WO2022021453A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2022021453A1
WO2022021453A1 PCT/CN2020/106602 CN2020106602W WO2022021453A1 WO 2022021453 A1 WO2022021453 A1 WO 2022021453A1 CN 2020106602 W CN2020106602 W CN 2020106602W WO 2022021453 A1 WO2022021453 A1 WO 2022021453A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
ttl
optical lens
focal length
Prior art date
Application number
PCT/CN2020/106602
Other languages
English (en)
French (fr)
Inventor
孙雯
Original Assignee
常州市瑞泰光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州市瑞泰光电有限公司 filed Critical 常州市瑞泰光电有限公司
Publication of WO2022021453A1 publication Critical patent/WO2022021453A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the purpose of the present invention is to provide an imaging optical lens, which has good optical performance while having large aperture, ultra-thinning and wide-angle.
  • a photographic optical lens characterized in that the photographic optical lens comprises eight lenses in total, and the eight lenses are sequentially from the object side to the image side: a first lens with negative refractive power, and a lens with positive refractive power.
  • the on-axis distance from the image side of the fourth lens to the object side of the fifth lens is d8, the on-axis thickness of the fifth lens is d9, and the following relationship is satisfied:
  • the overall focal length of the imaging optical lens is f
  • the focal length of the first lens is f1
  • the central radius of curvature of the object side of the first lens is R1
  • the central radius of curvature of the image side of the first lens is R2
  • the on-axis thickness of the first lens is d1
  • the optical total length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the overall focal length of the imaging optical lens is f
  • the focal length of the second lens is f2
  • the central radius of curvature of the object side of the second lens is R3
  • the central radius of curvature of the image side of the second lens is R4
  • the on-axis thickness of the second lens is d3
  • the optical total length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the overall focal length of the imaging optical lens is f
  • the focal length of the third lens is f3
  • the central radius of curvature of the object side of the third lens is R5
  • the central radius of curvature of the image side of the third lens is R6
  • the axial thickness of the third lens is d5
  • the optical total length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the overall focal length of the imaging optical lens is f
  • the focal length of the fourth lens is f4
  • the central radius of curvature of the object side of the fourth lens is R7
  • the central radius of curvature of the image side of the fourth lens is R8,
  • the on-axis thickness of the fourth lens is d7
  • the optical total length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the overall focal length of the imaging optical lens is f
  • the focal length of the fifth lens is f5
  • the central radius of curvature of the object side of the fifth lens is R9
  • the central radius of curvature of the image side of the fifth lens is R10
  • the on-axis thickness of the fifth lens is d9
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the overall focal length of the imaging optical lens is f
  • the focal length of the sixth lens is f6
  • the central radius of curvature of the object side of the sixth lens is R11
  • the central radius of curvature of the image side of the sixth lens is R12
  • the axial thickness of the sixth lens is d11
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the overall focal length of the imaging optical lens is f
  • the focal length of the seventh lens is f7
  • the central radius of curvature of the object side of the seventh lens is R13
  • the central radius of curvature of the image side of the seventh lens is R14
  • the on-axis thickness of the seventh lens is d13
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the overall focal length of the imaging optical lens is f
  • the focal length of the eighth lens is f8
  • the central radius of curvature of the object side of the eighth lens is R15
  • the central radius of curvature of the image side of the eighth lens is R16
  • the on-axis thickness of the eighth lens is d15
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the beneficial effect of the present invention is that according to the imaging optical lens of the present invention, the lens has good optical performance while having large aperture, ultra-thinning and wide-angle.
  • at least one lens contains a free-form surface, which can effectively correct aberrations and further improve the performance of the optical system. It is especially suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-pixel CCD, CMOS and other imaging elements.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens according to a first embodiment of the present invention
  • Fig. 2 is the situation that the RMS spot diameter of the imaging optical lens shown in Fig. 1 is in the first quadrant;
  • FIG. 3 is a schematic structural diagram of an imaging optical lens according to a second embodiment of the present invention.
  • Fig. 4 is the situation that the RMS spot diameter of the imaging optical lens shown in Fig. 3 is in the first quadrant;
  • FIG. 5 is a schematic structural diagram of an imaging optical lens according to a third embodiment of the present invention.
  • Fig. 6 is the situation that the RMS spot diameter of the imaging optical lens shown in Fig. 5 is in the first quadrant;
  • FIG. 7 is a schematic structural diagram of an imaging optical lens according to a fourth embodiment of the present invention.
  • Fig. 8 is the situation that the RMS spot diameter of the imaging optical lens shown in Fig. 7 is in the first quadrant;
  • FIG. 9 is a schematic structural diagram of an imaging optical lens according to a fifth embodiment of the present invention.
  • Fig. 10 is the situation that the RMS spot diameter of the imaging optical lens shown in Fig. 9 is in the first quadrant;
  • FIG. 11 is a schematic structural diagram of an imaging optical lens according to a sixth embodiment of the present invention.
  • FIG. 12 shows the case where the RMS spot diameter of the imaging optical lens shown in FIG. 11 is within the first quadrant.
  • FIG. 1 shows an imaging optical lens according to a first embodiment of the present invention, and the imaging optical lens includes eight lenses.
  • the imaging optical lens from the object side to the image side, sequentially includes: a first lens L1, a second lens L2, an aperture S1, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6, seventh lens L7, eighth lens L8.
  • Optical elements such as an optical filter GF may be provided between the eighth lens L8 and the image plane Si.
  • the first lens L1 has negative refractive power
  • the second lens L2 has positive refractive power
  • the third lens L3 has positive refractive power
  • the fourth lens L4 has positive refractive power
  • the fifth lens L5 has negative refractive power
  • the sixth lens L6 has Negative refractive power
  • the seventh lens L7 has positive refractive power
  • the eighth lens L8 has negative refractive power.
  • the first lens L1 is made of plastic material
  • the second lens L2 is made of plastic material
  • the third lens L3 is made of plastic material
  • the fourth lens L4 is made of plastic material
  • the fifth lens L5 is made of plastic material
  • the sixth lens L6 is made of plastic material It is made of plastic material
  • the seventh lens L7 is made of plastic material
  • the eighth lens L8 is made of plastic material; in other embodiments, each lens may also be made of other materials.
  • At least one of the first lens L1 to the eighth lens L8 is defined to include a free-form surface, and the free-form surface helps to correct aberrations such as astigmatism, field curvature, and distortion in a wide-angle optical system.
  • the first lens L1 has a negative refractive power, which is helpful for realizing a wide angle of the system.
  • the second lens L2 has a positive refractive power, which helps to improve the imaging performance of the system.
  • the object side of the eighth lens L8 is convex at the paraxial position, and the image side is concave at the paraxial position.
  • the imaging optical lens 10 of the present invention includes at least one free-form surface, and the focal length of the relevant lens and the central radius of curvature of the relevant lens satisfy the above-mentioned relational expressions, the imaging optical lens 10 can have high performance, and can meet the requirements of large aperture, wide angle and Ultra-thin requirements.
  • the on-axis distance from the image side of the fourth lens L4 to the object side of the fifth lens L5 as d8, and the on-axis thickness distance of the fifth lens as d9, which satisfies the following relationship: 0.30 ⁇ d8/d9 ⁇ 1.00 , when d8/d9 meets the conditions, it can help to reduce the total length of the system.
  • the object side surface of the first lens L1 is concave at the paraxial position, and the image side surface is concave at the paraxial position.
  • the overall focal length of the imaging optical lens is defined as f, which satisfies the following relationship: -4.53 ⁇ f1/f ⁇ -1.30, which specifies the ratio of the focal length of the first lens L1 to the overall focal length.
  • the central radius of curvature of the object side of the first lens L1 is R1
  • the central radius of curvature of the image side of the first lens L1 is R2, which satisfy the following relationship: -2.30 ⁇ (R1+R2)/(R1-R2) ⁇ -0.31
  • the shape of the first lens L1 is reasonably controlled so that the first lens L1 can effectively correct the system spherical aberration, preferably, -1.44 ⁇ (R1+R2)/(R1-R2) ⁇ -0.39.
