WO2021189915A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2021189915A1
WO2021189915A1 PCT/CN2020/132264 CN2020132264W WO2021189915A1 WO 2021189915 A1 WO2021189915 A1 WO 2021189915A1 CN 2020132264 W CN2020132264 W CN 2020132264W WO 2021189915 A1 WO2021189915 A1 WO 2021189915A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
curvature
object side
refractive power
radius
Prior art date
Application number
PCT/CN2020/132264
Other languages
English (en)
French (fr)
Inventor
新田耕二
寺岡弘之
Original Assignee
诚瑞光学(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(深圳)有限公司 filed Critical 诚瑞光学(深圳)有限公司
Publication of WO2021189915A1 publication Critical patent/WO2021189915A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to an imaging lens, and in particular to a portable module camera, WEB camera, etc., suitable for high-resolution CCD, CMOS, etc.
  • the field of view (hereinafter referred to as 2 ⁇ ) is a wide-angle of 80° or more and has good optical characteristics and is an imaging lens composed of 8 lenses.
  • imaging elements such as CCD and CMOS have become widespread. With the miniaturization and high performance of these imaging elements, an imaging lens with a low height, a wide angle, and good optical characteristics is sought.
  • Patent Document 1 proposes the following imaging lens: a first lens having a positive refractive power, a second lens having a negative refractive power, and a second lens having a negative refractive power are arranged in order from the object side The third lens, the fourth lens with positive refractive power, the fifth lens with negative refractive power, the sixth lens with positive refractive power, the seventh lens with positive refractive power, and the eighth lens with negative refractive power.
  • the ratio of the Abbe number of the first lens to the Abbe number of the second lens, the ratio of the Abbe number of the first lens to the Abbe number of the third lens, and the The ratio of the on-axis distance from the image side surface of the fifth lens to the object side surface of the sixth lens to the focal length of the entire imaging lens is insufficient, and therefore the height reduction is insufficient.
  • Patent Document 1 JP Patent Publication No. 2020-13079
  • the object of the present invention is to provide an imaging lens composed of 8 lenses that has a low height, a wide angle, and good optical characteristics.
  • the power configuration of each lens, the ratio of the Abbe number of the first lens to the Abbe number of the second lens, the ratio of the Abbe number of the first lens to the Abbe number of the third lens, and the The ratio of the on-axis distance from the image side surface of the fifth lens to the object side surface of the sixth lens and the focal length of the entire imaging lens was studied intensively. As a result, it was found that an imaging lens that improved the problems of the prior art could be obtained, and the present invention was completed.
  • the imaging lens described in claim 1 is sequentially arranged from the object side with a first lens with positive refractive power, a second lens with negative refractive power, a third lens, a fourth lens with positive refractive power, a fifth lens, and a second lens.
  • ⁇ 1 represents the Abbe number of the first lens
  • ⁇ 2 represents the Abbe number of the second lens
  • ⁇ 3 represents the Abbe number of the third lens
  • f the overall focal length of the camera lens
  • d10 represents the on-axis distance from the image side surface of the fifth lens to the object side surface of the sixth lens.
  • the imaging lens described in Technical Solution 2 is based on the imaging lens described in Technical Solution 1, and satisfies the following relationship (4):
  • f1 represents the focal length of the first lens
  • f2 represents the focal length of the second lens.
  • the imaging lens described in Technical Solution 3 is based on the imaging lens described in Technical Solution 1, and satisfies the following relationship (5):
  • f the overall focal length of the camera lens
  • f7 represents the focal length of the seventh lens.
  • an imaging lens suitable for portable module cameras, WEB cameras, etc., which use high-resolution CCD, CMOS, and other imaging elements.
  • the height is reduced to TTL (optical length)/IH (image height) ⁇ 1.35, to ensure a wide angle of 2 ⁇ >80° or more, and has good optical characteristics, it is composed of 8 lenses.
  • FIG. 1 is a diagram showing a schematic configuration of an imaging lens LA according to Example 1 of the present invention.
  • FIG. 2 is a diagram showing spherical aberration, curvature of field, and distortion of the imaging lens LA according to Example 1 of the present invention.
  • Fig. 3 is a diagram showing a schematic configuration of an imaging lens LA according to Example 2 of the present invention.
  • FIG. 4 is a diagram showing spherical aberration, curvature of field, and distortion of imaging lens LA according to Example 2 of the present invention.
  • FIG. 5 is a diagram showing a schematic configuration of an imaging lens LA according to Example 3 of the present invention.
  • FIG. 6 is a diagram showing spherical aberration, curvature of field, and distortion of imaging lens LA according to Example 3 of the present invention.
  • Fig. 7 is a diagram showing a schematic configuration of an imaging lens LA according to Example 4 of the present invention.
  • Fig. 8 is a diagram showing the spherical aberration, curvature of field, and distortion of the imaging lens LA according to Example 4 of the present invention.
  • the imaging lens LA includes a lens system in which a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 are arranged from the object side to the image side.
  • a glass plate GF is arranged between the eighth lens L8 and the image surface. As this glass plate GF, cover glass, various filters, etc. are conceived. In the present invention, the glass plate GF can be arranged in different positions, and can also be omitted.
