WO2021192885A1 - ヒートポンプ - Google Patents

ヒートポンプ Download PDF

Info

Publication number
WO2021192885A1
WO2021192885A1 PCT/JP2021/008360 JP2021008360W WO2021192885A1 WO 2021192885 A1 WO2021192885 A1 WO 2021192885A1 JP 2021008360 W JP2021008360 W JP 2021008360W WO 2021192885 A1 WO2021192885 A1 WO 2021192885A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
outdoor
heat pump
expansion valve
Prior art date
Application number
PCT/JP2021/008360
Other languages
English (en)
French (fr)
Inventor
憲弘 奥田
照規 相川
秀志 岡田
Original Assignee
ヤンマーパワーテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマーパワーテクノロジー株式会社 filed Critical ヤンマーパワーテクノロジー株式会社
Priority to CN202180005879.7A priority Critical patent/CN115315603A/zh
Priority to US17/914,030 priority patent/US20230137037A1/en
Priority to EP21775975.2A priority patent/EP4130607A4/en
Priority to KR1020227005621A priority patent/KR20220153567A/ko
Publication of WO2021192885A1 publication Critical patent/WO2021192885A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0215Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being used parallel to the outdoor heat exchanger during heating operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0252Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
    • F25B2313/02523Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the present invention relates to a heat pump that circulates a refrigerant to cool and heat it.
  • heat exchange of the refrigerant is performed by a heat exchanger to perform cooling operation and heating operation.
  • the refrigerant gasified by the indoor heat exchanger is liquefied by the outdoor heat exchanger and returned to the compressor (see, for example, Patent Document 1).
  • the heat pump described in Patent Document 1 includes a compressor and an oil separator, and an on-off valve is provided in an oil return path for returning oil from the oil separator to the compressor.
  • an on-off valve is provided in an oil return path for returning oil from the oil separator to the compressor.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a heat pump capable of suppressing an excessive inflow of refrigerant into an outdoor heat exchanger.
  • the heat pump according to the present invention includes an indoor heat exchanger, an outdoor heat exchanger connected to the indoor heat exchanger, and an accumulator connected to the outdoor heat exchanger, and circulates a refrigerant for cooling and heating.
  • the bypass circuit branches from the path connecting the indoor heat exchanger and the outdoor heat exchanger, and is connected to the upstream of the first heat exchanger in the flow direction of the refrigerant. It may be configured.
  • the bypass circuit is provided with a valve for controlling the flow rate of the refrigerant flowing into the bypass circuit, and the valve is arranged above the first heat exchanger in the height direction. It may be configured as such.
  • the heat pump according to the present invention includes a second heat exchanger provided between the outdoor heat exchanger and the indoor heat exchanger, and the valve is larger than the second heat exchanger in the height direction. It may be configured to be arranged above.
  • the valve may be configured to control the valve opening degree in the opening direction when the outside air temperature is in a predetermined temperature range.
  • the present invention when a refrigerant exceeding the capacity of the outdoor heat exchanger flows in, by flowing the refrigerant into the bypass circuit, it is possible to suppress the excessive inflow of the refrigerant into the outdoor heat exchanger and improve the heat exchange efficiency. Can be made to.
  • FIG. 1 is a simplified refrigerant circuit diagram of the heat pump according to the embodiment of the present invention.
  • the heat pump 1 has an outdoor unit that exchanges heat with the outside air and an indoor unit that exchanges heat with the indoor air.
  • the outdoor unit includes a compressor 2, an oil separator 3, a four-way valve 4, an outdoor heat exchanger 5, an accumulator 7, an evaporation heat exchanger 8, a cooling heat exchanger 9, and an outdoor expansion valve 11.
  • the indoor unit has an indoor heat exchanger 6 and an indoor expansion valve 12.
  • the compressor 2 is driven by a drive source such as a gas engine.
  • a plurality of compressors 2 may be connected in parallel, and the plurality of compressors 2 may be driven by one gas engine via a belt or a flywheel, and a clutch may be provided. It may be driven selectively.
  • the discharge path 40 of the compressor 2 is connected to the four-way valve 4 via the oil separator 3.
  • the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 2 is directed to the outdoor heat exchanger 5 or the indoor heat exchanger 6 by the four-way valve 4.
  • the four-way valve 4 sends the gaseous refrigerant to the indoor heat exchanger 6 in the case of heating operation (solid line), and sends the gaseous refrigerant to the outdoor heat exchanger 5 in the case of cooling operation (single point chain line).
  • the liquid refrigerant is expanded by the outdoor expansion valve 11 to be in a low-temperature / low-pressure liquid state (mist state). After that, heat is transferred from the outside air to the refrigerant via the outdoor heat exchanger 5, and the refrigerant is put into a low-temperature / low-pressure gas state.
  • the refrigerant that has passed through the outdoor heat exchanger 5 passes through the four-way valve 4 and is sent to the suction path 50 of the compressor 2.
  • An accumulator 7 is provided in the path between the four-way valve 4 and the compressor 2.
  • the accumulator 7 temporarily stores the gaseous refrigerant.
  • the gas-state refrigerant contains a small amount of liquid-state refrigerant, which are separated in the accumulator 7, and the liquid-state refrigerant is stored in the accumulator 7.
  • the suction path 50 connecting the accumulator 7 and the compressor 2 is provided with a filter accommodating portion 51 accommodating the filter 52.
  • the filter 52 adsorbs foreign matter contained in the refrigerant. By providing the filter 52, dirt can be removed from the refrigerant and oil and kept clean.