  • the on-axis thickness of the first lens L1 is d1, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.04 ⁇ d1/TTL ⁇ 0.14, which is conducive to realizing ultra-thinning.
  • the object side surface of the second lens L2 is a convex surface at the paraxial position
  • the image side surface is a concave surface at the paraxial position
  • the following relational expression is satisfied: 2.10 ⁇ f2/f ⁇ 11.74, which specifies the ratio of the focal length of the second lens L2 to the overall focal length.
  • the second lens L2 has an appropriate positive refractive power, which is conducive to reducing the system aberration, and at the same time, is conducive to the development of the lens towards ultra-thin and wide-angle.
  • 3.36 ⁇ f2/f ⁇ 9.39 is satisfied.
  • the central radius of curvature of the object side of the second lens L2 is R3, and the central radius of curvature of the image side of the second lens L2 is R4, which satisfy the following relationship: -14.09 ⁇ (R3+R4)/(R3-R4) ⁇ -2.21; specifies the shape of the second lens L2.
  • it is within the range, as the lens develops to ultra-thin and wide-angle, it is beneficial to correct the problem of axial chromatic aberration.
  • it satisfies -8.81 ⁇ (R3+R4)/ (R3-R4) ⁇ -2.77.
  • the on-axis thickness of the second lens L2 is d3, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.02 ⁇ d3/TTL ⁇ 0.10, which is conducive to realizing ultra-thinning. Preferably, 0.04 ⁇ d3/TTL ⁇ 0.08 is satisfied.
  • the third lens L3 has a positive refractive power
  • the object side of the third lens L3 is convex at the paraxial position
  • the image side surface is convex at the paraxial position.
  • the focal length of the third lens L3 is defined as f3, which satisfies the following relationship: -48.31 ⁇ f3/f ⁇ 3.67.
  • the limitation of the third lens L3 can effectively make the light angle of the camera lens gentle and reduce the tolerance sensitivity. Preferably, -30.19 ⁇ f3/f ⁇ 2.93 is satisfied.
  • the central radius of curvature of the object side of the third lens L3 is R5, and the central radius of curvature of the image side of the third lens L3 is R6, which satisfies the following relationship: -1.70 ⁇ (R5+R6)/(R5-R6) ⁇ 16.12,
  • the shape of the third lens L3 is specified, and within the range specified by the conditional expression, with the development of ultra-thin and wide-angle, it is beneficial to correct problems such as aberrations in the off-axis picture angle.
  • -1.07 ⁇ (R5+R6)/(R5-R6) ⁇ 12.90 is satisfied.
  • the axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.02 ⁇ d5/TTL ⁇ 0.12, which is beneficial to realize ultra-thinning. Preferably, 0.03 ⁇ d5/TTL ⁇ 0.10 is satisfied.
  • the fourth lens L4 has a positive refractive power
  • the object side of the fourth lens L4 is convex at the paraxial position
  • the image side surface is convex at the paraxial position.
  • the fourth lens L4 may also have a negative refractive power.
  • the focal length of the fourth lens L4 is defined as f4, which satisfies the following relational formula: 0.54 ⁇ f4/f ⁇ 2.90, which specifies the ratio of the focal length of the fourth lens L4 to the overall focal length, which helps to improve the optical system within the range of the conditional formula performance.
  • 0.86 ⁇ f4/f ⁇ 2.32 is satisfied.
  • the central radius of curvature of the object side surface of the fourth lens L4 is R7
  • the central radius of curvature of the image side surface of the fourth lens L4 is R8, which satisfy the following relationship: -0.21 ⁇ (R7+R8)/(R7-R8) ⁇ 1.55, the shape of the fourth lens L4 is specified, and when it is within the range, with the development of ultra-thin and wide-angle, it is beneficial to correct problems such as aberration of the off-axis picture angle.
  • -0.13 ⁇ (R7+R8)/(R7-R8) ⁇ 1.24 is satisfied.
  • the axial thickness of the fourth lens L4 is d7, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.04 ⁇ d7/TTL ⁇ 0.19, which is beneficial to realize ultra-thinning.
  • 0.06 ⁇ d7/TTL ⁇ 0.15 is satisfied.
  • the fifth lens L5 has a negative refractive power
  • the object side of the fifth lens L5 is concave at the paraxial position
  • the image side surface is concave at the paraxial position.
  • the fifth lens L5 may also have a positive refractive power.
  • the focal length of the fifth lens L5 is defined as f5, which satisfies the following relationship: -6.11 ⁇ f5/f ⁇ -1.80, which specifies the ratio of the focal length of the fifth lens L5 to the overall focal length, which helps to improve the optical system performance.
  • f5 The focal length of the fifth lens L5 is defined as f5, which satisfies the following relationship: -6.11 ⁇ f5/f ⁇ -1.80, which specifies the ratio of the focal length of the fifth lens L5 to the overall focal length, which helps to improve the optical system performance.
  • -3.82 ⁇ f5/f ⁇ -2.25 is satisfied.
  • the central radius of curvature of the object side of the fifth lens L5 is R9, and the central radius of curvature of the image side of the fifth lens L5 is R10, which satisfy the following relationship: -0.23 ⁇ (R9+R10)/(R9-R10) ⁇ 0.71, the shape of the fifth lens L5 is specified, and when it is within the range, it is beneficial to correct problems such as aberrations of the off-axis picture angle with the development of ultra-thin and wide-angle.
  • -0.14 ⁇ (R9+R10)/(R9-R10) ⁇ 0.57 is satisfied.
  • the on-axis thickness of the fifth lens L5 is d9, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.02 ⁇ d9/TTL ⁇ 0.06, which is conducive to realizing ultra-thinning. Preferably, 0.03 ⁇ d9/TTL ⁇ 0.05 is satisfied.
  • the sixth lens L6 has a negative refractive power, the object side of the sixth lens L6 is concave at the paraxial position, and the image side surface is concave at the paraxial position. In other optional embodiments, the sixth lens L6 may also have a positive refractive power.
  • the focal length of the sixth lens L6 is defined as f6, which satisfies the following relationship: -17.21 ⁇ f6/f ⁇ -1.73; through the reasonable distribution of optical power, the system has better imaging quality and lower sensitivity. Preferably, -10.76 ⁇ f6/f ⁇ -2.16 is satisfied.
  • the central radius of curvature of the object side of the sixth lens L6 is R11, and the central radius of curvature of the image side of the sixth lens L6 is R12, which satisfy the following relationship: -1.69 ⁇ (R11+R12)/(R11-R12) ⁇ -0.14, the shape of the sixth lens L6 is specified, and within the range of conditions, with the development of ultra-thin and wide-angle, it is beneficial to correct problems such as aberrations of off-axis picture angles.
  • -1.06 ⁇ (R11+R12)/(R11-R12) ⁇ -0.17 is satisfied.
  • the on-axis thickness of the sixth lens L6 is d11, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.04 ⁇ d11/TTL ⁇ 0.14, which is conducive to realizing ultra-thinning.
  • 0.07 ⁇ d11/TTL ⁇ 0.11 is satisfied.
  • the seventh lens L7 has a positive refractive power
  • the object side of the seventh lens L7 is convex at the paraxial position
  • the image side surface is convex at the paraxial position.
  • the seventh lens L7 may also have a negative refractive power.
  • the focal length of the seventh lens L7 is defined as f7, which satisfies the following relationship: 0.41 ⁇ f7/f ⁇ 1.41. Preferably, 0.66 ⁇ f7/f ⁇ 1.12 is satisfied.
  • the central radius of curvature of the object side of the seventh lens L7 is R13
  • the central radius of curvature of the image side of the seventh lens L7 is R14, which satisfy the following relationship: 0.26 ⁇ (R13+R14)/(R13-R14) ⁇ 1.12 , which specifies the shape of the seventh lens L7, and when it is within the range of conditions, with the development of ultra-thin and wide-angle, it is beneficial to correct problems such as aberrations of off-axis picture angles.
  • 0.42 ⁇ (R13+R14)/(R13-R14) ⁇ 0.90 is satisfied.
  • the axial thickness of the seventh lens L7 is d13, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.04 ⁇ d13/TTL ⁇ 0.13, which is conducive to realizing ultra-thinning.