  • the first lens L1 is a lens with positive refractive power
  • the second lens L2 is a lens with negative refractive power
  • the third lens L3 is a lens with positive or negative refractive power
  • the fourth lens L4 is a lens with positive refractive power.
  • the fifth lens L5 is a lens with positive or negative refractive power
  • the sixth lens L6 is a lens with positive or negative refractive power
  • the seventh lens L7 is a lens with positive refractive power
  • the eighth lens L8 It is a lens with negative refractive power.
  • the surfaces of the eight lenses in order to correct various aberrations satisfactorily, it is desirable to make all the surfaces into an aspherical shape.
  • the imaging lens LA satisfies the following relational expressions (1) to (3):
  • d10 the on-axis distance from the image side surface of the fifth lens to the object side surface of the sixth lens.
  • the relational expression (1) specifies the ratio of the Abbe number ⁇ 1 of the first lens L1 to the Abbe number ⁇ 2 of the second lens L2. When it is outside the range of the relational expression (1), it is not preferable to correct the on-axis and off-axis chromatic aberrations due to wide-angle and low-profile.
  • the relational expression (2) specifies the ratio of the Abbe number ⁇ 1 of the first lens L1 to the Abbe number ⁇ 3 of the third lens L3.
  • the correction of on-axis and off-axis chromatic aberration becomes difficult with the wide-angle and low-height, which is not preferable.
  • the relational expression (3) specifies the ratio of the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6 to the focal length f of the entire imaging lens. When it is outside the range of the relational expression (3), it is difficult to achieve a wide angle and low height with good optical characteristics, which is not preferable.
  • the camera lens LA satisfies the following relationship (4):
  • f2 The focal length of the second lens.
  • the relationship (4) defines the ratio of the focal length f1 of the first lens L1 to the focal length f2 of the second lens L2. When it is within the range of the relational expression (4), it is easy to achieve a wide angle and low height with good optical characteristics, and therefore it is preferable.
  • the camera lens LA satisfies the following relationship (5):
  • f7 The focal length of the seventh lens.
  • the relational expression (5) defines the ratio of the focal length f7 of the seventh lens L7 to the focal length f of the entire imaging lens. When it is within the range of the relational expression (5), it is easy to achieve a wide angle and low height with good optical characteristics, and therefore it is preferable.
  • the 8 lenses that make up the imaging lens LA satisfy the above-mentioned configuration and relational expressions, so that the height can be reduced to TTL (optical length)/IH (image height) ⁇ 1.35, 2 ⁇ > 80° or more wide angle and good optics can be obtained.
  • TTL optical length
  • IH image height
  • R The radius of curvature of the optical surface, in the case of a lens, the radius of curvature of the center
  • R1 the radius of curvature of the object side of the first lens L1
  • R2 the radius of curvature of the image side surface of the first lens L1
  • R3 the radius of curvature of the object side of the second lens L2
  • R4 the radius of curvature of the image side surface of the second lens L2
  • R5 the radius of curvature of the object side surface of the third lens L3
  • R6 the radius of curvature of the image side surface of the third lens L3
  • R7 The curvature radius of the object side of the fourth lens L4
  • R8 the radius of curvature of the image side surface of the fourth lens L4
  • R9 the radius of curvature of the object side surface of the fifth lens L5
  • R10 the radius of curvature of the image side surface of the fifth lens L5
  • R11 the radius of curvature of the object side surface of the sixth lens L6
  • R12 the radius of curvature of the image side surface of the sixth lens L6
  • R13 the radius of curvature of the object side surface of the seventh lens L7
  • R14 the radius of curvature of the image side surface of the seventh lens L7
  • R15 the radius of curvature of the object side of the eighth lens L8
  • R16 The radius of curvature of the image side surface of the eighth lens L8
  • R17 The curvature radius of the object side surface of the glass plate GF
  • d the center thickness of the lens or the distance between the lenses
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2
  • nd1 the refractive index of the d-line of the first lens L1
  • nd2 the refractive index of the d-line of the second lens L2
  • ndg the refractive index of the d-line of the glass plate GF
  • TTL optical length (the on-axis distance from the object side of the first lens L1 to the image surface)
  • the aspherical surface of each lens surface uses the aspherical surface shown in formula (6).
  • the present invention is not limited to the aspheric polynomial of equation (6).
  • FIG. 1 is a configuration diagram showing the arrangement of an imaging lens LA of Example 1.
  • the first lens L1 to the eighth lens L8 constituting the imaging lens LA of Example 1 have the respective object side and image side curvature radii R, lens center thickness or inter-lens distance d, refractive index nd, and Abbe number ⁇ as shown in the table
  • the conic coefficient k and aspheric coefficients are shown in Table 2
  • 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, f7, f8, TTL, IH are shown in Table 3.
  • Table 13 to be described later shows values corresponding to the parameters defined by the relational expressions (1) to (6) of each of Examples 1 to 4.
  • the spherical aberration, curvature of field, and distortion of the imaging lens LA of Embodiment 1 are shown in FIG. 2.
  • S in the curvature of field in the figure is the curvature of field on the sagittal image surface
  • T is the curvature of field on the meridional image surface, and the same applies to the second to fourth embodiments.
  • FIG. 3 is a configuration diagram showing the arrangement of the imaging lens LA of the second embodiment.