  • the path may be branched by the filter accommodating portion 51.
  • an evaporation heat exchanger 8 (an example of a first heat exchanger) is provided between the four-way valve 4 and the accumulator 7.
  • the evaporation heat exchanger 8 is, for example, a heat exchanger that is heated by a gas engine that is a drive source of a compressor or the like.
  • the evaporation heat exchanger 8 may circulate the cooling water of the gas engine and warms the passing refrigerant.
  • the heat pump 1 is provided with a bypass circuit 61 that distributes the refrigerant that flows out of the indoor heat exchanger 6 and flows into the outdoor heat exchanger 5 during the heating operation and causes the refrigerant to flow into the evaporation heat exchanger 8.
  • the bypass circuit 61 branches from the path (connection path 60) connecting the indoor heat exchanger 6 (indoor expansion valve 12) and the outdoor heat exchanger 5 (outdoor expansion valve 11), and is branched in the refrigerant flow direction. , It is connected to the upstream of the heat exchanger 8 for evaporation (between the four-way valve 4 and the heat exchanger 8 for evaporation).
  • the bypass circuit 61 is provided with a bypass expansion valve 62 (an example of a valve), and the flow rate of the refrigerant passing through the bypass circuit 61 is controlled by the opening degree of the bypass expansion valve 62.
  • the refrigerant when a refrigerant exceeding the capacity flows into the outdoor heat exchanger 5, the refrigerant can be prevented from flowing into the outdoor heat exchanger 5 excessively by flowing the refrigerant into the bypass circuit 61, and the heat exchange efficiency can be suppressed. Can be improved. Further, by connecting the bypass circuit 61 upstream of the evaporation heat exchanger 8, the refrigerant can be reliably sent to the evaporation heat exchanger 8.
  • the bypass control when the refrigerant flows into the bypass circuit 61 will be described in detail with reference to FIGS. 3 and 4 described later.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 2 is sent to the outdoor heat exchanger 5 via the four-way valve 4, and the refrigerant is exchanged with the outside air. It is put into a low-temperature, high-pressure liquid state.
  • the refrigerant that has passed through the outdoor heat exchanger 5 passes through the indoor expansion valve 12 to be in a low-temperature / low-pressure liquid state (mist state).
  • the refrigerant is sent to the indoor heat exchanger 6, and by exchanging heat with the indoor air, the refrigerant is brought into a low-temperature / low-pressure gas state. Then, the refrigerant sent from the indoor heat exchanger 6 passes through the four-way valve 4 and the accumulator 7 and is sent to the suction path of the compressor 2.
  • An oil separator 3 is provided between the compressor 2 and the four-way valve 4.
  • the oil separator 3 separates the oil contained in the refrigerant.
  • An oil return pipe 20 for supplying the separated oil to the compressor 2 is connected to the oil separator 3.
  • the oil return pipe 20 is connected to the suction path 50.
  • the oil return pipe 20 may be provided with a solenoid valve or the like to control the oil supply.
  • the heat pump 1 is provided with a cooling heat exchanger 9 (an example of a second heat exchanger) that exchanges heat between refrigerants flowing in the path in order to improve cooling efficiency.
  • the cooling heat exchanger 9 is provided in the connection path 60 between the outdoor expansion valve 11 and the indoor expansion valve 12. Further, the connection path 60 is provided with a branch path 63 branched upstream of the cooling heat exchanger 9 in the flow direction of the refrigerant.
  • the branch path 63 is connected between the evaporation heat exchanger 8 and the accumulator 7 via the branch expansion valve 64 and the cooling heat exchanger 9.
  • Heat exchange is performed with the refrigerant that has been changed to the state). That is, the refrigerant sent to the indoor expansion valve 12 through the connection path 60 is distributed to the refrigerant that follows the connection path 60 as it is and the refrigerant that branches and follows the branch path 63.
  • the liquid refrigerant following the connection path 60 is cooled by the mist-like refrigerant following the branch path 63.
  • the atomized refrigerant removes heat from the liquid refrigerant, gasifies it, and sends it to the accumulator 7.
  • the cooling heat exchanger 9 By providing the cooling heat exchanger 9 in this way, the temperature of the refrigerant can be appropriately controlled and the heat exchange efficiency can be further improved.
  • the ratio of distributing the refrigerant to the connection path 60 and the branch path 63 may be adjusted by, for example, controlling the opening degree of the branch expansion valve 64. Further, in the cooling heat exchanger 9, the connection path 60 and the branch path 63 only intersect, and the refrigerants flowing through each do not mix with each other.
  • sensors or the like may be appropriately provided in various parts of the refrigerant circuit, and the heat pump 1 is configured to detect the temperature, flow rate, pressure, etc. of the refrigerant, the outside air, and the cooling water based on the output from the sensors. .. Further, a control device for controlling various valves or the like may be provided based on the information acquired by the sensor or the like.
  • FIG. 2 is a schematic side view showing the structures in the vicinity of the heat exchanger for evaporation and the heat exchanger for cooling.
  • FIG. 2 shows an extracted part of the parts housed inside the outdoor unit. Specifically, FIG. 2 shows an accumulator 7, an evaporation heat exchanger 8, a cooling heat exchanger 9, a bypass expansion valve 62, and a pipe connected to these. In addition, parts other than some parts shown in FIG. 2 may be appropriately housed inside the outdoor unit.
  • the bypass expansion valve 62 is arranged above the heat exchanger 8 for evaporation and the heat exchanger 9 for cooling in the height direction.