  • 0.06 ⁇ d13/TTL ⁇ 0.10 is satisfied.
  • the eighth lens L8 has a negative refractive power
  • the object side of the eighth lens L8 is convex at the paraxial position
  • the image side surface is concave at the paraxial position.
  • the eighth lens L8 may also have a positive refractive power.
  • the focal length of the eighth lens L8 is defined as f8, which satisfies the following relationship: -2.69 ⁇ f8/f ⁇ -0.81, through the reasonable distribution of the focal power, the system has better imaging quality and lower sensitivity.
  • f8 the focal length of the eighth lens L8
  • -1.68 ⁇ f8/f ⁇ -1.01 is satisfied.
  • the central radius of curvature of the object side of the eighth lens L8 is R15
  • the central radius of curvature of the image side of the eighth lens L8 is R16, which satisfy the following relationship: 1.16 ⁇ (R15+R16)/(R15-R16) ⁇ 4.06 , specifies the shape of the eighth lens L8, and when it is within the range of conditions, with the development of ultra-thin and wide-angle, it is beneficial to correct problems such as aberrations of off-axis picture angles.
  • 1.85 ⁇ (R15+R16)/(R15-R16) ⁇ 3.25 is satisfied.
  • the on-axis thickness of the eighth lens L8 is d15, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.03 ⁇ d15/TTL ⁇ 0.11, which is conducive to realizing ultra-thinning.
  • 0.05 ⁇ d15/TTL ⁇ 0.09 is satisfied.
  • the aperture value FNO of the imaging optical lens 10 is less than or equal to 1.85, the aperture is large, and the imaging performance is good. Preferably, it is satisfied that the aperture value FNO is less than or equal to 1.82.
  • the ratio of the total optical length TTL of the imaging optical lens 10 to the image height (diagonal direction) IH of the full field of view is less than or equal to 2.15, which is conducive to realizing ultra-thinning.
  • the field of view angle FOV in the diagonal direction is greater than or equal to 110°, which is beneficial to realize wide-angle, and preferably, greater than or equal to 118°.
  • the imaging optical lens has good optical performance, and at the same time, the free-form surface can be used to match the designed image area with the actual use area, and the image quality of the effective area can be improved to the greatest extent; according to the characteristics of the imaging optical lens,
  • the imaging optical lens is especially suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-pixel CCD, CMOS and other imaging elements.
  • the imaging optical lens of the present invention will be described below by way of examples. The correspondence described in each example is as follows.
  • the unit of focal length, on-axis distance, center curvature radius, and on-axis thickness is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the imaging plane Si), in mm.
  • Aperture value FNO refers to the ratio of the effective focal length of the imaging optical lens to the diameter of the entrance pupil.
  • Table 1 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • the object side surface and the image side surface of the eighth lens L8 are free-form surfaces.
  • R the radius of curvature at the center of the optical surface
  • R1 the central radius of curvature of the object side surface of the first lens L1;
  • R2 the central curvature radius of the image side surface of the first lens L1;
  • R3 the central radius of curvature of the object side surface of the second lens L2;
  • R4 the central curvature radius of the image side surface of the second lens L2;
  • R5 the central radius of curvature of the object side surface of the third lens L3;
  • R6 the central curvature radius of the image side surface of the third lens L3;
  • R7 the central curvature radius of the object side surface of the fourth lens L4;
  • R8 the central curvature radius of the image side surface of the fourth lens L4;
  • R9 the central curvature radius of the object side surface of the fifth lens L5;
  • R10 the central curvature radius of the image side surface of the fifth lens L5;
  • R11 the central curvature radius of the object side surface of the sixth lens L6;
  • R12 the central curvature radius of the image side surface of the sixth lens L6;
  • R13 the central curvature radius of the object side surface of the seventh lens L7;
  • R14 the central curvature radius of the image side surface of the seventh lens L7;
  • R15 the central curvature radius of the object side surface of the eighth lens L8;
  • R16 the central curvature radius of the image side surface of the eighth lens L8;
  • R17 the central curvature radius of the object side of the optical filter GF
  • R18 The central curvature radius of the image side of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side surface of the first lens L1;
  • d2 the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2;
  • d4 the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3;
  • d6 the on-axis distance from the image side of the third lens L3 to the object side of the fourth lens L4;
  • d10 the on-axis distance from the image side of the fifth lens L5 to the object side of the sixth lens L6;
  • d11 the on-axis thickness of the sixth lens L6;
  • d12 the on-axis distance from the image side of the sixth lens L6 to the object side of the seventh lens L7;
  • d14 the on-axis distance from the image side of the seventh lens L7 to the object side of the eighth lens L8;
  • d16 the on-axis distance from the image side of the eighth lens L8 to the object side of the optical filter GF;
  • d17 On-axis thickness of optical filter GF
  • nd the refractive index of the d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • nd7 the refractive index of the d-line of the seventh lens L7;
  • nd8 the refractive index of the d-line of the eighth lens L8;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF
  • Table 2 shows aspherical surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, A20 are the aspheric coefficients
  • c is the curvature at the center of the optical surface
  • r is the vertical distance between the point on the aspheric curve and the optical axis
  • z is the depth of the aspheric surface (the vertical distance between a point on the aspheric surface with a distance r from the optical axis and a tangent plane tangent to the vertex on the optical axis of the aspheric surface).
  • the aspherical surface shown in the above formula (1) is used as the aspherical surface of each lens surface.
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 shows free-form surface data in the imaging optical lens 10 according to the first embodiment of the present invention.
  • k is the conic coefficient
  • Bi is the free-form surface coefficient
  • c is the curvature at the center of the optical surface
  • r is the vertical distance between the point on the free-form surface and the optical axis
  • x is the x-direction component of r
  • y is the y-direction of r component
  • z is the depth of the aspheric surface (the vertical distance between a point on the aspheric surface at a distance r from the optical axis and a tangent plane tangent to the vertex on the optical axis of the aspheric surface).
  • each free-form surface uses the Extended Polynomial (Extended Polynomial) shown in the above formula (2).
  • the present invention is not limited to the free-form surface polynomial form represented by the formula (2).
  • FIG. 2 shows the case where the RMS spot diameter of the imaging optical lens 10 of the first embodiment is within the first quadrant. It can be seen from FIG. 2 that the imaging optical lens 10 of the first embodiment can achieve good imaging quality.
  • the following table 19 shows the values corresponding to various numerical values in the first, second, third, fourth, fifth, and sixth embodiments and the parameters specified in the conditional expressions.
  • the first embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 10 is 1.000mm, the full field of view image height (diagonal direction) IH is 6.000mm, the image height in the x direction is 4.800mm, and the image height in the y direction is 3.600mm, the imaging effect is the best in this rectangular range, the FOV in the diagonal direction is 119.99°, the field angle in the x direction is 107.19°, and the field angle in the y direction is 90.49°.
  • the lens 10 meets the design requirements of wide-angle, ultra-thin, and large aperture, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical properties.
  • the second embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • the object side surface of the fourth lens L4 is concave at the paraxial position.
  • Table 4 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • the object side surface and the image side surface of the first lens L1 are free-form surfaces.
  • Table 5 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows free-form surface data in the imaging optical lens 20 according to the second embodiment of the present invention.
  • FIG. 4 shows the case where the RMS spot diameter of the imaging optical lens 20 of the second embodiment is within the first quadrant. It can be seen from FIG. 4 that the imaging optical lens 20 of the second embodiment can achieve good imaging quality.
  • the second embodiment satisfies each conditional expression.
  • the entrance pupil diameter ENPD of the imaging optical lens 20 is 1.000mm, the full field of view image height (diagonal direction) IH is 6.000mm, the image height in the x direction is 4.800mm, and the image height in the y direction is 3.600mm, the imaging effect is the best in this rectangular range.
  • the FOV in the diagonal direction is 120.00°, the field angle in the x direction is 107.30°, and the field angle in the y direction is 90.78°.
  • the camera optical lens 20 It meets the design requirements of wide-angle, ultra-thin, and large aperture, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical properties.
