種は特に限定されない。入手の容易性やコスト面から、EDTA、EDTAの1~4ナトリウム塩、およびEDTAの1~4カリウム塩が好適である。2種以上のキレート剤が溶解しているキレート剤溶液を用いてもよい。
 キレート錯体の液中での安定性を示すキレート安定度定数Kは下記(6)式で表される。
 K=[ML]/([M][L]) …(6)
 ここで、[L]はキレート剤分子Lのモル濃度、[M]は金属イオンMのモル濃度、Nはキレート剤分子1モルが配位する金属イオンMのモル数、[ML]はキレート錯体ML分子の液中モル濃度である。キレート安定度定数Kが大きいほど、そのキレート錯体の安定性は高いと評価される。本明細書では、Bi3+およびFe3+に対する上記キレート安定度定数Kを、それぞれKBiおよびKFeと表記する。
 キレート錯体の液中での安定性を比較する際には、上記のキレート安定度定数Kの常用対数を用いることが多い。代表的なキレート剤については種々の金属イオンに対するキレート安定度定数Kが調べられており、logKBi、logKFeの値を知ることができる。表1に、上に掲げたキレート剤について、logKBi、logKFeの値を例示する。
Figure JPOXMLDOC01-appb-T000001
 本発明の製造方法において、化合物Xとしてキレート剤を使用する場合、Bi溶出処理での六方晶フェライト結晶の溶解を防ぐ観点から、Biイオンに対するキレート安定度がFeイオンに対するキレート安定度よりも大きいキレート剤を適用することが有利である。種々検討の結果、下記(2)式を満たすものを使用することが望ましい。
 logKBi-logKFe≧0.5 …(2)
 ここで、KBiはBi3+に対するキレート安定度定数、KFeはFe3+に対するキレート安定度定数である。
 下記(2)’式を満たすキレート剤がより好ましく、下記(2)’’式を満たすキレート剤が更に好ましい。
 logKBi-logKFe≧1.0 …(2)’
 logKBi-logKFe≧2.0 …(2)’’
 また、logKBiが20.0以上であるキレート剤を適用することが、より効果的である。
(処理条件)
 Bi溶出処理中の溶液のpHは2.0~10.0の範囲に維持することが好ましく、3.0~9.0の範囲に維持することがより好ましい。液のpHが低過ぎると六方晶フェライト結晶の溶解度が上昇する。液のpHが高すぎると化合物XによるBi溶出能力が低下する。このpHの調整は化合物X溶液に酢酸、硫酸等の酸、または水酸化ナトリウム等のアルカリを加えることにより行うことができる。なお、本明細書に記載のpHの値は、JIS Z8802に基づき、測定するpH領域に応じた適切な緩衝液をpH標準液として用いて校正したpH計により測定した値をいう。また、本明細書に記載のpH値は、温度補償電極により補償されたpH計の示す測定値を、溶出温度条件下で直接読み取った値である。
 Bi溶出処理を工業的に実施するためにはBiの溶出速度を十分に高めることが有利となることから、Bi溶出処理での化合物Xと元粉の量的関係については下記(4)を満たす条件とすることが好ましい。
 N×A/ABi≧1.0 …(4)
 ここで、AはBi溶出処理に使用する化合物X(例えばキレート剤)の総量(モル)、ABiはBi溶出処理に供する六方晶フェライト磁性粉中に含まれるBi量(モル)、Nは当該化合物X1分子が配位できるBiの最大原子数である。
 (4)式左辺の上限については、化合物Xの溶解度等により制限されるので特に定める必要はないが、例えば、下記(4)’式を満たす条件を例示することができる。
 100≧N×A/ABi≧1.0 …(4)’
 なお、表1に例示した各キレート剤に関しては、上記Nの値はいずれも1である。
 Bi含有量低減に伴う磁気特性の向上作用を十分に発揮させるためには、下記(3)式で定義されるBi残留割合が0.2~0.8となるようにBi溶出処理を行うことが効果的である。
 Bi残留割合=[処理済み粉のBi/Feモル比]/[元粉のBi/Feモル比] …(3)
 特に上述のDx体積が1800nm以下、かつBi/Feモル比が0.020~0.100である元粉を適用し、上記Bi残留割合が0.2~0.8となるようにBi溶出処理を行うと、Dx体積が小さい領域では従来困難であった高い飽和磁化σsを実現することが可能になる。