  • water droplets may be generated due to dew condensation or the like, but since they are located below the bypass expansion valve 62, it is possible to prevent water droplets from being applied to the bypass expansion valve 62.
  • valves such as the outdoor expansion valve 11 and the branch expansion valve 64 may be arranged in the vicinity of the bypass expansion valve 62, and it is preferable to arrange them so as not to be exposed to water droplets. Further, by consolidating a plurality of valves in the same place, workability in installation and maintenance can be improved.
  • bypass control when the refrigerant flows into the bypass circuit 61 will be described with reference to FIGS. 3 and 4.
  • FIG. 3 is a flow diagram showing a process flow of start determination for determining whether to start bypass control.
  • the bypass control is performed during the heating operation. Therefore, in the processing flow of FIG. 3, it is said that the heating operation is in progress in the initial state.
  • step S01 it is determined whether or not the outdoor unit conditions are satisfied.
  • the outdoor unit conditions are set with respect to the operating status of the outdoor unit. Specifically, when the opening degree of the outdoor expansion valve 11 is 80% or more and the degree of superheat of the refrigerant downstream of the heat exchanger 8 for evaporation is 25 ° C. or more higher than the target temperature, the outdoor unit condition is satisfied. Is determined.
  • the refrigerant superheat degree indicates a temperature difference rising from the saturation temperature of the refrigerant, and the target temperature with respect to the refrigerant superheat degree is a preset value. Further, even when the outdoor functional force is 80% or more, it may be determined that the outdoor unit condition is satisfied.
  • the outdoor functional force is calculated based on the rated ratio of the theoretical refrigerant discharge amount of the compressor 2 (excluded volume of the compressor 2 ⁇ compressor rotation speed). Refrigerants can be converted from pressure to temperature. If the above-mentioned outdoor unit conditions are satisfied (step S01: Yes), the process proceeds to step S02. On the other hand, if the outdoor unit condition is not satisfied (step S01: No), the process waits until the condition is satisfied.
  • step S02 it is determined whether or not the outside air temperature condition is satisfied.
  • the outside air temperature is within a predetermined temperature range. Specifically, when the outside air temperature is 5 ° C. or higher or the outside air temperature is ⁇ 5 ° C. or lower, it is determined that the outside air temperature condition is satisfied.
  • step S02: Yes if the outside air temperature condition is satisfied (step S02: Yes), the process proceeds to step S03.
  • step S02: No the process returns to step S01.
  • step S03 it is determined whether or not the cooling water condition is satisfied.
  • the temperature of the cooling water flowing through the heat exchanger 8 for evaporation is 59 ° C. or higher, it is determined that the cooling water condition is satisfied.
  • step S03: Yes if the cooling water condition is satisfied, the process proceeds to step S04.
  • step S03: No if the cooling water condition is not satisfied, the process returns to step S01.
  • step S04 bypass control is started. The detailed operation in the bypass control will be described with reference to FIG.
  • the bypass control is started when all three conditions from step S01 to step S03 are satisfied, and if there is even one condition that is not satisfied, the start determination is repeated.
  • the start determination may wait until a predetermined time elapses. Further, the start determination may be made according to the timing of detection by the sensor or the like, and the sensor or the like may periodically acquire information at predetermined time intervals.
  • FIG. 4 is a flow diagram showing a processing flow related to the operation in bypass control.
  • step S11 the bypass expansion valve 62 is set to the initial opening degree.
  • the initial opening degree is a preset value, and may be set for each model of the heat pump 1, for example.
  • step S12 the bypass expansion valve 62 is gradually opened.
  • the valve opening degree of the bypass expansion valve 62 is controlled in the opening direction.
  • the valve opening degree of the bypass expansion valve 62 is controlled to be opened by a predetermined amount in a cycle of 60 seconds.
  • step S13 it is determined whether or not the bypass expansion valve 62 has reached the upper limit opening degree.
  • the upper limit opening may be set in advance. As a result, when the bypass expansion valve 62 reaches the upper limit opening degree (step S13: Yes), the process proceeds to step S14. On the other hand, when the bypass expansion valve 62 has not reached the upper limit opening degree (step S13: No), the process returns to step S12.
  • step S14 the bypass expansion valve 62 is made to follow the outdoor expansion valve 11. Specifically, the upper limit opening degree of the bypass expansion valve 62 is set to the same value as the opening degree of the outdoor expansion valve 11, and the bypass expansion valve 62 and the outdoor expansion valve 11 are set to the same opening degree.
  • step S14 When maintaining the bypass control, the operation in step S14 may be continued.
  • the start determination may be made during the bypass control, and if any one of the outdoor unit condition, the outside air temperature condition, and the cooling water condition is not satisfied, the bypass control is stopped. May be good.
  • optimum heat exchange can be performed by controlling the refrigerant sent to the evaporation heat exchanger 8 accordingly. Further, by setting the outdoor unit conditions, bypass control can be performed as needed. Further, by setting the cooling water conditions, bypass control can be performed when the heat exchange in the heat exchanger 8 for evaporation can be sufficiently carried out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