  • the third embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • Table 7, Table 8, and FIG. 9 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • the object side surface and the image side surface of the third lens L3 are free-form surfaces.
  • Table 8 shows aspherical surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 9 shows free-form surface data in the imaging optical lens 30 according to the third embodiment of the present invention.
  • FIG. 6 shows the case where the RMS spot diameter of the imaging optical lens 30 of the third embodiment is within the first quadrant. It can be seen from FIG. 6 that the imaging optical lens 30 of the third embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens 30 is 1.000mm
  • the full field of view image height (diagonal direction) IH is 6.000mm
  • the image height in the x direction is 4.800mm
  • the image height in the y direction is 3.600mm
  • the imaging effect is the best in this rectangular range.
  • the FOV in the diagonal direction is 120.00°
  • the field angle in the x direction is 107.34°
  • the field angle in the y direction is 90.87°.
  • the camera optical lens 30 It meets the design requirements of wide-angle, ultra-thin, and large aperture, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical properties.
  • the fourth embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • the image side surface of the first lens L1 is convex at the paraxial position; the third lens L3 has negative refractive power, and the image side surface of the third lens L3 is concave at the paraxial position.
  • Table 10, Table 11, and Table 12 show design data of the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • the object side surface and the image side surface of the eighth lens L8 are free-form surfaces.
  • Table 11 shows aspherical surface data of each lens in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • Table 12 shows free-form surface data in the imaging optical lens 40 according to the fourth embodiment of the present invention.
  • FIG. 8 shows the case where the RMS spot diameter of the imaging optical lens 40 of the fourth embodiment is within the first quadrant. It can be seen from FIG. 8 that the imaging optical lens 40 of the fourth embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens 40 is 1.000mm, the full field of view image height (diagonal direction) IH is 6.000mm, the image height in the x direction is 4.800mm, and the image height in the y direction is 3.600mm, the imaging effect is the best in this rectangular range.
  • the FOV in the diagonal direction is 120.00°, the field angle in the x direction is 106.39°, and the field angle in the y direction is 89.08°.
  • the camera optical lens 40 It meets the design requirements of wide-angle, ultra-thin, and large aperture, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical properties.
  • the fifth embodiment is basically the same as the first embodiment, and the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • the image side surface of the first lens L1 is convex at the paraxial position; the third lens L3 has negative refractive power, and the image side surface of the third lens L3 is concave at the paraxial position.
  • Table 13, Table 14, and Table 15 show design data of the imaging optical lens 50 according to the fifth embodiment of the present invention.
  • the object side surface and the image side surface of the first lens L1 are free-form surfaces.
  • Table 14 shows aspherical surface data of each lens in the imaging optical lens 50 according to the fifth embodiment of the present invention.
  • Table 15 shows free-form surface data in the imaging optical lens 50 according to the fifth embodiment of the present invention.
  • FIG. 10 shows the case where the RMS spot diameter of the imaging optical lens 50 of the fifth embodiment is within the first quadrant. It can be seen from FIG. 10 that the imaging optical lens 50 of the fifth embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens 50 is 1.000mm
  • the full field of view image height (diagonal direction) IH is 6.000mm
  • the image height in the x direction is 4.800mm
  • the image height in the y direction is 3.600mm
  • the imaging effect is the best in this rectangular range.
  • the FOV in the diagonal direction is 120.00°
  • the field angle in the x direction is 107.01°
  • the field angle in the y direction is 89.40°.
  • the camera optical lens 50 It meets the design requirements of wide-angle, ultra-thin, and large aperture, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical properties.
  • the sixth embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • the image side surface of the first lens L1 is convex at the paraxial position; the third lens L3 has negative refractive power, and the image side surface of the third lens L3 is concave at the paraxial position.
  • Table 16, Table 17, and Table 18 show design data of the imaging optical lens 60 according to the sixth embodiment of the present invention.
  • the object side surface and the image side surface of the second lens L2 are free-form surfaces.
  • Table 17 shows aspherical surface data of each lens in the imaging optical lens 60 according to the sixth embodiment of the present invention.
  • Table 18 shows free-form surface data in the imaging optical lens 60 according to the sixth embodiment of the present invention.