  • the first lens L1 to the eighth lens L8 constituting the imaging lens LA of Example 2 have the respective object side and image side curvature radii R, lens center thickness or inter-lens distance d, refractive index nd, and Abbe number ⁇ as shown in the table
  • the conic coefficient k and aspheric coefficients are shown in Table 5, and 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, f7, f8, TTL, IH are shown in Table 6.
  • Example 2 satisfies relational expressions (1) to (5).
  • the spherical aberration, curvature of field, and distortion of the imaging lens LA of Embodiment 2 are shown in FIG. 4.
  • FIG. 5 is a configuration diagram showing the arrangement of imaging lens LA of Example 3.
  • the first lens L1 to the eighth lens L8 constituting the imaging lens LA of Example 3 have respective object side and image side curvature radii R, lens center thickness or inter-lens distance d, refractive index nd, and Abbe number ⁇ as shown in the table
  • the conic coefficient k and aspheric coefficients are shown in Table 8, and 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, f7, f8, TTL, IH are shown in Table 9.
  • Example 3 as shown in Table 13, satisfies relational expressions (1) to (5).
  • the spherical aberration, curvature of field, and distortion of the imaging lens LA of the third embodiment are shown in FIG. 6.
  • FIG. 7 is a configuration diagram showing the arrangement of imaging lens LA of Example 4.
  • the first lens L1 to the eighth lens L8 constituting the imaging lens LA of Example 4 have respective object side and image side curvature radii R, lens center thickness or inter-lens distance d, refractive index nd, and Abbe number ⁇ as shown in the table
  • the conic coefficient k and aspheric coefficients are shown in Table 11. 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, f6, f7, f8, TTL, IH are shown in Table 12.
  • Example 4 as shown in Table 13, satisfies relational expressions (1) to (5).
  • the spherical aberration, curvature of field, and distortion of the imaging lens LA of the embodiment 4 are shown in FIG. 8.
  • Example 2 Example 3
  • Example 4 Remark v1/v2 3.034 4.897 3.950 4.433 (1) formula v1/v3 3.034 4.897 3.950 4.433 (2) formula d10/f 0.065 0.115 0.090 0.078 (3) formula f1/f2 -0.345 -0.105 -0.200 -0.176 (4) formula f7/f 24.950 3.050 15.000 15.122 (5) formula
  • R1 the radius of curvature of the object side of the first lens L1
  • R2 the radius of curvature of the image side surface of the first lens L1
  • R3 the radius of curvature of the object side of the second lens L2
  • R4 the radius of curvature of the image side surface of the second lens L2
  • R5 the radius of curvature of the object side surface of the third lens L3
  • R6 the radius of curvature of the image side surface of the third lens L3
  • R7 The curvature radius of the object side of the fourth lens L4
  • R8 the radius of curvature of the image side surface of the fourth lens L4
  • R9 the radius of curvature of the object side surface of the fifth lens L5