 Bi溶出処理において、化合物Xが溶解している溶液(化合物X溶液)の液状媒体としては、通常は水を使用すればよい。必要に応じて、水と、水以外の溶媒物質(例えばエタノール等のアルコール)との混合液状媒体を使用することもできる。Bi溶出処理中の溶液中には、本発明の効果を妨げない限り、化合物X、pH調整用の酸またはアルカリ、および元粉以外の物質を含有させてもよい。
 Bi溶出処理中の溶液の温度は例えば10~90℃の範囲で設定すればよい。Biの溶出速度を高める観点から40~90℃の範囲とすることがより好ましい。化合物X溶液の化合物X濃度は、液状媒体(水、または水と他の溶媒物質との混合液)と化合物Xとの合計量に対する化合物Xの質量モル濃度で例えば0.001~0.2mol/kgの範囲で設定することができる。Bi溶出処理で溶液に浸漬させる元粉の量は、化合物X溶液と元粉の合計量に対する元粉の質量割合で例えば1.0~50.0質量%の範囲で設定することができる。
 本発明の製造方法において、Biを含有する六方晶フェライト磁性粉(元粉)を、化合物X溶液に浸漬させる際の手順としては、元粉の粒子が化合物X溶液と接触できるような混合状態が確保される限り、特にこだわる必要はない。液中への各物質の添加順も特に限定されない。具体的な手順としては例えば、化合物X溶液に元粉を投入する方法、元粉が収容されている容器に化合物X溶液を加える方法、水等の液状媒体中に元粉を浸漬させた状態とした後、その液中に化合物Xを添加する方法などが考えられる。
 Bi溶出処理は複数回繰り返して実施してもよい。すなわち、Bi溶出処理を終えたスラリーから回収された固形分に対して、必要に応じて純水での洗浄や乾燥を施した後、再度、化合物Xが溶解している溶液に浸漬するBi溶出処理を施すことができる。その際、各回でのBi溶出処理で使用する化合物Xは、同種のものとしてもよいし、異種のものとしてもよい。
[処理済み粉]
 以上のBi溶出処理によって、Bi含有量を減少させた六方晶フェライト磁性粉(処理済み粉)を得ることができる。特に、Bi/Feモル比0.035以下の範囲でBiを含有し、飽和磁化σsが42.0Am/kg以上、上記Dx体積が1800nm以下である六方晶フェライト磁性粉を安定して製造することができる。このように結晶粒子サイズが小さいにもかかわらず高い飽和磁化σsを呈する六方晶フェライト磁性粉は、磁気記録媒体において高記録密度と高SNRを高水準で両立させるためには極めて有用である。処理済み粉に含有されるBiは、結晶粒子表層部への濃化が回避されており、その多くは結晶粒子の内部に取り込まれて存在していると考えられる。そのようなBiの存在形態が六方晶フェライトの良好な結晶性を維持するうえで有効に機能し、磁気特性の向上に寄与しているのではないかと推察される。処理済み粉のBi/Feモル比は0.025以下に抑えることも可能である。
 処理済み粉におけるBi以外の成分元素の好ましい目標含有量を例示すると、Feサイト置換元素については[Feサイト置換元素のトータル含有量(モル)]/[Fe含有量(モル)]を0.001~0.060とすることが好ましい。希土類元素の1種以上を含有させる場合は、希土類元素をRと表記するとき、R/Feモル比を0.001~0.010とすることが好ましい。Alを含有させる場合は、Al/Feモル比を0.001~0.050とすることが好ましい。
[対照例]
 Bi溶出処理に供するための元粉を作製し、その特性を調べた。
 原料として、ホウ酸HBO(工業用)661.5g、炭酸バリウムBaCO(工業用)1285.1g、酸化鉄Fe(工業用)765.9g、酸化コバルトCoO(試薬90%以上)14.4g、酸化チタンTiO(試薬1級)15.3g、酸化ビスマスBi(工業用)89.4g、酸化ネオジムNd(工業用)116.2g、水酸化アルミニウムAl(OH)(試薬1級)52.1gを用意した。以上の原料を三井三池製FMミキサーにより混合して、原料混合物を得た。Coは2価のFeサイト置換元素に該当し、Tiは4価のFeサイト置換元素に該当する。
 上記原料混合物をペレタイザーに入れ、水を噴霧しながら球状に成形して造粒し、その後270℃で14時間乾燥させ、粒径1~50mmの造粒品を得た。得られた造粒品を、白金るつぼを用いて溶融炉により溶融させた。1400℃まで昇温したのち60分撹拌しながら保持することにより、各原料物質を完全に溶融状態とした。その溶融物(溶湯)をノズルから出湯させて、ガスアトマイズ法にて急冷し、非晶質体を得た。得られた非晶質体を630℃で60分加熱保持する条件で焼成することにより結晶化させ、六方晶フェライトを生成させた。