  • FIG. 12 shows the case where the RMS spot diameter of the imaging optical lens 60 of the sixth embodiment is within the first quadrant. It can be seen from FIG. 12 that the imaging optical lens 60 of the sixth embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens 60 is 1.000mm, the full field of view image height (diagonal direction) IH is 6.000mm, the image height in the x direction is 4.800mm, and the image height in the y direction is 3.600mm, the imaging effect is the best in this rectangular range.
  • the FOV in the diagonal direction is 119.99°, the field angle in the x direction is 106.91°, and the field angle in the y direction is 89.51°.
  • the camera optical lens 60 It meets the design requirements of wide-angle, ultra-thin, and large aperture, and its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical properties.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 6 R15 1.702 1.543 1.630 1.304 1.326 1.379 R16 0.674 0.641 0.665 0.600 0.601 0.614 d8/d9 0.350 0.433 0.417 0.958 0.758 0.879 f 1.800 1.800 1.800 1.800 1.800 f1 -3.842 -3.769 -3.501 -3.980 -4.079 -3.988 f2 9.624 10.235 7.556 11.433 10.149 14.088 f3 4.280 3.980 4.402 -14.706 -14.965 -43.478 f4 3.056 3.481 3.345 1.926 1.942 1.990 f5 -5.239 -5.125 -5.499 -4.860 -5.073 -5.160 f6 -4.675 -5.444 -4.842 -15.490 -15.140 -10.360 f7 1.490 1.486 1.490 1.649 1.687 1.6

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),共包含八片透镜,八片透镜自物侧至像侧依序为:具有负屈折力的第一透镜(L1),具有正屈折力的第二透镜(L2),第三透镜(L3),第四透镜(L4),第五透镜(L5),第六透镜(L6),第七透镜(L7),第八透镜(L8);第八透镜(L8)物侧面于近轴处为凸面,像侧面于近轴处为凹面,第一透镜(L1)到第八透镜(L8)中的至少一个含有自由曲面。这种摄像光学镜头(10)在大光圈、超薄化和广角化的同时具有良好的光学性能。

Description

摄像光学镜头 【技术领域】
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
【背景技术】
随着成像镜头的发展,人们对镜头的成像要求越来越高,镜头的“夜景拍照”和“背景虚化”也成为衡量镜头成像标准的重要指标。现有结构光焦度分配、透镜间隔和透镜形状设置不充分,造成镜头超薄化和广角化不充分。并且旋转对称的非球面不能很好地矫正像差。自由曲面是一种非旋转对称的表面类型,能够更好地平衡像差,提高成像质量,而且自由曲面的加工也逐渐成熟。随着对镜头成像要求的提升,在设计镜头时加入自由曲面显得十分重要,尤其是在广角和超广角镜头的设计中效果更为明显。
【发明内容】
针对上述问题,本发明的目的在于提供一种摄像光学镜头,在大光圈、超薄化和广角化的同时具有良好的光学性能。
本发明的技术方案如下:
一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含八片透镜,八片所述透镜自物侧至像侧依序为:具有负屈折力的第一透镜,具有正屈折力的第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,第八透镜;所述第八透镜物侧面于近轴处为凸面,像侧面于近轴处为凹面,所述第一透镜到所述第八透镜中的至少一个含有自由曲面。
优选的,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,所述第五透镜的轴上厚度为d9,且满足下列关系式:
0.30≤d8/d9≤1.00。
优选的,所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第一透镜物侧面的中心曲率半径为R1,所述第一透镜像侧面的中心曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-4.53≤f1/f≤-1.30;
-2.30≤(R1+R2)/(R1-R2)≤-0.31;
0.04≤d1/TTL≤0.14。
优选的,所述摄像光学镜头整体的焦距为f,所述第二透镜的焦距为f2,所述第二透镜物侧面的中心曲率半径为R3,所述第二透镜像侧面的中心曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
2.10≤f2/f≤11.74;
-14.09≤(R3+R4)/(R3-R4)≤-2.21;
0.02≤d3/TTL≤0.10。
优选的,所述摄像光学镜头整体的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的中心曲率半径为R5,所述第三透镜像侧面的中心曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-48.31≤f3/f≤3.67;
-1.70≤(R5+R6)/(R5-R6)≤16.12;
0.02≤d5/TTL≤0.12。
优选的,所述摄像光学镜头整体的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的中心曲率半径为R7,所述第四透镜像侧面的中心曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.54≤f4/f≤2.90;
-0.21≤(R7+R8)/(R7-R8)≤1.55;
0.04≤d7/TTL≤0.19。
优选的,所述摄像光学镜头整体的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的中心曲率半径为R9,所述第五透镜像侧面的中心曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-6.11≤f5/f≤-1.80;
-0.23≤(R9+R10)/(R9-R10)≤0.71;
0.02≤d9/TTL≤0.06。
优选的,所述摄像光学镜头整体的焦距为f,所述第六透镜的焦距为f6,所述第六透镜物侧面的中心曲率半径为R11,所述第六透镜像侧面的中心曲率半径为R12,所述第六透镜的 轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-17.21≤f6/f≤-1.73;
-1.69≤(R11+R12)/(R11-R12)≤-0.14;
0.04≤d11/TTL≤0.14。
优选的,所述摄像光学镜头整体的焦距为f,所述第七透镜的焦距为f7,所述第七透镜物侧面的中心曲率半径为R13,所述第七透镜像侧面的中心曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.41≤f7/f≤1.41;
0.26≤(R13+R14)/(R13-R14)≤1.12;
0.04≤d13/TTL≤0.13。
优选的,所述摄像光学镜头整体的焦距为f,所述第八透镜的焦距为f8,所述第八透镜物侧面的中心曲率半径为R15,所述第八透镜像侧面的中心曲率半径为R16,所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-2.69≤f8/f≤-0.81;
1.16≤(R15+R16)/(R15-R16)≤4.06;
0.03≤d15/TTL≤0.11。
本发明的有益效果在于:根据本发明的摄像光学镜头,镜头在大光圈、超薄化和广角化的同时具有良好的光学性能。同时,从第一镜片到第八镜片,至少有一个镜片含有自由曲面,可以有效地矫正像差,进一步提升光学系统性能。尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
【附图说明】
为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明第一实施方式的摄像光学镜头的结构示意图;
图2为图1所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图3为本发明第二实施方式的摄像光学镜头的结构示意图;
图4为图3所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图5为本发明第三实施方式的摄像光学镜头的结构示意图;
图6为图5所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图7为本发明第四实施方式的摄像光学镜头的结构示意图;
图8为图7所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图9为本发明第五实施方式的摄像光学镜头的结构示意图;
图10为图9所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图11为本发明第六实施方式的摄像光学镜头的结构示意图;
图12为图11所示摄像光学镜头的RMS光斑直径在第一象限内的情况。
【具体实施方式】
为使本发明的目的、技术方案和优点更加清楚,下面将结合图1至图12对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施例)
参考附图,本发明提供了一种摄像光学镜头。图1所示为本发明第一实施方式的摄像光学镜头,该摄像光学镜头包括八个透镜。具体地,所述摄像光学镜头,由物侧至像侧依序包括:第一透镜L1、第二透镜L2、光圈S1、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8。第八透镜L8和像面Si之间可设置光学过滤片(filter)GF等光学元件。
第一透镜L1具有负屈折力,第二透镜L2具有正屈折力,第三透镜L3具有正屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力,第六透镜L6具有负屈折力,第七透镜L7具有正屈折力,第八透镜L8具有负屈折力。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质,第七透镜L7为塑料材质,第八透镜L8为塑料材质;在其他实施方式中,各透镜也可以是其他材质。
在本实施方式中,定义所述第一透镜L1至所述第八透镜L8中的至少一个含自由曲面, 自由曲面有助于广角光学系统中像散、场曲和畸变等像差的校正。
所述第一透镜L1具有负屈折力,有助于实现系统广角化。
所述第二透镜L2具有正屈折力,有助于提高系统成像性能。
所述第八透镜L8物侧面于近轴处为凸面,像侧面于近轴处为凹面,规定了第八透镜L8的形状,在条件范围内有助于校正系统场曲,提高成像质量。
当本发明摄像光学镜头10的包含至少一个自由曲面,且相关透镜的焦距和相关透镜的中心曲率半径满足上述关系式时,可以使摄像光学镜头10具有高性能,且满足大光圈、广角化和超薄化的要求。
定义第四透镜L4的像侧面到所述第五透镜L5的物侧面的轴上距离为d8,所述第五透镜的轴上厚度距离为d9,满足下列关系式:0.30≤d8/d9≤1.00,当d8/d9满足条件时,可有助于降低系统总长。
本实施方式中,所述第一透镜L1的物侧面于近轴处为凹面,像侧面于近轴处为凹面。
定义所述摄像光学镜头整体的焦距为f,满足下列关系式:-4.53≤f1/f≤-1.30,规定了第一透镜L1的焦距与整体焦距的比值。通过将第一透镜L1的负光焦度控制在合理范围,有利于矫正光学系统的像差,优选地,满足-2.83≤f1/f≤-1.62。
所述第一透镜L1物侧面的中心曲率半径为R1,所述第一透镜L1像侧面的中心曲率半径为R2,满足下列关系式:-2.30≤(R1+R2)/(R1-R2)≤-0.31,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正系统球差,优选地,满足-1.44≤(R1+R2)/(R1-R2)≤-0.39。