  • R10 the radius of curvature of the image side surface of the fifth lens L5
  • R11 the radius of curvature of the object side surface of the sixth lens L6
  • R12 the radius of curvature of the image side surface of the sixth lens L6
  • R13 the radius of curvature of the object side surface of the seventh lens L7
  • R14 the radius of curvature of the image side surface of the seventh lens L7
  • R15 the radius of curvature of the object side of the eighth lens L8
  • R16 The radius of curvature of the image side surface of the eighth lens L8
  • R17 The curvature radius of the object side surface of the glass plate GF
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2
  • d18 The on-axis distance from the image side surface of the glass plate GF to the image surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种低高度、广角且具有良好的光学特性的利用8片透镜而构成的摄像镜头,摄像镜头从物侧起依次配置有具有正屈折力的第一透镜(L1)、具有负屈折力的第二透镜(L2)、第三透镜(L3)、具有正屈折力的第四透镜(L4)、第五透镜(L5)、第六透镜(L6)、具有正屈折力的第七透镜(L7)以及具有负屈折力的第八透镜(L8),且满足给定的关系式。

Description

摄像镜头 技术领域
本发明涉及摄像镜头,尤其涉及适合于采用高像素用CCD、CMOS等摄像元件的便携式用模块相机、WEB相机等的、低高度化为TTL(光学长度)/IH(像高)<1.35、全视场角(以下,设为2ω)为80°以上的广角且具有良好的光学特性的利用8片透镜而构成的摄像镜头。
背景技术
近年,采用CCD、CMOS等摄像元件的各种摄像装置广泛普及。伴随这些摄像元件的小型化、高性能化,寻求低高度、广角且具有良好的光学特性的摄像镜头。
与低高度、广角且具有良好的光学特性的利用8片透镜而构成的摄像镜头相关的技术开发正在推进。作为该8片透镜结构的摄像镜头,在专利文献1中提出了如下摄像镜头:从物侧起依次配置有具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有负屈折力的第三透镜、具有正屈折力的第四透镜、具有负屈折力的第五透镜、具有正屈折力的第六透镜、具有正屈折力的第七透镜以及具有负屈折力的第八透镜。
关于专利文献1的实施例中公开的摄像镜头,第一透镜的阿贝数与第二透镜的阿贝数之比、第一透镜的阿贝数与第三透镜的阿贝数之比以及从第五透镜的像侧面到第六透镜的物侧面的轴上距离与摄像镜头整体的焦距之比不充分、因此低高度化不充分。
(在先技术文献)
(专利文献)
专利文献1:JP特开2020-13079号公报
发明内容
(发明要解决的课题)
本发明的目的在于提供低高度、广角且具有良好的光学特性的利用8片透镜而构成的摄像镜头。
(用于解决课题的技术方案)
为了达成上述目标,对各透镜的功率配置、第一透镜的阿贝数与第二透镜的阿贝数之比、第一透镜的阿贝数与第三透镜的阿贝数之比以及从第五透镜的像侧面到第六透镜的物侧面的轴上距离与摄像镜头整体的焦距之比进行了锐意探讨,结果发现可得到改善了现有技术的课题的摄像镜头,从而完成本发明。
技术方案1记载的摄像镜头从物侧起依次配置有具有正屈折力的第一透镜、具有负屈折力的第二透镜、第三透镜、具有正屈折力的第四透镜、第五透镜、第六透镜、具有正屈折力的第七透镜以及具有负屈折力的第八 透镜,且满足以下的关系式(1)~(3):
3.00≤ν1/ν2≤5.00   (1)
3.00≤ν1/ν3≤5.00   (2)
0.06≤d10/f≤0.12   (3)
其中,
ν1表示第一透镜的阿贝数,
ν2表示第二透镜的阿贝数,
ν3表示第三透镜的阿贝数,
f表示摄像镜头整体的焦距,
d10表示从第五透镜的像侧面到第六透镜的物侧面的轴上距离。
技术方案2记载的摄像镜头是在技术方案1记载的摄像镜头的基础上,满足以下的关系式(4):
-0.35≤f1/f2≤-0.10   (4)
其中,
f1表示第一透镜的焦距,
f2表示第二透镜的焦距。
技术方案3记载的摄像镜头是在技术方案1记载的摄像镜头的基础上,满足以下的关系式(5):
3.00≤f7/f≤25.00   (5)
其中,
f表示摄像镜头整体的焦距,
f7表示第七透镜的焦距。
(发明效果)
根据本发明,尤其能提供一种摄像镜头,适合于采用高像素用CCD、CMOS等摄像元件的便携式用模块相机、WEB相机等,低高度化为TTL(光学长度)/IH(像高)<1.35,保证2ω>80°以上的广角,且具有良好的光学特性,利用8片透镜而构成。
附图说明
图1是表示本发明的实施例1的摄像镜头LA的概略构成的图。
图2是表示本发明的实施例1的摄像镜头LA的球差、场曲、畸变的图。
图3是表示本发明的实施例2的摄像镜头LA的概略构成的图。
图4是表示本发明的实施例2的摄像镜头LA的球差、场曲、畸变的图。
图5是表示本发明的实施例3的摄像镜头LA的概略构成的图。
图6是表示本发明的实施例3的摄像镜头LA的球差、场曲、畸变的图。
图7是表示本发明的实施例4的摄像镜头LA的概略构成的图。
图8是表示本发明的实施例4的摄像镜头LA的球差、场曲、畸变的 图。
具体实施方式
针对本发明所涉及的摄像镜头的实施方式进行说明。该摄像镜头LA具备透镜系统,该透镜系统是从物侧向像侧配置有第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8的8片透镜结构。在第八透镜L8与像面之间配置玻璃平板GF。作为该玻璃平板GF,设想了盖板玻璃以及各种滤光片等。在本发明中,玻璃平板GF可以配置于不同位置,还可以省略。
第一透镜L1是具有正屈折力的透镜,第二透镜L2是具有负屈折力的透镜,第三透镜L3是具有正屈折力或负屈折力的透镜,第四透镜L4是具有正屈折力的透镜,第五透镜L5是具有正屈折力或负屈折力的透镜,第六透镜L6是具有正屈折力或负屈折力的透镜,第七透镜L7是具有正屈折力的透镜,第八透镜L8是具有负屈折力的透镜。关于这8片透镜的表面,为了良好地校正诸像差,期望将所有面设为非球面形状。
该摄像镜头LA满足以下的关系式(1)~(3):
3.00≤ν1/ν2≤5.00   (1)