 上記の焼成によって得られた粉体中には、六方晶フェライトの他、ホウ酸バリウムを主体とする残余物質が含まれている。当該粉体を60℃に加温した10質量%酢酸水溶液に浸漬させ、撹拌しながら1時間保持することにより、上記残余物質を液中に溶解させ、その後、ろ過により固液分離を行い、固形分を回収した。この固形分を「酸洗浄済み固形分」と呼ぶ。
 上記の酸洗浄済み固形分を純水により洗浄し、結晶粒子表面に付着している酢酸等の成分を除去した。洗浄后液(ろ液)の導電率が10μS/cm以下となるまで水洗した。水洗後は110℃の大気中で乾燥を行い、Bi含有六方晶フェライト磁性粉の試料を得た。この試料は後述の実施例1~6で使用する「元粉」に相当する。
(磁性粉の成分分析)
 六方晶フェライト磁性粉試料の成分分析は、アジレントテクノロジー株式会社製の高周波誘導プラズマ発光分析装置ICP(720-ES)を使用して行った。得られた定量値から、金属元素の組成を、Feに対するモル比として算出した。本例で得られた磁性粉試料(後述実施例1~6で使用する「元粉」)は、Fe:50.0質量%、Bi:7.12質量%であり、Bi/Feモル比は0.038と算出された。
(磁気特性の測定)
 六方晶フェライト磁性粉試料をφ6mmのプラスチック製容器に詰め、東英工業株式会社製VSM装置(VSM-P7-15)を使用して、外部磁場795.8kA/m(10kOe)、磁場掃引速度795.8kA/m/min(10kOe/min)で、保磁力Hc、飽和磁化σs、角形比SQ、保磁力分布SFDを測定した。その結果、本例の磁性粉試料(後述実施例1~6で使用する「元粉」)の保磁力Hcは174kA/m、飽和磁化σsは41.1Am/kg、角形比SQは0.513、保磁力分布SFDは0.764であった。
(BET比表面積の測定)
 六方晶フェライト磁性粉試料について、ユアサアイオニクス株式会社製4ソーブUSを用いてBET一点法による比表面積を求めた。その結果、本例の磁性粉試料(後述実施例1~6で使用する「元粉」)のBET比表面積は101.1m/gであった。
(Dx体積の測定)
 X線回折装置(リガク製、UltimaIV)により、Cu管球を用いて、六方晶フェライト結晶格子のc軸方向の結晶子径Dxc(nm)、およびa軸方向の結晶子径Dxa(nm)を前述の(5)式に従って求めた。Dxcは2θ:20.5~25°、Dxaは2θ:60~65°の範囲をそれぞれスキャンして測定した。測定方法は連続測定法で、サンプリング間隔Dxc:0.05°、Dxa:0.02°、走査速度Dxc:0.1°/min、Dxa:0.4°/min、積算回数1回とした。DxcおよびDxaの測定値を前述(1)式に代入することによってDx体積を求めた。本例の磁性粉試料(後述実施例1~6で使用する「元粉」)のDx体積は1690nmであった。
 以上の結果を表2に示してある。
[実施例1]
 上述の対照例で得られた六方晶フェライト磁性粉を元粉として、以下のBi溶出処理に供した。
(Bi溶出処理)
 Biと錯体を形成する化合物Xとしてキレート剤であるエチレンジアミン四酢酸二ナトリウム二水和物(同仁化学研究所製、試薬)を用意した。このキレート剤についての前記logKBi-logKFe値は2.8である。
 1Lビーカー中で、純水793.2g、前記キレート剤16.8g、濃度90質量%酢酸水溶液16.0gを混合し、キレート剤が溶解している溶液(以下「キレート剤溶液」という。)を得た。このキレート剤溶液を60℃に温調した後、上記対照例で得られた六方晶フェライト磁性粉(元粉)90gをキレート剤溶液中に投入し、当該溶液に浸漬させた。液温を60℃に維持して撹拌しながら6時間保持し、磁性粉を含むスラリーを得た。この浸漬条件において、前述(4)式の左辺であるN×A/ABiの値は1.5である。浸漬開始時における液のpHは3.6であり、6時間撹拌保持後の浸漬終了時における液のpHは4.8であった。得られたスラリーをろ過し、固形分を回収した。以上の手順でBi溶出処理を終えた。回収された固形分を純水で洗浄することにより粒子表面に付着しているキレート剤等の成分を除去した。この洗浄後の固形分を110℃の大気中で乾燥することにより、Bi溶出処理を施した六方晶フェライト磁性粉(処理済み粉)の試料を得た。