所述第一透镜L1的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.04≤d1/TTL≤0.14,有利于实现超薄化。优选地,0.07≤d1/TTL≤0.11。
本实施方式中,所述第二透镜L2的物侧面于近轴处为凸面,像侧面于近轴处为凹面。
满足下列关系式:2.10≤f2/f≤11.74,规定了第二透镜L2的焦距与整体焦距的比值。在规定的范围内时,第二透镜L2具有适当的正屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。优选地,满足3.36≤f2/f≤9.39。
所述第二透镜L2物侧面的中心曲率半径为R3,所述第二透镜L2像侧面的中心曲率半径为R4,满足下列关系式:-14.09≤(R3+R4)/(R3-R4)≤-2.21;规定了第二透镜L2的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题,优选地,满足-8.81 ≤(R3+R4)/(R3-R4)≤-2.77。
所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.02≤d3/TTL≤0.10,有利于实现超薄化。优选地,满足0.04≤d3/TTL≤0.08。
本实施方式中,所述第三透镜L3具有正屈折力,所述第三透镜L3的物侧面于近轴处为凸面,像侧面于近轴处为凸面。
定义所述第三透镜L3的焦距为f3,满足下列关系式:-48.31≤f3/f≤3.67,对第三透镜L3的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选地,满足-30.19≤f3/f≤2.93。
所述第三透镜L3物侧面的中心曲率半径为R5,第三透镜L3像侧面的中心曲率半径为R6,满足下列关系式:-1.70≤(R5+R6)/(R5-R6)≤16.12,规定了第三透镜L3的形状,在条件式规定范围内,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-1.07≤(R5+R6)/(R5-R6)≤12.90。
所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.02≤d5/TTL≤0.12,有利于实现超薄化。优选地,满足0.03≤d5/TTL≤0.10。
本实施方式中,所述第四透镜L4具有正屈折力,所述第四透镜L4的物侧面于近轴处为凸面,像侧面于近轴处为凸面。在其他可选实施方式中,所述第四透镜L4也可以具有负屈折力。
定义所述第四透镜L4的焦距为f4,满足下列关系式:0.54≤f4/f≤2.90,规定了第四透镜L4的焦距与整体焦距的比值,在条件式范围内有助于提高光学系统性能。优选地,满足0.86≤f4/f≤2.32。
所述第四透镜L4物侧面的中心曲率半径为R7,所述第四透镜L4像侧面的中心曲率半径为R8,满足下列关系式:-0.21≤(R7+R8)/(R7-R8)≤1.55,规定了第四透镜L4的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足-0.13≤(R7+R8)/(R7-R8)≤1.24。
所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.04≤d7/TTL≤0.19,有利于实现超薄化。优选地,满足0.06≤d7/TTL≤0.15。
本实施方式中,所述第五透镜L5具有负屈折力,所述第五透镜L5的物侧面于近轴处为凹面,像侧面于近轴处为凹面。在其他可选实施方式中,所述第五透镜L5也可以具有正屈折 力。
定义所述第五透镜L5的焦距为f5,满足下列关系式:-6.11≤f5/f≤-1.80,规定了第五透镜L5焦距与整体焦距的比值,在条件式范围内有助于提高光学系统性能。优选地,满足-3.82≤f5/f≤-2.25。
所述第五透镜L5物侧面的中心曲率半径为R9,所述第五透镜L5像侧面的中心曲率半径为R10,满足下列关系式:-0.23≤(R9+R10)/(R9-R10)≤0.71,规定了第五透镜L5的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足-0.14≤(R9+R10)/(R9-R10)≤0.57。
所述第五透镜L5的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.02≤d9/TTL≤0.06,有利于实现超薄化。优选地,满足0.03≤d9/TTL≤0.05。
本实施方式中,所述第六透镜L6具有负屈折力,所述第六透镜L6的物侧面于近轴处为凹面,像侧面于近轴处为凹面。在其他可选实施方式中,所述第六透镜L6也可以具有正屈折力。
定义所述第六透镜L6的焦距为f6,满足下列关系式:-17.21≤f6/f≤-1.73;通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-10.76≤f6/f≤-2.16。
所述第六透镜L6物侧面的中心曲率半径为R11,所述第六透镜L6像侧面的中心曲率半径为R12,满足下列关系式:-1.69≤(R11+R12)/(R11-R12)≤-0.14,规定的是第六透镜L6的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-1.06≤(R11+R12)/(R11-R12)≤-0.17。
所述第六透镜L6的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.04≤d11/TTL≤0.14,有利于实现超薄化。优选地,满足0.07≤d11/TTL≤0.11。
本实施方式中,所述第七透镜L7具有正屈折力,所述第七透镜L7的物侧面于近轴处为凸面,像侧面于近轴处为凸面。在其他可选实施方式中,所述第七透镜L7也可以具有负屈折力。
定义所述第七透镜L7的焦距为f7,满足下列关系式:0.41≤f7/f≤1.41。优选地,满足0.66≤f7/f≤1.12。
所述第七透镜L7物侧面的中心曲率半径为R13,所述第七透镜L7像侧面的中心曲率半 径为R14,满足下列关系式:0.26≤(R13+R14)/(R13-R14)≤1.12,规定的是第七透镜L7的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足0.42≤(R13+R14)/(R13-R14)≤0.90。
所述第七透镜L7的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.04≤d13/TTL≤0.13,有利于实现超薄化。优选地,满足0.06≤d13/TTL≤0.10。
本实施方式中,所述第八透镜L8具有负屈折力,所述第八透镜L8的物侧面于近轴处为凸面,像侧面于近轴处为凹面。在其他可选实施方式中,所述第八透镜L8也可以具有正屈折力。
定义所述第八透镜L8的焦距为f8,满足下列关系式:-2.69≤f8/f≤-0.81,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-1.68≤f8/f≤-1.01。
所述第八透镜L8物侧面的中心曲率半径为R15,所述第八透镜L8像侧面的中心曲率半径为R16,满足下列关系式:1.16≤(R15+R16)/(R15-R16)≤4.06,规定的是第八透镜L8的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足1.85≤(R15+R16)/(R15-R16)≤3.25。
所述第八透镜L8的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,满足下列关系式:0.03≤d15/TTL≤0.11,有利于实现超薄化。优选地,满足0.05≤d15/TTL≤0.09。
本实施方式中,摄像光学镜头10的光圈值FNO小于或等于1.85,大光圈,成像性能好。优选地,满足光圈值FNO小于或等于1.82。
本实施方式中,摄像光学镜头10的光学总长TTL与全视场像高(对角线方向)IH的比值小于或等于2.15,有利于实现超薄化。对角线方向的视场角FOV大于或等于110°,有利于实现广角化,优选的,大于或等于118°。
当满足上述关系时,使得摄像光学镜头具有良好光学性能的同时,采用自由曲面,可实现设计像面区域与实际使用区域匹配,最大程度提升有效区域的像质;根据该摄像光学镜头的特性,该摄像光学镜头尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。下面将用实例进行说明本发明的摄像光学镜头。各实例中所记载的符合如下所示。焦距、轴上距离、中心曲率半径、轴上厚度的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面Si的轴上距离),单位为mm。
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
表1、表2和表3示出本发明第一实施方式的摄像光学镜头10的设计数据。其中,第八透镜L8的物侧面和像侧面为自由曲面。
【表1】
Figure PCTCN2020106602-appb-000001
其中,各符合的含义如下:
S1:光圈;
R:光学面中心处的曲率半径;
R1:第一透镜L1的物侧面的中心曲率半径;
R2:第一透镜L1的像侧面的中心曲率半径;
R3:第二透镜L2的物侧面的中心曲率半径;
R4:第二透镜L2的像侧面的中心曲率半径;
R5:第三透镜L3的物侧面的中心曲率半径;
R6:第三透镜L3的像侧面的中心曲率半径;
R7:第四透镜L4的物侧面的中心曲率半径;
R8:第四透镜L4的像侧面的中心曲率半径;
R9:第五透镜L5的物侧面的中心曲率半径;
R10:第五透镜L5的像侧面的中心曲率半径;
R11:第六透镜L6的物侧面的中心曲率半径;
R12:第六透镜L6的像侧面的中心曲率半径;
R13:第七透镜L7的物侧面的中心曲率半径;
R14:第七透镜L7的像侧面的中心曲率半径;
R15:第八透镜L8的物侧面的中心曲率半径;
R16:第八透镜L8的像侧面的中心曲率半径;
R17:光学过滤片GF的物侧面的中心曲率半径;
R18:光学过滤片GF的像侧面的中心曲率半径;
d:透镜的轴上厚度以及透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到第八透镜L8的物侧面的轴上距离;
d15:第八透镜L8的轴上厚度;
d16:第八透镜L8的像侧面到光学过滤片GF的物侧面的轴上距离;
d17:光学过滤片GF的轴上厚度;
d18:光学过滤片GF的像侧面到像面Si的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
nd8:第八透镜L8的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
v8:第八透镜L8的阿贝数;
vg:光学过滤片GF的阿贝数;
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2020106602-appb-000002
Figure PCTCN2020106602-appb-000003
z=(cr 2)/{1+[1-(k+1)(c 2r 2)] 1/2}+A4r 4+A6r 6+A8r 8+A10r 10+A12r 12+A14r 14+A16r 16+A18r 18+A20r 20             (1)
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数,c是光学面中心处的曲率,r是非球面曲线上的点与光轴的垂直距离,z是非球面深度(非球面上距离光轴为r的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3示出本发明第一实施方式的摄像光学镜头10中的自由曲面数据。
【表3】
Figure PCTCN2020106602-appb-000004
Figure PCTCN2020106602-appb-000005
Figure PCTCN2020106602-appb-000006
其中,k是圆锥系数,Bi是自由曲面系数,c是光学面中心处的曲率,r是自由曲面上的点与光轴的垂直距离,x是r的x方向分量,y是r的y方向分量,z是非球面深度(非球面上距离光轴为r的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个自由曲面使用上述公式(2)中所示的扩展多项式面型(Extended Polynomial)。但是,本发明不限于该公式(2)表示的自由曲面多项式形式。
图2示出了第一实施例的摄像光学镜头10的RMS光斑直径在第一象限内的情况,根据图2可知,第一实施方式的摄像光学镜头10能够实现良好的成像品质。