3.00≤ν1/ν3≤5.00   (2)
0.06≤d10/f≤0.12   (3)
其中,
ν1:第一透镜的阿贝数
ν2:第二透镜的阿贝数
ν3:第三透镜的阿贝数
f:摄像镜头整体的焦距
d10:从第五透镜的像侧面到第六透镜的物侧面的轴上距离。
关系式(1)规定第一透镜L1的阿贝数ν1与第二透镜L2的阿贝数ν2之比。在处于关系式(1)的范围外时,伴随广角、低高度化,轴上、轴外的色差的校正变难,因此不优选。
关系式(2)规定第一透镜L1的阿贝数ν1与第三透镜L3的阿贝数ν3之比。在处于关系式(2)的范围外时、伴随广角、低高度化,轴上、轴外的色差的校正变难,因此不优选。
关系式(3)规定从第五透镜L5像侧面到第六透镜L6的物侧面的轴上距离与摄像镜头整体的焦距f之比。在处于关系式(3)的范围外时,具有良好的光学特性的广角、低高度化变难,因此不优选。
该摄像镜头LA满足以下的关系式(4):
-0.35≤f1/f2≤-0.10   (4)
其中,
f1:第一透镜的焦距
f2:第二透镜的焦距。
关系式(4)规定第一透镜L1的焦距f1与第二透镜L2的焦距f2之 比。在处于关系式(4)的范围内时,具有良好的光学特性的广角、低高度化容易,因此优选。
该摄像镜头LA满足以下的关系式(5):
3.00≤f7/f≤25.00   (5)
其中,
f:摄像镜头整体的焦距
f7:第七透镜的焦距。
关系式(5)规定第七透镜L7的焦距f7与摄像镜头整体的焦距f之比。在处于关系式(5)的范围内时,具有良好的光学特性的广角、低高度化容易,因此优选。
构成摄像镜头LA的8片透镜分别满足上述构成以及关系式,从而能得到低高度化为TTL(光学长度)/IH(像高)<1.35、保证2ω>80°以上的广角且具有良好的光学特性的利用8片透镜而构成的摄像镜头。
(实施例)
以下,使用实施例来说明本发明的摄像镜头LA。各实施例记载的记号如下所示。此外,距离、半径以及中心厚度的单位是mm。
f:摄像镜头LA整体的焦距
f1:第一透镜L1的焦距
f2:第二透镜L2的焦距
f3:第三透镜L3的焦距
f4:第四透镜L4的焦距
f5:第五透镜L5的焦距
f6:第六透镜L6的焦距
f7:第七透镜L7的焦距
f8:第八透镜L8的焦距
Fno:F值
2ω:全视场角
S1:开口光圈
R:光学面的曲率半径,透镜的情况下为中心曲率半径
R1:第一透镜L1的物侧面的曲率半径
R2:第一透镜L1的像侧面的曲率半径
R3:第二透镜L2的物侧面的曲率半径
R4:第二透镜L2的像侧面的曲率半径
R5:第三透镜L3的物侧面的曲率半径
R6:第三透镜L3的像侧面的曲率半径
R7:第四透镜L4的物侧面的曲率半径
R8:第四透镜L4的像侧面的曲率半径
R9:第五透镜L5的物侧面的曲率半径
R10:第五透镜L5的像侧面的曲率半径
R11:第六透镜L6的物侧面的曲率半径
R12:第六透镜L6的像侧面的曲率半径
R13:第七透镜L7的物侧面的曲率半径
R14:第七透镜L7的像侧面的曲率半径
R15:第八透镜L8的物侧面的曲率半径
R16:第八透镜L8的像侧面的曲率半径
R17:玻璃平板GF的物侧面的曲率半径
R18:玻璃平板GF的像侧面的曲率半径
d:透镜的中心厚度或透镜间距离
d0:从开口光圈S1到第一透镜L1的物侧面的轴上距离
d1:第一透镜L1的中心厚度
d2:从第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离
d3:第二透镜L2的中心厚度
d4:从第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离
d5:第三透镜L3的中心厚度
d6:从第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离
d7:第四透镜L4的中心厚度
d8:从第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离
d9:第五透镜L5的中心厚度
d10:从第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离
d11:第六透镜L6的中心厚度
d12:从第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离
d13:第七透镜L7的中心厚度
d14:从第七透镜L7的像侧面到第八透镜L8的物侧面的轴上距离
d15:第八透镜L8的中心厚度
d16:从第八透镜L8的像侧面到玻璃平板GF的物侧面的轴上距离
d17:玻璃平板GF的中心厚度
d18:从玻璃平板GF的像侧面到像面的轴上距离
nd:d线的折射率
nd1:第一透镜L1的d线的折射率
nd2:第二透镜L2的d线的折射率
nd3:第三透镜L3的d线的折射率
nd4:第四透镜L4的d线的折射率
nd5:第五透镜L5的d线的折射率
nd6:第六透镜L6的d线的折射率
nd7:第七透镜L7的d线的折射率
nd8:第八透镜L8的d线的折射率
ndg:玻璃平板GF的d线的折射率
ν:阿贝数
ν1:第一透镜L1的阿贝数
ν2:第二透镜L2的阿贝数
ν3:第三透镜L3的阿贝数
ν4:第四透镜L4的阿贝数
ν5:第五透镜L5的阿贝数
ν6:第六透镜L6的阿贝数
ν7:第七透镜L7的阿贝数
ν8:第八透镜L8的阿贝数
νg:玻璃平板GF的阿贝数
TTL:光学长度(从第一透镜L1的物侧面到像面的轴上距离)
LB:从第八透镜L8的像侧面到像面的轴上距离(包含玻璃平板GF的厚度)
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20   (6)
为方便起见,各透镜面的非球面使用式(6)中所示的非球面。然而,本发明不限于该式(6)的非球面多项式。
(实施例1)
图1是表示实施例1的摄像镜头LA的配置的构成图。构成实施例1的摄像镜头LA的第一透镜L1~第八透镜L8的各自的物侧以及像侧的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数ν如表1所示,圆锥系数k、非球面系数如表2所示,2ω、Fno、f、f1、f2、f3、f4、f5、f6、f7、f8、TTL、IH如表3所示。
(表1)
Figure PCTCN2020132264-appb-000001
                                                     参照波长=588nm
(表2)
Figure PCTCN2020132264-appb-000002
(表3)
2ω(°) 81.91
Fno 1.75
f(mm) 6.765
f1(mm) 5.630
f2(mm) -16.313
f3(mm) -46.984
f4(mm) 32.455
f5(mm) 29.631
f6(mm) 103.091
f7(mm) 168.789
f8(mm) -6.884
TTL(mm) 7.951
LB(mm) 1.043
IH(mm) 6.016
TTL/IH 1.322
后述的表13示出与各实施例1~4的关系式(1)~(6)规定的参数对应的值。
