WO2022021458A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2022021458A1
WO2022021458A1 PCT/CN2020/106614 CN2020106614W WO2022021458A1 WO 2022021458 A1 WO2022021458 A1 WO 2022021458A1 CN 2020106614 W CN2020106614 W CN 2020106614W WO 2022021458 A1 WO2022021458 A1 WO 2022021458A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
curvature
radius
imaging optical
ttl
Prior art date
Application number
PCT/CN2020/106614
Other languages
English (en)
French (fr)
Inventor
陈佳
孙雯
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2022021458A1 publication Critical patent/WO2022021458A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the invention relates to the field of optical lenses, in particular to an imaging optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as imaging devices such as monitors and PC lenses.
  • the purpose of the present invention is to provide an imaging optical lens, which can have good optical performance while being ultra-thin and wide-angle, can effectively correct aberrations, and further improve the performance of the optical system.
  • embodiments of the present invention provide an imaging optical lens, the imaging optical lens includes a total of eight lenses, and the eight lenses are sequentially from the object side to the image side: the first lens, the second lens Second lens, third lens, fourth lens, fifth lens, sixth lens, seventh lens and eighth lens;
  • At least one of the first to eighth lenses contains a free-form surface; the focal length of the imaging optical lens is f, the focal length of the fourth lens is f4, and the radius of curvature of the object side of the fifth lens is R9 , the radius of curvature of the image side surface of the fifth lens is R10, which satisfies the following relationship:
  • the on-axis distance from the image side of the third lens to the object side of the fourth lens is d6, the on-axis thickness of the fourth lens is d7, and the following relationship is satisfied:
  • the focal length of the first lens is f1
  • the radius of curvature of the object side of the first lens is R1
  • the radius of curvature of the image side of the first lens is R2
  • the on-axis thickness of the first lens is d1
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the focal length of the second lens is f2
  • the radius of curvature of the object side of the second lens is R3
  • the radius of curvature of the image side of the second lens is R4
  • the on-axis thickness of the second lens is d3
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the focal length of the third lens is f3
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6, and the on-axis thickness of the third lens is d5
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the radius of curvature of the object side of the fourth lens is R7
  • the radius of curvature of the image side of the fourth lens is R8
  • the axial thickness of the fourth lens is d7
  • the total optical length of the imaging optical lens is TTL
  • the focal length of the fifth lens is f5
  • the on-axis thickness of the fifth lens is d9
  • the total optical length of the imaging optical lens is TTL, and the following relationship is satisfied:
  • the focal length of the sixth lens is f6, the radius of curvature of the object side of the sixth lens is R11, the radius of curvature of the image side of the sixth lens is R12, and the on-axis thickness of the sixth lens is d11 , the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the focal length of the seventh lens is f7
  • the radius of curvature of the object side of the seventh lens is R13
  • the radius of curvature of the image side of the seventh lens is R14
  • the on-axis thickness of the seventh lens is d13
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the focal length of the eighth lens is f8, the radius of curvature of the object side of the eighth lens is R15, the radius of curvature of the image side of the eighth lens is R16, and the on-axis thickness of the eighth lens is d15 , the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the imaging optical lens according to the present invention can have the characteristics of ultra-thin and wide-angle while having good optical performance, and at the same time, from the first lens to the eighth lens, at least one lens contains a free-form surface, It can effectively correct aberrations and further improve the performance of the optical system, especially suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-pixel CCD, CMOS and other camera elements.
  • FIG. 1 is a schematic structural diagram of an imaging optical lens according to a first embodiment of the present invention
  • Fig. 2 is the situation that the RMS spot diameter of the imaging optical lens shown in Fig. 1 is in the first quadrant;
  • FIG. 3 is a schematic structural diagram of an imaging optical lens according to a second embodiment of the present invention.
  • Fig. 4 is the situation that the RMS spot diameter of the imaging optical lens shown in Fig. 3 is in the first quadrant;
  • FIG. 5 is a schematic structural diagram of an imaging optical lens according to a third embodiment of the present invention.
  • FIG. 6 shows the case where the RMS spot diameter of the imaging optical lens shown in FIG. 5 is within the first quadrant.
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention, and the imaging optical lens 10 includes eight lenses.
  • the imaging optical lens 10 from the object side to the image side, sequentially includes: a first lens L1, a second lens L2, an aperture S1, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens Lens L6, seventh lens L7, and eighth lens L8.
  • Optical elements such as an optical filter GF may be provided between the eighth lens L8 and the image plane Si.
  • the first lens L1 is made of plastic material
  • the second lens L2 is made of plastic material
  • the third lens L3 is made of plastic material
  • the fourth lens L4 is made of plastic material
  • the fifth lens L5 is made of plastic material
  • the sixth lens L6 is made of plastic material It is made of plastic material
  • the seventh lens L7 is made of plastic material
  • the eighth lens L8 is made of plastic material; in other embodiments, each lens may also be made of other materials.
  • At least one of the first lens L1 to the eighth lens L8 is defined to include a free-form surface, and the free-form surface helps to correct aberrations such as astigmatism, field curvature, and distortion of the wide-angle optical system, thereby improving imaging quality .
  • the focal length of the overall imaging optical lens 10 is defined as f, and the focal length of the fourth lens L4 is f4, 1.30 ⁇ f4/f ⁇ 5.00; the ratio of the focal length of the fourth lens to the overall focal length is specified, which helps to improve the image quality.
  • the radius of curvature of the object side of the fifth lens is defined as R9, and the radius of curvature of the image side of the fifth lens is R10, 0 ⁇ (R9+R10)/(R9-R10) ⁇ 4.50, which defines the radius of curvature of the fifth lens L5.
  • the shape helps to reduce the degree of light deflection and improve the imaging quality within the range of conditions.
  • the on-axis distance from the image side of the third lens to the object side of the fourth lens is d6, the on-axis thickness of the fourth lens is d7, 4.00 ⁇ d7/d6 ⁇ 12.00, within the range of the conditional expression, there are It helps to compress the total length of the optical system and realize the ultra-thin effect.
  • the first lens L1 has a negative refractive power
  • the object side of the first lens L1 is concave at the paraxial position
  • the image side surface is concave at the paraxial position.
  • the first lens L1 may also have a positive refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the first lens is f1, -4.09 ⁇ f1/f ⁇ -1.09, which defines the ratio of the focal length of the first lens L1 to the overall focal length.