 得られた磁性粉試料(処理済み粉)について、上述の対照例と同様の測定を行った。その結果、本例で得られた磁性粉試料は、Fe:51.2質量%、Bi:4.37質量%であり、Bi/Feモル比は0.023と算出された。上記(3)式に従うBi残留割合は0.023/0.038≒0.61であり、Bi溶出処理によってBi含有量が大幅に低減したことが確認された。本例で得られた磁性粉試料(処理済み粉)の保磁力Hcは182kA/m、飽和磁化σsは42.0Am/kg、角形比SQは0.517、保磁力分布SFDは0.692であった。また、BET比表面積は104.6m/g、Dx体積は1750nmであった。以上の結果を表2に示してある(以下の各例において同じ)。
[実施例2]
 上述の対照例で得られた六方晶フェライト磁性粉を元粉に用いてBi溶出処理を施した。本例では前述(4)式の左辺であるN×A/ABiの値が2.0となるようにキレート剤(エチレンジアミン四酢酸二ナトリウム二水和物)の添加量を変更したこと以外、実施例1と同様の方法で実験を行った。浸漬開始時における液のpHは3.6であり、6時間撹拌保持後の浸漬終了時における液のpHは4.5であった。
 本例で得られた磁性粉試料(処理済み粉)のBi/Feモル比は0.019であった。上記(3)式に従うBi残留割合は0.019/0.038≒0.50であり、Bi溶出処理によってBi含有量が大幅に低減したことが確認された。また、保磁力Hcは184kA/m、飽和磁化σsは42.3Am/kg、角形比SQは0.519、保磁力分布SFDは0.679、BET比表面積は106.7m/g、Dx体積は1680nmであった。
[実施例3]
 上述の対照例で得られた六方晶フェライト磁性粉を元粉に用いてBi溶出処理を行った。本例では前述(4)式の左辺であるN×A/ABiの値が2.0となるようにキレート剤(エチレンジアミン四酢酸二ナトリウム二水和物)の添加量を変更したこと、および濃度90質量%酢酸水溶液の添加量を16.0gから8.0gに変更したことを除き、実施例1と同様の方法で実験を行った。浸漬開始時における液のpHは4.1であり、6時間撹拌保持後の浸漬終了時における液のpHは8.2であった。
 本例で得られた磁性粉試料(処理済み粉)のBi/Feモル比は0.023であった。上記(3)式に従うBi残留割合は0.023/0.038≒0.61であり、Bi溶出処理によってBi含有量が大幅に低減したことが確認された。また、保磁力Hcは180kA/m、飽和磁化σsは42.1Am/kg、角形比SQは0.516、保磁力分布SFDは0.699、BET比表面積は104.1m/g、Dx体積は1680nmであった。
[実施例4]
 上述の対照例で得られた六方晶フェライト磁性粉を元粉に用いてBi溶出処理を行った。本例では前述(4)式の左辺であるN×A/ABiの値が4.0となるようにキレート剤(エチレンジアミン四酢酸二ナトリウム二水和物)の添加量を変更したこと、および濃度90質量%酢酸水溶液の添加量を16.0gから8.0gに変更したことを除き、実施例1と同様の方法で実験を行った。浸漬開始時における液のpHは4.2であり、6時間撹拌保持後の浸漬終了時における液のpHは7.4であった。
 本例で得られた磁性粉試料(処理済み粉)のBi/Feモル比は0.012であった。上記(3)式に従うBi残留割合は0.012/0.038≒0.32であり、Bi溶出処理によってBi含有量が大幅に低減したことが確認された。また、保磁力Hcは181kA/m、飽和磁化σsは43.3Am/kg、角形比SQは0.519、保磁力分布SFDは0.676、BET比表面積は108.0m/g、Dx体積は1750nmであった。
[実施例5]
 上述の対照例で得られた六方晶フェライト磁性粉を元粉に用いてBi溶出処理を行った。本例では前述(4)式の左辺であるN×A/ABiの値が4.0となるようにキレート剤(エチレンジアミン四酢酸二ナトリウム二水和物)の添加量を変更したこと、および浸漬中の液温を60℃から40℃に変更したことを除き、実施例1と同様の方法で実験を行った。浸漬開始時における液のpHは3.6であり、6時間撹拌保持後の浸漬終了時における液のpHは4.3であった。
 本例で得られた磁性粉試料(処理済み粉)のBi/Feモル比は0.019であった。上記(3)式に従うBi残留割合は0.019/0.038≒0.50であり、Bi溶出処理によってBi含有量が大幅に低減したことが確認された。また、保磁力Hcは184kA/m、飽和磁化σsは42.3Am/kg、角形比SQは0.519、保磁力分布SFDは0.668、BET比表面積は105.8m/g、Dx体積は1660nmであった。
[実施例6]