实施例1的摄像镜头LA的球差、场曲、畸变如图2所示。此外,图的场曲的S是针对弧矢像面的场曲,T是针对子午像面的场曲,在实施例2~4中也同样。实施例1的摄像镜头LA如图2所示可知,2ω=81.91°,广角低高度化为TTL/IH=1.322,具有良好的光学特性。
(实施例2)
图3是表示实施例2的摄像镜头LA的配置的构成图。构成实施例2的摄像镜头LA的第一透镜L1~第八透镜L8的各自的物侧以及像侧的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数ν如表4所示,圆锥系数k、非球面系数如表5所示,2ω、Fno、f、f1、f2、f3、f4、f5、f6、f7、f8、TTL、IH如表6所示。
(表4)
Figure PCTCN2020132264-appb-000003
                                                      参照波长=588nm
(表5)
Figure PCTCN2020132264-appb-000004
(表6)
2ω(°) 81.27
Fno 1.95
f(mm) 6.796
f1(mm) 7.201
f2(mm) -68.484
f3(mm) 460.256
f4(mm) 9.189
f5(mm) -20.030
f6(mm) -28.346
f7(mm) 20.729
f8(mm) -6.006
TTL(mm) 7.950
LB(mm) 1.055
IH(mm) 6.016
TTL/IH 1.321
实施例2如表13所示,满足关系式(1)~(5)。
实施例2的摄像镜头LA的球差、场曲、畸变如图4所示。实施例2的摄像镜头LA如图4所示可知,2ω=81.27°,广角低高度化为TTL/IH=1.321,具有良好的光学特性。
(实施例3)
图5是表示实施例3的摄像镜头LA的配置的构成图。构成实施例3的摄像镜头LA的第一透镜L1~第八透镜L8的各自的物侧以及像侧的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数ν如表7所示,圆锥系数k、非球面系数如表8所示,2ω、Fno、f、f1、f2、f3、f4、f5、f6、f7、f8、TTL、IH如表9所示。
(表7)
Figure PCTCN2020132264-appb-000005
                                                          参照波长=588nm
(表8)
Figure PCTCN2020132264-appb-000006
(表9)
2ω(°) 81.72
Fno 1.85
f(mm) 6.744
f1(mm) 6.340
f2(mm) -31.696
f3(mm) -61.510
f4(mm) 53.023
f5(mm) 30.307
f6(mm) 74.193
f7(mm) 101.153
f8(mm) -6.539
TTL(mm) 7.801
LB(mm) 1.073
IH(mm) 6.016
TTL/IH 1.297
实施例3如表13所示,满足关系式(1)~(5)。
实施例3的摄像镜头LA的球差、场曲、畸变如图6所示。实施例3的摄像镜头LA如图6所示可知,2ω=81.72°,广角低高度化为TTL/IH=1.297,具有良好的光学特性。
(实施例4)
图7是表示实施例4的摄像镜头LA的配置的构成图。构成实施例4的摄像镜头LA的第一透镜L1~第八透镜L8的各自的物侧以及像侧的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数ν如表10所示,圆锥系数k、非球面系数如表11所示,2ω、Fno、f、f1、f2、f3、f4、f5、f6、f7、f8、TTL、IH如表12所示。
(表10)
Figure PCTCN2020132264-appb-000007
                                                        参照波长=588nm
(表11)
Figure PCTCN2020132264-appb-000008
(表12)
2ω(°) 84.50
Fno 1.95
f(mm) 6.437
f1(mm) 6.393
f2(mm) -36.273
f3(mm) 460.256
f4(mm) 15.988
f5(mm) -105.017
f6(mm) -200.000
f7(mm) 97.341
f8(mm) -6.827
TTL(mm) 7.601
LB(mm) 1.066
IH(mm) 6.016
TTL/IH 1.263
实施例4如表13所示,满足关系式(1)~(5)。
实施例4的摄像镜头LA的球差、场曲、畸变如图8所示。实施例4的摄像镜头LA如图8所示可知,2ω=84.50°,广角低高度化为TTL/IH=1.263,具有良好的光学特性。
(表13)
  实施例1 实施例2 实施例3 实施例4 备注
v1/v2 3.034 4.897 3.950 4.433 (1)式
v1/v3 3.034 4.897 3.950 4.433 (2)式
d10/f 0.065 0.115 0.090 0.078 (3)式
f1/f2 -0.345 -0.105 -0.200 -0.176 (4)式
f7/f 24.950 3.050 15.000 15.122 (5)式
(标号说明)
LA:摄像镜头
L1:第一透镜
L2:第二透镜
L3:第三透镜
L4:第四透镜
L5:第五透镜
L6:第六透镜
L7:第七透镜
L8:第八透镜
GF:玻璃平板
R1:第一透镜L1的物侧面的曲率半径
R2:第一透镜L1的像侧面的曲率半径
R3:第二透镜L2的物侧面的曲率半径
R4:第二透镜L2的像侧面的曲率半径
R5:第三透镜L3的物侧面的曲率半径
R6:第三透镜L3的像侧面的曲率半径
R7:第四透镜L4的物侧面的曲率半径
R8:第四透镜L4的像侧面的曲率半径
R9:第五透镜L5的物侧面的曲率半径
R10:第五透镜L5的像侧面的曲率半径
R11:第六透镜L6的物侧面的曲率半径
R12:第六透镜L6的像侧面的曲率半径
R13:第七透镜L7的物侧面的曲率半径
R14:第七透镜L7的像侧面的曲率半径
R15:第八透镜L8的物侧面的曲率半径
R16:第八透镜L8的像侧面的曲率半径
R17:玻璃平板GF的物侧面的曲率半径
R18:玻璃平板GF的像侧面的曲率半径
d0:从开口光圈S1到第一透镜L1的物侧面的轴上距离
d1:第一透镜L1的中心厚度
d2:从第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离
d3:第二透镜L2的中心厚度
d4:从第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离
d5:第三透镜L3的中心厚度
d6:从第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离
d7:第四透镜L4的中心厚度
d8:从第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离