  • the first lens has an appropriate negative refractive power, which is conducive to reducing system aberrations, and at the same time, is conducive to the development of ultra-thin and wide-angle lenses.
  • -2.56 ⁇ f1/f ⁇ -1.36 is satisfied.
  • the curvature radius R1 of the object side of the first lens L1 and the curvature radius R2 of the image side of the first lens L1 satisfy the following relationship: -1.03 ⁇ (R1+R2)/(R1-R2) ⁇ 1.02. shape, so that the first lens can effectively correct the spherical aberration of the system.
  • -0.65 ⁇ (R1+R2)/(R1-R2) ⁇ 0.82 is satisfied.
  • the on-axis thickness of the first lens L1 is d1, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.03 ⁇ d1/TTL ⁇ 0.14, which is conducive to realizing ultra-thinning.
  • 0.05 ⁇ d1/TTL ⁇ 0.11 is satisfied.
  • the second lens L2 has a positive refractive power, the object side of the second lens L2 is convex at the paraxial position, and the image side is concave at the paraxial position; in other optional embodiments, the first lens L2 The second lens L2 may also have a negative refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the second lens is f2
  • ⁇ 27.08 ⁇ f2/f ⁇ 9.25 which defines the ratio of the focal length of the second lens L2 to the overall focal length.
  • the curvature radius R3 of the object side of the second lens L2 and the curvature radius R4 of the image side of the second lens L2 satisfy the following relationship: -14.25 ⁇ (R3+R4)/(R3-R4) ⁇ 17.55, which specifies the second lens L2
  • -14.25 ⁇ (R3+R4)/(R3-R4) ⁇ 17.55 which specifies the second lens L2
  • it satisfies -8.91 ⁇ (R3+R4)/(R3-R4) ⁇ 14.04.
  • the on-axis thickness of the second lens is d3, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.02 ⁇ d3/TTL ⁇ 0.08, which is conducive to realizing ultra-thinning.
  • 0.03 ⁇ d3/TTL ⁇ 0.06 is satisfied.
  • the third lens L3 has a positive refractive power
  • the object side of the third lens L3 is convex at the paraxial position
  • the image side is concave at the paraxial position.
  • the third lens L3 may also have a negative refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the third lens is f3, 0.54 ⁇ f3/f ⁇ 8.03, which defines the ratio of the focal length of the third lens L3 to the overall focal length.
  • the system has better imaging quality and lower sensitivity.
  • 0.86 ⁇ f3/f ⁇ 6.42 is satisfied.
  • the radius of curvature of the object side of the third lens is R5, and the radius of curvature of the image side of the third lens is R6, which satisfies the following relationship: -5.25 ⁇ (R5+R6)/(R5-R6) ⁇ -0.10, which specifies the third lens
  • the shape of L3, within the range specified by the conditional formula, can moderate the degree of deflection of light passing through the lens and effectively reduce aberrations.
  • -3.28 ⁇ (R5+R6)/(R5-R6) ⁇ -0.12 is satisfied.
  • the axial thickness of the third lens is d5, and the total optical length of the imaging optical lens is TTL, which satisfies the following relational formula: 0.02 ⁇ d5/TTL ⁇ 0.12, which is conducive to realizing ultra-thinning.
  • 0.04 ⁇ d5/TTL ⁇ 0.09 is satisfied.
  • the fourth lens L4 has a positive refractive power
  • the object side of the fourth lens L4 is convex at the paraxial position
  • the image side is convex at the paraxial position.
  • the fourth lens L4 may also have a negative refractive power.
  • the radius of curvature of the object side of the fourth lens is R7
  • the radius of curvature of the image side of the fourth lens is R8, which satisfies the following relation: 0.20 ⁇ (R7+R8)/(R7-R8) ⁇ 6.80, which specifies the radius of curvature of the fourth lens L4.
  • R7 The radius of curvature of the object side of the fourth lens
  • R8 The radius of curvature of the image side of the fourth lens
  • 0.20 ⁇ (R7+R8)/(R7-R8) ⁇ 6.80 which specifies the radius of curvature of the fourth lens L4.
  • 0.32 ⁇ (R7+R8)/(R7-R8) ⁇ 5.44 is satisfied.
  • the axial thickness of the fourth lens is d7, and the total optical length of the imaging optical lens is TTL, which satisfies the following relational formula: 0.03 ⁇ d7/TTL ⁇ 0.14, which is conducive to realizing ultra-thinning.
  • 0.05 ⁇ d7/TTL ⁇ 0.11 is satisfied.
  • the fifth lens L5 has a negative refractive power
  • the object side of the fifth lens L5 is concave at the paraxial position
  • the image side surface is concave at the paraxial position.
  • the fifth lens L5 may also have a positive refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the fifth lens is f5, -8.06 ⁇ f5/f ⁇ -1.87, which defines the ratio of the focal length of the fifth lens L5 to the overall focal length.
  • the limitation of the fifth lens L5 can effectively make the light angle of the imaging lens gentle and reduce the tolerance sensitivity.
  • -5.04 ⁇ f5/f ⁇ -2.34 is satisfied.
  • the axial thickness of the fifth lens is d9, and the total optical length of the imaging optical lens is TTL, which satisfies the following relational formula: 0.02 ⁇ d9/TTL ⁇ 0.06, which is conducive to realizing ultra-thinning.
  • 0.03 ⁇ d9/TTL ⁇ 0.05 is satisfied.
  • the sixth lens L6 has a negative refractive power, the object side of the sixth lens L6 is concave at the paraxial position, and the image side surface is concave at the paraxial position. In other optional embodiments, the sixth lens L6 may also have a positive refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the sixth lens is f6, and ⁇ 5.57 ⁇ f6/f ⁇ 2.97, which defines the ratio of the focal length of the sixth lens L6 to the overall focal length.
  • the system has better imaging quality and lower sensitivity.
  • -3.48 ⁇ f6/f ⁇ 2.38 is satisfied.
  • the radius of curvature of the object side of the sixth lens is R11
  • the radius of curvature of the image side of the sixth lens is R12, which satisfies the following relationship: -0.54 ⁇ (R11+R12)/(R11-R12) ⁇ 0.60, which specifies the sixth lens
  • the shape of the L6, within the range of conditions, is helpful for correcting problems such as aberrations in the off-axis picture angle with the development of ultra-thin and wide-angle.
  • -0.34 ⁇ (R11+R12)/(R11-R12) ⁇ 0.48 is satisfied.