 上述の対照例で得られた六方晶フェライト磁性粉を元粉に用いてBi溶出処理を行った。本例では前述(4)式の左辺であるN×A/ABiの値が4.0となるようにキレート剤(エチレンジアミン四酢酸二ナトリウム二水和物)の添加量を変更したこと、濃度90質量%酢酸水溶液の添加量を16.0gから8.0gに変更したこと、および浸漬中の液温を60℃から40℃に変更したことを除き、実施例1と同様の方法で実験を行った。浸漬開始時における液のpHは4.1であり、6時間撹拌保持後の浸漬終了時における液のpHは5.9であった。
 本例で得られた磁性粉試料(処理済み粉)のBi/Feモル比は0.016であった。上記(3)式に従うBi残留割合は0.016/0.038≒0.42であり、Bi溶出処理によってBi含有量が大幅に低減したことが確認された。また、保磁力Hcは184kA/m、飽和磁化σsは42.8Am/kg、角形比SQは0.521、保磁力分布SFDは0.650、BET比表面積は106.1m/g、Dx体積は1680nmであった。
Figure JPOXMLDOC01-appb-T000002
 各実施例で得られた六方晶フェライト磁性粉は、Bi溶出処理を施すことにより対照例の元粉からBi含有量が大幅に低減されている。六方晶フェライト結晶格子を構成するBaおよびFeサイト置換元素(Co、Ti)についてはBi溶出処理の前後で対Feモル比がほとんど変化しておらず、Biの優先的な溶出を実現できたことが確認された。また、Bi溶出処理後も元粉のDx体積がほぼ維持される。一方で、飽和磁化σsはBi溶出処理によって向上した。
 参考のため、仕込み組成においてBi/Feモル比を0.001、0.010、0.040の3通りに振った原料混合物を作製し、焼成温度を変えて六方晶フェライト磁性粉を合成した場合に、Dx体積および飽和磁化がどのように変化するかを調べた実験結果を簡単に紹介する。いずれも焼成温度を振っていること以外は上述の対照例とほぼ同様の条件で実験を行っており、Bi溶出処理は施していない。
 図1に、焼成温度とDx体積の関係を示す。上記各実施例についてもプロットしてある。
焼成温度の低下に伴ってDx体積は小さくなる傾向が見られる。
 図2に、Dx体積と飽和磁化σsの関係を示す。上記各実施例についてもプロットしてある。Bi/Fe=0.040のライン上のDx体積1700近傍にあるプロットが上記の対照例で得られた元粉に相当する。Bi溶出処理を施した各実施例のものは、本来、飽和磁化の低下が顕著になる小さいDx体積の領域でも、高いσsを呈することがわかる。

Claims (12)

  1.  Bi/Feモル比0.035以下の範囲でBiを含有し、飽和磁化σsが42.0Am/kg以上、下記(1)式で表されるDx体積が1800nm以下である六方晶フェライト磁性粉。
     Dx体積(nm)=Dxc×π×(Dxa/2) …(1)
     ここで、Dxcは六方晶フェライト結晶格子のc軸方向の結晶子径(nm)、Dxaは同結晶格子のa軸方向の結晶子径(nm)、πは円周率である。
  2.  Bi/Feモル比0.005~0.035の範囲でBiを含有する請求項1に記載の六方晶フェライト磁性粉。
  3.  六方晶フェライト結晶のFeサイトの一部が2価、4価または5価の金属元素の1種以上で置換されている請求項1または2に記載の六方晶フェライト磁性粉。
  4.  前記六方晶フェライト磁性粉は六方晶Baフェライト磁性粉である、請求項1~3のいずれか1項に記載の六方晶フェライト磁性粉。
  5.  Biを含有する六方晶フェライト磁性粉を、Biと錯体を形成する化合物Xが溶解している溶液に浸漬させることにより、前記六方晶フェライト磁性粉中に存在するBiの一部を前記溶液中に溶出させる処理(以下「Bi溶出処理」という。)を行う工程を含む、六方晶フェライト磁性粉の製造方法。
  6.  前記化合物Xはキレート剤である、請求項5に記載の六方晶フェライト磁性粉の製造方法。
  7.  前記キレート剤は下記(2)式を満たすものである、請求項6に記載の六方晶フェライト磁性粉の製造方法。
     logKBi-logKFe≧0.5 …(2)
     ここで、KBiはBi3+に対するキレート安定度定数、KFeはFe3+に対するキレート安定度定数である。
  8.  前記Bi溶出処理に供する六方晶フェライト磁性粉を「元粉」、Bi溶出工程により得られる六方晶フェライト磁性粉を「処理済み粉」と呼ぶとき、下記(1)式で表されるDx体積が1800nm以下、Bi/Feモル比が0.020~0.100である元粉を適用し、下記(3)式で定義されるBi残留割合を0.2~0.8とする、請求項5~7のいずれか1項に記載の六方晶フェライト磁性粉の製造方法。