ヒートポンプ(1)は、室内熱交換器(6)と、室内熱交換器(6)と接続された室外熱交換器(5)と、室外熱交換器(5)と接続されたアキュムレータ(7)と、室外熱交換器(5)とアキュムレータ(7)との間に設けられた蒸発用熱交換器(8)と、室内熱交換器(6)から流出した冷媒を、蒸発用熱交換器(8)に流入させるバイパス回路(61)とを備える。

Description

ヒートポンプ
 本発明は、冷媒を循環させて冷却および加熱するヒートポンプに関する。
 従来、ヒートポンプにおいて、熱交換器で冷媒の熱交換を行い、冷房運転や暖房運転を行っている。一般的に、ヒートポンプでは、暖房運転時において、室内熱交換器でガス化した冷媒を室外熱交換器で液化して圧縮機に戻している(例えば、特許文献1参照)。
特開2016-99067号公報
 特許文献1に記載のヒートポンプは、圧縮機と、オイルセパレータとを備え、オイルセパレータから圧縮機にオイルを戻すオイル戻し経路には、開閉弁が設けられている。上述したヒートポンプでは、全ての冷媒を室外熱交換器で熱交換しているため、室外熱交換器の能力以上に冷媒が流入する状況が発生することがあり、冷媒を蒸発しきれないという問題があった。
 本発明は、上記の課題を解決するためになされたものであり、室外熱交換器に過剰に冷媒が流入することを抑制できるヒートポンプを提供することを目的とする。
 本発明に係るヒートポンプは、室内熱交換器と、前記室内熱交換器と接続された室外熱交換器と、前記室外熱交換器と接続されたアキュムレータとを備え、冷媒を循環させて冷却および加熱するヒートポンプであって、前記室外熱交換器と前記アキュムレータとの間に設けられた第1熱交換器と、前記室内熱交換器から流出した冷媒を、前記第1熱交換器に流入させるバイパス回路とを備えることを特徴とする。
 本発明に係るヒートポンプでは、前記バイパス回路は、前記室内熱交換器と前記室外熱交換器とを繋ぐ経路から分岐し、冷媒の流通方向において、前記第1熱交換器の上流に接続されている構成としてもよい。
 本発明に係るヒートポンプは、前記バイパス回路には、該バイパス回路に流入する冷媒の流量を制御する弁が設けられ、前記弁は、高さ方向において、前記第1熱交換器よりも上方に配置されている構成としてもよい。
 本発明に係るヒートポンプは、前記室外熱交換器と前記室内熱交換器との間に設けられた第2熱交換器を備え、前記弁は、高さ方向において、前記第2熱交換器よりも上方に配置されている構成としてもよい。
 本発明に係るヒートポンプでは、前記弁は、外気温度が所定の温度範囲である場合に、弁開度を開き方向に制御される構成としてもよい。
 本発明によると、室外熱交換器の能力以上の冷媒が流入する場合、バイパス回路に冷媒を流入させることで、室外熱交換器に過剰に冷媒が流入することを抑制でき、熱交換効率を向上させることができる。
本発明の実施の形態に係るヒートポンプの簡略化した冷媒回路図である。 蒸発用熱交換器および冷却用熱交換器近傍の構造を示す概略側面図である。 バイパス制御を開始するかどうかを判定する開始判定の処理フローを示すフロー図である。 バイパス制御での動作に関する処理フローを示すフロー図である。
 以下、本発明の実施の形態に係るヒートポンプについて、図面を参照して説明する。
 図1は、本発明の実施の形態に係るヒートポンプの簡略化した冷媒回路図である。
 ヒートポンプ1は、外気と熱交換を行う室外機と、室内空気と熱交換を行う室内機とを有する。室外機は、圧縮機2、オイルセパレータ3、四方弁4、室外熱交換器5、アキュムレータ7、蒸発用熱交換器8、冷却用熱交換器9、および室外膨張弁11を有する。室内機は、室内熱交換器6および室内膨張弁12を有する。
 圧縮機2は、例えば、ガスエンジンなどの駆動源によって駆動される。圧縮機2については、複数が並列に接続された構成としてもよく、複数の圧縮機2は、ベルトやフライホイールを介して、1つのガスエンジンによって駆動させてもよく、さらに、クラッチを設けて選択的に駆動させてもよい。圧縮機2の吐出経路40は、オイルセパレータ3を介して、四方弁4に接続されている。
 圧縮機2から吐出された高温・高圧のガス状冷媒は、四方弁4によって、室外熱交換器5または室内熱交換器6に向けられる。四方弁4は、暖房運転(実線)の場合、ガス状冷媒を室内熱交換器6に送り、冷房運転(一点鎖線)の場合、ガス状冷媒を室外熱交換器5に送る。