  • the on-axis thickness of the sixth lens is d11, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.05 ⁇ d11/TTL ⁇ 0.16, which is conducive to realizing ultra-thinning. Preferably, 0.07 ⁇ d11/TTL ⁇ 0.13 is satisfied.
  • the seventh lens L7 has a positive refractive power
  • the object side of the seventh lens L7 is convex at the paraxial position
  • the image side surface is convex at the paraxial position.
  • the seventh lens L7 may also have a negative refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the seventh lens is f7, 0.41 ⁇ f7/f ⁇ 1.99, which defines the ratio of the focal length of the seventh lens L7 to the overall focal length.
  • the system has better imaging quality and lower sensitivity.
  • 0.66 ⁇ f7/f ⁇ 1.59 is satisfied.
  • the radius of curvature of the object side of the seventh lens is R13
  • the radius of curvature of the image side of the seventh lens is R14, which satisfies the following relationship: 0.26 ⁇ (R13+R14)/(R13-R14) ⁇ 5.59, which specifies the seventh lens L7
  • 0.41 ⁇ (R13+R14)/(R13-R14) ⁇ 4.47 is satisfied.
  • the axial thickness of the seventh lens is d13, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.04 ⁇ d13/TTL ⁇ 0.20, which is beneficial to realizing ultra-thinning.
  • 0.07 ⁇ d13/TTL ⁇ 0.16 is satisfied.
  • the eighth lens L8 has a negative refractive power
  • the object side of the eighth lens L8 is convex at the paraxial position
  • the image side is concave at the paraxial position; in other optional embodiments, the The eight-lens L8 may also have a positive refractive power.
  • the focal length of the overall imaging optical lens 10 is f
  • the focal length of the eighth lens is f8, -2.75 ⁇ f8/f ⁇ -0.81, which defines the ratio of the focal length of the eighth lens L8 to the overall focal length.
  • the system has better imaging quality and lower sensitivity.
  • -1.72 ⁇ f8/f ⁇ -1.01 is satisfied.
  • the radius of curvature of the object side of the eighth lens is R15
  • the radius of curvature of the image side of the eighth lens is R16, which satisfies the following relationship: 1.14 ⁇ (R15+R16)/(R15-R16) ⁇ 4.00, which specifies the eighth lens L8
  • the shape of the lens is within the range of conditions, with the development of ultra-thin and wide-angle, it is beneficial to correct problems such as aberration of the off-axis picture angle.
  • 1.82 ⁇ (R15+R16)/(R15-R16) ⁇ 3.20 is satisfied.
  • the on-axis thickness of the eighth lens is d15, and the total optical length of the imaging optical lens is TTL, which satisfies the following relationship: 0.04 ⁇ d15/TTL ⁇ 0.16, which is conducive to realizing ultra-thinning. Preferably, 0.06 ⁇ d15/TTL ⁇ 0.13 is satisfied.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 6.82 mm, which is beneficial to achieve ultra-thinning.
  • the total optical length TTL is less than or equal to 6.51 mm.
  • the aperture value FNO of the imaging optical lens 10 is less than or equal to 2.00. Large aperture, good imaging performance.
  • the ratio of the total optical length TTL of the imaging optical lens to the full field of view image height (diagonal direction) IH is TTL/IH ⁇ 2.07, which is conducive to realizing ultra-thinning.
  • the FOV in the diagonal direction is greater than or equal to 120°, which is beneficial for widening the angle.
  • the imaging optical lens 10 has good optical performance, and at the same time, the free-form surface can be used to match the designed image area with the actual use area, and the image quality of the effective area can be improved to the greatest extent;
  • the imaging optical lens 10 is particularly suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-pixel CCD, CMOS and other imaging elements.
  • the imaging optical lens 10 of the present invention will be described below by way of examples.
  • the symbols described in each example are as follows.
  • the focal length, on-axis distance, curvature radius, and on-axis thickness are in mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the imaging plane), in mm;
  • Aperture value FNO refers to the ratio of the effective focal length of the imaging optical lens to the diameter of the entrance pupil.
  • Tables 1 and 2 show design data of the imaging optical lens 10 according to the first embodiment of the present invention.
  • the object side surface and the image side surface of the first lens L1 are free-form surfaces.
  • R the radius of curvature at the center of the optical surface
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the curvature radius of the image side surface of the third lens L3;
  • R7 the curvature radius of the object side surface of the fourth lens L4;
  • R8 the curvature radius of the image side surface of the fourth lens L4;
  • R9 the curvature radius of the object side surface of the fifth lens L5;
  • R10 the curvature radius of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side surface of the sixth lens L6;
  • R12 the curvature radius of the image side surface of the sixth lens L6;
  • R13 the radius of curvature of the object side surface of the seventh lens L7;
  • R14 the curvature radius of the image side surface of the seventh lens L7;
  • R15 the radius of curvature of the object side surface of the eighth lens L8;
  • R16 the radius of curvature of the image side surface of the eighth lens L8;
  • R17 The curvature radius of the object side of the optical filter GF
  • R18 The curvature radius of the image side of the optical filter GF
  • d0 the on-axis distance from the aperture S1 to the object side surface of the first lens L1;
  • d2 the on-axis distance from the image side of the first lens L1 to the object side of the second lens L2;
  • d4 the on-axis distance from the image side of the second lens L2 to the object side of the third lens L3;
  • d6 the on-axis distance from the image side of the third lens L3 to the object side of the fourth lens L4;
  • d10 the on-axis distance from the image side of the fifth lens L5 to the object side of the sixth lens L6;
  • d11 the on-axis thickness of the sixth lens L6;
  • d12 the on-axis distance from the image side of the sixth lens L6 to the object side of the seventh lens L7;
  • d14 the on-axis distance from the image side of the seventh lens L7 to the object side of the eighth lens L8;
  • d16 the on-axis distance from the image side of the eighth lens L8 to the object side of the optical filter GF;
  • d17 On-axis thickness of optical filter GF
  • nd the refractive index of the d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • nd7 the refractive index of the d-line of the seventh lens L7;
  • nd8 the refractive index of the d-line of the eighth lens L8;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows aspherical surface data of each lens in the imaging optical lens 10 according to the first embodiment of the present invention. ⁇ Table 2 ⁇
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, A16, A18, A20 are the aspheric coefficients
  • c is the curvature at the center of the optical surface
  • r is the vertical distance between the point on the aspheric curve and the optical axis
  • z is the depth of the aspheric surface (the vertical distance between a point on the aspheric surface with a distance r from the optical axis and a tangent plane tangent to the vertex on the optical axis of the aspheric surface).