后出现的表19示出各实施例一、二、三、四、五、六中各种数值与条件式中已规定的参数所对应的值。
如表19所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头10的入瞳直径ENPD为1.000mm,全视场像高(对角线方向)IH为6.000mm,x方向像高为4.800mm,y方向像高为3.600mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为119.99°,x方向的视场角为107.19°,y方向的视场角为90.49°,所述摄像光学镜头10满足广角化、超薄化、大光圈的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特性。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
本实施例中,所述第四透镜L4的物侧面于近轴处为凹面。
表4、表5和表6示出本发明第二实施方式的摄像光学镜头20的设计数据。其中,第一透镜L1的物侧面和像侧面为自由曲面。
【表4】
Figure PCTCN2020106602-appb-000007
表5示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表5】
Figure PCTCN2020106602-appb-000008
Figure PCTCN2020106602-appb-000009
表6示出本发明第二实施方式的摄像光学镜头20中自由曲面数据。
【表6】
Figure PCTCN2020106602-appb-000010
图4示出了第二实施例的摄像光学镜头20的RMS光斑直径在第一象限内的情况,根据图4可知,第二实施方式的摄像光学镜头20能够实现良好的成像品质。
如表19所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头20的入瞳直径ENPD为1.000mm,全视场像高(对 角线方向)IH为6.000mm,x方向像高为4.800mm,y方向像高为3.600mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为120.00°,x方向视场角为107.30°,y方向视场角为90.78°,所述摄像光学镜头20满足广角化、超薄化、大光圈的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特性。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表7、表8和图9示出本发明第三实施方式的摄像光学镜头30的设计数据。其中,第三透镜L3的物侧面和像侧面为自由曲面。
【表7】
Figure PCTCN2020106602-appb-000011
表8示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表8】
Figure PCTCN2020106602-appb-000012
Figure PCTCN2020106602-appb-000013
表9示出本发明第三实施方式的摄像光学镜头30中的自由曲面数据。
【表9】
Figure PCTCN2020106602-appb-000014
图6示出了第三实施例的摄像光学镜头30的RMS光斑直径在第一象限内的情况,根据图6可知,第三实施方式的摄像光学镜头30能够实现良好的成像品质。
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头30的入瞳直径ENPD为1.000mm,全视场像高(对角线方向)IH为6.000mm,x方向像高为4.800mm,y方向像高为3.600mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为120.00°,x方向视场角为107.34°,y方向视场角为90.87°,所述摄像光学镜头30满足广角化、超薄化、大光圈的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特性。
(第四实施方式)
第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
在本实施例中,第一透镜L1的像侧面于近轴处为凸面;第三透镜L3具有负屈折力,第三透镜L3的像侧面于近轴处为凹面。
表10、表11和表12示出本发明第四实施方式的摄像光学镜头40的设计数据。其中,第八透镜L8的物侧面和像侧面为自由曲面。
【表10】
Figure PCTCN2020106602-appb-000015
Figure PCTCN2020106602-appb-000016
表11示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。
【表11】
Figure PCTCN2020106602-appb-000017
Figure PCTCN2020106602-appb-000018
表12示出本发明第四实施方式的摄像光学镜头40中的自由曲面数据。
【表12】
Figure PCTCN2020106602-appb-000019
Figure PCTCN2020106602-appb-000020
图8示出了第四实施例的摄像光学镜头40的RMS光斑直径在第一象限内的情况,根据图8可知,第四实施方式的摄像光学镜头40能够实现良好的成像品质。
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头40的入瞳直径ENPD为1.000mm,全视场像高(对角线方向)IH为6.000mm,x方向像高为4.800mm,y方向像高为3.600mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为120.00°,x方向视场角为106.39°,y方向视场角为89.08°,所述摄像光学镜头40满足广角化、超薄化、大光圈的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特性。
(第五实施方式)
第五实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
在本实施例中,第一透镜L1的像侧面于近轴处为凸面;第三透镜L3具有负屈折力,第三透镜L3的像侧面于近轴处为凹面。
表13、表14和表15示出本发明第五实施方式的摄像光学镜头50的设计数据。其中,第一透镜L1的物侧面和像侧面为自由曲面。
【表13】
Figure PCTCN2020106602-appb-000021
Figure PCTCN2020106602-appb-000022
表14示出本发明第五实施方式的摄像光学镜头50中各透镜的非球面数据。
【表14】
Figure PCTCN2020106602-appb-000023
Figure PCTCN2020106602-appb-000024
表15示出本发明第五实施方式的摄像光学镜头50中的自由曲面数据。
【表15】
Figure PCTCN2020106602-appb-000025
Figure PCTCN2020106602-appb-000026
图10示出了第五实施例的摄像光学镜头50的RMS光斑直径在第一象限内的情况,根据图10可知,第五实施方式的摄像光学镜头50能够实现良好的成像品质。
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头50的入瞳直径ENPD为1.000mm,全视场像高(对角线方向)IH为6.000mm,x方向像高为4.800mm,y方向像高为3.600mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为120.00°,x方向视场角为107.01°,y方向视场角为89.40°,所述摄像光学镜头50满足广角化、超薄化、大光圈的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特性。
(第六实施方式)
第六实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
在本实施例中,第一透镜L1的像侧面于近轴处为凸面;第三透镜L3具有负屈折力,第三透镜L3的像侧面于近轴处为凹面。
表16、表17和表18示出本发明第六实施方式的摄像光学镜头60的设计数据。其中,第二透镜L2的物侧面和像侧面为自由曲面。
【表16】
Figure PCTCN2020106602-appb-000027
表17示出本发明第六实施方式的摄像光学镜头60中各透镜的非球面数据。
【表17】
Figure PCTCN2020106602-appb-000028
Figure PCTCN2020106602-appb-000029
表18示出本发明第六实施方式的摄像光学镜头60中的自由曲面数据。
【表18】
Figure PCTCN2020106602-appb-000030
图12示出了第六实施例的摄像光学镜头60的RMS光斑直径在第一象限内的情况,根据图12可知,第六实施方式的摄像光学镜头60能够实现良好的成像品质。
以下表19按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头60的入瞳直径ENPD为1.000mm,全视场像高(对 角线方向)IH为6.000mm,x方向像高为4.800mm,y方向像高为3.600mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为119.99°,x方向视场角为106.91°,y方向视场角为89.51°,所述摄像光学镜头60满足广角化、超薄化、大光圈的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特性。
【表19】
参数及条件式 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
R15 1.702 1.543 1.630 1.304 1.326 1.379
R16 0.674 0.641 0.665 0.600 0.601 0.614
d8/d9 0.350 0.433 0.417 0.958 0.758 0.879
f 1.800 1.800 1.800 1.800 1.800 1.800
f1 -3.842 -3.769 -3.501 -3.980 -4.079 -3.988
f2 9.624 10.235 7.556 11.433 10.149 14.088
f3 4.280 3.980 4.402 -14.706 -14.965 -43.478
f4 3.056 3.481 3.345 1.926 1.942 1.990
f5 -5.239 -5.125 -5.499 -4.860 -5.073 -5.160
f6 -4.675 -5.444 -4.842 -15.490 -15.140 -10.360
f7 1.490 1.486 1.490 1.649 1.687 1.644
f8 -2.180 -2.200 -2.238 -2.421 -2.376 -2.394
FNO 1.800 1.800 1.800 1.800 1.800 1.800
TTL 6.149 6.150 6.149 6.400 6.400 6.398
FOV 119.99° 120.00° 120.00° 120.00° 120.00° 119.99°
IH 6.00 6.00 6.00 6.00 6.00 6.00
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含八片透镜,八片所述透镜自物侧至像侧依序为:具有负屈折力的第一透镜,具有正屈折力的第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜,第八透镜;所述第八透镜物侧面于近轴处为凸面,像侧面于近轴处为凹面,所述第一透镜到所述第八透镜中的至少一个含有自由曲面。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于:所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,所述第五透镜的轴上厚度为d9,且满足下列关系式:
    0.30≤d8/d9≤1.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于:所述摄像光学镜头整体的焦距为f,所述第一透镜的焦距为f1,所述第一透镜物侧面的中心曲率半径为R1,所述第一透镜像侧面的中心曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -4.53≤f1/f≤-1.30;