 暖房運転の場合、室内熱交換器6を介して、冷媒から室内空気に熱が移動し、冷媒は、低温・高圧の液状態にされる。その後、冷媒は、室内膨張弁12および室外膨張弁11を介して、室外熱交換器5に送られる。室内膨張弁12および室外膨張弁11は、制御装置などによって、開度が適宜制御される。
 暖房運転の場合、液状態の冷媒は、室外膨張弁11によって膨張され、低温・低圧の液状態(霧状態)にされる。その後、室外熱交換器5を介して、外気から冷媒に熱が移動し、冷媒は、低温・低圧のガス状態にされる。室外熱交換器5を経た冷媒は、四方弁4を通り、圧縮機2の吸入経路50に送られる。
 四方弁4と圧縮機2との間の経路には、アキュムレータ7が設けられている。アキュムレータ7は、ガス状態の冷媒を一時的に蓄える。ガス状態の冷媒には、少量の液状態の冷媒が含まれており、アキュムレータ7内でこれらが分離し、液状態の冷媒がアキュムレータ7に貯められる。
 アキュムレータ7と圧縮機2とを接続する吸入経路50には、フィルタ52を収容するフィルタ収容部51が設けられている。フィルタ52は、冷媒に含まれる異物を吸着する。フィルタ52を設けることで、冷媒やオイルから汚れを取り除き、清浄に保つことができる。なお、圧縮機2を複数設けた際には、フィルタ収容部51で経路を分岐させてもよい。
 また、四方弁4とアキュムレータ7との間には、蒸発用熱交換器8(第1熱交換器の一例)が設けられている。蒸発用熱交換器8は、例えば、圧縮機2などの駆動源であるガスエンジンによって暖められる熱交換器とされている。蒸発用熱交換器8は、ガスエンジンの冷却水を流通させてもよく、通過する冷媒を暖める。
 ヒートポンプ1には、暖房運転時に、室内熱交換器6から流出し、室外熱交換器5に流入する冷媒を分配して、蒸発用熱交換器8に流入させるバイパス回路61が設けられている。具体的に、バイパス回路61は、室内熱交換器6(室内膨張弁12)と室外熱交換器5(室外膨張弁11)とを繋ぐ経路(接続経路60)から分岐し、冷媒の流通方向において、蒸発用熱交換器8の上流(四方弁4と蒸発用熱交換器8との間)に接続されている。バイパス回路61には、バイパス膨張弁62(弁の一例)が設けられており、バイパス膨張弁62の開度によって、バイパス回路61を通る冷媒の流量が制御される。
 ヒートポンプ1では、室外熱交換器5に能力以上の冷媒が流入する場合、バイパス回路61に冷媒を流入させることで、室外熱交換器5に過剰に冷媒が流入することを抑制でき、熱交換効率を向上させることができる。また、バイパス回路61を蒸発用熱交換器8の上流に接続することで、蒸発用熱交換器8に冷媒を確実に送ることができる。なお、バイパス回路61に冷媒を流入させる際のバイパス制御については、後述する図3および図4を参照して、詳細に説明する。
 一方、冷房運転の場合、圧縮機2から吐出された高温・高圧のガス状冷媒は、四方弁4を介して、室外熱交換器5に送られ、外気と熱交換することにより、冷媒は、低温・高圧の液状態にされる。室外熱交換器5を経た冷媒は、室内膨張弁12を通過することにより、低温・低圧の液状態(霧状態)にされる。
 その後、冷媒は、室内熱交換器6に送られ、室内空気と熱交換することにより、冷媒は、低温・低圧のガス状態にされる。そして、室内熱交換器6から送られた冷媒は、四方弁4およびアキュムレータ7を通過して、圧縮機2の吸入経路に送られる。
 圧縮機2と四方弁4との間には、オイルセパレータ3が設けられている。オイルセパレータ3は、冷媒に含まれるオイルを分離する。オイルセパレータ3には、分離したオイルを圧縮機2に供給するオイル戻し配管20が接続されている。オイル戻し配管20は、吸入経路50に接続されている。なお、オイル戻し配管20には、電磁弁などを設けて、オイルの供給を制御してもよい。
 ヒートポンプ1では、冷房効率を向上させるために、経路を流れる冷媒同士の間で熱交換を行う冷却用熱交換器9(第2熱交換器の一例)を備える。冷却用熱交換器9は、室外膨張弁11と室内膨張弁12との間の接続経路60に設けられている。また、接続経路60には、冷媒の流通方向において、冷却用熱交換器9の上流で分岐した分岐経路63が設けられている。分岐経路63は、分岐膨張弁64と冷却用熱交換器9とを経て、蒸発用熱交換器8とアキュムレータ7との間に接続されている。