  • the aspherical surface shown in the above formula (1) is used as the aspherical surface of each lens surface.
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 shows the free-form surface data in the imaging optical lens 10 according to the first embodiment of the present invention:
  • k is the conic coefficient
  • Bi is the free-form surface coefficient
  • c is the curvature at the center of the optical surface
  • r is the vertical distance between the point on the free-form surface and the optical axis
  • x is the x-direction component of r
  • y is the y-direction of r component
  • z is the depth of the aspheric surface (the vertical distance between a point on the aspheric surface at a distance r from the optical axis and a tangent plane tangent to the vertex on the optical axis of the aspheric surface).
  • each free-form surface uses the Extended Polynomial (Extended Polynomial) shown in the above formula (2).
  • the present invention is not limited to the free-form surface polynomial form represented by the formula (2).
  • FIG. 2 shows the case where the RMS spot diameter of the imaging optical lens 10 is within the first quadrant. It can be seen from FIG. 2 that the imaging optical lens 10 of the first embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens 10 is 1.000 mm
  • the full field of view image height (diagonal direction) IH is 6.000 mm
  • the x-direction image height is 4.800 mm
  • the y-direction image height is 3.600 mm
  • the imaging effect is the best in this rectangular range.
  • the FOV in the diagonal direction is 120.00°
  • the field angle in the x direction is 107.35°
  • the field angle in the y direction is 91.08°.
  • the camera optical lens 10 Satisfy wide-angle, ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical properties.
  • the second embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • the image side surface of the third lens L3 is convex at the paraxial position.
  • Tables 4 and 5 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • the object side surface and the image side surface of the seventh lens L7 are free curved surfaces.
  • Table 5 shows aspherical surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows the free-form surface data in the imaging optical lens 20 of the second embodiment of the present invention:
  • FIG. 4 shows the case where the RMS spot diameter of the imaging optical lens 20 of the second embodiment is within the first quadrant. It can be seen from FIG. 4 that the imaging optical lens 20 of the second embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 1.000mm
  • the full field of view image height (diagonal direction) IH is 6.000mm
  • the x-direction image height is 4.800mm
  • the y-direction image height is 3.600mm
  • the imaging effect is the best in this rectangular range.
  • the FOV in the diagonal direction is 120.00°
  • the field angle in the x direction is 106.96°
  • the field angle in the y direction is 90.38°.
  • the imaging optical lens 20 satisfies the Wide-angle, ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical properties.
  • the third embodiment is basically the same as the first embodiment, the meanings of symbols are the same as those of the first embodiment, and only the differences are listed below.
  • the second lens L2 has a negative refractive power
  • the sixth lens L6 has a positive refractive power
  • the image side of the third lens L3 at the paraxial position is Convex
  • the object side of the fourth lens L4 is concave at the paraxial place
  • the object side of the fifth lens L5 is convex at the paraxial place
  • the object side of the sixth lens L6 is convex at the paraxial place
  • the image side is convex at the paraxial place
  • the object side surface of the seventh lens L7 is concave at the paraxial position.
  • the aperture S1 is provided between the first lens L1 and the second lens L2.
  • Tables 7 and 8 show design data of the imaging optical lens 30 according to the third embodiment of the present invention.
  • the object side surface and the image side surface of the eighth lens L8 are free-form surfaces.
  • Table 8 shows aspherical surface data of each lens in the imaging optical lens 30 according to the third embodiment of the present invention.