d9:第五透镜L5的中心厚度
d10:从第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离
d11:第六透镜L6的中心厚度
d12:从第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离
d13:第七透镜L7的中心厚度
d14:从第七透镜L7的像侧面到第八透镜L8的物侧面的轴上距离
d15:第八透镜L8的中心厚度
d16:从第八透镜L8的像侧面到玻璃平板GF的物侧面的轴上距离
d17:玻璃平板GF的中心厚度
d18:从玻璃平板GF的像侧面到像面的轴上距离。

Claims (3)

  1. 一种摄像镜头,其特征在于,
    从物侧起依次配置有具有正屈折力的第一透镜、具有负屈折力的第二透镜、第三透镜、具有正屈折力的第四透镜、第五透镜、第六透镜、具有正屈折力的第七透镜以及具有负屈折力的第八透镜,且满足以下的关系式(1)~(3):
    3.00≤ν1/ν2≤5.00  (1)
    3.00≤ν1/ν3≤5.00  (2)
    0.06≤d10/f≤0.12  (3)
    其中,
    ν1表示第一透镜的阿贝数,
    ν2表示第二透镜的阿贝数,
    ν3表示第三透镜的阿贝数,
    f表示摄像镜头整体的焦距,
    d10表示从第五透镜的像侧面到第六透镜的物侧面的轴上距离。
  2. 根据权利要求1所述的摄像镜头,其特征在于,
    所述摄像镜头满足以下的关系式(4):
    -0.35≤f1/f2≤-0.10  (4)
    其中,
    f1表示第一透镜的焦距,
    f2表示第二透镜的焦距。
  3. 根据权利要求1所述的摄像镜头,其特征在于,
    所述摄像镜头满足以下的关系式(5):
    3.00≤f7/f≤25.00  (5)
    其中,
    f表示摄像镜头整体的焦距,
    f7表示第七透镜的焦距。
PCT/CN2020/132264 2020-03-25 2020-11-27 摄像镜头 WO2021189915A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020054966A JP6748322B1 (ja) 2020-03-25 2020-03-25 撮像レンズ
JP2020-054966 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021189915A1 true WO2021189915A1 (zh) 2021-09-30

Family

ID=71902613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132264 WO2021189915A1 (zh) 2020-03-25 2020-11-27 摄像镜头

Country Status (4)

Country Link
US (1) US11543628B2 (zh)
JP (1) JP6748322B1 (zh)
CN (1) CN111522125B (zh)
WO (1) WO2021189915A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6748322B1 (ja) * 2020-03-25 2020-08-26 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像レンズ
KR102504062B1 (ko) * 2020-08-18 2023-02-27 삼성전기주식회사 촬상 광학계
WO2022052018A1 (zh) * 2020-09-11 2022-03-17 欧菲光集团股份有限公司 光学系统、摄像模组及电子设备
CN111965800B (zh) * 2020-10-21 2020-12-25 常州市瑞泰光电有限公司 摄像光学镜头
CN111965799B (zh) * 2020-10-21 2020-12-25 常州市瑞泰光电有限公司 摄像光学镜头
WO2022204923A1 (zh) * 2021-03-30 2022-10-06 欧菲光集团股份有限公司 光学系统、取像模组及电子设备
CN116243466A (zh) * 2021-09-30 2023-06-09 华为技术有限公司 一种镜头组件、摄像头模组及电子设备
US20230168467A1 (en) * 2021-11-26 2023-06-01 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN114217417A (zh) * 2021-12-28 2022-03-22 玉晶光电(厦门)有限公司 光学成像镜头
CN114167586A (zh) * 2021-12-28 2022-03-11 玉晶光电(厦门)有限公司 光学成像镜头
CN114200649A (zh) * 2021-12-28 2022-03-18 玉晶光电(厦门)有限公司 光学成像镜头
CN114624867B (zh) * 2022-05-16 2022-08-30 江西晶超光学有限公司 光学系统、摄像模组及电子设备
CN114690378B (zh) * 2022-06-02 2022-10-21 江西晶超光学有限公司 一种光学成像系统、镜头模组及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170059832A1 (en) * 2015-08-31 2017-03-02 Panasonic Intellectual Property Management Co., Ltd. Single focal length lens system, interchangeable lens apparatus, and camera system
KR20180095276A (ko) * 2017-02-17 2018-08-27 삼성전자주식회사 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치
CN110515183A (zh) * 2019-08-19 2019-11-29 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN110531501A (zh) * 2019-10-09 2019-12-03 浙江舜宇光学有限公司 光学成像镜头
JP6748322B1 (ja) * 2020-03-25 2020-08-26 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像レンズ
CN112083550A (zh) * 2019-06-12 2020-12-15 大立光电股份有限公司 摄影镜头组、取像装置及电子装置