 冷却用熱交換器9では、接続経路60を通じて室内膨張弁12に送られる低温・低圧の液状態の冷媒と、分岐経路63を通じ、分岐膨張弁64を経ることで低温・低圧の液状態(霧状態)にされた冷媒とで熱交換を行う。つまり、接続経路60を通じて室内膨張弁12に送られる冷媒は、そのまま接続経路60を辿る冷媒と、分岐して分岐経路63を辿る冷媒とに分配される。その結果、冷却用熱交換器9において、接続経路60を辿る液状冷媒が、分岐経路63を辿る霧状冷媒によって冷却される。霧状冷媒は、液状冷媒から熱を奪ってガス化し、アキュムレータ7に送られる。このように、冷却用熱交換器9を設けることで、冷媒の温度を適切に制御し、熱交換効率をさらに向上させることができる。
 なお、冷却用熱交換器9での冷却において、接続経路60と分岐経路63とに冷媒を分配する比率については、例えば、分岐膨張弁64の開度を制御することで調整してもよい。また、冷却用熱交換器9において、接続経路60と分岐経路63とは交錯するだけであって、それぞれを流れる冷媒同士が混ざり合うことはない。
 ヒートポンプ1では、冷媒回路の各所に適宜センサ等が設けられていてもよく、センサからの出力に基づいて、冷媒、外気、および冷却水の温度や流量や圧力などを検出する構成とされている。また、センサ等で取得した情報に基づいて、各種弁などを制御する制御装置が設けられていてもよい。
 図2は、蒸発用熱交換器および冷却用熱交換器近傍の構造を示す概略側面図である。
 図2は、室外機の内部に収容された一部の部品を抜き出して示している。具体的に、図2では、アキュムレータ7、蒸発用熱交換器8、冷却用熱交換器9、およびバイパス膨張弁62と、これらに接続された配管とを示している。なお、室外機の内部には、図2に示す一部の部品以外の部品も適宜収容してもよい。
 図2に示すように、バイパス膨張弁62は、高さ方向において、蒸発用熱交換器8および冷却用熱交換器9よりも上方に配置されている。熱交換器においては、結露などによって水滴が生じることがあるが、バイパス膨張弁62よりも下方に位置しているので、バイパス膨張弁62に水滴がかかることを避けられる。
 バイパス膨張弁62の近傍には、室外膨張弁11や分岐膨張弁64などの他の弁を配置してもよく、水滴がかからないように配置することが好ましい。また、複数の弁を同じ箇所に集約させることで、取り付けやメンテナンスなどでの作業性を向上させることができる。
 次に、バイパス回路61に冷媒を流入させる際のバイパス制御について、図3および図4を参照して説明する。
 図3は、バイパス制御を開始するかどうかを判定する開始判定の処理フローを示すフロー図である。
 本実施の形態において、バイパス制御は、暖房運転時に行われる。そのため、図3の処理フローでは、初期状態において、暖房運転中とされている。
 ステップS01では、室外機条件を満たしているかどうかが判定される。室外機条件は、室外機の稼動状況に関して設定されている。具体的に、室外膨張弁11の開度が80%以上であり、蒸発用熱交換器8の下流での冷媒過熱度が、目標温度より25℃以上高い場合に、室外機条件を満たしていると判定される。なお、冷媒過熱度とは、冷媒の飽和温度から上昇した温度差を示し、冷媒過熱度に対する目標温度は、予め設定された値とされている。また、室外機能力が80%以上である場合にも、室外機条件を満たしていると判定してもよい。室外機能力は、圧縮機2の理論冷媒吐出量(圧縮機2の排除容積×コンプレッサ回転数)の定格比に基づいて算出される。冷媒については、圧力から温度に換算することができる。上述した室外機条件を満たしている場合(ステップS01:Yes)、ステップS02に進む。一方、室外機条件を満たしていない場合(ステップS01:No)、条件を満たすまで待機する。
 ステップS02では、外気温条件を満たしているかどうかが判定される。ここでは、外気温度が所定の温度範囲であるかどうかを判定している。具体的に、外気温度が5℃以上か、外気温度が-5℃以下である場合に、外気温条件を満たしていると判定される。その結果、外気温条件を満たしている場合(ステップS02:Yes)、ステップS03に進む。一方、外気温条件を満たしていない場合(ステップS02:No)、ステップS01に戻る。