     Dx体積(nm)=Dxc×π×(Dxa/2) …(1)
     ここで、Dxcは六方晶フェライト結晶格子のc軸方向の結晶子径(nm)、Dxaは同結晶格子のa軸方向の結晶子径(nm)、πは円周率である。
     Bi残留割合=[処理済み粉のBi/Feモル比]/[元粉のBi/Feモル比] …(3)
  9.  前記Bi溶出処理中の溶液のpHを2.0~10.0とする請求項5~8のいずれか1項に記載の六方晶フェライト磁性粉の製造方法。
  10.  前記Bi溶出処理に使用する化合物Xの総量A(モル)と、前記Bi溶出処理に供する六方晶フェライト磁性粉中に含まれるBi量ABi(モル)の関係が下記(4)式を満たす条件でBi溶出処理を行う、請求項5~9のいずれか1項に記載の六方晶フェライト磁性粉の製造方法。
     N×A/ABi≧1.0 …(4)
     ここで、Nは化合物X1分子が配位できるBiの最大原子数である。
  11.  前記Bi溶出処理に供する六方晶フェライト磁性粉は、六方晶フェライト結晶のFeサイトの一部が2価、4価または5価の金属元素の1種以上で置換されているものである、請求項5~10のいずれか1項に記載の六方晶フェライト磁性粉の製造方法。
  12.  前記Bi溶出処理に供する六方晶フェライト磁性粉は六方晶Baフェライト磁性粉である、請求項5~11のいずれか1項に記載の六方晶フェライト磁性粉の製造方法。
PCT/JP2021/011223 2020-03-26 2021-03-18 六方晶フェライト磁性粉末およびその製造方法 WO2021193382A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/795,585 US20230081863A1 (en) 2020-03-26 2021-03-18 Hexagonal ferrite magnetic powder and method for producing same
CN202180023933.0A CN115335927A (zh) 2020-03-26 2021-03-18 六方晶铁氧体磁性粉末及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-056824 2020-03-26
JP2020056824A JP2021158216A (ja) 2020-03-26 2020-03-26 六方晶フェライト磁性粉末およびその製造方法

Publications (1)

Publication Number Publication Date
WO2021193382A1 true WO2021193382A1 (ja) 2021-09-30

Family

ID=77891742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011223 WO2021193382A1 (ja) 2020-03-26 2021-03-18 六方晶フェライト磁性粉末およびその製造方法

Country Status (4)

Country Link
US (1) US20230081863A1 (ja)
JP (1) JP2021158216A (ja)
CN (1) CN115335927A (ja)
WO (1) WO2021193382A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048823A1 (ja) * 2009-10-20 2011-04-28 Dowaエレクトロニクス株式会社 磁気記録用六方晶フェライト磁性粉末及びその製造方法ならびに該粉末を用いた磁気記録媒体
JP2011178654A (ja) * 2010-01-29 2011-09-15 Dowa Electronics Materials Co Ltd 磁気記録用六方晶フェライト磁性粉末及びその製造方法ならびに該粉末を用いた磁気記録媒体
JP2011181130A (ja) * 2010-02-26 2011-09-15 Dowa Electronics Materials Co Ltd 磁気記録用六方晶フェライト磁性粉末およびその製造方法
WO2011125633A1 (ja) * 2010-03-31 2011-10-13 Dowaエレクトロニクス株式会社 六方晶フェライト磁性粉末およびそれを用いた磁気記録媒体