CN112241059A (zh) * 2019-07-17 2021-01-19 大立光电股份有限公司 光学成像镜头组、取像装置及电子装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202414A (ja) * 1982-05-20 1983-11-25 Minolta Camera Co Ltd 逆望遠型写真レンズ
JP3455201B2 (ja) * 2001-11-14 2003-10-14 オリンパス光学工業株式会社 3群ズーム光学系及びそれを備えたカメラ
TWI534472B (zh) * 2014-08-22 2016-05-21 信泰光學(深圳)有限公司 變焦鏡頭
TWI553341B (zh) * 2015-08-11 2016-10-11 大立光電股份有限公司 影像擷取鏡片組、取像裝置及電子裝置
TWI636279B (zh) * 2017-08-18 2018-09-21 大立光電股份有限公司 影像擷取光學系統組、取像裝置及電子裝置
CN108107545B (zh) * 2017-09-29 2020-02-04 玉晶光电(厦门)有限公司 光学成像镜头
CN107831588B (zh) * 2017-11-29 2019-11-26 浙江舜宇光学有限公司 光学成像镜头
CN108121053B (zh) * 2017-12-29 2024-05-17 玉晶光电(厦门)有限公司 光学成像镜头
CN108121056A (zh) * 2017-12-29 2018-06-05 玉晶光电(厦门)有限公司 光学成像镜头
CN108227146B (zh) * 2017-12-29 2020-02-11 玉晶光电(厦门)有限公司 光学成像镜头
CN115561882A (zh) * 2017-12-29 2023-01-03 玉晶光电(厦门)有限公司 光学成像镜头
CN115616745A (zh) * 2017-12-29 2023-01-17 玉晶光电(厦门)有限公司 光学成像镜头
CN115061266A (zh) * 2018-06-26 2022-09-16 三星电机株式会社 光学成像系统
JP6460506B1 (ja) * 2018-07-20 2019-01-30 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
JP6530538B1 (ja) * 2018-07-20 2019-06-12 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
JP6463592B1 (ja) * 2018-07-20 2019-02-06 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
JP6463591B1 (ja) * 2018-07-20 2019-02-06 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
CN108681040B (zh) * 2018-08-02 2023-06-09 浙江舜宇光学有限公司 光学成像镜片组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170059832A1 (en) * 2015-08-31 2017-03-02 Panasonic Intellectual Property Management Co., Ltd. Single focal length lens system, interchangeable lens apparatus, and camera system
KR20180095276A (ko) * 2017-02-17 2018-08-27 삼성전자주식회사 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치
CN112083550A (zh) * 2019-06-12 2020-12-15 大立光电股份有限公司 摄影镜头组、取像装置及电子装置
CN112241059A (zh) * 2019-07-17 2021-01-19 大立光电股份有限公司 光学成像镜头组、取像装置及电子装置
CN110515183A (zh) * 2019-08-19 2019-11-29 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN110531501A (zh) * 2019-10-09 2019-12-03 浙江舜宇光学有限公司 光学成像镜头
JP6748322B1 (ja) * 2020-03-25 2020-08-26 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像レンズ

Also Published As

Publication number Publication date
JP2021156966A (ja) 2021-10-07
US11543628B2 (en) 2023-01-03
JP6748322B1 (ja) 2020-08-26
CN111522125A (zh) 2020-08-11
US20210302697A1 (en) 2021-09-30
CN111522125B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2021189915A1 (zh) 摄像镜头
WO2021189916A1 (zh) 摄像镜头
WO2021189917A1 (zh) 摄像镜头
CN109541781B (zh) 摄像镜头
WO2020125161A1 (zh) 摄像镜头
WO2020125162A1 (zh) 摄像镜头
WO2021258612A1 (zh) 摄像镜头
JP5890947B1 (ja) 撮像レンズ
JP5890948B1 (ja) 撮像レンズ
JP5951912B1 (ja) 撮像レンズ
WO2020125158A1 (zh) 摄像镜头
WO2022021453A1 (zh) 摄像光学镜头
WO2021169447A1 (zh) 摄像镜头
JP2017122876A (ja) 撮像レンズ
WO2021147470A1 (zh) 摄像镜头
WO2022057031A1 (zh) 摄像镜头
WO2022047999A1 (zh) 摄像光学镜头
WO2020125159A1 (zh) 摄像镜头
WO2022021457A1 (zh) 摄像光学镜头
WO2022021455A1 (zh) 摄像光学镜头
WO2022088225A1 (zh) 摄像镜头
JP6900584B1 (ja) 撮像レンズ
US20220026680A1 (en) Camera optical lens
WO2022021454A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927963

Country of ref document: EP

Kind code of ref document: A1