 ステップS03では、冷却水条件を満たしているかどうかが判定される。ここでは、蒸発用熱交換器8を流れる冷却水の温度が59℃以上である場合に、冷却水条件を満たしていると判定される。その結果、冷却水条件を満たしている場合(ステップS03:Yes)、ステップS04に進む。一方、冷却水条件を満たしていない場合(ステップS03:No)、ステップS01に戻る。
 ステップS04では、バイパス制御を開始させる。なお、バイパス制御における詳しい動作については、図4を参照して説明する。
 上述したように、開始判定では、ステップS01からステップS03までの3つの条件を全て満たす場合に、バイパス制御を開始させており、満たしていない条件が1つでも存在すると、開始判定をやり直す。開始判定をやり直す際には、所定の時間経過するまで待機してもよい。また、センサ等で検出するタイミングに合わせて開始判定を行ってもよく、センサ等では、所定の時間間隔で周期的に情報を取得するようにしてもよい。
 図4は、バイパス制御での動作に関する処理フローを示すフロー図である。
 図4では、図3に示す開始判定の結果、バイパス制御を開始した直後を初期状態としている。
 ステップS11では、バイパス膨張弁62を初期開度にする。ここで、初期開度は、予め設定された値であって、例えば、ヒートポンプ1の機種別に、それぞれ定められていてもよい。
 ステップS12では、バイパス膨張弁62を徐々に開く。ここでは、バイパス膨張弁62の弁開度を開き方向に制御している。本実施の形態では、バイパス膨張弁62の弁開度を、60秒周期で所定量開くように制御している。
 ステップS13では、バイパス膨張弁62が上限開度になったかどうかが判定される。上限開度については、予め設定しておけばよい。その結果、バイパス膨張弁62が上限開度になった場合(ステップS13:Yes)、ステップS14に進む。一方、バイパス膨張弁62が上限開度になっていない場合(ステップS13:No)、ステップS12に戻る。
 ステップS14では、バイパス膨張弁62を室外膨張弁11に追従させる。具体的に、バイパス膨張弁62の上限開度を、室外膨張弁11の開度と同じ値に設定し、バイパス膨張弁62と室外膨張弁11とを同じ開度にする。
 バイパス制御を維持する場合は、ステップS14での動作を継続すればよい。なお、バイパス制御の最中に、開始判定を行ってもよく、室外機条件、外気温条件、および冷却水条件のうち、いずれか1つでも満たしていない場合には、バイパス制御を停止させてもよい。
 室外熱交換器5の能力は、外気温度に影響されるので、それに応じて蒸発用熱交換器8に送る冷媒を制御することで、最適な熱交換を行うことができる。また、室外機条件を設定することで、必要に応じてバイパス制御を行うことができる。さらに、冷却水条件を設定することで、蒸発用熱交換器8での熱交換が充分に実施できる場合に、バイパス制御を行うことができる。
 なお、今回開示した実施の形態は全ての点で例示であって、限定的な解釈の根拠となるものではない。従って、本発明の技術的範囲は、上記した実施の形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれる。
 なお、この出願は、日本で2020年3月25日に出願された特願2020-053961号に基づく優先権を請求する。その内容はこれに言及することにより、本出願に組み込まれるものである。また、本明細書に引用された文献は、これに言及することにより、その全部が具体的に組み込まれるものである。
 1 ヒートポンプ
 2 圧縮機
 3 オイルセパレータ
 4 四方弁
 5 室外熱交換器
 6 室内熱交換器
 7 アキュムレータ
 8 蒸発用熱交換器(第1熱交換器の一例)
 9 冷却用熱交換器(第2熱交換器の一例)
 11 室外膨張弁
 12 室内膨張弁
 20 オイル戻し配管
 40 吐出経路
 50 吸入経路
 51 フィルタ収容部
 52 フィルタ
 60 接続経路
 61 バイパス回路
 62 バイパス膨張弁(弁の一例)
 63 分岐経路
 64 分岐膨張弁