    -2.30≤(R1+R2)/(R1-R2)≤-0.31;
    0.04≤d1/TTL≤0.14。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于:所述摄像光学镜头整体的焦距为f,所述第二透镜的焦距为f2,所述第二透镜物侧面的中心曲率半径为R3,所述第二透镜像侧面的中心曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    2.10≤f2/f≤11.74;
    -14.09≤(R3+R4)/(R3-R4)≤-2.21;
    0.02≤d3/TTL≤0.10。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于:所述摄像光学镜头整体的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的中心曲率半径为R5,所述第三透镜像侧面的中心曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -48.31≤f3/f≤3.67;
    -1.70≤(R5+R6)/(R5-R6)≤16.12;
    0.02≤d5/TTL≤0.12。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于:所述摄像光学镜头整体的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的中心曲率半径为R7,所述第四透镜像侧面的中心曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.54≤f4/f≤2.90;
    -0.21≤(R7+R8)/(R7-R8)≤1.55;
    0.04≤d7/TTL≤0.19。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于:所述摄像光学镜头整体的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的中心曲率半径为R9,所述第五透镜像侧面的中心曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -6.11≤f5/f≤-1.80;
    -0.23≤(R9+R10)/(R9-R10)≤0.71;
    0.02≤d9/TTL≤0.06。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于:所述摄像光学镜头整体的焦距为f,所述第六透镜的焦距为f6,所述第六透镜物侧面的中心曲率半径为R11,所述第六透镜像侧面的中心曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -17.21≤f6/f≤-1.73;
    -1.69≤(R11+R12)/(R11-R12)≤-0.14;
    0.04≤d11/TTL≤0.14。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于:所述摄像光学镜头整体的焦距为f,所述第七透镜的焦距为f7,所述第七透镜物侧面的中心曲率半径为R13,所述第七透镜像侧面的中心曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.41≤f7/f≤1.41;
    0.26≤(R13+R14)/(R13-R14)≤1.12;
    0.04≤d13/TTL≤0.13。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于:所述摄像光学镜头整体的焦距为f,所述第八透镜的焦距为f8,所述第八透镜物侧面的中心曲率半径为R15,所述第八透镜像侧面的中心曲率半径为R16,所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -2.69≤f8/f≤-0.81;
    1.16≤(R15+R16)/(R15-R16)≤4.06;
    0.03≤d15/TTL≤0.11。
PCT/CN2020/106602 2020-07-27 2020-08-03 摄像光学镜头 WO2022021453A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010727558.5 2020-07-27
CN202010727558.5A CN111596446B (zh) 2020-07-27 2020-07-27 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2022021453A1 true WO2022021453A1 (zh) 2022-02-03

Family

ID=72190284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106602 WO2022021453A1 (zh) 2020-07-27 2020-08-03 摄像光学镜头

Country Status (4)

Country Link
US (1) US11886041B2 (zh)
JP (1) JP7029516B2 (zh)
CN (1) CN111596446B (zh)
WO (1) WO2022021453A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736312B (zh) * 2020-07-27 2020-11-27 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN111736309B (zh) * 2020-07-27 2020-11-10 常州市瑞泰光电有限公司 摄像光学镜头
CN111736308B (zh) * 2020-07-27 2020-12-22 诚瑞光学(常州)股份有限公司 摄像光学镜头
TWI736377B (zh) * 2020-07-30 2021-08-11 大立光電股份有限公司 影像擷取透鏡組、取像裝置及電子裝置
CN112698488B (zh) * 2020-12-30 2022-08-05 诚瑞光学(苏州)有限公司 摄像光学镜头
CN112698493B (zh) * 2020-12-30 2022-04-29 诚瑞光学(苏州)有限公司 摄像光学镜头
CN113238342B (zh) * 2021-05-10 2022-10-28 浙江舜宇光学有限公司 光学成像透镜组
CN114217418A (zh) * 2021-12-28 2022-03-22 玉晶光电(厦门)有限公司 光学成像镜头
CN114967051B (zh) * 2022-04-11 2023-11-10 青岛理工大学 一种人脸识别镜头
CN114690382B (zh) * 2022-06-01 2022-10-21 江西联益光学有限公司 光学镜头及成像设备
CN115016104B (zh) * 2022-08-09 2022-10-25 浙江大华技术股份有限公司 一种镜头及摄像装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191430A (ja) * 2018-04-27 2019-10-31 キヤノン株式会社 光学系及びそれを有する撮像装置
CN110609376A (zh) * 2019-09-27 2019-12-24 浙江舜宇光学有限公司 光学成像镜头
CN110646921A (zh) * 2019-09-27 2020-01-03 浙江舜宇光学有限公司 光学成像镜头
CN110687659A (zh) * 2018-07-04 2020-01-14 大立光电股份有限公司 摄影光学镜组、取像装置及电子装置
CN111308659A (zh) * 2020-03-16 2020-06-19 南昌欧菲精密光学制品有限公司 光学系统、摄像模组及电子装置
CN111552059A (zh) * 2020-06-18 2020-08-18 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043354A (ja) * 2001-05-14 2003-02-13 Olympus Optical Co Ltd 電子撮像装置
JP2013109179A (ja) * 2011-11-22 2013-06-06 Canon Inc ズームレンズ及びそれを有する撮像装置
TWI586998B (zh) * 2015-08-11 2017-06-11 大立光電股份有限公司 攝像用光學系統、取像裝置及電子裝置
JP6827173B2 (ja) * 2016-01-21 2021-02-10 パナソニックIpマネジメント株式会社 レンズ系および該レンズ系を含むカメラシステム
TWI769289B (zh) * 2018-08-08 2022-07-01 佳能企業股份有限公司 光學鏡頭
KR20200084181A (ko) * 2019-01-02 2020-07-10 삼성전기주식회사 촬상 광학계
CN115480366A (zh) * 2020-03-31 2022-12-16 玉晶光电(厦门)有限公司 光学成像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019191430A (ja) * 2018-04-27 2019-10-31 キヤノン株式会社 光学系及びそれを有する撮像装置
CN110687659A (zh) * 2018-07-04 2020-01-14 大立光电股份有限公司 摄影光学镜组、取像装置及电子装置
CN110609376A (zh) * 2019-09-27 2019-12-24 浙江舜宇光学有限公司 光学成像镜头
CN110646921A (zh) * 2019-09-27 2020-01-03 浙江舜宇光学有限公司 光学成像镜头
CN111308659A (zh) * 2020-03-16 2020-06-19 南昌欧菲精密光学制品有限公司 光学系统、摄像模组及电子装置
CN111552059A (zh) * 2020-06-18 2020-08-18 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN111596446A (zh) 2020-08-28
US20220026671A1 (en) 2022-01-27
CN111596446B (zh) 2020-10-27
JP2022023757A (ja) 2022-02-08
US11886041B2 (en) 2024-01-30
JP7029516B2 (ja) 2022-03-03

Similar Documents

Publication Publication Date Title
WO2022021453A1 (zh) 摄像光学镜头
WO2021031241A1 (zh) 摄像光学镜头
WO2022000658A1 (zh) 摄像光学镜头
WO2022007028A1 (zh) 摄像光学镜头
WO2022000659A1 (zh) 摄像光学镜头
WO2022021456A1 (zh) 摄像光学镜头
WO2022000647A1 (zh) 摄像光学镜头
WO2022021457A1 (zh) 摄像光学镜头
WO2022007027A1 (zh) 摄像光学镜头
WO2022041391A1 (zh) 摄像光学镜头
WO2022088252A1 (zh) 摄像光学镜头
WO2022021455A1 (zh) 摄像光学镜头
WO2022032827A1 (zh) 摄像光学镜头
WO2022007022A1 (zh) 摄像光学镜头
WO2021168891A1 (zh) 摄像光学镜头
WO2022021458A1 (zh) 摄像光学镜头
WO2022134178A1 (zh) 摄像光学镜头
WO2022134177A1 (zh) 摄像光学镜头
WO2022134176A1 (zh) 摄像光学镜头
WO2022088251A1 (zh) 摄像光学镜头
WO2022077608A1 (zh) 摄像光学镜头
WO2021134321A1 (zh) 摄像光学镜头
WO2021134324A1 (zh) 摄像光学镜头
WO2022021454A1 (zh) 摄像光学镜头
WO2022032826A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947425

Country of ref document: EP

Kind code of ref document: A1