JP2016139451A (ja) * 2015-01-22 2016-08-04 Dowaエレクトロニクス株式会社 磁気記録媒体用磁性粉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048823A1 (ja) * 2009-10-20 2011-04-28 Dowaエレクトロニクス株式会社 磁気記録用六方晶フェライト磁性粉末及びその製造方法ならびに該粉末を用いた磁気記録媒体
JP2011178654A (ja) * 2010-01-29 2011-09-15 Dowa Electronics Materials Co Ltd 磁気記録用六方晶フェライト磁性粉末及びその製造方法ならびに該粉末を用いた磁気記録媒体
JP2011181130A (ja) * 2010-02-26 2011-09-15 Dowa Electronics Materials Co Ltd 磁気記録用六方晶フェライト磁性粉末およびその製造方法
WO2011125633A1 (ja) * 2010-03-31 2011-10-13 Dowaエレクトロニクス株式会社 六方晶フェライト磁性粉末およびそれを用いた磁気記録媒体
JP2016139451A (ja) * 2015-01-22 2016-08-04 Dowaエレクトロニクス株式会社 磁気記録媒体用磁性粉

Also Published As

Publication number Publication date
JP2021158216A (ja) 2021-10-07
CN115335927A (zh) 2022-11-11
US20230081863A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP5445843B2 (ja) 磁性酸化鉄粒子、磁性体、および電波吸収体
JP5105503B2 (ja) ε酸化鉄の製法
CA2015606C (en) Method of manufacturing shaped body made of ferrite crystals of garnet polycrystal structure
DE19630756A1 (de) Verfahren zur Herstellung eisenhaltiger komplexer Oxidpulver
WO2021193382A1 (ja) 六方晶フェライト磁性粉末およびその製造方法
JP6532250B2 (ja) 六方晶Baフェライト磁性粉末およびその製造方法
KR960002626B1 (ko) 판상 바륨페라이트 미분말의 제조방법
JP6944431B2 (ja) 磁気記録媒体用磁性粉およびその製造方法
JPS62241827A (ja) 磁気記録用強磁性微粉末の製造方法
JPS62275027A (ja) 磁気記録用強磁性微粉末の製造方法
JP2023147298A (ja) 六方晶バリウムフェライト磁性粉の製造方法および磁性粉
SU1752521A1 (ru) Способ получени марганец-цинковых ферритовых порошков
JPH07267645A (ja) フェライト粉末の製造方法
JP2023152933A (ja) 磁気記録媒体用磁性粉およびその製造方法
JP2023152932A (ja) 磁気記録媒体用磁性粉およびその製造方法
JPH0620820A (ja) 複合スピネルフェライト微細粒子およびその製造方法
JPS62260724A (ja) 磁気記録用強磁性微粉末の製造方法
JPH0677034A (ja) 複合フェライト磁性粉の製造方法
JPH0645462B2 (ja) バリウムフエライト粉末の製造法
JPH02133323A (ja) マグネトプランバイト型フェライト磁性粉の製造方法
JPH02204332A (ja) 六方晶系フェライト磁性粉の製造方法
JPH0712933B2 (ja) 磁気記録用磁性粉
JPS63170221A (ja) バリウムフエライト磁性粉およびその製造方法
JPH0647467B2 (ja) バリウムフエライト磁性粉およびその製造方法
JPS63260103A (ja) 磁気記録用磁性粉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776061

Country of ref document: EP

Kind code of ref document: A1