Claims (5)

  1.  室内熱交換器と、前記室内熱交換器と接続された室外熱交換器と、前記室外熱交換器と接続されたアキュムレータとを備え、冷媒を循環させて冷却および加熱するヒートポンプであって、
     前記室外熱交換器と前記アキュムレータとの間に設けられた第1熱交換器と、
     前記室内熱交換器から流出した冷媒を、前記第1熱交換器に流入させるバイパス回路とを備えること
     を特徴とするヒートポンプ。
  2.  請求項1に記載のヒートポンプであって、
     前記バイパス回路は、前記室内熱交換器と前記室外熱交換器とを繋ぐ経路から分岐し、冷媒の流通方向において、前記第1熱交換器の上流に接続されていること
     を特徴とするヒートポンプ。
  3.  請求項1または請求項2に記載のヒートポンプであって、
     前記バイパス回路には、該バイパス回路に流入する冷媒の流量を制御する弁が設けられ、
     前記弁は、高さ方向において、前記第1熱交換器よりも上方に配置されていること
     を特徴とするヒートポンプ。
  4.  請求項3に記載のヒートポンプであって、
     前記室外熱交換器と前記室内熱交換器との間に設けられた第2熱交換器を備え、
     前記弁は、高さ方向において、前記第2熱交換器よりも上方に配置されていること
     を特徴とするヒートポンプ。
  5.  請求項3または請求項4に記載のヒートポンプであって、
     前記弁は、外気温度が所定の温度範囲である場合に、弁開度を開き方向に制御されること
     を特徴とするヒートポンプ。
PCT/JP2021/008360 2020-03-25 2021-03-04 ヒートポンプ WO2021192885A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180005879.7A CN115315603A (zh) 2020-03-25 2021-03-04 热泵
US17/914,030 US20230137037A1 (en) 2020-03-25 2021-03-04 Heat pump
EP21775975.2A EP4130607A4 (en) 2020-03-25 2021-03-04 HEAT PUMP
KR1020227005621A KR20220153567A (ko) 2020-03-25 2021-03-04 히트 펌프

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-053961 2020-03-25
JP2020053961A JP2021156441A (ja) 2020-03-25 2020-03-25 ヒートポンプ

Publications (1)

Publication Number Publication Date
WO2021192885A1 true WO2021192885A1 (ja) 2021-09-30

Family

ID=77891279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008360 WO2021192885A1 (ja) 2020-03-25 2021-03-04 ヒートポンプ

Country Status (6)

Country Link
US (1) US20230137037A1 (ja)
EP (1) EP4130607A4 (ja)
JP (2) JP2021156441A (ja)
KR (1) KR20220153567A (ja)
CN (1) CN115315603A (ja)
WO (1) WO2021192885A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316062A (ja) * 1998-05-06 1999-11-16 Mitsubishi Heavy Ind Ltd 室外機ユニットおよび空気調和機
JP2016099067A (ja) 2014-11-21 2016-05-30 ヤンマー株式会社 ヒートポンプ
JP2019211207A (ja) * 2019-09-25 2019-12-12 ダイキン工業株式会社 空気調和装置
JP2020053961A (ja) 2018-09-26 2020-04-02 イーエム・ミクロエレクトロニク−マリン・エス アー Rfidデバイス用の改善された検出回路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565923B2 (ja) * 2004-08-03 2010-10-20 三洋電機株式会社 空気調和装置
US9822996B2 (en) * 2014-12-01 2017-11-21 David Deng Additive heat unit for HVAC heat pump system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11316062A (ja) * 1998-05-06 1999-11-16 Mitsubishi Heavy Ind Ltd 室外機ユニットおよび空気調和機
JP2016099067A (ja) 2014-11-21 2016-05-30 ヤンマー株式会社 ヒートポンプ
JP2020053961A (ja) 2018-09-26 2020-04-02 イーエム・ミクロエレクトロニク−マリン・エス アー Rfidデバイス用の改善された検出回路
JP2019211207A (ja) * 2019-09-25 2019-12-12 ダイキン工業株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130607A4

Also Published As

Publication number Publication date
KR20220153567A (ko) 2022-11-18
JP2021156441A (ja) 2021-10-07
EP4130607A1 (en) 2023-02-08
JP2023091020A (ja) 2023-06-29
CN115315603A (zh) 2022-11-08
US20230137037A1 (en) 2023-05-04
EP4130607A4 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
JP4974714B2 (ja) 給湯器
US7360372B2 (en) Refrigeration system
JP4781390B2 (ja) 冷凍サイクル装置
JP6819407B2 (ja) エンジン駆動式空気調和装置
KR20090009315A (ko) 냉동장치
JP2007225141A (ja) ガスヒートポンプ式空気調和装置及びガスヒートポンプ式空気調和装置の起動方法
JP5412193B2 (ja) ターボ冷凍機
JP2007107859A (ja) ガスヒートポンプ式空気調和装置
JP5145026B2 (ja) 空気調和装置
JP4082435B2 (ja) 冷凍装置
WO2021192885A1 (ja) ヒートポンプ
WO2013140992A1 (ja) 冷凍サイクル及び冷凍ショーケース
KR102017405B1 (ko) 히트 펌프
JP4288361B2 (ja) メンテナンス時期告知機能付きシステムの制御装置
CN114729767A (zh) 用于制冷装置的中间机组及制冷装置
JP6811605B2 (ja) ヒートポンプ
JP4585422B2 (ja) ガスヒートポンプ式空気調和装置
JP2008032391A (ja) 冷凍装置
JP2004012112A (ja) 空気調和機とその制御方法
JPH0914778A (ja) 空気調和装置
JP5398296B2 (ja) エンジン駆動式空気調和機
JP2005283025A (ja) 空気調和機
JP7235473B2 (ja) 冷凍装置
JP3721375B2 (ja) ガスエンジン駆動式空気調和装置
JP2007046860A (ja) エジェクタ式冷凍サイクル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021775975

Country of ref document: EP

Effective date: 20221025