  • Table 9 shows free-form surface data in the imaging optical lens 30 according to the third embodiment of the present invention.
  • FIG. 6 shows the case where the RMS spot diameter of the imaging optical lens 30 of the third embodiment is within the first quadrant. It can be seen from FIG. 6 that the imaging optical lens 30 of the third embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 1.030mm
  • the full field of view image height (diagonal direction) IH is 6.000mm
  • the image height in the x direction is 4.800mm
  • the image height in the y direction is 3.600mm.
  • the imaging effect is the best within this rectangular range.
  • the FOV in the diagonal direction is 122.32°
  • the field angle in the x direction is 99.29°
  • the field angle in the y direction is 79.25°.
  • the imaging optical lens 30 satisfies the Wide-angle, ultra-thin, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical properties.
  • Example 1 Example 2
  • Example 3 f4/f 1.36 1.72 4.85 (R9+R10)/(R9-R10) 0.05 0.50
  • 4.08 f 1.800 1.800 2.059 f1 -3.639 -3.681 -3.355 f2
  • 9.488 11.095 -27.879 f3 9.631 4.187 2.215 f4 2.450 3.098 9.983 f5 -5.920 -5.054 -8.298 f6 -5.012 -4.888 4.078 f7 1.486 1.488 2.729 f8 -2.190 -2.207 -2.828

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),共包含八片透镜,八片透镜自物侧至像侧依序为:第一透镜(L1),第二透镜(L2),第三透镜(L3),第四透镜(L4),第五透镜(L5),第六透镜(L6),第七透镜(L7)以及第八透镜(L8);第一透镜(L1)至第八透镜(L8)中至少一个含自由曲面;摄像光学镜头(10)的焦距为f,第四透镜(L4)的焦距为f4,第五透镜(L5)物侧面的曲率半径为R9,第五透镜(L5)像侧面的曲率半径为R10,且满足下列关系式:1.30≤f4/f≤5.00;0≤(R9+R10)/(R9-R10)≤4.50。这种摄像光学镜头(10)能够在超薄和广角的同时具有良好的光学性能,可以有效地矫正像差,进一步提升光学系统性能。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
随着成像镜头的发展,人们对镜头的成像要求越来越高,镜头的“夜景拍照”和“背景虚化”也成为衡量镜头成像标准的重要指标。现有结构光焦度分配、透镜间隔和透镜形状设置不充分,造成镜头超薄化和广角化不充分;并且旋转对称的非球面不能很好地矫正像差。自由曲面是一种非旋转对称的表面类型,能够更好地平衡像差,提高成像质量,而且自由曲面的加工也逐渐成熟。随着对镜头成像要求的提升,在设计镜头时加入自由曲面显得十分重要,尤其是在广角和超广角镜头的设计中效果更为明显。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能够在超薄和广角的同时具有良好的光学性能,可以有效地矫正像差,进一步提升光学系统性能。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头共包含八片透镜,八片所述透镜自物侧至像侧依序为:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜以及第八透镜;
所述第一透镜至第八透镜,至少有一个透镜含有自由曲面;所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,满足下列关系式:
1.30≤f4/f≤5.00;
0≤(R9+R10)/(R9-R10)≤4.50。
优选的,所述第三透镜的像侧面到所述第四透镜的物侧面的轴上距离为d6,所述第四透镜的轴上厚度为d7,且满足下列关系式:
4.00≤d7/d6≤12.00。
优选的,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-4.09≤f1/f≤-1.09;
-1.03≤(R1+R2)/(R1-R2)≤1.02;
0.03≤d1/TTL≤0.14。
优选的,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-27.08≤f2/f≤9.25;
-14.25≤(R3+R4)/(R3-R4)≤17.55;
0.02≤d3/TTL≤0.08。
优选的,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.54≤f3/f≤8.03;
-5.25≤(R5+R6)/(R5-R6)≤-0.10;
0.02≤d5/TTL≤0.12。
优选的,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.20≤(R7+R8)/(R7-R8)≤6.80;
0.03≤d7/TTL≤0.14。
优选的,所述第五透镜的焦距为f5,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-8.06≤f5/f≤-1.87;
0.02≤d9/TTL≤0.06。
优选的,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述 第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-5.57≤f6/f≤2.97;
-0.54≤(R11+R12)/(R11-R12)≤0.60;
0.05≤d11/TTL≤0.16。
优选的,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.41≤f7/f≤1.99;
0.26≤(R13+R14)/(R13-R14)≤5.59;
0.04≤d13/TTL≤0.20。
优选的,所述第八透镜的焦距为f8,所述第八透镜物侧面的曲率半径为R15,所述第八透镜像侧面的曲率半径为R16,所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-2.75≤f8/f≤-0.81;
1.14≤(R15+R16)/(R15-R16)≤4.00;
0.04≤d15/TTL≤0.16。
本发明的有益效果在于:根据本发明的摄像光学镜头,能够在具有良好光学性能的同时,具有超薄和广角的特点,同时,从第一透镜到第八透镜至少有一个透镜含有自由曲面,可以有效地矫正像差,进一步提升光学系统性能,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图3是本发明第二实施方式的摄像光学镜头的结构示意图;
图4是图3所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图5是本发明第三实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的RMS光斑直径在第一象限内的情况。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括八个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:第一透镜L1、第二透镜L2、光圈S1、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及第八透镜L8。第八透镜L8和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质,第七透镜L7为塑料材质,第八透镜L8为塑料材质;在其他实施方式中,各透镜也可以是其他材质。
在本实施方式中,定义所述第一透镜L1至第八透镜L8中的至少一个含自由曲面,自由曲面有助于广角光学系统像散、场曲和畸变等像差校正,进而提高成像质量。
定义整体摄像光学镜头10的焦距为f,所述第四透镜L4的焦距为f4,1.30≤f4/f≤5.00;规定了第四透镜焦距与整体焦距的比值,在条件范围内有助于提高成像质量。
定义所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,0≤(R9+R10)/(R9-R10)≤4.50,规定了第五透镜L5的形状,在条件范围内有助于降低光线偏折程度,提升成像品质。
所述第三透镜的像侧面到所述第四透镜的物侧面的轴上距离为d6,所述第四透镜的轴上厚度为d7,4.00≤d7/d6≤12.00,在条件式范围内有助于压缩光学系统总长,实现超薄化效果。
在本实施方式中,所述第一透镜L1具有负屈折力,第一透镜L1物侧面于近轴处为凹面、像侧面于近轴处为凹面。在其他可选实施方式中,所述第一透镜L1也可以具有正屈折力。
整体摄像光学镜头10的焦距为f,所述第一透镜的焦距为f1,-4.09≤f1/f≤-1.09,规定了第一透镜L1的焦距与整体焦距的比值。在规定的范围内时,第一透镜具有适当的负屈折力,有利于减小系统像差,同时有利于镜头向超薄化、广角化发展。优选地,满足-2.56≤f1/f≤-1.36。
第一透镜L1物侧面的曲率半径R1,第一透镜L1像侧面的曲率半径R2,满足下列关系式:-1.03≤(R1+R2)/(R1-R2)≤1.02,合理控制第一透镜的形状,使得第一透镜能够有效地校正系统球差。优选地,满足-0.65≤(R1+R2)/(R1-R2)≤0.82。
第一透镜L1的轴上厚度为d1,摄像光学镜头的光学总长为TTL,满足下列关系式:0.03≤d1/TTL≤0.14,有利于实现超薄化。优选地,满足0.05≤d1/TTL≤0.11。
在本实施方式中,所述第二透镜L2具有正屈折力,第二透镜L2物侧面于近轴处为凸面、像侧面于近轴处为凹面;在其他可选实施方式中,所述第二透镜L2也可以具有负屈折力。
整体摄像光学镜头10的焦距为f,第二透镜的焦距为f2,-27.08≤f2/f≤9.25,规定了第二透镜L2的焦距与整体焦距的比值。通过将第二透镜L2的光焦度控制在合理范围,有利于矫正光学系统的像差。优选地,满足-16.93≤f2/f≤7.40。
第二透镜L2物侧面的曲率半径R3,第二透镜L2像侧面的曲率半径R4,满足下列关系式:-14.25≤(R3+R4)/(R3-R4)≤17.55,规定了第二透镜L2的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题,优选地,满足-8.91≤(R3+R4)/(R3-R4)≤14.04。
所述第二透镜的轴上厚度为d3,摄像光学镜头的光学总长为TTL,满足下列关系式:0.02≤d3/TTL≤0.08,有利于实现超薄化。优选地,满足0.03≤d3/TTL≤0.06。
在本实施方式中,所述第三透镜L3具有正屈折力,第三透镜L3物侧面于近轴处为凸面、像侧面于近轴处为凹面。在其他可选实施方式中,所述第三透镜L3也可以具有负屈折力。
整体摄像光学镜头10的焦距为f,所述第三透镜的焦距为f3,0.54≤f3/f≤8.03,规定了第三透镜L3的焦距与整体焦距的比值。通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足0.86≤f3/f≤6.42。
第三透镜物侧面的曲率半径为R5,第三透镜像侧面的曲率半径为R6,满足下列关系式:-5.25≤(R5+R6)/(R5-R6)≤-0.10,规定了第三透镜L3的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-3.28≤(R5+R6)/(R5-R6)≤-0.12。
第三透镜的轴上厚度为d5,摄像光学镜头的光学总长为TTL,满足下列关系式:0.02≤d5/TTL≤0.12,有利于实现超薄化。优选地,满足0.04≤d5/TTL≤0.09。
在本实施方式中,所述第四透镜L4具有正屈折力,第四透镜L4物侧面于近轴处为凸面、像侧面于近轴处为凸面。在其他可选实施方式中,所述第四透镜L4也可以具有负屈折力。
第四透镜物侧面的曲率半径为R7,第四透镜像侧面的曲率半径为R8,满足下列关系式:0.20≤(R7+R8)/(R7-R8)≤6.80,规定了第四透镜L4的形状,在范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足0.32≤(R7+R8)/(R7-R8)≤5.44。
第四透镜的轴上厚度为d7,摄像光学镜头的光学总长为TTL,满足下列关系式:0.03≤d7/TTL≤0.14,有利于实现超薄化。优选地,满足0.05≤d7/TTL≤0.11。
在本实施方式中,所述第五透镜L5具有负屈折力,第五透镜L5物侧面于近轴处为凹面、像侧面于近轴处为凹面。在其他可选实施方式中,所述第五透镜L5也可以具有正屈折力。
整体摄像光学镜头10的焦距为f,所述第五透镜的焦距为f5,-8.06≤f5/f≤-1.87,规定了第五透镜L5的焦距与整体焦距的比值。对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选地,满足-5.04≤f5/f≤-2.34。
第五透镜的轴上厚度为d9,摄像光学镜头的光学总长为TTL,满足下列关系式:0.02≤d9/TTL≤0.06,有利于实现超薄化。优选地,满足0.03≤d9/TTL≤0.05。
在本实施方式中,所述第六透镜L6具有负屈折力,第六透镜L6物侧面于近轴处为凹面、像侧面于近轴处为凹面。在其他可选实施方式中,所述第六透镜L6也可以具有正屈折力。
整体摄像光学镜头10的焦距为f,所述第六透镜的焦距为f6,-5.57≤f6/f≤2.97,规定了第六透镜L6的焦距与整体焦距的比值。通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-3.48≤f6/f≤2.38。
第六透镜物侧面的曲率半径为R11,第六透镜像侧面的曲率半径为R12,满足下列 关系式:-0.54≤(R11+R12)/(R11-R12)≤0.60,规定的是第六透镜L6的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-0.34≤(R11+R12)/(R11-R12)≤0.48。
第六透镜的轴上厚度为d11,摄像光学镜头的光学总长为TTL,满足下列关系式:0.05≤d11/TTL≤0.16,有利于实现超薄化。优选地,满足0.07≤d11/TTL≤0.13。
在本实施方式中,所述第七透镜L7具有正屈折力,第七透镜L7物侧面于近轴处为凸面、像侧面于近轴处为凸面。在其他可选实施方式中,所述第七透镜L7也可以具有负屈折力。
整体摄像光学镜头10的焦距为f,所述第七透镜的焦距为f7,0.41≤f7/f≤1.99,规定了第七透镜L7的焦距与整体焦距的比值。通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足0.66≤f7/f≤1.59。
第七透镜物侧面的曲率半径为R13,第七透镜像侧面的曲率半径为R14,满足下列关系式:0.26≤(R13+R14)/(R13-R14)≤5.59,规定的是第七透镜L7的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足0.41≤(R13+R14)/(R13-R14)≤4.47。
第七透镜的轴上厚度为d13,摄像光学镜头的光学总长为TTL,满足下列关系式:0.04≤d13/TTL≤0.20,有利于实现超薄化。优选地,满足0.07≤d13/TTL≤0.16。
在本实施方式中,所述第八透镜L8具有负屈折力,第八透镜L8物侧面于近轴处为凸面、像侧面于近轴处为凹面;在其他可选实施方式中,所述第八透镜L8也可以具有正屈折力。
整体摄像光学镜头10的焦距为f,所述第八透镜的焦距为f8,-2.75≤f8/f≤-0.81,规定了第八透镜L8的焦距与整体焦距的比值。通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性。优选地,满足-1.72≤f8/f≤-1.01。
第八透镜物侧面的曲率半径为R15,第八透镜像侧面的曲率半径为R16,满足下列关系式:1.14≤(R15+R16)/(R15-R16)≤4.00,规定的是第八透镜L8的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足1.82≤(R15+R16)/(R15-R16)≤3.20。
第八透镜的轴上厚度为d15,摄像光学镜头的光学总长为TTL,满足下列关系式:0.04≤d15/TTL≤0.16,有利于实现超薄化。优选地,满足0.06≤d15/TTL≤0.13。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于6.82毫米,有利于实 现超薄化。优选地,光学总长TTL小于或等于6.51毫米。
本实施方式中,摄像光学镜头10的光圈值FNO小于或等于2.00。大光圈,成像性能好。
本实施方式中,摄像光学镜头的光学总长TTL与全视场像高(对角线方向)IH的比值TTL/IH≤2.07,有利于实现超薄化。对角线方向的视场角FOV大于或等于120°,有利于实现广角化。
当满足上述关系时,使得摄像光学镜头10具有良好光学性能的同时,采用自由曲面,可实现设计像面区域与实际使用区域匹配,最大程度提升有效区域的像质;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;
光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。
表1和表2示出本发明第一实施方式的摄像光学镜头10的设计数据。其中,第一透镜L1的物侧面和像侧面为自由曲面。
【表1】
Figure PCTCN2020106614-appb-000001
Figure PCTCN2020106614-appb-000002
其中,各符号的含义如下。
S1:光圈;
R:光学面中心处的曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:第七透镜L7的物侧面的曲率半径;
R14:第七透镜L7的像侧面的曲率半径;
R15:第八透镜L8的物侧面的曲率半径;
R16:第八透镜L8的像侧面的曲率半径;
R17:光学过滤片GF的物侧面的曲率半径;
R18:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到第八透镜L8的物侧面的轴上距离;
d15:第八透镜L8的轴上厚度;
d16:第八透镜L8的像侧面到光学过滤片GF的物侧面的轴上距离;
d17:光学过滤片GF的轴上厚度;
d18:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
nd8:第八透镜L8的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
v8:第八透镜L8的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。【表2】
Figure PCTCN2020106614-appb-000003
Figure PCTCN2020106614-appb-000004
z=(cr 2)/{1+[1-(k+1)(c 2r 2)] 1/2}+A4r 4+A6r 6+A8r 8+A10r 10+A12r 12+A14r 14+A16r 16+A18r 18+A20r 20          (1)
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数,c是光学面中心处的曲率,r是非球面曲线上的点与光轴的垂直距离,z是非球面深度(非球面上距离光轴为r的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3示出本发明第一实施方式的摄像光学镜头10中的自由曲面数据:
【表3】
Figure PCTCN2020106614-appb-000005
Figure PCTCN2020106614-appb-000006
其中,k是圆锥系数,Bi是自由曲面系数,c是光学面中心处的曲率,r是自由曲面上的点与光轴的垂直距离,x是r的x方向分量,y是r的y方向分量,z是非球面深度(非球面上距离光轴为r的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
为方便起见,各个自由曲面使用上述公式(2)中所示的扩展多项式面型(Extended Polynomial)。但是,本发明不限于该公式(2)表示的自由曲面多项式形式。
图2示出了摄像光学镜头10的RMS光斑直径在第一象限内的情况,根据图2可知,第一实施方式的摄像光学镜头10能够实现良好的成像品质。
以下表10按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,摄像光学镜头10的入瞳直径ENPD为1.000mm,全视场像高(对角线方向)IH为6.000mm,x方向像高为4.800mm,y方向像高为3.600mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为120.00°,x方向的视场角为107.35°,y方向的视场角为91.08°,所述摄像光学镜头10满足广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特性。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
如图3所示,在第二实施方式中,所述摄像光学镜头20中,第三透镜L3的像侧面于近轴处为凸面。
表4和表5示出本发明第二实施方式的摄像光学镜头20的设计数据。其中,第七透镜L7的物侧面和像侧面为自由曲面。
【表4】
Figure PCTCN2020106614-appb-000007
Figure PCTCN2020106614-appb-000008
表5示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表5】
Figure PCTCN2020106614-appb-000009
Figure PCTCN2020106614-appb-000010
表6示出本发明第二实施方式的摄像光学镜头20中的自由曲面数据:
【表6】
Figure PCTCN2020106614-appb-000011
图4示出了第二实施例的摄像光学镜头20的RMS光斑直径在第一象限内的情况,根据图4可知,第二实施方式的摄像光学镜头20能够实现良好的成像品质。
以下表10按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,摄像光学镜头的入瞳直径ENPD为1.000mm,全视场像高(对角线方向)IH为6.000mm,x方向像高为4.800mm,y方向像高为3.600mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为120.00°,x方向的视场角为106.96°,y方向的视场角为90.38°,所述摄像光学镜头20满足广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特性。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
如图5所示,在第三实施方式中,所述摄像光学镜头30中,第二透镜L2具有负屈折力,第六透镜L6具有正屈折力,第三透镜L3像侧面于近轴处为凸面;第四透镜L4物侧面于近轴处为凹面;第五透镜L5物侧面于近轴处为凸面;第六透镜L6物侧面于近轴处为凸面、像侧面于近轴处为凸面;第七透镜L7物侧面于近轴处为凹面。光圈S1设在第一透镜L1和第二透镜L2之间。
表7和表8示出本发明第三实施方式的摄像光学镜头30的设计数据。其中,第八透镜L8的物侧面和像侧面为自由曲面。
【表7】
Figure PCTCN2020106614-appb-000012
表8示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表8】
Figure PCTCN2020106614-appb-000013
Figure PCTCN2020106614-appb-000014
表9示出本发明第三实施方式的摄像光学镜头30中的自由曲面数据。
【表9】
Figure PCTCN2020106614-appb-000015
Figure PCTCN2020106614-appb-000016
图6示出了第三实施例的摄像光学镜头30的RMS光斑直径在第一象限内的情况,根据图6可知,第三实施方式的摄像光学镜头30能够实现良好的成像品质。
以下表10按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,摄像光学镜头的入瞳直径ENPD为1.030mm,全视场像高(对角线方向)IH为6.000mm,x方向像高为4.800mm,y方向像高为3.600mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为122.32°,x方向的视场角为99.29°,y方向的视场角为79.25°,所述摄像光学镜头30满足广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特性。
【表10】
参数及条件式 实施例1 实施例2 实施例3
f4/f 1.36 1.72 4.85
(R9+R10)/(R9-R10) 0.05 0.50 4.08
f 1.800 1.800 2.059
f1 -3.639 -3.681 -3.355
f2 9.488 11.095 -27.879
f3 9.631 4.187 2.215
f4 2.450 3.098 9.983
f5 -5.920 -5.054 -8.298
f6 -5.012 -4.888 4.078
f7 1.486 1.488 2.729
f8 -2.190 -2.207 -2.828
FNO 1.80 1.80 2.00
FOV 120.00° 120.00° 122.32°
TTL 6.201 6.201 5.125
IH 6.000 6.000 6.000
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神 和范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头共包含八片透镜,八片所述透镜自物侧至像侧依序为:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,第七透镜以及第八透镜;
    所述第一透镜至第八透镜,至少有一个透镜含有自由曲面;所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,满足下列关系式:
    1.30≤f4/f≤5.00;
    0≤(R9+R10)/(R9-R10)≤4.50。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的像侧面到所述第四透镜的物侧面的轴上距离为d6,所述第四透镜的轴上厚度为d7,且满足下列关系式:
    4.00≤d7/d6≤12.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -4.09≤f1/f≤-1.09;
    -1.03≤(R1+R2)/(R1-R2)≤1.02;
    0.03≤d1/TTL≤0.14。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光 学总长为TTL,且满足下列关系式:
    -27.08≤f2/f≤9.25;
    -14.25≤(R3+R4)/(R3-R4)≤17.55;
    0.02≤d3/TTL≤0.08。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.54≤f3/f≤8.03;
    -5.25≤(R5+R6)/(R5-R6)≤-0.10;
    0.02≤d5/TTL≤0.12。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.20≤(R7+R8)/(R7-R8)≤6.80;
    0.03≤d7/TTL≤0.14。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -8.06≤f5/f≤-1.87;
    0.02≤d9/TTL≤0.06。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜 的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -5.57≤f6/f≤2.97;
    -0.54≤(R11+R12)/(R11-R12)≤0.60;
    0.05≤d11/TTL≤0.16。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.41≤f7/f≤1.99;
    0.26≤(R13+R14)/(R13-R14)≤5.59;
    0.04≤d13/TTL≤0.20。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第八透镜的焦距为f8,所述第八透镜物侧面的曲率半径为R15,所述第八透镜像侧面的曲率半径为R16,所述第八透镜的轴上厚度为d15,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -2.75≤f8/f≤-0.81;
    1.14≤(R15+R16)/(R15-R16)≤4.00;
    0.04≤d15/TTL≤0.16。
PCT/CN2020/106614 2020-07-27 2020-08-03 摄像光学镜头 WO2022021458A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010727681.7 2020-07-27
CN202010727681.7A CN111736312B (zh) 2020-07-27 2020-07-27 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2022021458A1 true WO2022021458A1 (zh) 2022-02-03

Family

ID=72657801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106614 WO2022021458A1 (zh) 2020-07-27 2020-08-03 摄像光学镜头

Country Status (4)

Country Link
US (1) US20220026680A1 (zh)
JP (1) JP7079837B2 (zh)
CN (1) CN111736312B (zh)
WO (1) WO2022021458A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736308B (zh) * 2020-07-27 2020-12-22 诚瑞光学(常州)股份有限公司 摄像光学镜头
CN115097605B (zh) * 2022-07-09 2023-06-06 苏州大学 一种物像双倾斜成像光学系统及其设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101871107B1 (ko) * 2017-03-08 2018-06-29 주식회사 옵트론텍 촬상 렌즈 광학계
CN110007444A (zh) * 2019-05-21 2019-07-12 浙江舜宇光学有限公司 光学成像镜头
CN110873944A (zh) * 2018-09-04 2020-03-10 佳能企业股份有限公司 光学镜头
CN111239984A (zh) * 2020-03-25 2020-06-05 东莞市宇瞳光学科技股份有限公司 一种定焦镜头
CN211123463U (zh) * 2019-12-13 2020-07-28 天津欧菲光电有限公司 光学成像系统、取像装置及电子设备
CN111596446A (zh) * 2020-07-27 2020-08-28 常州市瑞泰光电有限公司 摄像光学镜头

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325430A (en) * 1976-08-20 1978-03-09 Nippon Chemical Ind Wide angle photographic lens
US4981344A (en) * 1988-11-14 1991-01-01 Minolta Camera Kabushiki Kaisha Wide angle lens system for use in copying machine
JP2909958B2 (ja) * 1995-09-19 1999-06-23 旭精密株式会社 超広角レンズ系
JP3625923B2 (ja) * 1995-09-28 2005-03-02 フジノン株式会社 レトロフォーカス型レンズ
JP4574257B2 (ja) * 2004-07-15 2010-11-04 富士フイルム株式会社 大口径広角レンズ
JP5929478B2 (ja) * 2011-06-17 2016-06-08 セイコーエプソン株式会社 投写光学系及びこれを備えるプロジェクター
US10656397B2 (en) * 2015-06-25 2020-05-19 Young Optics Inc. Optical lens system
JP6895046B2 (ja) * 2016-11-17 2021-06-30 コニカミノルタ株式会社 撮像光学系及び撮像装置
TWI724190B (zh) * 2017-06-23 2021-04-11 佳能企業股份有限公司 光學鏡頭與應用其之電子裝置
CN111279241A (zh) * 2017-12-12 2020-06-12 株式会社日东 摄像用的光学系统和摄像装置
CN110824664B (zh) * 2018-08-10 2022-08-02 佳能企业股份有限公司 光学镜头
TWI769298B (zh) * 2018-08-31 2022-07-01 佳能企業股份有限公司 光學鏡頭
CN110879458B (zh) * 2018-09-06 2022-07-12 信泰光学(深圳)有限公司 广角镜头
WO2021065092A1 (ja) * 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 レンズ系、撮像装置及び撮像システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101871107B1 (ko) * 2017-03-08 2018-06-29 주식회사 옵트론텍 촬상 렌즈 광학계
CN110873944A (zh) * 2018-09-04 2020-03-10 佳能企业股份有限公司 光学镜头
CN110007444A (zh) * 2019-05-21 2019-07-12 浙江舜宇光学有限公司 光学成像镜头
CN211123463U (zh) * 2019-12-13 2020-07-28 天津欧菲光电有限公司 光学成像系统、取像装置及电子设备
CN111239984A (zh) * 2020-03-25 2020-06-05 东莞市宇瞳光学科技股份有限公司 一种定焦镜头
CN111596446A (zh) * 2020-07-27 2020-08-28 常州市瑞泰光电有限公司 摄像光学镜头

Also Published As

Publication number Publication date
JP2022023760A (ja) 2022-02-08
JP7079837B2 (ja) 2022-06-02
CN111736312A (zh) 2020-10-02
US20220026680A1 (en) 2022-01-27
CN111736312B (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
WO2022021453A1 (zh) 摄像光学镜头
WO2022000658A1 (zh) 摄像光学镜头
WO2022000659A1 (zh) 摄像光学镜头
WO2022007028A1 (zh) 摄像光学镜头
WO2022021457A1 (zh) 摄像光学镜头
WO2022021456A1 (zh) 摄像光学镜头
WO2022000647A1 (zh) 摄像光学镜头
WO2022007027A1 (zh) 摄像光学镜头
WO2022007022A1 (zh) 摄像光学镜头
WO2022041391A1 (zh) 摄像光学镜头
WO2022021455A1 (zh) 摄像光学镜头
WO2022021454A1 (zh) 摄像光学镜头
WO2022077597A1 (zh) 摄像光学镜头
WO2021168881A1 (zh) 摄像光学镜头
WO2021168882A1 (zh) 摄像光学镜头
WO2022032827A1 (zh) 摄像光学镜头
WO2020134263A1 (zh) 摄像光学镜头
WO2022021458A1 (zh) 摄像光学镜头
WO2022134183A1 (zh) 摄像光学镜头
WO2022134178A1 (zh) 摄像光学镜头
WO2022134177A1 (zh) 摄像光学镜头
WO2022032828A1 (zh) 摄像光学镜头
WO2022041385A1 (zh) 摄像光学镜头
WO2022032826A1 (zh) 摄像光学镜头
WO2022126712A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947767

Country of ref document: EP

Kind code of ref document: A1